当前位置: 仪器信息网 > 行业主题 > >

敌草快二溴单水合物标准品

仪器信息网敌草快二溴单水合物标准品专题为您提供2024年最新敌草快二溴单水合物标准品价格报价、厂家品牌的相关信息, 包括敌草快二溴单水合物标准品参数、型号等,不管是国产,还是进口品牌的敌草快二溴单水合物标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合敌草快二溴单水合物标准品相关的耗材配件、试剂标物,还有敌草快二溴单水合物标准品相关的最新资讯、资料,以及敌草快二溴单水合物标准品相关的解决方案。

敌草快二溴单水合物标准品相关的资讯

  • 泰安市纺织服装产业链商会(协会)下达《氢水合物 氢气含量的测定 气相色谱法》等7项团体标准计划项目
    各单位:经有关单位申报,泰安市纺织服装产业链商会(协会)标准化技术委员会通过初审、立项评审等程序,对《氢水合物水溶液 氢气含量的测定 气相色谱法》等7项TGIC团体标准计划项目予以立项。请各项目牵头单位按照《泰安市纺织服装产业链商会(协会)团体标准管理办法》的有关规定认真组织落实,并做好以下工作:一、成立标准起草工作组,制定工作计划,确保项目按期完成。二、加强调查研究和试验验证,试验方法要至少3家实验室比对,确保方法科学合理。征求意见稿送秘书处前,应先征求业内专家意见,并将专家意见汇总后一并报秘书处。三、请各项目牵头单位指定一名联系人(姓名、单位、手机、微信)报秘书处邮箱:zkgcbwh@163.com,并与秘书处保持密切沟通。欢迎与此批团标计划项目相关的企事业单位或个人参与标准编制工作。如有意向请联系秘书处,秘书处将根据填报情况进行协调和确定。关于下达《氢水合物 氢气含量的测定 气相色谱法》等 7项团体标准计划项目的通知.pdf
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style=" text-align: center " strong 科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知 /strong /p p style=" text-align: center " 国科发基〔2017〕386号 /p p   国务院国有资产监督管理委员会、安徽省科技厅: /p p   企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。 /p p   为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。 /p p   请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。 /p p   特此通知。 /p p   附件:批准建设的企业国家重点实验室名单 /p p style=" text-align: right " 科 技 部 /p p   附件 /p p style=" text-align: center " strong 批准建设的企业国家重点实验室名单 /strong /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg" / /p p & nbsp /p
  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。   在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。   合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著
  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • 中国科学家利用自主显微镜首次揭示水合离子微观结构
    center img style=" width: 285px height: 300px " title=" " alt=" " src=" http://upload.jxntv.cn/2018/0515/1526343227397.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 285" / /center p   钠离子水合物的亚分子级分辨成像。从左至右,依次为五种离子水合物的原子结构图、扫描隧道显微镜图、原子力显微镜图和原子力成像模拟图。图像尺寸:1.5 nm × 1.5 nm。 /p center img style=" width: 402px height: 300px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img002.21cnimg.com/photos/album/20180515/m600/35DDA1DE9EDE6FF980557BE1E5589178.jpeg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 402" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥(右)在回答记者提问。新华社记者 金立旺 摄 /p p   5月14日电,北京大学和中国科学院的一支联合研究团队日前利用自主研发的高精度显微镜,首次获得水合离子的原子级图像,并发现其输运的“幻数效应”,未来在离子电池、海水淡化以及生命科学相关领域等将有重要应用前景。该成果于北京时间14日由国际顶级学术期刊《自然》在线发表。 /p p   水是人类熟悉但并不真正了解的一种物质。水与溶解其中的离子结合在一起形成团簇,称为水合离子,盐的溶解、大气污染、生命体内的离子转移等都与水合离子有关。19世纪末科学家就开始相关研究,但由于缺乏原子尺度的实验手段以及精准可靠的计算模拟方法,水合离子的微观结构和动力学一直是学术界争论的焦点。 /p p   中科院院士、北京大学讲席教授王恩哥与北京大学物理学院教授江颖带领课题组,在实验中首次获得了单个的水合离子,随后通过高精度扫描探针显微镜,得到其原子级分辨图像。这是一百多年来人类首次直接“看到”水合离子的原子级图像。 /p p   “观测到了最小的原子——氢原子,几乎已经达到极限,可以对原子核与电子的量子效应同时进行精确描述。”王恩哥说。 /p p   经过高精度观测,中国科学家还发现了水合离子的“幻数效应”,即包含3个水分子的钠离子水合物在表面上具有异常高的扩散能力。江颖介绍,该研究结果意味着,可以选择性增强或减弱某种离子的输运能力,在离子电池、防腐蚀、电化学反应、海水淡化、生物离子通道等应用领域具有重要的潜在意义。 /p p   “比如,可以通过对离子电池的电极材料进行界面调控,借助‘幻数效应’提高离子的传输速率,从而缩短充电时间和增大电池功率。”江颖说。 /p p   strong  1.研发显微镜核心部件和方法,达到原子水平观测的极限 /strong /p p   这项工作的突破之一,是在国际上首次得到了水合钠离子的原子级分辨图像。中国科学院院士、北京大学讲席教授王恩哥说:“这可能就是原子水平观测的极限了。” /p p   为了得到这幅图像,科学家们面临着两个挑战:第一步,如何人工制备单个离子水合物?制作离子水合物非常容易——把盐倒入水中溶解就可以了——但它们相互聚集、相互影响,水合结构也在不断变化,要得到适合扫描探针显微镜研究的单个离子水合物是一件非常困难的事。 /p p   第二步,如何给离子水合物拍个原子级照片?实验制备出单个离子水合物团簇后,接下来需要通过高分辨成像弄清楚其几何吸附构型,也就是给它们拍个“原子照片”——由于离子水合物属于弱键合体系,比水分子团簇更加脆弱,因此针尖很容易扰动离子水合物,从而无法得到稳定的图像。 /p p   科学家们在之前研究的基础上,对扫描探针显微镜做了改造,自主研制了关键核心设备。这一研究的主要完成人、北京大学物理学院教授江颖介绍,为了制备单个离子水合物,他们基于扫描隧道显微镜发展了一套独特的离子操控技术,以制备单个离子水合物。江颖说:“首先用非常尖锐的金属针尖在氯化钠薄膜表面吸取一个氯离子,这样便得到氯离子修饰的针尖和氯离子缺陷。然后用氯离子针尖将一个水分子拉入到氯离子缺陷中,再将针尖靠近缺陷最近邻的钠离子,水平拉动钠离子,将钠离子拔出吸附在针尖上。最后用带有钠离子的针尖扫描水分子,从而使钠离子脱离针尖,与水分子形成含有一个水分子的钠离子水合物。通过拖动其他水分子与此水合物结合,即可依次制备含有不同水分子数目的钠离子水合物。” /p p   为得到离子水合物的“原子照片”,并保证不对其产生扰动,研究人员发展了基于一氧化碳针尖修饰的非侵扰式原子力显微镜成像技术,可依靠极其微弱的高阶静电力扫描成像。江颖给记者展示了图片:“这是国际上首次在实空间得到离子水合物的原子层次图像,从图中可以看到,不仅水分子和离子的吸附位置可以精确确定,就连水分子取向的微小变化都可以直接识别。” /p p    strong 2.离子水合物的幻数效应有什么用 /strong /p p   江颖介绍,为了进一步研究离子水合物的动力学输运性质,研究人员利用带电的针尖作为电极,通过非弹性电子激发控制单个水合离子在氯化钠表面上的定向输运,发现了一种有趣的幻数效应:包含有特定数目水分子的钠离子水合物具有异常高的扩散能力,迁移率比其他水合物要高1~2个量级,甚至远高于体相离子的迁移率。 /p p   结合第一性原理计算和经典分子动力学模拟,他们发现这种幻数效应来源于离子水合物与表面晶格的对称性匹配程度。具体来说,包含1、2、4、5个水分子的离子水合物总能通过调整找到与氯化钠衬底的四方对称性晶格匹配的结构,因此与衬底束缚很紧,不容易运动 而含有3个水分子的离子水合物,却很难与之匹配,因此会在表面形成很多亚稳态结构,再加上水分子很容易围绕钠离子集体旋转,使得离子水合物的扩散势垒大大降低,迁移率显著提高。 /p p   江颖说:“我们可能都给孩子玩过按照空洞填积木的游戏,这个实验有点类似。氯化钠衬底就是预留好不同几何形状空洞的底板,而离子水合物就是这些积木,它周围结合的水分子数目决定了积木的几何形状。我们发现,包含1、2、4、5个水分子的水合物总能在底板上找到对应的空洞稳定下来,但含有3个水分子的离子水合物却没有合适的地方,只能浮在表面不停运动。” /p p   有评论认为,这一发现会在很多领域得到应用,“会马上引起理论和应用表面科学领域的广泛兴趣”“为在纳米尺度控制表面上的水合离子输运提供了新的途径,并可以拓展到其他水合体系”。 /p p   江颖举了几个例子。比如生物离子通道的研究,“我们知道,人类的嗅觉、味觉、触觉等是靠生物离子通道来实现的。离子在这些通道中的输运速度非常高,而且在离子的筛选上有很强的特定性,从来不会乱套。过去我们认为这种高速度和特定性主要是由离子通道的大小决定的,但我们的研究结果对这个认知提出了挑战。生物离子通道的内壁结构有很多微观细节,或许是因为细节的不同,导致了不同的幻数效应,才出现了离子输运的选择性和高效性。”再比如离子电池的研究,“我们可以通过对电极材料表面的调控和裁剪,提高离子的传输速度,实现缩短充电时间、提升电池功率等目标。” /p p   王恩哥表示,这一研究是理论与实验相结合的范例,是科学家们在一个方向上持续不断研究的结果,“我们将在这个方向上持续努力下去,也希望其他学者参与进来,让我们对水、对水合物体系有更深入的了解”。 /p p   strong  3.水合离子变得可以操控,能为我们带来什么? /strong /p p   据了解,这项研究工作得到了《自然》杂志三个不同领域审稿人的一致好评和欣赏。他们认为,该工作“会马上引起理论和应用表面科学领域的广泛兴趣”,“为在纳米尺度控制表面上的水合离子输运提供了新的途径并可以拓展到其他水合体系”。 /p p   王恩哥院士介绍,“该项研究的结果表明,我们可以通过改变材料表面的对称性和周期性,来实现选择性增强或减弱某种离子输运能力的目的。这对很多相关的应用领域都具有重要的潜在意义。” /p p   比如可以研发出新型的离子电池。江颖告诉记者,现在我们所使用的锂离子电池,其电解液一般是由大分子聚合物组成,而基于这项最新的研究,将有可能开发出一种基于水合锂离子的新型电池。“这种电池将大大提高离子的传输速率,从而缩短充电时间和增大电池功率,更加环保、成本也将大幅降低。” /p p   另外,这项成果还为防腐蚀、电化学反应、海水淡化、生物离子通道等前沿领域的研究开辟了一条新的途径。同时,由该工作发展出的高精度实验技术未来还有望应用到更多更广泛的水合物体系。 /p center img style=" width: 450px height: 292px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img001.21cnimg.com/photos/album/20180515/m600/54A9FE512CB7D9448952615F391BE431.jpeg" height=" 292" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,中科院院士、北京大学讲席教授王恩哥在介绍研究成果。新华社记者 金立旺 摄 /p center img style=" width: 450px height: 338px " title=" " alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/EAAEBB34B6CC5E08C49B2CBB7DE0F7A0.jpeg" height=" 338" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖(左)和中科院院士、北京大学讲席教授王恩哥在回答记者提问。新华社记者 金立旺 摄 /p center img alt=" 中国科学家首次揭示水合离子的微观结构" src=" http://img003.21cnimg.com/photos/album/20180515/m600/A35A5DB342D4F1E05F79EE99F887BD42.jpeg" height=" 600" width=" 439" / /center p   5月14日,在中科院物理研究所会议室举行的发布会上,北京大学物理学院教授江颖在介绍研究成果。新华社记者 金立旺 摄 /p
  • 中国标准化协会公开征求《乳及乳制品中百草枯、敌草快的测定 液相色谱―串联质谱法》标准意见
    由中国检验检疫科学研究院等单位起草的中国标准化协会标准《乳及乳制品中百草枯、敌草快的测定 液相色谱—串联质谱法》已完成征求意见稿,现公开征求意见。诚挚邀请各相关单位和个人对上述标准提出宝贵的意见和建议。请于2024年8月4日之前将《征求意见表》反馈至以下联系方式。联 系 人:曹雅婷联系方式:010-68489926,cyt@china-cas.org;地 址:北京市海淀区增光路33号中标协写字楼,100048附件.zip《XXX》征求意见表—XX单位.docx13.43KB《乳及乳制品中百草枯、敌草快的测定 液相色谱-串联质谱法》征求意见稿编制说明.pdf《乳及乳制品中百草枯、敌草快的测定 液相色谱-串联质谱法》征求意见稿.pdf
  • REACH限制名单草案再添7种物质
    日前,欧洲化学品管理署(ECHA)继2008年将15种物质被列入首批REACH高关注名单(SVHC)后,公布了首批需ECHA授权才能使用的物质名单草案。根据该草案,7种物质首先被列入了清单(附件XIV)。   被列入清单的7种物质分别为:5-叔丁基-2,4,6-三硝基间二甲苯(二甲苯麝香)、短链氯化石蜡(SCCPs,C10~C13)、六溴环十二烷(HBCDD)和所有有关联的主要非对应异构体、邻苯二甲酸双(2-乙基己)酯(DEHP)、邻苯二甲酸丁苄酯(BBP)、邻苯二甲酸二丁酯(DBP)以及4,4'-二氨基二苯甲烷(MDA)。   根据REACH法规,企业如果要使用进入授权名单的物质,就必须申请许可。申请者必须论证物质使用风险可以充分控制,或是社会经济利益超过使用风险,且没有替代物和相应的替代技术。   ECHA表示,他们是根据产品的固有特性、用途和批准用量来评估是否将这些化学品列入REACH限制清单的。各利益相关方必须于2009年4月14日对磋商做出回应,ECHA将于2009年6月1日之前确定优先列表。ECHA还建议,授权申请应当在以上物质进入REACH附件XIV后24~30个月期间提交。这些物质进入名单之后,42~48个月后将不再继续使用。   ECHA还建议,76/769/EEC指令中特殊条件下允许使用的豁免类物质,也应加入评估当中。ECHA表示,将参考协商期间所收到的评论及成员国委员会的意见,可能会对草案进行修改,并将该提议提交到欧盟委员会审议。对于是否对蒽、氯化钴、五氧化二砷、三氧化二砷、重铬酸钠二水合物、氧化双三丁基锡、酸式砷酸铅、三乙基砷酸酯等8种物质进入SVHC名单的物质进行授权,ECHA表示将在晚些时候再做考虑。   ECHA建议下游企业应尽快排查是否正在使用被列入SVHC的原料,定期审核供应商(必要时向原料供应商提供安全数据表),并在规定期限内逐步替代SVHC原料。
  • 药典8001试药修订草案二次公示 常用试剂增加质控指标
    近日,药典委发布关于8001 试药标准草案的公示(第二次),对此前公示过的草案进行了进一步修订。此次公示为期一个月,相关人员可在线对草案进行反馈。此次修订稿由广东省药品检验所起草,中国食品药品检定研究院、黑龙江省药品检验研究院、广州市药品检验所、无锡市药品安全检验检测中心、北京大学等单位进行复核。主要起草人包括洪建文、彭洁、肖慧、武建卓、王婷婷。试药指在本版药典中供各项试验用的试剂,但不包括各种色谱用的吸附剂、载体与填充剂。药品检验检测中使用试药的质量直接影响药品分析检验检测结果的质量。《中国药典》8001 试药通则在指导药品检验检测过程以及试药的使用与管理中发挥着重要的作用。 但随着《中国药典》收载品种的不断丰富,检验检测所需化学试剂门类和品种的不断增加,《中国药典》收载的试药在品种和数量上,关键质量指标的要求上已经不能满足目前药品检验检测对所使用试剂试药的需求,同时还缺乏相应的安全和储存指引。为促进药品科学监管、切实发挥《中国药典》 对药品检验用试剂试药的技术指导作用,本次对8001试药通则进行了修订。第一版草案,主要在试药的通用技术要求、常用试药的关键质量指标以及试药品种的补充与更新三方面进行完善。1、在试药的通用技术要求方面,针对8001试药通则存在的分级分类与现行版化学试剂国家标准不一致、缺乏安全和储存指引、有效性提示等问题,结合试药的生产、销售以及 在药品检验检测的使用情况,参考《GB/T 37885-2019 化学试剂分类》更新细化了药典试药的分类,进一步促进了药典试药通则与现行版化学试剂国家标准的协调。此次公示稿中针对此方面进行了协调,由传统的四个等级分类,修订为十个大类,而且提到试药管理“一般应符合其化学品安全标签及化学品安全技术说明书的要求,应关注并保持其有效性,必要或可行时,可通过制定有效期或采用灵敏度试验等方式予以保证”,为试药的正确选用提供了更好的指导。2、对常用试药增加了相应的质控指标,结合国内外药典及试药产品目前的质量情况,对甲醇等 21 种常用的 试药,根据其用途,通过实验研究考察其关键质量属性,结合该试药的质量标准及不同品牌产品的实际质量情况,增加了相应的质控指标。而本次草案,根据 2024 年2月8001试药第一次公示稿的反馈意见和建议,国家药典委员会相关专业委员会进行了研讨,在第一次公示稿的基础上修订了部分内容,主要为:1. 将“供高效液相色谱使用时需满足要求”明确为“供高效液相色谱流动相使用时需满足要求”。 2. 修订辛烷磺酸钠、辛烷磺酸钠一水合物、溴化钾、氯化钾、硫酸钙的相关表述,详见附件公示稿。 3. 增加 8001 试药各品种的 CAS 号,详见附件 EXCEL 表格。8001 试药CAS编号表.xlsx附件1 8001 试药公示稿(第一次).pdf
  • 华嘉公司将与晶云药物合作举办药物晶型研究与药物固态表征专题技术培训
    瑞士华嘉公司与晶云药物科技有限公司于3月24-25日在苏州联合举办的&ldquo 药物晶型研究与药物固态表征专题培训&rdquo 。 药物晶型研究和药物固态表征在制药业具有举足轻重的意义。一方面,不同晶型的同一药物,在稳定性,溶解度,和生物利用度等生物化学性质方面可能会有显著差异,从而影响药物的疗效。如果没有很好的评估选择最佳的药物晶型进行研发,可能会在临床后期产生晶型的变化,从而导致药物上市的延期而产生巨大的经济损失。由于药物晶型研究的重要性,美国药监局(FDA)对该领域的研发提出了明确要求,在IND和NDA中都要求对药物多晶型现象提供相应的研究数据。对于仿制药公司来说,如何研发出药物的新晶型从而能够打破原创药公司对晶型的专利保护,提早将仿制药推向市场,是近年来一个至关重要的问题,将直接影响到仿制药和原料药公司的市场和国际竞争力。另一方面,能否对药物进行正确的固态表征从而理解药物的固态性质(包括晶型稳定型,晶体表象,粒径分布,比表面积,无定形药物分散剂的稳定型,制剂溶出曲线,原料药和辅料的相容性,手性化合物的纯度等),将直接影响到原料药和制剂的研发和生产工艺,从而影响到药品的质量和销售价格。 药物晶型研究与药物的固态表征在欧美制药界已经是比较成熟并深受重视的领域,但在国内制药界尚属起步阶段。 晶云药物核心技术团队在药物晶型研究和药物固态表征领域拥有数十年的丰富经验,曾被邀请为许多全球和国内的制药公司提供该领域的专业技术咨询和培训。为了满足更多药物公司在该领域的技术需求,让更多的研发人员理解药物晶型研究和药物固态表征的原理和应用,并和同行沟通,更好的了解该领域的研发进展和发展趋势,晶云药物特决定在苏州举办此次为期2天的技术培训。培训的所有费用由晶云承担(除交通住宿外)。 培训课程: l 课程一 题目: 多晶型的控制和认知在原料药的工艺研发中的作用(3小时) 内容:  Ø 多晶型的控制和认知的重要性 Ø 无水多晶型体 i. 构建相图和解析相图 ii. 如何寻找最佳晶型(稳定和亚稳态晶型) iii. 如何有效的确定多晶型混合物中各种晶型的含量或比例 iv. 亚稳态晶型在制药业中的应用条件 v. 多晶型体在原料药上应用 Ø 水合物和溶剂合物 i. 识别和表征水合物及溶剂合物 ii. 水合物和溶剂合物在原料药中的应用及如何保存 iii. 针对水合物和溶剂合物的干燥工艺 Ø 药物多晶型的基本筛选流程 Ø 药物多晶型的稳定性及其热动力学研究 Ø 怎样生产并保持你所需要的晶型 Ø 实例分析 i. 混合晶型系统 ii. 在药品保存中形成了新的水合物/溶剂合物 iii. 如何放大不稳定的晶型的生产工艺 iv. 如何应对临床后期出现的晶型转化 主讲人: 陈敏华博士 l 课程二 题目: 药物多晶型的知识产权和法规(1小时) 内容: Ø 何时和为何要保护多晶型的知识产权 Ø 多晶型体的新药申批(NDA)需要什么信息及怎样填写新药申批 Ø 食品和药物管理局(以美国为例)对多晶型的要求及标准 Ø 如何开发仿制药的多晶型 主讲人:陈敏华博士 l 课程三 题目: 盐类药物的研究(45分钟) 内容:  Ø 什么是盐类药物 Ø 为什么要开发盐类药物 Ø 如何形成盐类药物 主讲人: 张炎锋博士 l 课程四 题目: 药物共晶体(45分钟) 内容: Ø 什么是共晶体 Ø 共晶体药物在制药中的基本应用 Ø 共晶体的稳定性 Ø 如何筛选药物共晶体及其放大工艺 Ø 在制药产业中形成共晶体的现象及其产生的影响 主讲人: 张炎锋博士 l 课程五 题目: 原料药的主要表征手段及对药物研发的重要性(2.5小时) 内容:  Ø 粉末衍射(XRPD) Ø 拉曼光谱 Ø 动态气相吸附(DVS) Ø 比表面积分析 (SA) Ø 表观密度 Ø pKa值的确定 Ø 测量LogD/LogP Ø 差示扫描量热仪及调制差示扫描量热仪 (DSC and MDSC) Ø 热重量分析仪(TGA) Ø 单晶衍射仪(SCXRD) Ø 偏振光显微镜 Ø 固态核磁共振(SSNMR) 主讲人: 陈敏华博士,张炎锋博士和张海禄博士 l 课程六题目: 手性药物的结晶拆分(1小时) 内容: Ø 手性药物结晶拆分的原理及工艺研发的流程和策略 Ø 手性药物结晶拆分在原料药生长中的重要性 Ø 实例分析: 对于不同种类的对映异构体系统(Conglomerate, Racemic compound, Solid solution)和非对映异构体(Diastereomer)进行手性拆分的不同策略的成功应用 Ø 手性分子结晶拆分的发展近况 主讲人: 陈敏华博士 培训安排: 时间:2011年3月24日-25日 地点:苏州工业园区仁爱路158号中国人民大学国际学院(苏州研究院)敬斋 注册报到地点:中国人民大学国际学院(苏州研究院)敬斋 学员人数:20-50人 日程安排: 日 期 时 间 活动内容 3月24号上午 8:00-9:00 注册报到 (含早餐) 9:00-9:20 欢迎致词 9:20-11:00 课程一 11:00-11:15 茶点休息 11:15-12:30 继续课程一 12:30-13:30 午餐 3月24号下午 13:30-15:00 课程二+课程三 15:00-15:20 茶点休息 15:20-16:20 课程三+课程四 16:20-17:30 讨论 17:30---- 自由社交和招待宴会3月25号上午 8:30-10:00 课程五 10:00-10:20 茶点休息 10:20-11:20 继续课程五 11:20-12:20 课程六 12:20-12:30 合影 12:30-13:30 午餐及自由活动 3月25号下午 13:30-17:30 参观晶云技术平台,了解各种仪器的实际操作和应用-理论结合实际 天气:苏州3月底天气凉爽,气候宜人,是一年中旅游的最佳时节,平均最低气温 12.2 ℃,平均最高气温 21.0 ℃。 华嘉客户报名方式(附回执): 电话:4008210778 传真:021-33678466 邮件:helen.jiang@dksh.com 回执单 姓名 性别 人数 单位名称 详细地址 邮政编码 电话 传真 E-mail 留言: 备注:请尽快E-mail 或传真(021-33678466)确认 联系人: 姜丹 公司地址:上海市虹梅路1801号A区凯科国际大厦2208室 邮政编码:200233 电话:4008210778 ;传真:021-33678466 电子邮箱:helen.jiang@dksh.com
  • 独家新品| 5项食品补充检验方法标准物质新鲜出炉!
