当前位置: 仪器信息网 > 行业主题 > >

酵母浸出物葡萄糖土霉素琼

仪器信息网酵母浸出物葡萄糖土霉素琼专题为您提供2024年最新酵母浸出物葡萄糖土霉素琼价格报价、厂家品牌的相关信息, 包括酵母浸出物葡萄糖土霉素琼参数、型号等,不管是国产,还是进口品牌的酵母浸出物葡萄糖土霉素琼您都可以在这里找到。 除此之外,仪器信息网还免费为您整合酵母浸出物葡萄糖土霉素琼相关的耗材配件、试剂标物,还有酵母浸出物葡萄糖土霉素琼相关的最新资讯、资料,以及酵母浸出物葡萄糖土霉素琼相关的解决方案。

酵母浸出物葡萄糖土霉素琼相关的论坛

  • 【原创】酵母葡聚糖

    β-葡聚糖的活性结构是由葡萄糖单位组成的多聚糖,它们大多数通过β-1,3结合,这是葡萄糖链连接的方式。它能够活化巨噬细胞、嗜中性白血球等,因此能提高白细胞素、细胞分裂素和特殊抗体的含量,全面刺激机体的免疫系统。那么,机体就有更多的准备去抵抗微生物引起的疾病。β-葡聚糖能使受伤机体的淋巴细胞产生细胞因子(IL-1)的能力迅速恢复正常,有效调节机体免疫机能。大量实验表明,β-葡聚糖可促进体内IgM抗体的产生,以提高体液的免疫能力。这种葡聚糖活化的细胞会激发宿主非专一性防御机制,故应用在肿瘤、感染病和治疗创伤方面深受瞩目。经特殊步骤萃取且不含内毒素的β-1,3-葡聚糖在美国FDA已认定是一种安全的物质,可添加在一般食品,许多报导显示老鼠口服酵母β-1,3-葡聚糖,可增加强腹膜细胞抗菌之吞噬作用。酵母葡聚糖是存在于酵母细胞壁中的一种具有增强免疫力活性的多糖——β-葡聚糖。β-葡聚糖广泛存在于各种真菌和植物,如香菇、灵芝、燕麦中,是它们发挥保健作用的主要功效物质。而酵母葡聚糖的免疫增强活性更强,并具有改善血脂、抗辐射、改善肠道功能的作用。

  • 【信息】转基因酵母能进行多种糖分混合发酵

    据美国物理学家组织网12月27日报道,美国伊利诺伊大学香槟分校食品科学与人类营养系、加州大学劳伦斯伯克利国家实验室和英国石油公司(BP)的科学家表示,他们对酿酒酵母进行了基因改造,新得到的酵母菌株可以发酵葡萄糖、纤维二糖(葡萄糖的前体物,由两个结合在一起的葡萄糖组成)和木糖,能更好更多地把植物发酵成替代燃料乙醇。相关研究发表在最新一期的美国《国家科学院院刊》上。酵母以糖为生,并在这个过程中能产生很多对人来说是“宝物”的废物——乙醇和二氧化碳,因此生物燃料工业也使用酵母将植物糖转变为生物乙醇。然而,大多数酵母无法将植物中的葡萄糖、纤维二糖和木糖这三种糖全部转化成有用的燃料,比如,酿酒酵母能很好地发酵葡萄糖,但对木糖却有心无力,这使得利用酵母制造生物燃料的成本居高不下。之前,科学家对酵母菌种进行基因改造,让其代谢木糖,但速度很慢,效率过低。研究小组成员之一、伊利诺伊大学食品科学和人类营养学教授金泳恕(音译)表示,经过基因改造的酵母无法发酵木糖的主要问题是,它接触木糖之前会吸收所有葡萄糖,酵母表面的葡萄糖转运蛋白更愿意同葡萄糖依附在一起。在此项新研究中,基因改造后的酿酒酵母可以同时将纤维二糖和木糖转化为乙醇。转化效率和转化得到的乙醇数量都提高了一倍,这主要归结于混合发酵的协同作用。金泳恕表示,新酵母菌种将木糖转化为乙醇的效率至少比目前已知酵母菌高20%,使其成为最好的发酵木糖的细菌。研究团队通过对酿酒酵母做出几个关键的改进而获得了这样的结果。首先,他们给予这种酵母一个纤维二糖转运蛋白,这意味着其能将纤维二糖直接带入细胞中,而只有当纤维二糖进入到细胞内部时,它才会被转化为葡萄糖。这种方法可以战胜酿酒酵母本身对葡萄糖的偏好,从而专注于将木糖吸收进酵母细胞中。接着,研究人员将从一个消耗木糖的酵母中提取的3种蛋白质插入酿酒酵母中,由此提高了新酵母菌种代谢木糖的速度和效率。他们也对一种人造的同功酶进行了基因修改,让木糖代谢的正常中间产物木糖醇积聚的数量最少。最后,该研究团队使用“进化工程”让新菌种利用木糖的能力达到最大。研究人员表示,混合发酵的成本优势也很明显,其乙醇产量也高于工业标准,这种研究很快将被商业化。

  • 葡萄酒及果酒出厂检验方法(酒精度、总糖、干浸出物、滴定酸、挥发酸、游离二氧化硫、总SO2)

