当前位置: 仪器信息网 > 行业主题 > >

微米级

仪器信息网微米级专题为您整合微米级相关的最新文章,在微米级专题,您不仅可以免费浏览微米级的资讯, 同时您还可以浏览微米级的相关资料、解决方案,参与社区微米级话题讨论。

微米级相关的方案

  • 微米级金属薄膜面内导热系数测量
    本文详细介绍了使用闪光法氙灯导热仪测量高导热微米级铜薄膜样品的面内热扩散系数和导热系数的相关理论和实验设计,对25mm铜薄膜进行了多次重复实验,实验数据与理论模型拟合度高,重复性优异。
  • 尼龙6的半微米级GPC分析
    在本报告中,使用LC-4000系列RHPLC系统和RI-4035折射率检测器对尼龙6薄膜和纤维进行测量,该检测器设计用于提供高性能分析的半微GPC柱。所使用的溶剂为每个分析循环约8mL,并且与传统分析相比节省了75%的溶剂。使用ChromNAV GPC计算平均分子量,并使用聚甲基丙烯酸甲酯(PMMA)标准构建分子量校准曲线。关键词:尼龙6,HFIP,半微米级,PMMA,GPC,折射率检测器,分子量分布程序ChromNAV GPC
  • 利用非接触式亚微米红外光谱仪次揭示神经元中淀粉样蛋白聚集机理
    近日,瑞典隆德大学的Klementieva教授团队与美国PSC公司的Mustafa Kansiz博士合作,使用全新非接触式亚微米分辨红外测量系统在亚微米尺度上研究了淀粉样蛋白沿着神经突直到树突棘的聚集行为,这是以往的实验技术手段所不可能实现的。在该研究中,他们使用了大脑皮层初神经元,这是因为它们易发生AD病变,且具有特的结构。初神经元的这种形态特征使得可以在单个神经元层面上来测试全新非接触式亚微米分辨红外测量系统的分辨率和准确性。先,他们在反射模式下获得了高质量的红外光谱,且不受米氏散射或基线失真等人为因素的干扰。值得注意的是,全新非接触式亚微米分辨红外测量系统其约为400 nm的横向分辨率,使得他们能够通过比较1740 cm-1处的峰强度来检测脂质含量的差异,以及通过对比酰胺II (1540 cm− 1)与酰胺I特征峰强度(1654 cm− 1)的比值来比较氨基酸(蛋白质)的种类和数量上的差异。这是科学家们次获取单个树突棘的高分辨率的化学图像和红外光谱,以往其它测试方法是无法做到的。
  • 赛默飞色谱与质谱:采用先进的UHPLC和亚2微米实心核颗粒色谱柱技术快速分离18种除草剂
    这个应用程序显示了使用的Thermo Scientific?的优势Accucore?的Vanquish?C181.5微米UHPLC柱和的Vanquish UHPLC系统为18除草剂的分离。先进在UHPLC的Vanquish系统的功能允许Accucore的Vanquish列在较高流速,使发展被操作快速,高性能的分析方法。比较均采用其它市售亚2微米的固体芯柱,展示改善峰容量和分辨率。
  • 液态硅烷微米级别液体颗粒管控应用方案
    在当今高科技产业的精密制造领域,液态硅烷作为关键原材料,其微米级别的液体颗粒管控成为了确保产品质量与稳定性的核心挑战。随着微电子、半导体及光伏产业的飞速发展,对材料纯度的要求日益严苛,任何微小的颗粒污染都可能引发设备故障、降低产品良率乃至影响整体生产线的稳定性。因此,本方案应运而生,旨在通过创新的管控策略,实现对液态硅烷中微米级别颗粒的精准控制与检测。
  • 制备均匀的亚微米固体颗粒用于基于激光照明的流场测量
    PIV技术是测量研究高温喷射流体的有效方法。PIV技术需要示踪粒子。许多常规生成粒子的方法对高温喷射流体并不适用。本文介绍了制备和播撒均匀的亚微米粒子技术途径。
