当前位置: 仪器信息网 > 行业主题 > >

赛克利嗪相关化合物标准品

仪器信息网赛克利嗪相关化合物标准品专题为您提供2024年最新赛克利嗪相关化合物标准品价格报价、厂家品牌的相关信息, 包括赛克利嗪相关化合物标准品参数、型号等,不管是国产,还是进口品牌的赛克利嗪相关化合物标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合赛克利嗪相关化合物标准品相关的耗材配件、试剂标物,还有赛克利嗪相关化合物标准品相关的最新资讯、资料,以及赛克利嗪相关化合物标准品相关的解决方案。

赛克利嗪相关化合物标准品相关的论坛

  • 做硝基呋喃类化合物用的标准品的问题

    做硝基呋喃类化合物检测用的标准品大家都是用的什么呀?有标准中说的是用对照品,有标准中用的是代谢物,不知道这其中有没有什么区别呀?大家都根据哪个标准做的呢?

  • 【“仪”起享奥运】中药配方颗粒难溶性物质与高分子化合物的红外光谱分析检测

    [font=&][size=16px][font=微软雅黑]中药配方颗粒是由单味中药饮片经水加热提取、分离、浓缩、干燥、制粒而成的颗粒。服用方便、调配灵活等优势赋予中药配方颗粒广阔的发展前景,而可靠的质量保证是必备前提。因为失去了中药饮片的性状和显微特征,化学成分检测是中药配方颗粒质量评价的关键手段。中药配方颗粒制备时需以水为溶媒加热提取,但是现有质量标准主要使用色谱方法检测其中可溶于有机溶剂的小分子化合物,缺少针对其他类型成分的化学表征,不能全面整体地评价中药配方颗粒的物质组成。[/font][/size][/font][font=&][size=16px][font=微软雅黑]中药配方颗粒制备时可以使用必要的辅料。辅料种类和用量可能影响服药剂量、药物溶出和吸收等,是中药配方颗粒质量评价时应考虑的因素。中药颗粒剂[i][/i]常用辅料多为高分子和无机物,难以直接体现在基于[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]或[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的指纹图谱或特征图谱中。中药饮片水提物可能含有多糖、蛋白质等高分子化合物,有些情况下这些成分是重要药效物质。因此,高分子化合物检测对于中药配方颗粒质量评价是很有必要的。中药配方颗粒冲服时可能存在难溶性物质。这些难溶性物质可能是没有除净的饮片残渣,或者是人为添加的难溶性辅料,还可能是因为后续生产过程降低了某些成分的溶解性。因此,难溶性物质检测对于中药配方颗粒质量评价很有必要。[/font][/size][/font][font=&][size=16px][font=微软雅黑]波数为[/font]4000~400 cm[/size][/font][sup][font=&][sup][size=16px]–1[/size][/sup][/font][/sup][font=&][size=16px][font=微软雅黑]的中红外光谱(《中华人民共和国药典》称为[/font]“[font=微软雅黑]红外分光光度法[/font]”[font=微软雅黑],以下简称红外光谱)是固体样品、高分子样品的经典分析方法之一,可用于中药配方颗粒的难溶性物质与高分子化合物检测。红外光谱可以直接检测固体、液体、气体等各种形态物质,能够同时获得有机小分子[i][/i]、有机大分子、无机成分等各类成分信号,从而快速且整体地表征中药配方颗粒的物质组成。但是,样品未经分离而直接进行红外光谱检测时,不同成分的光谱信号相互叠加,降低了灵敏度和专属性。因此,先对样品进行溶剂分离,然后用红外光谱检测不同溶剂分离部位,获得中药配方颗粒所含难溶性物质和高分子化合物的化学组成信息。[/font][/size][/font]

  • 【应用数据库有奖问答12.21(已完结)】五味子颗粒的检测,检测的化合物是?

    【应用数据库有奖问答12.21(已完结)】五味子颗粒的检测,检测的化合物是?

    [b]Q:五味子颗粒的检测,检测的化合物是?A:五味子醇甲===============================================================【活动内容】1、每个工作日上午10:00左右发布一个关于应用数据库的应用问答题,版友根据题目给出自己理解的答案。2、每个工作日下午15:10公布参考答案。【活动奖励】幸运奖:抽奖软件,当天随机抽取3个或5个回答正确的版友ID号(最后一个ID号,截止至下午15:00),每人奖励[color=#ff0000]2钻石币[/color](抽奖人数≤10,抽取3个版友;抽奖人数>10,抽取5个版友);中奖名单:lijing320323(注册ID:lijing320323)zgx3025(注册ID:v2844608)zengzhengce163(注册ID:zengzhengce163)千层峰(注册ID:jxyan)初心(注册ID:m3170710)[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2018/12/201812211511554681_1991_1610895_3.png!w690x387.jpg[/img][img=,690,387]https://ng1.17img.cn/bbsfiles/images/2018/12/201812211511570810_8906_1610895_3.png!w690x387.jpg[/img]积分奖励:所有回答正确的版友奖励[color=#ff0000]10个积分[/color](幸运奖获得者除外)。【注意事项】同样的答案,每人只能发一次[/b][align=left][color=#ff0000][b]PS:该贴浏览权限为“回贴仅作者和自己可见”,回复的版友仅能看到版主的题目及自己的回答内容,无法看到其他版友的回复内容。[/b][/color][/align][align=left][color=#ff0000][b] 下午3点之后解除,即可看到正确答案、获奖情况及所有版友的回复内容。[/b][/color][/align][align=center]=======================================================================[/align]方法:HPLC基质:药品应用编号:103239化合物:五味子醇甲色谱柱:[url=http://www.dikma.com.cn/product/details-990.html]Spursil C18 5μm 250 x 4.6mm[/url]样品前处理:对照品溶液:取适量标品,用甲醇将其溶解(5 μg/mL)。供试品溶液:取装量差异项下的本品,研细,取约0.5 g,精密称定,置25 mL量瓶中,加甲醇20 mL,超声处理(功率250 W,频率40 KHz)30分钟,放冷,加甲醇至刻度,摇匀,滤过,取续滤液,即得。色谱条件:色谱柱: Spursil C18 250*4.6 mm,5 μm (Cat#:82006)流动相: 水:甲醇=40:60流速: 1 mL/min柱温: 30 ℃检测器: 250 nm进样量: 20 μL文章出处:天津应用实验室关键字:五味子颗粒、五味子醇甲、Spursil C18、HPLC、2015药典摘要:Spursil C18检测五味子颗粒中五味子醇甲。图谱:[img]http://www.dikma.com.cn/u/image/2014/08/29/1409285184124680.png[/img][img]http://www.dikma.com.cn/u/image/2014/08/29/1409285189510701.png[/img]

  • HJ 648 水质中硝基苯类化合物标准品峰型拖尾

    HJ 648 水质中硝基苯类化合物标准品峰型拖尾

    做HJ 648 水质中硝基苯类化合物的检测,15种标准品的色谱峰拖尾,DB-1701柱子,30×0.32×0.25,进样口250°,检测器300°,柱子流量1ml,初温50°保持2min.,以每分钟10°升到200°,保持1min.,再以每分钟12°升到250°,保持2min.,换过非极性的柱子OV-101,分离效果更差,请问这里有没有做过这个标准的老师指导一下。[img=,690,322]https://ng1.17img.cn/bbsfiles/images/2018/12/201812140954328263_5265_1620184_3.png[/img]

  • 无组织金属化合物采样

    标准上要求金属化合物的采样体积10立方米,如果按照hj55的方法100L采样60分钟,采样体积肯定达不到的,请问是延长采样时间还是用更大的流量采样?还是说我按照总悬浮颗粒物的方法采

  • 怎样确定化合物的标准英文名?

    我采用岛津的气质联用仪测定挥发物,检测结果采用NIST系统确定化合物名称。现在投稿返回意见是核对化合物的中英文名称。我想知道有没有网站可以查询化合物,这些化合物没有错误,就是中英文名称让重新核对下,写其标准名称。如乙酸叶醇酯 3-hexenyl acetate这样的。谢谢!

  • 化合物标准图谱

    各位高手: 现急需一种化合物的标准图谱,CAS:5549-23-5,在中科院上海化学所的数据库中没查到! 谢谢各位!