    葡萄酒及果酒出厂检验方法(酒精度、总糖、干浸出物、滴定酸、挥发酸、游离二氧化硫、总SO2)一、感官检查与评定1、外观 在适宜光线(非直射阳光)下,以手持杯底或用手握住玻璃杯柱,举杯齐眉,用眼观察杯中酒的色泽、透明度与澄清程度,有无沉淀及悬浮物;起泡和加气起泡葡萄酒要观察起泡情况,作好详细记录。2、香气 先在静止状态下多次用鼻嗅香,然后将酒杯捧握手掌之中,使酒微微加温,并摇动酒杯,使杯中酒样分布于杯壁上。慢慢地将酒杯置于鼻孔下方,嗅闻其挥发香气,分辨果香、酒香或有否其他异香,写出评语。 3、滋味 喝入少量样品于口中,尽量均匀分布于味觉区,仔细品尝,有了明确印象后咽下,再体会口感后味,记录口感特征。 4、典型性 根据外观、香气、滋味的特点综合分析,评定其类型、风格及典型性的强弱程度,写出结论意见(或评分)。二、酒精度 1、密度瓶法 (1)、原理 以蒸馏法去除样品中的不挥发性物质,用密度瓶法测定馏出液的密度。根据馏出液(酒精水溶液)的密度,查附录A(规范性附录),求得20℃时乙醇的体积百分数,%(体积分数),即酒精度。 (2)、仪器 1)、分析天平:感量0.0001g。 2)、全玻璃蒸馏器:500 mL。 3)、高精度恒温水浴:20.0±0.1℃。 4)、附温度计密度瓶:25或50mL。(3)、试样的制备 用一洁净、干燥的100mL容量瓶准确量取100mL样品(液温20℃)于500mL蒸馏瓶中,用 50mL水分三次冲洗容量瓶,洗液并入蒸馏瓶中,再加几颗玻璃珠,连接冷凝器,以取样用的原容量瓶作接收器(外加冰浴)。开启冷却水,缓慢加热蒸馏。收集馏出液接近刻度,取下容量瓶,盖塞。于20℃水浴中保温30min,补加水至刻度,混匀,备用。 (4)、分析步骤 1)、蒸馏水质量的测定 a) 将密度瓶洗净并干燥,带温度计和侧孔罩称量。重复干燥和称量,直至恒重(m)。 b) 取下温度计,将煮沸冷却至15℃左右的蒸馏水注满恒量的密度瓶,插上温度计,瓶中不得有气泡。将密度瓶浸入 20.0±0.1℃的恒温水浴中,待内容物温度达20℃,并保持10min不变后,用滤纸吸去侧管溢出的液体,使侧管中的液面与侧管管口齐平,立即盖好侧孔罩,取出密度瓶,用滤纸擦干瓶壁上的水,立即称量(m1)。 2)、试样质量的测量 将密度瓶中的水倒出,洗净并使之干燥,然后装满按试样的制备中制备的试样,按分析步骤b)同样操作,称量(m2)。 (5)、结果计算: 20 m2-m+Aρ = ————×ρ0 …………………………………(1) 20 m1-m+A m1-mA =ρa× ———— ………………………………………(2) 997.0 式中:ρ20——试样馏出液在20℃时的密度,g/L; m——密度瓶的质量,g; m1——20℃时密度瓶与充满密度瓶蒸馏水的总质量,g; m2——20℃时密度瓶与充满密度瓶试样馏出液的总质量,g; ρ0——20℃时蒸馏水的密度(998.20 g/L); A——空气浮力校正值; ρa——干燥空气在 20℃、1013.25hPa时的密度值(≈1.2 g/L); 997.0——在20℃时蒸馏水与干燥空气密度值之差,g/L。 20根据试样馏出液的密度ρ20,查附录A(规范性附录),求得酒精度。 所得结果表示至一位小数。 (6)、精密度 在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术平均值的1% 。2、酒精计法 (1)、原理 以蒸馏法去除样品中的不挥发性物质,用酒精计法测得酒精体积百分数示值,按附录B(规范性附录)加以温度校正,求得 20℃时乙醇的体积百分数,即酒精度。 (2)、仪器 1)、酒精计(分度值为0.1度)。 2)、全玻璃蒸馏器:1 000 mL。 (3)、试样的制备 用一洁净、干燥的 500 mL容量瓶准确量取 500 mL(具体取样量应按酒精计的要求增减)样品(液温 20℃)于1000 mL蒸馏瓶中,以下操作同密度瓶法(3)的步骤。 (4)、分析步骤 将按 密度瓶法(3)的步骤制得的试样倒入洁净、干燥的 500 mL量筒中,静置数分钟,待其中气泡消失后,放入洗净、干燥的酒精计,再轻轻按一下,不得接触量筒壁,同时插入温度计,平衡5 min,水平观测,读取与弯月面相切处的刻度示值,同时记录温度。根据测得的酒精计示值和温度,查附录B,换算成20℃时酒精度。所得结果表示至一位小数。 (5)、精密度 在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术平均值的1% 。三、总糖(以葡萄糖计、直接滴定法)1、原理 利用费林溶液与还原糖共沸,生成氧化亚铜沉淀的反应,以次甲基蓝为指示液,以样品或经水解后的样品滴定煮沸的费林溶液,达到终点时,稍微过量的还原糖将蓝色的次甲基蓝还原为无色,以示终点。根据样品消耗量求得总糖或还原糖的含量。 2、试剂和材料 2.1 盐酸溶液(1+1)。 2.2 氢氧化钠溶液:200 g/L。 2.3 标准葡萄糖溶液 2.5 g/L:精确称取 2.5g(称准至0.0001g)在105~110℃烘箱内烘干3h并在干燥器中冷却的葡萄糖,用水溶解并定容至1 000 mL。 2.4 次甲基蓝指示液 10g/L:称取 1.0 g次甲基蓝,溶解于水中,稀释至100mL。 2.5 费林溶液a) 配制:按GB/T 603配制。 b) 标定预备试验:吸取费林溶液Ⅰ、Ⅱ 各 5.00 mL于250 mL三角瓶中,加 50 mL水,摇匀,在电炉上加热至沸,在沸腾状态下用制备好的葡萄糖标准溶液滴定,当溶液的蓝色将消失呈红色时,加2滴次甲基蓝指示液,继续滴至蓝色消失,记录消耗的葡萄糖标准溶液的体积。 c) 正式试验:吸取费林溶液Ⅰ、Ⅱ各 5.00 mL于 250 mL三角瓶中,加 50 mL水和比预备试验少 1 mL的葡萄糖标准溶液,加热至沸,并保持 2 min,加 2滴次甲基蓝指示液,在沸腾状态下于 1 min内用葡萄糖标准溶液滴至终点,记录消耗的葡萄糖标准溶液的总体积。 d)计算 mF=———×V …………………………(3) 1000式中: F——费林溶液Ⅰ、Ⅱ各 5 mL相当于葡萄糖的克数,g; m——称取葡萄糖的质量,g; V——消耗葡萄糖标准溶液的总体积,mL。 3、试样的制备 3.1 测总糖用试样:准确吸取一定量的样品(V1)于100mL容量瓶中,使之所含总糖量为 0.2~0.4 g,加 5 mL盐酸溶液(1+1).加水至 20 mL,摇匀。于 68±1℃水浴上水解 15 min,取出,冷却。用200 g/L氢氧化钠溶液中和至中性,调温至 20℃,加水定容至刻度(V2)。 3.2 测还原糖用试样:准确吸取一定量的样品(V1)于 100 mL容量瓶中,使之所含还原糖量为 0.2~0.4g,加水定容至刻度。 4、分析步骤 以试样代替葡萄糖标准溶液,按2.5b同样操作,记录消耗试样的体积(V3),结果按式(4)计算。 测定干葡萄酒样品按2.5b操作时,正式滴定需用葡萄糖标准溶液滴定至终点。结果按式(5)计算。 5、结果计算 FX=——————×1000 …………………………(4) (V1/V2)×V3 F-G×VX=——————×1000 …………………………(5) (V1/V2)×V3式中:X——总糖或还原糖的含量,g/L; F——费林溶液Ⅰ、Ⅱ各 5 mL相当于葡萄糖的克数,g; V1——吸取的样品体积,mL;V2——样品稀释后或水解定容的体积,mL; V3——消耗试样的体积,mL; G——葡萄糖标准溶液的准确浓度,g/mL; V——消耗葡萄糖标准溶液的体积,mL。 所得结果应表示至一位小数。 6、精密度 在重复性条件下获得的两次独立测定结果的绝对差值不得超过算术平均值的2% 。四、干浸出物 1、原理 用密度瓶法测定样品或蒸出酒精后的样品的密度,然后用其密度值查附录C(规范性附录),求得总浸出物的含量。再从中减去总糖的含量,即得干浸出物的含量。 2、仪器 2.1 瓷蒸发皿:200 mL。 2.2 高精度恒温水浴:20.0±0.1℃。 2.3 附温度计密度瓶:25或50 mL。 3、试样的制备 用 100 mL 容量瓶量取 100 mL样品(20℃),倒入 200 mL瓷蒸发皿中,于水浴上蒸发至约为原体积的 1/3取下,冷却后,将残液小心地移入原容量瓶中,用水多次荡洗蒸发皿,洗液并入容量瓶中,于 20 ℃定容至刻度。 也可使用密度瓶法测定酒精中蒸出酒精后的残液,在20℃时以水定容至 100 mL。 4、分析步骤 方法一:取上述3试样的制备中制取的试样,按密度瓶法测定酒精分析步骤同样操作,并按 密度瓶法测定酒精的密度计算公式计算出脱醇样品 20 ℃时的密度ρ1 ,以 ρ1×1.0018的值,查附录 C,得出总浸出物含量(g/L)。 方法二:直接取未经处理的样品,按密度瓶法测定酒精分析步骤同样操作,并按密度瓶法测定酒精的密度计算公式计算出该样品20℃时的密度ρB,

  • 葡萄酒中真假甘油的鉴别

    葡萄酒中甘油掺伪鉴别检测方法:丙三醇又名甘油,是酵母酒精发酵的副产物,具有甜味并产生圆润的口感,可增加挂壁效果。葡萄酒中的甘油含量一般为5~10 g/L。丙三醇具有几乎与葡萄糖相同的甜味强度,在口感上,丙三醇的甜味可以立即表现出来:它加强葡萄酒的厚实感,并赋予葡萄酒柔和、肥硕的感官特征,适量的丙三醇对提升葡萄酒的口感有益。我国?GB2760—2014《食品安全国家标准食品添加剂使用标准》中规定不允许在葡萄酒中添加丙三醇,而我国葡萄酒产品标准未对葡萄酒中的丙三醇含量作相关规定。一些葡萄酒生产企业为了改善葡萄酒的口感、提高干浸出物含量、增强葡萄酒的挂壁效果,在葡萄酒中人为添加丙三醇(甘油),这不仅违反了葡萄酒原汁酿造的原则,也给葡萄酒的制假售假创造了机会。丙三醇的检测方法多种多样。