    近日,市场监管总局2022年第4号公告发布了5项食品补充检验方法,分别为《食品中爱德万甜的测定》《柑橘和苹果中顺丁烯二酸松香酯等5种化合物的测定》《饮料中香豆素类化合物的检测》《豆制品中碱性嫩黄等11种工业染料的测定》《甘蔗及甘蔗汁中3-硝基丙酸的测定》。《食品中爱德万甜的测定》规定了食品中爱德万甜的两种测定方法,第一法为高效液相色谱—串联质谱法,适用于饮料、酒类、焙烤食品、可可制品、巧克力和巧克力制品以及糖果、发酵乳和风味发酵乳、果冻、冷冻饮品、蛋制品、复合调味料中爱德万甜的测定。第二法为高效液相色谱—荧光检测法,适用于加工水果(水果干类、水果罐头、果酱、果泥、蜜 饯凉果等)中爱德万甜的测定。《柑橘和苹果中顺丁烯二酸松香酯等5种化合物的测定》规定使用液相色谱-串联质谱测定柑橘类水果、苹果中顺丁烯二酸松香酯、油酰一乙醇胺、油酰二乙醇胺、三乙醇胺油酸皂、癸氧喹酯。《饮料中香豆素类化合物的检测》规定饮料中香豆素、7-甲氧基香豆素、二氢香豆素、7-甲基香豆素、7-乙氧基-4-甲基香豆素、醋硝香豆素、环香豆素、3,3' -羰基双(7-二乙胺香豆素)等8种香豆素类化合物应采用高效液相色谱-串联法进行检测。《豆制品中碱性嫩黄等11种工业染料的测定》也同样规定豆腐、豆皮、腐竹、油豆皮、油豆腐等豆制品中的分散橙11、分散橙1、分散橙3、分散橙37、分散黄3、二甲基黄、二乙基黄、碱性橙22、碱性橙21、碱性嫩黄、苏丹橙G的测定方法为高效液相色谱—串联质谱法。《甘蔗及甘蔗汁中3-硝基丙酸的测定》规定了甘蔗及甘蔗汁中3-硝基丙酸高效液相色谱法的测定方法。并补充当样品中检出3-硝基丙酸时,可用高效液相色谱—串联质谱联用法进行确证。日常监管和案件查办中发现食品中出现非食品原料或在食品中添加其他风险物质时,食品补充检验方法可以作为食品安全标准的重要补充,可以用于对食品的抽样检验、食品安全案件调查处理和食品安全事故处置。阿尔塔科技有限公司与制标单位密切合作,成功研制出食品安全风险物质标准品,解决了标准制定过程中没有标准物质可用、无法准确定性定量的技术难题,协助制标单位构建准确可靠、技术先进的食品检验方法体系,为食品抽样检验、案件调查处理和食品安全事故处置等监管工作提供强有力的技术支撑。5项食品补充检验方法相关标准物质现货上架:标准号产品号产品名称包装规格BJS 2022011ST5115W爱德万甜一水合物10mgBJS 2022021ST159625油酰二乙醇胺10mg1ST159626三乙醇胺单油酸酯10mg1ST5710癸氧喹酯10mg1ST159624N-油酰乙醇胺10mg1ST160461松香酸马来酰酐10mgBJS 2022031ST45260-100A乙腈中8种香豆素混标溶液100μg/mL, 1mLBJS 2022041ST50977-100M甲醇中11种色素混标溶液100μg/mL, 1mLBJS 2022051ST9132-100W水中β-硝基丙酸溶液100μg/mL, 1mL
  • 1023万!北京食品检验所试剂及耗材采购大单曝光 多项拒绝进口
    5月29日,北京市食品安全监控和风险评估中心(北京市食品检验所)公布2019年第一批食品安全抽检监测试剂耗材采购项目,共包含9包817类化学试剂、实验和仪器耗材、生物培养基等品类的采购需求,这其中包含色谱柱34类(13类拒接进口)、前处理柱26类(16类拒绝进口)、163类实验和仪器耗材(48类拒绝进口)。本次招标文件发售的时间为即日起至2019年6月5日16:30(双休日及法定节假日除外),投标截至时间和开标时间为2019年6月19日09:00。详情汇总如下:项目名称:2019年第一批食品安全抽检监测试剂耗材采购项目化学试剂和助剂采购项目项目编号:SJHC-JY-201901-JH001-XM001采购单位联系方式:采购单位:北京市食品安全监控和风险评估中心(北京市食品检验所)地址:北京市海淀区丰德东路17号联系方式:孙婷,010-82479315代理机构联系方式:代理机构:中经国际招标集团有限公司代理机构联系人:王晓庆,010-68372937代理机构地址:中经国际招标集团有限公司,北京市东城区滨河路1号,航天信息大楼10层招标十五部需求详情:第一包化学试剂序号名称数量单位是否可以采购进口产品1弗罗里硅土3瓶是2氢氧化钡(八水)1瓶是3蔗糖酶(麦芽糖酶)(酵母)5瓶是4QuEChERS盐包1盒是5QuEChERS分散试剂盒4盒是6邻苯二甲醛(OPA)5瓶是7脂肪酶4盒是8分析纯甲醇100箱否9分析纯乙腈80箱否10甲醇10箱是11乙腈10箱是12分析纯乙酸乙酯40箱否13分析纯正丁醇2箱否14石油醚120箱否15分析纯无水乙醇10箱否16分析纯正己烷40箱否17分析纯丙酮2箱否18分析纯二氯甲烷5箱否19无水乙醚70箱否20色谱级甲醇100箱是21色谱级乙腈80箱是22色谱级无水乙醇2箱是23色谱级环己烷5箱是24色谱级正己烷10箱是25色谱级丙酮2箱是26色谱级甲苯2箱是27色谱级异丙醇1箱是28色谱级乙酸乙酯4箱是29色谱级二氯甲烷4箱是30α-淀粉酶10瓶否31乙酸锌5瓶否32亚铁氰化钾60瓶否33抗坏血酸VC20瓶否34氯化钠40瓶否35无水碳酸钠10瓶否36无水硫酸钠25箱否37硫酸锌5瓶否38碘化钾30瓶否39丁酮3瓶否40溴化钠2瓶否41溴化钾1瓶否42双氧水1瓶否43硫酸5瓶否44七氟丁酰基咪唑10瓶否4514%三氟化硼-甲醇溶液1瓶否46磷酸5瓶否47冰乙酸20瓶否48甲酸10瓶否49盐酸10瓶否50硝酸2瓶否51色谱纯乙酸铵5瓶否52柠檬酸5瓶否53β-葡糖醛苷酶20瓶否54甲酸铵5瓶否55氢氧化钾6箱否56盐酸二苯胺1瓶否57氯乙酰10瓶否58三甲基氯硅烷2瓶否59六甲基二硅胺烷1瓶否604-二甲基氨基吡啶1瓶否611-蒽腈1瓶否62二巯基乙醇10瓶是63四氢呋喃2箱是64乙酰辅酶A60瓶是65胆碱氧化酶20瓶是66过氧化物酶20瓶是67α淀粉酶10瓶是68葡萄糖苷酶10瓶是69乙醇酸1瓶是70碘1瓶否71苯酚3瓶否72硝酸银10瓶否73磺胺1瓶否74对氨基苯磺酸2瓶否75N-(1-萘基)乙二胺二盐酸盐3瓶否76异丙醇12箱否77三氯甲烷20箱否78冰醋酸20箱否79二甲苯2箱否80二水合乙酸锌3箱否81海砂1箱否82四硼酸钠50袋否83混合磷酸盐50袋否84邻苯二甲酸氢钾50袋否85磷酸氢二钠5瓶否86磷酸二氢钾5瓶否8795%乙醇10箱否88无水乙醇10箱否89硫代硫酸钠5瓶否90酒石酸10瓶否91环己烷1箱否92丙酮1箱否93甲酸1箱否94高氯酸1箱否95甲醛1箱否96盐酸10箱否97三水合乙酸铅3瓶否98α-萘酚苯基甲醇1瓶是99氢氧化钾1箱否100铬酸钾1箱否101乙酸丁酯2瓶否102浓硫酸10箱否103氢氧化钠15箱否104乙酸镁2瓶否105H酸一钠盐2瓶否第二包实验用气体序号名称数量单位是否可以采购进口产品1高纯氩气1200瓶否2高纯氮气200瓶否3高纯氧气30瓶否4高纯氦气130瓶否5高纯氦气212瓶否6高纯乙炔4瓶否7高纯氢气5瓶否8氩甲烷2瓶否9液氮5000升否10二氧化碳2瓶否11合成空气5瓶否第三包标准物质序号名称数量单位是否可以采购进口产品1安赛蜜5支否24-氨基间甲酚1支否3灭瘟素1支否4角黄素(斑蝥黄)2支否5甜蜜素5支否6乙基麦芽酚1支否7PABA乙基己酯1支否8格列波脲1支否96-羟基吲哚1支否10微囊藻毒素LR1支否11苯乙双胍1支否12水苏糖1支否13维生素A酸1支否14三氯甲烷(氯仿)1支否15三甲胺盐酸盐1支否16佐匹克隆1支否17脱羟基洛伐他丁1支否18洛伐他汀羟酸钠盐1支否19盐酸二氧丙嗪1支否202-氨基苯酚(邻氨基苯酚)1支是213-氨基苯酚(间氨基苯酚)1支是22L-阿拉伯糖1支是23盐酸金霉素1支是24甜蜜素1支是252.4-滴2支是262-硝基-1.4-苯二胺1支是273.4-二氨基甲苯1支是282.5-二氨基甲苯硫酸盐1支是292.4-二溴苯酚1支是30二氯乙酸(二氯醋酸)1支是311.1-二氯乙烷1支是32N.N-二乙基对苯二胺硫酸盐1支是33直接红281支是34盐酸强力霉素1支是35敌磺钠(敌克松)1支是36氟苯虫酰胺1支是37正庚烷1支是38氢醌1支是39隐性孔雀石绿1支是40孔雀石绿草酸盐1支是41D(+)甘露糖1支是421-萘酚1支是431.4-苯二胺(对苯二胺)1支是44邻苯二甲酸二烯丙酯1支是45间苯二酚1支是46盐酸四环素1支是47D(+)海藻糖1支是48三氯乙酸2支是49D(+)-木糖1支是502.6-二氨基吡啶1支是51N,N-二乙基甲苯-2,5-二胺1支是52缩水甘油(环氧丙醇)1支是53邻苯二胺1支是541.3-苯二胺(间苯二胺)1支是55PCB1981支是56盐酸芬氟拉明1支是57氟虫腈(非泼罗尼、锐劲特)1支是58氟甲腈1支是59氟虫腈硫化物(氟虫腈硫醚)1支是60氟虫腈砜1支是61奶粉9种元素基质标准物质2支是62左旋肉碱-D31支是63美金刚-d6盐酸盐1支是64芦丁2瓶否65甲磺酸酚妥拉明1瓶否66达那唑1瓶否67盐酸妥拉唑林1瓶否68盐酸特拉唑嗪1瓶否69富马酸福莫特罗1瓶否70美雄诺龙1瓶否71替勃龙1瓶否72十一酸甘油三酯1瓶否73棕榈酸缩水甘油酯1瓶是74酒石酸氢胆碱1瓶是754-氨基丁酸1瓶是76利血平1瓶否77盐酸可乐定1瓶否78香草醛/香兰素1瓶否79盐酸吡哆醇/维生素B61瓶否80阿替洛尔1瓶否81维生素D21瓶否82盐酸哌唑嗪1瓶否83尼莫地平1瓶否84格列喹酮2瓶否85格列吡嗪1瓶否86氢氯噻嗪1瓶否87盐酸吗啉胍1瓶否88盐酸文拉法辛1瓶否89尼索地平1瓶否90尼群地平1瓶否91洛伐他汀1瓶否92辛伐他汀1瓶否93那格列奈1瓶否94咪喹莫特1瓶否95盐酸吡格列酮2瓶否96盐酸二甲双胍2瓶否97格列美脲2瓶否98非洛地平1瓶否99瑞格列奈2瓶否100醋氯芬酸1瓶否101伏格列波糖1瓶否102盐酸苯乙双胍2瓶否103盐酸金刚乙胺1瓶否104大黄素1瓶否105大黄酚1瓶否106番泻苷A1瓶否107番泻苷B1瓶否108乙基香兰素1瓶否109阿昔洛韦1瓶否110呋虫胺1瓶是111甲苯磺丁脲1瓶是112(± )-α-生育酚1瓶是113青藤碱1瓶否114盐酸丁双胍2瓶否115美金刚1瓶否116维生素A(视黄醇)1瓶是117格列齐特1瓶否118阿昔洛韦-D41瓶是119藜芦醛/甲基香兰素1瓶是120氨氯地平1瓶否121醋磺己脲1瓶是1224-(氨甲基)环己甲酸1瓶是123盐酸苯氟雷司1瓶是124氯磺丙脲1瓶是125氯美扎酮1瓶是126格列苯脲2瓶是127对羟基苯甲酸乙酯1瓶是128褪黑素1瓶是129奥司他韦1瓶是130卡托普利1瓶是131维生素D3(胆骨化醇)1瓶是1321,3-二油酸-2-棕榈酸甘油三酯1瓶是133格列齐特1瓶是134格列吡嗪1瓶是135食用合成色素苋菜红标液3瓶否136食用合成色素亮蓝标液3瓶否137劳拉西泮1瓶是138美伐他汀1瓶是139妥拉磺脲1瓶是140硝苯地平1瓶是141硝西泮1瓶是142奥沙西泮1瓶是143盐酸吡哆醛1瓶是144吡哆胺二盐酸盐1瓶是145邻苯二甲酸二异壬酯1瓶是146罗格列酮1瓶是14716组分邻苯二甲酸酯混标1瓶是148磺胺间二甲氧基嘧啶-D61瓶是149磺胺邻二甲氧基嘧啶-D31瓶是150三唑仑溶液1瓶是151雷纳克铵盐一水合物1瓶是152灭瘟素S盐酸盐1瓶否1532,4-二氨基苯氧乙醇硫酸盐1瓶否154己二酸二乙酯1瓶是1552-羟基-4-甲氧基二苯甲酮2瓶是156D-(-)-核糖1瓶是157十四烷基二甲基苄基氯化铵水合物1瓶是158盐酸去甲乌头碱1瓶是159十六烷基苄基二甲基氯化铵水合物1瓶是160十二烷基二甲基苄基氯化铵二水合物1瓶是161阿托品1瓶是1625-胞苷酸1瓶是163二乙氨基羟苯甲酰基苯甲酸己酯1瓶是1642,3,5-混杀威1瓶是165盐酸妥布特罗1瓶是166维生素E醋酸酯1瓶是167二苯酮-32瓶是168乳铁蛋白1瓶是1692,3-二溴丙酰胺1瓶是170乙酸甲酯6瓶是171巯基乙酸1瓶是172盐酸奈比洛尔1瓶是173异麦芽酮糖水合物1瓶是174拉贝洛尔盐酸盐1瓶是175异维A酸1瓶是176九种ICP-MS混标2瓶是177亚油酸甘油三酯1瓶是178铬同位素标液1瓶是179五氯酚1瓶是180氯酸钠1支是181高氯酸钠1支是182氯酸盐-18O31支是183高氯酸盐-18O41支是1844-壬基酚1支是185双酚A1支是186双酚A-d41支是1873,5,3-壬基酚-13C61支是188对硫磷3支否189甲胺磷3支否190硫线磷3支否191特丁硫磷2支否192溴氰菊酯2支否193甲拌磷3支否194福美双2支否195灭线磷2支否196甲基毒死蜱2支否197马拉硫磷3支否198乙烯利2支否199苯醚甲环唑2支否200敌敌畏2支否201百菌清1支否202丙溴磷2支否203甲拌磷砜2支否204乙拌磷2支否205氧化乐果2支否206久效磷2支否207毒死蜱3支否208杀扑磷2支否209硫环磷2支否210倍硫磷2支否211甲基嘧啶磷2支否2123-氯-1,2-丙二醇3-MCPD1支是2132-氯-1,3-丙二醇2-MCPD1支是214D5-3-氯-1,2-丙二醇1支是215D5-2-氯-1,3-丙二醇1支是2162-氯-1,3-丙二醇二硬脂酸酯1支是217D5-2-氯-1,3-丙二醇二硬脂酸酯1支是2181,3-二氯-2-丙醇1,3-DCP1支是2192,3-二氯-1-丙醇2,3-DCP1支是220D5-1,3-二氯-2-丙醇1支是221D5-2,3-二氯-1-丙醇1支是222视黄醇2支是223α-生育酚2支是224β-生育酚2支是225δ-生育酚2支是226γ-生育酚2支是227维生素D22支是228维生素D32支是229维生素K13支是230β-胡萝卜素1支是231免疫球蛋白IgG1支是232盐酸吡哆醇1支是233盐酸吡哆醛1支是234双盐酸吡哆胺1支是235柠檬黄3支否236新红1支是237苋菜红3支否238胭脂红3支否239日落黄3支否240亮蓝3支否241赤藓红1支是242酸性红1支是243诱惑红1支是244靛蓝1支是245甲醛2支否246曲酸1支是247噻二唑1支是248苄青霉素1支是249苯咪青霉素1支是250甲氧苯青霉素1支是251苯氧乙基青霉素1支是252醋酸氟氢可的松1支是25316种多环芳烃混标1支是254三氯杀螨醇1支否255七氯1支否256艾氏剂1支否257狄氏剂1支否258草甘膦2支是259草甘膦同位素2支是260甜蜜素20支否2613-氨基-2-恶唑酮1支是2625-吗啉甲基-3-氨基-2-恶唑烷基酮1支是2631-氨基-乙内酰脲1支是264氨基脲1支是2653-氨基-2-恶唑酮的内标物(D4-AOZ)3支是2665-吗啉甲基-3-氨基-2-恶唑烷基酮的内标物(D5-AMOZ)3支是2671-氨基-乙内酰脲的内标物(13C-AHD)2支是268氨基脲的内标物(13C15N-SEM)2支是269丙烯酰胺1支是270丙烯酰胺内标(13C3丙烯酰胺)1支是271脱氢乙酸2支是272纽甜1支是2734-甲基咪唑1支是274涕灭威3支否275涕灭威砜3支否276涕灭威亚砜3支否277克百威8支否278三羟基克百威8支否279速灭威2支否280灭多威7支否281甲萘威3支否282异丙威2支否283仲丁威2支否284残杀威2支否285多菌灵7支否286吡虫啉7支否287啶虫脒7支否288烯酰吗啉7支否289氯唑磷3支否290邻苯二甲酸二异壬酯DINP1支是29116种邻苯二甲酸酯混标1支是292叶黄素2支是293阿维菌素2支否294氟甲腈1支否295内吸磷1支否296辛硫磷1支否297甲氨基阿维菌素苯甲酸盐1支否298哒螨灵1支否299噻虫啉1支否300霜霉威2支否301吡唑醚菌酯2支否302噁唑菌酮1支否303乙霉威1支否304嘧菌酯1支否305啶酰菌胺1支否306氟吡甲禾灵1支否307氟吡氯禾灵1支是308茚虫威1支否309氯吡脲1支否310戊唑醇1支否311多效唑1支否312天然辣椒素1支是313合成辣椒素1支是314二氢辣椒素1支是315α-硫丹1支否316β-硫丹1支否317硫丹硫酸盐1支否318顺-氯丹1支否319反-氯丹1支否320氧氯丹1支否3211,3-二油酸-2-棕榈酸甘油三酯1支是322BHA1支是323BHT1支是324TBHQ1支是325PG1支是326牛磺酸1支是327碘化钾1支是328三唑醇1支否329戊菌唑1支否330苯霜灵1支否331苯酰菌胺2支否332杀虫双1支否333甲霜灵1支否334嘧霉胺1支否335喹硫磷1支否336啶氧菌酯1支否337噻螨酮1支否338乙酰甲胺磷1支否339甲拌磷亚砜1支否340氟胺氰菊酯1支否341三氯乙酸1支否342氯氟氰菊酯(三氟氯氰菊酯)1支否343氯氰菊酯1支否344氟氰戊菊酯1支否345联苯菊酯1支否346邻苯基苯酚1支是347甲基异柳磷1支否348乐果1支否349甲基硫环磷1支否350甲氰菊酯1支否351腺嘌呤核苷酸(AMP)1支是352尿嘧啶核苷酸(UMP)1支是353次黄嘌呤核苷酸(IMP)1支是354三氯甲烷2支否355四氯化碳2支否356六号溶剂3支否357抗蚜威1支否358谷硫磷1支否359敌百虫1支否360三唑酮1支否361甲基立枯磷1支否362丁草胺1支否363氟酰胺1支否3648种有机氯混标1支否36537种脂肪酸甲酯3支是366月桂酸甘油三酯1支是367肉豆蔻酸甘油三酯1支是368a-亚麻酸甘油三酯1支是369花生四烯酸甘油三酯1支是370二十碳五烯酸甘油三酯1支是371二十二碳六烯酸甘油三酯1支是372反-9-十八碳一烯酸甲酯1支是373反,反-9,12-十八碳二烯酸甲酯1支是374氯霉素-D51支是375氟苯尼考胺1支是376左旋咪唑1支是377沙丁胺醇-D31支是378克伦特罗-D91支是379莱克多巴胺-D31支是380特布他林1支是381恩诺沙星-D51支是382诺氟沙星-D51支是383环丙沙星-D81支是384氯丙嗪-D61支是385氯丙嗪1支是386地塞米松-D41支是387地西泮1支是3883-甲基喹噁啉-2-羧酸1支是389氟甲喹1支是390喹噁啉-2-羧酸-D41支是391恩诺沙星1支是392环丙沙星1支是393土霉素2支是394丁硫克百威1支否395磺胺1支是396磺胺二甲异嘧啶钠1支是397磺胺对甲氧嘧啶1支是398磺胺甲基异恶唑内标-13C61支是399磷酸三苯酯2瓶是400磷脂酰胆碱1瓶否401磷脂酰乙醇胺1瓶是402磷脂酰肌醇1瓶是403鞘磷脂1瓶是第四包色谱柱序号名称数量单位是否可以采购进口产品1阴离子色谱柱SH-AC-3(含保护柱SH-G-1)2套否2阴离子色谱柱SH-AC-4(含保护柱SH-G-1)2套否3阴离子色谱柱SH-AC-5(含保护柱SH-G-1)2套否4阴离子色谱柱SH-AC-9(含保护柱SH-G-1)2套否5阴离子色谱柱SH-AC-11(含保护柱SH-G-1)2套否6阴离子色谱柱SH-AC-14(含保护柱SH-G-1)2套否7阴离子色谱柱SH-AC-15(含保护柱SH-G-1)2套否8阴离子色谱柱SH-AC-16(含保护柱SH-G-1)2套否9阴离子色谱柱SH-AC-17(含保护柱SH-G-1)2套否10阴离子色谱柱SH-AC-18(含保护柱SH-G-1)2套否11阳离子色谱柱SH-CC-1(含保护柱SH-G-1)2套否12阳离子色谱柱SH-CC-3(含保护柱SH-G-1)2套否13阳离子色谱柱SH-CC-4(含保护柱SH-G-1)2套否14液相色谱色谱柱1支是15SB-C18色谱柱1支是16CORTECSC18色谱柱2支是17CORTECSC18色谱柱2支是18BEHAmide色谱柱1支是19CORTECSUPLCC182支是20CORTECSUPLCC18+2支是21CORTECSC18+2支是22XbridgeBEHC181支是23XbridgeC181支是24XbridgeC181支是25XbridgeC181支是26CORTECSC18色谱柱2支是27色谱柱(染发剂用)4支是28BEHC18色谱柱1根是29BEH-C18色谱柱2支是30BEH-C18色谱柱2支是31SunfireC18色谱柱2支是32CAPCELLPAKCR色谱柱2支是33CAPCELLPAKCR色谱柱2支是34HILIC柱ObeliscR2支是第五包前处理柱序号名称数量单位是否可以采购进口产品1C18前处理柱5盒否2RP前处理柱5盒否3H前处理柱5盒否4Na前处理柱5盒否5HCO3前处理柱5盒否6Ba前处理柱5盒否7Ag前处理柱5盒否8BondElut-Accucat10盒是9ChemElut硅藻土柱5包是10AccellPlusQMA固相萃取柱2盒是11PRIMEHLB固相萃取柱10盒是12CORTECSUPLCC18保护住2盒是13固相萃取柱150盒是14固相萃取柱75盒是15混合填料净化柱3盒是16黄曲霉毒素总量免疫亲和柱(B1、B2、G1、G2)10盒否17玉米赤霉烯酮免疫亲和柱12盒否18黄曲霉毒素M1免疫亲和柱75盒否19双酚A亲和柱,2盒否204合1瘦肉精亲和柱(克伦特罗、沙丁胺醇、特布他林、莱克多巴胺)2盒否2116合1磺胺亲和柱2盒否22维生素B12亲和柱2盒否23喹乙醇亲和柱2盒否24固相萃取柱20盒是25GEHealthcare,HiTrapTMHeparinHP柱50盒是26锌粉还原柱5支否第六包实验和仪器耗材序号名称数量单位是否可以采购进口产品1坩埚钳(圆钢镀铬)300mm12英寸5把否2苦味酸试纸2盒否3白头塑料洗瓶20个否4高压消解罐20套否5阴离子抑制器2个否6阳离子抑制器2个否7密封塞40个否8融样杯40个否9泵模块1个是10六通阀1个是11进样针1个是12定量环1个是13石英舟10套是14双铂网雾化器3个是15水基同心雾化器3个是16同心雾化器适配器3个是17高盐旋流雾室(水平/双观测)3个是18水基中心管3个是19高效去湿管2个是20催化管2个是21金汞齐管2个是22防污外壳1个是23自动进样器进样针2根是24汞齐化器2个是25催化管2个是26石墨炉清洁棉棒5包是27自动进样器进样针2根是28THGA石墨管5盒是29Cr元素灯1个是30Cd元素灯1个是31进样泵管5包是32内标泵管5包是33调谐优化液1瓶是34ICP中心管1根是35超级截取锥1个是36超锥固定螺钉2个是37pp样品瓶100包是38PP样品盖100包是39高盐雾化器2个是40镍采样锥2个是41镍截取锥2个是42雾化室废液套管,FPM1套是43PTFE接头,用于雾化器*气体管线1套是44带接头的样品管线,PTFE1套是45端盖气体管线的接头1套是46用于提取透镜的螺钉工具包1套是47用于omega透镜的螺钉工具包1套是48FPMO形圈,用于端盖1套是49螺钉和垫片工具包,用于反应池1套是50Omega透镜的螺钉和垫片工具包1套是51螺纹口锥形灭菌离心管(架装)5箱是52高透明聚丙烯锥形离心管5箱是53高透明聚丙烯锥形离心管10箱是54一次性使用医用丁腈检查手套80盒否55一次性使用医用丁腈检查手套60盒否56绿色芦荟乳胶手套50盒否57绿色芦荟乳胶手套50盒否58一次性使用医用橡胶检查手套50盒否59一次性使用医用橡胶检查手套50盒否60一次性使用医用橡胶检查手套50盒否61预纯化柱3根是62紫外灯4个是63纯水柱2根是64空气过滤器2个是65预处理柱2根是66ICP超纯化柱3根是67终端过滤器3个是68终端过滤器4个是69紫外灯2个是70进样瓶瓶盖2包是71在线过滤器卡套和替换筛板2套是72柱塞杆4套是73柱塞杆密封垫2套是74高性能单向阀阀芯2套是75I-CLASS二元溶剂管理器性能维护包2套是76I-ClassSM-FTN性能维护备件包2套是77柱塞杆2套是78柱塞杆密封垫3套是79智能型主动是阀阀芯2套是80ACQUITY进样阀芯2套是81ACQUITY针密封圈1套是82AcquityH-ClassSM-FTN性能维护备件包2套是83在线过滤器滤芯5袋是84低压电源2套是85真空泵油2套是86在线过滤器滤芯2套是87高性能脱气包1套是88电路板,在线脱气机控制1套是89在线脱气机真空泵1套是90自动进样器密封垫组件3套是91取样针组件1套是92泵头基座1套是93柱塞清洗密封垫基座1套是94过滤头(柱后衍生)10个是95Millipore超滤离心管5盒是96NORELL核磁管10盒是97QuEChERS整合管10盒否98活性炭口罩10包否99GL14牙螺纹20个否100分液漏斗20个否101螺纹拧盖离心管10包否102氘代甲醇5瓶是103氘代丙酮110瓶是104氘代丙酮25盒是105坩埚式耐酸玻璃滤器10盒是106口罩150盒是107口罩2100盒是108手套150盒是109手套250盒是110手套350盒是111强力高效擦拭布-白色10箱是112pH三复合电极10支否113瓶口分配器5个是114充电支架3个是115枪头110包是116枪头210包是117枪头310包是118密封垫6个是119培养瓶1包是120单口烧瓶15个否121鸡心瓶200个否122移液器16盒否123注射器1盒否124具塞三角瓶180个否125具塞比色管1300支否126具塞比色管2302支否127三角瓶聚碳酸酯16个是128蜂蜜色值专用比色皿50支否129具塞比色管3100支否130玻璃漏斗50支否131磨口锥形瓶50个是132玻璃层析柱10个否133分液漏斗10个否134改良链接层析柱10个否135鸡心瓶10个否136标口筒锥滴液漏斗5个否137圆底烧瓶10个否138分液漏斗1个否139具塞三角瓶2100个否140具塞三角瓶3100个否141鸡心瓶100个否142塑料漏斗100个否143塑料滴管5箱否144圆底摁盖离心管10包否145尖底螺纹拧盖离心管10包否146定性滤纸5箱否147称量纸14包否148塑料洗瓶20个是149容量瓶茶色150个否150容量瓶茶色250个否151刻度吸量管124根是152刻度吸量管224根是153刻度吸量管324根是154刻度吸量管424根是155刻度吸量管524根是156大肚移液管124根是157大肚移液管224根是158大肚移液管324根是159大肚移液管424根是160大肚移液管524根是161玻璃量筒10个是162滴定管6根是163磨口锥形瓶50个是第七包分型血清和生物试剂盒序号名称数量单位是否可以采购进口产品1YersiniaenterocoliticaantiserumO:31瓶是2YersiniaenterocoliticaantiserumO:51瓶是3YersiniaenterocoliticaantiserumO:81瓶是4YersiniaenterocoliticaantiserumO:91瓶是5肠炎弧菌检测用诊断血清(K型套装)1套是6肠炎弧菌检测用诊断血清O群套装1套是7弯曲菌诊断血清1套是8诺如病毒核酸(GⅠ/GⅡ)检测试剂盒(RT-PCR探针法)10盒否9维生素B12检测试剂盒110盒否10生物素检测试剂盒15盒否11叶酸检测试剂盒15盒否12泛酸检测试剂盒15盒否13黄曲霉毒素M1酶联免疫法试剂盒40盒是14黄曲霉毒素B1酶联免疫法试剂盒20盒是15黄曲霉毒素B1酶联免疫法试剂盒20盒是16黄曲霉毒素B1酶联免疫法灵敏检测试剂盒10盒是17泛酸检测试剂盒210盒是18叶酸检测试剂盒210盒是19维生素B12检测试剂盒210盒是20生物素检测试剂盒210盒是21B6检测试剂盒2盒是22烟酸检测试剂盒2盒是23肌醇检测试剂盒2盒是24金黄色葡萄球菌肠毒素总量5盒是25金黄色葡萄球菌肠毒素分型2盒是26无内毒素质粒小提中量试剂盒(DP118)5盒否27universalDNA纯化回收试剂盒5盒否28RNA纯化试剂盒5盒否29体外转录试剂盒3盒是30PCR产物纯化试剂盒3盒是31磁珠法DNA/RNA提取试剂盒2盒是32病毒DNA/RNA提取试剂盒2盒否33磁珠法病毒DNA/RNA提取试剂盒50盒否34酵母基因组DNA提取试剂盒5盒否第八包生物培养基序号名称数量单位是否可以采购进口产品1一次性培养皿400箱否2Baird-Parker琼脂平板3500盒否3缓冲蛋白胨水(BPW)300袋否4叶酸测定培养基150瓶否5生物素测定培养基100瓶否6维生素B12测定培养基100瓶否7泛酸测定培养基100瓶否8月桂基硫酸盐蛋白胨肉汤(LST)-单料150盒否9李氏菌增菌肉汤-LB2100盒否10亚硒酸盐胱氨酸增菌液(SC)100盒否11四硫磺酸盐煌绿增菌液(TTB)100盒否12生物素测试肉汤100瓶是13B12测试肉汤100瓶是14泛酸测试肉汤100瓶是15缓冲蛋白胨水培养基20桶是16平板计数琼脂100瓶是17牛心浸粉5瓶否第九包生物试剂耗材序号名称数量单位是否可以采购进口产品1萘啶酮酸(C2)20盒否2丫啶黄素(C2)20盒否3木糖b30盒否4鼠李糖30盒否5耐高温高压分注管10包是63M压力灭菌指示胶带30卷是7灭菌取样袋20箱是8一次性采样拭子10箱是9一次性防护服10箱否10滤膜30盒是11革兰氏染色质控玻片2盒是12革兰氏染色液2盒是13厌氧产气袋30盒是14厌氧指示剂2盒是15接种环50箱是16TRNzolUniversal总RNA提取试剂4瓶否17Pgm-simple-TFast克隆试剂盒-VT3084盒否18T-fast感受态细胞(CB109)15盒否19柠檬酸钠(无水)5瓶是20丙酮酸钠10瓶是21多粘菌素B4盒是22亚硫酸钠2瓶是23亚碲酸钾4瓶否24氯化锂4瓶是25几丁质(甲壳素)50瓶是26壳聚糖5瓶是27无水海藻糖1瓶否28氯化铵1瓶是29乙酸钠6瓶是30硫酸铵6瓶是31牛胆粉1瓶否32柠檬酸铁1瓶否33胆酸钠10瓶是34硫代硫酸钠(无水)10瓶是35PCR八联排管20箱是36PCR八联排盖荧光定量专用20箱是37PCR薄壁管10箱是38光学96孔板30盒是39PrimeScriptOneStepRT-PCRKit5盒是40碱性磷酸酶CIAP2盒是41XbaI限制性内切酶2盒是42吸头15箱是43吸头25箱是44吸头短白5箱是45离心管15箱是46带滤芯吸头150盒是47带滤芯吸头250盒是48带滤芯吸头350盒是49吸头33箱是50吸头43箱是51离心管220包是52深孔板(圆底)10箱是53吸头510盒是54吸头65盒是55研磨钢珠20瓶否56电动分样器吸头5盒是57自封袋10包否58灭菌自封袋10包否59离心管320盒否60离心管410盒是61离心管55盒是6296孔快速反应板,半裙边,带条码40盒是63荧光定量PCR96孔板50盒是64耗材研磨钢珠10瓶否65PBS10瓶否66透明平顶无裙边96孔PCR板5箱是67平盖八联管(含盖)5箱是68管MicroAmpFast8-TubeStrip5盒是69盖MicroAmpOptical8-CapStrip5盒是70VetMAXXenoDNA内部阳性对照2支是71CHARGESWITCHPROPCR2盒是72微孔板迷你离心机配件1件否73CONDITIONINGREAGENT3盒是74溶壁酶5支否具体招标需求详见招标文件