  • 活细胞脂肪代谢过程新手段——光学红外显微成像!非接触式亚微米分辨红外拉曼同步测量
    近期,耶鲁大学成功安装了非接触亚微米分辨红外拉曼同步测量系统——mIRage,并在活细胞脂肪代谢研究中取得了新的进展!非接触亚微米分辨红外拉曼同步测量系统——mIRage在细胞成像中具有优异的潜力,可以提供脂质种类的信息,提供对低浓度物质如游离脂肪酸的定位,并允许对每个样品的脂质和蛋白质光谱特征进行全面位置光谱分析,并且能够应用长时间观测。这项技术未来将可以用于绘制细胞系和细胞内DNL的比率、疾病状态,进一步揭示DNL 导致代谢紊乱的原因。在评估针对调节DNL和治疗疾病的药物方面提供诸多帮助。
  • 凯璞科技:亚微米晶WC-Co硬质合金中粗晶组织中的Co形成
    原料粉末氧化问题是亚微米晶硬质合金生产中一个不可回避的难题,因为氧化料会在硬质合金制备过程中形成粗晶或孔洞,使合金性能降低。本文在亚微米晶WC-Co硬质合金中添加氧化料并在不同温度下烧结,采用SEM观察氧化料在烧结过程中的形貌变化特征。结果表明压坯中的氧化料在烧结后会形成明显的粗晶组织。氢气烧结条件下粗晶组织更加明显。对粗晶组织的形成机理进行探讨,认为粗晶组织的形成是气相反应的结果,中间经过产生脱碳相组织Cox WyCx 和W2 C 的过程。TG-DSC 结果表明,在常压Ar气氛条件下,碳粉还原 Co3O4的反应温度为732 ℃, 碳粉还原WO3 的反应温度为1 050 ℃。
  • 凯璞科技:亚微米晶WC-Co硬质合金中粗晶组织中的W形成
    原料粉末氧化问题是亚微米晶硬质合金生产中一个不可回避的难题,因为氧化料会在硬质合金制备过程中形成粗晶或孔洞,使合金性能降低。本文在亚微米晶WC-Co硬质合金中添加氧化料并在不同温度下烧结,采用SEM观察氧化料在烧结过程中的形貌变化特征。结果表明压坯中的氧化料在烧结后会形成明显的粗晶组织。氢气烧结条件下粗晶组织更加明显。对粗晶组织的形成机理进行探讨,认为粗晶组织的形成是气相反应的结果,中间经过产生脱碳相组织Cox WyCx 和W2 C 的过程。TG-DSC 结果表明,在常压Ar气氛条件下,碳粉还原 Co3O4的反应温度为732 ℃, 碳粉还原WO3 的反应温度为1 050 ℃。
  • 凯璞科技:亚微米晶WC-Co硬质合金中粗晶组织中的C 形成
    原料粉末氧化问题是亚微米晶硬质合金生产中一个不可回避的难题,因为氧化料会在硬质合金制备过程中形成粗晶或孔洞,使合金性能降低。本文在亚微米晶WC-Co硬质合金中添加氧化料并在不同温度下烧结,采用SEM观察氧化料在烧结过程中的形貌变化特征。结果表明压坯中的氧化料在烧结后会形成明显的粗晶组织。氢气烧结条件下粗晶组织更加明显。对粗晶组织的形成机理进行探讨,认为粗晶组织的形成是气相反应的结果,中间经过产生脱碳相组织Cox WyCx 和W2 C 的过程。TG-DSC 结果表明,在常压Ar气氛条件下,碳粉还原 Co3O4的反应温度为732 ℃, 碳粉还原WO3 的反应温度为1 050 ℃。
  • 凯璞科技:亚微米晶WC-Co硬质合金中粗晶组织中的O形成
    原料粉末氧化问题是亚微米晶硬质合金生产中一个不可回避的难题,因为氧化料会在硬质合金制备过程中形成粗晶或孔洞,使合金性能降低。本文在亚微米晶WC-Co硬质合金中添加氧化料并在不同温度下烧结,采用SEM观察氧化料在烧结过程中的形貌变化特征。结果表明压坯中的氧化料在烧结后会形成明显的粗晶组织。氢气烧结条件下粗晶组织更加明显。对粗晶组织的形成机理进行探讨,认为粗晶组织的形成是气相反应的结果,中间经过产生脱碳相组织Cox WyCx 和W2 C 的过程。TG-DSC 结果表明,在常压Ar气氛条件下,碳粉还原 Co3O4的反应温度为732 ℃, 碳粉还原WO3 的反应温度为1 050 ℃。
