当前位置: 仪器信息网 > 行业主题 > >

细胞膜蛋白与细胞浆蛋白抽

仪器信息网细胞膜蛋白与细胞浆蛋白抽专题为您提供2024年最新细胞膜蛋白与细胞浆蛋白抽价格报价、厂家品牌的相关信息, 包括细胞膜蛋白与细胞浆蛋白抽参数、型号等,不管是国产,还是进口品牌的细胞膜蛋白与细胞浆蛋白抽您都可以在这里找到。 除此之外,仪器信息网还免费为您整合细胞膜蛋白与细胞浆蛋白抽相关的耗材配件、试剂标物,还有细胞膜蛋白与细胞浆蛋白抽相关的最新资讯、资料,以及细胞膜蛋白与细胞浆蛋白抽相关的解决方案。

细胞膜蛋白与细胞浆蛋白抽相关的资讯

  • 冷冻电镜揭示了细菌和人类膜蛋白之间惊人的相似之处
    简单生物体的细胞,如细菌,以及人类细胞,都被一层膜包围着,它可以完成各种任务,包括保护细胞免受压力。在一个联合项目中,来自美因茨约翰内斯古腾堡大学 (JGU)、德国于利希研究中心(Forschungszentrum Jülich) 和海因里希海涅大学杜塞尔多夫 (HHU) 的研究人员在细菌中发现的一种膜蛋白与一组负责重塑和重建人体细胞膜。根据研究人员的说法,这两个蛋白质组之间没有联系之前是已知的。然而,此次研究过程中,通过冷冻电子显微镜,发现细菌和人类的膜蛋白惊人地相似。细菌应激反应大约 30 年前,噬菌体休克蛋白 (Psp) 系统在细菌中被发现。“今天,我们知道 Psp 系统会响应多种类型的膜应力而被激活。然而,一些分子细节仍然令人费解,” 美因茨约翰内斯古腾堡大学膜蛋白组负责人德克施耐德(Dirk Schneider) 教授解释说。 “这就是为什么我们决定仔细研究 Psp 系统的核心蛋白。”施耐德及其同事最近发现了 Psp 代表 IM30 如何在细胞膜上形成保护性地毯状结构以应对膜应力。在他们的最新工作中,他们仔细研究了噬菌体休克蛋白 A (PspA),它在 Psp 系统中起着关键作用。 人类 酵母 细菌不同膜蛋白之间的结构相似性 [Benedikt Junglas、Dirk Schneider、Carsten Sachse]冷冻电子显微镜显示 PspA 形成长的螺旋形管,可以将生物膜包裹在内腔中。高分辨率图像首次显示了 PspA 如何局部溶解单个膜,然后将它们重塑为更大的单元,甚至介导新膜结构的形成。PspA 的原子低温电子显微结构:细长的分子是螺旋纳米棒的基本构建块(左)。灰度低温电子显微照片和示意图模型显示了掺入脂质的 PspA 管。“数千个 PspA 构建块可以组装成大型螺旋结构。因此,它们是我们冷冻电子显微结构分析的理想研究对象,”来自 Forschungszentrum Jülich 和 HHU Düsseldorf 的 Carsten Sachse 教授说。“在显微镜下,我们意识到 PspA 具有类似于 ESCRT-III 蛋白质的结构,我们的实验室已经在研究它,”他补充道。“这完全出人意料,表明阐明蛋白质结构是多么重要细节......数十亿年后,这两组蛋白质在遗传上已经发生了分歧,以至于只能根据它们的结构来检测它们的相似性。”“基于 PspA 和真核 ESCRT-III 蛋白的相似结构和功能特性,我们已将 PspA 鉴定为进化上保守的 ESCRT-III 膜重塑蛋白超家族的细菌成员,”作者在 Cell 中写道。研究发表在Cell 《细胞》上。符斌 供稿
  • 成果:古老蛋白“一招夺命”肿瘤细胞
    一次肿瘤细胞的意外死亡,让一种明星分子浮出水面。日前,在科技成果评价机构组织的鉴定会上,一种独特的免疫蛋白分子引起了评审专家的兴趣。“肿瘤细胞死亡时的照片上,周边有起泡的现象非常有意思。”国家重点研发计划首席科学家、南京大学李朝军教授表示,这个情况和细胞焦亡挺像,值得更进一步的研究和应用。“这种分子是在七鳃鳗的免疫系统中找到的,它能够识别出人体肿瘤细胞,并从外面打孔,让肿瘤细胞死亡。”研发团队带头人、辽宁师范大学原副校长李庆伟教授介绍,目前正利用这种明星分子推动癌症早筛工作。本想向肿瘤细胞学习,却把它杀死了七鳃鳗在地球上已经生活了5.5亿年,被戏称为“僵尸鱼”,介于无脊椎动物和脊椎动物之间。“我们想把七鳃鳗细胞和肿瘤细胞放在一起培养,借助肿瘤细胞增殖因子,帮助七鳃鳗细胞繁衍。”李庆伟回忆,没想到的是,肿瘤细胞都死亡了。换了不同的肿瘤细胞结果仍一样。研究团队感觉七鳃鳗细胞一定分泌了一种独特的物质,对肿瘤细胞是致命的。为了找到这种物质,团队大量收集细胞培养上清,通过蛋白质组学技术最终锁定了LIP蛋白。围绕这一蛋白的系统研究在后来的十几年中逐渐推展开——破解蛋白结构、解码对应DNA序列、分析蛋白结构中的不同功能… … 谜题一一解锁,但人们最关心的是:古蛋白究竟是怎么杀死肿瘤细胞的?古老蛋白“一招夺命”肿瘤细胞光学显微镜下,一场杀戮由近及远次第展开。“我们给LIP‘镀上’荧光,标记了荧光基团的蛋白分子进入肿瘤细胞培养液,能从显微镜下看到荧光迅速聚集到了肿瘤表面,肿瘤细胞膜随后破裂。”辽宁师范大学生命科学学院教授逄越展示的照片复盘了整个过程:肿瘤细胞表面出现了大的孔洞,肿瘤细胞里的内容物全部外泄,一招夺命。更有趣的结果发生在研究团队“打扫战场”时。他们把肿瘤细胞表面的古蛋白做了收集检测发现,杀伐时蛋白不单兵作战,而是“组团”的聚合体。“我们提出了识别、定位、聚集、杀伤的机制。”逄越说,研究表明聚合体越多杀伤作用越大。整个机制的解析花了团队5年时间,终于弄清楚,蛋白上“凝集素”的结构域负责“指认”,“气单胞菌溶素”结构域能深深地插入肿瘤细胞膜搞破坏。明星分子“小试牛刀”机制清晰,研究走到了应用阶段。团队决定先让明星分子小试牛刀,在检测领域做验证。健康中国行动要求强化癌症早筛。膀胱癌检测一直痛苦得让患者望而却步,不愿早筛,实现“滴尿”筛查将让癌症发现大大提前。“我们将明星分子做成了检测试纸。尿液中脱落的膀胱表皮细胞如果有肿瘤的迹象,马上会被预警。”辽宁师范大学生命科学学院副教授韩英伦告诉科技日报记者,团队先从学校职工体检的尿检入手建立了指示分子含量的对照表,然后与大连市的几家医院合作进行临床研究,肿瘤患者的值会高过正常值2—3倍。相关研究数据显示,利用LIP特异性识别肿瘤细胞技术,尿液检测膀胱癌的LIP免疫荧光试纸灵敏性达到85%,特异性可达92%,简单、快速、微量、无创。“国际上这类检测试剂不多,美国FDA目前有三款试剂盒上市。”评审专家、大连医科大学附属第二医院院长刘志宇教授表示,作为我国自主研发的检测产品,尤其是从靶点开始的源头创新,目前的研究进展令人震撼。评审专家一致认为,该项目具有完全自主知识产权,达到国际领先水平。据介绍,相关研究多年来得到科技部国家重点基础研究发展计划、国家自然科学基金、辽宁省高等学校重大科技平台等项目支持。
  • 中国计量院研制出新冠病毒核衣壳蛋白和包膜蛋白亚基因组RNA(sgRNA)标准物质
    特异性检测新冠病毒复制过程中的亚基因组RNA(sgRNA),对于确定疫苗、单克隆抗体和抗病毒药物的保护和治疗效果至关重要。通过检测新冠病毒sgRNA,可有效区分具有感染性的活病毒和灭活病毒。sgRNA是在进入细胞后产生的,与成熟的病毒粒子结合较差,因此可作为活跃复制的病毒的标记。近日中国计量院研制了新冠病毒核衣壳蛋白和包膜蛋白亚基因组RNA标准物质,可以作为测量标准,用于新冠病毒核衣壳蛋白基因(N)和包膜蛋白基因(E)的亚基因组RNA的定性和定量测量,以及测量方法的确认和质量控制。标准物质定值方法为针对核衣壳蛋白和包膜蛋白亚基因组序列设计的特异性数字PCR方法,同时采用经过国际比对验证的另一独立的数字PCR方法对量值进行了核验。该标准物质包括了5个不同水平的新冠病毒核衣壳蛋白基因(N)和包膜蛋白基因(E)的亚基因组RNA。特性量值为每管溶液中含有的核衣壳蛋白和包膜蛋白亚基因组RNA的拷贝数浓度。具体量值见表1。表1.新型冠状病毒核衣壳蛋白和包膜蛋白亚基因组RNA标准物质特性量值NIM-RM5223 新型冠状病毒核壳蛋白和包膜蛋白亚基因组RNA标准物质截至目前,中国计量院共研制了核酸、抗原和抗体等24种新冠病毒标准物质。这些标准物质可应用于方法建立、方法验证、质量控制、试剂性能评估、验证与评价等多方面,截止11月,已经广泛应用于全国30个省市的近700家单位,为保障核酸检测结果准确、可比、可溯源,提供了重要支撑。
  • Science | 细菌中Gasdermins蛋白揭开细胞死亡的进化起源
    Gasdermin蛋白是人类细胞中在细胞膜上打孔,释放免疫因子并诱导细胞死亡的关键因子。Gasdermin打孔的机制是由caspase介导的,在炎性小体信号传导过程中触发,对防御病原体和癌症至关重要【1】。人类中Gasdermins家族由六个成员组成,GSDMA–GSDME以及pejvakin。但是各种各样的Gasdermin蛋白在进化上的起源以及生物学作用仍然不甚清楚。为此,美国哈佛大学医学院Philip J. Kranzusch研究组与以色列魏茨曼研究所Rotem Sorek研究组合作在Science发文题为Bacterial gasdermins reveal an ancient mechanism of cell death,揭开了细胞焦亡作为细菌以及动物中共有的一种古老的、调节细胞程序性死亡的方式。通过序列分析,作者们发现与哺乳动物Gasdermin蛋白相似不同50个细菌来源的蛋白,其中作者们测定了来自慢生根瘤菌嗜热菌(Bradyrhizobium tropiciagri)和Vitiosangium sp的bGSDMs的晶体结构,结果显示bGSDMs的总体结构都是共享的,与哺乳动物Gasdermin N末端结构具有显著的同源性(图1)。晶体结构分析同时也显示在哺乳动物Gasdermin蛋白中C末端结构,会维持该蛋白处于一种自我抑制的状态;虽然bGSDMs中没有与哺乳动物中Gasdermin蛋白C末端结构相似结构,但是仍然具有自我抑制结构特征(图1)。图1 对细菌来源的Gasdermin蛋白进化保守型以及结构分析随后,作者们想知道bGSDMs在细菌系统中是否有抗噬菌体的功能,作者们发现bGSDMs对大肠杆菌噬菌体具有显著的抵抗性。因此,bGSDMs是细菌“防御工事”中的关键组分。另外,作者们发现bGSDM的激活会诱导细菌细胞膜的破坏,而且在其激活过程中需要蛋白酶的参与,因为引入蛋白酶靶向位点的突变会废除bGSDM的细胞毒性(图2)。图2 蛋白酶参与bGSDM的激活进一步的,作者们对bGSDM的切割过程进行探究。作者们发现bGSDM的切割需要蛋白酶的催化,但是并不需要棕榈酰化修饰。另外,通过质谱分析作者们鉴定到了古字状菌属的Runella中bGSDM的具体切割位点以及处于自我抑制状态的结构生物学基础。通过构建绿色荧光蛋白的融合蛋白,作者们对bGSDM激活的动态过程进行的监测。作者们发现在激活过程中会由弥散分布的形式变成与膜结构存在联系的点状结构,通过透射电镜的检测可以观测到bGSDM切割后会导致细胞膜完整性的破坏,并导致细胞内容物的快速释放。图3 工作模型总的来说,该工作的建立了细菌与哺乳动物中Gasdermin蛋白打孔从而导致的细胞程序性死亡的具体模型(图3),证明了细菌中bGSDM系统可以发挥防御作用,并且该作用依赖于蛋白酶的参与,该工作将有助于深入了解细胞焦亡的具体作用机制以及在进化上的起源。原文链接:https://www.science.org/doi/10.1126/science.abj8432
  • BLT小课堂|水母发光蛋白检测法在细胞钙离子含量测定中的应用
    Ca2+作为普遍的第二信使在细胞信号转导过程中起着非常重要的作用,是单个细胞生存和死亡的信号。它参与了神经传导、血液凝固、肌肉收缩、心脏收缩、大脑功能、酶功能以及内分泌腺的激素分泌等各种生理机能。而人们对Ca2+在信号转导中作用的认识,则很大程度上取决于Ca2+测定技术。目前常用的Ca2+检测方法主要有:Ca2+选择性微电极测定法、同位素示踪法、核磁共振法和水母发光蛋白检测法等。01Ca2+选择性微电极测定法:Ca2+选择性微电极一种电化学敏感器。利用内充液和组织或细胞之间产生电位差,理想情况下,该电位差是Ca2+对数的线性函数,遵循Nernst方程。优点:直接、敏感地测定组织或细胞内的Ca2+,不需使用指示剂,不影响结合钙和游离钙的平衡。缺点:反应速度慢而无法测定Ca2+的快速变化,而且穿刺损伤细胞可引起渗漏,且不适用于太小的细胞。02同位素示踪法:用放射性核素45Ca2+对Ca2+进行示踪,可测量出通过细胞膜转运到细胞内Ca2+增加的速度及浓度的大小,揭示Ca2+泵的作用,目前主要用于测定跨膜Ca2+的流动。优点:测量方法简单易行,比普通化学分析法的灵敏度高。确定放射性示踪剂在组织器官内的定量分布,可以达到细胞、亚细胞乃至分子水平。缺点:静态效果差,需要特定的同位素测定仪,并且要注意示踪剂的同位素效应和放射效应问题。03核磁共振法:是一种新的、非光学技术的Ca2+检测方法。由于正常生物体内氟含量很少,为了得到足够的响应,在检测时需要使用含氟指示剂。该指示剂经过化学修饰后进入细胞,进而被水解成游离状态,然后与Ca2+结合,根据获得的波谱图计算出Ca2+的浓度。优点:具有非破坏性和无损伤性,能够在接近生物样本生理状态下连续动态地进行检测,准确反应Ca2+浓度。缺点:需要核磁共振仪,成本较高。04荧光探针法:目前常用的Ca2+荧光探针有Fluo-3、Fluo-4、Fluo-8等。这类探针本身无法进入细胞,但它的亲脂性衍生物却可以透过细胞膜进入细胞。一旦进入细胞,这类亲脂性衍生物的亲脂性封闭基团在细胞非特异性酯酶的作用下被分裂除去,在细胞内便会形成一种带负电荷的荧光染料。与胞内Ca2+结合时,其荧光强度显著增加。优点:指示剂易导入细胞,空间分辨率高,反应速度快,而且可同时检测多重离子。缺点:需要有荧光显微镜或激光共聚焦显微镜,成本较高。05水母发光蛋白检测法:最近十几年来,水母发光蛋白(Aequorin)很受人们的关注。水母发光蛋白由189个氨基酸组成,具有3个Ca2+结合的EFhand结构,所以水母发光蛋白可作为检测Ca2+的新型探针。优点:Ca2+/水母蛋白复合物能检测~0.1μm到>100μm范围内的钙离子浓度,且复合物不会从细胞内泄露出来,可检测几小时至数十天内Ca2+浓度的变化。比荧光探针法的背景低,样本本身不会发生自荧光。腔肠素的性质腔肠素(Coelenterazine)作为海洋动物体内贮存光能的分子,它广泛存在于海洋生物体内,比如海肾、海蜇、水螅等。腔肠素是天然荧光素中最普遍的,它可作为很多荧光素酶的底物。目前研究得最透彻的以腔肠素为底物的荧光素酶来源于海肾(Renilla),即海肾荧光素酶(Renilla reniformis,简称Rluc)。腔肠素的工作原理腔肠荧光素是一个分子量约400 Da 的疏水基团,它可以自由穿越细胞膜。在一个以荧光素/荧光素酶为基础的系统中,腔肠素作为以水母发光蛋白为代表的海洋发光蛋白的辅助因子,与水母发光蛋白进行稳定的结合,引起脱辅基水母发光蛋白和腔肠荧光素之间的共价键破裂,腔肠荧光素(Coelenterazine)被氧化脱羧,形成腔肠酰胺(Coelenteramide),释放出CO2,同时发出波长为469nm的蓝色生物荧光,该荧光可用博鹭腾高灵敏度管式/板式发光检测仪进行测定。图1.腔肠素/水母发光蛋白检测Ca2+机制水母发光蛋白一旦和Ca2+反应即丧失发光功能,因此当一部分水母发光蛋白与Ca2+反应时,被消耗水母发光蛋白的发光强度能反映出Ca2+浓度变化,而且被消耗的水母发光蛋白的发光强度与Ca2+浓度之间存在线形关系。如同萤火虫荧光素酶,海肾荧光素酶的活性也不需要翻译后修饰,一旦翻译完成即可行使遗传报告基因的功能。但是与萤火虫荧光素酶又有差异,即腔肠素/荧光素酶系统不需要三磷酸腺苷(ATP),因此更利于生物荧光的研究。技术小结由于Ca2+在生命活动的各种生理生化反应、疾病的发生和发展中都扮演着极其重要的角色,而游离的Ca2+浓度变化又与细胞的功能、信号转导乃至细胞的凋亡有密不可分的联系,因此,研究如何检测细胞内游离Ca2+浓度显得尤为重要。Ca2+选择性微电极测定法不需要使用指示剂,但是穿刺过程会损伤细胞,进而引起渗漏。同位素示踪法简单,但是静态效果差,还需要注意同位素效应和放射效应问题。核磁共振法和荧光探针法都需要特定的仪器,成本较高。水母发光蛋白检测法不需要激发光源,因而消除了细胞自发荧光的干扰,背景荧光远低于使用钙离子指示剂的荧光。另外腔肠素具有疏水性,易于通过细胞膜,适于全细胞的研究。 腔肠素/水母发光蛋白的生物荧光反应对Ca2+浓度的变化非常敏感,但是这种发光相对较弱,因此需要使用高灵敏度的发光检测仪进行检测。
  • Nanodisc配合冷冻电镜提升膜蛋白的分辨率