  • 【原创大赛】从黄芩中提取黄酮类化合物的工艺研究

    【原创大赛】从黄芩中提取黄酮类化合物的工艺研究

    [align=center]从黄芩中提取黄酮类化合物的工艺研究[/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]食品事业部:李灿[/align][b]摘要:[/b]探讨超声波辅助法提取黄芩中总黄酮的最佳提取条件及对提取物的抗氧化性活性研究,这为黄芩作为天然抗氧化剂和功能性食品的开发利用提供理论基础和实验依据。[b][/b] 通过设计正交试验,采用超声波辅助法提取黄芩中总黄酮的最佳工艺条件条件,并通过对羟自由基、超氧自由基和DPPH自由基的清除效果研究其抗氧化活性。[b][/b]超声波辅助提取黄芩中总黄酮的最佳条件为:乙醇浓度为50%,时间为25min,料液比为1∶10,温度为30℃,黄芩总黄酮的提取率为3.25%。并且研究了黄芩提取物中的黄酮类物质对O[sub]2[/sub]-• 、• OH和DPPH自由基的抗氧化性能。研究结果表明洋葱提取物中黄酮类物质的抗氧化性较VC强。在浓度为0.0125mg/ml下,对羟基自由基的清除率为88.30%,对超氧基自由基的清除率为90.01%,对DPPH自由基的清除率为93.87%。[b]关键词[/b]:黄芩;超声波提取;总黄酮;抗氧化活性 [align=center][b] Study on extraction technology of flavonoids from Scutellaria[/b][/align][align=center]Li Can[/align][align=center] (Department of Chemistry and Chemical Engineering, Xi′an University of [/align][align=center]Arts and Science, Xi′an 710065)[/align][b]Abstract: [/b]To investigate the ultrasonic assisted extraction optimum extraction conditions of total flavonoids from Scutellaria and to extract antioxidant activity, which is a skullcap as a natural antioxidant and functional food development and utilization of theoretical and experimental evidence provided . [b][/b] Through orthogonal experiment, the optimum conditions using ultrasonic assisted extraction conditions of total flavonoids from Scutellaria, and to study its antioxidant activity by hydroxyl radicals, superoxide radicals and DPPH radical scavenging effect. Optimal conditions . [b] [/b]Ultrasonic assisted extraction of total flavonoids from Scutellaria: ethanol concentration of 50%, the time is 25min, solid-liquid ratio of 1:10, the temperature is 30 ℃, extraction of total flavonoids was 3.25%. And studied the extract of Scutellaria flavonoids on O2-• , • OH and DPPH radical antioxidant properties. The results show that the onion extract antioxidant flavonoids than VC strong. At a concentration of under 0.0125mg/ml, hydroxyl radical scavenging rate of 88.30% for super-group was 90.01% scavenging of DPPH radical scavenging rate was 93.87%.[b][color=#2b2b2b]Key Words[/color][/b][color=#2b2b2b]:[/color][color=#2b2b2b] [/color][color=#2b2b2b]Skullcap [/color][color=#2b2b2b]U[/color][color=#2b2b2b]ltrasonic extraction [/color][color=#2b2b2b]T[/color][color=#2b2b2b]otal flavonoids [/color][color=#2b2b2b]A[/color][color=#2b2b2b]ntioxidant activity[/color][b]1 前言[/b]黄岑主要生长在陕西秦岭,为常用中草药之一,性寒,味苦。具有清热燥湿,泻火解毒,止血安胎[sup][/sup]等功效,它的主要成分为黄酮类化合物[sup][/sup],黄酮类化合物主要存在于双子叶及裸子植物的叶、果、实、根、皮中,在植物中主要与糖结合成苷的形式存在[sup][/sup]。目前从黄酮类物质有很多种,黄酮类化合物的结构特点是具有 C[sub]6[/sub]- C[sub]3[/sub]- C[sub]6[/sub]的基本骨架,根据中间三碳链的氧化程度、B 环( 苯基) 连接位置( 2-或3-位) 以及三碳链是否呈环状等特点,主要有黄酮醇,二氢黄酮,二氢黄酮醇,黄烷,黄烷醇,异黄酮等,被广泛应用在医药、功能食品添加剂、兽药和农药等领域。在医药方面,根据其在心血管系统、内分泌系统、抗肿瘤方面的药理作用,很多以黄酮类成分为主的制剂已作为成药上市[sup][/sup]。在食品中它们应用于功能性食品添加剂,如天然甜味剂、天然抗氧化剂、天然色素等;应用于功能食品,如生物类黄酮口香糖、银杏叶袋泡茶等防衰、抗癌、提高免疫力食品;在兽药、农药等领域,现已开发出些具有特效功能的含有黄酮类化合物药品和驱虫、杀虫剂等[sup][/sup]。目前国内侧重于对黄酮类化合物的研究,但他们常被当作残渣而扔掉,因而就造成了黄芩的浪费,没有使黄芩得到充分利用,本文主要针对黄芩总黄酮的提取方法及其抗氧化能力测定方法进行研究,以期为黄芩黄酮类成分的进一步开发利用从黄岑中提取黄酮类化合物的方法有很多种,传统提取方法有煎煮法[sup][/sup]、有机溶剂提取法[sup][/sup]、浸渍法、渗漉法、回流提取法[sup][/sup]、水提法等,新的提取方法有超声波提取法、微波提取法、索氏提取法、超临界萃取法、大孔树脂吸附法、酶解法提取[sup][/sup]。黄芩黄酮的提取主要为溶剂萃取法,包括无机溶剂萃取法和有机溶剂萃取法。其主要原理是利用黄芩黄酮能溶于碱水或甲醇等有机溶剂的特性来提取黄芩中的黄酮[sup][/sup],考虑到该法提取时间长,提取率较低的缺点,我们采用超声波辅助提取法。因为超声波提取法是一种新型方法,它具有能耗低、效率高、不破坏有效成分的特点,在低温下可以强化水浸提效率,达到省时高效节能的目的,而且是目前广泛使用的方法。超声提取的主要理论依据是超声的空化效应、热效应和机械作用。当大能量的超声波作用于介质时,介质被撕裂成许多小空穴,这些小空穴瞬时闭合,并产生高达几千个大气压的瞬间压力,即空化现象。超声空化中微小气泡的爆裂会产生极大的压力,使植物细胞壁及整个生物体的破裂在瞬间完成,缩短了破碎时间,同时超声波产生的振动作用加强了胞内物质的释放、扩散和溶解,从而显著提高提取效率。因此本实验拟决定用超声波提取法来提取黄酮类化合物。黄酮类化合物的测定方法也多种多样,目前有薄层扫描法、紫外分光光度法、液相色谱法等[sup][/sup]。但是以上方法测定黄芩提取液中总黄酮的含量都比较繁琐,非黄酮类物质干扰比较大。由于Al[sup]3+[/sup]仅与黄酮类物质有特征反应,使用这种显色方法可以使黄酮类化合物溶液在510nm左右出现吸收峰,采用紫外分光光度法测定黄芩提取液中总黄酮含量,方法简单快速[sup][/sup]。对于黄酮类化合物的抗氧化性研究,国内外所做研究也比较多。方法可分为体外抗氧化与体内抗氧化,其中体外抗氧化运用较为广泛,体外抗氧化还可分为直接清除活性氧自由基、抑制油脂过氧化反应[sup][/sup]等;体内抗氧化是用受试物连续喂饲大鼠或小鼠1个月~3个月,然后处死动物,测定其血或组织(如肝、脑)中各物质的含量,同对照组进行比较,间接地说明受试物的抗氧化活性。采用体外抗氧化性研究,常用到的自由基有OH[sup] [/sup],O[sub]2[/sub][sup]-[/sup], DPPH等,由于直接清除活性自由基的方法易行且效果直观,本次实验采用该种方法。本实验将从两个方面研究黄芩黄酮类化合物。第一部分为黄芩总黄酮最佳提取方法的研究。本环节采取超声辅助提取法,采用料液比(A),乙醇浓度(B), 超声时间(C),超声温度(D)作为研究因素,采用四因素三水平,选择L[sub]9[/sub](3[sup]4[/sup])设计正交试验。用芦丁做标准曲线测定黄芩提取液中总黄酮的含量。第二部分为总黄酮类化合物抗氧化性的研究,采用对OH,O[sub]2[/sub][sup]-[/sup]自由基和DPPH自由基的清除作用研究其抗氧化性。[b]2 实验部分2.1 材料与仪器2.1.1 材料和试剂[/b] 黄芩(购于西安同仁堂大药房),芦丁(分析纯,上海试剂药品厂),亚硝酸钠(分析纯,成都市科龙化工试剂厂),硝酸铝(分析纯,成都市科龙化工试剂厂),氢氧化钠(分析纯,成都市科龙化工试剂厂),邻苯三酚(分析纯,成都市科龙化工试剂厂),盐酸(分析纯,天津市天力化学试剂有限公司),双氧水(天津市天力化学试剂有限公司),硫酸亚铁(分析纯,成都市科龙化工试剂厂),水杨酸(分析纯,天津市天力化学试剂有限公司),无水乙醇(分析纯,天津市天力化学试剂有限公司),三羟基甲基氨基甲烷(分析纯,天津市福晨化学试剂厂),邻二氮菲(分析纯,天津市福晨化学试剂厂),DPPH(购于阿拉丁试剂)。