  • 【原创】瓶装葡萄酒中酵母菌的检查方法

    葡萄酒在瓶装时,必须认真考虑葡萄酒是否已经达到了除菌、灭菌的目的。为了准确达到这个目的,就要对瓶装的葡萄酒进行快速而可靠的检验。这里列举了3个检查方法,仅供同行朋友们在实际生产中,根据企业的实际条件进行参考。  一、格森海姆(Geisenheimer)检定法  将被检验的葡萄酒在无菌的条件下,接入与其等量的葡萄汁,便为酵母提供了良好的繁殖条件,酵母开始快速繁殖和发酵。酵母繁殖的速度和发酵的强度,是衡量被检样品染菌的程度。  具体操作如下:  取标准试管3支,分别注入10mL葡萄汁,并加棉塞封口,置于高压灭菌锅中灭菌;将吸管用纸包好,并在160℃下灭菌。然后小心的拔除葡萄酒瓶的软木塞,立即用火焰将瓶口附着的微生物灭除,再用无菌吸管从瓶底吸出10mL被检葡萄酒,移入已灭菌葡萄汁的试管内,每份样品做平行样3支。  若被检的样品活酵母较多,在3—5天内即可检定其发酵度;若酵母较少,发酵需要两倍于此的时间,由此可断定生产线是否处于受控状态,断定瓶装酒出厂后是否会发生浑浊等质量事故。  这个方法十分简便,不需要特别的仪器,对小型葡萄酒厂十分适用,这是其优点。缺点是只能检定出葡萄酒中是否存在酵母菌,无法进行定量分析。  二、薄膜过滤法  借助于不同孔径的过滤片(孔径一般为2微米以下),在无菌条件下过滤被检葡萄酒,分离出酵母及其它微生物,然后对滤片上的微生物进行生长培养,计算出现的菌落数,并进行其它各项必要的检查。  操作方法如下:  将所有参与过滤的仪器、器皿进行彻底消毒,在无菌的条件下进行过滤等操作。在每次分析之前,将过滤器及过滤片置于高压锅内灭菌,用经火焰烧过的镊子取已灭菌的过滤片放入过滤器中。  被检瓶酒在开启前,必须仔细用75%酒精擦拭瓶口,小心地拔除软木塞,勿使开瓶刀穿通软木塞。  开始时先将软木塞拔出四分之三,然后用手轻轻取下软木塞,瓶口在倒酒前先用火焰烧一下,再将葡萄酒一点一点地倒入过滤漏斗中。  过滤结束后,用火焰烧过的镊子在漏斗内取出滤片,置于培养皿中,并摆放平整,倒入适量的酵母培养基(约3mL),然后标明日期和试样编号,置于生物培养箱内,在25℃下培养3—5天。为避免凝结水影响菌落生长,将培养皿反扣于培养箱内。若过滤片上的酵母菌是活的,酵母即进行繁殖,在培养基上会出现菌落。  如果未发现菌落生长,说明被检的葡萄酒是稳定的,不会出现酵母菌引起的浑浊;如果每瓶样有5个以上的菌落出现,说明葡萄酒的除菌或杀菌操作不彻底,葡萄酒有不稳定的因素,应该严格检查生产过程中的每个环节,直到查出原因为止。  这一方法能对瓶装酒内各种微生物进行定量检定,但需要选择适当孔径的滤片和培养基,并由掌握基本微生物学的熟练人员操作。  三、快速检定法  薄膜过滤法可以用显微镜对滤片做仔细检查,迅速检出活酵母;快速检定法则可将死的和活的微生物区别开来,但要求瓶装酒内必须不含其他悬浮物。  在适宜的温度下,于8—14小时内,具有繁殖能力的菌体生长成为微小的菌落,用显微镜观察,可将死的、没有繁殖能力的菌落区别开来。活菌体在培养时会形成小的菌落,死菌体只有单个的存在。

  • 发酵生产中种子的制备过程

    在发酵生产过程中,种子制备的过程大致可分为两个阶段:(1)实验室种子制备阶段(2)生产车间种子制备阶段 一、实验室种子的制备实验室种子的制备一般采用两种方式:对于产孢子能力强的及孢子发芽、生长繁殖快的菌种可以采用固体培养基培养孢子,孢子可直接作为种子罐的种子,这样操作简便,不易污染杂菌。对于产孢子能力不强或孢子发芽慢的菌种,可以用液体培养法。(一)孢子的制备1,细菌孢子的制备细菌的斜面培养基多采用碳源限量而氮源丰富的配方。培养温度一般为37℃。细菌菌体培养时间一般为1~2天,产芽孢的细菌培养则需要5~10天。2,霉菌孢子的制备霉菌孢子的培养一般以大米、小米、玉米、麸皮、麦粒等天然农产品为培养基。培养的温度一般为25~28℃。培养时间一般为4~14天。3,放线菌孢子的制备放线菌的孢子培养一般采用琼脂斜面培养基,培养基中含有一些适合产孢子的营养成分,如麸皮、豌豆浸汁、蛋白胨和一些无机盐等。培养温度一般为28℃。培养时间为5~14天。(二)液体种子制备1,好氧培养对于产孢子能力不强或孢子发芽慢的菌种,如产链霉素的灰色链霉菌(S. griseus)、产卡那霉素的卡那链霉菌(S. Kanamuceticus)可以用摇瓶液体培养法。将孢子接入含液体培养基的摇瓶中,于摇瓶机上恒温振荡培养,获得菌丝体,作为种子。其过程如下: 试管→三角瓶→摇床→种子罐2,厌氧培养对于酵母菌(啤酒,葡萄酒,清酒等),其种子的制备过程如下:试管→三角瓶→卡式罐→种子罐例如生产啤酒的酵母菌一般保存在麦芽汁琼脂或MYPG培养基(培养基配制:3克麦芽浸出物,3克酵母浸出物,5克蛋白胨,10克葡萄糖和20克琼脂与升水中)的斜面上,于4℃冰箱内保藏。每年移种3-4次。将保存的酵母菌种接入含10ml麦芽汁的500-1000ml三角瓶中,再于25℃培养2-3天后,再扩大至含有250-500ml麦芽汁的500-1000ml三角瓶中,再于25℃培养2天后,移种至含有5-10L麦芽汁的卡氏培养罐中,于15-20℃培养3-5天即可作100L麦芽汁的发酵罐种子。从三角瓶到卡氏培养罐培养期间,均需定时摇动或通气,使酵母菌液与空气接触,以有利与酵母菌的增殖。二、生产车间种子制备实验室制备的孢子或液体种子移种至种子罐扩大培养,种子罐的培养基虽因不同菌种而异,但其原则为采用易被菌利用的成分如葡萄糖、玉米浆、磷酸盐等,如果是需氧菌,同时还需供给足够的无菌空气,并不断搅拌,使菌(丝)体在培养液中均匀分布,获得相同的培养条件。1,种子罐的作用:主要是使孢子发芽,生长繁殖成菌(丝)体,接入发酵罐能迅速生长,达到一定的菌体量,以利于产物的合成。2,种子罐级数的确定种子罐级数:是指制备种子需逐级扩大培养的次数,取决于:(1)菌种生长特性、孢子发芽及菌体繁殖速度;(2)所采用发酵罐的容积。 比如:细菌:生长快,种子用量比例少,级数也较少,二级发酵。 茄子瓶→种子罐→发酵罐霉菌:生长较慢,如青霉菌,三级发酵 孢子悬浮液→一级种子罐(27℃,40小时孢子发芽,产生菌丝 )→二级种子罐(27℃,10~24小时,菌体迅速繁殖,粗壮菌丝体)→发酵罐放线菌:生长更慢,采用四级发酵酵母:比细菌慢,比霉菌,放线菌快,通常用一级种子3,确定种子罐级数需注意的问题(1)种子级数越少越好,可简化工艺和控制,减少染菌机会(2)种子级数太少,接种量小,发酵时间延长,降低发酵罐的生产率,增加染菌机会(3)虽然种子罐级数随产物的品种及生产规模而定。但也与所选用工艺条件有关。如改变种子罐的培养条件,加速了孢子发芽及菌体的繁殖,也可相应地减少种子罐的级数。

  • 糖是葡萄酒中甜味的主要来源

    糖是葡萄酒中甜味的主要来源,它们有多种形式。在葡萄植株内——实际上任何植物都是——主要的供能底物是蔗糖 (在动物体内则是葡萄糖)。蔗糖是一种双糖,是单个葡萄糖和单个果糖分子的结合。在葡萄成熟过程中,蔗糖会被分解,所以葡萄醪开始发酵时,葡萄糖和果糖总是以等量存在。葡萄糖、果糖与蔗糖酵母菌(他们拉丁文名字的本义就是"嗜糖真菌")会优先消耗葡萄糖,因此葡萄酒中的残糖通常有 60% 至 70% 是果糖,具体比例取决于葡萄品种和酵母菌株。果糖分子可以与我们味蕾上的甜味受体以更高的效率相互作用,尝起来是葡萄糖的两倍甜。这就食品工业严重地依赖高果糖玉米糖浆的部分原因,而且这种糖浆的生产成本极低。葡萄酒中还含有少量的其他糖,通常可以忽略不计。它们包括纤维二糖、半乳糖和戊糖。戊糖就是五碳糖,如阿拉伯糖、鼠李糖和木糖。由于酵母菌并不会利用它们,它们通常被称为"不可发酵糖"。再加上对人类来说味道不是很甜,所以人们很少讨论它们。

  • 向您介绍葡萄酿酒酵母CEC

    向您介绍葡萄酿酒酵母CEC 目前CEC系列酵母酿造的酒,已经多次在国内外各大赛事中获得金奖、大金奖,相信以后会有更多本土酵母酿制的酒在各大赛事中脱颖而出!