  • 凯璞科技:亚微米晶WC-Co硬质合金中粗晶组织中的Cr形成
    原料粉末氧化问题是亚微米晶硬质合金生产中一个不可回避的难题,因为氧化料会在硬质合金制备过程中形成粗晶或孔洞,使合金性能降低。本文在亚微米晶WC-Co硬质合金中添加氧化料并在不同温度下烧结,采用SEM观察氧化料在烧结过程中的形貌变化特征。结果表明压坯中的氧化料在烧结后会形成明显的粗晶组织。氢气烧结条件下粗晶组织更加明显。对粗晶组织的形成机理进行探讨,认为粗晶组织的形成是气相反应的结果,中间经过产生脱碳相组织Cox WyCx 和W2 C 的过程。TG-DSC 结果表明,在常压Ar气氛条件下,碳粉还原 Co3O4的反应温度为732 ℃, 碳粉还原WO3 的反应温度为1 050 ℃。
  • 亚微米晶WC-Co硬质合金中粗晶组织的形成
    原料粉末氧化问题是亚微米晶硬质合金生产中一个不可回避的难题,因为氧化料会在硬质合金制备过程中形成粗晶或孔洞,使合金性能降低。本文在亚微米晶WC-Co硬质合金中添加氧化料并在不同温度下烧结,采用SEM观察氧化料在烧结过程中的形貌变化特征。结果表明压坯中的氧化料在烧结后会形成明显的粗晶组织。氢气烧结条件下粗晶组织更加明显。对粗晶组织的形成机理进行探讨,认为粗晶组织的形成是气相反应的结果,中间经过产生脱碳相组织Cox WyCx 和W2 C 的过程。TG-DSC 结果表明,在常压Ar气氛条件下,碳粉还原 Co3O4的反应温度为732 ℃, 碳粉还原WO3 的反应温度为1 050 ℃。
  • 解决方案:如何1秒内实现锂离子电池微米全CT扫描?
    高效电池是电动汽车(EV)转型的关键,也是在使用更多可再生能源时实现储能平衡电网的关键。如今,每一个电动汽车电池都要经过二维(2D)X射线检查以进行质量控制,及早发现可能导致火灾的缺陷。然而,即使采取了这一步骤和其他几个质量控制步骤,这些缺陷也时常发生,导致经济和人身伤害方面的灾难性损失。相较于二维X射线检查方法,100%三维(3D)X射线检查,或在不清楚的情况下对二维检查进行三维补充,是一条有希望实现令人满意的质量控制的道路。但是, 3D X射线CT检查通常需要很长的时间,会大幅降低检测效率,因此需要一个具有微米焦点的高功率X射线源——这是市场上从未曾有过的。瑞典Excillum是一家致力于研发、生产超高亮度微焦斑X射线光源的公司,经过十余年的研发与改进,发布了10倍于普通固体阳X射线光源所发射的X射线通量(在相同焦斑面积上)的高亮度液态靶X射线源MetalJet D2+,今年又研发出新一代的高亮度液态靶X射线源MetalJet E1+,在相同焦斑面积上的通量约2倍于MetalJetD2+。该公司一直在寻求解决方案,以实现对电池和其他工业部件的高速3D X射线检查。在如下视频中,您将看到如何在1秒内实现锂离池的微米全CT扫描。这些实验均在瑞典的Excillum工厂进行,使用其MetalJet E1+、直接转换的高性能探测器(Thor FX20.256 CdTe)和高速、高精度旋转台。
  • 采用皮秒脉冲泵浦掺氟光纤产生中红外覆盖2-5微米光谱波段,超宽,超连续谱
    采用Ekspla 独有的PGX11系列窄线宽皮秒光学参量发生器中的PG711/DFG-SH型波长可调谐皮秒脉冲激光,泵浦掺氟光纤,产生中红外,覆盖2-5微米光谱波段,超宽,超连续谱。
  • 利用非接触亚微米分辨红外拉曼同步测量系统分析人体血红细胞