[b]2.1.2 仪器[/b] 高速粉碎机(FW80型,北京中兴伟业仪器有限公司);紫外可见分光光度计(722N,上海精密科学仪器有限公司) 电子天平(YP202W,上海精密科学仪器有限公司);循环水式多用真空泵(SHB-Ⅲ,郑州长城科工贸有限公司);超声波清洗机(11—1404,宁波新芝生物科技股份有限公司);智能型恒温鼓风干燥箱(CMD-20X型,上海琅轩试验设备有限公司);玻璃仪器气流烘干器(TH48SYBQ-1型,北京中兴伟业仪器有限公司)。[b]2.2实验方法2.2.1黄芩样品的制备[/b] 将黄芩在烘箱中60℃干燥8h,干燥后的黄芩用粉碎机粉碎成粉末,用分样筛(40目)筛分黄芩粉末,保证粉末均匀一致,密封保存,待用。[b]2.2.2 总黄酮的测定方法2.2.2.1 芦丁标准曲线的绘制[/b] 准确称取干燥至恒重的芦丁4.0mg 于小烧杯中,用50%乙醇溶解,并定容于25ml的容量瓶,摇匀,得浓度0.16mg/ml的标准液。准确吸取标准应用液0、1.0、2.0、3.0、4.0、5.0ml 于6 个10ml容量瓶中,与上述容量瓶中分别加入5% NaNO[sub]2[/sub]0.3ml,摇匀,放置6min后,分别加入10% Al(NO[sub]3[/sub])[sub]3[/sub] 溶液0.3ml,摇匀,放置6min后,再分别加入4% NaOH 溶液4ml,加50%乙醇定容至10ml,摇匀,以试剂空白为参比,放置10~15min,用紫外可见分光光度计进行全波长扫描,在最大吸收波长510nm处测定吸光度,得到吸光度Y与芦丁浓度X(mg/ml)间标准曲线回归方程。[b]2.2.2.2 提取液总黄酮含量的测定 [/b]准确称取1.00g黄芩粉末,在不同的提取条件下提取黄芩总黄酮,提取液用乙醇稀释定容至50ml。准确吸取提取液1.0ml于25ml容量瓶,按上述方法显色后测定吸光度,代入标准曲线回归方程中可以得到黄芩中黄酮类物质的含量(mg/ml),从而计算出黄芩中黄酮类物质的提取率,即:黄芩中黄酮类物质的提取率= ×100%[b]2.2.3 单因素试验[/b] 主要研究料液比、乙醇浓度、超声波时间、超声波温度4个因素,在保持其他因素相同的条件下分别进行单因素试验,研究各因素对黄芩总黄酮提取效果的影响,筛选最佳的提取条件。 准确称取黄芩粉末,在不同的条件下进行超声提取,提取液冷却后用乙醇定容,按照2.2.2的测定方法,计算黄芩中总黄酮的含量。[b]2.2.4 正交试验[/b]在单因素试验基础上,选择料液比、乙醇浓度、超声时间、超声温度4因素,设计L[sub]9[/sub](3[sup]4[/sup])正交试验,以总黄酮的含量为评价指标,确定黄芩总黄酮超声辅助法的最佳提取工艺。[b]2.2.5 总黄酮体外抗氧化性的研究2.2.5.1 对羟自由基清除作用的研究[sup][/sup][/b]原理:通过反应所产生的羟基自由基可将Fe[sup]2+[/sup]氧化为Fe[sup]3+[/sup], Fe[sup]2+[/sup]和邻二氮菲反应可产生有色络合物,向有色沉淀加入抗氧化剂后,其反应效果会相对减弱。羟基自由基对二价铁离子的氧化作用,会导致吸光值不断变化,从而评价样液消除羟基自由基的能力。步骤:取0.75 mmoL/L邻二氮菲溶液1 mL,加入不同浓度的样液,再加0.75 mmoL/L硫酸亚铁1 mL混匀,加0.75mmol/l的过氧化氢1 mL,于37 ℃ 水浴下,水浴60 min后,在536 nm处测其吸光度,所得吸光度A[sub]b[/sub]。 反应方程式:H[sub]2[/sub]O[sub]2[/sub] + Fe[sup]2+[/sup]=OH[sup]-[/sup] +OH + Fe[sup]3+ [/sup]清除率S(%)=「Ax- A[sub]b[/sub]]/[As- A[sub]b[/sub]] ×100% 其中 A[sub]b[/sub]:标准体系的吸光度 Ax:不含黄芩提取液的吸光度As:不含过氧化氢的标准体系吸光度本底吸光度[b]2.2.5.2 对超氧自由基清除作用的研究 [sup][/sup][/b] 原理:在碱性条件下,邻苯三酚能迅速发生自氧化反应,生成超氧阴离子自由和有色中间产物,且邻苯三酚自氧化速率与生成超氧阴离子自由基的浓度呈正相关,该有色中间产物在300nm处有一特征吸收峰。当加入抗氧化剂能催化超氧阴离子自由基与H[sup]+[/sup]结合生成O[sub]2[/sub]和H[sub]2[/sub]O[sub]2[/sub] ,从而阻止了中间有色产物积累,溶液在320nm 处的吸收减弱。因此可通过测定添加试样前后吸光度[i]A[/i]的变化来表示抗氧化剂对超氧阴离子自由基的清除效果。步骤:取0.05mol/L三羟甲基氨基甲烷盐酸缓冲液(pH =8.2)4.5mL,置于25℃水浴中预热20min,分别加入0.1mL试样和0.4mL2.5mmol/L邻苯三酚溶液,混匀后于25℃水浴中反应4min,加入8mol/L HCl溶液两滴终止反应,于波长299nm处测定吸光度As,空白对照组以相同体积的蒸馏水代替样品,并计算清除率。 清除率计算公式: S(%)=[(1-(As-A[sub]0[/sub] )/A[sub]b[/sub]]×100%其中 A[sub]b[/sub]:不含黄芩提取物的标准体系吸光度 As:标准体系的吸光度值 Ao:不含邻苯三酚的标准体系吸光度[b]2.2.5.3 对DPPH自由基清除作用的研究[sup][/sup] [/b]原理:DPPH 在有机溶液中是一种稳定的自由基,其乙醇溶液呈深紫色,当 DPPH 溶液中加入自由基清除剂时,其孤对电子被配对,溶液颜色变浅,可由此来检测自由基的清楚状况,从而评价物质的抗氧化能力。步骤:将样品储备液适当稀释得到不同浓度的黄芩黄酮溶液。 向一系列 10 mL比色管中加入 3.5 mL 1.0×10[sup]-4[/sup]mol/L 的 DPPH 溶液和 0.5 mL 样品液,摇匀避光反应30 min,与波长517 nm下测定吸光度 A s。空白对照组以无水乙醇代替样品,并计算清除率。清除率计算公式: 清除率S(%)=[(1-(As-A[sub]0[/sub] )/A[sub]b[/sub]]×100% 其中 A[sub]b[/sub]:不含黄芩提取物的标准体系吸光度 A[sub]s[/sub]:标准体系的吸光度值 A[sub]0[/sub]:不含DPPH的标准体系吸光度[b]3. 结果与分析 3.1 芦丁标准曲线[/b]由图可得,芦丁在0.02—0.10mg/ml浓度范围内与吸光度呈良好的线性关系,R[sup]2[/sup]= 0.9998。回归方程为Y= 11.47X+ 0.0554 [align=center]表1 芦丁浓度与吸光度的关系[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]芦丁浓度/(mg/ml)[/align][/td][td][align=center]0.02[/align][/td][td][align=center]0.04[/align][/td][td][align=center]0.06[/align][/td][td][align=center]0.08[/align][/td][td][align=center]0.10[/align][/td][/tr][tr][td][align=center]吸光度(A)[/align][/td][td][align=center]0.288[/align][/td][td][align=center]0.514[/align][/td][td][align=center]0.736[/align][/td][td][align=center]0.976[/align][/td][td][align=center]1.204[/align][/td][/tr][/table][align=center] [/align][align=center] [/align][align=center] [/align][align=center][img=,463,249]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091813421003_7187_2904018_3.png!w463x249.jpg[/img] [/align][align=center]图1 芦丁标准曲[/align]Fig.1 Standard curve of rutin[b]3.2 总黄酮提取条件的优化3.2.1 料液比对黄酮类化合物提取效果的影响[/b]在料液比为1:6,1:8,1:10,1:12,1:14时,50%乙醇作为提取剂,超声波时间为20min,超声波温度为60℃,冷却后采用超声波提取法提取黄芩中黄酮类化合物含量,研究料液比对提取效果的影响。[align=center]表2 料液比与提取率的关系[/align][align=center][img=,394,250]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091815178933_5515_2904018_3.png!w394x250.jpg[/img][/align][align=center] 图2 料液比对黄芩黄酮提取的影响[/align][align=center]Fig.2 Solid-liquid ratio on the extraction of flavonoids from Scutellaria impact[/align]由图2可见,随着料液比的增加,黄酮类化合物的提取率也逐渐升高,当料液比为1:10时,黄酮类化合物的提取率达到最高值,继续增加料液比,提取率会有一定的降低。在一定范围内料液比的增加有利于物料中黄酮类物质的溶出,但料液比过大的时候,会导致溶液浓度太小,从而影响到黄酮类物质对超声波能的吸收,导致黄酮得率下降。因此选定料液比在1:10的条件下进行实验。[b]3.2.2 乙醇浓度对黄酮类化合物提取效果的影响[/b]当乙醇浓度为30%,40%,50%,60%,70%时作为提取剂,超声波时间为20min,超声波温度为60℃,料液比为1:10的条件下,冷却后采用超声波提取法提取液中总黄酮含量,研究料液比对提取效果的影响。