  • 农残、兽残标准品溶液自由组合,开启神速实验模式
    食品安全已经上升到了关系国际民生和国家安全战略的高度,为确保国民“舌尖上的安全”,2014年8月1日,由农业部与国家卫生计生委联合发布的新版《食品中农药最大残留限量》(GB2763-2014) 标准正式实施,不仅要求部分农药的残留量降低,而且增加了新农药的残留标准,被称为“最严的农药残留国家标准”。2015 版药典通则2341中规定了76 种农药的气相色谱串联质谱法和155 种农药的液相色谱串联质谱法及检出限。随着多项农残限量标准出台,对于食品及药品相关产业影响巨大,对各检测机构的硬件设备及检测技术提出了更高的要求,对标准品的需求也更大。在农药残留、兽药残留检测的日常工作中,科研工作者经常需要购买很多的标准品,花费很多的时间配制标准溶液和混标溶液,既费时又费力,而且容易造成浪费。 近期,Sciex连续发布多种农药兽药分析方法。《蔬菜和水果中农残分析的整体解决方案》,对农业部规定的70多种例行监测的农药中适合液质联用检测的51种农药给出了快速高效的定量分析方法。《动物源食品中多兽药残留的181种高通量筛查和定量方法》,使用QTRAP?4500液相色谱质谱联用系统建立了一种多兽残高通量的筛查和定量方法,包含18大类181个常见兽药。该方法在鸡肉、牛肉、猪肉等基质中通过验证,可用于肉中多兽残的筛查和定量分析,整个样品分析过程简单、快速、通用、灵敏。《GB 2763-2014 标准中307种农药的MRM离子对数据库》,针对 GB 2763-2014标准中307种可以液质离子化的农药建立了MRM离子对数据库,包括了 MRM 质谱方法所有参数信息,可直接用于建立农残检测的 LC-MS/MS 分析方法。 作为Sciex密切的合作伙伴,阿尔塔科技在Sciex农药兽药残留分析方法研发过程中积极配合,提供以上检测方法的相关标准品,并在新方法的研究中通力合作,不仅能够提供新版药典中容易质子化的GC/MS-MS方法中的76种农药、LC/MS-MS方法中的155种农药,还可以提供《GB 2763-2014》 标准中其他种类的标准品,根据客户需要研制各种农药兽药的标准溶液和混标溶液,有效搭配,自由组合,从几个品种到几十个、上百个品种,即开即用,省钱省力省时间,助您提高实验效率! 《动物源食品中多兽药残留的181种高通量筛查和定量方法》 包括以下各种标准品、标准溶液及混标溶液的组合方法包1ST9232-Kit 181种兽药混标 1ST2210醋酸甲羟孕酮,1ST2218地塞米松,1ST8020劳拉西泮,1ST5719氟罗沙星,1ST2221甲睾酮,1ST2241醋酸泼尼松龙,1ST8029三唑仑,1ST7801红霉素,1ST2286丙酸睾丸素,1ST2219醋酸地塞米松,1ST8031奥沙西泮,1ST7802A林可霉素盐酸盐,1ST2208醋酸氯地孕酮,1ST2235倍他米松戊酸酯,1ST8021硝西泮,1ST7803A盐酸克林霉素,1ST2292去氢睾酮,1ST2253,醋酸倍他米松,1ST5556羟基甲硝唑,1ST7712罗红霉素,1ST2275群勃龙,1ST8531莫美他松,1ST5554甲硝唑,1ST7809交沙霉素,1ST8505苯丙酸诺龙,1ST2244氟轻松醋酸酯,1ST5525二甲硝咪唑 ,1ST7806泰乐菌素,1ST7191格列本脲,1ST2242阿氯米松双丙酸酯,1ST5568罗硝唑,1ST7009吉他霉素,1ST7192格列美脲,1ST7200替诺昔康,1ST5519氯甲硝咪唑,1ST7805替米考星,1ST7193格列吡嗪,1ST8002氟芬那酸,1ST5513苯硝咪唑,1ST7013头孢氨苄,1ST7195瑞格列奈,1ST8009茚酮苯丙酸,1ST5542异丙硝唑,1ST12001头孢匹啉,1ST7197甲苯磺丁脲,1ST8004双水杨酸酯,1ST5501阿苯达唑,1ST10007头孢克洛,1ST2227泼尼松,1ST7152卡洛芬,1ST5505阿苯哒唑亚砜,1ST12002头孢克肟,1ST2228可的松,1ST7153酮基布洛芬,1ST5536氟苯咪唑,1ST12003头孢拉定,1ST2226氢化可的松,1ST7154托灭酸,1ST5531芬苯达唑,1ST10009头孢匹罗,1ST2229甲基泼尼松龙,1ST7155,美洛昔康,1ST5561奥芬达唑,1ST12004,头孢他美酯,1ST2246氟米龙,1ST7156氟尼辛,1ST5546甲苯咪唑,1ST7014头孢唑啉,1ST2230倍他米松,1ST7159甲芬那酸,1ST2522噻苯哒唑,1ST120053-去乙酰基头孢噻肟,1ST2224曲安西龙,1ST7161双氯芬酸,1ST5579替硝唑,1ST12006头孢孟多锂,1ST2262醋酸泼尼松,1ST7162吡罗昔康,1ST5591奥硝唑,1ST12012头孢米诺钠盐,1ST2238醋酸可的松,1ST7165萘丁美酮,1ST1307A莱克多巴胺盐酸盐,1ST12007头孢哌酮钠,1ST2240醋酸氢化可的松,1ST7166舒林酸,1ST1302沙丁胺醇,1ST12011头孢羟氨苄,1ST2232倍氯米松1ST7167托麦汀,1ST1304A特布他林硫酸盐,1ST7003头孢噻呋,1ST2231氟米松,1ST7168吲哚美辛,1ST1309西马特罗,1ST10011头孢氨噻,1ST2257甲基泼尼松龙醋酸酯,1ST4017磺胺嘧啶,1ST1301A,盐酸克伦特罗,1ST10012头孢他啶,1ST2247醋酸氟米龙,1ST4007磺胺噻唑,1ST1303妥布特罗盐酸盐,1ST12008头孢洛宁,1ST2256醋酸氟氢可的松,1ST4003磺胺吡啶,ST1324A喷布特罗盐酸盐,1ST12009头孢喹肟,1ST2236布地奈德,1ST4002磺胺甲基嘧啶,1ST8033A盐酸普萘洛尔,1ST4102四环素,1ST2249氢化可的松丁酸酯,1ST4014磺胺二甲基嘧啶,1ST1313氯丙那林,1ST4111A盐酸土霉素,1ST2233曲安奈德,1ST4040磺胺间甲氧嘧啶,1ST4107恩诺沙星,1ST4110A盐酸金霉素,1ST2234氟氢缩松,1ST4008磺胺甲噻二唑,1ST5738诺氟沙星,1ST4122X多西环素单盐酸半乙醇半水合物,1ST2254地夫可特,1ST4036磺胺对甲氧嘧啶,1ST5756培氟沙星,1ST7137奥拉多司,1ST2250氢化可的松戊酸酯,1ST4034磺胺氯哒嗪,1ST5703环丙沙星,1ST7104氯羟吡啶,1ST2248哈西奈德,1ST4004磺胺甲氧哒嗪,1ST5740氧氟沙星,1ST10021金刚烷胺,1ST2237氯倍他索丙酸酯,1ST4006磺胺邻二甲氧嘧啶,1ST5757沙拉沙星,1ST7001氯霉素,1ST2263醋酸曲安奈德,1ST4042磺胺间二甲氧嘧啶,1ST5714依诺沙星,1ST7002甲砜霉素,1ST2260倍他松丁酸酯,1ST4005磺胺甲基异噁唑,1ST5759洛美沙星,1ST7005氟苯尼考,1ST2251泼尼卡酯,1ST4010磺胺二甲异噁唑,1ST5735萘啶酸,1ST2215己烯雌酚,1ST2255二氟拉松双醋酸酯,1ST4012苯甲酰磺胺,1ST5745恶喹酸,1ST2217双烯雌酚,1ST2243安西奈德,1ST4028磺胺喹恶啉,1ST5761氟甲喹,1ST7201A玉米赤霉醇,1ST2259莫米他松糠酸酯,1ST4001磺胺醋纤,1ST4100达氟沙星,1ST7201B β-玉米赤霉醇,1ST2261倍氯米松双丙酸酯,1ST4009甲氧苄氨嘧啶,1ST5758双氟沙星,1ST7202α-玉米赤霉烯醇,1ST2239氟替卡松丙酸酯,1ST4013磺胺苯吡唑,1ST5743奥比沙星,1ST7202B β-玉米赤霉烯醇,1ST2252醋酸曲安西龙双,1ST8015咪哒唑仑,1ST5753司帕沙星,1ST7203玉米赤霉酮,1ST2225泼尼松龙,1ST8016阿普唑仑,1ST7204玉米赤霉烯酮,1ST8019氯硝西泮,1ST7102地西泮 《蔬菜水果中农业部例行监测农残的LC-MS/MS分析方法》中包括以下51种纯品、标准溶液及混标溶液的组合方法包1ST27019-10M,51种农药混标,10ppm 1ST21058多菌灵,1ST20348氟啶脲,1ST20140甲基对硫磷,1ST20297啶虫脒,1ST25000阿维菌素,1ST20111杀螟硫磷,1ST20298吡虫啉,1ST20167氧乐果,1ST20065倍硫磷,1ST20001毒死蜱,1ST20345除虫脲,1ST20173水胺硫磷,1ST20350噻虫嗪,1ST20127甲基异柳磷,1ST20434对硫磷,1ST21145烯酰吗啉,1ST20097敌敌畏,1ST21202三唑酮,1ST21189苯醚甲环唑,1ST20093甲胺磷,1ST20094二嗪磷,1ST21226腐霉利,1ST20449灭多威,1ST20349灭幼脲,1ST20305氟虫腈,1ST20144乙酰甲胺磷,1ST20189亚胺硫磷,1ST20438三唑磷,1ST21161嘧霉胺,1ST20168马拉硫磷,1ST20155丙溴磷,1ST20277甲萘威,1ST20406哒螨灵,1ST22249二甲戊灵,1ST20273涕灭威亚砜,1ST20172伏杀硫磷,1ST20271克百威,1ST20375涕灭威,1ST21157嘧菌酯,1ST20170辛硫磷,1ST20098乐果,1ST20288甲氨基阿维菌素苯甲酸盐,1ST21164异菌脲,1ST202593-羟基克百威,1ST20222甲氰菊酯,1ST20182敌百虫,1ST20266涕灭威砜,1ST20210联苯菊酯,1ST21247咪鲜胺,1ST20124甲拌磷,1ST20396虫螨腈 《GB2763-2014 标准中307种农药的MRM离子对数据库》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27048,307种农药混标溶液。 《2015版中国药典通则2341中76种农药的气相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27046,76种农药混标溶液。 《2015版中国药典通则2341中155 种农药的液相色谱串联质谱法》中使用的纯品、标准溶液及组合混合标准溶液方法包参见1ST27045,155种农药混标溶液。
  • 910万!广东省公安厅2023-100禁毒检测试剂消耗品采购项目
    一、项目基本情况项目编号:0809-2341GDG14250项目名称:广东省公安厅2023-100禁毒检测试剂消耗品采购项目采购方式:公开招标预算金额:9,104,695.90元采购需求:合同包1(依托咪酯快检试剂):合同包预算金额:2,400,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1化学试剂和助剂吗啡、甲基安非他明、氯胺酮、依托咪酯(4合1)检测试剂(胶体金法)80,000(人份)详见采购文件2,400,000.00-本合同包不接受联合体投标合同履行期限:合同服务期为一年。当1年合同服务期满或货物总额累计结算达到各包组的每年预算金额时先到为准,服务合同自动终止。合同包2(毒品标准品及对照品):合同包预算金额:1,327,726.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1化学试剂和助剂吗啡一水合物3(瓶)详见采购文件1,764.00-2-2化学试剂和助剂甲卡西酮外消旋体盐酸盐3(瓶)详见采购文件3,186.00-2-3化学试剂和助剂苯丙胺盐酸盐3(瓶)详见采购文件1,764.00-2-4化学试剂和助剂可待因3(瓶)详见采购文件1,764.00-2-5化学试剂和助剂替苯丙胺盐酸盐3(瓶)详见采购文件2,175.00-2-6化学试剂和助剂去氧麻黄碱外消旋体盐酸盐3(瓶)详见采购文件1,764.00-2-7化学试剂和助剂二亚甲基双氧安非他明盐酸盐3(瓶)详见采购文件2,175.00-2-8化学试剂和助剂氟胺酮3(瓶)详见采购文件5,850.00-2-9化学试剂和助剂4-甲氧基甲基苯丙胺盐酸盐3(瓶)详见采购文件4,746.00-2-10化学试剂和助剂盐酸去甲氯胺酮3(瓶)详见采购文件3,675.00-2-11化学试剂和助剂去甲芬太尼盐酸盐一水合物3(瓶)详见采购文件4,800.00-2-12化学试剂和助剂苯甲酰爱康宁3(瓶)详见采购文件1,764.00-2-13化学试剂和助剂氯胺酮3(瓶)详见采购文件1,764.00-2-14化学试剂和助剂盐酸曲马多3(瓶)详见采购文件4,500.00-2-15化学试剂和助剂瑞芬太尼盐酸盐3(瓶)详见采购文件5,952.00-2-16化学试剂和助剂哌替啶盐酸盐3(瓶)详见采购文件1,764.00-2-17化学试剂和助剂去环丙甲基丁丙诺啡3(瓶)详见采购文件14,256.00-2-18化学试剂和助剂可卡因3(瓶)详见采购文件1,764.00-2-19化学试剂和助剂麦角二乙胺3(瓶)详见采购文件4,800.00-2-20化学试剂和助剂芬太尼盐酸盐3(瓶)详见采购文件1,410.00-2-21化学试剂和助剂丁丙诺啡盐酸盐3(瓶)详见采购文件15,840.00-2-22化学试剂和助剂舒芬太尼3(瓶)详见采购文件4,416.00-2-23化学试剂和助剂5-二甲基-3,3-二苯基氮杂戊环高氯酸盐3(瓶)详见采购文件2,646.00-2-24化学试剂和助剂美沙酮盐酸盐3(瓶)详见采购文件1,764.00-2-25化学试剂和助剂芬特明盐酸盐3(瓶)详见采购文件3,660.00-2-26化学试剂和助剂羟考酮3(瓶)详见采购文件4,560.00-2-27化学试剂和助剂安非拉酮盐酸盐3(瓶)详见采购文件9,030.00-2-28化学试剂和助剂替来他明盐酸盐3(瓶)详见采购文件4,320.00-2-29化学试剂和助剂乙基去甲氟胺酮盐酸盐3(瓶)详见采购文件7,950.00-2-30化学试剂和助剂2-(乙氨基)-2-苯基环己-1-酮盐酸盐3(瓶)详见采购文件12,780.00-2-31化学试剂和助剂地佐辛盐酸盐一水合物3(瓶)详见采购文件13,050.00-2-32化学试剂和助剂甲胺酮盐酸盐3(瓶)详见采购文件11,940.00-2-33化学试剂和助剂哌醋甲酯盐酸盐3(瓶)详见采购文件2,865.00-2-34化学试剂和助剂依托咪酯3(瓶)详见采购文件2,925.00-2-35化学试剂和助剂甲喹酮3(瓶)详见采购文件4,260.00-2-36化学试剂和助剂地芬诺酯盐酸盐3(瓶)详见采购文件12,570.00-2-37化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-丁基吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-38化学试剂和助剂N-(1-氨甲酰基-2,2-二甲基丙基)-1-(4-戊烯基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-39化学试剂和助剂3,3-二甲基-2-[1-(4-氟丁基)吲哚-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-40化学试剂和助剂2-[1-(4-氟苄基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-41化学试剂和助剂N-(1-甲基-1-苯基乙基)-1-(4-氰基丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-42化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-43化学试剂和助剂N-(1-乙氧基羰基-2-甲基丙基)-1-(5-氟戊基)吲哚-3-甲酰胺3(瓶)详见采购文件11,550.00-2-44化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯3(瓶)详见采购文件11,550.00-2-45化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-苯丙酸甲酯3(瓶)详见采购文件11,550.00-2-46化学试剂和助剂N'-(1-(5-氟戊基)-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-47化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲哚-3-甲酰氨基]丁酸乙酯3(瓶)详见采购文件11,550.00-2-48化学试剂和助剂3,3-二甲基-2-[1-(5-氟戊基)吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件7,470.00-2-49化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯3(瓶)详见采购文件11,550.00-2-50化学试剂和助剂N'-(1-戊基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-51化学试剂和助剂N'-(1-己基-2-氧代吲哚-3-亚基)苯甲酰肼3(瓶)详见采购文件11,550.00-2-52化学试剂和助剂3,3-二甲基-2-(1-戊基-1H-吲唑-3-甲酰氨基)丁酸乙酯3(瓶)详见采购文件11,550.00-2-53化学试剂和助剂[1-(4-氟苄基)-1H-吲哚-3-基](2,2,3,3-四甲基环丙基)甲酮3(瓶)详见采购文件6,720.00-2-54化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-55化学试剂和助剂N-(金刚烷-1-基)-1-(5-氯戊基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-56化学试剂和助剂N-(金刚烷-1-基)-1-(环己基甲基)-1H-吲唑-3-甲酰胺3(瓶)详见采购文件11,550.00-2-57化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-58化学试剂和助剂乙酰芬太尼1(瓶)详见采购文件1,397.00-2-59化学试剂和助剂甲氧麻黄酮1(瓶)详见采购文件749.00-2-60化学试剂和助剂去甲氟胺酮1(瓶)详见采购文件8,826.00-2-61化学试剂和助剂溴胺酮1(瓶)详见采购文件7,310.00-2-62化学试剂和助剂3-[1-(哌啶-1-基)环己基]苯酚盐酸盐1(瓶)详见采购文件1,554.00-2-63化学试剂和助剂地西泮1(瓶)详见采购文件562.00-2-64化学试剂和助剂依替唑仑1(瓶)详见采购文件8,353.00-2-65化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,456.00-2-66化学试剂和助剂利多卡因盐酸盐一水合物1(瓶)详见采购文件1,058.00-2-67化学试剂和助剂盐酸甲苯噻嗪1(瓶)详见采购文件428.00-2-68化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧代丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺1(瓶)详见采购文件7,084.00-2-69化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H -吲唑-3-甲酰胺基]丁酸1(瓶)详见采购文件9,000.00-2-70化学试剂和助剂3,3-二甲基-2-[1-(4-丁醇)吲哚-3-甲酰氨基]丁酸甲酯1(瓶)详见采购文件9,000.00-2-71化学试剂和助剂咖啡因-D31(瓶)详见采购文件8,838.00-2-72化学试剂和助剂那可汀-D31(瓶)详见采购文件2,800.00-2-73化学试剂和助剂N-蒂巴因-D31(瓶)详见采购文件3,276.00-2-74化学试剂和助剂罂粟碱-D61(瓶)详见采购文件3,276.00-2-75化学试剂和助剂舒芬太尼-D51(瓶)详见采购文件9,000.00-2-76化学试剂和助剂去甲氟胺酮-D41(瓶)详见采购文件6,375.00-2-77化学试剂和助剂地西泮-D51(瓶)详见采购文件506.00-2-78化学试剂和助剂羟基可替宁1(瓶)详见采购文件1,538.00-2-79化学试剂和助剂去甲乙酰芬太尼盐酸盐一水合物1(瓶)详见采购文件1,648.00-2-80化学试剂和助剂4-苯胺基-N-苯乙基哌啶二盐酸盐一水合物1(瓶)详见采购文件5,860.00-2-81化学试剂和助剂可替宁3(瓶)详见采购文件3,000.00-2-82化学试剂和助剂吗啡-D33(瓶)详见采购文件18,000.00-2-83化学试剂和助剂O6-单乙酰吗啡-D33(瓶)详见采购文件18,000.00-2-84化学试剂和助剂去氧麻黄碱外消旋体盐酸盐-D53(瓶)详见采购文件7,788.00-2-85化学试剂和助剂苯丙胺-D53(瓶)详见采购文件36,000.00-2-86化学试剂和助剂氯胺酮-D43(瓶)详见采购文件22,500.00-2-87化学试剂和助剂去甲氯胺酮-D43(瓶)详见采购文件22,500.00-2-88化学试剂和助剂3,4-亚甲二氧基甲基苯丙胺-D53(瓶)详见采购文件18,000.00-2-89化学试剂和助剂3,4-亚甲二氧基苯丙胺-D53(瓶)详见采购文件22,500.00-2-90化学试剂和助剂可卡因-D33(瓶)详见采购文件18,000.00-2-91化学试剂和助剂苯甲酰爱康宁-D33(瓶)详见采购文件18,000.00-2-92化学试剂和助剂四氢大麻酸-D33(瓶)详见采购文件22,500.00-2-93化学试剂和助剂可替宁-D33(瓶)详见采购文件18,000.00-2-94化学试剂和助剂甲卡西酮-D33(瓶)详见采购文件22,500.00-2-95化学试剂和助剂氟胺酮-D43(瓶)详见采购文件19,125.00-2-96化学试剂和助剂PMMA-D33(瓶)详见采购文件19,350.00-2-97化学试剂和助剂芬太尼-D5盐酸盐3(瓶)详见采购文件7,680.00-2-98化学试剂和助剂去苯乙基芬太尼-D53(瓶)详见采购文件18,000.00-2-99化学试剂和助剂去苯乙基乙酰芬太尼-13C63(瓶)详见采购文件35,607.00-2-100化学试剂和助剂4-ANPP-D53(瓶)详见采购文件36,000.00-2-101化学试剂和助剂可待因-D63(瓶)详见采购文件36,000.00-2-102化学试剂和助剂美沙酮-D33(瓶)详见采购文件18,000.00-2-103化学试剂和助剂曲马多-D33(瓶)详见采购文件25,950.00-2-104化学试剂和助剂钯ICP标准液1(瓶)详见采购文件612.10-2-105化学试剂和助剂银ICP标准液1(瓶)详见采购文件388.02-2-106化学试剂和助剂金ICP标准液1(瓶)详见采购文件612.10-2-107化学试剂和助剂铅ICP标准液1(瓶)详见采购文件611.93-2-108化学试剂和助剂汞ICP标准液1(瓶)详见采购文件611.93-2-109化学试剂和助剂磷ICP标准液1(瓶)详见采购文件351.02-2-110化学试剂和助剂1-苄基-1H-咪唑-5-羧酸1(瓶)详见采购文件1,200.00-2-111化学试剂和助剂碘化钾1(瓶)详见采购文件92.90-2-112化学试剂和助剂甲醇中D-依托咪酯溶液3(瓶)详见采购文件900.00-2-113化学试剂和助剂甲醇中D-依托咪酯-D5溶液3(瓶)详见采购文件6,900.00-2-114化学试剂和助剂甲醇中依托咪酯酸溶液3(瓶)详见采购文件2,700.00-2-115化学试剂和助剂海洛因3(瓶)详见采购文件9,699.00-2-116化学试剂和助剂氯胺酮1(瓶)详见采购文件2,613.00-2-117化学试剂和助剂左旋甲基苯丙胺盐酸盐1(瓶)详见采购文件4,067.00-2-118化学试剂和助剂右旋甲基苯丙胺盐酸盐1(瓶)详见采购文件3,658.00-2-119化学试剂和助剂麻黄碱1(瓶)详见采购文件2,613.00-2-120化学试剂和助剂二亚甲基双氧安非他明盐酸盐1(瓶)详见采购文件2,613.00-2-121化学试剂和助剂乙酰可待因1(瓶)详见采购文件6,533.00-2-122化学试剂和助剂O3-单乙酰吗啡氨基磺酸盐1(瓶)详见采购文件5,500.00-2-123化学试剂和助剂可卡因1(瓶)详见采购文件2,613.00-2-124化学试剂和助剂吗啡一水合物1(瓶)详见采购文件2,613.00-2-125化学试剂和助剂1-苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-126化学试剂和助剂3,4-亚甲基二氧苯基-2-丙酮1(瓶)详见采购文件4,800.00-2-127化学试剂和助剂胡椒醛1(瓶)详见采购文件4,800.00-2-128化学试剂和助剂N-乙酰氨基苯甲酸(N-乙酰邻氨基苯甲酸)1(瓶)详见采购文件7,060.00-2-129化学试剂和助剂邻氨基苯甲酸1(瓶)详见采购文件7,060.00-2-130化学试剂和助剂羟亚胺盐酸盐1(瓶)详见采购文件8,826.00-2-131化学试剂和助剂邻氯苯基环戊酮1(瓶)详见采购文件8,826.00-2-132化学试剂和助剂1-苯基-2-溴-1-丙酮(α-溴代苯丙酮)1(瓶)详见采购文件4,800.00-2-133化学试剂和助剂4-苯氨基-N-苯乙基哌啶1(瓶)详见采购文件5,860.00-2-134化学试剂和助剂黄樟素1(瓶)详见采购文件4,800.00-2-135化学试剂和助剂N-苯乙基-4-哌啶酮1(瓶)详见采购文件5,860.00-2-136化学试剂和助剂N-甲基-1-苯基-1-氯-2-丙胺盐酸盐1(瓶)详见采购文件4,800.00-2-137化学试剂和助剂γ-丁内酯1(瓶)详见采购文件3,768.00-2-138化学试剂和助剂3-氧-2-苯基丁腈(α-氰基苯丙酮)1(瓶)详见采购文件3,325.00-2-139化学试剂和助剂溴西泮1(瓶)详见采购文件2,613.00-2-140化学试剂和助剂可待因1(瓶)详见采购文件2,613.00-2-141化学试剂和助剂地西泮1(瓶)详见采购文件1,295.00-2-142化学试剂和助剂艾司唑仑1(瓶)详见采购文件1,786.00-2-143化学试剂和助剂美沙酮盐酸盐1(瓶)详见采购文件2,613.00-2-144化学试剂和助剂安眠酮(甲喹酮)1(瓶)详见采购文件2,613.00-2-145化学试剂和助剂Δ9-四氢大麻酚1(瓶)详见采购文件1,034.00-2-146化学试剂和助剂三唑仑1(瓶)详见采购文件3,140.00-2-147化学试剂和助剂氟胺酮1(瓶)详见采购文件4,873.00-2-148化学试剂和助剂麦角二乙胺1(瓶)详见采购文件1,600.00-2-149化学试剂和助剂芬太尼1(瓶)详见采购文件195.00-2-150化学试剂和助剂1-[1-(3-甲氧基苯基)环己基]哌啶盐酸盐1(瓶)详见采购文件8,826.00-2-151化学试剂和助剂亚甲基二氧吡咯戊酮盐酸盐1(瓶)详见采购文件8,857.00-2-152化学试剂和助剂N-甲基-N-异丙基-5-甲氧基色胺1(瓶)详见采购文件6,213.00-2-153化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-(戊-4-烯-1-基)-1H-吲唑-3-甲酰胺 (ADB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-154化学试剂和助剂3,3-二甲基-2-[1-(4-戊烯-1-基)-1H-吲唑-3-甲酰氨基]丁酸甲酯 (MDMB-4en-PINACA)1(瓶)详见采购文件7,084.00-2-155化学试剂和助剂N-(1-氨基-3,3-二甲基-1-氧亚基丁-2-基)-1-丁基-1H-吲唑-3-甲酰胺 (ADB-BUTINACA)1(瓶)详见采购文件7,084.00-2-156化学试剂和助剂1-(4-氰基丁基)-N-(2-苯基丙-2-基)-1H-吲唑-3-甲酰胺 (4CN-CUMYL-BUTINACA)1(瓶)详见采购文件7,084.00-2-157化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3-甲基丁酸乙酯 (5F-EMB-PICA)1(瓶)详见采购文件7,084.00-2-158化学试剂和助剂2-[1-(5-氟戊基)-1H-吲哚-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (5F-MDMB-PICA)1(瓶)详见采购文件7,084.00-2-159化学试剂和助剂2-[1-(4-氟丁基)-1H-吲唑-3-甲酰氨基]-3,3-二甲基丁酸甲酯 (4F-MDMB-BUTINACA)1(瓶)详见采购文件7,084.00-2-160化学试剂和助剂N-(1-金刚烷基)-1-(4-氟丁基)吲唑-3-甲酰胺 (4F-ABUTINACA)1(瓶)详见采购文件7,084.00-2-161化学试剂和助剂N-(1-氨甲酰基-2-甲基丙基)-1-(4-氟苄基)吲唑-3-甲酰胺 (AB-FUBINACA)1(瓶)详见采购文件2,452.00-2-162化学试剂和助剂赛洛新1(瓶)
  • 食药总局:网络食安问题电商平台将承担连带责任
    国家食品药品监督管理总局今日在北京召开新闻发布会,公布《网络食品安全违法行为查处办法》。据悉,该《办法》包括总则、网络食品安全义务、网络食品安全违法行为查处管理、法律责任、附则等,共五章48条,该办法将于2016年10月1日起实施。草酸二水合物 Oxalic acid dihydrate 6153-56-6双[3-(三乙氧基甲硅烷基)丙基]四硫化物 Bis[3-(triethoxysilyl)propyl] tetrasulfide 40372-72-3D-薄荷醇 D-Menthol 15356-60-2L-薄荷醇 L-Menthol 2216-51-51-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-十二烷醇 1-Dodecanol 112-53-81-辛醇 1-Octanol 111-87-55-甲基呋喃醛 5-Methylfurfural 620-02-0N-环己基甲酰胺 N-Cyclohexylformamide 766-93-84-甲基-2-戊醇 4-Methyl-2-pentanol 108-11-2N,N-二甲基-对苯二胺 N,N-Dimethyl-p-phenylenediamine 99-98-95,6,7,8-四氢-1-萘胺 5,6,7,8-Tetrahydro-1-naphthylamine 2217-41-6肼二盐酸盐 Hydrazine dihydrochloride 5341-61-7硫氰酸钾 Potassium thiocyanate 333-20-0二甲基硫醚 Dimethyl sulfide 75-18-3聚苯醚 Polyphenyl ether 31533-76-3叔丁基甲基醚 气相色谱级 Tert-Butyl methyl ether 1634-04-4七氟丁酸 Heptafluorobutyric acid 375-22-4甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-53,4-二羟基苄胺氢溴酸盐 3,4-Dihydroxybenzylamine hydrobromide 16290-26-9N,N-二(羟基乙基)椰油酰胺 Coconut diethanolamide(CDEA) 68603-42-9/61791-31-9甲苯二异氰酸酯 Tolylene Diisocyanate(TDI) 26471-62-5异冰片基丙烯酸酯 Isobornyl acrylate 5888-33-5N,N' -二苯基硫脲 1,3-Diphenyl-2-thiourea 102-08-9聚合氯化铝 Aluminum chlorohydrate 1327-41-9四丁基氢氧化铵10%溶液 Tetrabutylammonium hydroxide solution 2052-49-5四丁基氢氧化铵25%溶液 Tetrabutylammonium hydroxide solution 2052-49-5L-苯基丙氨酸 L-Phenylalanine 63-91-2无水硫酸铈 Cerium(IV) sulfate 13590-82-4硫酸铈铵四水合物 Ammonium cerium(Ⅳ) sulfate tetrahydrate 18923-36-9脂蛋白脂肪酶 Lipoprotein Lipase 9004/2/8乙二胺≥99.5%标准品 Ethylenediamine 107-15-3壬二酸 Azelaic acid (Nonanedioic acid) 123-99-9N,N-二甲基-1-萘胺 N,N-Dimethyl-1-naphthylamine 86-56-6双(三氟甲烷)磺酰亚胺锂盐 Bis(trifluoromethane)sulfonimide lithium salt 90076-65-6
  • Accuman制药原辅料快检系统助力药厂新GMP实施
    海洋光学 (www.OceanOpticsChina.cn)近期推出最新的便携式拉曼光谱仪Accuman,让制药企业能够以较低成本进行简单、快速、准确的原 辅料药品来料检测,从而使生产符合《药品生产质量管理规范(2010年修订)》(简称新GMP)所提出的要求。Accuman内置有目前海洋光学性能最好 的光谱仪,具有检测速度快、测量结果准确、性价比高三大特点。 与市面同类产品相比,Accuman具有更高的灵敏度。对于不同包装的样品,Accuman都可以进行准确快速的测量,即使是棕色玻璃瓶装样品,检测时间一般也不到15秒,极大地减少药厂来料检测所需要花费的时间,满足新GMP中对原辅料药品逐一检测的要求。 同时,Accuman集成有性能优秀的激光器以及先进的TE制冷功能,仪器具有良好的信噪比,对微弱的拉曼信号也有很好的采集效果。因此Accuman能够轻松区分结构相似的物质,例如相似的水合物或同分异构体。 软件方面,Accuman所配有的软件符合美国的21CFR PART11标准,并具有中文操作界面,界面简洁明了,能够实现一键识别功能,使操作人员能够迅速掌握仪器使用,减少对实验人员的培训时间;软件能够实现 自建数据库,使仪器能够符合厂家的个性化要求,并且还可根据客户需求选配常用原辅料的数据库。 中国国家食品药品监督管理局于2011年发布关于贯彻实施《药品生产质量管理规范(2010年修订)》(2010新GMP)的文件,要求各新建药品生产企 业、药品生产企业新建(改、扩建)车间均应符合2010新GMP的要求。Accuman拉曼光谱测量系统便是在这个背景下应运而生。该系统由海洋光学亚洲 分公司技术团队设计研发而成,在拉曼光谱仪的本地技术支持方面具有很强的优势,可以完全满足国内生产用户的需求。 关于海洋光学(Ocean Optics)和豪迈(HALMA): 总部位于美国佛罗里达州的海洋光学(www.OceanOpticsChina.cn) 是世界领先的光传感和光谱技术解决方案提供商,为您提供测量和研究光与物质相互作用的先进技术。海洋光学在亚洲与欧洲设有分部,自1992年以来,在全球 范围内共售出了近20万套光谱仪。海洋光学拥有庞大的产品线,包括光谱仪、化学传感器、计量仪器、光纤、薄膜和光学元件等等。洋光学的产品在医学和生物研 究、环境监测、科学教育、照明及显示等领域应用广泛,公司隶属英国豪迈集团。创立于1894年的豪迈(HALMA www.halma.cn)是国际安全、健康及传感器技术方面的领军企业,伦敦证券交易所的上市公司,在全球拥有3700多名员工,约40家子公司。豪迈 目前在上海、北京、广州、成都和沈阳设有代表处,并且已在中国开设多个工厂和生产基地。
  • 【干货】卡尔费休水分仪经常会出现的问题分析
    卡尔费休法是世界公认的测定物质水分含量的经典方法,可快速、准确的测定液体、固体、气体中的水分含量,广泛应用在石油、化工、电力、食品等行业。那么,卡尔费休水分仪常见的问题有哪些呢?又该如何解决呢?1.阳极电解液的颜色不是亮黄色,而是介于棕色和暗黄色之间?颜色太深,电极对电解液的响应能力降低。用纸巾清洗两个铂针电极,去除表面吸附物 检测电极是否正确连接 测量电极可能失效。2.预滴定新鲜阳极液,漂得太高?滴定系统中有残留水份。可更换干燥管中的分子筛和硅胶,检查滴定表的电极接口和插头接口是否紧密,硅脂可适当涂在一些松动的接口上。3.备用滴定中高漂移的原因是什么?阴极池中的水通过膜渗透到阳极池中。可以更换阳极池电解液,向阴极电解槽中加入少量的单组分容量法KarlFischer试剂进行干燥,阳极液的液位保持高于阴极池中液面高度,彻底清洗滴定杯,去除上一次试验剩下的样品所造成的连续副反应,检查滴定系统的密封性。4.样品滴定漂移值高?试样与阳极电解液反应生成水。更换其他种类的阳极电解液或其他样品预处理方法 这种情况发生在组合式干燥箱中,说明样品中的水没有完全蒸发,或样品中的一些挥发物与calfisher试剂发生了副反应。可以调整高炉温度或延长蒸发时间,也可以改进样品预处理方法。5.滴定时间长,滴定不停?控制参数选择不当可采用相对漂移终止作为末端参数,增加相对漂移终止值,增加终点。如果阳极的电导率太低,则需要更换阳极。与干燥炉配合使用时,水分蒸发速度慢且不规律,最大可停机时间,提高了炉温,延长了蒸发时间。6.预滴定时间过长?潜在电解质系统太低(小于350毫伏),碘生成速度慢的极化电流可以增加到5UA。系统仍然挂水墙,水会逐渐释放,导致太长预滴定。7.试验结果的重现性不好?试样量太小,试样水分含量偏低。可以增加样品量,保证每个样品中1MG~2mg的绝对含水量。由于样品的水分分布不均匀,采样误差会反映在最终结果中。可以加强混合时间,增加样品量,或根据需要对样品进行粉碎、溶解等预处理。另外,样品前处理和添加方法不当对测定结果的重现性有显著影响,特别是对含水率较低的样品。8.滴定结果为何?滴定过早终止,相对漂移可以被适当地降低到继续在剩余的水的反应。不合理加载模式使用的还原方法,以避免使装填不良的错误,特别是,附着力强的样品加载。另一种情况下不溶解于试样溶液以形成乳液,可以在此时更换阳极电解液,电解质溶液或添加助溶剂来提高样品的溶解度。9.双铂针电极和电解电极的颜色变黑。如何解决这个问题?这表明电极表面还有其他物质污染,需要清洗,可以用铬酸洗液去除大部分油,有机的,无机的,然后用蒸馏水清洗,然后用乙醇洗几次,然后吹干空气或氮气。10.你需要多久校准一次滴定剂?什么是校准Kjeldahl滴定剂的最佳方法?典型地,依赖于所采取以便不与污染物相接触的滴定剂和滴定剂措施的稳定性通常导致降低的浓度。常见保护滴定碘溶液或存储在棕色瓶中等的强光敏性 需要从湿气侵入的保护卡的分子筛或硅胶滴定剂 有些是强碱如氢氧化钠需要防止他们的二氧化碳的吸入。可以认为,校准卡尔费休试剂的最佳校准器是纯水。然而,由于水在称重时不稳定,且其分子量不够大,因此不宜作为参考物质。另外,如何准确地称量足够的水,以确保试剂的适当消耗是另一个难题。作为纯水的替代品,可提供不同浓度(0.1 mg/g(ML)至10 mg/g(ML)的标准溶液。所以我们可以确定一个更合适的注入。另一种选择是已知的确切含水量的固体样品,最常见的是酒石酸钠二水合物。标准物质中含有两种晶体水,其含水量仅为15.66%。使用它的好处是,它是一种稳定的,水基细粉..在100%纯净水的情况下,含水量仅为15.66%,实验人员可以参考合理的样品量,以获得良好的效价。本参考品唯一的缺点是不易溶于甲醇,甲醇是最常用的杯状溶剂..通常,约0.15克的物质溶解在40毫升甲醇中。接下来,如果校准浓度值增加,则表明溶解不完全,需要改变新鲜溶剂。11.分离或不滴定细胞含有膜被用于?DL32和dl39库仑湿度计有两个不同的库仑滴定池,带或不带隔膜。在大多数应用中,我们建议使用不带隔膜的滴定池,因为它不需要维护。由于革命性的突破性设计,无隔膜梅特勒-托利多滴定池可直接测定油品的含水量,无需助溶剂。膜片滴定仪适用于酮中水的测定。它也适用于极高精度的测量。12.我如何判断更换Kessler滴定器干管中的分子筛的时间?解决这个问题的最实用的解决方案是在干燥的上部管道添加一些蓝为指示剂的硅胶。只要二氧化硅的表面已成为粉红色标志,尊重替换或再生的分子筛。当然,增加需要更换分子筛是背景的信号漂移值。
  • 2013年3月1日起实施的食品及相关标准汇总
    2013年3月1日起实施的食品及相关标准汇总,根据国家标准委、工信化部公告筛选整理完成,供参考。 序号 标准号 标准名称 代替标准号 实施日期 1 GB/T 28803-2012 消费品安全风险管理导则   2013-3-1 2 HG/T 4320-2012 无机化工产品 气相色谱分析方法通用规则   2013-3-1 3 HG/T 3519-2012 工业循环冷却水中苯骈三氮唑测定 HG/T 3519-2003 2013-3-1 4 HG/T 3530-2012 工业循环冷却水污垢和腐蚀产物试样的采取和制备 HG/T 3530-2003 2013-3-1 5 HG/T 3539-2012 工业循环冷却水中铁含量的测定 邻菲啰啉分光光度法 HG/T 3539-2003 2013-3-1 6 HG/T 4322-2012 工业循环冷却水污垢和腐蚀产物中硅酸盐的测定   2013-3-1 7 HG/T 4323-2012 循环冷却水中军团菌的检测与计数   2013-3-1 8 HG/T 4325-2012 再生水中钙、镁含量的测定 原子吸收光谱法   2013-3-1 9 HG/T 4326-2012 再生水中镍、铜、锌、镉、铅含量的测定 原子吸收光谱法   2013-3-1 10 HG/T 4327-2012 再生水中总铁含量的测   2013-3-1 11 HG/T 4328-2012 水处理剂 氨基三亚甲基膦酸钠盐   2013-3-1 12 HG/T 4329-2012 水处理剂 乙二胺四亚甲基膦酸五钠   2013-3-1 13 HG/T 4330-2012 水处理剂 二亚乙基三胺五亚甲基膦酸钠盐   2013-3-1 14 HG/T 4331-2012 水处理剂混凝性能的评价方法   2013-3-1 15 HG/T 4367-2012 化学试剂 苯酚   2013-3-1 16 HG/T 3449-2012 化学试剂 甲基红 HG/T 3449-1999 2013-3-1 17 HG/T 3461-2012 化学试剂 一水合α-乳糖(α-乳糖) HG/T 3461-1999 2013-3-1 18 HG/T 3453-2012 化学试剂 一水合草酸铵(草酸铵) HG/T 3453-1999 2013-3-1 19 HG/T 3466-2012 化学试剂 磷酸二氢铵 HG/T 3466-1999 2013-3-1 20 HG/T 3465-2012化学试剂 磷酸氢二铵 HG/T 3465-1999 2013-3-1 21 QB/T 2571-2012 饮料混合机 QB/T 2571-2002 2013-3-1 22 QB/T 4356-2012 黄酒中游离氨基酸的测定 高效液相色谱法   2013-3-1 23 QB/T 4357-2012 营养强化剂 5′-胞苷酸   2013-3-1 24 QB/T 4358-2012 营养强化剂 5′-腺苷酸   2013-3-1
  • 质检总局、标准委批准发布192项国家标准
    5月12日,国家质检总局、国家标准委发布了192项国家标准。该批国家标准中,制定128项,修订64项 强制性标准29项,推荐性标准163项。标准名称、编号及实施日期在《中华人民共和国国家标准公告》(2011年第6号)中向社会发布。序号国家标准编号国  家  标  准  名  称代替标准号实施日期1GB/T 620-2011化学试剂 氢氟酸GB/T 620-19932011-12-012GB/T 623-2011化学试剂 高氯酸GB/T 623-19922011-12-013GB/T 628-2011化学试剂 硼酸GB/T 628-19932011-12-014GB/T 636-2011化学试剂 硝酸钠GB/T 636-19922011-12-015GB/T 641-2011化学试剂 过二硫酸钾(过硫酸钾)GB/T 641-19942011-12-016GB/T 644-2011化学试剂 六氰合铁(Ⅲ)酸钾(铁氰化钾)GB/T 644-19932011-12-017GB/T 645-2011化学试剂 氯酸钾GB/T 645-19942011-12-018GB/T 646-2011化学试剂 氯化钾GB/T 646-19932011-12-019GB/T 647-2011化学试剂 硝酸钾GB/T 647-19932011-12-0110GB/T 648-2011化学试剂 硫氰酸钾GB/T 648-19932011-12-0111GB/T 651-2011化学试剂 碘酸钾GB/T 651-19932011-12-0112GB/T 653-2011化学试剂 硝酸钡GB/T 653-19942011-12-0113GB/T 655-2011化学试剂 过硫酸铵GB/T 655-19942011-12-0114GB/T 657-2011化学试剂 四水合钼酸铵(钼酸铵)GB/T 657-19932011-12-0115GB/T 659-2011化学试剂 硝酸铵GB/T 659-19932011-12-0116GB/T 661-2011化学试剂 六水合硫酸铁(Ⅱ)铵(硫酸亚铁铵)GB/T 661-19922011-12-0117GB/T 664-2011化学试剂 七水合硫酸亚铁(硫酸亚铁)GB/T 664-19932011-12-0118GB/T 666-2011化学试剂 七水合硫酸锌(硫酸锌)GB/T 666-19932011-12-0119GB/T 675-2011化学试剂 碘GB/T 675-19932011-12-0120GB/T 677-2011化学试剂 乙酸酐GB/T 677-19922011-12-0121GB/T 687-2011化学试剂 丙三醇GB/T 687-19942011-12-0122GB/T 688-2011化学试剂 四氯化碳GB/T 688-19922011-12-0123GB/T 1156-2011旋套式注油油杯GB/T 1156-19792011-10-0124GB/T 1271-2011化学试剂 二水合氟化钾(氟化钾)GB/T 1271-19942011-12-0125GB/T 1274-2011化学试剂 磷酸二氢钾GB/T 1274-19932011-12-0126GB/T 1281-2011化学试剂 溴GB/T 1281-19932011-12-0127GB/T 1288-2011化学试剂 四水合酒石酸钾钠(酒石酸钾钠)GB/T 1288-19922011-12-0128GB/T 1479.1-2011金属粉末 松装密度的测定 第1部分:漏斗法GB/T 1479-19842012-02-0129GB/T 1479.2-2011金属粉末 松装密度的测定 第2部分:斯柯特容量计法GB/T 5060-19852012-02-0130GB/T 3683-2011橡胶软管及软管组合件 油基或水基流体适用的钢丝编织增强液压型 规范GB/T 3683.1-20062011-12-0131GB/T 3915-2011工业用苯乙烯GB 3915-19982011-11-0132GB/T 4698.2-2011海绵钛、钛及钛合金化学分析方法 铁量的测定GB/T 4698.2-19962012-02-0133GB/T 4698.7-2011海绵钛、钛及钛合金化学分析方法 氧量、氮量的测定GB/T 4698.7-1996,GB/T 4698.16-19962012-02-0134GB/T 4698.14-2011海绵钛、钛及钛合金化学分析方法 碳量的测定GB/T 4698.14-19962012-02-0135GB/T 4698.15-2011海绵钛、钛及钛合金化学分析方法 氢量的测定GB/T 4698.15-19962012-02-0136GB/T 5158.1-2011金属粉末 还原法测定氧含量 第1部分:总则 2012-02-0137GB/T 5158.2-2011金属粉末 还原法测定氧含量 第2部分:氢还原时的质量损失(氢损)GB/T 5158-19992012-02-0138GB/T 5158.3-2011金属粉末 还原法测定氧含量 第3部分:可被氢还原的氧 2012-02-0139GB/T 5158.4-2011金属粉末 还原法测定氧含量 第4部分:还原-提取法测定总氧量GB/T 5158.4-20012012-02-0140GB 6249-2011核动力厂环境辐射防护规定GB 6249-19862011-09-0141GB/T 6548-2011瓦楞纸板粘合强度的测定GB/T 6548-19982011-09-1542GB 7063-2011汽车护轮板GB 7063-19942012-01-0143GB/T 8005.2-2011铝及铝合金术语 第2部分:化学分析 2012-02-0144GB/T 9082.1-2011无管芯热管GB/T 9082.1-19882011-10-0145GB/T 9082.2-2011有管芯热管GB/T 9082.2-19882011-10-0146GB/T 10597-2011卷扬式启闭机GB/T 10597.1-1989,GB/T 10597.2-19892011-12-0147GB 11291.1-2011工业环境用机器人 安全要求 第1部分:机器人GB 11291-19972011-10-0148GB 11557-2011防止汽车转向机构对驾驶员伤害的规定GB 11557-19982012-01-0149GB 11568-2011汽车罩(盖)锁系统GB 11568-19992012-01-0150GB/T 12688.1-2011工业用苯乙烯试验方法 第1部分:纯度和烃类杂质的测定 气相色谱法GB/T 12688.1-19982011-11-0151GB/T 12688.3-2011工业用苯乙烯试验方法 第3部分:聚合物含量的测定GB/T 12688.3-19902011-11-0152GB/T 12688.4-2011工业用苯乙烯试验方法 第4部分:过氧化物含量的测定 滴定法GB/T 12688.4-19902011-11-0153GB/T 12688.5-2011工业用苯乙烯试验方法 第5部分:总醛含量的测定 滴定法GB/T 12688.5-19902011-11-0154GB/T 12688.8-2011工业用苯乙烯试验方法 第8部分:阻聚剂(对-叔丁基邻苯二酚)含量的测定 分光光度法GB/T 12688.8-19982011-11-0155GB/T 12688.9-2011工业用苯乙烯试验方法 第9部分:微量苯的测定 气相色谱法 2011-11-0156GB/T 13306-2011标牌GB/T 13306-19912011-10-0157GB/T 14405-2011通用桥式起重机GB/T 14405-19932011-12-0158GB/T 14406-2011通用门式起重机GB/T 14406-19932011-12-0159GB 