    红外一直以来都是一种经典的结构分析的光谱手段,它能够有效反映分子在组分中的分布,并且无需标记。但是由于其制样困难、信噪比差、无法观测溶液中的样品等缺点,使得红外在生物领域上难以满足科研工作者的需要。 mIRage是PSC公司新研发的非接触式、亚微米分辨、高信噪比的新型红外拉曼同步测量系统。它较传统的FTIR显微镜来说分辨率有了显著地提升。其分辨率可达400~500 nm。更难能可贵的是,它特的热膨胀红外测量技术,能够做到真正的环境友好,能够在溶液中直接分析细胞、组织、材料表面的红外光谱。此外,mIRage还可搭配拉曼光谱模块,通过红外光谱与拉曼光谱的共同分析,能够帮助研究人员快速准确地确定样品组成结构信息,突破传统荧光分析的限制。
  • 利用亚微米空间分辨同步IR+Raman光谱成像分析PLA/PHA生物微塑料薄片
    来源于石油中的塑料产品已经成为现代生活不可分割的一部分,它们性能优异,用途广泛且材料相对便宜,但同时也引发了人们对于塑料垃圾在环境中的累积问题的担忧,迫使我们尽快采取行动探索替代传统塑料的新型材料形式。生物塑料, 如聚乳酸(PLA)和聚羟基烷酸酯(PHA)等均来源于天然资源(如糖,植物油等),它们在适当的条件下可发生生物降解,因此其制成的产品即使不小心泄漏到环境中,也不会像传统塑料一样长期残留在土壤和水道中,而是终回归自然,安全而又环保。 虽然典型的PLA和PHA在分子层面上基本不混溶,但得益于其优异的相容性,它们可以以不同比例形成复合材料,创造出许多性质迥异的有用材料。为了更好地理解这两种材料在微观上的相互作用,美国特拉华大学Isao Noda教授课题组与Photothermal Spectroscopy Corp公司合作,利用光学光热红外技术(O-PTIR)技术及新一代的非接触亚微米分辨红外拉曼同步测量系统mIRage对PLA和PHA的复合薄片进行红外拉曼同步成像分析,探究这两种材料结合的方式和内在机理。
  • 利用亚微米红外拉曼同步测量技术助力生物材料对骨组织矿化的研究!
    由于红外光谱技术对于分子结构的敏感性,能够在无任何标记的情况下实现对生物样品成分的鉴定和分布解析,对于不便于荧光标记的生物组分鉴别十分有利,使得其在生命科学领域的应用越来越广泛。近期Maryam Rahmati等人使用亚微米红外拉曼同步测量技术在Materials Today上报道骨生物材料对骨骼再生的研究中成功揭示了红外显微镜在组织样品分析中的潜力。众所周知,生物骨骼有机材料能够模仿天然组织功能,是作为受损骨骼良好的替代物。Maryam等通过设计两个富含脯氨酸的无序肽(IDP2和IDP6)并将它们添加到SmartBone(SBN)生物杂交替代物中,成功合成了具备改善由于植入物导致的组织矿化问题的新型材料。通过对家猪开颅损伤后8周和16周愈合情况的研究,作者团队发现这种材料能够很好的帮助颅骨愈合。
  • 利用非接触式亚微米O-PTIR光谱成像技术研究高内相乳液聚合演变过程
    在高内相乳液(HIPE)中,初始离散单元在聚合过程中或之后转变成由窗口高度互联聚合体的时间和方式,一直是一个有争议的问题。2D O-PTIR(optical photothermal infrared)新表面成像技术为探索这个polyHIPE的窗口形成机理提供了机会,只要检测目标区域的大小相对于分辨率来说足够大。2D PTIR技术基于以下工作原理:一束红外激光聚焦在样品表面 被吸收的红外光使样品升温,诱导光热响应 这种本征的光热响应被一束可见光所检测;因此可与FTIR透射模式质量相媲美的图谱被使用反射模式所得到。该技术有四大优势:使用可见光为检测光,可以将分辨率提高到 ~ 500 nm;非接触式的光学显微镜;分辨率不依赖于红外光波长;不会产生弥散的伪影。 同济大学万德成教授课题组与Photothermal Spectroscopy Corp公司合作,利用光学光热红外技术(O-PTIR)技术及新一代的非接触亚微米分辨红外拉曼同步测量系统mIRage(Quantum Design中国子公司国内代理)对polyHIPE的聚合体进行了红外光谱和成像分析,探究其演变过程及形成机理。