    Toxic, hot, and spicy: Nanodiscs improve membrane protein resolution in cryo-EM(作者:Cube Biotech)Nanodisc结合冷冻电镜应用时 ,Nanodisc提升了通过冷冻电镜对膜蛋白的解析率,同时揭示了功能性磷脂所扮演的重要角色。The last few years have seen a tremendous increase in high-resolution protein structures solved by cryo electron microscopy (cryo-EM). Novel electron detecting cameras and sophisticated analysis software have expanded the capacity of cryo-EM to smaller and asymmetric proteins (1). As a true competitor to X-ray crystallography, cryo-EM is particularly interesting for hard-to-crystallize targets such as membrane proteins.在过去的几年里,使用冷冻电子显微镜(冷冻电镜)对蛋白结构高分辨率结构解析的应用有着很大地增长。新型的电子探测相机和复杂的分析软件使冷冻电镜的应用延伸到更小和不对称的蛋白结构解析(1)。作为X射线晶体法的真正强势的替代方法,冷冻电镜能把如膜蛋白等难以结晶的蛋白作为应用目标,并引起了各界广泛的兴趣。The importance of sample preparation methods for high-resolution cryo-EM data cannot be underestimated. Two recent Nature publications have shown that nanodiscs are not only excellent tools for membrane protein stabilization, but that they can also improve resolution, in particular of the transmembrane region, and enable analysis of interacting phospholipids.在应用的过程中,样品制备方法对得到高分辨率冷冻电镜数据的重要性是不可低估的。从最近的两篇发表到Nature的文章来看,Nanodisc不仅是膜蛋白稳定的优良工具,而且它也可以提高在电镜解析的分辨率,特别是膜蛋白的跨膜部分,同时能实现磷脂相互作用的分析。Toxic: Near-atomic detail of a bacterial Tc toxin membrane insertion (2). Stefan Raunser' s team at the Max-Planck Institute in Dortmund, Germany unveiled the mechanism used by bacterial Tc toxin as it enters the cell. Besides the high medical relevance of this project - Tc toxins include anthrax, plague, and scarlet-like fever toxins - the conformational changes these toxins undergo are simply fascinating. Secreted by bacteria as soluble proteins, toxins fold into channels that perforate the host membrane by a putative entropic spring mechanism. In previous attempts with detergent-solubilized protein, it was not possible to resolve the transmembrane region of the toxin. Now, using nanodisc-stabilized TcdA1 protein, researchers were able to achieve an overall resolution of 3.5 Angstrom, allowing them to describe this mechanically enforced membrane insertion mechanism for the first time.Toxic: Near-atomic detail of a bacterial Tc toxin membrane insertion (2)。德国马克斯普朗克研究所的Stefan Raunser团队阐述了细菌Tc毒素进入细胞的机制。除了这个项目的高度医学相关性价值外( Tc毒素包括炭疽,鼠疫,猩红热样毒素)这些毒素所经历的构象变化是有极大吸引力的。由细菌分泌的可溶性蛋白,毒素折叠成通道穿过宿主细胞膜。以前尝试使用去污剂溶解带跨膜区域蛋白进行分析,并不能很好地解析带跨膜区域的毒素。而现在使用Nanodisc稳定TcdA1蛋白,研究人员能够获得到3.5埃的解析度,这让他们有机会首先发现并描述了这种机械的强制膜插入的机制。阅读更多Nature原文Hot & spicy: Functional lipids enable detection of heat and hot spices (3). Yifan Cheng' s team at UCSF analyzed the tetrameric transient receptor potential vanilloid 1 (TRPV1) ion channel at 2.9 Angstrom resolution. TRPV1 reacts to many physical and chemical stimuli, including heat and capsaicin, an ingredient of chilli peppers. Nanodiscs were crucial to obtain a high resolution structure, as previous attempts with amphipol-stabilized complexes had only yielded a 3.8 A resolution.But nanodiscs played another important role in this analysis: By providing a phospholipid bilayer,they enabled the discovery of lipids with a structural function in ligand binding. Similar to the results of the Dortmund group, the transmembrane regions were those with the highest resolution, stressing the value of nanodiscs for cryo-EM analysis.Hot & spicy: Functional lipids enable detection of heat and hot spices (3).加州大学旧金山分校的程亦凡团队分析了瞬态电压感受器阳离子通道1(TRPV1一种在疼痛和热知觉中起中心作用的蛋白质)在2.9埃分辨率离子通道结构。TRPV1对许多物理和化学刺激,包括热、辣椒素(一种辣椒的成分)都有反应。Nanodisc是此研究中获得高分辨率的结构十分重要的因素,而以前的尝试使用双极性稳定复合物只得到了3.8个埃的分辨率。在这一研究中,Nanodisc还扮演了另一个非常重要的角色:通过提供一个磷脂双分子层,研究人员得以发现磷脂具有配基结合的结构功能。类似于Stefan Raunser团队的结果,跨膜区具有最高的分辨率,大大提升了Nanodisc在结合冷冻电镜分析膜蛋白应用中的价值。阅读更多Nature原文参考文献:1.Kühlbrandt, W. Cryo-EM enters a new era. eLIFE (2014) doi:10.7554/eLife.036782. Gatsogiannis, C. et al. Membrane insertion of aTc toxin in near-atomic detail. Nature structural and molecular biology (2016),23,884-890. doi:10.1038/nsmb.32813.Gao, Y. et al. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature (2016) 534(7607):347-351. doi:10.1038/nature17964
  • 细胞膜色谱法,一种全新的生物亲和色谱
    p   药物与受体相互作用研究在药物研发过程中发挥着非常重要的作用,其研究方法的便捷程度以及准确度直接影响 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/industry-S22.html" target=" _self" span style=" color: rgb(255, 0, 0) " strong 药物研发 /strong /span /a 的效率。一般研究药物受体的相互作用均采用放射配基结合分析法和亲和色谱法,但因放射配基结合分析法操作复杂,需要制备特定的放射性配基,使应用受到一定的限制 而通常的亲和色谱法需要制备一定数量及一定纯度的受体,难度较大,且可能会影响受体对药物的选择性。 /p p   1996 年,西安交通大学贺浪冲教授提出细胞膜色谱法(cell membrane chromatography,CMC),经过20 年的不断发展,CMC法已逐步成为研究药物与膜受体亲和作用的有力工具之一。CMC系统将完整的细胞膜包覆于硅胶表面,在仿生理条件下制备成色谱柱进行成分受体相互作用研究,可以快速筛选中药复杂体系中的活性成分,并准确计算出其与受体间的配位亲和常数。 /p p   近日,西安交通大学王嗣岑教授等人在《药学进展》杂志发表文章“ 细胞膜色谱法用于药物与受体相互作用研究进展”,详细介绍了细胞膜色谱法的前世今生及相关应用。 /p p   传统的CMC方法经历了2 次“更新换代”:首先,原CMC 模型中分离鉴别采用离线方式完成,即通过筛选发现在特定细胞膜固定相上有保留的中药部位,采用人工方法将保留组分接收并进行下一步分离及鉴定。十几年来通过对CMC 模型的改造,现已成功构建集“ 活性识别- 色谱分离- 分析鉴定”于一体的CMC/HPLC(GC)/MS 在线二维分析系统 利用“ 双捕集环” 和“ 双富集柱”交替富集- 分析模式,将原有色谱系统成功改造为新的在线二维分析系统 并成功研制了在线阀控切换装置,真正实现了高通量筛选。其次,原CMC法中,靶细胞是通过生物组织和一般培养方法获得的,其细胞膜上的非“目标”受体的表达数量很多,而“目标”受体表达数量有限且不可控,由此建立的CMC 法对配体的特异性、敏感性和选择性受到了不同程度的限制。近年来,随着生物技术的不断发展,研究者利用现代分子生物学手段,利用外源重组质粒构建了稳定高表达野生型表皮生长因子受体(epidermal growth factor receptor,EGFR)、血管内皮生长因子受体(vascular epidermal growth factor receptor,VEGFR)、成纤维生长因子受体-1 (fibroblast growth factor receptor-1,FGFR-1)等受体的人胚肾HEK293 细胞株,并以相应受体选择性拮抗剂为对照样品,成功建立了受体高表达CMC模型,发现了苦参、独活、虎杖、黄芪、川乌和红毛七中选择性作用于上述受体的活性组分 分子药理学实验证明筛选得到的化合物可以抑制相应受体蛋白的表达,并具有剂量依赖性。 /p p   药物-受体的亲和作用直接影响药物的代谢过程及药效学,细胞膜色谱作为一种全新的生物亲和色谱,实现了高效液相色谱分离和受体药理学的有机结合,用于表征药物- 受体的亲和作用并求解药物作用的解离常数。但这个过程往往不是几种简单理想的模型能够准确描述,所以如何避免测定中的干扰、增强方法的专属性是今后研究的重点所在。此外,细胞膜色谱有其特殊性,载体表面的细胞膜活性随时间不断衰减, 因此如何将亲和色谱理论应用到细胞膜色谱法中,在较短的时间内观察配体在细胞膜固定相上的保留特征,建立快速表征药物– 受体亲和作用的研究方法,也是一个非常重要的研究课题。 /p p br/ /p
  • 周斌组合作建立基于膜透过荧光蛋白的邻近细胞标记技术
    1月3日,国际学术期刊PNAS发表了中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)周斌组和复旦大学附属中山医院王立新教授合作的研究成果“Genetic dissection of intercellular interactions in vivo by membrane-permeable protein”。该研究利用表达膜透过性荧光蛋白的遗传工具小鼠,建立了体内邻近细胞标记技术,并利用该技术揭示了肝脏不同区域中内皮细胞的异质性。细胞之间的相互作用对于多细胞生物体生长发育、稳态维持以及损伤修复等过程至关重要,但是监测体内细胞互作的遗传学技术鲜有报道。当前的遗传学手段基本上是针对特定细胞自身进行操作,无法深入研究细胞之间的互作。因此,建立新型邻近细胞标记技术对了解生物体内细胞间互作及其功能具有重要意义。sLP-mCh是脂溶性标签连接mCherry的融合荧光蛋白(Ombrato et al., Nature 2019)。sLP-mCh在供体细胞中表达后,会从供体细胞中释放出去,并进入邻近细胞,将邻近细胞标记为mCherry+。基于sLP-mCh蛋白的特性,为了实现体内邻近细胞标记,研究人员构建了基因敲入小鼠:R26-sLP-mCh-GFP和R26-sLP-mCh。首先以小鼠肝细胞作为供体细胞,表达sLP-mCh和GFP,检测肝细胞周围的其他类型细胞标记情况。研究人员在R26-sLP-mCh-GFP小鼠体内注射特异靶向肝细胞的病毒AAV2/8-TBG-Cre,当病毒进入肝细胞后,Cre重组酶表达并发生Cre-LoxP重组,移除R26-sLP-mCh-GFP位点中间的终止序列,肝细胞启动表达sLP-mCh和GFP荧光蛋白,成为sLP-mCh的供体细胞。研究人员发现肝细胞为GFP+mCherry+,同时也能检测到GFP–mCherry+的非实质细胞,其中肝脏中80%内皮细胞、76%免疫细胞以及54%成纤维细胞被标记。研究人员将这种由Cre诱导的细胞间蛋白标记技术称作CILP。肝脏的基本单位是肝小叶,肝小叶可以分为三个区域(zone),各区域的肝细胞具有不同特性以及分子标记。一区的肝细胞围绕着肝脏门静脉,高表达钙粘蛋白E(E-Cad);三区的肝细胞围绕着肝脏中央静脉,高表达谷氨酰氨合成酶(GS);肝小叶二区位于一区和三区之间,由E-Cad–GS–的肝细胞构成。肝脏中的毛细血管是一类特化的血管网络,称作肝血窦内皮细胞,肝血窦内皮细胞和肝细胞发生着紧密的相互作用,肝脏不同区域的肝细胞可能会受到内皮细胞不同程度的影响。研究人员然后以Mfsd2a+肝细胞为例阐明肝细胞及其邻近内皮细胞之间的互作。当用他莫昔芬诱导双基因型成体小鼠Mfsd2a-CreER R26-sLP-mCh后,Mfsd2a+肝细胞启动sLP-mCh的表达,成为供体细胞。研究人员发现在门静脉周围出现聚集的mCherry信号,且存在mCherry+CDH5+细胞,表明Mfsd2a+肝细胞作为供体细胞表达sLP-mCh后,周围的内皮细胞也被标记为mCherry+。研究人员发现这部分内皮细胞主要分布在门静脉周围,在肝小叶一区中超过90%的内皮细胞为mCherry+,在二区中大约30%的内皮细胞为mCherry+,在三区中几乎检测不到mCherry+的内皮细胞。从以上可知,研究人员通过CILP技术,并结合Mfsd2a-CreER小鼠,实现了肝小叶内皮细胞的区域性标记,高效地标记了肝门静脉周围内皮细胞。为了进一步分析肝脏中不同区域内皮细胞的差异,研究人员利用FACS将mCherry阳性和阴性内皮细胞分选并进行转录组测序。通过主成分分析显示,这两群内皮细胞分别成群,互相具有较大差异。门静脉周内皮细胞的特征基因Dll4、Lama4、Msr1和Ltbp47在mCherry+内皮细胞中显著上调,中央静脉周内皮细胞特征基因Rspo3、Wnt9b、Cdh13和Thbd7在mCherry–内皮细胞中显著上调。对差异基因进行热图分析显示,与血管新生、调节细胞黏附和生长因子应激相关基因的表达在mCherry+内皮细胞中显著上调,而与胞外基质组成、化学趋化和组织形态发生相关基因的表达在mCherry+内皮细胞中显著下调。综上,研究人员开发了一种体内邻近细胞标记新技术CILP。CILP利用了一种细胞膜透过性的荧光蛋白,当这种荧光蛋白在供体细胞中表达后,可以释放到细胞外,并进入邻近细胞,从而实现对邻近细胞的标记。研究人员利用CILP技术成功标记了小鼠肝脏中肝细胞的邻近细胞,并利用Mfsd2a+肝细胞作为供体细胞,标记并分析了肝脏门静脉周内皮细胞的特征。分子细胞卓越中心博士后张少华为该论文的第一作者,分子细胞卓越中心周斌研究员和复旦大学附属中山医院王立新教授为该论文共同通讯作者。该工作得到了香港中文大学吕爱兰教授和西湖大学何灵娟研究员的大力支持。感谢分子细胞卓越中心动物平台和细胞分析技术平台对本研究的大力支持,感谢中科院、基金委、科技部以及上海市科委等部门的经费支持。图:(A)sLP-mCh荧光蛋白从供体细胞进入受体细胞。(B和C)遗传工具小鼠构建以及实验策略。(D–F)以肝细胞作为供体细胞表达sLP-mCh,肝脏中非实质细胞被标记为mCherry+。(G和H)sLP-mCh被用于在胰腺和心脏中标记邻近细胞。
  • 细胞膜层析新法弥补显微技术衍射缺陷