  • 固体样品霉菌酵母菌辨认方法

    我们测定固体样品中霉菌和酵母菌,刚开始使用“马铃薯葡萄糖琼脂(PDA)”进行测定,由于样品是灰色粉末状,培养了三天后看不出长菌迹象。 同时采用“霉菌酵母菌显色培养基”进行了检测,不到两天就长出蓝绿色圆点,根据说明书说是酵母菌,我又将PDA培养基覆盖到蓝绿色菌的平皿中培养了24小时,长出很多菌,请帮忙分析一下是什么菌?为什么同一样品采用PDA和“显色培养基”进行检测,一个可以检测出霉菌,而另一个检测不出来,很头痛,也不知道怎么判定,求助!

  • 【原创】【第二届原创作品大赛】假葡萄酒的鉴定分析

    生活富裕喝葡萄酒,中国人开始喝葡萄酒了,葡萄酒市场异常火爆。洋葡萄酒涌入中国,国内又多了假洋葡萄酒;品牌葡萄酒畅销,又冒出许多假冒品牌葡萄酒。要做假葡萄酒,是因为这种东西有市场。 什么是假葡萄酒,如何进行分析鉴定呢? 我们首先要了解葡萄酒。葡萄酒只能是破碎或未破碎的新鲜果实或葡萄汁经完全或部分酒精发酵所获得的饮料。葡萄酒的风格决定于葡萄品种,气候和土壤条件。葡萄根系吸收土壤中养分在葡萄成熟过程中积累,形成糖类,如葡萄糖、果糖等多种糖 ;酸类如苹果酸、酒石酸、柠檬酸等;还有多酚类色素、无色多酚类如:酚酸、聚合多酚、丹宁等;芳香物质、果胶物质、含氮物质、酶和维生素。 葡萄发酵过程中,葡萄在酵母菌和生物酶的作用下,经过复杂的生化反应,产生更多的有机物质,葡萄酒生产的每一过程都伴随着生物产品的转化过程。同时,水和酒精是双介质溶剂,使之多种成分溶入葡萄酒中。葡萄酒具有了多样性、变化性、复杂性、不稳定性和自然特性。目前在葡萄酒中已鉴定出了一千多种物质。鉴于葡萄酒这种特性,假的即使加入再多物质也难以达到葡萄酒的色泽、香气、口感以及三者之间的和谐与平衡。 鉴别真假葡萄酒,其实很简单,从感观指标上就很容易辨别: 感观辨别葡萄酒 1、观色:假葡萄酒颜色艳丽,黑红色,紫红色,血红色,亮红色,给人不是自然色泽感觉,发黑,发紫,往往透明度差或透明度异常。 2、流动性:流动性差,粘稠,特别浓厚,有的有微小颗粒(假冒原汁葡萄酒出现颗粒更多),有的有沉淀。 3、闻香:浮香味大,香精味明显,假葡萄酒一般缺乏清新果香,没有发酵香气和陈酿香气。 4、口感:假葡萄酒口感淡薄,缺乏葡萄酒的醇厚,丰满,缺少立体骨架感。大多给人一种与饮料相似的感觉,假葡萄酒一般很少杀菌。 5、外观:包装多采用桶装,回收旧瓶装。售价也便宜,包装名称往往繁多,怪奇,假洋葡萄酒多采用回收瓶,重新装酒,仔细观察,木塞,瓶不配套。假冒品牌酒多采用回收旧瓶和过期的旧商标。 感观容易辨别假葡萄酒,但通过实验更有说服力。笔者通过几年的实验,摸索出了以下四项检测项目和方法,用于鉴别葡萄酒的真伪。 1、真实干浸出物测定,增稠剂的添加量测定干浸出物是指葡萄酒中不破坏任何非挥发性物质的条件下测定葡萄酒中的所有非挥发性物质,主要有固定酸及其金属盐、甘油、单宁、色素、果胶和矿物质等。加增稠剂的葡萄酒干浸出物测定往往不准确。因此依据干浸出物的指标含量确定此酒是否为假酒,具体作法如下: 1.1、采用75mm漏斗定性滤(中速)ф15㎝进行过滤,验证是否添加增稠剂 : 调温至20℃的酒样50ml,一次汁倒入滤纸的漏斗中,开始至滤净时间 ≤7min 时,判断葡萄酒样中不含增稠剂,反之,则含有增稠剂(起泡葡萄酒,待静止无气泡逸出时可采用此方法)。 1.2、真实干浸出物含量:取用中性滤纸过滤二遍的酒样,即可测出真实干浸出物含量B。 1.3、测未过滤酒样的干浸出物含量A,则增稠剂加入量为C,即有C=A—B(干浸出物按GB/T15038规定的方法检测) 2、多种酸的分析检测真正葡萄酒中酸的成分有多种复合组成(如含苹果酸,酒石酸,柠檬酸,乳酸,醋酸,琥珀酸等),而假葡萄酒往往含有其中的一种或两种酸(其酸的成分大多数以柠檬酸为主),控制葡萄酒中柠檬酸最大限量,酒石酸的最小限量,检测酒中酸的比例都是鉴别假葡萄酒的有效方法。 3、葡萄酒中总酚的测定和合成色素的检测 3.1、葡萄中含有相应多酚物质,可测定总酚含量鉴别假葡萄酒,通过做马许实验可检测酒样中是否有合成色素,以鉴别此酒样中是否掺假。 3.2、另一种方法:葡萄酒用碱中和到PH值为5.4左右时酒颜色灰白带绿,加盐酸马上还原。反之,有合成色素(没有葡萄原酒)。 4、葡萄酒中SO2测定 葡萄酒中有SO2存在,而假葡萄酒中往往不含有SO2成分,因为加入SO2的假葡萄酒从口感、气味方面都给人不愉快的感觉。 总之,假葡萄酒辨别很容易。只要我们不断积累经验,在感官方面认真品尝,从理化指标的分析结果上仔细判定,就能完全分辨出真假葡萄酒。

  • 酵母培养基的制备

    一、目的要求了解合成培养基、半合成培养基和天然培养基的配制原理。  学习和掌握麦芽汁培养基、马铃薯葡萄糖培养基、豆芽汁葡萄糖培养基和察氏培养基的配制方法。二、基本原理 麦芽汁培养基和马铃薯葡萄糖培养基被广泛用于培养酵母菌和霉菌。马铃薯葡萄糖培养基有时也可用于培养放线菌。豆芽汁葡萄糖培养基也是培养酵母菌及霉菌的一种优良培养基。察氏培养基主要用于培养霉菌观察形态用。麦芽汁培养基为天然培养基,马铃薯葡萄糖培养基和豆芽汁葡萄糖培养基二者均为半合成培养基,而察氏培养基则为合成培养基。培养基配方中出现的自然pH系指培养基不经酸、碱调节而自然呈现的pH。 三、实验材料 (一) 药品 葡萄搪、蔗糖、NaN03、K2HP04、KCl、MgSO4·7H2O,FeS04、琼脂。   (二) 仪器 天平、高压蒸汽灭菌锅。   (三) 玻璃器皿 移液管、试管、锥形瓶、烧杯、量筒、培养皿、玻璃漏斗等。   (四) 其他物品 药匙、pH试纸、称量纸、记号笔、棉花、纱布、线绳、塑料试管盖、牛皮纸、报纸、新鲜麦芽汁、黄豆芽、马铃薯等。四、实验内容 (一) 麦芽汁培养基的配制 1.培养基成分 新鲜麦芽汁一般为10-15波林。 2.配制方法 (1) 用水将大麦或小麦洗净,用水浸泡6-12h,置于15℃阴凉处发芽,上盖纱布,每日早、中、晚淋水一次,待麦芽伸长至麦粒的两倍时,让其停止发芽,晒干或烘干,研磨成麦芽粉,贮存备用。   (2) 取一份麦芽粉加四份水,在65℃水浴锅中保温3-4h,使其自行糖化,直至糖化完全(检查方法是取0.5ml的糖化液,加2滴碘液,如无蓝色出现,即表示糖化完全)。   (3) 糖化液用4-6层纱布过滤,滤液如仍混浊,可用鸡蛋清澄清(用一个鸡蛋清,加水20 ml,调匀至生泡沫,倒入糖化液中,搅拌煮沸,再过滤)。   (4) 用波美比重计检测糖化液中糖浓度,将滤液用水稀释到10-15波林,调pH至6.4。如当地有啤酒厂,可用未经发酵,未加酒花的新鲜麦芽汁,加水稀释到10-15波林后使用。   (5) 如配固体麦芽汁培养基时,加入2%琼脂,加热融化,补充失水。   (6) 分装、加塞、包扎。   (7) 高压蒸汽灭菌 100 Pa灭菌20 min。 (二) 马铃薯葡萄糖培养基的配制1.培养基成分   马铃薯   20g   葡萄糖   2 g   琼脂    1.5-2g   水     100ml   自然pH  2.配制方法  (1) 配制20%马铃薯浸汁 取去皮马铃薯200g,切成小块,加水1000ml。80℃浸泡lh,用纱布过滤,然后补足失水至所需体积。100 Pa灭菌20 min。即成20%马铃薯浸汁,贮存备用。   (2) 配制时,按每100 ml马铃薯浸汁加入2g葡萄糖,加热煮沸后加入2g琼脂,继续加热融化并补足失水。   (3) 分装、加塞、包扎。   (4) 高压蒸汽灭菌 100 Pa灭菌20 min。 (三)豆芽汁葡萄糟培养基的配制 1.培养基成分   黄豆芽   10g   葡萄糖   5g   琼脂    1.5-2g   水     100ml   自然pH   2.配制方法  (1) 称新鲜黄豆芽10g,置于烧杯中,再加入100 ml水,小火煮沸30 min,用纱布过滤,补足失水,即制成10%豆芽汁。   (2) 配制时,按每100 ml10%豆芽汁加入5g葡萄糖,煮沸后加入2 g琼脂,继续加热融化,补足失水。   (3) 分装、加塞、包扎。   (4) 高压蒸汽灭菌 100 Pa灭菌20 min。(四)察氏(czapck)培养基的配制1.培养基成分   蔗糖       3g   NaN03     0.3g   K2HP04     0.1g   KCl        0.05g   MgSO4·7H2O  0.05 g   FeS04      0.001 g   琼脂      1.5-2g   蒸馏水     100ml   自然pH   2.配制方法  (1) 称量及溶化 量取所需水量约2/3左右加入到烧杯中,分别称取蔗糖、NaNO3 、K2HP04 、KCl、MgSO4。依次逐一加入水中溶解。按每100 ml培养基加入1ml 0.1%的FeS04溶液。   (2) 定容 候药品全部溶解后,将溶液倒入量筒中,加水至所需体积。   (3) 加琼脂 加入所需量琼脂,加热融化,补足失水。   (4) 分装、加塞、包扎。   (5) 高压蒸汽灭菌 100 Pa灭菌20 min。