结果如图2所示[align=center]表3 乙醇浓度与提取率的关系[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]乙醇浓度(%)[/align][/td][td][align=center]30[/align][/td][td][align=center]40[/align][/td][td][align=center]50[/align][/td][td][align=center]60[/align][/td][td][align=center]70[/align][/td][/tr][tr][td][align=center]提取率(%)[/align][/td][td][align=center]2.08[/align][/td][td][align=center]2.44[/align][/td][td][align=center]3.18[/align][/td][td][align=center]2.15[/align][/td][td][align=center]1.28[/align][/td][/tr][/table][align=center][img=,457,289]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091815413326_3128_2904018_3.png!w457x289.jpg[/img][/align]图3 乙醇浓度对黄芩总黄酮提取的影响[align=center] Fig.3 The effect of ethanol concentration on the extraction of flavonoids from Scutellaria[/align]由图3可见,随着乙醇浓度的增加,黄酮类化合物的提取率逐渐升高,在乙醇浓度为50%时提取率最高,再增加乙醇浓度,提取率逐渐降低。这主要是随着乙醇浓度的增加导致溶液极性的改变,使提取液中杂质含量增加,因此选择50%的乙醇溶液作为提取剂。[b]3.2.3 超声波时间对黄酮类化合物提取效果的影响[/b]当超声波时间为5min,10min,15min,20min,25min,料液比为1:10,乙醇浓度为50%,超声波温度为60℃的条件下,冷却后采用超声波提取法提取液中总黄酮含量,研究料液比对提取效果的影响。[align=center]表4 超声波时间与提取率的关系[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]超声波时间(min)[/align][/td][td][align=center]5[/align][/td][td][align=center]10[/align][/td][td][align=center]15[/align][/td][td][align=center]20[/align][/td][td][align=center]25[/align][/td][/tr][tr][td][align=center]提取率(%)[/align][/td][td][align=center]1.67[/align][/td][td][align=center]1.82[/align][/td][td][align=center]1.93[/align][/td][td][align=center]2.19[/align][/td][td][align=center]2.08[/align][/td][/tr][/table][align=center][img=,420,258]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091815572952_9256_2904018_3.png!w420x258.jpg[/img][/align]图4 超声时间对黄芩总黄酮提取的影响[align=center]Fig.4 Ultrasonic time of total flavonoids extracted[/align]由图4可见,随着超声波时间的延长,黄酮类化合物提取率逐渐升高,在20min时提取率最高,继续延长超声波提取时间提取率几乎不变,主要是因为在初期,黄芩中黄酮类化合物没有完全浸提到溶剂中,而随着时间的增加,黄酮类化合物逐渐完全溶于提取剂中,因此提取率几乎不变。所以选择超声波时间为20min时进行实验。[b]3.2.4 超声波温度对黄酮类化合物提取效果的影响[/b]当超声波温度为20℃,30℃,40℃,50℃,60℃,料液比为1:10,乙醇浓度为50%,超声波时间为20min的条件下,冷却后采用超声波提取法提取液中总黄酮含,研究料液比对提取效果的影响。[align=center]表5 超声波温度与提取率的关系[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]超声波温度(℃)[/align][/td][td][align=center]20[/align][/td][td][align=center]30[/align][/td][td][align=center]40[/align][/td][td][align=center]50[/align][/td][td][align=center]60[/align][/td][/tr][tr][td][align=center]提取率(%)[/align][/td][td][align=center]1.87[/align][/td][td][align=center]2.34[/align][/td][td][align=center]2.44[/align][/td][td][align=center]2.25[/align][/td][td][align=center]2.31[color=#ff0000] [/color][/align][/td][/tr][/table][align=center][img=,360,256]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091816171242_5784_2904018_3.png!w360x256.jpg[/img][/align][align=center] [/align][align=center] [/align]图5 超声温度对黄芩黄酮提取的影响[align=center]Fig.5 Skullcap ultrasonic extraction temperature on impact[/align] 由图5可见,随着超声波温度的升高,黄酮类化合物提取率逐渐升高,在40℃时提取率最高,继续升高超声波提取温度,提取率反而略有下降。高温提取的过程是先使物料升温,保持一定时间后,利用温度使细胞壁破碎,乙醇溶剂溶入细胞内部,黄酮充分溶解,再继续升高温度,反而使更多的杂质释放出来,导致黄酮提取率不再上升。所以选择超声波温度为40℃进行实验。[b]3.3 正交试验确定最佳工艺3.3.1 正交试验结果[/b]通过上述单因素试验,得出各个单因素的最佳条件,其中料液比为1:10,乙醇浓度为50%,超声时间为20min,超声温度为40℃。选择料液比、乙醇浓度、超声波时间、超声波温度4因素3水平,设计L[sub]9[/sub](3[sup]4[/sup])正交试验,因素与水平见表1,试验结果见表2为了进一步判断上述4类因素对试验结果的影响是否存在,将以正交试验数据进行方差分析,找出这些因素中起主导作用的来源。表1 正交试验因素及水平表Tab 1 Factors and levels of the orthogonal tests[table][tr][td=1,2]水平[/td][td] 因素[/td][/tr][tr][td]A B C D料液比(g/ml) 乙醇浓度(%) 超声时间(s) 超声温度(℃)[/td][/tr][tr][td=2,1]1 1:8 40 15 302 1:10 50 20 403 1:12 60 25 50[/td][/tr][/table]表2 正交试验结果及分析 Tab 2 The results and analysis of orthogonal tests [table][tr][td=1,2]试验号[/td][td] 因素[/td][td=1,2]提取量(%)[/td][/tr][tr][td]A B C D料液比(g/ml) 乙醇浓度(%) 超声时间(s) 超声温度(℃)[/td][/tr][tr][td=3,1]1 1:8 40 15 30 2.622 1:8 50 20 40 2.903 1:8 60 25 50 2.764 1:10 50 25 30 3.255 1:10 60 15 40 2.626 1:10 40 20 50 2.507 1:12 60 20 30 2.408 1:12 40 25 40 2.589 1:12 50 15 50 2.85K[sub]1[/sub]/3 2.76 2.57 2.70 2.76K[sub]2[/sub]/3 2.79 3.00 2.60 2.70K[sub]3[/sub]/3 2.61 2.59 2.86 2.70R 0.18 0.43 0.26 0.06[/td][/tr][/table]由表1、2可知,主次因素由极差大小确定:B>C>A>D,即影响黄芩总黄酮提取效率的因素贡献率为乙醇浓度>超声时间>料液比>超声温度。以总黄酮含量为评价指标,得最佳提取工艺条件为A[sub]2[/sub]B[sub]2[/sub]C[sub]3[/sub] D[sub]1[/sub],即乙醇浓度为50%、超声时间为25min、料液比为1∶10、超声温度为30℃。最佳条件为正交表中的第四组,因此测抗氧化性实验选择此组数据。