14569.1-2011低、中水平放射性废物固化体性能要求 水泥固化体GB 14569.1-19932011-09-0160GB 14587-2011核电厂放射性液态流出物排放技术要求GB 14587-19932011-09-0161GB/T 14627-2011液压式启闭机GB/T 14627-19932011-12-0162GB/T 15354-2011化学试剂 磷酸三丁酯GB/T 15354-19942011-12-0163GB 15580-2011磷肥工业水污染物排放标准GB 15580-19952011-10-0164GB 17930-2011车用汽油GB 17930-20062011-05-1265GB/T 18623-2011地理标志产品 镇江香醋GB 18623-20022011-11-0166GB/T 18691.1-2011农业灌溉设备 灌溉阀 第1部分:通用要求 2011-10-0167GB/T 18691.2-2011农业灌溉设备 灌溉阀 第2部分:隔离阀 2011-10-0168GB/T 18691.3-2011农业灌溉设备 灌溉阀 第3部分:止回阀GB/T 18691-20022011-10-0169GB/T 18691.4-2011农业灌溉设备 灌溉阀 第4部分:进排气阀GB/T 18693-20022011-10-0170GB/T 18691.5-2011农业灌溉设备 灌溉阀 第5部分:控制阀GB/T 19793-20052011-10-0171GB/T 26124-2011临床化学体外诊断试剂(盒) 2011-11-0172GB/T 26125-2011电子电气产品 六种限用物质(铅、汞、镉、六价铬、多溴联苯和多溴二苯醚)的测定 2011-08-0173GB/T 26378-2011粗梳毛织品 2011-09-1574GB/T 26379-2011纺织品 木浆复合水刺非织造布 2011-09-1575GB/T 26380-2011纺织品 丝绸术语 2011-09-1576GB/T 26381-2011合成纤维丝织坯绸 2011-09-1577GB/T 26382-2011精梳毛织品 2011-09-1578GB/T 26383-2011抗电磁辐射精梳毛织品 2011-09-1579GB/T 26384-2011针织棉服装 2011-09-1580GB/T 26385-2011针织拼接服装 2011-09-1581GB 26386-2011燃香类产品安全通用技术条件 2011-09-1582GB 26387-2011玩具安全 化学及类似活动的实验玩具 2011-09-1583GB/T 26388-2011表面活性剂中二噁烷残留量的测定 气相色谱法 2011-09-1584GB/T 26389-2011衡器产品型号编制方法 2011-09-1585GB/T 26390-2011浸渍纸层压木质地板用表层耐磨纸 2011-09-1586GB/T 26391-2011马桶垫纸 2011-09-1587GB/T 26392-2011慢回弹泡沫 复原时间的测定 2011-09-1588GB/T 26393-2011燃香类产品有害物质测试方法 2011-09-1589GB/T 26394-2011水性薄膜凹印复合油墨 2011-09-1590GB/T 26395-2011水性烟包凹印油墨 2011-09-1591GB/T 26396-2011洗涤用品安全技术规范 2011-09-1592GB/T 26397-2011眼科光学 术语 2011-09-1593GB/T 26398-2011衣料用洗涤剂耗水量与节水性能评估指南 2011-09-1594GB/T 26407-2011初级农产品安全区域化管理体系 要求 2011-09-0195GB/T 26408-2011混凝土搅拌运输车 2012-01-0196GB/T 26409-2011流动式混凝土泵 2011-07-0197GB 26410-2011防爆通风机 2012-01-0198GB 26451-2011稀土工业污染物排放标准 2011-10-0199GB 26452-2011钒工业污染物排放标准 2011-10-01100GB 26453-2011平板玻璃工业大气污染物排放标准 2011-10-01101GB/T 26454-2011造纸用单层成形网 2011-09-15102GB/T 26455-2011造纸用多层成形网 2011-09-15103GB/T 26456-2011造纸用异形丝干燥网 2011-09-15104GB/T 26457-2011造纸用圆丝干燥网 2011-09-15105GB/T 26458-2011脂肪烷基二甲基氧化胺 2011-09-15106GB/T 26459-2011纸、纸板和纸浆 返黄值的测定 2011-09-15107GB/T 26460-2011纸浆 零距抗张强度的测定(干法或湿法) 2011-09-15108GB/T 26461-2011纸张凹版油墨 2011-09-15109GB/T 26462-2011种子发芽纸 2011-09-15110GB/T 26463-2011羰基合成脂肪醇 2011-09-15111GB/T 26464-2011造纸无机颜料亮度(白度)的测定 2011-09-15112GB 26465-2011消防电梯制造与安装安全规范 2012-04-01113GB/T 26466-2011固定式高压储氢用钢带错绕式容器 2011-12-01114GB/T 26467-2011承压设备带压密封技术规范 2011-12-01115GB/T 26468-2011承压设备带压密封夹具设计规范 2011-12-01116GB 26469-2011架桥机安全规程 2012-04-01117GB/T 26470-2011架桥机通用技术条件 2012-04-01118GB/T 26471-2011塔式起重机 安装与拆卸规则 2011-12-01119GB/T 26472-2011流动式起重机 卷筒和滑轮尺寸 2011-12-01120GB/T 26473-2011起重机 随车起重机安全要求 2011-12-01121GB/T 26474-2011集装箱正面吊运起重机 技术条件 2011-12-01122GB/T 26475-2011桥式抓斗卸船机 2011-12-01123GB/T 26476-2011机械式停车设备 术语 2011-12-01124GB/T 26477.1-2011起重机 车轮和相关小车承轨结构的设计计算 第1部分:总则 2011-12-01125GB/T 26478-2011氨用截止阀和升降式止回阀 2011-10-01126GB/T 26479-2011弹性密封部分回转阀门 耐火试验 2011-10-01127GB/T 26480-2011阀门的检验和试验 2011-10-01128GB/T 26481-2011阀门的逸散性试验 2011-10-01129GB/T 26482-2011止回阀 耐火试验 2011-10-01130GB 26483-2011机械压力机 噪声限值 2012-01-01131GB 26484-2011液压机 噪声限值 2012-01-01132GB 26485-2011开卷矫平剪切生产线 安全要求 2012-01-01133GB/T 26486-2011数控开卷矫平剪切生产线 2012-01-01134GB/T 26487-2011壳体钣金成型设备 通用技术条件 2011-10-01135GB 26488-2011镁合金压铸安全生产规范 2012-05-01136GB/T 26489-2011纳米材料超双亲性能检测方法 2012-02-01137GB/T 26490-2011纳米材料超双疏性能检测方法 2012-02-01138GB/T 26491-20115XXX系铝合金晶间腐蚀试验方法 质量损失法 2012-02-01139GB/T 26492.1-2011变形铝及铝合金铸锭及加工产品缺陷 第1部分:铸锭缺陷 2012-02-01140GB/T 26492.2-2011变形铝及铝合金铸锭及加工产品缺陷 第2部分:铸轧带材缺陷 2012-02-01141GB/T 26492.3-2011变形铝及铝合金铸锭及加工产品缺陷 第3部分:板、带缺陷 2012-02-01142GB/T 26492.4-2011变形铝及铝合金铸锭及加工产品缺陷 第4部分:铝箔缺陷 2012-02-01143GB/T 26492.5-2011, , , , DIV变形铝及铝合金铸锭及加工产品缺陷 第5部分:管材、棒材、型材、线材缺陷 2012-02-01144GB/T 26493-2011电池废料贮运规范 2012-02-01145GB/T 26494-2011轨道列车车辆结构用铝合金挤压型材 2012-02-01146GB/T 26495-2011镁合金压铸转向盘骨架坯料 2012-02-01147GB/T 26496-2011钨及钨合金废料 2012-02-01148GB/T 26497-2011电子天平 2011-10-01149GB/T 26498-2011工业自动化系统与集成 物理设备控制 尺寸测量接口标准(DMIS) 2011-10-01150GB/T 26499.1-2011机械 科学数据 第1部分:分级分类方法 2011-10-01151GB/T 26499.2-2011机械 科学数据 第2部分:数据元目录 2011-10-01152GB/T 26499.3-2011机械 科学数据 第3部分:元数据 2011-10-01153GB/T 26499.4-2011机械 科学数据 第4部分:交换格式 2011-10-01154GB/T 26500-2011氟塑料衬里钢管、管件通用技术要求 2011-10-01155GB/T 26501-2011氟塑料衬里压力容器 通用技术条件 2011-10-01156GB/T 26502.1-2011传动带胶片裁断拼接机 2011-10-01157GB/T 26502.2-2011传动带成型机 2011-10-01158GB/T 26502.3-2011多楔带磨削机 2011-10-01159GB/T 26502.4-2011同步带磨削机 2011-10-01160GB 26503-2011快速成形机床 安全防护技术要求 2012-04-01161GB 26504-2011移动式道路施工机械 通用安全要求 2012-04-01162GB 26505-2011移动式道路施工机械 摊铺机安全要求 2012-04-01163GB/T 26506-2011悬臂筛网振动筛 2011-10-01164GB/T 26507-2011石油天然气工业 钻井和采油设备 地面油气混输泵 2011-10-01165GB 26508-2011园林机械 坐骑式草坪割草机 安全技术要求和试验方法 2012-04-01166GB 26509-2011园林机械 以汽(柴)油机为动力的步进式草坪割草机 安全技术要求和试验方法 2012-04-01167GB/T 26510-2011防水用塑性体改性沥青 2011-09-01168GB 26511-2011商用车前下部防护要求 2013-01-01169GB 26512-2011商用车驾驶室乘员保护 2012-01-01170GB/T 26513-2011润唇膏 2011-12-01171GB/T 26514-2011互叶白千层(精)油,松油烯-4-醇型[茶树(精)油] 2011-11-01172GB/T 26515.1-2011精油 气相色谱图像通用指南 第1部分:标准中气相色谱图像的建立 2011-11-01173GB/T 26515.2-2011精油 气相色谱图像通用指南 第2部分:精油样品气相色谱图像的利用 2011-11-01174GB/T 26516-2011按摩精油 2011-10-01175GB/T 26517-2011化妆品中二十四种防腐剂的测定 高效液相色谱法 2011-10-01176GB/T 26518-2011高分子增强复合防水片材 2011-12-01177GB/T 26519.2-2011工业过硫酸盐 第2部分:工业过硫酸钾 2011-12-01178GB/T 26520-2011工业氯化钙 2011-12-01179GB/T 26521-2011工业碳酸镍 2011-12-01180GB/T 26522-2011精制氯化镍 2011-12-01181GB/T 26523-2011精制硫酸钴 2011-12-01182GB/T 26524-2011精制硫酸镍 2011-12-01183GB/T 26525-2011精制氯化钴 2011-12-01184GB/T 26526-2011热塑性弹性体 低烟无卤阻燃材料规范 2011-12-01185GB/T 26527-2011有机硅消泡剂 2011-12-01186GB/T 26528-2011防水用弹性体(SBS)改性沥青 2011-09-01187GB 26529-2011宗教活动场所和旅游场所燃香安全规范 2011-10-01188GB/T 26530-2011地理标志产品 崂山绿茶 2011-11-01189GB/T 26531-2011地理标志产品 永春老醋 2011-11-01190GB/T 26532-2011地理标志产品 慈溪杨梅 2011-11-01191GB/T 26533-2011俄歇电子能谱分析方法通则 2011-12-01192GB/T 26572-2011电子电气产品中限用物质的限量要求 2011-08-01   注: 1. GB 6249-2011《核动力厂环境辐射防护规定》、GB 14569.1-2011《低、中水平放射性废物固化体性能要求水泥固化体》、GB 14587-2011《核电厂放射性液态流出物排放技术要求》、GB 15580-2011《磷肥工业水污染物排放标准》、GB 26451-2011《稀土工业污染物排放标准》、GB 26452-2011《钒工业污染物排放标准》、GB 26453-2011《平板玻璃工业大气污染物排放标准》等7项国家标准由环境保护部、国家质量监督检验检疫总局发布。  2. 更正:2011年第2号《中华人民共和国国家标准公告》中,第512项GB/T 26326.2-2010《离线编程式机器人柔性加工系统第2部分:砂带磨削加工系统》的标准编号调整为:GB/T 26153.2-2010。
  • 超实用!植物源性食品标准汇总及常用仪器盘点
    近年来,动物流行疾病(如禽流感、猪流感)频发,与营养有关的疾病、胃肠炎、食物中毒、抗生素类药物滥用等公共卫生问题受到了越来越多的关注。并且随着消费者消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,植物源性食品营养已成为饮食界讨论的焦点。从营养角度来看,植物性食品具有优良的营养健康效能,其中植物蛋白能够满足人对氨基酸、蛋白质的营养需求,尤其大豆蛋白是优质蛋白,完全可以满足人体对蛋白质营养的需求,植物蛋白还具有低饱和脂肪酸、零胆固醇、无抗生素等特点。因此小编汇总整理出植物源性食品标准及常用仪器盘点,供大家参考。国家标准标准名称实施时间仪器方法(点击可查看仪器专场)GB 23200.38-2016 食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.36-2016 食品安全国家标准 植物源食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.35-2016 食品安全国家标准 植物源性食品中取代脲类农药残留量的测定 液相色谱-质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.120-2021 食品安全国家标准 植物源性食品中甜菜安残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.119-2021 食品安全国家标准 植物源性食品中沙蚕毒素类农药残留量的测定 气相色谱法2021-09-03气相色谱法GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定 高效液相色谱法2020-02-15高效液相色谱法GB 23200.116-2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法2020-02-15气相色谱法GB 23200.114-2018 食品安全国家标准 植物源性食品中灭瘟素残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱联用法GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法2018-12-21气相色谱-质谱联用法GB 23200.112-2018 食品安全国家标准 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法2018-12-21液相色谱-柱后衍生法GB 23200.111-2018 食品安全国家标准 植物源性食品中唑嘧磺草胺残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.109-2018 食品安全国家标准 植物源性食品中二氯吡啶酸残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.108-2018 食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB/T 40348-2021 植物源产品中辣椒素类物质的测定 液相色谱-质谱/质谱法2021-08-20液相色谱-质谱/质谱法GB/T 40267-2021 植物源产品中左旋多巴的测定 高效液相色谱法2021-12-01高效液相色谱法GB/T 40176-2021 植物源性产品中木二糖的测定 亲水保留色谱法2021-12-01亲水保留色谱法GB/T 22288-2008 植物源产品中三聚氰胺、三聚氰酸一酰胺、三聚氰酸二酰胺和三聚氰酸的测定 气相色谱-质谱法2008-12-01气相色谱-串联质谱法农业标准标准名称实施时间仪器方法NY/T 2640-2014 植物源性食品中花青素的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 2641-2014 植物源性食品中白藜芦醇和白藜芦醇苷的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 3300-2018 植物源性油料油脂中甘油三酯的测定液相色谱-串联质谱法2018-12-01液相色谱-质谱/质谱法NY/T 3565-2020 植物源食品中有机锡残留量的检测方法 气相色谱-质谱法2020-07-01气相色谱-串联质谱法NY/T 3948-2021 植物源农产品中叶黄素、玉米黄质、β-隐黄质的测定高效液相色谱法2022-05-01高效液相色谱法NY/T 3950-2021 植物源性食品中10种黄酮类化合物的测定 高效液相色谱-串联质谱法2022-05-01液相色谱-质谱/质谱法NY/T 3945-2021 植物源性食品中游离态甾醇、结合态甾醇及总甾醇的测定 气相色谱串联质谱法2022-05-01气相色谱-串联质谱法NY/T 3949-2021 植物源性食品中酚酸类化合物的测定 高效液相色谱-串联质谱法2022-05-01高效液相色谱-质谱法进出口行业标准标准名称实施时间仪器方法SN/T 2233-2020 出口植物源性食品中甲氰菊酯残留量的测定2021-07-01气相色谱-串联质谱法气相色谱法SN/T 5171-2019 出口植物源性食品中去甲乌药碱的测定 液相色谱-质谱/质谱法2020-05-01液相色谱-质谱/质谱法SN/T 0491-2019 出口植物源食品中苯氟磺胺残留量检测方法2020-05-01气相色谱法气相色谱-串联质谱法SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-01气相色谱-串联质谱法SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 4260-2015 出口植物源食品中粗多糖的测定 苯酚-硫酸法2016-01-01紫外分光光度计SN/T 0293-2014 出口植物源性食品中百草枯和敌草快残留量的测定 液相色谱-质谱/质谱法2014-08-01液相色谱-质谱/质谱法SN/T 0217-2014 出口植物源性食品中多种菊酯残留量的检测方法 气相色谱-质谱法2014-08-01气相色谱-串联质谱法SN/T 5221-2019 出口植物源食品中氯虫苯甲酰胺残留量的测定2020-07-01液相色谱-质谱/质谱法液相色谱法SN/T 1908-2007 泡菜等植物源性食品中寄生虫卵的分离及鉴定规程2007-12-01荧光PCR仪SN/T 3628-2013 出口植物源食品中二硝基苯胺类除草剂残留量测定 气相色谱-质谱/质谱法2014-03-01气相色谱-串联质谱法SN/T 0603-2013 出口植物源食品中四溴菊酯残留量检验方法 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 3699-2013 出口植物源食品中4种噻唑类杀菌剂残留量的测定 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 0151-2016 出口植物源食品中乙硫磷残留量的测定2017-03-01气相色谱法气相色谱-串联质谱法SN/T 0337-2019 出口植物源性食品中克百威及其代谢物残留量的测定 液相色谱-质谱/质谱法2020-07-01液相色谱-质谱/质谱法SN/T 0602-2016 出口植物源食品中苄草唑残留量测定方法 液相色谱-质谱/质谱法2017-03-01液相色谱-质谱/质谱法SN/T 0693-2019 出口植物源性食品中烯虫酯残留量的测定2020-07-01气相色谱-串联质谱法液相色谱法SN/T 0217.2-2017 出口植物源性食品中多种拟除虫菊酯残留量的测定 气相色谱-串联质谱法2018-06-01气相色谱-串联质谱法SN/T 5072-2018 出口植物源性食品中甲磺草胺残留量的测定 液相色谱-质谱/质谱法2018-10-01液相色谱-质谱/质谱法SN/T 0695-2018 出口植物源食品中嗪氨灵残留量的测定2018-10-01气相色谱法液相色谱-质谱/质谱法物源性食品检测标准主要集中在农药残留和活性物质检测中,GB 23200系类标准覆盖的农药种类多,数量大,涉及的基质范围广,为农药残留的风险监控提供了高效可靠的法规方法。在农业标准中更关注营养物质的检测,标准中对白藜芦醇和白藜芦醇苷、黄酮类物质、花青素、游离态甾醇等活性物质都要相应的检测方法规定。在检测方法中多用到气相色谱法、气相色谱-串联质谱法、高效液相色谱法、液相色谱-质谱/质谱法等。今年下半年仍有许多植物源性食品标准即将实施:标准名称实施时间仪器方法SN/T 5522.10-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第10部分:豌豆淀粉2023-12-01荧光PCR仪SN/T 5522.1-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第1部分:红薯淀粉2023-12-01荧光PCR仪SN/T 5522.2-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第2部分:木薯淀粉2023-12-01荧光PCR仪SN/T 5522.3-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第3部分:马铃薯淀粉2023-12-01荧光PCR仪SN/T 5522.4-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第4部分:藕淀粉2023-12-01荧光PCR仪SN/T 5522.5-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第5部分:葛根淀粉2023-12-01荧光PCR仪SN/T 5522.6-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第6部分:山药淀粉2023-12-01荧光PCR仪SN/T 5522.7-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第7部分:玉米淀粉2023-12-01荧光PCR仪SN/T 5522.8-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第8部分:小麦淀粉2023-12-01荧光PCR仪SN/T 5522.9-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第9部分:绿豆淀粉2023-12-01荧光PCR仪NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法2023-08-01高效液相色谱法NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法2023-08-01分光光度法NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法2023-08-01高效液相色谱法植物源性食品未实施标准.rar植物源性食品农业标准.rar
  • 众科创谱牵头起草的水质快检标准送审稿审查会圆满召开
    我司牵头起草的《水中总磷快速测定仪》《氨氮快速测定仪》 两项团体标准送审稿审查会圆满召开 中国仪器仪表行业协会团体标准《水中总磷快速测定仪》和《氨氮快速测定仪》送审稿审查会于2021年5月8日在天津众科创谱科技有限公司圆满召开。该两项团体标准由中国仪器仪表行业协会归口管理,天津众科创谱科技有限公司提出并牵头起草。 本次会议由中国仪器仪表行业协会王勇主持,审查会专家组组长由中国仪器仪表行业协会分析仪器分会秘书长曾伟担任,专家组由中国仪器仪表行业协会、中国环境监测总站、天津市生态环境监测中心、中国计量科学研究院、中国海关科学技术研究中心、北京市疾病预防控制中心、北京理化分析测试中心等各系统的7名专家组成,标准起草组成员出席了该次会议。 审查组分别听取了标准起草组关于两项团体标准编制情况的汇报,审查专家逐句逐条对两个标准进行了认真审查和讨论,标准起草组认真回答了审查专家提出的问题。最后标准审查专家组一致通过两项标准的审查,标准所规定的性能参数和技术要求先进合理,试验方法切实可行,标准的实施有利于规范总磷、氨氮快速测定仪的产品质量,提升饮用水、地表水、地下水、生活污水和工业废水中总磷和氨氮的检测效率,引领行业的健康有序高质量发展。会后,与会专家在公司总经理的陪同下,就公司发展历程、企业文化、产品服务以及未来的战略部署进行全面深入的参观考察,对水质快检行业的发展进行了深入的研讨,并给予了高度的评价。希望作为水质快检行业的龙头企业要担负行业发展的使命,通过标准制定和实施引领和促进行业的发展。
  • 上海甄准生物进口品牌贵金属催化剂现货促销了!