  • 阿拉伯胶-葡萄糖和果糖-薄层板变黑

    阿拉伯胶-葡萄糖和果糖-薄层板变黑

    大家好: 按照15版药典,检测阿拉伯胶的“葡萄糖和果糖”项目,结果是硅胶板在喷了显色剂,然后放入烘箱加热后,整个硅胶板都变黑了。.且后面研究发现,直接将显色剂喷到板上,板在烘箱中加热,板就变黑了。求助有此经验的同学,问题会出在哪里?我们自己调查的结果可能是如下几个方面,:1- 硅胶板质量问题(用了2个品牌的板,国药集团和上海信宜的,都出现了这样的问题,可能性小);2- 显色剂有问题(用的都是新开瓶的试剂,可能性小);3- 药典的方法有问题,要求用的硅胶G板,是不是应当用不同的板?附:检验方法葡萄糖和果糖 取本品0.1g ,置离心管中,加1%三氟乙酸溶液2 m l ,强力振摇使溶解,密塞120°C加热1 小时,离心,小心转移上层液至50ml烧杯中,加水10ml减压蒸发至干. 残渣加水0 .1m l及甲醇0.9ml,离心分离沉淀。如有必要,用醇1ml稀释上层清液。另分别取阿拉伯糖、半乳糖、葡萄糖、鼠李糖及木糖对照品各lOmg于lm l水中,用甲醇稀释至10ml,作为对照品溶液。照薄层色谱法(通则0502)试验,吸取上述两种溶液各10μl,分别点于同一硅胶G 薄层板上,以1 .6%磷酸二氢钠溶液-正丁醇-丙酮(10:4 0: 50)为展开剂,展开,取出,晾干,喷以对甲氧基苯甲醛溶液(取对甲氧基苯甲醛0.5ml,加冰醋酸10m丨,甲醇8 5 m l,琉酸5ml,摇匀,即得)至恰好湿润,立即在110C加热10分钟,放冷,立即检视,对照品溶液应显示的5个淸晰分离的斑点,从下到上的顺序依次为半乳糖(灰绿色或绿色)、葡萄糖(灰色)、阿拉伯糖(黄绿色)、木糖(绿灰色或黄灰色)、鼠李糖(黄绿色)。供试品色谱中,在与半乳糖和阿拉伯糖对照品色谱相应的位置之间,不得显灰色或灰绿色斑点。http://ng1.17img.cn/bbsfiles/images/2015/10/201510130951_569848_1835550_3.jpg

  • 中元胶囊中盐酸氨基葡萄糖检测?