    最近,加州大学伯克利分校的Jay Groves及其团队开发出了一种新型层析技术用于研究细胞膜。   Groves解释说:&ldquo 我们开发出的是一种嵌于细胞膜的纳米点阵列平台,当其在一个活细胞的细胞膜中运作时,它将提供一种用于探测和操纵细胞膜组件的物理手段,包括信号簇。   截至目前为止,科学家主要通过各种显微镜研究细胞膜。受限于光的衍射作用,常规的显微技术很难观察比250nm更小尺寸的结构,然而,大部分细胞膜的成分,如蛋白质受体都比250nm要小。近年来,一些可以突破衍射障碍的超高分辨率显微技术问世,但这些技术更适合观察个体的静态图像,不能成为探测不断移动和变化中的细胞膜的理想技术。因此,科学家们需要一种用于细胞膜研究的全新技术。 基于尺寸的新型层析技术并首次用于研究活细胞   由Groves及其团队开发的这种技术,首先需要创建一种含有蛋白质的人工脂质膜,在金纳米颗粒阵列沉积在细胞膜表面之前,这些人工膜将在细胞表面与受体结合。下一步,对细胞表面的受体进行荧光标记,然后让该细胞无限靠近人工膜,这使得人工膜中的蛋白质和细胞膜中的受体彼此捆绑结合。   通常情况下,受体在细胞膜的周围不断移动。但现在它们与人工膜中的蛋白质结合,其运动是受金纳米颗粒阵列约束的。只有当受体比金纳米颗粒之间的间隙更小时,他们才能够移动,而荧光标记物将显示出任何的移动轨迹。通过改变金纳米颗粒之间的距离,Groves及其团队可以测定受体的尺寸和研究影响受体功能的运动。   这是一种基于尺寸的新型层析技术并首次用于研究活细胞,Groves及其团队通过该方法研究免疫系统中T细胞表面的受体。这些T细胞受体(TCRs)包括聚集的蛋白质团簇,当遇到蛋白质抗原时,它们可以捆绑结合。通过人工膜以附着不同浓度的抗原,改变金纳米颗粒之间的距离,Groves及其团队发现,团簇的大小取决于抗原浓度,浓度越高越利于形成更大的团簇。 Jay Groves   &ldquo T细胞受体微簇信号系统已经借助传统的光学显微镜有了很充分研究,但这部分是我们过去所不了解的。&rdquo Groves 表示:&ldquo 这是一种原理性的证据,它表明通过合成材料连接活细胞是实现细胞的分子级控制的另一个步骤。&rdquo (编译:刘玉兰)
  • 北航团队研发新型分析生物芯片平台(CPR) 可用于活细胞中核蛋白分析
    细胞核内的蛋白质在基因的调控、翻译和表达的过程中扮演着重要的角色,常与肿瘤发生、转移以及耐药性有关。但核蛋白被细胞膜和核膜的双重屏障包围,实际检测中,面临比细胞质蛋白检测更多困难。常规蛋白质免疫印迹法、酶联免疫吸附实验和免疫沉淀法均需要将细胞裂解,无法满足活细胞实时检测。而活细胞状态下检测细胞核蛋白主要方法,如分子荧光染料法和质粒表达法,需要特定筛选条件而缺乏一定的适用性,不能满足需求内源核蛋白的精准检测。近日,北京航空航天大学常凌乾课题组在Biosensors and Bioelectronics上发表了题为Companion-Probe & Race Platform for Interrogating Nuclear Protein and Migration of Living Cells的研究论文。该工作设计了一种新型分析生物芯片平台(CPR),能在活细胞中探测核蛋白,同时实时追踪细胞的迁移;该芯片结合纳米电穿孔技术(课题组标签技术),将一种携带有识别细胞核内蛋白特异性识别肽的相伴型组合探针递送进活细胞核内,到检测到靶蛋白后产生绿色荧光。为了追踪活细胞的迁移,作者在平台上设计了多个带有标志点的放射状微通道,作为细胞的可寻址跑道。通过记录细胞在一定时间内经过的标志点的数量,可以监测细胞的迁移距离和估计迁移速度(图1)。图1. 用于探测活细胞核内蛋白和迁移行为的CPR平台原理图作者将40个标记点定义为四个部分,从细胞内探测区域的边缘(起点)到微通道的静脉孔,每十个标记点设为一组间隔。课题选择与细胞迁移率相关的MDM2蛋白作为检测蛋白,其表达水平与细胞迁移速度呈正相关。综合分析结果显示,45%以上的MDM2蛋白过表达的细胞迁移到20号-40号微标记,而对照组细胞只在20号微标记内迁移,表明MDM2蛋白过表达的细胞的迁移能力增强。作者根据在迁移观察区移动的时间和细胞的迁移距离估计了这些细胞的迁移速度,并验证了MDM2蛋白过表达的细胞的速度明显快于对照细胞。通过CPR平台和MATLAB软件计算的迁移速度具有可比性,证明了CPR平台在一定时期内通过简单地计算标记点来评估细胞迁移速度的可行性。根据MDM2蛋白表达和细胞迁移速度的关系分析,MDM2蛋白的表达水平与细胞迁移速度呈正相关关系(图2)。这一结果与报道的MDM2蛋白高表达促进肿瘤迁移的研究一致。图2. 细胞迁移分析的CPR平台为评估CPR平台的多功能性,作者在CPR平台上分析了六个原发性肺肿瘤细胞样本 (T1-T6) 和六个原发性正常肺细胞样本 (N1-N6) 细胞核内MDM2表达。在所有六个原发性肺肿瘤细胞的细胞核中都观察到明显的绿色荧光,表明MDM2蛋白在肿瘤细胞中的高表达。研究发现,相同时间内,原发性肺肿瘤细胞比原发性正常肺细胞迁移得更远(图3)。原代细胞的成功检测显示了CPR平台在分析不同来源的细胞样本方面的高度通用性。图3. 用于跟踪原代细胞迁移的CPR平台该研究第一单位为北京市生物医学工程高精尖创新中心和北京航空航天大学生物与医学工程学院。常凌乾教授为主要通讯作者。第一作者为孙宏博士、董再再博士和张清洋博士。文章的其他主要共同作者包括,中国科学院大学深圳先进技术研究院任培根研究员,北京大学肿瘤医院吴楠教授。https://www.sciencedirect.com/science/article/abs/pii/S0956566322003219
  • 已上市及临床试验中以CHO细胞为生产平台的蛋白亚单位疫苗概述
    从18世纪天花的接种实践到通过接种牛痘预防天花,疫苗的开发与应用领域有着持续进步的丰富历史。1930年,可用于体外病毒繁殖的动物细胞培养物的引入,为20世纪下半叶针对麻疹、腮腺炎、风疹和脊髓灰质炎等疾病的减毒、灭活疫苗的成功开发奠定了基础。而随后的在酵母、细菌、昆虫和哺乳细胞中引入重组DNA技术的建立,使得新型疫苗的开发成为可能。本文将对当前上市或临床试验中的,以CHO细胞为生产平台的蛋白亚单位疫苗类型进行梳理。一CHO细胞表达系统特征CHO细胞包括从CHO-ori细胞系衍生出CHO-DXB11 (DHFR+/-) 、CHO-DG44 (-/-) 、CHO-GS、CHO-K1SV等多种细胞系,各具特定的特征,可分离稳定的转染物并获得高产量。与其他重组蛋白质生产细胞系相比,CHO细胞具有更高的生产力,流加批次培养可达到1-10 g/L。而相较于293细胞,病毒不易感染CHO细胞并在其中复制。CHO细胞对于蛋白的翻译后加工修饰与人类细胞的高度相似,如糖基化、二硫键形成以及蛋白的水解加工,但是也与人类细胞在翻译后修饰的特定模式与结构上存在微妙差异,没有工程化修饰过的CHO细胞不能合成某些人源聚糖键,比如:α-2,6-唾液酸化、二分N聚糖和α-1,3/4-岩藻糖基化,为了在CHO细胞内实现目的蛋白的糖基化,不同的团队也开发了相应的糖工程方法。CHO细胞可以进行高密度无血清悬浮培养,并将目的蛋白分泌到培养基中,因而是一个经济有效的大规模重组蛋白表达平台。CHO细胞中重组蛋白的表达可受到多种因素影响,包括:表达质粒、启动子的选择、培养条件(培养基成分、温度、溶氧)、CHO细胞系的选择和表达系统的选择等。利用CHO细胞进行重组蛋白表达包括瞬时表达和稳定表达两种方式。瞬时表达系统中含有目的基因的cDNA会随着细胞分裂而被稀释,表达周期较短。尽管瞬时表达的效率低于稳定表达,但优化策略后的蛋白产量也可高达1 g/L。而瞬时表达减少了与细胞系开发相关的时间和成本,被广泛用于临床前研究中蛋白的快速生产。CHO细胞稳转则是大规模生物制造的标准方法。二蛋白亚单位疫苗蛋白亚单位疫苗是基于病原体的一种或几种分离或选定的成分,通常是免疫显性抗原(全蛋白、蛋白结构域或多肽),可在佐剂刺激下使产生体液和/或细胞免疫。蛋白亚单位疫苗因为没有恢复到致病形式的风险,也被认为比灭活疫苗或减毒活疫苗更安全。蛋白亚单位疫苗已被批准用于多种病毒感染性疾病的预防,如:SARS-CoV-2、水痘-带状疱疹病毒、呼吸道合胞病毒和流感,剂量范围从5到180 ug。尽管新冠的蛋白亚单位疫苗应用范围没有其他类型疫苗广,但仍是目前临床前和临床候选疫苗的主要选择。蛋白亚单位疫苗的一个潜在挑战是免疫原性较低,这也凸显了识别抗原以引起强大保护性免疫的重要性。三CHO细胞生产的已批准或处于临床阶段的蛋白亚单位疫苗基于CHO细胞作为治疗性重组蛋白表达系统的优势,CHO细胞已成为蛋白亚单位疫苗生产的主要选择之一。从近40年前开始,各种基于CHO细胞的治疗药物被监管机构批准,与新的细胞系或使用较少的细胞系相比,生物制药公司、CDMO公司以及供应商可以基于CHO细胞生产平台的熟悉度大大减少了疫苗生产的时间和风险。利用CHO细胞生产蛋白亚单位疫苗的上下游工艺与生产其他重组蛋白相似。接下来我们将梳理已获批或正在临床开发的蛋白亚单位疫苗(如图1)。图1:CHO细胞生产平台的应用 (a) 已获批或临床候选药物的蛋白亚单位疫苗;呼吸道合胞病毒呼吸道合胞病毒是全球呼吸道感染的主要原因,在幼儿、老年人和慢性病患者中可引起严重疾病,2019年全球幼儿死亡人数超过100000人,在高收入国家中造成2.2万到4.7万人死亡。早期使用甲醛灭活的RSV疫苗,甲醛导致病毒抗原产生羰基集团,阻碍了抗原在细胞质中的加工,产生了低亲和力的抗体,从而导致了增强型的RSV疾病,表现为:高烧、支气管炎和呼吸困难。目前RSV表面的病毒融合 (F) 蛋白作为疫苗开发的潜在靶点,这种预融合稳定形式的设计已被证明可以产生有效的中和抗体。但也有研究表明,即使采用低剂量预融合F蛋白在动物上也可能产生增强型RSV疾病。相比之下,预融合的F蛋白在成人接种时表现出较好的结果,也导致葛兰素史克开发的RSV疫苗Arexvy疫苗 (RSVPreF3 OA) 的获批上市。该疫苗使用CHO细胞生产,由F蛋白的1-513号残基组成,通过T4纤维蛋白结构单元三聚体化。预融合形式通过将F1的Ser155和Ser290替换为半胱氨酸而实现,在不稳定的N端和结构刚性中心区域之间建立了二硫键,另外引入S190F和V207L突变以填充F1N端空隙,增加疏水相互作用。在早期临床试验展现良好的安全性,并确认其诱导产生中和抗体的能力后,和AS01E佐剂一起进入了III期临床,在17个国家25000名60岁以上成年人中评估有效性。研究结果显示,单剂该疫苗对RSV相关的下呼吸道疾病的有效性为82.6%,对严重表现的有效性为94.1%,对RSV相关急性呼吸道感染的有效性为71.7%。第二个获批的RSV疫苗是辉瑞公司的Abrysvo,是由CHO细胞生产的针对RSV A和B亚群的双价融合前F蛋白。在III期临床中,对RSV相关的下呼吸道疾病有66.7%的有效性,对严重RSV相关疾病有85.7%的有效性,且严重不良事件发生率低,安全性无明显问题。并且也作为孕妇疫苗进行评估,接种孕妇时间为妊娠第24-36周,该疫苗显示在新生儿出生后的前90天内,预防严重RSV相关呼吸道疾病有81.8%的有效性,因此获批做为预防婴儿RSV的母亲疫苗。以上两个疫苗受到了市场的广泛接受,在三个月内达到了12.35亿美元的销售额,也凸显了CHO细胞在疫苗制备中的商业潜力。水痘-带状疱疹病毒 (VZV)VZV可引起水痘,是一种与典型皮疹和轻微症状相关的高度传染性感染。初次感染后,病毒可在神经元中持续存在,多年后重新激活会引起带状疱疹;重新激活后以皮疼痛性水疱性皮疹为特征,在免疫受损的宿主中可能导致出血性病变,最主要的并发症为急性神经炎和带状疱疹后神经痛,影响50岁以上的25%-50%的患者。为了保护年长或免疫缺陷的成年人,重组VZV疫苗Shingrix于2017年由FDA获批,一年后获批EMA。Shringrix是以VZV病毒表面最普遍的gE蛋白为抗原,是中和抗体和T细胞识别的关键靶标。该疫苗由CHO细胞生产,并由于去除了C端和跨膜结构域而可以被分泌到细胞外。在抗原产生过程中,CHO细胞的培养条件优化后,使用20 L的波浪式反应器进行批培养,最终每升产量在2.44 g。在50岁以上人群中,有效性达97.2%以上。人巨细胞病毒 (HCMV)HCMV是一种感染了全球约80%人口的病原体,一旦个体免疫降低就会引发健康风险。并且也与各种癌症进展有关,其先天性感染也是出生缺陷的主要原因。即便如此,目前也没有批准上市的疫苗。但有几款疫苗在临床试验中,其中有几款疫苗基于HCMV表面的gB蛋白由CHO细胞产生,与病毒入侵过程中的膜融合至关重要,并且包含中和抗体的多个识别表位,该蛋白与佐剂MF59正处于临床II期进行测试。赛诺菲的gB基因来源于HCMV Towne毒株,不含跨膜结构域和弗林切割位点。gB/MF59疫苗在移植后患者、产后妇女和健康的青春期女孩等不同受众中均获得了良好的效果,结果显示,gB结合抗体滴度增加,CD4+T细胞反应增强,HCMV病毒血症降低。葛兰素史克的另一款gB蛋白亚单位疫苗处于临床I期试验中,抗原基于AD169毒株,其修饰与赛诺菲相似。另外,来自单纯疱疹病毒1型的gD氨基酸序列融合在AD169 gB序列以促进分泌。最近葛兰素史克开发的针对HCMV的新型佐剂,由gB蛋白和五聚体抗原组成。HCMV五聚体复合物也是疫苗开发中的具有吸引力的抗原,相比于gB蛋白,能诱导更有效的抗体中和进入上皮细胞。因此,葛兰素史克使用CHO-K1和CHO-DXB11衍生的细胞克隆获得400 mg/L的五聚体复合物,并在小鼠中诱导了有效的中和免疫反应。五聚体/gB 蛋白亚单位疫苗候选药物目前正在健康成人受试者中进行评估。人类免疫缺陷病毒 (HIV)即使在发现HIV病毒40年后,HIV功能性疫苗的挑战仍然存在,主要原因包括逆转录酶中缺乏3’核酸外切酶的校对活性,使得病毒gp41和gp120可快速突变。而中和抗体靶向的抗原表位位于HIV包膜蛋白的gp可变区域,在免疫系统的筛选压力下也会导致突变体的产生。HIV env gp重组三聚体是目前作为疫苗开发最有潜力的靶点,可能会引发广泛的中和抗体。始终保持融合前构象的早期可溶性三聚体称为“SOSIP”,其中包括gp120-gp41之间的工程化二硫键 (SOS) 以及有助于维持融合前构象的螺旋断裂突变(I559P,称为IP)。最近的临床试验中的SOSIP三聚体已经进行了改进,包括CHO细胞的改进。其中某些env蛋白,尤其是HIV分支B的env蛋白容易受蛋白水解影响。为了解决这个问题,采用了工程化的C1蛋白酶缺陷的CHO细胞系,从而减少蛋白降解。三聚体4571 (BG505 DS-SOSIP.664) 是基于HIV A分支的高度稳定的与融合闭合可溶性包膜糖蛋白三聚体。该三聚体在gp120中结合了201C-433C二硫键突变以防止CD4诱导的构象变化。最近三聚体4571在I期临床试验中进行了独立评估,并在异源方案中作为加强剂量中做了评估,结果显示三聚体4571是安全的,没有引起不良反应,并能够成功诱导特异性抗体产生,主要是集中在三聚体上的无聚糖基底上的抗体。但是对于天然三聚体,通常由于免疫系统无法接触到无聚糖基底而导致其在临床试验中具有更明显的非中和反应。为了减少这种基底定向免疫,未来CHO细胞生产的蛋白亚基疫苗可以使用聚糖进行工程设计以掩盖三聚体基底结构域,减少非中和抗体的产生。严重急性呼吸系统综合症冠状病毒2 (SARS-CoV-2)为抗击COVID-19大流行研发了多种疫苗,包括:灭活病毒疫苗、基于蛋白质的疫苗、核酸疫苗以及载体疫苗。源自SARS-CoV-2刺突 (S) 蛋白的蛋白亚单位疫苗由CHO细胞产生,不同的候选药物在特定国家/地区获得紧急使用或在临床试验阶段。表1:截止2023.12临床审批的CHO细胞生产的蛋白亚单位疫苗SARS-CoV-2蛋白亚单位疫苗开发最广泛使用的策略之一是使用S蛋白的胞外结构域 (ECD) 作为抗原。Medigen Vaccine Biologics Corporation开发的MVC-COV1901疫苗基于融合前稳定的S ECD三聚体,该三聚体具有K986P和V987P突变,以及在S1/S2连接处具有弗林蛋白酶切割位点682突变 (RRARGGAS) ,以提高稳定性并增加了T4纤维蛋白三聚体化结构域。CHO细胞用于生成表达该S抗原的稳定克隆,该抗原被证明类似于人HEK293细胞表达的SARS-CoV-2 S蛋白的结构。该候选疫苗用氢氧化铝(明矾)和CpG 1018佐剂,CpG 1018是一种TLR-9激动剂,通过刺激CD4+/CD8+T淋巴细胞来增强免疫原性。II期临床试验 (NCT04695652) 表明,MVC-COV1901是安全的且耐受性良好,并且在年轻人和老年人中都能诱导高中和抗体滴度。MVC-COV1901还与牛津-阿斯利康的ChAdOx1 nCoV-19病毒载体疫苗进行了比较,其中MVC-COV1901被证明更优越,可诱导更广泛的IgG亚类和更高的抗Omicron (BA.1) 变体的中和抗体滴度。MVC-COV1901已获准在斯威士兰、巴拉圭、索马里兰和台湾使用。SARS-CoV-2 S蛋白内的受体结合域 (RBD) 是中和抗体的主要靶点。因此,它已被用于生产各种蛋白亚单位疫苗。已经探索了不同的策略来进一步增强其抗原性,例如使用单体、二聚体或多聚体形式。ZIFIVAX (ZF2001) 疫苗由安徽智飞龙康生物制药公司开发,由三剂基于RBD的疫苗和明矾佐剂组成。ZF2001是由两个拷贝的RBD (R319-K537) 形成并在CHO细胞中产生串联重复的二聚体。这种RBD二聚体与RBD单体保持相似的亲和力,而且能够有效地与人ACE2受体结合。在I期和II期临床试验中,ZF2001在人体中表现出安全特征和免疫原性。在多个国家/地区进行的III期临床试验显示,在完全接种疫苗后至少六个月内对有症状和重度至危重的COVID-19具有安全性和有效性。ZF2001疫苗已获准在中国、哥伦比亚、印度尼西亚和乌兹别克斯坦使用。CHO细胞的广泛使用和抗原表达的翻译后修饰使得CHO细胞在面临非快速反应环境中生产疫苗更为可取,尤其是CHO细胞的可操作性、安全性和稳定性。CHO细胞作为更具成本效益和高效的疫苗生产平台的潜力会越来越的到业界认可。在CHO细胞培养过程中,HyClone可以提供多种商品化CHO细胞培养基,包括:Actipro、HyCell CHO、PSL A01和PSL A02等多种基础培养基以及包括Cell boost 7a、Cell boost 7b等多种补料。参考文献:CHO cells for virus-like particle and subunit vaccine manufacturing声明:本文为作者原创首发,严禁私自转发或抄袭,如需转载请联系并注明转载来源,否则将追究法律责任
  • 文献解读 | NanoTemper助力结核分枝杆菌细胞壁通路靶标膜蛋白研究