  • 利用金相显微镜测量微米级膜层厚度
    金相显微镜主要用于金属的相结构分析。也可以利用各种平面分析系统进行膜层的厚度测量,并且精度很高,最小误差约为±0.8μm,可作为金属镀层和氧化膜层的仲裁测量。
  • 微米级检测泡罩密封性~直击反馈密封泄漏量
    泡罩包装,也称为吸塑包装,是一种使用塑料材料通过加热成型的包装方式。它通常由一个平滑的底板和一个或多个附着在底板上的凸起的泡罩组成,形状和大小可以根据产品的特定需求定制。这种包装方式能够紧密围绕产品形成保护层,从而提供物理保护,防止运输过程中的碰撞和压力损伤。
  • 利用非接触式亚微米O-PTIR光谱成像技术研究Ruddlesden-Popper混合钙钛矿边缘的形成如何提高电池效率?
    低能量边缘光致发光的研究,对提高Ruddlesden-Popper钙钛太阳能电池效率有着十分重要的影响和意义。然而对其机制的研究却一直面临着巨大挑战:先,材料的结构难以确定;其次,理论模型与观测结果始终不一致。因此,寻找可靠、有效的观测手段对于理解这一现象有着至关重要的意义。 在本篇研究中,电子科技大学王志明教授课题组与Photothermal Spectroscopy Corp公司合作,使用O-PTIR技术及新一代的非接触亚微米分辨红外拉曼同步测量系统mIRage(Quantum Design中国子公司国内代理)研究了MAPbBr3在(BA)2(MA)2Pb3Br板边缘分布情况。使用O-PTIR技术探测具有以下优势:先(BA)2(MA)2Pb3Br10和MAPbBr3之间由于缺少BA,因此其红外光谱具备显著的差异;其次,这种非接触式探测能够有效避免样品高度,探针污染所带来的问题;另外,无论是BA缺陷,还是BA对MA的比例已有使用FTIR光谱研究的报道,具备良好的基础。
  • 微纳米气泡的直观表征方法
    微纳米气泡因其自身体积小、比表面积大、自身增压溶解等特点,具有广泛的应用价值。但微纳米气泡受气泡发生条件的影响很大,需要依靠准确的检测方法去优化气泡发生条件,检测微纳米气泡的性质。本文借助动态图像法和纳米颗粒跟踪分析技术,分别检测了微米气泡和纳米气泡:通过动态图像法,测得微米气泡的粒径分布、气泡数量、球形度等信息,用于表征、鉴别微米气泡;通过纳米颗粒跟踪分析技术,测得纳米气泡的粒径分布、浓度、电位等信息,用于全面表征纳米气泡的性质。
  • 微纳米气泡发生器在水处理中的应用
    微纳米气泡的出现及其不同于普通气泡的特点,使其在水处理等领域显现出优良的技术优势和应用前景,介绍了微纳米气泡以及其比表面积大、停留时间长、自身增压溶解、界面电位高、产生自由基、强化传质效率等特点,论述了微纳米气泡在水体增氧、气浮工艺、强化臭氧化、增强生物活性等环境污染控制领域的应用研究。引 言微米气泡(microbubble)通常是指存在于水中直径为10~50μ m的微小气泡,直径小于200nm的超微小气泡称为纳米气泡(nanobubble),介于微米气泡和纳米气泡之间的气泡称为微纳米气泡(micro-nano bubble),与传统大气泡(coarse bubble,直径50mm)和小气泡(fine bubble,直径5mm)相比,微纳米气泡直径小,其传质特性和界面性质均显著不同于传统大气泡。