    中元胶囊中盐酸氨基葡萄糖检测中元胶囊中盐酸氨基葡萄糖检测中元胶囊中盐酸氨基葡萄糖检测中元胶囊中盐酸氨基葡萄糖检测中元胶囊中盐酸氨基葡萄糖检测

  • CNS_01.312_葡萄糖酸钠

    CNS_01.312_葡萄糖酸钠

    [font='calibri'][size=13px] [/size][/font][font='calibri'][size=14px] [/size][/font][size=29px]葡萄糖酸钠[/size][font='calibri'][size=29px] [/size][/font][font='calibri'][size=21px] [/size][/font][size=21px]林扬[/size][align=center][font='黑体'][size=20px]摘 要 [/size][/font][/align][align=center][font='calibri'][size=18px] [/size][/font][/align][font='黑体']摘要[/font][font='黑体']:[/font]葡[font='黑体']萄糖酸钠的分子式为C[/font][font='黑体'][size=16px]6[/size][/font][font='黑体']H[/font][font='黑体'][size=16px]11[/size][/font][font='黑体']O[/font][font='黑体'][size=16px]7[/size][/font][font='黑体']Na,分子量为218.14。葡萄糖酸钠广泛用于工业中。在食品工业中,葡萄糖酸钠作为食品添加剂,可以赋予食品酸味,增强食品的味道,防止蛋白质变性,改善不良的苦味和涩味,并取代盐来获得低钠,无钠的食品。本文简述了食品添加剂葡萄糖酸钠的理化性质及其主要的生产制备工艺[/font][font='黑体'],[/font][font='黑体']并参照国家标准[/font][font='黑体'],[/font][font='黑体']展示了几种常见的葡萄糖酸钠的检测方法[/font][font='黑体']。[/font][font='黑体']关键词[/font][font='黑体']:葡萄糖酸钠、食品添加剂[/font][font='黑体']、[/font][font='黑体']制备[/font][font='黑体']、[/font][font='黑体']检测[/font][font='calibri'][size=18px] [/size][/font] [font='calibri'][size=18px] [/size][/font][size=18px]引言[/size]葡萄糖酸钠是一种重要的食品添加剂, 在食品中的应用前景广阔,因为其广泛的来源,且无毒性,无潮解性,稳定性和良好的螯合性能,在营养增补剂、食品保鲜剂、品质改良剂等方面有广泛的应用。在2021年8月即将实施的GB1886.320-2021中,国家市场监督总局、国家卫生健康委员会对食品添加剂葡萄糖酸钠的相关指标及检测方法设定了国家标准。[size=18px]1[/size][size=18px].[/size][size=18px]葡萄糖酸钠的理化性质[/size][font='宋体'][size=16px][1][/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262015125951_6792_1608728_3.png[/img]分子式:C[font='宋体'][size=16px]6[/size][/font]H[font='宋体'][size=16px]11[/size][/font]NaO[font='宋体'][size=16px]7[/size][/font]分子量:218.14熔点:206-209℃外观:白色结晶颗粒或粉末溶解性:极易溶于水(0.1g/mL),略溶于酒精,不能溶于乙醚比旋光度:[α]D20+11~+13°(c=10,H[font='宋体'][size=16px]2[/size][/font]O)储存条件:低于30℃PH值:7.0-8.0(100g/l,H[font='宋体'][size=16px]2[/size][/font]O,20℃)CAS数据库:527-07-1(CAS Data Base Reference)EPA化学物质信:Sodium gluconate(527-07-1)[size=18px]2[/size][size=18px].[/size][size=18px]葡萄糖酸钠的生产制备[/size][font='宋体'][size=18px][2][/size][/font]葡萄糖酸钠的制备方法主要包括均相化学氧化法,电解氧化法,非均相催化氧化法和生物发酵法。其中,最常用的是非均相催化氧化和生物发酵。非均相催化氧化法受催化剂和催化效率的限制,具有催化剂易中毒,生产效率低,生产成本高的缺点。因此,非均相催化方法不适合在食品工业中生产葡萄糖酸钠[font='宋体'][size=16px][3][/size][/font]。食品级葡萄糖酸钠的制备主要采用的是生物发酵法,生物发酵法所用的菌种主要包括真菌和细菌,另外还有新型的固定化细胞发酵。现目前葡萄糖酸钠生产的方法采用的是酶氧化法生产,其中用到的主要的酶是葡萄糖氧化酶(GOD)。葡萄糖氧化酶主要负责通过葡糖酸和过氧化氢催化葡萄糖的产生。黑曲霉(Aspergillus niger)是GOD的主要生产菌株。在实际生产中,GOD将与过氧化氢酶(CAT)形成复杂的酶系统。CAT主要的功能是使得体系中的H[font='宋体'][size=16px]2[/size][/font]O[font='宋体'][size=16px]2[/size][/font]得以分解。葡萄糖在GOD的作用会氧化为葡萄糖酸,并伴随过氧化氢的释放。过氧化氢具有很强的氧化性,可以降低葡萄糖氧化酶的活性。过氧化氢酶的加入可以快速分解过氧化氢,将过氧化氢分解成水和氧,葡萄糖氧化酶可以继续催化反应。并且可以补充反应所需的氧气,使氧化反应持续进行。在实际生产中,加入一定量的氢氧化钠溶液以维持反应体系的pH值,使反应继续进行。2.1传统生物发酵技术传统的葡萄糖酸钠发酵采用的是黑曲霉菌发酵工艺,该方法是利用黑曲霉为发酵菌株,通过不断向发酵体系内加入氢氧化钠溶液控制pH,并控制一定的温度,氧含量等条件进行发酵。发酵后,通过多种工艺获得产品,如灭菌,脱色,浓缩,结晶,离心和干燥。由于存在传统工艺效率低下,所得产品质量较差等缺陷。目前国内外在传统生物发酵法中的研究主要集中在改良发酵菌种、固定化菌丝体重复利用、改变发酵方式和寻找葡萄糖替代品等方面。 葡萄糖酸钠的生产过程是需氧过程,反应体系中的氧气量对发酵时间和产量有着重要的影响。传统工业生产一般都是通入空气以供应反应所需的氧气,但液体溶氧速率有限,不能及时满足实际生产中所需氧气含量,从而延长了生产时间。H.W. Lee通过加压使得水中溶解氧浓度达到150mg/L,发现葡萄糖酸钠的生产得率大大提高。O.V. Singh对比了液态发酵,表面发酵,半固态发酵和固态发酵对于葡萄糖酸钠生产的影响,证明了固态发酵是最有效的发酵方式。在实际生产中,为了降低生产成本,将尝试寻找低成本碳源作为发酵和生产葡萄糖酸钠的基质,包括玉米淀粉,甘蔗渣,糖蜜等。2.2生物发酵新技术——固定化酶技术[font='宋体'][size=16px][2][/size][/font] 传统的发酵法生产葡萄糖酸钠,会得到大量的细菌或真菌菌丝。这些菌丝会被当做废料处理,而其中往往含有大量的葡萄糖氧化酶。近年来,基于这一问题,国内外学者将目光瞄准酶固定化技术,因此固定化酶技术越来越受到了研究者的关注。固定化酶的研究使得葡萄糖酸钠广泛的应用于工业中成为可能。目前为止,多种酶被成功固定到不同载体上,并且取得了很好的经济效益及应用价值。在食品工业中,使用固定化酶代替游离酶可以提高葡萄糖酸钠的生产效率,降低使用成本,简化纯化过程,并提供高产量和高质量。关于酶固定化技术的早期研究主要选择纤维素,固体玻璃颗粒,多孔玻璃颗粒和镍网。其中,多孔玻璃和纤维素是最广泛使用的固定载体,因为它们的表面积大,因而酶的催化活性相对较高。近年来,固定化技术应用越来越多,酶的固定化技术涉及用高分子材料物理的包埋法,导电高分子共聚法和无机凝胶包埋法。有研究者采用丙烯酸的微粒凝胶和三价金来固定GOD,表现出很好的效果,还有报道关于利用戊二醛交联作用把GOD固定在竹子的内膜上,并取得了一定的成果。现在所使用的固定化载体种类繁多。[size=18px]3.应用[/size][font='宋体'][size=18px][2][/size][/font]目前葡萄糖酸钠作为一种性能良好的食品添加剂,广泛用于食品加工业。同时,它还广泛用于营养补充剂,食品防腐剂,质量改进剂和缓冲剂。 3.1.葡萄糖酸钠调节食品的酸度 在食品中添加酸可以增强食品的安全性,因为酸是防止冷藏食品中微生物污染的主要形式,而与高温或高静水压力处理相结合使用酸可以降低能耗,从而降低成本。然而,在食品或饮料配方中添加酸通常会降低适口性,因为酸性较高,这限制了食品工业更好地利用酸作为防腐剂的能力,将葡萄糖酸钠配制成钠盐混合物(分别加入氯化钠和醋酸钠)后分别作用于柠檬酸、乳酸和苹果酸,发现葡萄糖酸钠混合物对柠檬酸和苹果酸的酸度(PH为4.4)有中度抑制作用,但对乳酸的酸度几乎没有影响。葡萄糖酸钠调节柠檬酸和苹果酸中的pH值,从而有效减少酸味,不会产生过咸的味道,说明葡萄糖酸钠在相对较高的酸水平上能够显著抑制柠檬酸和苹果酸的酸性。在食品工业中,葡萄糖酸钠被广泛用于饮料行业以确保饮料的质量,同时还保护由常规灭菌方法引起的过高温度引起的饮料成分的破坏,并且节省能量。 3.2葡萄糖酸钠代替食盐用于食品工业 相关研究表明中国人均的食盐摄入量是世界平均人均摄入量水平的数倍,体内钠离子含量过高,会导致高血压高血脂等慢性疾病的发生。在关注生活水平和疾病健康的同时,低盐食品引起了广泛关注,成为食品行业的热点。研究表明,每日盐的钠含量是葡萄糖酸钠的四倍,而葡萄糖酸钠的钠分子量仅为10.5%。