[b]3.4 总黄酮的抗氧化性3.4.1 对羟自由基的清除作用[/b][align=center]表6 提取液浓度对羟基自由基清除率[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]提取液浓度/(mg/ml)[/align][/td][td][align=center]0.0025[/align][/td][td][align=center]0.0050[/align][/td][td][align=center]0.0075[/align][/td][td][align=center]0.0100[/align][/td][td][align=center]0.0125[/align][/td][/tr][tr][td][align=center]VC清除率(%)[/align][/td][td][align=center]20.54[/align][/td][td][align=center]42.88[/align][/td][td][align=center]59.39[/align][/td][td][align=center]74.44[/align][/td][td][align=center]79.09[/align][/td][/tr][tr][td][align=center]黄酮清除率(%)[/align][/td][td][align=center]40.39[/align][/td][td][align=center]67.21[/align][/td][td][align=center]78.42[/align][/td][td][align=center]85.29[/align][/td][td][align=center]88.30[/align][/td][/tr][/table][align=center][img=,360,256]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091816376703_5430_2904018_3.png!w360x256.jpg[/img][/align]图6 黄芩总黄酮对羟自由基的清除Fig.6 Scutellaria Flavonoids on Scavenging of Hydroxyl Radicals黄芩总黄酮对羟自由基的清除作用,结果见图6。由图6可知,黄芩总黄酮对羟基自由基具有一定的清除作用。在相同的浓度范围下,清除能力大小为:提取物VC溶液。在0.0025—0.0125mg/ml浓度下,各溶液的清除能力都随浓度的增大而增大。当提取液浓度为0.0125mg/ml下,黄芩提取液的清除率达到了88.30%。3.4.2 [b]对超氧自由基的清除作用[/b][align=center]表7 提取液浓度对超氧基自由基清除率[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]提取液浓度/(mg/ml)[/align][/td][td][align=center]0.0025[/align][/td][td][align=center]0.0050[/align][/td][td][align=center]0.0075[/align][/td][td][align=center]0.0100[/align][/td][td][align=center]0.0125[/align][/td][/tr][tr][td][align=center]VC清除率(%)[/align][/td][td][align=center]26.77[/align][/td][td][align=center]43.09[/align][/td][td][align=center]61.73[/align][/td][td][align=center]78.69[/align][/td][td][align=center]80.20[/align][/td][/tr][tr][td][align=center]黄酮清除率(%)[/align][/td][td][align=center]49.81[/align][/td][td][align=center]75.29[/align][/td][td][align=center]84.38[/align][/td][td][align=center]89.21[/align][/td][td][align=center]90.01[/align][/td][/tr][/table]黄芩总黄酮对超氧自由基的清除作用,结果见图7。由图7可知,黄芩总黄酮对邻苯三酚自氧化产生的超氧自由基有一定的清除作用,其清除率随浓度的增大而增大。在相同的浓度范围下,清除能力大小为:提取物VC溶液。各溶液的清除能力都随浓度的增大而增大。当提取液浓度为0.0125mg/ml下,黄芩提取液的清除率达到了90.01%。3.4.3 [b]对DPPH自由基的清除作用[/b][align=center]表8 提取液浓度对DPPH自由基清除率[/align][table][tr][td][align=center]序号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][/tr][tr][td][align=center]提取液浓度/(mg/ml)[/align][/td][td][align=center]0.0025[/align][/td][td][align=center]0.0050[/align][/td][td][align=center]0.0075[/align][/td][td][align=center]0.0100[/align][/td][td][align=center]0.0125[/align][/td][/tr][tr][td][align=center]Vc清除率(%)[/align][/td][td][align=center]27.36[/align][/td][td][align=center]52.41[/align][/td][td][align=center]79.98[/align][/td][td][align=center]80.49[/align][/td][td][align=center]81.31[/align][/td][/tr][tr][td][align=center]黄酮清除率(%)[/align][/td][td][align=center]55.7[/align][/td][td][align=center]82.3[/align][/td][td][align=center]89.78[/align][/td][td][align=center]93.74[/align][/td][td][align=center]93.81[/align][/td][/tr][/table][b] [/b]黄芩总黄酮对DPPH的清除作用,结果见图8。由图8可知,黄芩总黄酮对DPPH有一定的清除作用,其清除率随浓度的增大而增大。相同的浓度范围下,清除能力大小为:提取物VC溶液。各溶液的清除能力都随浓度的增大而增大。当提取液浓度为0.0125mg/ml下,黄芩提取液的清除率达到了93.81%。[b]4.总结[/b]1.通过单因素实验,得出各个单因素的最佳条件,其中料液比为1:10,乙醇浓度为50%,超声时间为20min,超声温度为40℃,为正交试验奠定了基础。然后用设计正交试验,确定了超声辅助法提取黄芩总黄酮的最佳工艺条件:乙醇浓度为50%、超声时间为25min、料液比为1∶10、超声温度为30℃。黄芩总黄酮的提取率为3.25%。2.本实验分别就黄芩提取物对羟基自由基,超氧阴离子自由基和DPPH自由基的抗氧化性进行了测定,并与VC进行了对比实验,得到如下结论:在0.0025—0.0125mg/ml浓度下,提取物对各自由基清除能力为:DPPH O[sub]2[/sub][sup]-[/sup]• • OH ,同浓度黄芩提取物清除能力普遍高于VC溶液,黄芩黄酮提取液和VC溶液对自由基清除率随其浓度的增大而增大。在浓度为0.0125mg/ml下,对羟基自由基的清除率为88.30%,对超氧基自由基的清除率为90.01%,对DPPH自由基的清除率为93.87%,由此可知黄芩总黄酮是一种天然有效的自由基清除剂。黄芩中黄酮类化合物的利用已经有一定的规模,但黄芩中黄酮化合物的提取方法和工艺尚未成熟,所以充分利用黄芩资源是我国药用研究的科学发展方向。基于提取率、成本等因素的影响,通过对各种因素的比较分析,从而探索开发出适合工业化生产应用的方案,提高黄芩利用率,仍是研究工作的重点之一。随着人们对健康的日渐重视,因黄芩中的黄酮化合物有着极高的药用营养及良好的保健作用,具有极为广阔的市场前景[b]。[/b]本文旨在研究黄芩中黄酮类物质的提取工艺及其体外抗氧化活性,为黄芩中黄酮类化合物作为天然抗氧化剂和功能性药品得到开发利用提供理论基础和实验依据。[align=center][b] [/b][/align] 刘雄,高建德.黄芩研究进展.甘肃中医学院,2007,24(2):46-50. 罗小文.黄芩中黄酮类成分提取工艺研究进展.中国现代中药.2010,12(7):5-8. 张睿,徐雅琴,时阳.黄酮类化合物提取工艺研究.食品与机械.2003,15(1):21-22. 梁丹,张保东.黄酮类化合物提取和分离方法研究进展.周口师范学院学报,2007,24(5):87-89. 龙春,高志强,陈凤鸣,等.黄酮类化合物的结构-抗氧化活性研究进展.重庆文理学院学报.2006,5(2):13-15. 刘雄,高建德.黄岑研究进展.甘肃中医学院学报,2007,24(2):46-50. 郭雪峰, 岳永德. 黄酮类化合物的提取-分离纯化和含量测定方法的研究进展. 安徽农业科学. 2007, 35(26): 8083- 8086.. 唐德智.黄酮类化合物的提取、分离、纯化研究进展.中药与天然产物,2009,21(12):101-104.. 张岩, 曹国杰, 张燕,等. 黄酮类化合物的提取以及检测方法的研究进展.天食品研究与开发,2008,29(1):154-157. 韩雅慧,陶宁萍.甘草黄酮提取及其抗氧化能力测定方法研究进展.山西农业科学,2010, 38(11):89- 93. 崔永明,余龙江,等. 甘草总黄酮的提取技术及其抑菌活性研究.中药材,2006, 29(8): 838-840. 孙墨珑, 宋湛谦, 方桂珍. 核桃楸总黄酮的提取工艺.东北林业大学学报, 2006, 34 (1) : 38 - 39. 徐清萍,钟桂,芳孟君. 抗氧化剂抗氧化方法研究进展.食品工程,2007,6(7):23-25. 安卓,贾昌喜.苦苣菜总黄酮提取、纯化工艺优化抗氧化活性研究.食品科学. 赵新淮.大黄醇提取物对三种自由基的清除能力的研究.东北农业大学学报.1998,29(3):284-288 杨立琛,李荣.花椒叶黄酮的微波提取及其成分分析.食品科学. CHI Ru-an,ZHOU Fang,HUANG Kun,ZHANG Yue-fei.Separation of baicalin form Scutellaria Baicalensis Georgi with polyamide.Key Laboratory for Green Chemical Process of Ministry of Education.2008,15(1):606-611.