    上海甄准生物进口品牌贵金属催化剂现货促销了! 上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。 自公司成立以来,一直以"客户满意"为公司核心价值观,产品主要应用于制药、生物、食品、环境、材料和农业等领域。凭借世界一流的产品和服务,甄准生物与广大客户建立了长期稳定的战略合作关系,被众多企业和科研机构认定为&ldquo 指定供应商&rdquo ,得到了政府部门的关怀和有力支持。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。 甄准生物集后发优势与众多国际一流品牌合作,并陆续成为他们在中国区的总代理或者一级代理,现合作的优质供应商有:美国AccuStandard、APSC、MPBio、Sigma-Aldrich、NIST,爱尔兰Reagecon、Megazyme,英国LGC、Ultra,Iduron、日本和光(WAKO)、Shodex,德国Dr.E、PSS 等。同时,还提供美国USP标准物质、欧洲药典标准物质EDQM、加拿大TRC标准物质等。 现货产品: 品名 Item CAS # Purity 规格 产地 (1,5-环辛二烯)氯铑(I)二聚体 Chloro(1,5-cyclooctadiene)rhodium(I), dimer 12092-47-6 98% 500mg USA氯化铑(III) 水合物 Rhodium(III) chloride hydrate 20765-98-4 38% Rh 1g GB窗体顶端 窗体底端 三氯化钌 水合物 Ruthenium(III) chloride hydrate 14898-67-0 Reagent Plus 5g USA 1,3,5-三氮杂-7-磷杂金刚烷 1,3,5-Triaza-7-phosphaadamantane 53597-69-6 97% 2g USA 三苯基膦氯化铑 Wilkinson' s catalyst14694-95-2 Metal Content 11.10% 5g Germany 更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 麦克应用系列之粒度粒形—颗粒分析的准确度对生产过程和最终产品的影响(20190628))
    颗粒分析的准确度对生产过程和最终产品的影响图像分析系统可以测量颗粒大小、形状和浓度,并且允许用户对特定的颗粒设置测量参数作者:PETER BOUZA 美国麦克仪器粒度市场发展部经理颗粒分析在医药行业中,无论是生产效率或生产过程,都起着关键性的作用。粒径可以影响辅料或活性药物成份(API)的溶解度,并也可能会影响到药物制剂。各种已有的颗粒分析技术完全能满足今天的药品市场所需的颗粒粒度测量要求。然而,在某些情况下,简单的控制颗粒大小并不能完全的控制最终产品。对监测和控制颗粒的形状尤为重要。近年来,在制药行业的研究和质量控制中,了解颗粒形状的信息促进了图像分析的发展。测量颗粒形状大多数粒度分析方法在分析颗粒时,都把颗粒假定为球形,输出的报告也为“相当于球形直径”的结果。这种假设在大多数情况下是不能接受的。例如,样品在流动生产过程中,单独监测颗粒大小是不准确的。有些粒子可能是球形,一些可能是矩形,球形颗粒比长方形颗粒流动性更好些—需要更少的能量。为确保矩形颗粒均匀流动,则需要更多的能量。颗粒形状影响流动性,颗粒与其他样品组成成分正确地混合能力将影响最终产品的结果。图1:两种相当于大约63微米球形直径的粒子。然而,两者在形状和作用上有明显的区别。 图1表示的是一个真实的样品例子。大多数用来测量颗粒粒度的方法都认为样品的颗粒形状类似于球形。该颗粒粒径是“相当于球形”大约63微米的直径,这是由接近于具有相同面积的球体颗粒计算得到的。虽然报告粒径结果认为得到了类似的统计直方图,但这些颗粒实际是不一样的。在生产环境中,形状的不规则性巨大地影响流动性,形状边缘也会影响与其他颗粒的粘接能力,暴露的表面也会影响所需的覆盖量。如果这些和其他与形状相关的因素在分析过程中是很重要的因素,那么使用单一的粒度分析仪在分析过程中就可能无法捕捉到必要的参数。图像分析系统的其他功能除了能够测量颗粒大小和形状,图像分析系统也可以测量浓度。这些系统可以分析被捕获的颗粒,同时,他们也可以对颗粒计数,提供一个颗粒浓度参数。此外,如果样品中含有大量各种形状的颗粒,大多数图像分析系统都可以在软件-计算形状参数的基础上定出一个分析样品的数量。在图2上的直方图中显示的是两个完全不相同的样品峰。图像分析系统可以让用户选择性的查看创建每个直方图 峰值的实际颗粒的分析结果。图2:大多数图像分析系统使用户能够根据具体形状参数有选择性地查看颗粒不同部分的统计直方图。 当然,大多数图像分析系统在分析颗粒图像时总是有益的。而且,除了可以统计颗粒分析结果外,图像分析系统还可以采集每一个被分析颗粒的图像。很多时候,用户可以得到样品粒度的“指纹”统计直方图,但无法确定某些分布颗粒的类型。用户可根据需要设置代表性颗粒、所有颗粒或者只有那些可能影响部分直方图的某些颗粒的统计范围。例如,用户可以设定一系列的圆来查看样品中的球形颗粒。用户可设定一个完美的圆1,选择圆幅度接近1,以查看所有球形颗粒。更多的实际例子,如使用多个形状参数的图像分析系统直接测量颗粒表面粗糙度或平滑度,使用户能够监测相关的颗粒形状。例如,设置一个程序,随着粒径的增大,颗粒变得更光滑。只有图像分析系统才能实现自动化的测量和相关系数与统计值的结合。下列案例研究显示了在实际药物辅料中使用动态图像分析仪在自动图像分析里的一些优点。正如这个研究表明的一样,用户利用形状参数,可以更好地控制和监测样品颗粒,从而得到更有效的结果和更有效的成本控制。图3:外形表面粗糙度的形状参数。备注:表面粗糙度影响形状因素,而不是大小或圆形度。案例研究:八个辅料表面粗糙度的对比在制药行业中,辅料的选择是基于所起的不同作用来选择的。除了作为API的非活性载体外,他们在生产中还起了重要的作用。有些辅料的选择是根据他们作为粘结剂、填料和控制API溶解速度的媒介来选择的。然而,在保护易损坏的涂料和润滑油中,确保他们的流动性也是很重要的。无论如何,都必须监控辅料的表面粗糙度。形状特征,特别是形状因素所界定的不规则度都决定了表面粗糙度。颗粒形状分析仪能监测和控制颗粒在包装和制剂的过程中是如何与API相互作用的,以及在通过消化道时的吸收情况。用在本案例研究的仪器-Particle Insight(Particulate Systems)-可以分析在水相或者有机溶剂中的悬浮颗粒。在这个案例研究中,Particle Insight的尺寸和形状参数的9/28被选择来分析八个辅料。在这一案例研究只有一个参数—形状因素被讨论。形状因素可根据颗粒的面积和投影的周长来计算。参数是一个介于0和1之间的数字,一个平滑的圆圈形状因素等于1。类似于圆形度的情况,一般颗粒形状因素受非圆程度的影响。然而,不规则的周长,也就是表面粗糙度,也影响形状因素。参阅图3可看出测试不同形状的颗粒的形状因素是不同的。如图所示,颗粒表面粗糙度也可改变颗粒的形状因素。分析结果本研究是建立在60秒至4分钟之间采集多达10,000个颗粒的分析结果基础之上的,并与被使用的每个样品的分散度有关。图4:8个辅料中的每个辅料所对应的形状因素图4显示了这八个被分析辅料中任何一个被恢复的形状因素(表面粗糙度的测量)。该表按递减的方式排列形状因素。请注意,形状因素越靠近1,表面越平滑。表5、6和7显示的是Particle Insight为一些辅料自动拍摄的照片。这些照片揭示:平均形状因素为0.843的硬脂酸钠比平均形状因素为0.655的乳糖水合物有更光滑的表面。作为一个实际样品,硬脂酸钠在生产、成型的过程中比乳糖水合物更容易流动。图5:硬脂酸钠图6:硬脂酸图6:乳糖水合物结论在选择辅料时,对颗粒形状的测量在生产过程中是非常重要的。像润滑油一样,具有低表面粗糙度的或者高形状因素的辅料可以促进粉末的流动和压片的形成。在生产过程中,表面粗糙的辅料填充剂会影响药物的粘结和溶解,并且影响API在消化道里释放的位置。动态图像分析仪的出现实现了前所未有的自动化信息的传递。在这种情况下,Particle Insight根据表面粗糙度来区分辅料的种类,并且在生产过程中,表面粗糙度也是颗粒的一个重要特征。参考1.Tinke,A.P.,Govoreanu,R.,Vanhoutte,K.“ParticleSizeandShapeCharacterizationofNanoandSubmicronLiquidDispersions,”AmericanPharmaceuticalReview,Sept/Oct2006作者简介:Peter Bouza 美国麦克仪器公司粒度市场发展部经理。他主要负责麦克公司的颗粒粒度、计数和形状分析仪器的开发。Peter Bouza于2007年加入麦克公司,并且在颗粒表征领域拥有了超过16年的经验。颗粒系统是麦克公司为创新性的OEM颗粒表征产品技术推出的一个新的品牌。Particle Insight全自动粒形分析仪Particle Insight,采用动态光散射技术,内置多达30种的颗粒分析模型,可提供颗粒粒度、粒形、平整度、圆度、长径比等参数,能够在最极短的时间内,获取颗粒粒度和粒形信息。粒径分析范围:1-800μm同时进行粒度和粒形分析内置多达30种的不同颗粒形状参数实时分析水系或有机系样品,并实时监测结果完全符合ASTM D4438-85(2007)、ISO 9276-6:2008、ISO 13322-2:2006等国际标准本篇文章若没得到麦克默瑞提克(上海)仪器有限公司同意,禁止转载,违者必究!
  • 火锅底料添加剂标准或今年起草
    火锅底料最近成为市民关注的新焦点,随着一些媒体报道“火锅底料大量添加化学添加剂”后,网络上掀起一片热议。虽然中国烹饪协会火锅专业委员会于上月底公布中国火锅企业食品安全状况,称占全国市场七成份额的100家知名火锅企业底料检查100%合格,但相当一部分消费者仍然对火锅底料持不信任态度。近日,广东省食品学会食品专家范瑞副教授指出,其实火锅底料内添加剂有没有超量使用,消费者很容易通过感官辨别。   现状 在标准内使用添加剂属合法   范瑞指出,火锅底料中会使用到添加剂和调味料。现在网络上都在热炒火锅底料滥用“添加剂”,这一说法是不规范的。   目前火锅底料中出现的有3类物质:调味料(包括复合调味料)、食品添加剂和非食用物质。   其中,调味料包括一些天然的香辛料,例如姜、蒜、胡椒,也包括从天然香辛料中提取的成分,例如辣椒油、姜油,也包括味精等。还有是一些专业生产的复合调味料,例如猪肉膏、牛肉膏、鸡粉之类。   而食品添加剂,包括香精、鲜味剂、防腐剂等,这部分食品添加剂是允许使用的,是受到GB2760(食品添加剂使用卫生标准)的限制和要求的。因此,火锅底料中即使出现10种以上的食品添加剂是完全正常的,关键是其使用是否符合GB2760的要求。目前食品添加剂的使用主要问题是超量和超范围使用。   至于“非食用物质”,罂粟壳、苏丹红,均属于此类。   问题 火锅底料配方目前仍无标准可循   而辣椒素是目前火锅底料中广泛使用的一种提供辛辣感材料,主要是从印度种植的一种辣椒中提取而来,由于其性质过于强烈,其使用必须受到限制,但是目前存在的问题是还没有相应的管理依据。   火锅底料配方目前仍无标准可循。记者了解到,2011年商务部和卫生部正在征询的食品安全标准征集课题,有关部门已报送拟计划起草《火锅底料和调味品标准》,正在等待批准。   专家 市民外出吃火锅应去正规餐馆   专家提醒市民,外出吃火锅时,应尽量选择卫生环境好,经营规范,有一定经营规模,有信誉保障的餐馆。用餐时可通过感官鉴定火锅底料:非常辣、颜色非常鲜艳、非常红、非常香的火锅,其中往往香精添加量较大,对于此类火锅和火锅底料,尽量不吃。据悉,火锅底料传统的做法是用鸡、肉、骨、油脂打底,配合一些香辛料,但是这种方法成本高,并且其鲜味、辣味等指标不突出。目前生产火锅底料主要是用一些油脂、肉粉、骨粉打底,配合香辛料、香精加工而成。因此消费者不要长期大量食用火锅底料。   若购买火锅底料用于家庭消费,建议去正规的超市、商店购买。购买时要看产品的外观、包装是否完整,包装上的制造和经营企业的名称、生产地址、生产日期、净含量、配料表、QS标志、产品标准号等7项内容必须标示完整。这其中,QS是“全国工业生产许可证”的资格,QS后面有12位数字,一个QS号码就对应一个具体的生产企业,因此通过QS号码的查询就可以获得产品和生产企业的基本信息,消费者可以登陆国家质量监督局的官方网站查询真伪。   相关报道   肉丸比肉便宜?小心添加剂过量!   肉丸是火锅配料里的重要角色,然而爽脆、香喷喷的肉丸里,也可能存在用添加剂来冒充肉丸口感和香味的行为。餐饮界资深人士伍先生向记者透露,目前市面普遍存在肉丸、腊肠比猪肉便宜的现状,要做到肉的深加工食品比原料还便宜,当然是添加各种替代品。   价格倒挂不正常   伍先生表示,以潮州牛肉丸为例,牛肉现在要二十几元一斤,如果以传统方法制造牛肉丸,应该卖到三十元以上才是正常的价格。而现在火锅店里的牛肉丸拿货价普遍在十元左右,价格倒挂的背后,就是用添加剂来节省成本。广东省食品学会食品专家范瑞副教授在接受记者采访时指出,肉丸的传统做法,主要材料是肉(猪肉、牛肉、羊肉、鱼肉),肉的肥瘦比例依据不同风味有不同,一般来说“肥三瘦七”。肉丸的配料主要是鸡蛋、淀粉、葱、姜、香油、味精、盐及其他各种风味调料,鸡蛋的作用是调节控制肉丸的水分,尤其是在瘦肉较多的肉丸中可以提高肉丸的柔软度和口感,淀粉的作用主要是提高肉丸的保水性,改善肉丸的口感,使肉丸不会太硬,并有合适的咬口感。其他配料的作用都是调味的作用。目前肉丸已有工业化生产的方法,一般是采用速冻食品的形式,主要的用途是火锅搭配的食品。   出于降低成本的要求,很多肉丸的生产厂家都大量使用替代材料来减少肉的含量。肉的减少会导致肉丸出现两个问题,一是组织上会比较松散,缺少肉的弹性,二是风味上缺少肉的风味和香气。目前替代肉的材料主要是大豆(4513,-24.00,-0.53%)蛋白和淀粉,淀粉使用过多在口感上很容易品尝出来,而使用大豆蛋白,在组织和口感上比较接近肉,但是没有肉所特有、完整的风味,同时其口感上也不能完全达到肉的要求。在潮式牛肉丸等特别要求爽脆度的产品中,传统做法的爽脆度是依靠新鲜的牛肉、减少水(基本不加水)、反复搅拌的特殊工艺来实现,而对于肉很少的肉丸,基本上是达不到这种爽脆的要求。   为爽脆添加违规添加剂   有一些生产者在产品中使用卡拉胶、魔芋胶等海藻胶,这些胶体属于食品添加剂,对于提高肉丸的脆度有一定帮助,但是不能完全替代肉的作用。于是一部分肉丸的生产者为了追求肉的口感和弹性,违规添加硼砂。硼砂可以使肉馅膨胀,产生好的弹性,并且使肉馅的颜色鲜亮。近年来有很多关于沙县小吃中云吞和饺肉中使用硼砂的报道。   范瑞指出,硼砂为硼酸钠的俗称,为白色或无色结晶性粉末,因为毒性较高,世界各国多禁用为食品添加物。硼砂对人体健康的危害性很大,连续摄取会在体内蓄积,妨害消化道的酶的作用,其急性中毒症状为呕吐、腹泻、红斑、循环系统障碍、休克、昏迷等所谓硼酸症。人体若摄入过多的硼,会引发多脏器的蓄积性中毒。   由于减少肉的使用,必然导致肉的香气和口感不足,部分生产者为了补足香气,就会添加一些增香味剂(鲜香膏),这些增香味剂的主要成分是各种肉味香精和味精等鲜味剂。肉味香精在使用上是合法的,但是出于假冒目的而使用香精则是不符合法规的。
  • 工业和信息化部关于111项行业标准、9项行业标准外文版及2项行业标准修改单报批公示
    根据行业标准制修订计划,相关标准化技术组织已完成《橡胶家用手套》等55项化工行业标准、《金刚石线母线钢丝》等18项黑色冶金行业标准、《电喷枪》等38项机械行业标准的制修订工作,《海藻酸类肥料》等9项化工行业标准外文版的编制工作,《肥料级磷酸二氢钾》1项化工行业标准及《焦炭孔隙构造及原料煤岩相显微分析方法》1项黑色冶金行业标准的修改工作。在以上标准、标准外文版及标准修改单发布之前,为进一步听取社会各界意见,现予以公示,截止日期2023年5月19日。以上标准报批稿请登录“标准网”(www.bzw.com.cn)“行业标准报批公示”栏目阅览,并反馈意见。公示时间:2023年4月19日-2023年5月19日附件:1.111项行业标准名称及主要内容等一览表2.9项行业标准外文版名称及主要内容等一览表3.1项化工行业标准修改单4.1项黑色冶金行业标准修改单工业和信息化部科技司2023年4月19日附件1111项行业标准名称及主要内容等一览表序号标准编号标准名称标准主要内容代替标准采标情况化工行业1 HG/T 2888-2023橡胶家用手套 本文件规定了橡胶家用手套的要求、试验方法、检验规则以及标识、包装、运输和贮存。手套的安全和正确使用方法不在本文件范围之内。 本文件适用于以天然橡胶胶乳或丁腈橡胶胶乳、天然橡胶胶乳与丁腈橡胶胶乳并用为主体材料制成的可作为家用的绒里及光里手套。HG/T 2888-20102 HG/T 2821.1-2023V带和多楔带用浸胶聚酯线绳 第1部分:硬线绳 本文件规定了V带和多楔带用浸胶聚酯硬线绳的产品分类、技术要求、试验方法与试验环境、检验规则以及标志、包装、贮存和运输。 本文件适用于V带和多楔带用浸胶聚酯硬线绳的品质鉴定和验收,其他橡胶制品用浸胶聚酯硬线绳也可以参照执行。HG/T 2821.1-20133 HG/T 2737-2023非金属化工设备 丙烯腈-丁二烯-苯乙烯、聚氯乙烯、均聚聚丙烯、聚偏氟乙烯和玻璃纤维增强聚丙烯球阀 本文件规定了丙烯腈-丁二烯-苯乙烯(ABS)、聚氯乙烯(PVC-U、PVC-C)、均聚聚丙烯(PPH)、聚偏氟乙烯(PVDF)和玻璃纤维增强聚丙烯(FRPP)球阀的材料、设计、零部件设计、制造和装配、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于公称压力小于或等于1.6MPa,使用温度:ABS为-40℃~70℃、 PVC-U为-5℃~60℃、PVC-C为-5℃~95℃、PPH为-10℃~90℃、PVDF为-40℃~120℃、FRPP为-14℃~100℃,公称通径大于或等于DN15mm至DN300mm的法兰连接和对接连接式球阀。HG/T 2737-20044 HG/T 2643-2023非金属化工设备 丙烯腈-丁二烯-苯乙烯、聚氯乙烯、均聚聚丙烯、聚偏氟乙烯和玻璃纤维增强聚丙烯隔膜阀 本文件规定了丙烯腈-丁二烯-苯乙烯(ABS)、聚氯乙烯(PVC-U、PVC-C)、均聚聚丙烯(PPH)、聚偏氟乙烯(PVDF)和玻璃纤维增强聚丙烯(FRPP)屋脊式隔膜阀的材料、设计、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于公称压力小于或等于1.0MPa,使用温度:ABS隔膜阀为-40℃~70℃;PVC-U隔膜阀为-5℃~60℃、PVC-C隔膜阀为-5℃~95℃;PPH隔膜阀为-10℃~90℃;PVDF隔膜阀为-40℃~120℃;FRPP隔膜阀为-14℃~100℃,公称通径大于或等于DN15mm至DN250mm的法兰连接式和对接连接式隔膜阀。公称通径大于DN250mm的隔膜阀可参照使用。HG/T 2643-19945 HG/T 3731-2023非金属化工设备 玻璃纤维增强聚氯乙烯复合管和管件 本文件规定了玻璃纤维增强聚氯乙烯复合管和管件的原材料、设计、制造、要求、试验方法、检验规则、标志、包装、运输、贮存及随行文件。 本文件适用于以硬聚氯乙烯(PVC-U)或氯化聚氯乙烯 (PVC-C)热塑性塑料为内衬,以不饱和聚酯树脂、环氧乙烯基酯树脂为基体,以玻璃纤维纱或其织物为增强材料,公称直径大于或等于20mm至1 200 mm,工作温度:以PVC-U为内衬时,为-5℃~70℃,以PVC-C为内衬时,为-5℃~95℃;设计压力小于或等于1.6MPa的玻璃纤维增强聚氯乙烯复合管和管件。HG/T 3731-20046 HG/T 6158-2023硫化促进剂 二异丁基二硫代氨基甲酸锌(ZDIBC) 本文件规定了硫化促进剂二异丁基二硫代氨基甲酸锌(简称硫化促进剂ZDIBC)的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以二异丁胺、二硫化碳、含锌化合物为主要原料经反应制得的硫化促进剂ZDIBC。7 HG/T 6159-2023橡胶防老剂 2-巯基-4(或5)-甲基苯并咪唑锌(ZMMBI) 本文件规定了橡胶防老剂2-巯基-4(或5)-甲基苯并咪唑锌(简称橡胶防老剂ZMMBI)的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以2-巯基-4(或5)-甲基苯并咪唑、液碱、硫酸锌(或氯化锌)等为主要原料制得的橡胶防老剂ZMMBI。8 HG/T 3062-2023橡胶配合剂 沉淀水合二氧化硅 二氧化硅含量的测定 本文件规定了橡胶配合剂沉淀水合二氧化硅中二氧化硅含量的测定方法。 本文件适用于橡胶配合剂沉淀水合二氧化硅。HG/T 3062-2008ISO 3262-19:2000,MOD9 HG/T 6160-2023橡胶配合剂 硅橡胶用气相二氧化硅 本文件规定了硅橡胶用气相二氧化硅技术要求、测试方法、检验判定规则、取样及包装、标识、贮存与运输。 本文件适用于硅橡胶用气相二氧化硅。ISO 18473-3:2018,MOD10 HG/T 6161-2023硫化促进剂 N-环己基-双(2-苯并噻唑)次磺酰亚胺(CBBS) 本文件规定了硫化促进剂N-环己基-双(2-苯并噻唑)次磺酰亚胺(简称硫化促进剂CBBS)的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以苯胺、环己胺、二硫化碳为主要原料经氧化反应制得的硫化促进剂CBBS。11 HG/T 6181-2023发动机油底壳橡胶密封垫 本文件规定了发动机油底壳橡胶密封垫的符号、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于发动机油底壳橡胶密封垫。12 HG/T 6183-2023球墨铸铁管接口防滑止脱橡胶密封圈 本文件规定了球墨铸铁管及管件柔性接口防滑止脱橡胶密封圈的术语和定义、要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于球墨铸铁管及管件柔性接口防滑止脱橡胶密封圈。13 HG/T 6162-2023复配抗氧剂试验方法 本文件规定了复配抗氧剂的外观、加热减量、细粉含量、颗粒长度符合率、颗粒直径、堆积密度、溶解性、透光率、组分含量的试验方法。 本文件适用于复配抗氧剂产品的检测。 本方法中组分含量的测定方法适用于抗氧剂含量大于5%的复配抗氧剂。14 HG/T 6163-2023橡胶助剂 预分散母料试验方法 本文件规定了橡胶助剂预分散母料的术语和定义、试验方法。 本文件适用于表面不粘连、橡胶助剂含量大于40%、载体是聚合物的橡胶助剂预分散母料。15 HG/T 2490-2023疏浚用钢丝或织物增强的橡胶软管和软管组合件 规范 本文件规定了二个型别、七个类别和三个级别的公称内径从100到1300的疏浚用钢丝或织物增强的橡胶软管和软管组合件的要求。在每一个类别内,所有级别和尺寸都具有相同的最大工作压力。本文件适用于在-20℃到+40℃环境温度下输送或吸引的相对密度介于1.0到2.3之间的混有泥浆、沙砾、珊瑚和小石头的海水或淡水的橡胶软管。本文件适用的软管分为以下两个型别:Ⅰ型 漂浮型,仅用于输送,包括为软管提供浮力的漂浮材料;Ⅱ型 非漂浮型,用于输送和吸引。本文件没有对软管或软管组合件的使用寿命作出规定。用户如有此要求,应与软管制造商协商。HG/T 2490-2011ISO 28017:2018,MOD16 HG/T 3038-2023吸油和排油用橡胶软管及软管组合件 规范 本文件规定了4种型别的用于输送石油包括原油和其它液体石油产品的排吸油软管及软管组合件的性能。每种型别依据芳烃含量划分为3个组别。本文件不适用于输送液化石油气和液化天然气。 符合本文件的软管组合件能够在-20 ℃~+80 ℃温度范围内使用。 所规定的软管公称内径范围从50~500,可为光滑内壁、粗糙内壁、铠装粗糙内壁和轻量型。HG/T 3038-2008、HG/T 3039-2008ISO 1823:2015,IDT17 HG/T 3041-2023油槽车输送燃油用橡胶软管和软管组合件 本文件规定了两组最大工作压力为1.0 MPa的装、卸液态烃类燃油用橡胶软管和软管组合件的要求。 两组软管都设计用于: a) 芳烃体积含量不超过50%、含氧化合物含量达到15%的烃类燃油。 