    01研究背景膜蛋白生命活动中具有重要作用,也是重要的药物靶点,而膜蛋白在进行互作研究过程中会有许多难点:1. 膜蛋白一般需要去垢剂来模拟脂质生物环境。对于基于固定的互作技术,去垢剂会增加背景信号,或者存在参比通道和样品通道背景不同的可能。2. 膜蛋白结构复杂,且与配体结合后可能发生变构。因此研究互作时,膜蛋白的正确构象至关重要。基于固定的技术可能阻碍变构过程,或者在固定和再生过程中破坏膜蛋白的构象。3. 膜蛋白的表达量低、纯化难,因此需要消耗量少的方法进行检测。本期文献解读,讲述如何利用MST及nanoDSF的手段来进行膜蛋白互作研究的故事。02研究内容2024年3月15日,上海科技大学张璐研究员/饶子和院士团队在Nature Microbiology发表题为“Structural analysis of phosphoribosyltransferase-mediated cell wall precursor synthesis in Mycobacterium tuberculosis”的研究,解析结核分枝杆菌全新药物靶标——膜蛋白磷酸核糖转移酶Rv3806c与其受体底物DP和供体底物PRPP结合复合物的精细三维结构,为研究Rv3806c作为新靶点的靶向性药物研发提供了重要的理论基础。https://doi.org/10.1038/s41564-024-01643-8IF: 28.3 Q1通过对Rv3806c与供体底物PRPP复合物结构分析,推测可能影响Rv3806c结合和酶活的位点,并通过MST进行大量突变Rv3806c亲和力检测进行验证。Rv3806c为膜蛋白,并且在脂质环境中以三聚体形式组装。实验种共有10种突变体需进行Kd检测,每次实验均进行了5次重复。MST进行一次亲和力检测时,仅需32pmol、1μg的膜蛋白Rv3806c,大大节约蛋白消耗量。此外,MST技术是在溶液条件下进行,无需固定,且兼容去垢剂,使膜蛋白能保持正确的构象,甚至可以完成nanodisc或者膜提取物形式的膜蛋白亲和力检测,从而可以轻松表征膜蛋白Rv3806c多种突变体与底物PRPP的亲和力。图示:MST测定PRPP与WT-Rv3806c及突变体的结合亲和力此外,研究发现,供体底物PRPP通过一个Mg2+结合在TM螺旋束-1的空腔。为了研究Mg2+对Rv3806c结合供体底物PRPP的作用,作者使用MST和nanoDSF技术检测存在或不存在Mg2+时,Rv3806c与底物PRPP的结合。NanoDSF技术通过监测蛋白内源荧光的变化来表征蛋白结构,无需加入外源荧光染料,兼容去垢剂。使用GDN纯化的Rv3806c完成MST亲和力实验和nanoDSF的热迁移实验,结果显示Mg2+对于PRPP的结合至关重要。图示:MST分析在Mg2+存在或不存在的情况下,PRPP与Rv3806c的结合亲和力。在没有Mg2+的情况下,结合亲和力急剧下降,而在金属螯合剂EDTA的存在下,没有检测到结合。图示:在Mg2+、PRPP和EDTA存在或不存在的情况下,纯化后的Rv3806c的nanoDSF热稳定性分析。PRPP-Mg2+存在时Rv3806c表现出最高的热稳定性。03技术优势在这篇工作中,通过MST技术及nanoDSF技术,确定了膜蛋白Rv3806c与PRPP结合的关键残基,以及Mg2+在互作过程中的关键作用。对于分子互作亲和力的检测,Monolith系列仪器无需固定样品,且不限制缓冲条件,蛋白用量少,可以在溶液中表征膜蛋白与小分子的亲和力。Promethus系列仪器,以nanoDSF技术为核心,通过检测蛋白内源荧光监测蛋白的稳定性,无需外源荧光染料,兼容去垢剂,低浓度也可轻松表征,在膜蛋白稳定性分析和TSA互作定性研究上具有显著优势。-Monolith分子互作检测仪--PR Panta蛋白稳定性分析仪-
  • 红外多光子解离用于Top-Down表征膜蛋白复合物和G蛋白偶联受体
    大家好,本周为大家分享一篇来自Angewandte Chemie - International Edition的文章:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors[1],文章的通讯作者是牛津大学化学系的Carol V. Robinson教授。  非变性质谱(Native MS)是结构生物学中一个成熟的工具。在电喷雾电离过程中使用非变性缓冲液可以保存多组分蛋白质复合物之间的非共价相互作用,以及它们的配体、辅因子或其他结合蛋白。它可以用于探究蛋白质复合物的相互作用和功能,因为结合事件导致质量变化,可以在质谱仪中跟踪和剖析。然而,由于膜蛋白的疏水性,使得它们在传统的非变性质谱缓冲液中不溶且容易聚集,因此在非变性质谱中呈现出独特的挑战。目前采用的方法是将蛋白质复合物溶解到膜类似物中,例如:去垢剂、纳米脂质盘、两性聚合物等,再将这些膜类似物通过碰撞激活去除。其中去垢剂是应用的最广泛的一种。然而由于碰撞激活的能量在应用中受到限制,该方法并不能在质量分析前很好地去除去垢剂。此外,在非变性质谱条件下,键的断裂也受到非共价相互作用强度的影响(例如蛋白质-蛋白质、蛋白质-去垢剂剂以及去垢剂胶束内的相互作用)。  基于光子的方法,如紫外光解离(UVPD)和红外多光子解离(IRMPD)已被证明有利于可溶性蛋白质及其复合物的Top-Down质谱分析。与此同时,基于光子的膜蛋白Top-Down模式的应用正在兴起。原理上,激光束路径中的离子被连续地驱动到振动激发态。因此,在基于光子的方法中,能量储蓄通常与前体离子的电荷状态和分子量无关。然而,电荷状态和分子量仍然会影响肽键解离需要的输入能量。先前报道的通过UVPD对79 kDa的五聚体的大电导机械敏感通道(MscL)Top-Down的断裂得到了令人印象深刻的54%的序列覆盖。然而,对于氨通道(AmtB)一个127 kDa的同源三聚体,通过碰撞激活和UVPD两种不同的方式破碎,仅实现了20%的序列覆盖率。事实上,相对较低的序列覆盖率是由于大分子量以及三聚体中增加的非共价相互作用影响的结果。尽管这些工具能够在非变性状态下实现Top-Down质谱分析,但其在膜蛋白表征中的应用仍不广泛。这就要求建立一种能使低电荷密度的高分子量蛋白质稳定地产生蛋白质序列离子的方法,而膜蛋白嵌入异质膜或膜类似物则使这一问题更加复杂。虽然IRMPD之前被用于从去垢剂中释放膜蛋白,但使用IRMPD对非变性的膜蛋白进行测序的研究相对较少。  图1. (A)改进的Orbitrap Eclipse Tribrid的原理图,其中包括一个红外激光器直接进入四极线性离子阱(QLIT)的高压细胞。离子化的蛋白质胶束被转移到高压QLIT中,在那里整个离子群受到红外光子的照射,然后被转移到Orbitrap进行质量分析。通过调节激光输出功率(W)和照射时间(ms),可以使膜蛋白从去垢剂胶束中完全解放出来。(B)三聚氨通道(AmtB)在3.0 W输出功率和200ms辐照时间下的非变性质谱。(C)在3.3 W输出功率和200ms辐照时间下AmtB的非变性质谱。  因此,作者利用改进的Orbitrap Eclipse Tribrid质谱仪,与连续波远红外(IR) CO2激光器连接,使光束聚焦到双四极杆线性离子阱(QLIT)的高压池中(图1A)。红外激活可以有效地去除蛋白质复合物中的去垢剂胶束,随后通过IRMPD使得膜蛋白碎片化。在这种安排下,由纳米电喷雾电离产生的蛋白质复合物被转移到高压池中。在转移到Orbitrap进行检测或m/z分离和随后的碎片化之前,整个离子群将受到943cm-1红外光子的照射。利用红外的方法去除去垢剂胶束,红外激光有两个可调控参数:激光输出功率(高达60瓦)和照射时间(毫秒到秒)。因此,可以更好地控制从蛋白质胶束中释放膜蛋白,确保非变性复合物的保存,同时完全去除包裹复合物中的去垢剂。通过对激光输出功率和照射时间的优化,作者发现红外激活的参数是高度可调的,不同的激光功率和照射时间的组合也可以产生分辨率相当的谱图。其中例如在3.3 W下照射200 ms时,可以得到多个电荷态的三聚体峰(~6500 m/z),也可以观察到三聚体与脂质结合的峰,而且对于图谱中的单体也能观察到与脂质结合的峰(图1C)。作者还对不同的去垢剂产生分辨率较高的图谱所需要红外参数进行了评估,从而评价了这几种去垢剂得到高分辨率图谱的难易程度(图2)。  图2. 红外辐射去除膜蛋白离子中的去垢剂是高度可调的。增加激光输出功率对三种常用的MS兼容去垢剂(C8E4,G1和DDM) AmtB三聚体峰外观的影响。辐照时间固定为200 ms,激光输出功率分别为2.1、2.4、3.0和3.6 W。去垢剂在真空中按易去除的顺序显示,这是由完全释放膜蛋白复合物所需的激光输出功率决定的,从而在m/z光谱中产生良好分辨的电荷状态峰。为了探究IRMPD分离蛋白质和去垢剂胶束的机制,作者对三种不同的去垢剂:四聚乙二醇单辛醚(C8E4)、树突状低聚甘油(G1)和十二烷基-β-D-麦芽糖苷(DDM)的溶液相和气相红外光谱进行了表征,并利用密度泛函理论(DFT)计算得到了C8E4头部基团的红外谐波光谱,用来验证所得到的红外吸收光谱会受到振动耦合的影响,对于质子化的去垢剂离子,氢键和富氧去垢剂内的质子共享可以改变观察到的振动频率。结果表明C8E4胶束的溶液相吸收光谱包含一个与预期激光波数943cm-1重叠的显著带,这就解释了为何较低的激光能量可以将去垢剂胶束和蛋白质复合物分离。而在谐波光谱中在预期的激光波数处的确产生了峰,并推测该峰来自于O-H伸缩、C-C伸缩,C-H弯曲和C-O伸缩振动的耦合。而G1和DDM的最大吸收则偏离了943cm-1的预期波数,作者认为这是不同去垢剂氢键作用的结果。而蛋白质在真空中的红外吸收能力较弱,由此推测在IRMPD的过程中,去垢剂是主要的吸收对象。所以仅需要较低的能量就可以使蛋白质从复合物中剥离而不至于破坏蛋白质的非共价作用。完整的蛋白质离子还支持串联质谱的实验,为了得到蛋白质的序列信息,作者分离了m/z在6674处(电荷态为+19)的AmtB三聚体蛋白,并将其置于高激光输出功率(9 W)下照射5 ms,在m/z 1750~4000之间产生密集的多电荷态离子片段,并得到了26%的序列覆盖,这优于之前基于碰撞激活的方法(  图3. 三聚体AmtB的IRMPD。(A)在m/z 6674处分离19+电荷态离子阱后,IRMPD后观察到的碎片离子MS2谱。多重带电碎片被高亮显示 来自相同地点的重复片段用虚线分组。为了清楚起见,许多指定的离子没有注释 (B)片段丰度相对于裂解原点(残基数)的条形图,其中丰度表示来自每个位点的片段归化一强度之和。条形图的颜色强度表示每个片段的加权平均电荷。将AmtB的拓扑域叠加在条形图上 α-螺旋跨膜区域用黄色方框表示,编号为1到11。跨膜区由质周环和细胞质环连接,用灰色线表示。(C)主干裂解位点覆盖在AmtB (PDB: 1U7G)的结构上。蓝色和红色阴影区域分别代表b型和y型离子。颜色强度对应于所分配片段的丰度。从气相分子动力学模拟中得到的高温(500 K)下的跨膜螺旋快照用虚线圈标出。为了验证这一个推测,作者又对另外两种GPCR蛋白:β -1-肾上腺素能受体(β1AR)和腺苷A2A受体(A2AR)用IRMPD进行了MS2图谱的测定,结果也观察到了片段离子相似的二级结构定位,在跨膜结构区域有着高丰度的片段,但是在二硫键相连的螺旋中并没有观察到丰富的离子片段。并再次利用分子动力学模拟研究了两种GPCR的结构对断裂的影响。在500 K下的最终结构中显示,两种GPCR中都保留了α-螺旋特征,并与观察到的裂解位点密切相关。此外,还对这两种蛋白进行了HCD和IRMPD的比较分析。对于β1AR, IRMPD产生的片段离子平均分子量为8866 Da,高于HCD产生的5843 Da。IRMPD产生的片段离子也保留了更高的平均电荷(4.7 + vs 3.6+ z)。最终,IRMPD的碎片化导致β1AR的序列覆盖率更高,为28%,而HCD为17%。在A2AR中也观察到类似的趋势,IRMPD的覆盖率为19%,而HCD为9%。  总的来说,作者证明了可以在改进的Orbitrap Eclipse质谱仪的高压QLIT下,通过红外照射可以完全释放一系列去垢剂胶束中的膜蛋白。然后,通过增加激光输出功率,获得直接从膜蛋白及其复合物中释放的序列信息片段离子,证明红外光去除去垢剂是通用的和高度可控的,为保存和鉴定膜蛋白和配体之间脆弱的非共价相互作用构建了一个可靠的方法。而且还对片段离子的产生机制做了阐述,即质子可以通过沿蛋白质骨架迁移来稳定和诱导连续的肽键裂解。  撰稿:李孟效  编辑:李惠琳  文章引用:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors  参考文献  Lutomski, C.A., El-Baba, T.J., Hinkle, J.D., et al. Infrared multiphoton dissociation enables top-down characterization of membrane protein complexes and g protein-coupled receptors[J]. Angewandte Chemie-International Edition,2023.
  • 科学家开发出应用荧光光谱技术研究膜蛋白运动的新方法
    加拿大和美国科学家联合研究小组开发出一种应用荧光光谱技术观察研究单个膜蛋白运动的新方法。膜蛋白的主要功能是控制细胞与其周边环境的离子交换。专家认为,该项研究成果有助于人们增强对离子通道的认识和了解。相关研究文章发表在最新出版的《美国国家科学院院报》上。   离子通道类似于一台小型纳米机器或纳米阀门,如果这些微小阀门运转失灵,将引发人体肌肉、中枢神经系统和心脏等发生各种遗传疾病。   与照相机的光圈原理相似,这些膜蛋白通过开启和关闭动作来控制细胞与其周边环境的离子交换运动,这种离子交换运动促成了沿着我们神经细胞的电信号的传输。这些细微阀门的尺寸大约是人眼瞳孔大小的百万分之一。加美科学家所采用的新技术可测量到单离子通道,并可研究离子通道内部不同部分之间如何进行信息沟通。   由加拿大蒙特利尔大学物理系教授里卡德.布朗克牵头的联合小组对基于4个同样的亚单元建立的钾离子通道进行了研究,这种钾离子通道形成了可以穿过膜的微细小孔,小孔能够打开和关闭以开通或阻断离子传导。   科学家使用新开发出的荧光光谱技术,区分出4个亚单元,首次实现了对4个亚单元的运动分别进行跟踪研究。他们发现,4个亚单元分子是协同发挥作用的,从而解释了为何在电生理学实验中没有在电流中发现中间级。该项研究成果解决了在该领域存在的长期争论:一个钾离子的4个亚单元究竟是各自独立发挥作用还是协同发挥作用。   布朗克博士表示,该项发现有助于增强人们对离子通道的认识和了解。其重要性在于,膜蛋白在人体中发挥着重要的作用,而且其基因突变会引发许多严重的遗传疾病,也因此它们是重要的药物标靶。
  • 胰蛋白酶,组织解离、细胞消化的小帮手
    胰蛋白酶(胰酶,Trypsin),CAS:9002-07-7,为蛋白酶的一种,EC3.4.4.4,是从牛、羊、猪的胰脏提取的一种丝氨酸蛋白水解酶。来源于胰腺的一种丝氨酸蛋白酶,由223个氨基酸残基组成的单链多肽,底物特异性是带正电荷的赖氨酸和精氨酸侧链。胰酶主要切割赖氨酸和精氨酸羧基端,当两者之一紧随为脯氨酸的情况除外。另外,当切割位点任一边紧邻酸性残基,胰酶水解速率也会减缓。在组织细胞的体外培养和原代细胞培养中的组织细胞分散(将组织块制备成单个细胞悬液)以及传代细胞培养中,贴壁生长细胞的消化分散均要使用组织细胞消化液。常用的消化液为胰蛋白酶,EDTA等,其功能主要是使细胞间的蛋白质(如细胞外基质)水解,使组织或贴壁细胞分散成单个细胞,制成细胞悬液用于进一步的实验。以下是absin胰酶部分产品,全部现货供应哦~胰蛋白酶(猪源)1:250 abs47014936本品是由猪胰提取而得的一种肽链内切酶,白色至淡黄色粉末。可用于制备单细胞悬浮液,胰蛋白酶在用于细胞培养时,可用PBS溶解成浓度为0.25%,也可以加入0.02%EDTA ,过滤除菌后使用。溶于水≥10mg/ml,不溶于乙醇、甘油、氯仿和乙醚。本品具有以下特点:1、对电点pI 10.5。Ca2+对酶活性有稳定作用。 2、重金属离子、有机磷化合物、DFP、天然胰蛋白酶抑制剂对其活性有强烈抑制。 3、可用于制备单细胞悬浮液或贴壁细胞的消化、分离。货号名称abs47014936猪源胰蛋白酶1:250胰蛋白酶-EDTA消化液(0.25%) abs47014938本产品含0.25%胰酶,溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。货号名称abs47014938胰蛋白酶-EDTA消化液(0.25%)胰蛋白酶-EDTA消化液(0.25%) 不含酚红 abs47047375本品含 0.25%胰酶和 0.02%EDTA(0.53mM),溶于无钙镁平衡盐溶液中,经过滤除菌,可以直接用于培养细胞和组织的消化。本产品具有方便快速、稳定安全、细胞状态好等特点。货号名称abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红胰蛋白酶(牛胰) 1:2500 abs9154本品是由牛胰提取而得的一种肽链内切酶,白色或类白色粉末。溶于水,不溶于乙醇、甘油、氯仿和乙醚。其广泛应用于分子生物学,药理学等科研方面。是一种专一性催化水解赖氨酸、精氨酸羧基形成的肽键,可用于蛋白质化学研究。货号名称abs9154胰蛋白酶(牛胰) 1:2500更多absin胰蛋白酶相关产品 :货号名称abs47014938胰蛋白酶-EDTA溶液abs9154胰蛋白酶(牛胰腺)abs47047375胰蛋白酶-EDTA消化液(0.25%) 不含酚红abs44073474重组牛胰蛋白酶abs47014937Trypsin (0.25%), Phenol Redabs47014936猪源胰蛋白酶1:250abs47014940胰蛋白酶,蛋白测序级abs47014939胰蛋白酶,组织培养级Absin特色产品线(全部现货):WB相关:ECL发光液、预染marker、预制胶;IHC相关:二抗试剂盒、组化笔;IP/CoIP试剂盒;激动剂/抑制剂;血清、BSA、蛋白酶K、CTB、TTX、CEE;凋亡试剂盒;呼吸爆发试剂盒;ELISA试剂盒;重组蛋白;抗体: 二抗、标签抗体、对照抗体;定制服务(抗体/多肽/蛋白/标记/检测)...