与常用的低钠盐相比,葡萄糖酸钠的味道差别不大,但具有无刺激性,无苦味和涩味的优点,在实际应用中已成为盐的替代品。目前主要用于食品领域,如无盐产品和面包。研究报道使用葡萄糖酸钠代替盐进行面包发酵,不仅可以发酵低钠面包,还可以在不影响其整体风味和保质期的情况下实现减盐。 3.3葡萄糖酸钠改善食品风味 在食品行业,食品的风味是在感官评价中的重要指标。近年研究发现:葡萄糖酸钠能够改善苦味,葡萄糖酸钠盐对苦味化合物及其二元组合物质的苦味有不同程度的抑制作用。将不同剂量的葡萄糖酸钠盐以及乳酸锌盐均应用于咖啡因发现其能够抑制咖啡因苦味,上述研究说明葡萄糖酸钠对呈苦味的风味物质具有调节作用。另外,有报道表明在肉制品加工过程中添加一定量的葡萄糖酸钠,能较好的改善豆制品当中的大豆腥臭味。有研究发现。在海产品的加工过程中,通常会添加一定量的葡萄糖酸钠来降低鱼臭味,提高食物的食欲,且相比于传统的覆盖方式,成本更加低廉。 3.4葡萄糖酸钠能够改善食品品质 随着生活水平的不断提高,人们对食品的要求也越来越高。作为一种新型食品添加剂,葡萄糖酸钠不仅提高食品的风味,而且还增强了食品的营养特性。与市场上许多食品添加剂相比,它的无毒无害性能已经成为其最大的亮点。将葡萄糖酸钠作为乳酸钙晶体抑制剂在切达干酪中作用,发现葡萄糖酸钠能增加乳酸钙的溶解度,调节切达干酪的PH值,所以葡萄糖酸钠具有增加钙和乳酸盐溶解度的潜力,通过与钙和乳酸盐离子形成可溶性复合物,阻止它们形成乳酸钙晶体,不仅保证其营养,还改善了切达干酪的品质。将葡萄糖酸钠浸泡处理海带后,能够增加其藻酸盐含量,导致表面更软,改善口感。葡糖糖酸钠还具有蛋白变性抑制作用和肌原纤维蛋白溶解作用,在鱼糜中加入葡萄糖酸钠,加热后凝胶体的凝胶强度比未加葡萄糖酸钠的有明显提高,所以葡萄糖酸钠能够改善鱼糜制品的品质。[size=18px][color=#333333][back=#ffffff]4.限量[/back][/color][/size][font='宋体'][size=18px][color=#333333][4][/color][/size][/font]由GB 2760-2014,葡萄糖酸钠可在各类食品中按生产需要适量使用。[size=18px]5.检测[/size]5.1葡萄糖酸钠的定性检测[font='宋体'][size=16px][1][/size][/font]5.1.1钠离子的鉴别方法原理:根据钠离子在无色火焰上燃烧、火焰为亮黄色的现象,鉴别钠离子的存在。测定步骤:称取约1g试样,精确至0.01 g,溶于10 mL水中,用铂丝蘸取盐酸在无色火焰上燃烧至无色,再蘸取试验溶液少许,在无色火焰上燃烧,火焰应呈亮黄色。5.1.2葡萄糖酸的鉴别方法原理:试样在冰乙酸介质中,与苯肼共热,生成黄色葡萄糖酰苯肼结晶。测定步骤:取约0.5 g试样,精确至0.01 g,置于10 mL试管中,加5 mL 水,溶解(必要时加热),加0.7 mL冰乙酸和1 mL苯肼,在水浴上加热30 min,放至室温,用玻璃棒摩擦试管内壁,则析出黄色的结晶。5.2葡萄糖酸钠的定量检测5.2.1常规滴定法方法原理:试样以冰乙酸为溶剂,以结晶紫为指示剂,用高氯酸标准滴定溶液滴定,根据消耗高氯酸标准滴定溶液的体积计算葡萄糖酸钠的含量。分析步骤:称取测定干燥减量后的试样约0.4 g,精确至0.000 1 g,置于250 mL干燥的锥形瓶中,加50 mL冰乙酸(必要时可用电热板稍微加热),加2滴~3滴结晶紫指示液,用高氯酸标准滴定溶液滴定至溶液由紫色经蓝色最后变为绿色即为终点。除不加试样外,使用相同数量的试剂溶液做空白试验。使用时,高氯酸标准滴定液的温度应与标定时的温度相同 若其温度差小于4℃时,应将高氯酸标准滴定溶液的浓度修正到使用温度下的浓度 若其温度差大于4℃时,应重新标定。[img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262015127065_6610_1608728_3.png[/img]5.2.2电位滴定法方法原理:试样以冰乙酸为溶剂,采用电位滴定仪用高氯酸标准滴定溶液滴定,在滴定过程中通过测量电位变化以确定滴定终点﹐并根据消耗高氯酸标准滴定溶液的体积计算葡萄糖酸钠的含量。分析步骤:称取测定干燥减量后的试样约0.4 g,精确至0.000 1 g,置于250 mL,干燥的锥形瓶中,加50 mL冰乙酸(必要时可用电热板稍微加热),采用电位滴定仪用高氯酸标准滴定溶液滴定。除不加试样外,使用相同数量的试剂溶液做空白试验。使用时,高氯酸标准滴定液的温度应与标定时的温度相同 若其温度差小于4℃时,应将高氯酸标准滴定溶液的浓度修正到使用温度下的浓度﹔若其温度差大于4℃时,应重新标定。[img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262015128040_257_1608728_3.png[/img][size=18px]5.3其它可用于定量分析的方法[/size][font='宋体'][size=18px][5][/size][/font]5.3.1 HPLC法准确称取1.5040g于105℃下烘至恒重的葡萄糖酸钠, 用超纯水溶解并定容至 500mL。分别取1, 2, 3, 4, 5, 6, 7, 8, 9mL葡萄糖酸钠溶液用超纯水稀释至15mL。将其分别过0.45μm 滤膜,再超声处理后即可进样,在HPLC仪器上分析,取其中6点做标准曲线。高效液相色谱采用的流动相为甲醇︰水︰1%磷酸 (2︰48︰50), 流速为1.0mL/min,柱温为25℃, 进样量为15μL,检测波长为210nm.葡萄糖酸钠的出峰时间在2.758min, 峰形较好。色谱条件简单,操作简便,线性关系好。缺点是:其中葡萄糖酸钠属于盐类,对色谱柱的影响较大;且高效液相色谱仪器较昂贵。5.3.2 分光光度法准确称取 13.4779g于105℃下烘至恒重的葡萄糖酸钠, 用蒸馏水定容至 50mL。分别取 1, 2,3, 4, 5, 6, 7, 8, 9m L用蒸馏水定容至 25mL,作为标准溶液待用。各取 1mL上述标准溶液 , 加入18mL 1.25mol/L NaOH, 再边缓缓滴加0.10mol/L CuSO[font='宋体'][size=16px]4[/size][/font]溶液边充分搅拌, 直至产生的沉淀不消失。再将螯合后的溶液煮沸 5min,冷却至室温后,过滤, 再用2mL 1.25 mol/L NaOH洗涤滤渣。将收集的滤液用蒸馏水定容至50mL, 得到一系列浓度分别为 1, 2, 3, 4, 5, 6, 7, 8, 9mmol /L的标准溶液。以0.50 mol /L NaOH 为对照,在660nm波长下测其吸光度。该法的线性关系较好, 但该法较繁琐。该法仅适用于葡萄糖酸钠浓度≦10mmol /L的溶液,且当溶液中葡萄糖的量大于3倍葡萄糖酸钠的量时,葡萄糖对其影响较大。在葡萄糖酸钠的制备中,可能葡萄糖为其制备源,葡萄糖的含量较高, 故该法若要用于葡萄糖酸钠的检测还有待改进。5.3.3 旋光度法 准确称取 13.4070g于 105℃下烘至恒重的葡萄糖酸钠 , 用蒸馏水定容至 50mL。分别取 1, 2,3, 4, 5, 6, 7, 8m L用蒸馏水定容至20m L, 以水为空白 , 依法分别测定旋光度 t =20 ±0.5℃,L =2dm, 用同法读取旋光度 5 次, 取其平均数做标准曲线。用旋光法作葡萄糖酸钠标准曲线的线性关系好 , 操作方便,且不需要昂贵的仪器。但该法的抗干扰因素太低,工业生产的葡萄糖酸钠的纯度往往不高 ,含有较多具有旋光性的杂质,故不适用于工业生产葡萄糖酸钠的检测,可用于食品添加剂葡萄糖酸钠的检测。[size=18px][color=#333333][back=#ffffff]6.葡萄糖酸钠的标准[/back][/color][/size][font='宋体'][size=18px][color=#333333][1][/color][/size][/font][color=#333333][back=#ffffff]6.1.感官要求[/back][/color][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262015129311_283_1608728_3.png[/img][color=#333333][back=#ffffff]6.2.物化指标[/back][/color][img]https://ng1.17img.cn/bbsfiles/images/2021/07/202107262015130223_2270_1608728_3.png[/img][size=18px]总结与展望[/size][size=16px]葡萄糖酸钠被广泛应用于食品工业[/size][size=16px],[/size][size=16px]但对于国内的发展现状[/size][size=16px],[/size][size=16px]无论是生产工艺还是检测方法[/size][size=16px],[/size][size=16px]都有许多有待提高的方面[/size][size=16px]。[/size][size=16px]未来对于食品添加剂葡萄糖酸钠的研究[/size][size=16px],[/size][size=16px]应着眼于开发高效绿色的生产方法[/size][size=16px],[/size][size=16px]进一步完善食品安全标准并确立准确高效的检测手段。同时对葡萄糖酸钠在其他领域的应用价值进行探索,不局限于食品添加剂,拓宽其应用范畴。[/size][size=18px]参考文献 [/size][1]GB 1886.320-2021[2]杜裕芳,左艳娜,胡秋连,郝苗.食品添加剂葡萄糖酸钠的制备方法及其应用研究进展[J].食品界,2019,{4}(08):80-81.[3]黄道震,余丽秀,王桂香,何纪光.葡萄糖酸钠的生产工艺及研究动态[J].河南化工,1999,{4}(05):35-36.[4]GB 2760—2014[5]李艳,肖凯军,王兆梅,陈朝毅,郭祀远.葡萄糖酸钠检测方法研究[J].食品研究与开发,2006,{4}(09):109-112.