b) 工作温度范围为-30 ℃~+70 ℃,静态贮存温度为-50 ℃~+70 ℃。注:若软管用于-30 ℃以下的温度,最终用户宜向制造商咨询。本文件不适用于LPG系统、航空燃油系统、燃油站系统或海上使用的软管和软管组合件。HG/T 3041-2009ISO 2929:2021,IDT18 HG/T 6164.1-2023流体传输用大口径扁置橡胶软管规范 第1部分:输水软管 本文件规定了流体传输用大口径扁置输水橡胶软管的结构、技术要求、检验规则、标志、包装、运输、贮存。 本文件适用于公称内径不小于100、输送不超过70 ℃的压裂液、油气田供排水、农业灌溉、应急(消防、抢险)供排水、管道修复等系统用扁置软管。19 HG/T 6165-2023汽车发动机点火线圈橡胶护套 本文件规定了汽车发动机点火线圈橡胶护套的术语和定义、技术要求、试验方法、检验规则、标志、包装、运输及贮存。 本文件适用于以汽油、乙醇汽油、天然气及氢气为燃料的汽车发动机点火线圈橡胶护套。20 HG/T 4116-2023滚筒洗衣机观察窗橡胶密封垫 本文件规定了滚筒洗衣机观察窗橡胶密封垫的结构、要求、检验规则、标志、包装、运输和贮存,描述了滚筒洗衣机观察窗橡胶密封垫的性能试验方法。 本文件适用于烘干型和非烘干型滚筒洗衣机用喷涂或非喷涂观察窗橡胶密封垫。HG/T 4116-200921 HG/T 6166-2023织物浸渍聚氨酯胶乳手套 本文件规定了织物浸渍聚氨酯胶乳手套的术语与定义、分类、要求、检验规则、试验方法、包装、标志、运输和贮存。 本文件适用于以织物为内衬、表面经过浸渍聚氨酯胶乳而制成的手套。22 HG/T 4786-2023胶乳色浆 本文件规定了胶乳制品用水性色浆的要求、试验方法、检验规则、标志、包装、运输和贮存。 本文件适用于天然胶乳和丁苯胶乳、丁腈胶乳、丁基胶乳、氯丁胶乳等合成胶乳制品用水性色浆。HG/T 4786-201423 HG/T 4666-2023胶乳海绵 本文件规定了胶乳海绵的要求、试验方法、检验规则和包装、标志、运输和贮存。 本文件适用于由天然胶乳、丁苯胶乳、氯丁胶乳、天然胶乳和丁苯胶乳并用、氯丁胶乳和丁苯胶乳并用以及氯丁胶乳和天然胶乳并用制成的海绵。HG/T 4666-201424 HG/T 2949-2023电绝缘橡胶板 本文件规定了电绝缘橡胶板的外观质量、规格尺寸、电性能、物理性能等技术要求,描述了相应的试验方法和检验规则,规定了标志、包装、运输与贮存等方面的内容,同时给出了便于技术规定的产品分类。 本文件适用于以橡胶为主体材料制成的,作为电气设备辅助安全用具的电绝缘橡胶板的合格评定。HG/T 2949-199925 HG/T 2793-2023工业用导电和抗静电橡胶板 本文件规定了工业用导电和抗静电橡胶板的规格尺寸及公差、外观、性能等技术要求,描述了相应的试验方法和检验规则,规定了标志、包装、运输与贮存等方面的内容,同时给出了便于技术规定的产品分类。 本文件适用于以橡胶为主体材料制成,用于需要采取预防措施防止静电积累场所,对人员和物体起到安全防护作用的胶板的合格评定。HG/T 2793-199626 HG/T 4615-2023增塑剂 柠檬酸三丁酯(TBC) 本文件规定了增塑剂柠檬酸三丁酯的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以柠檬酸和正丁醇经酯化法制得的增塑剂TBC。HG/T 4615-201427 HG/T 4616-2023增塑剂 乙酰柠檬酸三丁酯(ATBC) 本文件规定了增塑剂乙酰柠檬酸三丁酯的理化性能等技术要求,描述了相应的组批规则、采样、试验方法,规定了标志、包装、运输和贮存等方面的内容。 本文件适用于以柠檬酸和正丁醇经酯化,用乙酸酐乙酰化制得的增塑剂ATBC。HG/T 4616-201428 HG/T 6137-2023摆锤式轿车轮胎撞击试验机 本文件规定了摆锤式轿车轮胎撞击试验机的结构、要求、检验方法、检验规则、标志、包装、运输、贮存及随机文件。 本文件适用于采用摆锤法进行轿车轮胎耐撞击性能测试的设备。29 HG/T 6138-2023比表面积及孔径分析仪 本文件规定了比表面积及孔径分析仪的术语和定义、结构、要求、检验方法、检验规则、标志、包装、运输、贮存及随机文件。 本文件适用于根据静态气体吸附法对橡胶添加剂如炭黑或其他粉体材料进行比表面积及孔径分布测试的分析仪。39 HG/T 4501-2023工业氯化锶 本文件规定了工业氯化锶的要求、试验方法、检验规则、标志和随行文件、包装、运输、贮存。 本文件适用于工业氯化锶。&nbs
  • 食药监局公布餐饮食品安全检验机构仪器装备基本标准
    关于印发餐饮服务食品安全检验机构技术装备基本标准和现场快速检测设备配备基本标准的通知 国食药监食[2011]130号 各省、自治区、直辖市及新疆生产建设兵团食品药品监督管理局:   为贯彻落实《食品安全法》、《食品安全法实施条例》以及《餐饮服务食品安全监督管理办法》,逐步建立起职责明确、行为规范、执法有力、保障到位的餐饮服务食品安全监管体系,不断提高餐饮服务食品安全技术监督能力和水平,确保公众饮食安全,国家局组织制定了《餐饮服务食品安全检验机构技术装备基本标准》和《餐饮服务食品安全现场快速检测设备配备基本标准》,现印发给你们,并将有关事项通知如下:   一、提高认识,加快实施   加快餐饮服务食品安全检验机构技术装备和现场快速检测设备配备,全面提高餐饮服务食品安全技术监督能力,是有效履行监管职责,全面加强科学监管,确保公众饮食安全的重要基础。各级食品药品监管部门要充分认识加强餐饮服务食品安全技术监督能力建设的重要性,采取更加有力的措施,加快餐饮服务食品安全检验能力建设,为全面提高餐饮服务食品安全监管水平提供强有力的技术支撑和保障。   二、优化配置,提升效能   各级食品药品监管部门应从本地区餐饮服务食品安全监管工作的实际情况出发,按照优化配置、提升效能、有效保障、适度超前的要求,以现有的食品药品检验机构为基础,在充分发掘和整合现有资源的基础上,统筹安排,突出重点,加快配备,尽快达标,以适应全面加强餐饮服务食品安全监管工作的需要。   三、争取支持,强化检查   地方各级食品药品监管部门要积极争取有关部门支持,加快餐饮服务食品安全技术监督能力建设,为餐饮服务食品安全监管发展创造必要的条件。各地食品药品监管部门要切实加强对餐饮服务食品安全技术检验机构技术装备和现场快速检测设备配备情况的监督检查,有关进展情况及时报国家局。 附件:1.餐饮服务食品安全检验机构技术装备基本标准 国家级检验机构 序号 名称 主要用途 性能要求 配置数量 (台/套) 1 电子天平 食品检验用试剂、样品和标准品的称量 感量(g):0.001,0.0001,0.00001 6 2 酸度计 食品检验过程中pH值的测定 精度:±0.01pH 6 3 冷冻离心机 食品检验过程中营养成分或者污染物等的提取分离 最高转速不小于16000rpm;温度设置范围:-20~40℃ 2 4 离心机 食品检验过程中营养成分或者污染物等的提取分离 转速介于200~15000rpm之间 10 5 超净工作台 食品检验过程中提供局部超净工作环境 净化级别:局部百级 3 6 生物安全柜 食品检验过程中提供洁净安全的操作环境 二级生物安全柜 8 7 索氏提取器 食品检验过程中营养成分或者污染物的提取 控温范围:室温+5~100℃;提取瓶容积不小于500mL 2 8 超临界萃取仪 食品检验过程中营养成分或者污染物的提取 最高操作压力可达10000psi;最高操作温度可达240℃ 2 9 磁力搅拌器 食品检验过程中目的物质提取或反应过程中的搅拌混匀 加热温度范围:5~300℃;温度控制精确度:±1℃ 20 10 微波消解仪(高压) 食品检验过程中样品的消解 微波输出功率介于0~1600W之间 2 11 冷冻干燥机 食品检验过程中样品的冷冻干燥 24小时除冰量:大于2L;最大冰容量:大于5L;冷冻腔最低温度:不高于-50℃ 1 12 碎花制冰机 食品检验用冰的制备 冰型:雪花碎冰; 制冰量不小于125千克/天 2 13 高压灭菌器 食品检验中灭菌试剂的制备 工作温度范围:50~135℃ 2 14 冰箱 食品样品和试剂的存放 带冷冻和冷藏室 10 15 冷藏柜 食品样品和试剂的存放 温度范围:2~8℃ 10 16 立式超低温冰箱 食品样品和试剂的超低温保存 体积大于300L;温度控制范围:-50~86℃ 2 17 超声波清洗器 食品检验过程中样品的提取、脱气、混匀、细胞粉碎、实验器皿的清洗等 清洗器内槽采用耐酸碱不锈钢板 4 18 超声波提取器 提取食品营养成分或者污染物 超声波发生器与提取罐分体式;提取罐容积不大于20L 2 19 超声波细胞破碎仪 食品检验过程中细胞的破碎 频率:20~25KHz;频率自动跟踪 2 20 马弗炉 食品检验过程中食品的灰分测定及干法消解 额定温度大于1000℃;配置数字温控系统 3 21 电热恒温干燥箱 食品检验过程中样品的干燥 控温范围:室温+10~300℃;恒温波动度:±1℃;不锈钢内胆 3 22 电热恒温培养箱 食品检验过程中微生物的培养 温度精确度不大于0.1℃ 3 23 真空干燥箱 食品检验中对照品及样品干燥 真空度范围:0~0.1MPa;控温范围:40~150℃2 24 恒温恒湿箱 为食品检验提供稳定的恒温恒湿环境 温度范围:0~70℃(无湿度);湿度范围:相对湿度10%~80% 4 25 可控温振荡箱 食品检验中微生物的培养 旋转频率:40~400rpm;温控范围:4~60℃;温控精度:±0.1℃ 2 26 恒温恒湿培养箱 食品检验中微生物的培养 温度范围:5~60℃;容量不小于250L 4 27 霉菌培养箱 食品检验中霉菌的培养 温度范围:5~60℃;容量不小于150L 3 28 厌氧培养箱 食品检验中微生物的厌氧培养 工作腔体积不小于150L 2 29 细胞培养箱 食品检验中细胞优化与培养 CO2浓度范围:0.2%~20% (体积/体积) 2 30 三气细胞培养箱 食品检验中微需氧菌的培养 CO2范围:0%~20%;O2范围:1%~20% (体积/体积) 2 31 超纯水系统 食品检验用超纯水的制备 出水量不小于1.5L/min;电阻率:18.2 MΩ.cm(25℃) 3 32 匀浆器 食品检验过程中样品的粉碎、均质和乳化。 调速范围:0~28000rpm 3 33 组织匀浆器 食品检验过程中组织匀浆,以提取包括蛋白质、RNA和DNA在内的细胞内容物 调速范围:0~30000rpm 4 34 恒温混匀器 食品检验过程中样品的均匀化处理 混匀频率:300~1500rpm;温控范围:室温以下13~99℃;加热速度:约5℃/min 6 35 均质器 食品检验过程中样品的均一化处理 时间范围:30~210秒或连续运转;拍击速度不大于9次/秒;有效容量不大于400mL 6 36 漩涡混合器 食品检验过程中试样的漩涡混匀 振荡方式:连续、点振;转速范围:0~2800rpm 5 37 固相萃取装置 食品样品中目标物质的自动化提取 固相萃取仪主机不少于四通道;最少处理量不少于44位1 38 快速溶剂萃取仪 食品样品中目标物质的自动化提取 萃取位不少于24个 1 39 真空离心浓缩仪 食品检验过程中目标物质的浓缩 温度控制:0~60℃;调速范围:0~1500rpm 2 40 全自动核酸提取系统 食品检验过程中核酸的提取和纯化 样品通量:96孔;全自动提取;可满足PCR、测序等实验要求 1 41 氮吹仪 食品检验过程中目标物质的浓缩 控温范围:室温+5~200℃;温度调节精度:±0.1~0.2℃ 3 42 除湿器 食品检验环境的湿度控制 除湿量不小于30升/天 5 43 超声粉碎机 食品样品的粉碎处理 超声功率不大于1200W;破碎容量不大于1000mL 2 44 旋转蒸发仪 食品检验过程中有机溶剂去除 旋转速度:20~180rpm;水浴温度范围:20~180º C 345 鞋套机 保护无菌室的清洁环境 按实验需要配置 46 自动微生物快速检测分析系统 食品中微生物的快速鉴定分析 可对革兰氏阴性菌、革兰氏阳性菌、酵母菌、芽孢菌、奈瑟氏菌、嗜血杆菌、厌氧菌进行鉴定 1 47 恒温摇床 食品检验过程中微生物的控温振荡培养 温度控制范围:室温+5~50℃;转速30~300rpm 3 48 低温摇床 食品检验过程中微生物的低温振荡培养 温度控制范围:5~60℃;转速范围:10~400rpm 2 49 恒温水浴 食品检验过程中样品前处理 温度控制范围:室温~100℃;体积不小于3L 3 50 恒温振荡水浴 食品检验过程中样品前处理 温度控制范围:室温~100℃;转速范围:30~300rpm 1 51 智能循环水浴 食品检验过程中样品前处理 温度范围:0~100℃;控温精度:±0.1℃;容量不小于6L 2 52 显微镜(带成像系统) 食品检验过程中细胞和微生物样本的观察 配置4X、10X、40X、100X物镜;不少于三种荧光模块;配置CCD成像系统 1 53 全自动微生物平板螺旋加样系统 食品中微生物污染程度的测定 不少于五种接种模式;最大吸液量不小于250µ L 1 54 液氮罐 食品样品、菌株和细胞株的低温保存 液氮装量大于40L;工作时间大于50天 2 55 体视显微镜 食品样品的显微观察 变倍比不小于16;配成像系统 2 56 实时荧光定量PCR检测系统 食品样品中致病微生物相关基因的快速、定量分析 检测通道不少于6个;具备梯度PCR功能 1 57 定性PCR仪 食品中致病微生物相关基因的扩增分析 具备梯度PCR功能 3 58 多点接种仪 食品检验过程中微生物的快速接种 一次接种样品量不少于25个 2 59 红外接种环灭菌器 食品微生物检验过程中对接种环的快速灭菌 中心温度不低于900℃ 5 60 扫描电镜 食品中微生物与细胞的显微结构观察与分析 放大倍数不低于30万倍 1 61 全自动微生物免疫荧光分析系统 食品中致病微生物的快速筛选 通过酶联免疫和荧光原理快速对致病微生物进行筛选,每次处理样本量不少于30个 1 62 全自动食品微生物定量分析系统 食品中微生物污染水平的快速定量分析 可全自动进行细菌总数、大肠菌群、霉菌、酵母菌等常见卫生指标的分析,日处理样本量不少于400个 1 63 全自动病原微生物检测系统 食品中致病微生物的快速检测 通过荧光定量PCR方法快速检测致病微生物,每次检测样本量不少于48个 1 64 微生物鉴定系统—全细胞脂肪酸分析系统 食品中微生物的快速鉴定 通过对全细胞脂肪酸分析原理,在30分钟内对细菌、酵母等进行快速鉴定 1 65 微生物表型芯片分析系统 食品中微生物的快速分型分析 通过分析微生物对不同底物的反应对微生物表型进行自动化分析,分析范围包括细菌、霉菌和酵母 1 66 飞行时间质谱微生物鉴定系统 食品中微生物的快速鉴定 30分钟以内完成对微生物的鉴定,数据库中标准菌株数据不少于2000株 1 67 全自动微生物指纹图谱分析系统 食品中微生物的快速分型分析 通过16sRNA杂交原理对微生物进行鉴定与分型,同时处理样本不少于10个 1 68 全自动基因指纹分析仪 食品中微生物的快速分型分析 通过对微生物基因组中重复序列分析,4小时内对微生物进行快速分型 1 69 基因定量分析系统-焦磷酸测序 食品中微生物的快速鉴定与分型 通过焦磷酸测序原理对细菌、病毒、真菌、寄生虫进行快速鉴定,鉴定需要时间不超过1小时 1 70 全自动样本储存管理系统 食品检验过程中核酸、蛋白、抗体、微生物等样本的保存 通过电脑控制和机械臂系统,全自动完成样本的储存,储存温度不高于-80℃ 1 71 基因芯片分析系统 食品检验过程中多种致病基因的快速分析 包括基因点样、杂交、扫描、分析系统,每次可对不少于1000个基因进行快速杂交分析 1 72悬浮芯片分析系统 食品中微生物的快速检测分析 每个反应池检测信号不少于100个,且能进行定性和定量分析 1 73 自动化革兰氏染色系统 食品微生物检测过程中快速革兰氏染色分析 通过革兰氏染色原理,30分钟内完成不少于12个样本的染色分析 1 74 快速致病菌免疫磁珠基因筛选系统 食品中致病微生物的快速检测分析 通过磁珠捕获和荧光定量PCR原理对食品中致病微生物进行快速分析,同时处理样本量不少于12个,检测时限不超过2小时 1 75 全自动致病菌酶标检测系统 食品中致病微生物的快速检测分析 通过酶联免疫方法对致病微生物进行快速检测,同时处理样本量不少于300个 1 76 全自动平板划线系统 食品中微生物的快速划线、分离 快速完成平板自动化划线,每小时划板量不少于100块 1 77 培养基自动制备分装仪 食品微生物检测过程中培养基的快速分装 定量无菌对培养基进行分装,每小时培养基分装量不少于10L 1 78 商业无菌自动化检测系统 食品检验过程中商业化无菌检测 通过ATP酶分析原理,40小时内完成商业化无菌检测1 79 凝胶成像仪 食品检验过程中DNA样品的成像分析 具备单色荧光成像、多色荧光成像、化学发光、化学荧光、光密度成像功能 1 80 倒置显微镜 食品检验过程中细胞和微生物样本的观察 配置4X、10X、40X、100X物镜和成像系统 2 81 抑菌圈测量仪 食品中抗菌成分的测定 测量范围:0~35mm;分辨率:0.1mm 1 82 核酸蛋白分析仪 食品中核酸和蛋白质的定量分析 波长范围:190~840nm;0.5~2µ L样品直接进样 2 83 二维电泳系统 食品中过敏原如蛋白质的差异分析 配置等电聚焦电泳、垂直电泳、图像扫描和分析软件 1 84 通用电泳仪 食品中核酸和蛋白质的分离检测 配置垂直电泳、水平电泳、电源和转印装置 4 85 水平电泳槽 食品中核酸的分离检测 按实验需要配置 4 86 垂直电泳槽 食品中蛋白质的分离检测 按实验需要配置 2 87 核酸高压测序胶系统 食品中核酸序列分析、蛋白质等电点分析 输出电压:20~5000V;输出端口不少于4个 2 88 脉冲场电泳系统 食品中致病微生物遗传物质差异分析 转换角度:0~360° 2 89 全自动毛细管电泳系统 食品中蛋白质、游离脂肪酸、食品添加剂、农药残留、生物毒素和抗生素检测;糖类、维生素分析 分辨率2~5个碱基;进样量不少于48个 2 90 真空转印仪 食品检测过程中DNA与蛋白质的凝胶转膜实验 小片断转印时间不多于30min,基因组大片断转印时间不多于90min 2 91 全凝胶洗脱仪 食品检测过程中DNA与蛋白质的纯化 洗脱时间不超过20min;收集组分不少于12条 2 92 微量过滤装置 食品检测过程中DNA与蛋白质的纯化 可以高压灭菌;格式:斑点印迹或狭线印迹 3 93 电穿孔仪 食品检测过程中基因的转化 电压输出:10~3000V;波形输出:对数消减波或方波 1 94 遗传分析系统 食品中转基因成分及致病菌的鉴定 可对不少于6种不同荧光染料进行检测; 配备数据采集和初步分析软件 1 95 紫外交联仪 食品检测过程中DNA膜杂交分析 紫外光源不少于3个不同波长 2 96 分子杂交炉 食品检测过程中核酸的杂交分析 工作温度范围:高于环境温度8~99.9℃;可放置不少于15个杂交管 2 97 射线计数仪 食品中同位素的定量分析 按实验需要配置 2 98 水分活度测定仪 食品中水分含量的测定 5分钟内显示结果;测量精度0.01Aw; 2 99 温湿度数据跟踪系统 食品采样与检测过程中温度、湿度数据的跟踪监测 可与计算机进行数据传输;可测定温度范围:-20~140℃ 2 100 全自动基因测序仪 食品中DNA序列的高通量分析 读长不小于75bp;数据准确度可达到99.99%;每天产生的数据量不少于1G 1 101 紫外可见分光光度计 食品检测过程中紫外可见分光光度法的测定 波长范围:190~1100nm 2 102 紫外透射率分析仪 食品检测过程中光谱透射率的测定 波长范围:240~400nm 4 103 紫外分析仪 食品检测过程中蛋白质和核酸的紫外定性分析 紫外光源波长至少包含254nm、365nm 4 104 多功能酶标仪 食品检测过程中酶联免疫法的分析 微孔板规格:6~384孔板;可测量荧光、吸收光、化学发光 2 105 薄层色谱系统 食品检测过程中样品的薄层点样、展开及成像 含薄层色谱成像系统 2 106 激光共聚焦显微镜 食品样本中微生物观察及切片样本观察;组织结构的精确描绘、定位(二维和三维)和上述结构的动态变化 至少配置红、绿、蓝三个激光光源;检测系统至少包含三个荧光通道和一个透射光通道 1 107 水分测定仪 食品中水分含量测定 测量范围:0.001%~100% 2 108 酒精计 食品样品中乙醇含量的测定 测量范围:0%~45%(质量/质量) 2 109 纤维测定仪 食品中纤维含量的测定 测量样品数不小于6个/次;测量范围:0.1%~100% 1 110 示波极谱仪 食品检验中元素的分析 测量下限不大于5×10-8mol/L 1 111 测汞仪 食品中汞元素的分析 测量范围:0~10µ g/L;测量下限不小于0.05µ g/L 1 112 荧光分光光度计 食品中有害物质如3,4-苯并芘的测定 波长测量范围:200~800nm 1 113 氨基酸分析仪 食品中氨基酸含量的测定 测量下限:20种氨基酸平均不大于3pmol 1 114 基质辅助激光解吸电离-飞行时间质谱 食品中农兽药残留、违禁添加的化学药物及其他有机污染物的快速筛查检测;食品中真菌毒素的快速筛查检测;未知物的鉴定分析 质量范围:高限不少于20万;灵敏度:不大于10-12mol;质量准确度:不大于5ppm;分辨率:不少于2万;配置源后衰变装置 1 115 自动电位滴定仪 食品中酸度、维生素C等的含量测定 测量范围:pH0~14;测量精度:0.01pH 2 116 阿贝折射仪 食品样品的折射率和相关物质的浓度测定 测量范围:1.3000~1.7000nD;蔗糖溶液质量分数读数范围:0%~95%;准确度:±0.00002nD 2 117 数显电导仪 食品样品电导率的测定 测量范围:0.00μS/cm~199.9mS/cm;分辨率:0.01μS/cm~0.1mS/cm;精度:±0.5%量程;配置数字显示 4 118 X射线荧光光谱仪 食品中有害元素的测定 元素范围:硫~铀;检出限:不大于1ppm;长期稳定性:±0.1%,重复性:±0.1% 2 119 凝胶渗透色谱 食品中农药残留、蛋白质和多糖多肽分子量测定以及样品前处理和净化 四元泵;流量精度:不大于0.10mL/min;柱温箱:室温~80˚ C;配置进样器、紫外、粘度、折光检测器 4 120 液相色谱 食品中营养成分或污染物等的分离测定 四元梯度泵;配置在线脱气、自动进样器、DAD、荧光检测器 6 121 气相色谱 食品中挥发性营养成分或污染物等的分离测定 配置自动进样器、FID、ECD、FPD检测器 3 122 气相顶空进样器 食品中挥发性营养成分或污染物等的分离测定 加热温度最高不小于200˚ C;顶空瓶位数及规格按实验需要配置 1 123 拉曼光谱仪 食品中氨基酸、多肽、蛋白质、DNA、RNA和糖类分子的鉴定分析 配置激光器;光谱范围:200~2000nm;分辨率:不大于1cm-12 124 全自动定氮仪 食品中蛋白质的定量分析 配置消化系统 2 125 原子吸收光谱仪 食品中微量元素的测定 配置自动进样系统、火焰光度、石墨炉检测器;氢化物发生器 1 126 脂肪酸分析仪 食品中脂肪酸的测定 配置自动进样器;可同时测量脂肪和脂肪酸的含量 2 127 电感耦合等离子体质谱 食品中微量元素的测定 配置进样系统;ICP离子源;水冷循环 2 128 气相色谱-质谱联用仪 食品中挥发性成分或者污染物等的分离测定 配置自动进样器和数据处理系统 1 129 三重串联四极杆气质联用仪 食品中挥发性成分或污染物等的分离测定 串联四极杆质谱;配置自动进样器 1 130 串联四级杆液质联用仪 食品中营养成分或污染物等的分离、测定 高压二元梯度泵;配置自动进样器、柱温箱、液氮罐或氮气发生器、稳压电源 2 131 液相色谱-离子肼质谱仪 食品中营养成分或污染物等的分离、测定 高压二元梯度泵;配置自动进样器、柱温箱、离子阱质谱、液氮罐或氮气发生器、稳压电源 2 132 全波段显微化学图像系统 食品中混合物、粒度、组分粒子的结块、多晶体、水合物及其他痕量污染物的分析 满足可见、中红外及近红外全波段扫描;配置数码CCD 1 133 离子色谱 食品样品中阴离子与阳离子的测定 双活塞串联往复梯度泵;配置电导检测器、抑制器、样品自动进样系统 2 134 原子荧光光谱仪 食品样品中可形成氢化物微量元素的测定 配置火焰或电热原子化器;光电倍增检测器 2 135 电感耦合等离子体发射光谱仪 食品中微量元素的测定 电感耦合等离子体发射光谱仪主机;雾化室和V槽雾化器; 一体式石英垂直炬管;冷却循环水冷系统;低紫外区吹扫接口 1 136 锥入度测定仪 食品样品中黏稠度的测定 测量值不小于45mm;锥入精度:±0.01mm 1 137 穿刺力测定仪 食品包装瓶塞穿刺力值的测定 规格:不小于500N;加载速度:50、100、150、200、250、300、500(mm/min) 1 138 热急变试验仪 食品包装玻璃制品冷热急变的合格性实验、递增性、破坏性实验分析 温度范围:0~100℃;冷热槽变换时间:15±1秒;热槽温度变化:±1℃。 1 139 内压力试验仪 食品包装瓶内压力值的测定 压力范围:0.50~4.19 Mpa;最大使用压力:6.00 Mpa;升压速率误差小于5% 1 140 内应力试验仪 食品包装玻璃瓶内应力值的测定 应力测量范围:0~±1000 Mpa;精度<0.1nm 1 141 垂直轴偏差测试仪 食品包装轴偏差的测定 位移测头值:0.02mm;精度:0.1mm 1 142 瓶底、壁厚测定仪 食品包装瓶底、壁厚度的测定 仪器量程:150mm;精度:0.1mm 1 143 弧度测定仪 食品包装瓶弧度的测定 测量行程不小于20mm;精度±0.01mm 1 144 自动振筛仪 食品包装玻璃瓶中特定元素含量的分析 回转速度不小于221次/分钟;回转半径:12.5mm;振幅:5mm 1 145 水平圆周转动振荡器 食品包装瓶与盖的密封性分析 振荡频率:50~300rpm 1 146 落镖冲击试验机 用于厚度小于1mm的食品包装用塑料薄膜或薄片50%破损时的冲击质量和能量分析 测试范围:A法:50~2000g B法:300~2000g;测试精度:0.1g 1 147 耐破度仪 食品包装材料耐破度分析 测量范围:50~1600KPa;准确度<0.5﹪ 1 148 涂层柔性和粘附力测试装置 食品包装材料涂层柔性和粘附力分析 按实验要求装配 1 149 内涂层连续性测试装置 食品包装材料的内涂层连续性分析 按实验要求装配 1 150 韧性实验装置 食品包装材料的韧性分析 按实验要求装配 1 151 氧化膜厚度测定仪 食品包装材料的氧化膜厚度分析 测量范围:0~200μm;测量精度:±0.5μm FS;分辨率:1μm 1 152 密度天平 食品包装材料的密度值分析 称量范围:0~210g;可读性:0.01mg 1 153 线热膨胀系数测定仪 食品包装材料平均线热膨胀系数分析 温度范围:0.5~300℃;升温速度1.0~35.0℃/min 1 154 轧盖机 食品包装瓶与盖的密封性分析 餐具表面,24~72小时,定量 47 沙门氏菌 试剂盒 食品,48~120小时,定性 48 金黄色葡萄球菌 试剂盒 食品,48~96小时,定性 49 单增李斯特菌 试剂盒 食品,66~120小时,定性 50 食品采样箱 51 冰箱 52 现场快速检测车 国家食品药品监督管理局 二○一一年三月二十八日