  • 低温电镜解析蛋白结构十大进展
    结构生物学领域有一条不成文的观点:结构决定功能。只有知道生物分子的原子排布,科学家们才能了解这个蛋白的功能。几十年来,分析蛋白结构有一个无冕之王——X射线晶体衍射。在X射线晶体衍射中,科学家们让蛋白结晶,然后利用X射线照射,随后根据X射线的衍射来重建蛋白的结构。在蛋白质数据银行(Protein Data Bank)的100000多条蛋白词目里,超过90%的蛋白结构是利用X射线晶体衍射技术解析得到的。  尽管X射线晶体衍射一直是结构生物学家的最佳工具,但是它存在较大的限制。科学家们将蛋白进行大块结晶通常需要多年的时间。而很多基础蛋白分子,例如嵌在细胞膜上的蛋白,或是形成复合体的蛋白却无法被结晶。  X射线晶体衍射技术(X-ray crystallography)即将成为历史,低温电子显微技术(cryo-electron microscopy, 也称作electron cryomicroscopy, cryo-EM)引发结构生物学变革。  低温电子显微镜适用于研究大的、稳定的分子,这些分子能够承受电子的轰击,而不发生变形——由多个蛋白组成的分子机器是最好的样本。因此由RNA紧紧围绕的核糖体是最佳的样本。三位化学家用X射线晶体衍射研究核糖体溶液的工作在2009年获得了诺贝尔化学奖,但这些工作花了几十年。近几年,低温电镜研究者们也陷入了“核糖体热”。多个团队研究了多种生物的核糖体,包括人类核糖体的首个高清模型。X射线晶体衍射的研究成果远远落后于LMB的Venki Ramakrishnan实验室,Venki获得了2009年的诺奖。Venki表示,对于大分子来说,低温电子显微镜远比X射线晶体衍射要实用。  这几年,低温电子显微镜的相关文章有很多:2015年一年,这个技术就用于100多个分子的结构研究。X-射线晶体衍射只能对单个、静态的蛋白晶体成像,但低温电子显微镜能够对蛋白的多种构象进行成像,帮助科学家们推断蛋白的功能。  现在低温电镜迅猛发展,专家们正在寻找更大的挑战作为下一个解析目标。对很多人来说,最想解析的是夹在细胞膜内的蛋白。这些蛋白是细胞信号通路中的关键分子,也是比较热门的药物靶标。这些蛋白很难结晶,而低温电子显微镜不大可能对单个蛋白进行成像,这是因为很难从背景噪音中提取这些信号。  这些困难都无法阻挡加利福利亚大学(University of California)的生物物理学家程亦凡。他计划解析一种细小的膜蛋白TRPV1。TRPV1是检测辣椒中引起灼烧感的物质的受体,并与其它痛感蛋白紧密相关。加利福利亚大学病理学家David Julius等人之前尝试结晶TRPV1,结果失败。用低温电子显微镜解析TRPV1项目,一开始进展缓慢。但2013年底,技术进步使得这一项目有了重大突破,他们获得了分辨率为0.34纳米的TRPV1蛋白的结构。该成果的发表对于领域来说,无异于惊雷。因为这证实了低温电子显微镜能够解析小的、重要的分子。  尽管低温电子显微镜发展迅速,很多研究者认为,它仍有巨大提升空间。他们希望能制造出更灵敏的电子探测器,以及更好地制备蛋白样本的方法。这样的话,就能够对更小的、更动态的分子进行成像,并且分辨率更高。5月,有研究者发表了一篇细菌蛋白的结构,分辨率达到了0.22纳米。这也显示了低温显微镜的潜力。  1997年时,英国医学研究委员会分子生物学实验室结构生物学家Richard Henderson非常坚定地宣称,低温电镜会成为解析蛋白结构的主流工具。在将近20年后的今天,他的预测比当年有了更多底气。Henderson表示,如果低温电镜保持这样的势头继续发展,技术问题也得以解决,那么低温电镜不仅会成为解析蛋白结构的第一选择,而是主流选择。这个目标已经离我们不远了。  1. 施一公小组在《Science》发两篇论文报道剪接体三维结构    U4/U6.U5 tri-snRNP电镜密度及三维结构示意图。  2015年8月21日,清华大学生命科学学院施一公教授研究组在国际顶级期刊《科学》(Science)同时在线发表了两篇背靠背研究长文,题目分别为“3.6埃的酵母剪接体结构”(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)和“前体信使RNA剪接的结构基础”(Structural Basis of Pre-mRNA Splicing)。第一篇文章报道了通过单颗粒冷冻电子显微技术(冷冻电镜)解析的酵母剪接体近原子分辨率的三维结构,第二篇文章在此结构的基础上进行了详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。清华大学生命学院博士后闫创业、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者。  这一研究成果具有极为重大的意义。自上世纪70年代后期RNA剪接的发现以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。施一公院士研究组对剪接体近原子分辨率结构的解析,不仅初步解答了这一基础生命科学领域长期以来备受关注的核心问题,又为进一步揭示与剪接体相关疾病的发病机理提供了结构基础和理论指导。详细新闻报道参见:施一公研究组在《科学》发表论文报道剪接体组装过程重要复合物U4/U6.U5 tri-snRNP的三维结构。(Science, 20 Aug 2015, doi: 10.1126/science.aac7629 doi: 10.1126/science.aac8159)  2. Science:HIV重大突破!史上最详细HIV包膜三维结构出炉!    这项研究首次解析出HIV Env三聚体处于自然状态下的高分辨率结构图,其中HIV利用Env三聚体侵入宿主细胞。图片来自The Scripps Research Institute。  在一项新的研究中,TSRI的研究人员解析出负责识别和感染宿主细胞的HIV蛋白的高分辨率结构图片。相关研究结果发表在2016年3月4日那期Science期刊上,论文标题为“Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer”。  这项研究是首次解析出这种被称作包膜糖蛋白三聚体(envelope glycoprotein trimer,以下称Env三聚体)的HIV蛋白处于自然状态下的结构图。这些也包括详细地绘制这种蛋白底部的脆弱位点图,以及能够中和HIV的抗体结合位点图。(Science, 04 Mar 2016, doi: 10.1126/science.aad2450)  3. Nature:史上最详细转录因子TFIID三维结构出炉,力助揭示人类基因表达秘密  在一项新的研究中,来自美国加州大学伯克利分校、劳伦斯伯克利国家实验室和西班牙国家研究委员会(CSIC)罗卡索拉诺物理化学研究所的研究人员在理解我们体内被称作转录起始前复合物(pre-initiation complex, PIC)的分子机构(molecular machinery)如何发现合适的DNA片段进行转录方面取得重大进展。他们史无前例地详细呈现一种被称作TFIID的转录因子所发挥的作用。相关研究结果于2016年3月23日在线发表在Nature期刊上,论文标题为“Structure of promoter-bound TFIID and model of human pre-initiation complex assembly”。论文通信作者是劳伦斯伯克利国家实验室生物物理学家Eva Nogales,论文第一作者是Nogales实验室生物物理学研究生Robert Louder。其他作者是Yuan He、José Ramón López-Blanco、Jie Fang和Pablo Chacón。  这一发现是非常重要的,这是因为它为科学家们理解和治疗一系列恶性肿瘤铺平道路。Eva Nogales说,“理解细胞中的这种调节过程是操纵它或当它变坏时修复它的唯一方式。基因表达是包括从胚胎发育到癌症在内的很多重要生物学过程的关键。一旦我们能够操纵这些基本机制,那么我们就能够要么校正应当或不应当存在的基因表达,要么阻止这种过程[即基因表达]失去控制时的恶性状态。”(Nature, 31 March 2016, doi:10.1038/nature17394)  4. Science:科学家成功解析人类剪接体关键结构   在最近发表的一篇Science研究论文中,来自德国的科学家们利用冷冻电镜技术首次在分子级分辨率水平上重现了人类剪接体中一个关键复合体——U4/U6.U5 tri-snRNP的结构。剪接体是一种由RNA和蛋白质组成的用于切掉mRNA前体中内含子的分子机器。该研究解析的U4/U6.U5 tri-snRNP是构成剪接体的一个重要组成部分,研究人员利用单颗粒冷冻电镜获得了人类U4/U6.U5 tri-snRNP的三维结构,该复合体分子量达到180万道尔顿,解析分辨率达到7埃。该研究模型揭示了Brr2 RNA解螺旋酶如何在分离的人类tri-snRNP中通过空间结构阻止未成熟的U4/U6 RNA发生解链,还展现了泛素C端水解酶样蛋白Sad1如何将Brr2固定在预激活位置。  研究人员将他们获得的结构模型与酿酒酵母tri-snRNP以及裂殖酵母剪接体的结构进行了对比,结果表明Brr2在剪接体激活过程中发生了显著的构象变化,支架蛋白Prp8也发生了结构变化以容纳剪接体的催化RNA网络。(Science, 25 Mar 2016, doi: 10.1126/science.aad2085)  5.北京大学毛有东、欧阳颀课题组与其合作者在Science发表炎症复合体冷冻电镜结构    炎症复合体三维结构  北京大学物理学院毛有东研究员、北京大学物理学院/定量生物学中心欧阳颀院士与哈佛医学院吴皓教授合作利用冷冻电子显微镜技术解析了近原子分辨率的炎症复合体的三维结构,首次阐释了其复合物在免疫信号转导过程中的单向多聚活化的分子结构机理。该研究工作以“Cryo-EM Structure of the Activated NAIP2/NLRC4 Inflammasome Reveals Nucleated Polymerization”为题于2015年10月8日在线发表在国际期刊Science。  先天免疫是人类免疫系统的重要组成部分,炎症复合体在触发先天免疫响应的过程中起到了关键信号转导的效应器作用,从而启动细胞凋亡等免疫应答和炎症反应。炎症复合体是胞浆内一组复杂的多蛋白复合体,是胱天蛋白酶活化所必需的反应平台,其复合物单体由多个结构域构成,并在上游蛋白的激活下诱导组装形成环状复合物。炎症复合体的结构对于认识先天免疫的信号转导过程、免疫调控和病原诱导活化等免疫响应机理具有关键的核心价值,因而成为国内外一流结构生物学和免疫学实验室追捧的研究对象。(Science, 23 Oct 2015, 10.1126/science.aac5789)  6. Nature:施一公团队揭示γ -分泌酶原子分辨率结构    人体γ -分泌酶3.4埃三维结构  日前,清华大学教授施一公团队与国外学者合作,构建了分辨率高达3.4埃的人体γ -分泌酶的电镜结构,并且基于结构分析了γ -分泌酶致病突变体的功能,为理解γ -分泌酶的工作机制以及阿尔茨海默氏症的发病机理提供了重要基础。相关成果8月18日在《自然》发表。  阿尔茨海默氏症是最为严峻的老年神经退行性疾病之一,但其发病机理尚待揭示。目前研究已知β -淀粉样沉淀是该病的标志性症状之一。而β -淀粉样沉淀的产生是APP蛋白经过一系列蛋白酶切割产生的短肽聚集而来。在此切割过程中,最关键的蛋白酶是γ -分泌酶。γ -分泌酶由四个跨膜蛋白亚基组成,其中,编码Presenilin(PS1)蛋白的基因中有200多个突变与阿尔茨海默氏症病人相关。γ -分泌酶在阿尔茨海默氏症的发病中扮演着重要角色。  研究人员通过收集更多的数据、大量的计算并升级分类方法,计算构建出3.4埃原子分辨率γ -分泌酶的三维结构,可以观察到绝大部分氨基酸的侧链以及胞外区部分糖基化修饰和结合的脂类分子。在高分辨结构的基础上,施一公研究组对PS1上的致病性突变体进行了研究,发现这些突变主要集中在两个较为集中的区域内。他们对于其中一些突变体进行了生化性质的研究,发现这些突变会影响γ -分泌酶对于底物APP的酶切活性,然而对切割活性的影响却有所不同。(Nature, 10 September 2015, doi:10.1038/nature14892)  7. Nature:人类核糖体结构终于被解析!    核糖体是进行蛋白质翻译的机器,能够催化蛋白质合成。目前,许多研究已经对多种生物的核糖体结构进行了原子水平的结构解析,但获得人核糖体结构一直存在很大挑战,这一问题的解决对于人类疾病的深入了解以及治疗手段和策略的开发都有重要意义。  近日,著名国际学术期刊nature在线发表了法国科学家关于人类核糖体结构解析的最新研究进展。  在该项研究中,研究人员利用高分辨率单颗粒低温电子显微镜以及原子模型构建的方法获得了人类核糖体接近原子水平的结构。该核糖体结构的平均分辨率为3.6A,接近最稳定区域的2.9A分辨率水平。这一研究成果对人类核糖体RNA,氨基酸侧链的实体结构,特别是转运RNA结合位点以及tRNA脱离位点处的特定分子相互作用提供了深入见解,揭示了核糖体大小亚基接触面的原子细节,发现在核糖体大小亚基的旋转运动过程中,其接触面发生了强烈的重构过程。(Nature, 30 April 2015, doi:10.1038/nature14427)  8. Nature:日本科学家成功解析代谢关键因子受体结构  近日,著名国际学术期刊nature在线发表了日本科学家的最新研究进展,他们利用结构生物学方法对脂联素(adiponectin)受体,AdipoR1和AdipoR2,进行了结构解析,发现脂联素受体具有与G蛋白偶联受体不同的七次跨膜螺旋,对于靶向脂联素受体的肥胖及其相关代谢疾病治疗方法开发具有重要意义。  在该项研究中,研究人员对人类AdipoR1和AdipoR2的晶体结构进行了解析,分辨率分别达到2.9 ?和2.4 ?,他们通过解析发现脂联素受体是具有不同结构的一类新受体。脂联素受体的这种七次跨膜螺旋在构象上与G蛋白偶联受体的七次跨膜螺旋不同,在这种新的 七次跨膜螺旋中,由三个保守组氨酸残基协同一个锌离子形成了一个大的腔体。这种锌结合结构可能在adiponectin刺激的AMPK磷酸化和UCP2表达上调方面具有一定作用。(Nature, 16 April 2015, doi:10.1038/nature14301 )  9. Molecular Cell:中国科学家揭示A型流感病毒RNA聚合酶复合体的三维冷冻电镜结构  2015年1月22日,中科院生物物理所刘迎芳研究组与清华大学王宏伟研究组在著名期刊Molecular Cell杂志在线发表了题目为 “Cryo-EM Structure of Influenza Virus RNA Polymerase Complex at 4.3 ? Resolution”的论文,揭示了流感病毒RNA聚合酶复合体的结构和功能。  生物物理所刘迎芳和清华大学王宏伟课题组等中外多方参与的实验室通过使用最新的高分辨率单颗粒冷冻电镜三维重构技术,解析了含有A型流感病毒RNA聚合酶大部分成分的4.3埃分辨率的四聚体电镜结构。该复合体涵盖了流感病毒聚合酶催化活性的核心区域。从三维重构密度图中可以清晰识别出该空腔内PB1上的催化结构域以及结合的RNA复制起始链,据此,研究人员推测这是进行RNA合成反应的区域。这一活性中心结构与正链RNA聚合酶具有相似性,研究人员也因此提出了流感病毒合成新生RNA链的机制。(Molecular Cell, 5 March 2015, doi:10.1016/j.molcel.2014.12.031)  10. Cell:科学家获得首个中介体复合物精确结构图    中介体复合物(Mediator Complex)是细胞中最大也最为复杂的分子机器之一。现在,来自斯克利普斯研究所(TSRI)的科学家们在《细胞》杂志上报告称,他们利用用电镜获得了首个中介体复合物(Mediator)的精确结构图。  Mediator是所有动植物细胞中的关键分子机器,对于绝大多数基因的转录有着至关重要的调控作用。Mediator拥有二十多个蛋白亚基,解析它的结构是基础细胞生物学的一大进步。这一成果能够为许多疾病提供宝贵的线索(从癌症到遗传性的发育疾病)。论文资深作者,TSRI副教授Francisco Asturias表示:"明确这些大分子机器的结构和作用机制,可以帮助我们理解许多关键的细胞过程。"  在这项新研究中,研究人员获得了高纯度的酵母Mediator,并通过电镜成像得到了迄今为止最为清晰的Mediator3D模型,分辨率达到约18埃。随后他们又进行了多种生化分析,例如在逐个去除蛋白亚基的同时观察电镜图像发生的改变。他们由此确定了酵母Mediator25个蛋白亚基的精确定位。  项新研究获得的结构图谱,全面修正了之前的Mediator' 粗略模型。论文第一作者Kuang-LeiTsai表示:"定位了所有的蛋白亚基之后,我们发现头部模块应该位于Mediator的顶部而不是底部。"此外,研究人员还对人类Mediator进行了深入研究。Tsai说:"大体上看,人类和酵母的Mediator总体结构颇为类似。"最后研究人员在结构数据的基础上,为人们展示了Mediator调控转录时的构象变化。(Cell, 29 May 2014, doi: 10.1016/j.cell.2014.05.015)