  • 希望国家组织有关人员 翻译相关标准,比如颗粒物中无机项目的标准

    原汁原味的翻译http://www.instrument.com.cn/application/app288.html国际标准US EPA Method IO-3.1 过滤材料的选择、准备、萃取US EPA Method IO-3.2 环境悬浮颗粒金属的测定原子吸收光谱法US EPA Method IO-3.3 环境悬浮颗粒金属的测定XRF法US EPA Method IO-3.4 环境悬浮颗粒金属的测定ICP法US EPA Method IO-3.5 环境悬浮颗粒金属的测定ICP/MS法US EPA Method IO-3.6 环境悬浮颗粒金属的测定PIXE法US EPA Method IO-3.7 环境悬浮颗粒金属的测定中子活化能谱测量法ISO/DIS 30011 工作场所空气-颗粒物中金属和非金属的测定电感耦合等离子体质谱法ISO 15202-2 工作场所空气-颗粒物中金属和非金属的测定等离子体原子发射光谱法 第2部分:试样制备ISO 15202-3 工作场所空气-颗粒物中金属和非金属的电感耦合等离子体原子发射光谱法

  • 食品安全与质量控制——极性化合物分析

    食品安全与质量控制——极性化合物分析

    近几年来频发的食品安全事件,不断的考验着人们的“食神经”,从最普通的食客到国家领导人,食品安全问题已经成为当下人们关注的焦点。不管事因为标准缺失,监管不力,还是因为相关生产者的道德丧失;对于一个分析工作者而言,危机时刻,一份快速、准确的分析结果总能够让我们为此贡献一份光和热的同时,感到安心!为方便大家沟通交流,默克密理博特开设“食品安全与质量控制”论坛专题,在此和大家分享食品分析的一些应用及相关信息,供大家参考。也希望各位在此相互交流,共同提高!专题一:食品中极性、亲水性化合物分析应用一:麻痹性贝类毒素——荧光检测器ZIC®-HILIC色谱条件:色谱柱: SeQ ant® ZIC® Column: SeQuant-HILIC (5 μm, 200Å) PEEK 250x4.6 mm 1.50458.0001检测器: Fluorescence detection (Excitation=350nm, Emission=395nm)流速: 0.7 mL/min流动相 (v/v): A: 10 mM Ammonium formate and 10 mM formic acid in Milli-Q® water (100%)B: acetonitrile and Milli-Q® water with Itot 8 mM Ammonium formate (80:20)温度:室温梯度:Time(min)Solution A (%)Solution B (%)Elution0-24.01882Isocratic24.1-35.03070Isocratic35.1-50.03565Isocratic

  • 三嗪二酮类化合物的检测

    最近做一个三嗪二酮类化合物的检测,总有一个杂质峰不稳定,怀疑发生了烯醇互变,请教大家有没有什么好的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]方法检测类似化合物的

  • 【资料】食品动物禁用的兽药及其化合物清单(农业部第193号公告)

    为保证动物源性食品安全,维护人民身体健康,根据《[url=http://www.foodmate.net/law/jiben/162146.html][color=#003278]兽药管理条例[/color][/url]》的规定,我部制定了《食品动物禁用的兽药及其它化合物清单》(以下简称《禁用清单》),现公告如下: 一、《禁用清单》序号1至18所列品种的原料药及其单方、复方制剂产品停止生产,已在兽药国家标准、农业部专业标准及兽药地方标准中收载的品种,废止其质量标准,撤销其产品批准文号;已在我国注册登记的进口兽药,废止其进口兽药质量标准,注销其《进口兽药登记许可证》。 二、截止2002年5月15日,《禁用清单》序号1至18所列品种的原料药及其单方、复方制剂产品停止经营和使用。 三、《禁用清单》序号19至21所列品种的原料药及其单方、复方制剂产品不准以抗应激、提高饲料报酬、促进动物生长为目的在食品动物饲养过程中使用。 食品动物禁用的兽药及其它化合物清单序号兽药及其它化合物名称 禁止用途 禁用动物 1 -兴奋剂类:克仑特罗Clenbuterol、沙丁胺醇Salbutamol、西马特罗Cimaterol及其盐、酯及制剂 所有用途 所有食品动物 2 性激素类:己烯雌酚Diethylstilbestrol及其盐、酯及制剂 所有用途 所有食品动物 3 具有雌激素样作用的物质:玉米赤霉醇Zeranol、去甲雄三烯醇酮Trenbolone、醋酸甲孕酮Mengestrol Acetate及制剂所有用途 所有食品动物 4 氯霉素Chloramphenicol、及其盐、酯(包括:琥珀氯霉素Chloramphenicol Succinate)及制剂 所有用途 所有食品动物 5 氨苯砜Dapsone及制剂 所有用途 所有食品动物 6 硝基呋喃类:呋喃唑酮Furazolidone、呋喃它酮Furaltadone、呋喃苯烯酸钠Nifurstyrenate sodium及制剂 所有用途 所有食品动物 7 硝基化合物:硝基酚钠Sodium nitrophenolate、硝呋烯腙Nitrovin及制剂 所有用途 所有食品动物 8 催眠、镇静类:安眠酮Methaqualone及制剂 所有用途 所有食品动物 9 林丹(丙体六六六)Lindane 杀虫剂所有食品动物 10 毒杀芬(氯化烯)Camahechlor 杀虫剂、清塘剂 所有食品动物 11 呋喃丹(克百威)Carbofuran 杀虫剂 所有食品动物 12 杀虫脒(克死螨)Chlordimeform 杀虫剂 所有食品动物 13 双甲脒Amitraz 杀虫剂 水生食品动物 14 酒石酸锑钾Antimony potassium tartrate 杀虫剂 所有食品动物 15 锥虫胂胺Tryparsamide 杀虫剂 所有食品动物 16 孔雀石绿Malachite green 抗菌、杀虫剂 所有食品动物 17 五氯酚酸钠Pentachlorophenol sodium 杀螺剂 所有食品动物 18 各种汞制剂包括:氯化亚汞(甘汞)Calomel、硝酸亚汞Mercurous nitrate、醋酸汞Mercurous acetate、吡啶基醋酸汞Pyridyl mercurous acetate 杀虫剂 所有食品动物 19 性激素类:甲基睾丸酮Methyltestosterone、丙酸睾酮Testosterone Propionate苯丙酸诺龙Nandrolone Phenylpropionate、苯甲酸雌二醇Estradiol Benzoate及其盐、酯及制剂促生长 所有食品动物 20 催眠、镇静类:氯丙嗪Chlorpromazine、地西泮(安定)Diazepam及其盐、酯及制剂 促生长 所有食品动物 21 硝基咪唑类:甲硝唑Metronidazole、地美硝唑Dimetronidazole及其盐、酯及制剂促生长 所有食品动物 注:食品动物是指各种供人食用或其产品供人食用的动物 二00二年四月