  • 物联网标准草案年内发布
    眼下,国内物联网产业规划速度之快令人称奇,不仅国家发改委、工信部、工程院进行相关规划,各地方政府争抢产业基地,各路企业也都在着手或准备投资物联网。在“创新中国DEMOCHINA2010”总决赛中,有关物联网项目都备受风投关注,接受本报记者采访的蓝驰创投合伙人陈维广告诉记者,物联网是风投关注信息产业领域的三大重点之一。   传感网标准草案年内发布   通常来说,物联网产业链有四个重要环节——标志、感知、处理和信息传输,分别对应射频识别、传感器、智能芯片和无线传输网络四个领域的技术。而在物联网发展过程中,感知、信息处理和传输各个环节都有可能出现大量技术,这些技术可能采用不同的技术方案,就会导致物体和物体间沟通不起来。因此说,物联网要大规模发展,首先应该解决技术标准的制定问题,在会场上,风投们也对该问题投以极大的关注。   对此,作为传感网标准重要参与者、杭州家和智能控制有限公司无线传感网研究院副院长冯一汀接受本报记者采访时表示,物联网在我国有着广泛的前景,政府和企业对该领域的标准制定高度关注,目前,物联网的关键技术之一,传感网技术标准工作正在进行当中,预计到年底草案就会发布。   但对于传感网标准真正出台的时间,冯一汀未给予正面回答,“这里面涉及企业与政府协调问题,也涉及企业之间的利益问题,要达成一致估计至少得一到两年时间。”   企业争夺先发优势   把所有物品与网络连接,实现远程监控,物联网的新时代将为人们带来生活上的新体验。专家预估,物联网将是未来10年最重要的产业大趋势,至2020年可望成为全球经济新一轮的增长点,商机高达上兆元。   作为毫无争议的重要领域,物联网产业自然成为众多企业追逐的对象。对杭州家和智能有限公司来说同样也是如此,其作为物联网设备解决方案的设备商,以无线传感网的UNIT技术体系引领无线传感网技术发展,致力于向客户提供满足其需求的产品、解决方案和优质服务,帮助传统企业实现价值提升。   冯一汀告诉记者,公司一直致力于物联网领域,早在2004年,国内市场还未提出物联网概念的时候,公司就已经着手物联网相关应用的研发,目前公司核心的无线传感技术正在进入商用阶段,尤其在电力智能网改造方面应用较为突出。如无线操电表技术应用,该无线电表能够自动生成准确数据:除完成普通电表基本功能外,该技术能够实现远程操表,电力公司只要在内部工作就能实现远程操表,同时还能实现预付费功能,以及远程拉闸,当用户拖欠电费的时间超过期限,公司就可以用无线技术实现远程拉闸,有效地节约了电力公司人力,提高效率。   目前,家和智能有限公司已率先在电力与节能行业同国内的龙头企业展开合作,并在多个省市展开项目的试点工作。   风投关注物联网技术创新能力   杭州家和智能有限公司作为国内物联网无线传感网产业的领导企业之一,其以UNIT技术受到了风投们的广泛关注。在比赛进行过程中,就有传闻因为技术上的领先,家和智能已经与风投达成合作协议。席间,接受本报记者采访的蓝驰创投合伙人陈维广表示,信息产业一直是风投关注的重点领域,该领域中他们又更关注移动互联网、物联网以及节能领域,“这三个领域是毫无争议的朝阳领域。”   从大的角度讲,由于物联网是互联网应用的增长点,可以大大促进信息化的应用,目前包括美国、中国和韩国都把物联网提升为国家战略级产业。   可以预见,物联网未来发展空间不可限量。
  • 国产低场核磁不简单,“北京波谱年会”等你到来
    低场核磁共振技术具有快速无损测量的特点,在多孔介质孔隙结构表征与基础物性研究方面具有很大优势,应用于天然气水合物研究已有近20年历史,核磁测井也成为天然气水合物钻探测井的常用手段,是测定天然气水合物储层原位渗透率的有效方法。天然气水合物是一种国际公认的潜在替代能源,也是我国第173号矿种,在南海有着广泛的分布和可观的储量。在水合物的检测方法中,NMR以其快速、无损、绿色、在线、数据形式丰富等特点受到诸多青睐。2017年和2020年,我国先后在南海北部成功实施两轮天然气水合物试采,产气效率远超预期,但是要达到商业开采水平仍需要克服多重挑战。其中,含天然气水合物土的渗透率测定及其演化过程预测是面临的重多挑战之一,迄今为止也并未得到很好的解决。近日,中国地质调查局青岛海洋地质研究所吴能友所长团队,通过测定不同天然气水合物含量条件下含天然气水合物土的横向弛豫率,揭示了不同孔隙赋存形式天然气水合物对横向弛豫率的影响规律,基于此对渗透率预测及孔隙结构表征提出了修正建议,为含天然气水合物土低场核磁共振技术定量分析提供了重要的科学依据,对解决含天然气水合物土的渗透率测定问题有重要的指导意义。文章《Nuclear Magnetic Resonance Transverse Surface Relaxivity in Quartzitic Sands Containing Gas Hydrate》发表在《Energy & Fuels》上,感兴趣的读者可自行查看。该研究采用的低场核磁共振系统由青岛海洋地质研究所与苏州纽迈分析仪器股份有限公司联合研发,型号为MesoMR23-060H,该中尺寸核磁共振成像分析仪,搭配低温高压系统,主要用于天然气水合物、冻土冻融等过程的研究。近两年来,液体、固体、低场以及成像核磁,连续波和脉冲顺磁共振波谱均取得明显进步。为了进一步促进波谱学的健康发展,加强学术交流与合作,了解波谱新技术和交叉学科的最新进展,由北京理化分析测试技术学会波谱专业委员会主办,中国科学院大学协办的“2021年度北京波谱年会”将于2021年5月14日-16日在北京世纪金源香山商旅酒店召开。本次会议以“不断进步的磁共振波谱”为主题,在液体、固体、低场和成像核磁共振波谱、连续波和脉冲电子顺磁共振波谱以及国产化仪器研发等方面进行经验交流报告。会议交流形式包括大会报告、分会报告和墙报等。会议特别邀请了活跃在我国的青年专家知名专家作波谱前沿技术与应用新进展报告,期间组织波谱厂家进行新产品技术报告及仪器展示。旨在提高波谱学开发和应用水平,推动波谱技术交流与推广。大会报告报告最新的磁共振方法和应用,技术报告以应用和技术支持为主,青年论坛以在读和刚刚毕业学生为主,墙报展示最新进展。会议将评选优秀青年报告和墙报,并给予适当物质和精神奖励。会期两天,诚邀波谱工作者和相关专业的学者积极参与!2021年度波谱年会日程安排.pdf
  • 中国标准化研究院征集《宠物食品中β-烟酰胺单核苷酸(NMN)含量测定 高效液相色谱法》和《生物活性物质生物利用度体内评价指南》2项团体标准起草单位和起草专家
    各有关单位及专家:近日由中国标准化研究院牵头提出并制定的《宠物食品中β-烟酰胺单核苷酸(NMN)含量测定 高效液相色谱法》和《生物活性物质生物利用度体内评价指南》团体标准项目由中国产学研合作促进会立项。为广泛吸纳各相关方参与,充分依托各方资源开展生物活性物质研究与应用标准化工作,现面向社会公开征集以上标准起草单位以及起草专家,有关事项通知如下:一、团体标准项目介绍标准1名称:《宠物食品中β-烟酰胺单核苷酸(NMN)含量测定 高效液相色谱法》;标准2名称:《生物活性物质生物利用度体内评价指南》。二、报名要求1. 参与单位应为标准的修订提供技术支持,所推荐的人员应具备较强的专业工作能力,以及丰富的生物活性物质研发或实践经验,能保障其充分参与团体标准起草过程;2. 参与人员应熟悉标准化知识,掌握标准化文件起草规则,按时参加标准起草工作会议,积极提出建设性意见,并能完成所承担的工作任务。三、其他要求请有意向报名参加上述团体标准起草的单位结合自身优势,积极参与标准起草工作,按要求填写团体标准起草工作组申请表(附件1),加盖公章后于2024年9月30日前以电子邮件或邮寄方式寄至中国标准化研究院。四、联系方式联系人:兰韬 吴琦电 话:18810608738、13811392773010-58811108、58811653邮 箱:lantao@cnis.ac.cnwuqi@cnis.ac.cn地 址:北京市海淀区知春路4号附件1:团体标准起草工作组申请表中国标准化研究院2024年8月5日 附件:附件1:团体标准起草工作组申请表.docx
  • 明天播!赠书|新能源之储能、清洁能源检测技术专场预告
    2023年11月28日-30日,仪器信息网与日本分析仪器工业协会联合举办第六届“新能源材料检测技术发展与应用”网络会议,北京普天德胜科技孵化器有限公司协办,分设四个专场:中日科学家论坛暨氢能源发展与检测技术、新能源电池检测技术、储能材料检测技术、清洁能源检测技术。邀请新能源材料领域研究应用专家、相关检测技术专家,以网络在线报告形式,针对当下新能源材料研究热点、相关检测新技术及难点、新能源市场展望等进行探讨,为同行搭建学习互动平台,增进学术交流,促进我国新能源材料产业高质量发展。明天(11月30日),将为大家直播储能材料检测技术专场、清洁能源检测技术专场。直播间还将设置分享赠书、发红包等活动,欢迎报名参会!一、 主办单位仪器信息网日本分析仪器工业协会二、 协办单位北京普天德胜科技孵化器有限公司三、 参会方式本次会议免费参会,参会报名请点击会议官网:https://www.instrument.com.cn/webinar/meetings/xny2023/ 四、 分享赠书活动将会议直播间分享朋友圈集赞10个,即可获得由袁志刚编著的《碳达峰碳中和:国家战略行动路线图》书籍一本,具体兑换方式见直播间管理员通知,欢迎参与活动。五、 “清洁能源检测技术”专场预告时间报告题目演讲嘉宾清洁能源检测技术(11月30日上午)09:30天然气水合物渗流特性测定方法及进展张郁中国科学院广州能源研究所 研究员10:00JEOL新一代高性能双束系统及环境颗粒检测系统(PCI)的介绍张玮捷欧路(北京)科贸有限公司 应用工程师10:30非铅钙钛矿的瓶颈问题肖立新北京大学 教授11:00聚合物矩阵网络在钙钛矿太阳能电池中的应用魏静北京理工大学 特别副研究员六、“储能材料检测技术”专场预告时间报告题目演讲嘉宾储能材料检测技术(11月30日 下午)14:00储能相变材料关键技术研究及应用张江云广州工业大学 副教授14:30Agilent 5800在储能电池行业的应用及技术优势赵志飞安捷伦科技(中国)有限公司 应用工程师15:00锂离子电池硅基负极粘结剂进展仲皓想中国科学院广州能源研究所 研究员15:30岛津XPS在新能源材料分析中的应用王文昌岛津企业管理(中国)有限公司 应用工程师16:00基于金属热反应硫化锂正极材料的制备邢震宇华南师范大学 副研究员七、 嘉宾简介及报告摘要(按分享顺序)张郁 中国科学院广州能源研究所 研究员【个人简介】张郁研究员主要从事天然气水合物领域的相关工作,包括复杂沉积物体系天然气水合物实验与理论、天然气水合物高效开采技术、天然气水合物钻采安全等方面,获2018年国家技术发明二等奖,2019年广东省自然科学一等奖,2013年广东省科学技术一等奖,入选2019年“广东特支计划”本团创新团队。主持国家自然科学基金,广东省促进经济发展专项资金项目课题等项目11项。共发表SCI论文85篇,获授权国家发明专利36件,美国专利7件,参与编制标准2项。担任可再生能源学会天然气水合物专业委员会与中国计量测试学会热物性专业委员会委员。【摘要】与传统油气藏不同,天然气水合物以固体的形式赋存于沉积物的孔隙或者裂隙,因此其不能像天然气或者原油直接依赖于自身的流动性而实现流动,必须吸收由储层、外界环境、或者人工提供的能量,将其分解成甲烷和水,方可能在沉积物中流动。沉积物的渗流能力决定了气水在储层中的流动,对水合物开采效果具有重要的影响,是天然气水合物开采模拟与方案制定中必须的关键基础物性。水合物存在时沉积物的渗流规律与孔隙空间的微观几何结构密切相关,水合物样品的合成以及在孔隙结构中复杂的赋存形式造成了含水合物沉积物渗流实验相对困难。本报告介绍了天然气水合物体系渗流特性测定的相关技术方法以及取得的部分研究进展与结果。张玮 捷欧路(北京)科贸有限公司 应用工程师【个人简介】现任日本电子应用工程师,主要负责FIB-SEM双束系统及氩离子截面抛光仪的样品测试、技术应用以及培训工作,具有丰富的聚焦离子束、双束系统、扫描电镜等理论基础和应用经历。硕士毕业于新南威尔士大学材料科学专业,主研方向为天然生物材料的压电性质和实际应用,积累了丰富的测试样品制备、超微切片、扫描电镜、原子力显微镜等测试研究经验。本科毕业于河北科技大学金属材料工程学系,主要学习方向为合金钢的热处理方案设计和力学性能优化。【摘要】本报告将从TEM设备联用、STEM快速检测、硬件更新,三个方面介绍JEOL年初发布的新一代高性能FIB-SEM双束系统。同时将介绍JEOL专门针对新能源汽车电池制造业开发的PCI颗粒物监测软件系统。肖立新 北京大学 教授【个人简介】肖立新,日本东京大学博士毕业,现为北京大学物理学院教授,博士生导师。英国皇家化学学会会士,中国材料学会太阳能分会秘书长、国际信息显示学会(SID) 中国北区执委会学术副主席、中国光学工程学会光显示专业委员会常务委员。 长期从事光电功能材料及器件方面的研究,如有机发光材料及其器件,光伏材料及其器件物理等。主持过多次国家自然科学基金,承担973项目子课题。发表国际学术论文160余篇及申请专利共30余件,入选2020全球前2%顶尖科学家“年度影响力”榜单。编著《钙钛矿太阳能电池》(第一、二版),译著《有机电致发光-从材料到器件》,参与编著《锂离子电池》。2015年度教育部自然科学一等奖(第一完成人)。【摘要】从介绍钙钛矿太阳能电池的关键问题出发,阐述非铅钙钛矿材料的重要性,继而介绍非铅钙钛矿材料的研究进展,通过分析目前存在的问题,进一步阐述非铅钙钛矿太阳能电池的瓶颈所在,从而阐述如何突破瓶颈。魏静 北京理工大学 特别副研究员【个人简介】北京理工大学材料学院,特聘副研究员,2012年于电子科技大学集成电路设计与集成系统专业获得学士学位,2017年于北京大学微电子与固体电子专业获得博士学位。2019年7月加入北京理工大学材料学院材料物理与化学系。主要从事新能源材料与器件、钙钛矿光电材料与器件等研究。以第一或通讯作者身份在Nat.Commun., Adv. Mater., Adv. Energy Mater. Nano Energy等杂志发表论文20余篇,其中ESI高被引论文3篇,热点论文3篇,总被引次数超过2000。研究领域:新型能源材料与器件;钙钛矿光电材料与器件。【摘要】钙钛矿太阳能电池(PSCs)的光电转换效率已经超过26%,但寿命远低于工业所需的25年,严重限制了其商业应用。目前报道的多数钙钛矿电池在水分、光照、热或其他因素的干扰下都会严重失效。对此,我们通过设计新型电子传输材料和结构来提高钙钛矿器件的稳定性。本工作首先研究了钙钛矿薄膜的退化机理,之后通过优化电子传输层(ETL),特别是开发新型紫外惰性电子传输材料及基于聚合物矩阵网络的低温介孔结构,来提高PSCs在潮湿环境或光照下的工作稳定性。我们制备了ITO/UV惰性ETL/ Cs0.05FA0.81MA0.14PbI2.55Br0.45/Sprio-MeOTAD/Au结构的太阳能电池,其功率转换效率达到21%,光稳定性得到明显改善。优化后的器件在一个太阳光强下持续光照,最大功率点电压下工作600小时后,保持99%以上的初始性能。在进一步的工作中,需要深入研究PSCs的复杂降解机理,在此基础上开发更具针对性的薄膜改性方法和新型器件结构。张江云 广州工业大学 副教授【个人简介】张江云,博士后,英国赫特福德大学访问学者,广东工业大学副教授。研究方向主要为动力电池及电化学储能系统的热管理,热安全和热灾害防控,具备热能工程与材料学交叉学科专业知识。目前主持/参与国家级,市厅级动力电池热管理领域科研项目20余项。发表相关学术论文20余篇,获授权发明专利8件,参与技术标准编制7件,获得东莞市科学技术进步奖二等奖。【摘要】电池的热安全已经成为制约新能源汽车及电化学储能系统的重大技术瓶颈问题。储能相变材料由于具有高潜热等优势而在热管理领域具有光明的应用前景,尤其是有机相变材料石蜡。本报告以提升电池热安全问题为宗旨,主要从相变材料(高导热型,电绝缘和阻燃型)的制备,性能检测和表征,热管理性能评估几方面系统阐述储能相变材料关键技术研究及应用。赵志飞 安捷伦科技(中国)有限公司 应用工程师【个人简介】安捷伦原子光谱应用工程师,主要负责环境、制药、食品等行业无机元素分析技术支持。【摘要】随着全球能源短缺和气候变化问题日益突出,水能、风能、太阳能等可再生能源技术发展迅速,其中发展低成本、高能量密度的能量储存技术是实现可再生能源技术增长、促进电动汽车及电网等大规模用电系统发展的关键。本报告以电化学储能中的液流电池为例,介绍ICP-OES在储能行业的应用及技术优势。仲皓想 中国科学院广州能源研究所 研究员【个人简介】仲皓想研究员, 硕士生导师,南京大学博士,中山大学博士后,2012年进入中科院广州能源所工作,2017-2018美国劳伦斯伯克利国家实验室访问学者。目前主要从事锂离子/锂硫电池(高分子粘结剂,高容量正负极材料)及锂金属等新能源材料基础及其产业化研究。主持国家自然科学基金面上项目、广东省自然科学基金、博士后基金等数项,参与多项国家及广东省项目;发表SCI论文50余篇;申请发明专利10余项,其中7项已授权、1项美国专利授权。【摘要】现有正负极材料的动力电池比能量已逐渐逼近理论极限,要想提高比能量,必须使用具有更高容量的新一代正负极材料。理论比容量是商业石墨十倍以上的硅材料多年来一直被寄予厚望,但始终未能实现在高容量负极中大规模应用,其根本原因在于硅嵌锂时发生巨大的体积膨胀,及由此引发的一系列负面作用,导致高容量硅基负极无法实现长期稳定循环。 如何消除或者缓解体积膨胀导致的负面作用是让硅基负极走向实用化的研究重点。粘结剂在电极中的比重虽小(质量分数≤10%),但是在减小体积膨胀和保持硅基负极结构稳定性方面发挥着关键作用。开发功能粘结剂是抑制硅基负极膨胀,提升硅基电池性能的有效方法。基于此我们开发了一系列高粘结力粘结剂,高弹性粘结剂及高电子/离子导电粘结剂等,显著提升硅的循环稳定性和倍率性能。王文昌 岛津企业管理(中国)有限公司 应用工程师【个人简介】岛津分析中心应用工程师,2015年毕业于北京科技大学材料专业,曾先后在首钢技术研究院分析中心工作,在英国Kratos总部交流学习,负责XPS的应用开发、技术支持、合作研究等工作,使用XPS技术开展新型材料表征相关研究,在国内外期刊合作发表多篇SCI论文,熟悉XPS数据处理及解析。【摘要】岛津XPS技术特点及其在新能源材料分析领域的应用邢震宇 华南师范大学 副研究员【个人简介】邢震宇,副研究员,香江学者。于2012年在吉林大学化学学院取得化学学士学位(导师:杨柏),于2016年在美国俄勒冈州立大学取得化学博士学位(导师:纪秀磊&陆俊),于2017年在加拿大滑铁卢大学陈忠伟院士课题组从事博士后研究,于2018年被引进到华南师范大学化学学院。 邢震宇担任中国化工学会化工新材料专业委员会委员和广东省材料研究学会青年工作委员会委员。此外,邢震宇还同时担任国家自然科学基金通讯评审专家,广东省自然科学基金通讯评审专家和会议评审专家。此外,还担任材料研究与应用的副主任编委,Batteries (IF=5.938)的Editorial Board ,Energy & Environmental Materials (IF=15.122)、Nano Research (IF=10.269)、Renewable (IF20)、Carbon Research (IF20)、Materials Futures (IF20) 的青年编委。 目前,邢震宇的研究方向包括:(1)金属热反应制备功能材料;(2)碳材料的合成和应用;(3)锂硫电池和钾离子电池电极材料。共发表40篇SCI论文,总引用次数4500,H-index为27。其中,以第一作者/通讯作者在Nature Energy(1篇)、Advanced Materials(1篇)、Nano Energy (4篇)、Energy Storage Materials(1篇)、Small Methods (1篇)、Chemical Engineering Journal(1篇)等国际权威期刊上发表SCI论文24篇。 在产学研方面,邢震宇与宁德新能源展开合作,并在多个创新创业大赛获奖。【摘要】近些年,传统锂离子电池已经无法满足电动汽车对于高比能的需求,而典型的高比能锂硫电池由于锂枝晶带来的安全隐患又无法真正市场化,因此,作为一种同时兼顾高比能和高安全性要求的硫化锂-硅新型电池体系开始成为能源领域的研究重点。但是相对于日益成熟的硅负极材料制备,硫化锂正极材料受限于活化电势高、倍率性能差和容量衰减快等问题,严重阻碍了硫化锂-硅这一电池体系的发展。报告人基于金属热反应制备功能材料一系列系统性的工作积累(Chem. Commun., 2015, 51, 1969 Nano Energy 2015, 11, 600 ChemNanoMat2016, 2, 692 Carbon 2017, 115, 271 Small Methods 2018, 2, 1800062),在对金属热反应瞬时高温性、强还原性和物相分离特殊性的深刻理解基础上,首次通过金属热反应制备了高容量循环稳定的石墨烯包覆的硫化锂纳米胶囊正极材料(Nature Energy 2017, 2, 17090)。除此之外,报告人基于金属热反应首次制备了过渡金属/硫化锂纳米复合物并系统研究了过渡金属对硫化锂电化学行为的影响(Advanced Materials 2020, 32, 2002403)。八、 会议联系会议内容:杨编辑 15311451191(同微信) yanglz@instrument.com.cn会议赞助:刘经理 15718850776(同微信) liuyw@instrument.com.cn
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制