  • 【求助】葡萄糖和葡萄糖酸分离

    求各位高手帮忙一下,怎样用HPLC分离葡萄糖和葡萄糖酸 或者是葡萄糖和葡萄糖酸钠? 应该用什么样的柱子和检测器呢?拜托拜托!!

  • Biotechnol. Biofuels:葡萄糖和木糖同步利用可生产油脂

    近日,中科院大连化学物理研究所赵宗保研究员领导的生物质高效转化研究组(1816组)在生物质能源研究中,首次实现葡萄糖和木糖同步利用生产油脂。这一重要研究成果于近日正式发表在《生物燃料生物技术》(Biotechnology for Biofuels,Hu et al., Biotechnology for Biofuels, 2011, 4: 25)上。生物质主要由纤维素、半纤维素和木质素组成,其水解产物具有葡萄糖和木糖并存的基本特点。将生物质水解产物转化为液体燃料面临的共性难点问题之一是葡萄糖和木糖并存的原料难以被微生物高效利用。生物柴油是重要的液体生物燃料,其规模化应用的瓶颈问题是油脂原料供应不足。微生物油脂具有与动植物油脂相近的脂肪酸组成,可用于制备生物柴油。大连化物所生物质高效转化研究组多年来致力于将生物质转化为生物柴油的研究。通过筛选发现,部分产油酵母可同步利用葡萄糖和木糖,在胞内积累油脂,菌体油脂含量达到59%。直接利用玉米秸秆水解液培养该产油酵母,菌体油脂含量达到39%。该研究成果对发展混合糖同步生物转化技术、降低微生物油脂生产原料成本、拓展生物柴油产业原料,均具有重要意义。http://www.bioon.com/biology/UploadFiles/201109/2011092710581567.jpgdoi:10.1186/1754-6834-4-25PMC:PMID:Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneumCuimin Hu, Siguo Wu, Qian Wang, Guojie Jin, Hongwei Shen and Zongbao K Zhao Background Biochemical conversion of lignocellulose hydrolysates remains challenging, largely because most microbial processes have markedly reduced efficiency in the presence of both hexoses and pentoses. Thus, identification of microorganisms capable of efficient and simultaneous utilization of both glucose and xylose is pivotal to improving this process. Results In this study, we found that the oleaginous yeast strain Trichosporon cutaneum AS 2.571 assimilated glucose and xylose simultaneously, and accumulated intracellular lipid up to 59 wt% with a lipid coefficient up to 0.17 g/g sugar, upon cultivation on a 2:1 glucose/xylose mixture in a 3-liter stirred-tank bioreactor. In addition, no classic pattern of diauxic growth behavior was seen; the microbial cell mass increased during the whole culture process without any lag periods. In shake-flask cultures with different initial glucose:xylose ratios, glucose and xylose were consumed simultaneously at rates roughly proportional to their individual concentrations in the medium, leading to complete utilization of both sugars at the same time. Simultaneous utilization of glucose and xylose was also seen during fermentation of corn-stover hydrolysate with a lipid content and coefficient of 39.2% and 0.15 g/g sugar, respectively. The lipid produced had a fatty-acid compositional profile similar to those of conventional vegetable oil, indicating that it could have potential as a raw material for biodiesel production. Conclusion Efficient lipid production with simultaneous consumption of glucose and xylose was achieved in this study. This process provides an exciting opportunity to transform lignocellulosic materials into biofuel molecules, and should also encourage further study to elucidate this unique sugar-assimilation mechanism.

  • 高效液相测葡萄糖、木糖

    [color=#444444]Bio-Rad Aminex HPX-87H(300mm×7.8mm)色谱柱,用0.005mol/L硫酸作为流动相的高效液相测糖浓度,所测葡萄糖、木糖值偏高怎么办?可能是哪些问题呢?求大佬帮助[/color]

  • 体系中有葡萄糖、葡萄糖酸和葡萄糖酸内酯,该用什么柱子分离?

    岛津液相,柱子用[font=&]Bio-Rad Aminex HPX-87H[/font][font=宋体]柱时,葡萄糖和葡萄糖酸在同一个地方出峰。为了得到葡萄糖酸的量,看了一些文献,说可以用紫外检测器来尝试,但是因为体系里还有葡萄糖酸内酯,在紫外检测器上和葡萄糖酸在同一个地方出峰,也不能分离。[/font][font=宋体]求问各位大神用什么柱子和什么方法可以分离体系中有内酯的葡萄糖和葡萄糖酸?感谢[/font]

  • 谈工业发酵各阶段培养基的要求

    引用氮氮的欢乐 的 谈工业发酵各阶段培养基的要求工业发酵中利用生产菌发酵得出最终产物是一个逐级放大的过程,各个不同的阶段对于营养成分的要求也各有特点,根据发酵不同阶段的要求,培养基可分为孢子培养基、种子培养基和发酵培养基三种。 孢子培养基孢子培养基是供菌种繁殖孢子的一种常用固体培养基,对这种培养基的要求是能使菌体迅速生长,产生较多优质的孢子,并要求这种培养基不易引起菌种发生变异。所以对孢子培养基的基本配制要求是:第一,营养不要太丰富(特别是有机氮源),否则不易产孢子。如灰色链霉在葡萄糖-硝酸盐-其它盐类的培养基上都能很好地生长和产孢子,但若加入0.5%酵母膏或酪蛋白后,就只长菌丝而不长孢子。第二,所用无机盐的浓度要适量,不然也会影响孢子量和孢子颜色。第三,要注意孢子培养基的pH和湿度。生产上常用的孢子培养基有:麸皮培养基、小米培养基、大米培养基、玉米碎屑培养基和用葡萄糖、蛋白胨、牛肉膏和食盐等配制成的琼脂斜面培养基。大米和小米常用作霉菌孢子培养基,因为它们含氮量少,疏松、表面积大,所以是较好孢子培养基。大米培养基的水分需控制在21%-50%,而曲房空气湿度需控制在90%-100%。 种子培养基种子培养基是供孢子发芽、生长和大量繁殖菌丝体,并使菌体长得粗壮,成为活力强的“种子”。所以种子培养基的营养成分要求比较丰富和完全,氮源和维生素的含量也要高些,但总浓度以略稀薄为好,这样可达到较高的溶解氧,供大量菌体生长繁殖。种子培养基的成分要考虑在微生物代谢过程中能维持稳定的pH,其组成还要根据不同菌种的生理特征而定。一般种子培养基都用营养丰富而完全的天然有机氮源,因为有些氨基酸能刺激孢子发芽。但无机氮源容易利用,有利于菌体迅速生长,所以在种子培养基中常包括有机及无机氮源。最后一级的种子培养基的成分最好能较接近发酵培养基,这样可使种子进入发酵培养基后能迅速适应,快速生长。 发酵培养基发酵培养基是供菌种生长、繁殖和合成产物之用。它既要使种子接种后能迅速生长,达到一定的菌丝浓度,又要使长好的菌体能迅速合成需产物。因此,发酵培养基的组成除有菌体生长所必需的元素和化合物外,还要有产物所需的特定元素、前体和促进剂等。但若因生长和生物合成产物需要的总的碳源、氮源、磷源等的浓度太高,或生长和合成两阶段各需的最佳条件要求不同时,则可考虑培养基用分批补料来加以满足。 根据发酵生产各阶段菌体对营养的需求可以大概看出,孢子阶段培养基要求营养简单少量;种子阶段培养基要求丰富完全,特别是氮与维生素含量要高;发酵阶段培养基要求在足够维持适当生长之余与产物相关联,能提供部分前体、特定成分。安琪酵母公司生产的安琪酵母浸出物采用纯化培养的高蛋白面包酵母,经过自溶酶解、分离、真空浓缩、喷雾干燥等工序精制而成。有安全性好,适用面广;稳定性高,重复性好;营养全面,量化控制;澄清度高,利于提取;颜色浅,营养损失少等诸多优点。富含蛋白质、多肽、氨基酸、核苷酸、维生素、微量元素等营养成分,比例协调,同时采用生物酶解技术,使营养物质高效定向降解,可为菌体生长培养提供全面均衡的营养。除了作为优质的种子阶段培养基氮源外,在发酵阶段同样能为维持菌体茁壮稳定提供充足的营养,尤其是以初体产谢产物为终产物的发酵,安琪酵母浸出物所含的种类齐全的氨基酸,核苷酸,各种维生素与矿质元素更是作为前体、促进剂发挥着重要的作用;而且其澄清度高,发酵残留少的特点,又大大减少了产品的提取纯化的难度与消耗,协助企业向清洁化,高效化,环保化生产发展。 安琪酵母浸出物以其优异的品质,在发酵工业飞速发展的今天,定会得到更广泛的应用,为生物产业的腾飞作出更大的贡献[/

  • 【求助】关于测碳和氮含量

    我的实验是培养基优化,要求我按照碳或氮摩尔量相等的标准加入不同的碳源和氮源。但在怎样测定总碳和总氮的(尤其是碳)问题上我没有查到很好的方法,关键是我们没有那个燃烧法测定的仪器。碳源有 淀粉,蔗糖,糊精,果胶,葡萄糖,乳糖,麦芽糖,玉米粉水提液,麸皮水提液氮源有 酵母膏、蛋白胨、酵母浸出物、牛肉膏、尿素、豆饼粉水提液

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制