  • IVIS视角 | 穿上 “细胞膜吉利服”的纳米载体在体内必将威力大增
    众所周知,多功能纳米载体可以有效识别肿瘤细胞并且在体外具有良好的抗肿瘤效果。但是目光转向体内,这些纳米载体往往在免疫系统的攻击下集体失灵。因为,人体免疫系统将会感知纳米载体的入侵,并且非常努力的把我们精心设计的载体清除掉。一旦纳米载体被清除掉,药物就很难到达目标肿瘤区域,很难实现杀伤肿瘤的效果。因此,纳米医学的一个非常重要的课题就是在不破坏免疫系统的前提下,让纳米载体躲避免疫系统的攻击。传统的解决方案我们都是通过在纳米载体表面携带各种伪装工具,尽量和免疫细胞捉迷藏,能躲则躲,绝不露面。但是这些载体也很容易迷路, 到达深层肿瘤部位的很少,并且在和免疫系统的斗智斗勇中,还会激发免疫系统产生新的抗体从而加速纳米载体的清除,因此很难达到治疗的效果。而随着仿生纳米医学的发展,科学家们可以让纳米载体穿上“吉利服”,不但可以在免疫系统中潜伏下来,还可以大摇大摆的从免疫细胞的眼皮底下蒙混过关,发挥极大功效。这种“吉利服”就是细胞膜提取物,不同种类细胞提取的细胞膜包覆在纳米载体表面还可以表现出特殊的功效,像红细胞膜或者一些免疫细胞膜可以提高纳米载体的体内循环时间,肿瘤细胞膜可以特异识别同源肿瘤等。穿上“细胞膜吉利服”之后,纳米载体将显现各方面的优势和潜力,从而成为近年来多功能纳米载体领域的研究热点之一。1、T细胞膜包裹下仿生纳米药物的免疫识别增强通过糖代谢技术,获取嵌入叠氮基团(N3)的功能化T细胞,并提取功能化T细胞膜包裹在吲哚菁绿/聚合物纳米载体表面,构建仿生纳米光敏剂。功能化T细胞膜上不但原本的抗原受体可以赋予纳米光敏剂识别肿瘤细胞的能力,并且N3基团可以识别肿瘤细胞糖代谢靶点,从而实现纳米载体在肿瘤内部的富集,通过小动物光学成像可以清楚的看到T细胞膜包裹下仿生纳米药物在肿瘤部位的靶向作用,从而进一步实现肿瘤的精准可视化治疗。功能化T细胞膜仿生纳米颗粒实现特异性的肿瘤靶向和精准光热治疗参考文献:T Cell Membrane Mimicking Nanoparticles with Bioorthogonal Targeting and Immune Recognition for Enhanced Photothermal Therapy. Advanced Science. 2019: 1900251.2、生物学重编程全抗原细胞膜助力纳米疫苗的研发将肿瘤细胞和树突细胞融合细胞的生物学重编程细胞膜包覆在金属有机化合物表面,构建肿瘤疫苗可以在融合细胞膜表面表达大量免疫刺激分子,从而使得包裹融合细胞膜的纳米载体像抗原呈递细胞一样直接作用T细胞从而激活免疫反应。通过小动物光学成像,可以看到重编程细胞膜包覆的纳米载体在体内长循环到达肿瘤部位的过程。到达肿瘤部位的纳米载体还可以被树突细胞识别,从而诱导树突细胞成熟,增强免疫效果,最终消除肿瘤,从而拓展肿瘤治疗平台。生物学重编程细胞膜包裹纳米载体的过程以及肿瘤免疫的激活参考文献: Cytomembrane nanovaccines show therapeutic effects by mimicking tumor cells and antigen presenting cells. Nature Communications. 2019, 10(1): 3199.3、肿瘤细胞膜包裹的黑磷纳米载体拓宽光热肿瘤免疫治疗手术切除的肿瘤组织含有对患者特异性的新抗原,是成为制备个体化肿瘤疫苗最好的材料来源。作者利用细胞膜封装的方式在二维光热黑磷量子点(BPQDs)表面包裹肿瘤组织的细胞膜,从而制备具有光热效应的纳米肿瘤疫苗(BPQD-CCNVs),并且把纳米肿瘤疫苗和集落刺激因子(GM-CSF)装入热敏水凝胶中。皮下注射水凝胶后可以在红外光的作用下持续释放纳米疫苗以及集落刺激因子,招募并激活DC细胞,从而捕获肿瘤抗原并激活肿瘤特异性T细胞。同时,尾静脉注射PD-1抑制剂,阻断PD-1/PD-L1免疫检查点通路,增强T细胞抗肿瘤免疫应答效应。通过活体光学成像我们可以对肿瘤进行生物发光标记,从而长期连续监测肿瘤在体内的发展情况。实验结果表明通过光热免疫治疗可以有效清除实体肿瘤同时抑制术后转移的复发。(A)光热肿瘤免疫实验设计思路;(B)FITC标记的水凝胶在体内的降解情况;(C)个性化光热肿瘤免疫治疗可以有效抑制术后实体肿瘤的复发;(D)个性化光热肿瘤免疫治疗可以有效抑制术后肿瘤的转移。参考文献:Surgical Tumor-Derived Personalized Photothermal Vaccine Formulation for Cancer Immunotherapy. ACS nano. 2019, 13(3): 2956-2968.珀金埃尔默拥有先进的分子影像技术,其小动物活体成像系统为生物医学的各种研究领域(包括肿瘤、干细胞、传染病、炎症、免疫性疾病、神经疾病、心血管疾病、代谢疾病、基因治疗、纳米材料、新药研发、植物学等)提供了完整的成像解决方案。点击链接,获取相关产品及应用资料:https://account.custouch.com/perkinelmer/site/#/list/15?_wxr_1564535099232&refresh=true关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 前沿合作∣岛津助力陈春英团队在PNAS上发表揭示细胞内纳米蛋白冠干扰蛋白稳态重塑细胞代谢
    2022年6月2日,国家纳米科学中心陈春英研究员团队在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America 2022, 119(23), e2200363119)在线发表了题为"Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism"的研究论文(图1),通过创新应用多维度多组学(蛋白组学、代谢组学、脂质组学)、分子间互作以及原位质谱成像等分析技术,首次揭示了“纳米蛋白冠”的蛋白组成在细胞转运过程中的动态演化模式,并发现该过程扰动细胞蛋白质稳态、能量代谢和脂质代谢过程。该研究工作得到了岛津中国创新中心(Shimadzu China Innovation Center)的技术支持。 图1 论文首页标题 背景介绍当纳米材料进入生命体系时,生物流体的生物分子迅速与纳米材料表面结合,形成生物分子冠,其中纳米-血液蛋白分子互作形成的“纳米蛋白冠”,自2006年始引起科学界的广泛关注。前期工作发现纳米蛋白冠的形成决定纳米材料在多层级细胞和组织中的识别、转运、分布、功能和生物效应,是纳米材料生物应用的“黑匣子”问题,不仅决定纳米药物载体的递送效率,还会制约纳米药物的递送效率,并严重影响其有效性和安全性 [1]。该领域研究的一个重要挑战是“纳米蛋白冠”的复杂性,该复杂性受不同组织器官中生物分子的多样性以及生理病理状态的影响。然而目前对蛋白冠的蛋白组成和结构特性如何随纳米颗粒所处的生物微环境不同而发生变化,存在认知不明、机理不清的问题。 解决方案为了解决这一问题,研究人员以纳米金颗粒为模式纳米颗粒,研究了蛋白冠从血液系统到细胞内的动态演化过程(血液-溶酶体-细胞质)(图2),当纳米颗粒由血液环境经过细胞内吞进入溶酶体,再从溶酶体逃逸进入细胞质后,其表面的蛋白组成会发生巨大变化,被细胞内蛋白质分子(PKM2、HSPs、GAPDH、ASSY等)所替代,只保留部分血液环境中形成的蛋白冠成分(FIBs、APOs、HBs、C3、S100s等)(图2)。 图2. 纳米蛋白冠组成在细胞转运过程中的演化过程 随后发现,纳米蛋白冠的胞内演化扰乱细胞内的蛋白稳态(proteostasis),引发伴侣蛋白(HSC70, HSP90等)和丙酮酸激酶M2(PKM2)在胞内纳米蛋白冠表面的富集,并利用微量热泳动技术(MST)验证了PKM2、HSC70与从溶酶体逃逸出来之后的纳米蛋白冠具有极强的亲和力,这一吸附规律激发了伴侣蛋白介导的自噬反应(Chaperone mediated autophagy, CMA),即“纳米蛋白冠引发的CMA”(Protein corona induced CMA)(图3)。图3. 纳米蛋白冠的组分与胞内蛋白(伴侣蛋白、代谢激酶)的交换引发伴侣蛋白介导的自噬(CMA)活性的升高 进一步,研究人员采用代谢组学发现“纳米蛋白冠诱导的CMA”影响细胞糖酵解,引发细胞外酸化率(ECAR)显著增加。结合脂质组学发现的特定脂质,利用iMScope TRIO(Shimadzu Corporation)进行鉴定和可视化分布分析显示在动物组织水平纳米蛋白冠的存在一定程度上扰动肿瘤组织中的脂质种类和分布(图4),扰动的脂质主要富集在胆碱代谢、甘油磷脂和鞘脂代谢途径。 图4. 纳米蛋白冠引发的CMA重塑细胞能量代谢和脂质代谢 结论综上所述,此项工作首次阐明了纳米颗粒从血液到亚细胞微环境转运过程中的演化模式,发现了“纳米蛋白冠”的胞内微环境特异性,进而重塑细胞代谢,为深入理解纳米-生物界面调控纳米材料复杂生物学效应提供了新认识和理论支撑。同时借助岛津成像质谱显微镜iMScope,可在肿瘤组织内部原位清晰展现出包括磷脂酰胆碱(PC)、磷脂酰乙醇胺 (PE)、磷脂酰肌醇(PI)类脂质等多种成分均发生了明显变化。通过空间可视化成像技术,不仅可实现在分子水平上对纯纳米粒子和纳米蛋白冠的生物毒理学效应进行有效研究,同时也为未来对更多种类的纳米搭载生物诊疗试剂和材料的毒理学和安全性评价提供更为直观有力的研究手段。 原文链接https://www.pnas.org/doi/10.1073/pnas.2200363119 参考文献:[1] Cao M. et al. Molybdenum Derived from Nanomaterials Incorporates into Molybdenum Enzymes and Affects Their Activitiesin vivo. Nature Nanotechnology, 2021, 16: 708-716.
  • 前沿合作∣岛津助力陈春英团队在PNAS上发表揭示细胞内纳米蛋白冠干扰蛋白稳态重塑细胞代谢
    2022年6月2日,国家纳米科学中心陈春英研究员团队在《美国国家科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America 2022, 119(23), e2200363119)在线发表了题为"Dynamic intracellular exchange of nanomaterials’ protein corona perturbs proteostasis and remodels cell metabolism"的研究论文(图1),通过创新应用多维度多组学(蛋白组学、代谢组学、脂质组学)、分子间互作以及原位质谱成像等分析技术,首次揭示了“纳米蛋白冠”的蛋白组成在细胞转运过程中的动态演化模式,并发现该过程扰动细胞蛋白质稳态、能量代谢和脂质代谢过程。该研究工作得到了岛津中国创新中心(Shimadzu China Innovation Center)的技术支持。图1 论文首页标题 背景介绍当纳米材料进入生命体系时,生物流体的生物分子迅速与纳米材料表面结合,形成生物分子冠,其中纳米-血液蛋白分子互作形成的“纳米蛋白冠”,自2006年始引起科学界的广泛关注。前期工作发现纳米蛋白冠的形成决定纳米材料在多层级细胞和组织中的识别、转运、分布、功能和生物效应,是纳米材料生物应用的“黑匣子”问题,不仅决定纳米药物载体的递送效率,还会制约纳米药物的递送效率,并严重影响其有效性和安全性 [1]。该领域研究的一个重要挑战是“纳米蛋白冠”的复杂性,该复杂性受不同组织器官中生物分子的多样性以及生理病理状态的影响。然而目前对蛋白冠的蛋白组成和结构特性如何随纳米颗粒所处的生物微环境不同而发生变化,存在认知不明、机理不清的问题。 解决方案为了解决这一问题,研究人员以纳米金颗粒为模式纳米颗粒,研究了蛋白冠从血液系统到细胞内的动态演化过程(血液-溶酶体-细胞质)(图2),当纳米颗粒由血液环境经过细胞内吞进入溶酶体,再从溶酶体逃逸进入细胞质后,其表面的蛋白组成会发生巨大变化,被细胞内蛋白质分子(PKM2、HSPs、GAPDH、ASSY等)所替代,只保留部分血液环境中形成的蛋白冠成分(FIBs、APOs、HBs、C3、S100s等)(图2)。 图2. 纳米蛋白冠组成在细胞转运过程中的演化过程 随后发现,纳米蛋白冠的胞内演化扰乱细胞内的蛋白稳态(proteostasis),引发伴侣蛋白(HSC70, HSP90等)和丙酮酸激酶M2(PKM2)在胞内纳米蛋白冠表面的富集,并利用微量热泳动技术(MST)验证了PKM2、HSC70与从溶酶体逃逸出来之后的纳米蛋白冠具有极强的亲和力,这一吸附规律激发了伴侣蛋白介导的自噬反应(Chaperone mediated autophagy, CMA),即“纳米蛋白冠引发的CMA”(Protein corona induced CMA)(图3)。 图3. 纳米蛋白冠的组分与胞内蛋白(伴侣蛋白、代谢激酶)的交换引发伴侣蛋白介导的自噬(CMA)活性的升高 进一步,研究人员采用代谢组学发现“纳米蛋白冠诱导的CMA”影响细胞糖酵解,引发细胞外酸化率(ECAR)显著增加。结合脂质组学发现的特定脂质,利用iMScope TRIO(Shimadzu Corporation)进行鉴定和可视化分布分析显示在动物组织水平纳米蛋白冠的存在一定程度上扰动肿瘤组织中的脂质种类和分布(图4),扰动的脂质主要富集在胆碱代谢、甘油磷脂和鞘脂代谢途径。 图4. 纳米蛋白冠引发的CMA重塑细胞能量代谢和脂质代谢 结论综上所述,此项工作首次阐明了纳米颗粒从血液到亚细胞微环境转运过程中的演化模式,发现了“纳米蛋白冠”的胞内微环境特异性,进而重塑细胞代谢,为深入理解纳米-生物界面调控纳米材料复杂生物学效应提供了新认识和理论支撑。同时借助岛津成像质谱显微镜iMScope,可在肿瘤组织内部原位清晰展现出包括磷脂酰胆碱(PC)、磷脂酰乙醇胺 (PE)、磷脂酰肌醇(PI)类脂质等多种成分均发生了明显变化。通过空间可视化成像技术,不仅可实现在分子水平上对纯纳米粒子和纳米蛋白冠的生物毒理学效应进行有效研究,同时也为未来对更多种类的纳米搭载生物诊疗试剂和材料的毒理学和安全性评价提供更为直观有力的研究手段。 原文链接https://www.pnas.org/doi/10.1073/pnas.2200363119参考文献:[1] Cao M. et al. Molybdenum Derived from Nanomaterials Incorporates into Molybdenum Enzymes and Affects Their Activities in vivo. Nature Nanotechnology, 2021, 16: 708-716.