  • 【转帖】颗粒物对人体健康的危害

    我国现行环境标准规定,凡粒径在100微米以下的颗粒物统称为总悬浮颗粒物简称TSP.粒径大于100微米的叫做降尘。另一种粒径小于10微米的颗粒物叫飘尘简称PM10.飘尘中很大一部分比细菌还小,人眼观察不到,它可以几小时、几天或者几年飘浮在大气中。飘浮的范围从几公里到几十公里,甚至上千公里。因此在大气中会不断蓄积使污染程度加重。飘尘也称可吸入尘,它能越过呼吸道的屏障,粘附于支气管壁或肺泡壁上。粒径不同的飘尘随空气进入肺部,以碰撞、扩散、沉积等方式,滞留在呼吸道的不同部位。各种粒径不同的微小颗粒,在人的呼吸系统沉积的部位不同,粒径大于10微米的,吸入后绝大部分阻留在鼻腔和鼻咽喉部,只有很少部分进入气管和肺内。粒径大的颗粒,在通过鼻腔和上呼吸道时,则被鼻腔中鼻毛和气管壁粘液滞留和粘着。据研究,鼻腔滤尘机能可滤掉约为吸气中颗粒物总量的30~50%。由于颗粒对上呼吸道粘膜的刺激,使鼻腔粘膜机能亢进,腔内毛细血管扩张,引起大量分泌液,以直接阻留更多的颗粒物,这是机体的一种保护性反应。若长期吸入含有颗粒状物质的空气,鼻腔粘膜持续亢进,致使粘膜肿胀,发生肥大性鼻炎。此后由于粘膜细胞营养供应不足,使粘膜萎缩,逐渐形成萎缩性鼻炎。在这种情况下鼻腔滤尘机能显著下降,进而引起咽炎、喉炎、气管炎和支气管炎等。 长期生活在飘尘浓度高的环境中,呼吸系统发病率增高。特别是慢性阻塞性呼吸道疾病如气管炎、支气管炎、支气管哮喘、肺气肿、肺心病等发病率显著增高,且又可促进这些病人病情恶化,提前死亡。 在颗粒物表面还能浓缩和富集某些化学物质如多环芳烃类化合物等,这些物质常常浓缩在颗粒物表面,成为该类物质的载体,随呼吸进入人体成为肺癌的致病因子。许多重金属如铁、铍、铝、锰、铅、镉等的化合物附着在颗粒表面上,也可对人体造成危害。在作业环境中长期吸入含有二氧化硅的粉尘,可以使人得矽肺病。这类疾病往往发生于翻砂、水泥、煤矿开凿等工作中。另外石棉矿开采及其加工中石棉尘被人吸入也可成为致癌因子。总之,颗粒物特别是10微米以下的飘尘是影响人体健康的主要污染物之一。

  • 新型化合物可制造高效低毒生物农药

    近日,中国农业科学院烟草研究所植物功能成分与综合利用创新团队在烟草内生真菌中发现了抑菌、杀虫活性显著且毒性较小的异戊烯基化吲哚类活性化合物,为具有自主知识产权的高效低毒生物农药的研发提供了模板化合物。相关研究成果在线发表在《农业与食品化学杂志(Journal of Agricultural and Food Chemistry)》。  据张鹏副研究员介绍,传统化学合成农药在为农业生产带来巨大经济效益的同时,也对生态系统造成了一系列弊端。微生物源农药因具有高效低毒、环境友好等特点,在植物病虫害防治中的作用日益明显。植物功能成分与综合利用创新团队从一株烟草来源内生真菌接骨木镰刀菌TE-6L中分离获得6个异戊烯基化吲哚类代谢产物,其中包括2个新结构化合物。研究表明,该类代谢产物能够显著抑制多种植物病原菌并具有杀虫活性;同时,该团队以斑马鱼胚胎为模型,首次评估了该类化合物的发育毒性。该类化合物结构新颖、活性显著且毒性较低,具有开发成为新的生物农药的潜力。  该研究得到国家自然科学基金和中国农科院科技创新工程资助。

  • 国检集团牵头的《绿色建材检测可挥发性有机化合物用气候舱通用技术条件》标准正式启动

    近日,由国检集团联合山东省产品质量检验研究院、东莞市升微机电设备科技有限公司共同主编的CECS标准《绿色建材检测可挥发性有机化合物用气候舱通用技术条件》启动暨第一次工作会议在东莞召开。中国工程建设标准化协会建筑材料分会秘书长王立群出席会议。国检集团认证评价中心副总经理马丽萍、第一检验认证院副院长丁建军,以及来自科研院所、检验机构、行业企业的10余名专家代表参加会议。[align=center][img=国检集团牵头的《绿色建材检测可挥发性有机化合物用气候舱通用技术条件》标准正式启动.jpg,600,449]https://img1.17img.cn/17img/images/202404/wycimg/5104cbcb-8559-4b8b-9e05-422de4793e4f.jpg[/img][/align]会议讨论了标准立项背景与意义、可挥发性有机化合物检测用气候舱领域的发展现状、标准编制思路、技术指标体系设计以及标准编制工作分工和计划等事项。与会代表一致表示将齐心聚力群策群力扎实做好标准编制工作。“可挥发性有机化合物释放”是衡量绿色建材产品的关键绿色属性,其检测结果的准确性、一致性、可比性与复现性是支撑绿色建材产品认证科学规范实施、保障绿色建材产品质量的关键要义,而检测用气候舱质量则是影响此目标实现的基础环节。本标准的编制旨在为气候舱产品的生产、销售、售后服务、质检、计量、仲裁等提供指导性依据,使气候舱市场进一步秩序化、规范化,实现健康、良性发展。欲了解更多,点击进入[url=https://www.woyaoce.cn/member/T133313/][color=red] 中国国检测试控股集团股份有限公司 [/color][/url][size=14px][color=#707d8a][ 来源:CTC国检集团绿色发展 ][/color][/size][size=14px][color=#707d8a][i]编辑:张圣斌[/i][/color][/size]

  • 标准品和对照品,购买试剂的时候,看到纯度97%的某化合物,这个可用用来液相含量检测吗?

    请教各位前辈,我看到标准品和对照品的定义不同“——[url=https://baike.baidu.com/item/%E5%AF%B9%E7%85%A7%E5%93%81]对照品[/url]和标准品一样是指国家药品标准中用于鉴别、检查、含量测定、杂质和有关物质检查等标准物质,它是国家药品标准不可分割的组成部分。国家[url=https://baike.baidu.com/item/%E8%8D%AF%E5%93%81%E6%A0%87%E5%87%86%E7%89%A9%E8%B4%A8]药品标准物质[/url]是国家药品标准的物质基础,它是用来检查药品质量的一种特殊的专用量具;是测量药品质量的[url=https://baike.baidu.com/item/%E5%9F%BA%E5%87%86]基准[/url];也是作为校正[url=https://baike.baidu.com/item/%E6%B5%8B%E8%AF%95%E4%BB%AA%E5%99%A8]测试仪器[/url]与方法的物质标准。在药品检验中,它是确定药品真伪优劣的对照,是控制药品质量必不可少的工具。[url=https://baike.baidu.com/item/%E5%AF%B9%E7%85%A7%E5%93%81]对照品[/url]:是指用于鉴别、检查、含量测定的标准物质,由国务院[url=https://baike.baidu.com/item/%E8%8D%AF%E5%93%81%E7%9B%91%E7%9D%A3%E7%AE%A1%E7%90%86]药品监督管理[/url]部门指定的单位制备、标定和供应。标准品系是用于生物测定、抗生素或生化药品中含量或效价测定的标准物质,以国际标准品进行标定;对照品除另有规定外,按干燥进行计算后使用。[color=#333333]对照品与标准品是2个不同的概念,中国药典凡例中已有明确的定义:文献中常将2种概念混淆,认为对照品就是标准品,是1种物质2种提法而已,造成错误的原因,可能是有的药品既有对照品,又有标准品。例如,当用微生物法测定[/color][url=https://baike.baidu.com/item/%E5%A4%B4%E5%AD%A2%E5%85%8B%E7%BD%97]头孢克罗[/url][color=#333333]效价时,用头孢克罗标准品,用HPLC或UV法测定时,则用对照品;非那西丁当用作熔点校准物质时,用熔点标准品,测定含量时,用对照品。即使是同一种物质的标准品和对照品,它们的规格、标定方法以及用途都可能是不同的。”[/color][color=#333333]这一大段文字看了还是不甚明白,这样说来,标准品的要求更严格,应该都很贵的,我看一个检测方法还有类似文献的时候,都说用物质A的标准品3.0g,配制标准品溶液~~~~~感觉用量太大了。[/color]那我现在用液相做物质A的含量检测时,外标法,这个时候用标准品还是对照品呢?购买试剂的时候,看到纯度97%的某化合物,这个可用用来液相含量检测吗?我感觉特别混乱了,谢谢各位了