  • 纳米力学测试系统的应用-高温微划痕和冲击测试
    在正确的长度尺度上测试机械和摩擦学性能提供了更多相关的数据,例如优化涂层成分,以提高苛刻应用的性能,如切削工具或航空/汽车发动机的机械接触。虽然它们以简单而受欢迎,但许多宏观机械接触测试对薄CVD和PVD涂层的性能不太敏感,因为测试中的大探针半径和非常高的接触力会导致峰值应力深入基材。相反,纳米划伤测试使用更低的载荷和更小的探针半径,可能会使峰值应力太靠近表面,而涂层只有几微米厚。此外,高表面粗糙度会限制小半径划痕探头的使用寿命。
  • 快速检测100微米以下微塑料的高光谱成像系统的优化
    塑料污染已成为威胁水生和陆地生态系统的紧迫问题之一。然而,快速检测小型微塑料仍然具有挑战性。在此,我们提出了一种使用高光谱成像快速检测微塑料的方法,其中优化了商业上可用的高光谱成像系统(Pika IR+(Pika NIR-640))。优化包括:(1)将四个灯组件更改为一组对称的聚光近红外灯,这些灯放置在侧面,而不是样品上方工作台;(2) 采用微距摄影技术,在相机和镜头之间安装延长管,将高光谱相机的镜头移动到成像目标(工作距离约3cm);(3) 通过调整成像系统的帧速率和扫描速度来调整曝光和宽高比。优化后,每个像素的检测分辨率从250μm提高到14.8μm。通过优化的系统,可以快速检测到尺寸低至100μm的微塑料。这一结果有望将新方法应用于微塑料的加速检测,并有助于更好地了解微塑料污染状况。
  • 一种利用复享光学显微拉曼系统在微米尺度下对石墨烯层数进行鉴别的方法
    显微拉曼在石墨烯表征中的应用石墨烯是目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料。就石墨烯材料及其器件的研究而言,鉴别 石墨烯层数 以及量化其无序性的影响是至关重要的,而显微 拉曼光谱,是用于表征上述两种性能的便捷又可行的方法。
  • 颜料油漆墨水中纳米级颗粒离心沉淀
    颜料、油漆、墨水中微小颗粒的平均直径在数纳米至微米之间,它们的密度都比较低,用一般的(RCF在数万级的)高速离心机很难得到满意的结果。在进行这些样品沉淀材料的分析研究中,一般容量都不会很大,日立微量超速离心机CS150FNX(落地)及CS150NX(台式)是最好的选择。
  • 研究论文集(理论篇)--论文七:论现代激光粒度仪采用全米氏(Mie)理论的必要性
    激光粒度仪已经在世界范围内成为最流行的粒度测量仪器。米氏(Mie)理论是描述光的散射现象的严格理论,是激光粒度仪的理论基础。在一定的条件下,散射现象也可以用相对较简单的夫琅和费衍射理论近似描述。早期的激光粒度仪基本上都用衍射理论。随着科学技术的发展,仪器制造商先是在亚微米范围内采用米氏理论,后又在全范围内采用米氏理论,即不论颗粒大小,全部都用米氏理论,称为“全米氏理论”。许多激光粒度仪的制造商,尤其是国外制造商,都把“采用全米氏(Mie)理论”作为其产品的重要优点之一。可是有的国内制造商还不知道“米氏理论”为何物,有的国外厂商虽然在宣传时声称用“全米氏(Mie)理论”,可是交付到中国用户手中的仪器还是用夫琅和费理论。本文首先介绍什么是米氏(Mie)理论,在什么条件下可以作衍射近似,然后分亚微米颗粒和大颗粒两种情况比较了两种理论的差别,指出了衍射理论的误差以及该误差可以忽略的条件。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制