  • 基于单个细胞外囊泡蛋白红外光谱的无创癌症识别
    作为动态生物分子,蛋白质在肿瘤产生和发展过程中会发生丰度和结构的变化。与肿瘤发生关联的蛋白质异质性为阐明癌症发病机制提供了诊断信息,因此特异性蛋白是肿瘤诊断和药物设计的重要生物标志物。小细胞外囊泡(sEV)是由细胞释放的纳米尺度(直径30–200 nm)的膜囊泡。来自源细胞的蛋白质、核酸和脂质等与肿瘤产生发展相关的生物载物可以选择性地包装到sEV中,并通过膜融合和内吞作用等生理途径传递到受体细胞,影响受体细胞的生理功能,进而促进肿瘤的发生和发展。图 1 细胞外分泌囊泡的提取和纯化由于肿瘤来源sEV中的蛋白质异质性与肿瘤的恶性程度相关,并反映了肿瘤进展和转移的能力,因此对sEV蛋白组分的研究,有助于阐明sEV在肿瘤转移和侵袭中的作用,并促进体液活检的发展和癌症标志物的开发。传统蛋白质组学仅限于获得肿瘤细胞衍生的sEV族群的蛋白质表达信息,其在用于研究单个sEV蛋白组分时缺乏分辨率和灵敏度,特别是对蛋白质结构信息的获取。因此单个sEV的分子分析和异质性评估在技术上仍具有挑战性。光学表征提供了无损、快速、非侵入性的便捷探测手段研究蛋白质的组分和结构信息,然而由于远场光谱学的微米级光斑与百纳米级sEV直径之间的尺寸差异,使得远场光谱技术仅限于开展对sEV族群的大样本分析,其检测灵敏度和特异性受到sEV的异质性和sEV纯化挑战的影响。针对单个sEV蛋白组分分析的瓶颈,中国科学院物理研究所/北京凝聚态物理国家研究中心L04组陈佳宁研究员,SM4组叶方富研究员与国家纳米科学中心朱凌研究员、杨延莲研究员、王琛研究员和中国科学技术大学附属第一医院马小鹏副主任医师合作。利用自搭建纳米红外光谱系统(nano-FTIR)的10 nm尺度红外光场局域增强,在蛋白质酰胺I带(1600–1700 cm-1)和酰胺II带(1510–1580 cm-1)的指纹光谱频段内,通过对直径160–200 nm,高度为50–60 nm的单个sEV开展原位红外指纹光谱研究。图 2 单个细胞外分泌囊泡的近场红外成像和原位红外吸收光谱结合酰胺I带吸收频率对蛋白质骨架结构的高度敏感性,通过对健康和不同恶性程度细胞来源的单个sEV的红外光谱进行统计分析发现由于蛋白质中的C-O键和氨基酸C-OH基团中的氢键随着癌症的发展遭到破化,酰胺I/II吸收比值随着sEV来源细胞系的恶性程度增加而增加;高恶性癌症细胞来源sEV中蛋白质二级结构α-螺旋+随机卷曲的含量发生显著下降,反平行β-折叠+β-转角显著增加,这种蛋白质二级结构的改变一方面与癌细胞来源sEV在癌症发展演化起到的生理功能有关,另一方面在癌变细胞中富含β-折叠+β-转角的蛋白质的生物合成消耗更多的能量,癌症中线粒体异常的有氧糖酵解表现出异常能量代谢(即Warburg效应)在癌症的发生和发展中起着至关重要的作用,而癌变细胞来源sEV中β-折叠+β-转角含量增加带来的更多能量消耗是Warburg效应的一种表现。图 3 单个细胞外分泌囊泡的蛋白指纹光谱作为癌症恶性程度的指标作为临床应用的探索,进一步分析了从两名乳腺癌患者的原发肿瘤组织中提取的sEV(I期,无转移;IIB期,有淋巴结转移)。相较于无转移患者来源的sEV,淋巴结转移患者的α-螺旋+随机卷曲比例显著降低,分子间反平行β-折叠+β-转角比例显著提高,病人组织来源sEV蛋白质二级结构占比的变化与细胞来源的sEV中的结论一致。研究结果显示了nano-FTIR在单个sEV分子鉴定的优势,证明了sEV蛋白异质性在癌症检测和肿瘤恶性评估中的意义和临床价值,为基于sEV的nano-FTIR分子指纹谱识别的癌症诊断提供了体液活检解决方案。图 4组织来源细胞外分泌囊泡的蛋白指纹光谱区分无转移和淋巴结转移的乳腺癌患者国科温州研究院博士后薛孟飞(中国科学院物理研究所毕业)和清华大学博士叶思源(国家纳米科学中心联合培养)为共同一作。陈佳宁研究员和国家纳米科学中心的朱凌研究员、杨延莲研究员为共同通讯作者。相关工作近期以“Single-vesicle Infrared Nanoscopy for Noninvasive Tumor Malignancy Diagnosis”发表在《JACS》杂志上,上述研究工作得到了科技部重点研发计划、国家自然科学基金、中国科学院战略性先导科技专项、中国博士后科学基金和中国科学院青年创新促进会的支持
  • Nature | 内质网蛋白调控细胞器分布的分子机制
    胞内细胞器实时发生快速的结构和分布变化,这些改变受到细胞内部环境的调控,反过来作为调控手段去影响细胞内环境,进而执行复杂的细胞功能。细胞器分布的调节对细胞健康至关重要。细胞器通过motor和adaptor蛋白沿着微管双向移动,进而建立和维持其适当的分布和功能【1】。微管通过可逆的翻译后修饰(包括乙酰化、去酪氨酸化和谷氨酰化)获得调节特异性,这些修饰共同构成了微管蛋白密码(tubulin code)的关键元素【2】。研究表明,tubulin code参与微管cargo选择以及细胞器定向运动【2】,但细胞如何破译这些tubulin code以选择性地调节细胞器定位尚不清楚。内质网(Endoplasmic reticulum, ER)是一个由不同形态组成的相互连接的网络,在整个细胞质中混杂延伸,与其他细胞器形成丰富的接触。内质网形态失调与神经系统疾病和癌症密切相关。2021年12月15日,来自美国国立卫生研究院的Craig Blackstone团队在Nature杂志上在线发表了题为ER proteins decipher the tubulin code to regulate organelle distribution的研究论文,阐释了内质网蛋白调控细胞器分布的具体机制。研究人员证明了三种膜结合的内质网蛋白优先与不同的微管群体相互作用:CLIMP63结合中心体微管,KTN1结合核周多聚谷氨酰化微管,p180结合单谷氨酰化微管。这些内质网蛋白质的敲除或微管群的操纵和谷氨酰化状态改变均会导致内质网定位的显著变化,进而引起其他细胞器在胞内的重新分布。大多数关于ER shaping和细胞器接触的研究都集中在外周管状ER,而更致密的核周ER是如何形成和不对称分布的目前还不清楚。三种ER膜结合蛋白— CLIMP63,p180和KTN1—主要定位于核周ER,被认为是内质网片状形成(sheet-forming)蛋白【3】。作者首先探究了这三个蛋白在调控内质网形态和分布中的功能。如图1所示,在CLIMP63和KTN1单敲除细胞的外周ER中的致密基质或片状结构数量增加,该现象定义为“分散(dispersed)”表型;而p180敲除细胞中的ER则表现出一种相反的“聚集(clustered)”表型——其外周网络保持管状,但核周 ER 在核的一侧不对称地塌陷成较小的区域;CLIMP63-KTN1双敲导致更明显的“dispersed”ER,而CLIMP63-p180双敲细胞中的ER与野生型中的类似;值得注意的是,p180-KTN1双敲造成比p180单敲更多的ER聚集;在CLIMP63-p180-KTN1三敲的细胞中,高密度的ER基质或片状结构在核周区域富集。为了更好地定量评估ER形态和分布的变化,作者开创了互补算法(complementary algorithms),利用基于概率密度估计的统计方法来分析荧光标记的ER和其他细胞器的空间分布,使用实验得出的空间概率质量函数来量化图像上的荧光变化,以计算细胞器的径向分布和细胞不对称程度。数据显示,CLIMP63 和 KTN1 单敲除或双敲除增加了 ER 平均分布半径 (Mean distribution radius, MDR),说明ER 的外周分布更广;相反,p180敲除或p180-KTN1双敲增加了ER不对称性。其中微管MDR和不对称性仅略有变化。图1. CLIMP63、p180 和 KTN1 差异性调节 ER 形态及分布随后,作者通过co-sedimentation实验评估了多种ER蛋白与微管的结合能力。与预期的结果一致,CLIMP63、p180和KTN1均可以结合大量微管。作者发现,只有能够进行微管结合的野生型蛋白质或突变体才能恢复相应敲除细胞系中的ER形态。例如,CLIMP63错义突变体R7A,K10A和R70A不能结合微管或抑制CLIMP63敲除细胞中的ER分布缺陷,而结合微管的CLIMP63(H69A)可以拯救表型;对于KTN1,只有结合微管的缺失突变体可以抑制异常的ER表型;缺乏kinesin-1结合结构域的p180s仍然可以抑制p180-敲除细胞中的ER聚集表型。这些数据表明CLIMP63-、p180-和KTN1-敲除细胞中ER形态的改变可能都与微管结合改变相关。因此,作者推测这些蛋白质可以结合不同的微管群体,并采用邻近连接测定(proximity ligation assay, PLA)来可视化它们在细胞中的微管结合情况。作者使用centrinone B耗尽中心体微管,并通过敲除AKAP450去除高尔基源性微管。结果显示CLIMP63-microtubule association对中心体耗竭敏感,但高尔基体微管耗竭不敏感;KTN1-microtubule association对两者都敏感;p180-microtubule association对中心体或高尔基微管的消耗都不敏感。进一步分析证明,CLIMP63优先结合中心体微管,KTN1优先结合来自中心体或高尔基体的核周微管,p180优先结合更多的外周微管。为了获得调节特异性,微管经历可逆的翻译后修饰,包括乙酰化、去酪氨酸化和谷氨酰化【2】。虽然 CLIMP63、p180 或 KTN1 敲除不影响这些修饰的总体水平,但微管蛋白多聚谷氨酰化在中心体或高尔基体微管耗尽的细胞中降低。因此,作者纯化了含有微管结合域的p180、KTN1和CLIMP63片段,并在体外探究它们与谷氨酰化微管的结合。与KTN1相比,p180与单谷氨酰化微管表现出更高的体外结合,而p180和KTN1与多聚谷氨酰化微管结合能力相似。同时,KTN1更倾向于结合具有多聚谷氨酸链的微管,而不是具有多位点单谷氨酸链的微管。与p180和KTN1相反,CLIMP63对微管谷氨酰化的反应较差,不同的微管蛋白修饰或相互作用可能介导了CLIMP63与中心体微管的优先结合。总的来说,如图2所示,CLIMP63,p180和KTN1分别优先结合中心体、多聚谷氨酰化和谷氨酰化微管,进而协同调节ER分布。图2. CLIMP63结合中心体微管,KTN1结合多聚谷氨酰化微管,p180结合谷氨酰化微管。接下来,作者对其他细胞器的分布进行了分析。通过同时对六个细胞器的活体成像显示,大多数细胞器的分布与ER相似,提示 ER 可能广泛调节细胞器分布。值得注意的是,在CLIP63-,p180-和KTN1-敲除细胞中,所有细胞器都表现出与ER相似的分布变化:在CLIMP63-或KTN1-敲除细胞中更分散,在p180-敲除细胞中更不对称。此外,分散ER的CCP1过表达也增加了野生型细胞中溶酶体,线粒体和过氧化物酶体的MDR。最后,作者探究了在自噬过程中ER和溶酶体的迁移活动。核周溶酶体聚集是早期自噬的标志性事件,对于适当的自噬通量很重要【4-5】。与溶酶体类似,ER 在早期自噬期间迁移至核周,随后重新分布到外周。CLIMP63蛋白水平在早期自噬期间显着增加,CLIMP63敲除可以阻止ER向核周区域移动,并抑制自噬体-溶酶体融合和自噬降解,但并不影响溶酶体活性。p180和KTN1蛋白水平在早期自噬期间保持不变,KTN1-microtubule association不变,但p180-microtubule association增加,进而重新分布ER和溶酶体。p180-敲除细胞中的ER和溶酶体始终留在核周。作者还阐释了p180与微管结合的生理学意义,如图3所示,p180L的核糖体结合区(主要的异构体)包含41个带正电荷的十肽重复,该区域在正常细胞条件下(Normal)被核糖体占据,但在饥饿条件下(Starved),与核糖体发生解离,暴露出这些带正电的区域,随后结合微管。图3. (e) p180结构域组成;(f) p180在正常和饥饿条件下与微管结合。总的来说,该研究证明了CLIP63,p180和KTN1优先结合微管的不同子集以维持核周ER的特征性分布,从而解释了它们缺失的差异效应。微管在细胞器分布中起着关键作用,它们选择性分配细胞器的能力依赖于“tubulin code”。该研究表明:(1)ER分布是通过特定的膜结合蛋白介导的,与不同水平和类型的微管谷氨酰化有差异结合,广泛影响大多数其他细胞器的分布;(2)细胞不是通过赋予每个细胞器自己的感知和响应机制,而是通过将ER作为一线传感器和响应器来实现组织效率。作者认为可能还有其他ER蛋白也可以破译tubulin code,对ER在健康和疾病中的功能具有重要意义。原文链接:https://doi.org/10.1038/s41586-021-04204-9制版人:十一
  • 美国西北大学科学家绘制人类血细胞蛋白图谱
    随着蛋白质组学的迅速发展,基于质谱技术的蛋白质组学分析已经在建立表型和蛋白质水平的联结中作出了贡献,这些研究工作包括绘制组织和细胞特异性蛋白质组成等。然而,转录后、翻译后蛋白加工数据,以及mRNA剪接与修饰相结合导致蛋白质多样性数据并不完备。  近日,发表在Science上的一项题为“The Blood Proteoform Atlas: A reference map of proteoforms in human hematopoietic cells”的研究中,来自美国西北大学的科学家绘制了人类血细胞蛋白图谱,并进一步研究了蛋白图谱的临床应用价值。研究团队首先通过流式分选获得所需的细胞,共收集了21种人造血细胞和血浆。分析发现共捕获29620种Proteoform(蛋白形态数量总和),数据集比对发现Proteoform是细胞类型更好的标志物。通过对肝移植患者的外周血单核细胞蛋白图谱的应用,发现该血细胞蛋白图谱可以作为临床研究和治疗相关的蛋白质信息。  本研究通过绘制人血液、造血细胞蛋白图谱,对人体中存在的蛋白成分有了进一步认识。并且通过分析特定临床背景下蛋白图谱,证明了其潜在的临床应用价值。这些针对细胞和分子特异性的研究有助于推进蛋白质水平诊断的发展。  论文链接:http://doi.org/10.1126/science.aaz5284
  • 利用AP-MS技术 发现人体细胞中的抗埃博拉病毒蛋白
    p style=" text-align: justify "   埃博拉病毒是引起人和灵长类动物发病且致死率很高的烈性病毒。这种病毒自1976年首次被发现,迄今已40多年。2014年埃博拉病毒在非洲的肆虐令人胆颤心惊,2018年非洲再次报告出现埃博拉疫情。 /p p style=" text-align: justify text-indent: 2em " 美国研究人员近日在《细胞》杂志上发表论文称,他们发现人体细胞中的一种蛋白可以帮助对抗埃博拉病毒,模仿该蛋白功能的药物有朝一日或能有效治疗这种致命疾病。 /p p style=" text-align: justify "   与其他病毒一样,埃博拉病毒会入侵宿主细胞并利用这些细胞进行复制,但对于感染期间病毒侵入的具体途径和细节,目前科学家还知之甚少。 /p p style=" text-align: justify "   在新研究中,美国西北大学芬博格医学院的赫尔特奎斯特与佐治亚州立大学和加州大学旧金山分校的研究伙伴合作,使用亲和标记纯化质谱(AP-MS)技术,探查人类蛋白和埃博拉病毒蛋白之间的相互作用。他们不仅发现了 strong 埃博拉病毒蛋白VP30和人类蛋白RBBP6之间相互作用的有力证据,还确定了RBBP6与VP30结合的23个氨基酸区域 /strong 。而进一步研究表明, strong 抑制RBBP6会刺激病毒转录,加速埃博拉病毒的复制 而刺激RBBP6更充分表达则会有效抑制埃博拉病毒复制,阻止病毒感染 /strong 。 /p p style=" text-align: justify "   赫尔特奎斯特指出,病毒会进化发展以绕过人体的免疫防御,而人类细胞反过来同样会发展出针对病毒的防御机制,这种进化竞争持续已久。人类发展出的特殊防御机制为开发针对性治疗手段指明了方向。他们的新研究表明,靶向性生物制剂在对抗埃博拉病毒方面具有极大潜力,RBBP6衍生肽或能有效抑制埃博拉病毒感染。而他们的最终目标是通过模仿RBBP6蛋白,开发出能够更容易进入人体细胞的小分子药物,以应对埃博拉病毒的暴发。 /p p style=" text-align: justify "    /p p & nbsp /p
  • 130万!复旦大学单细胞蛋白免疫分析仪采购国际招标
    项目编号:0705-224002028074项目名称:复旦大学单细胞蛋白免疫分析仪采购国际招标预算金额:130.0000000 万元(人民币)最高限价(如有):127.4000000 万元(人民币)采购需求:1、招标条件项目概况:单细胞蛋白免疫分析仪采购资金到位或资金来源落实情况:本次招标所需的资金来源已经落实项目已具备招标条件的说明:已具备招标条件2、招标内容:招标项目编号:0705-224002028074招标项目名称:单细胞蛋白免疫分析仪采购项目实施地点:中国上海市招标产品列表(主要设备):序号产品名称数量简要技术规格备注1单细胞蛋白免疫分析仪1套激光配置:至少配置3根全固态激光器预算金额:人民币130万元 最高限价:人民币127.4万元 合同履行期限:签订合同后6个月内合同履行期限:签订合同后6个月内本项目( 不接受 )联合体投标。
  • 【Science】单细胞蛋白分析技术揭示肠脑神经回路新机制
    为什么我们会感觉到饥饿?为什么进食之后会出现饱腹感?我们能感知到大脑与肠道的紧密联系,以往的研究认为这种感知与触觉、视觉、声音、气味和味觉通过受神经支配的上皮传感器细胞传递到大脑不同,肠道刺激的感知被认为涉及消化系统和中枢神经系统之间信号传递的肠道-大脑连接(gut-brain connection)是以激素转运为基础的,这种基于激素的信号传递大约需要10分钟。在肠道中,有一层上皮细胞将腔与下面的组织分开。分散在该层内的是称为肠内分泌细胞的可电兴奋细胞,它们感知摄入的营养物质和微生物代谢物。与味觉或嗅觉受体细胞一样,肠内分泌细胞在存在刺激时会激发动作电位。然而,与其他感觉上皮细胞不同,肠内分泌细胞和脑神经之间没有突触联系的描述。人们认为这些细胞仅通过激素(如胆囊收缩素)的缓慢内分泌作用间接作用于神经。尽管它在饱腹感中起作用,但胆囊收缩素的循环浓度仅在摄入食物后几分钟达到峰值,并且通常在用餐结束后。这种差异表明大脑通过更快的神经元信号感知肠道感觉线索。来自美国杜克大学医学院的科学家们,利用Milo,揭示迷走神经(vagus nerve)可直接连接着肠道与中枢神经系统。相关研究结果发表在Science期刊上,标题为“A gut-brain neural circuit for nutrient sensory transduction”。Milo单细胞Western Blot 验证肠分泌细胞存在神经突触相关蛋白本文使用与小肠类器官或纯化的肠内分泌细胞共培养的结节神经元,在体外重现了神经回路。并结合单细胞定量实时聚合酶链反应和单细胞Western Blot(Milo)共同对突触蛋白进行检测和评估。利用Milo在蛋白水平进行了进一步的验证:单细胞蛋白质印记结果显示83%肠内分泌细胞含有synapsin-1(分析的198 CckGFP细胞中的164个),与其他肠上皮细胞相比,纯化的CCK-肠内分泌细胞表达突触粘附基因Efnb2、Lrrtm2、Lrrc4 和 Nrxn2,表明这些上皮传感器具有形成突触的机制。为了确定与肠内分泌细胞接触的突触的神经元的来源,本文使用了一种改良后的狂犬病毒(DG-rabies-GFP,能感染神经元,但缺少跨突触传播所需的G糖蛋白),发现在肠道类器官中,狂犬病比其他上皮细胞更喜欢感染肠内分泌细胞。并且肠内分泌细胞与迷走神经元突触,通过使用谷氨酸作为神经递质,在几毫秒内转导肠腔信号。这些突触连接的肠内分泌细胞(神经足细胞)形成的神经上皮回路通过一个突触将肠腔与脑干连接起来,为大脑打开一条物理管道,以突触的时间精度和空间分辨率感知肠道刺激。也正是这些突触信号神经足细胞告诉大脑肠道中发生的事情,对我们吃的食物做出一定的反馈。
  • 【研究应用分享】蛋白质分离纯化技术及具体步骤