  • [原创]:TSQ质谱仪化合物条件优化标准操作规程

    [原创]:TSQ质谱仪化合物条件优化标准操作规程

    论坛里技术性帖子较少,近期打算写一系列的帖子,关于TSQ[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url]的标准操作,大家喜欢的话,我会继续的。今天先谈谈TSQ质谱仪化合物条件优化标准操作规程。注:转载请注明来源及作者,谢谢!一、优化待测化合物ESI质谱条件1 样品导入方式的建立1.1 选择适当长度的Peek管将两端通过接头分别与液相系统和切换阀2号口相连。1.2 选择适当长度Teflon管将一端通过接头与切换阀1号口相连,并将另一端置于废液瓶中。1.3 选择适当长度的Peek管将一端通过接头与切换阀3号口相连,另一端通过三通分别与离子源和样品转移毛细管相连。1.4 将200 uL左右样品溶液吸入250 uL进样注射器中。1.5 将进样注射器通过一个接头和一个二通与样品转移毛细管另一端相连。1.6 按住注射泵黑色释放钮将注射泵手柄升高。1.7 将进样注射器小心置于支架上并将注射泵手柄下移至进样注射器活塞柄顶端。2. 质谱条件优化步骤2.1 在Tune Master界面点击On/Standby激活质谱仪。2.2 选择离子极性模式(正离子或负离子),如需进行正负离子切换,将将Spray Voltage调至0后操作。2.3 进入Compound Optimization Workspace。2.4 在Define Scan窗口选择Q1MS扫描模式和Full Scan扫描类型。2.5 在Optimize Compound Dependent Devices窗口设置下列参数: Spray Voltage设为3500 V Sheath Gas Pressure设为30 arb Aux Gas Pressure设为10 arbCapillary Temperature设为350℃Source CID设为0 V2.6 激活注射泵以5 uL/min流速将进样注射器中的样品溶液导入质谱仪。2.7 激活液相色谱泵选择适当流速将流动相导入质谱仪,观察到待测化合物的准分子离子峰峰强度在10的6次方左右,否则增大进样流速或选用浓度更高的待测化合物溶液(样品浓度一般建议1-10ug/mL,建议用甲醇或乙腈溶解)。2.8 在Compound Optimization界面显示Single Sample窗口,选择MS Only优化模式和Syringe Pump Infusion入口类型选项。2.9 优化Tube Lens Offset、Spray Voltage、Sheath Gas Pressure、Aux Gas Pressure和Source CID获得待测化合物稳定的准分子离子峰。2.10记录并保存准分子离子质谱图。2.11选择MS+MS/MS优化模式设置Parent Mass、Charge State和Num Product对子离子进行优化,优化前完成下列设置: 将Source CID设为0 V 将Collision Pressure设为1.5 mTorr将Quad MS/MS Bias设为-1.0 V2.12接受Collision Energy优化结果,并将Source CID设为优化值(由2.9得到)。2.13记录并保存子离子全扫描质谱图。2.14保存Tune Method文件。3. 注意事项3.1 待测化合物溶液浓度为1-10ug/mL3.2 改变流动相比例和流速后应重新进行对Sheath Gas Pressure和Aux Gas Pressure进行优化3.3 手动优化Capillary Temperature3.4 点击Start开始自动优化程序,优化结束时点击Accept接受优化结果,或者点击Undo后再点击Accept保持优化前的仪器配置3.5 仪器常用参数设置见下表。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605240732_18885_1237095_3.jpg[/img]

  • 锅炉颗粒物请教

    请教下关于锅炉颗粒物排放最终结果计算,北京地标139-2015 锅炉大气污染物排放标中5.5规定[font=宋体][size=10.45pt][color=#000000]实测的锅炉颗粒物、二氧化硫、氮氧化物、汞及其化合物的排放浓度应执行[/color][/size][/font][font=TimesNewRomanPSMT][size=10.45pt][color=#000000]GB/T 16157[/color][/size][/font][font=宋体][size=10.45pt][color=#000000]的规定,[/color][/size][/font][font=宋体][size=10.45pt][color=#000000]折算为基准含氧量排放浓度。GB/T5468中3.3规定在用锅炉烟尘排放浓度的实测值要乘以出力影响系数。这两个标准中规定的结果表示方法是都需要遵守吗,还是只执行国标或地标。请大神指点。[/color][/size][/font]

  • 【资料】室内颗粒物浓度的影响因素和研究进展

    室内颗粒物浓度的影响因素和研究进展(摘至中国毕业论文网)摘要:本文简述了室内颗粒物的来源,总结了室内颗粒物浓度的影响因素,介绍了国际上关于室内颗粒物浓度的研究成果和研究进展,特别对颗粒物对建筑围护结构的穿透因子的研究进行了较深入系统地分析,提出了穿透因子存在差异的可能原因和相应的解决方法,希望能对国内的室内颗粒物浓度研究提供借鉴。 关键词:颗粒物 室内颗粒物浓度 穿透因子 沉降 0 引言最近,室内空气品质受到人们越来越多的关注。为了提高室内空气品质,减少室内污染物水平,目前普遍采用的一种方式就是引入更多的室外新鲜空气。然而越来越多的流行病学研究表明,即使一般情况下大气颗粒物浓度水平较低,而且在国家相关标准的允许范围之内,人群的发病率和死亡率的不断上升与该浓度水平仍然存在显著相关性[1~3];另一方面,现代社会中,人们几乎90%的时间是在室内度过的[4]。由此可以推知,从室外迁移进入室内的颗粒物对人体健康有着重大影响。大量关于室内外颗粒物污染物关系的研究表明,迁移进入室内环境的大气颗粒物浓度水平与室外颗粒物浓度水平处在同一数量级[5]。因此可以认为,室内环境即便不是最重要的,也是相当重要的大气颗粒物暴露场所。室内环境与人们的生活息息相关,颗粒物又是影响室内环境质量的重要因素之一,给人们的健康产生了相当不利影响。因此,国外早在二十多年前就开始了对颗粒物的研究,室内颗粒物的浓度及其影响因素也就成了一个重要的研究方向及课题。研究这个问题有利于了解颗粒物的影响因素,促进人们采取有利措施,改善室内空气品质,降低和避免颗粒物对人体健康的危害。本文综述了影响室内环境中颗粒物浓度的各因素以及国际上对影响室内颗粒物浓度因素的研究成果和研究进展,希望有利于推动国内在该方面研究和发展。1 影响室内颗粒物浓度的因素空气悬浮颗粒物是空气中固体颗粒和液滴的混合物。颗粒物重要的物理特征包括颗粒数密度和颗粒数密度分布、质量浓度和质量浓度分布、吸湿性、挥发性、带电性及单个颗粒的表面积和形状[6]。其中,粒径是决定颗粒物空气动力学特性的重要参数,颗粒物在空气中的迁移特性就取决于粒径。在颗粒物研究中,一般假设颗粒物为球形,常用空气动力学直径(da)来表示颗粒物的大小,其粒径范围为0.001~100微米[7]。其中,空气动力学直径是指在空气中与被研究颗粒物具有相同的沉降速度,密度为1g/cm3的球形颗粒的直径[8]。粒径不同,颗粒物进入人体的部位就不同,其对人体产生的危害也就不同。大于10微米的颗粒物由于惯性作用易被鼻腔与呼吸道黏液排除,因此对人体健康影响较大的是可吸入颗粒物(da≤10微米)。其中,粗颗粒物(2.5微米≤da≤10微米)一般沉积在支气管部位,并可能进入血液循环,导致与心肺功能障碍有关的疾病。粗颗粒物主要由机械过程产生,如建筑施工、道路扬尘等,一般由Si、Fe、Al、Na、Ca、Mg等30余种元素组成;细颗粒(da B≤2.5微米,PM2.5)则可能沉积到肺叶,尤其事呼吸细支气管及肺泡。细颗粒物主要由燃烧过程产生,如汽车尾气、电厂废气、木材燃烧、工业生产以及柴油机等,往往含有硫酸盐、硝酸盐、铵盐、炭黑等。当二氧化硫、氮氧化合物和可挥发性有机物等燃烧产物在空气中发生化学反应时,也可能生成极细颗粒(da ≤0.1微米)。1.1 室内颗粒物的来源 颗粒物的化学组成对人体的健康影响很大,决定了其对人体呼吸道或人体本身可能产生的危害及危害程度。然而,目前关于影响人体健康的颗粒物的化合物成分及其尺寸范围都还没定论。因此有必要分析对颗粒物的来源进行分析。从20世纪80年代开始,西方国家做了大量关于室内颗粒物浓度的大规模现场测试和研究。所有研究都发现,烟草烟雾是室内环境中细颗粒的主要来源[6];烹调是室内另一种重要的颗粒污染源,尤其是粗颗粒的重要来源;室内活动对颗粒物浓度的影响也很大,如吸尘打扫、走动和小孩的玩耍等对室内颗粒浓度也有重大影响,但其贡献率相比则要小得多[9]。另外,还有7-26%的室内颗粒物不能解释其来源[10]。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制