    蛋白质的分离纯化在生物化学研究应用中使用广泛,是一项重要的操作技术。一个典型的真核细胞可以包含数以千计的不同蛋白质,一些含量十分丰富,一些仅含有几个拷贝。为了研究某一个蛋白质,必须首先将该蛋白质从其他蛋白质和非蛋白质分子中纯化出来。 蛋白质分离纯化的一般程序可分为以下几个步骤——01 材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有:1. 机械破碎法这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。2. 渗透破碎法这种方法是在低渗条件使细胞溶胀而破碎。3. 反复冻融法生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。4. 超声波法使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。5. 酶法如用溶菌酶破坏微生物细胞等。02 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。03 蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法:1. 等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。2. 盐析法不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。3. 有机溶剂沉淀法中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。04 样品的进一步分离纯化用等电点沉淀法、盐析法所得到的蛋白质一般含有其他蛋白质杂质,须进一步分离提纯才能得到有一定纯度的样品。常用的纯化方法有:凝胶过滤层析、离子交换纤维素层析、亲和层析等等。有时还需要这几种方法联合使用才能得到较高纯度的蛋白质样品。05 蛋白质的分析测定通过物理或化学方法对蛋白质含量进行测定。蛋白质的分析纯化,不仅仅是选择合适的方法,必备的工具,例如微量均质器、干燥器、抗体保存盘等,也很重要。Bel-Art蛋白质分析纯化工具推荐本篇我们根据不同耗材在蛋白质分析纯化过程中的不同作用,分类为大家推荐几款合适的耗材。细胞裂解 热门优选 微量均质器-手持式货号:F65000-0000研磨组织和破碎细胞层析 热门优选 磁珠分离架货号:F19900-000分离结合在磁珠上的蛋白质以快速纯化透析热门优选 透析袋夹持器货号:F18237-0000测定热门优选贝塔盾货号:F24976-0001在进行C14分析时减少接触电泳热门优选 Spindrive&trade 轨道摇床平台货号:F37041-0001提供彻底、温和的凝胶混合,同时*限度地扩大实验室空间
  • Nat. Methods | PROBER技术用于检测活细胞中与可编程特异性DNA序列相关的蛋白
    大家好,本周分享一篇发表在Nature Methods上的文章PROBER identifies proteins associated with programmable sequence-specific DNA in living cells,本文的通讯作者是来自斯坦福大学的Paul A. Khavari教授,他们组主要致力于干细胞分化与癌症的基因组调控方面的研究。在本文中,作者团队开发了一种通过游离基因招募的近端生物素化技术(PROBER),用于在活细胞中研究与特殊DNA序列相互作用的蛋白。时空和细胞类型特异性基因表达模式由称为顺式调控元件(CREs)的DNA序列控制,它可以通过招募一些蛋白因子来激活或抑制转录复合物的形成。目前已经确定了数千个富含转录因子结合基序的CRE,但其中仅有少数进行了生化表征,因此开发新的工具来定义这些相互作用蛋白是非常必要的。目前,用于识别与感兴趣DNA序列相关蛋白的方法,如CAPTURE、Chap等大多需要交联,这可能会导致偏差的引入。因此,在本文中,作者开发了一种通过近端生物素化定量检测活细胞中短DNA序列(≤80bp)相关蛋白复合物的方法——PROBER。在设计上,PROBER主要需要三种质粒。其中pBait包含目的DNA序列作为“诱饵”,克隆在酿酒酵母GAL4 结合上游激活序列 (UAS) 16的三个串联重复之间;pSprayer质粒表达融合Cal4的枯草芽孢杆菌BASU生物素连接酶(HA tag);pDriver表达SV40大T抗原用于通过它们的 SV40 复制起点对所有质粒进行高拷贝游离扩增。在生物素存在时,结合在UAS序列上的生物素连接酶可以生物素化结合在目标DNA序列上的蛋白复合物,裂解细胞后采用链霉亲和素捕获生物素化的蛋白质,并使用WB或质谱进行检测。为验证方法的可行性,作者检测了YY1(Yin Yang1),发现与乱序的对照组相比,实验组可以有效地富集到YY1,并且同时富集到了与YY1相互作用的 INO80 复合物中的NFRKB 和 RUVBL1 亚基。接下来,作者也将PROBER与DNA pull down法进行了对比,GO 分析表明,通过 DNA pull down鉴定到的大多数蛋白与 RNA 结合有关,而 PROBER 鉴定到的蛋白质与转录控制有关。最后,作者将PROBER技术应用于了hTERT启动子突变体相互作用蛋白的鉴定。hTERT被发现在多种癌症中会产生单个位点突变(C250T、C228A 和 A161C),作者克隆了这些突变并使用PROBER进行富集,发现了一些由于癌症相关突变而增加的启动子调节因子。总的来说,本文开发了一种近端生物素化方法PROBER,用于活细胞中与短DNA序列相关蛋白的检测。
  • 研究揭示仿生脂蛋白系统重塑肿瘤物理屏障增强T细胞浸润
    基于免疫检查点抑制剂(ICIs)的免疫治疗正在成为一种革命性的肿瘤治疗方案,仅适用于一小部分癌症患者。ICIs的临床反应主要依赖于肿瘤组织中浸润的效应T淋巴细胞(CTL)识别并杀死肿瘤细胞。然而,肿瘤组织中CTL浸润较为有限,且复杂的瘤内物理屏障严重阻碍CTL的浸润,削弱了ICIs的治疗效果。因此,如何重塑肿瘤内物理屏障以增强CTL的浸润成为提高ICIs介导的免疫治疗迫切需要解决的难题。  1月29日,中国科学院上海药物所研究员张志文、李亚平,以及沈阳药科大学教授王思玲团队合作完成的最新研究成果,以Bioinspired lipoproteins of furoxans-oxaliplatin remodels physical barriers in tumor to potentiate T-cell infiltration为题,在线发表在《先进材料》(Advanced Materials)上。该研究提出并证实利用仿生脂蛋白系统高效递送一氧化氮(NO)供体-奥沙利铂前药,通过重塑肿瘤物理屏障促进CTL瘤内浸润、增强ICIs免疫治疗的新策略。   对乳腺癌及结肠癌的临床样本检测发现,肿瘤部位广泛存在各种细胞外基质组分但CD8+ T浸润严重缺乏。基于此,科研团队设计合成了一种细胞内还原响应的NO供体-奥沙利铂前药(FO),构建高效靶向瘤内各种基质细胞的仿生脂蛋白系统(S-LFO)。研究显示,S-LFO能够在肿瘤部位高效蓄积、渗透进入肿瘤深部区域,并可到达瘤内肿瘤相关成纤维细胞(CAFs)、肿瘤相关巨噬细胞(TAMs)和血管内皮细胞(ECs)等基质细胞。S-LFO处理后能够显著促进肿瘤血管正常化、灌注能力和血管密度,降低TAMs和CAFs的比例,清除Collagen、Fibronectin和chondroitin sulfate等主要细胞外基质成分,为促进CTL的瘤内浸润铺平了道路。进一步研究发现,S-LFO能够显著增加肿瘤部位CD3+CD8+ T细胞以及表达IFN-γ、Granzyme B亚型的比例,与对照组相比分别提高2.96、5.02和8.65倍,并显著促进CD8+ T细胞向瘤内4T1-GFP癌细胞区域的浸润和扩散能力,进而在胰腺癌PANC02、乳腺癌4T1和结直肠癌CT26等肿瘤模型中,与aPD-L1合用显著增强了抑制肿瘤生长和延长存活期的疗效。该策略为重塑肿瘤基质屏障提高CTL浸润增强ICIs的免疫治疗效果提供了新方法。          研究工作得到国家自然科学基金、山东省自然科学基金和复旦-SIMM联合研究基金等的资助。  论文链接
  • 一种肿瘤相关蛋白,减缓癌症和糖尿病的发展
    发表在Nature杂志上的研究显示,在一种抑制免疫反应和阻碍癌症治疗的细胞中,脂肪酸转运蛋白2(FATP2)高水平表达。将肿瘤细胞从人和小鼠身上分离出来之后,研究人员还发现,FATP2能帮助制造产能脂质并将其运输入细胞。总的来说,这项研究指出FATP2恶意地重新改造身体常见的白细胞,而白细胞是在对抗感染方面起重要反应者的作用。当研究人员敲除一个与FATP2相关的基因时,他们发现一些癌症——淋巴瘤、肺癌、结肠癌和胰腺癌——的肿瘤在小鼠体内生长明显变慢。在2000年代中期内布拉斯加州的Concetta Dirusso发现,与一种破坏细胞复制的药物配合使用FATP2抑制剂Lipofermata同样有助于减缓甚至消除肿瘤。研究表明,在免疫抑制细胞中靶向FATP2可以阻止脂质的累积,减轻肿瘤的进展,而不会产生明显的副作用,研究小组说。“我认为主要的一点是,为什么这会引起一些兴奋,因为它不只针对一种癌症,”本研究的合作者和乔治霍姆斯大学生物化学教授DiRusso说。“能够针对不同癌症常见的一些细胞是非常需要的。”“它不能完全清除(肿瘤),但它只是计划的一部分。我们现在对联合治疗更感兴趣。它不是靶向一个目标,而是以多种方式进行靶向攻击,因为癌症是聪明的。癌症找到了绕过我们好药物的方法,这就是为什么这些药物的组合如此强大,而且,我们期望,更有效。”威斯塔研究所的Dmitry Gabrilovich及其同事几年前首次注意到实体肿瘤中FATP2的升高。他们的观察促使Gabrilovich联系了内布拉斯加州大学林肯分校主要研究脂肪分子如何穿过细胞膜的机制的生物化学家Paul Black。Black实验室对酵母的早期研究发现了一个基因片段和相关的蛋白质,它能激活脂肪酸并将其携带到细胞中,在细胞中,脂肪酸被代谢为能量或嵌入细胞膜中。这个蛋白质就是FATP2。“如果你的膜上有一个控制脂肪进入量的门,然后你开始启动这个门,它会影响下游的东西,” Black说。“如果一个癌细胞需要吃油脂,这样它就可以转移,真正成为一种严重的疾病,它必须向上调节这种蛋白质。所以这个门在所有这些代谢系统中扮演着非常关键的角色。”Black先前的研究也帮助确定了FATP2两种遗传变异体:一种是代谢的主要脂肪酸,另一种是跨细胞膜转运脂肪酸。这一重要的区别证明了DiRusso实验室的努力,该实验室筛选了超过100000个抗-FATP2的复合物,以筛选出可能有助于对抗肥胖和2型糖尿病的药物。药物Lipofermata基本上消除了组织培养中的脂肪积累,并将小鼠体内的脂质吸收率降低了60%以上,这使得Dirusso获得了该药物用于治疗代谢疾病的专利。所以当Gabrilovich联系到Black时,Black很快就和DiRusso联系上了。这两人最终为Gabrilovich提供他团队实验所需的生化方面的建议、样品和药物Lipofermata。“无论是癌症生物学还是糖尿病,或是在这个生物医学世界里你所追求的任何东西,你都不可能再自己单独去做了,”Black说。“很久以前,我们可以在某个地方做自己的事情,成为一个小筒仓。我们早期的一些机械工作就是这样做的,但现在的工作太复杂了。这是一个信息时代。我们还不知道完整的故事,但即将发布的数据将真正非常,非常迅速的推动这方面的进展。”
  • 代谢组学、单细胞蛋白组学……ASMS2024上这些质谱新技术值得关注
    2024年6月2-6日,全球质谱领域最具影响力之一的专业盛会--第72届美国质谱年会(ASMS)在美国加州阿纳海姆会议成功召开,该盛会吸引了世界各地的质谱工作者汇聚一堂,共话质谱未来。此次大会盛况空前,举办了超70个分会议,约有6,800名科学家出席,并展示超3,400篇研究摘要。大会设有短期培训课程、墙报、分会场口头报告等,通过多种不同的形式,科学家们分享他们的最新研究成果,揭示质谱学的前沿技术和应用。同时仪器厂商也争相展示着最新的产品技术,仪器信息网在众多企业发布的新品中,总结了热门技术产品。会议现场&bull 赛默飞Stellar&trade 对Astral的定量补充本届大会上赛默飞带来了他们的最新仪器——一款能够执行靶向验证的质谱仪。这反映了整个行业正朝着靶向检测与验证这一趋势迈进。传统意义上,高分辨率质谱仪能揭示众多潜在生物标志物,但如何有效验证这些成千上万的候选标志物一直是难以逾越的障碍。赛默飞此次发布的全新产品Thermo Scientific&trade Stellar&trade 质谱仪,正是针对这一痛点的突破性解决方案,也是赛默飞创新的又一重大里程碑。Stellar质谱仪结合了两个质量分析器,一个四极质量分析器用于前体离子选择,以及超高速双压线性离子阱质量分析器。离子集中路由多极(ICRM)同时在两个离子阱中操控离子包。同步离子管理以高灵敏度、宽动态范围和增加特异性高达140的MS2数据,使科学家能够在更短的时间内自信地将更多的候选生物标志物转化为验证阶段。提供大规模定量性能:一个小时内可以稳定地定量近10,000种肽,实现有偏差的系统生物学分析;样本通量数据提高:绝对定量更多靶向化合物,以提高定量研究能力,样本通量提高4倍;将靶向定量推向单细胞水平:利用增强的灵敏度扩展靶向通路分析的范围,同时减少样本的缺失值;大幅缩减背景干扰,增强特异性:采用快速、灵敏的全扫描同步前体离子选择 (SPS) MS3 采集克服具有挑战性的背景基质干扰;提升实验室生产率:使用各种靶向和非靶向数据采集方案,加快靶向方法的创建和实施。&bull 岛津RX系列三款新品全面升级LCMS-TQ RX系列包括LCMS-8060RX、LCMS-8050RX和LCMS-8045RX三个型号,继承岛津三重四极杆液质联用仪UFMS的特点,同时提供更高的灵敏度、稳定性和可操作性。LCMS-TQ RX系列采用创新离子源设计,提高了数据可靠性。利用在分析前自动检查仪器状态、自动执行校准(调谐)的功能,以及将待机功耗降至更低的生态模式,实现高效的实验室操作和降低环境负荷。通过RX系列的导入,制药、环境、食品和科研领域等相关实验室工作效率将进一步提升。&bull 沃特世Xevo&trade MRT新一代多反射飞行时间质谱技术沃特世推出新款Xevo&trade MRT台式质谱仪(MS) ,是在先前推出的Waters SELECT SERIES&trade MRT 质谱仪 的技术基础之上,将多反射飞行时间(MRT)技术和混合四极杆飞行时间(QTof)技术的特性以及分辨率、速度的优势整合到了这款灵活的台式仪器中。 Waters Xevo MRT台式质谱仪在100 Hz下可提供100K FWHM的分辨率和亚ppm级质量精度。Waters Xevo&trade MRT质谱仪采用新一代多反射四极杆飞行时间技术,在不影响分析性能的前提下,实现了高分辨率和高速度的完美结合。与其他品牌的同类产品相比,该系统在上限运行时可提升高达6倍分辨率以及2倍的质量精度,有助于科学家用更短的时间处理更多的样品,更好地开展大型队列生物医学研究和流行病学研究。Waters Xevo&trade MRT能够提供完整的代谢组学、脂质组学和代谢物鉴定工作流程,用户可以方便灵活地使用沃特世软件、色谱柱和仪器开展高通量分离,并与第三方软件应用程序共享通用数据。&bull 安捷伦推出运用前沿GC/MS和LC/Q-TOF技术的新产品在第72届ASMS质谱与相关专题会议上推出两款新产品。一款是Agilent 7010D三重四极杆气质联用系统,这款以食品和环境为主要目标市场的系统,可在气相色谱-质谱联用分析中展现出色的精度和灵敏度。另一款为适用于6545XT AdvanceBio LC/Q-TOF系统的Agilent ExD池,旨在助力生物制药市场与生命科学研究。Agilent 7010D三重四极杆气质联用系统(7010D GC/TQ)Agilent 7010D 三重四极杆气质联用系统(7010D GC/TQ)配备全新的HES 2.0离子源,灵敏度可达阿克级。该系统内置SWARM自动调谐和早期维护反馈(EMF)等智能功能,有助于简化分析工作流程和减少计划外仪器停机。连接碰撞池的Agilent ExD池(适用于6545XT AdvanceBio LC/Q-TOF)适用于6545XT AdvanceBio LC/Q-TOF的Agilent ExD池可增加电子捕获解离(ECD)功能,助力肽和蛋白质表征。ECD特别适合用于研究大分子蛋白质、易损修饰和异构体残基——仅使用传统的碰撞诱导解离(CID)方法难以明确表征这些分析物。结合 6545XT 本身就有的完整蛋白质分析能力,ExD 池还适用于对较大的和高电荷的蛋白质(如抗体)以及小一些的亚基(如肽)执行“top to middle down”表征,由此生成的丰富谱图信息可使用 ExDViewer 软件进行可靠的解析。&bull SCIEX 7500+系统迄今为止SCIEX速度最快的三重四极杆质谱仪SCIEX推出了SCIEX 7500+系统,这是SCIEX定量产品组合中的最新款质谱仪,不仅可以覆盖日益复杂的基质样本,同时能确保仪器在更长时间内保持优异的性能状态。SCIEX 7500+ 系统SCIEX 7500+系统中Mass Guard技术是一项新的技术,包含主动过滤潜在污染离子的能力。它降低了仪器污染的风险和频率,特别是在处理复杂基质时,维持仪器最高灵敏度性能的时间,与现有SCIEX技术相比可提升两倍。进样组件DJet+完全可拆卸,允许前端维护,从而能够最大化系统的运行时间。SCIEX 7500+系统每秒可进行800次多反应监测(MRM),是迄今为止SCIEX速度最快的三重四极杆质谱仪。这一提升扩展了大列队化合物的应用范围和定量能力,能覆盖更多新的化合物,从而提高了实验室的整体工作效率。&bull 布鲁克新产品持续推动单细胞蛋白质组学发展在第72届ASMS会议上布鲁克宣布推出一款革命性的MALDI-TOF/TOF质谱仪,即neofleX&trade 空间成像质谱仪。neofleX&trade Imaging Profiler配备了布鲁克专利的smartbeam 3D激光器,确保了具有真实的“方形像素点”成像采集功能;配备了增强型检测器,可实现线性模式和反射模式下、持久稳定的数据采集性能。neofleX&trade 还提供TOF/TOF配置,该配置具有进一步优化设计的二级碎裂模块,能显著提高TOF/TOF的检测灵敏度、采集速度和序列覆盖度。布鲁克还宣布了一款SCiLS&trade 系列软件的扩展产品 - SCiLS&trade Scope 1.0,为neofleX&trade 结合靶标蛋白质成像的空间多组学成像流程而设计。SCiLS &trade Scope软件可处理来自靶向成像工作流程(如MALDI HiPLEX-IHC等)的OME-TIFF数据集。离子图像通过预先选定的通道色彩编码进行空间可视化分析,借助简单工具还可以实现快速图像处理和距离测量。布鲁克推出了全新的超高灵敏度 timsTOF Ultra 2 质谱系统,该系统大大提高了对微小细胞、亚细胞细胞器进行深度分析的灵敏度,并增加了样本进样量范围的灵活性。结合新的 Spectronaut® 19 软件和全新的 PreOmics ENRICHplus 试剂盒,布鲁克正在建立从超高灵敏度到大规模深度血浆蛋白质组学的4D-蛋白质组学新标准。&bull 国内厂商莱伯泰科、清谱科技精彩亮相在ASMS展会上,也出现了更多的国产质谱企业,莱伯泰科旗下子公司CDS携带蛋白组学样品前处理自动化平台以及最新发明的相关耗材产品精彩亮相,向世界展示了其在生命科学领域的创新实力。在本次ASMS中,CDS展示了MiniLab蛋白组学样品前处理自动化平台、6通道EZ-Trace固相萃取装置,以及基于Empore膜技术的最新E系列蛋白消解和脱盐产品。在展台上重点介绍了CDS新开发的蛋白组学样品前处理离心小柱的性能,其高肽容量和出色的高pH分馏效果让现场观众耳目一新。清谱科技也携带最新产品在#433展位与行业分享。清谱科技通过3个口头报告、18个墙报,展示分享团队近一年取得的创新技术成果及产品研发应用进展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制