当前位置: 仪器信息网 > 行业主题 > >

甜菜碱

仪器信息网甜菜碱专题为您整合甜菜碱相关的最新文章,在甜菜碱专题,您不仅可以免费浏览甜菜碱的资讯, 同时您还可以浏览甜菜碱的相关资料、解决方案,参与社区甜菜碱话题讨论。

甜菜碱相关的资讯

  • 欧盟发布甜菜碱的安全性与效能意见
    欧洲食品安全局(EFSA)近期就甜菜碱作为饲料添加剂的安全性与效能发布了意见,认为按照每千克2000毫克的添加量,将甜菜碱添加至饲料中时,安全边际系数在5以下,不会对猪和消费者的健康构成威胁。   当甜菜碱作为饲料时,欧盟食品安全局提出4点建议:一是引入饲料与饮用水中补充甜菜碱的最大含量 二是避免甜菜碱同时补充于饲料和饮用水中 三是避免预混料中含有甜菜碱功能类似物氯化胆碱 四是在加工甜菜碱时应对操作工人进行必要的防护。   对此,检验检疫部门提醒相关出口企业:要提高风险防控意识,在销售的同时,不要忽略向使用企业尤其是欧盟的使用企业宣传欧盟食品安全局提出的新建议,在确保饲料安全的同时,发挥饲料添加剂的最大效用。
  • 加拿大修订肟菌酯和甜菜安残留限量
    今年11月,加拿大卫生部发布 EMRL2012-51号通报和EMRL2012-52号通报,称有害生物管理局修订了肟菌酯和甜菜安分别在香蕉中和菠菜、甜菜中的最大残留限量。具体内容是,肟菌酯在香蕉中的最大残留限量为0.1ppm 甜菜安在菠菜中的最大残留限量为6ppm 在甜菜根中的最大残留限量为0.1ppm。   据了解,肟菌酯属于甲氧基丙烯酸类杀菌剂,对几乎所有真菌纲病害,如白粉病、锈病、网斑病、霜霉病、稻瘟病等均有良好的活性作用。甜菜安则是一种除草剂,适用于甜菜作物,特别是糖甜菜,用于控制阔叶杂草生长。   对此,检验检疫部门提醒相关生产和出口企业:一是加强与客户沟通,及时了解加拿大方面法律法规的最新修订情况,尽早作出调整 二是建立健全自检自控体系,尤其是在水果、蔬菜种植及后续生产、包装等过程中加大检测力度,一定要选择规模大、信誉度高的机构进行检测,确保产品符合加拿大的相关规定 三是及时与检验检疫部门联系,在产品出口前做好抽样与检测工作,确保产品顺利出口。
  • 致力于最优的解决方案-吉天仪器SA-50 砷形态快速分析方法对比国标
    砷是自然界中常见的有毒致癌性元素之一,砷的生物毒性不仅与其含量有关,更大程度上还与其存在形态有关。砷的主要形态有亚砷酸盐(As3+)、砷酸盐(As5+)、一甲基砷(MMA)、二甲基砷(DMA)、砷甜菜碱(AsB)、砷胆碱、砷糖等。其中,无机砷的毒性大于有机砷,砷与有机基团结合越多,毒性越小。无机砷(As3+、As5+)的毒性很高,而有机砷仅一甲基砷和二甲基砷化合物有较小的毒性,其他有机砷形态大多无毒。所以,对砷的形态分析在环境科学、食品科学等方面具有十分重要的意义。GB5009.11-2014食品安全国家标准  食品中总砷及无机砷的测定中关于无机砷的测定方法采用了HPLC-AFS联用作为第一法对无机砷(As3+、As5+)进行含量测定。采用磷酸二氢铵缓冲盐作为流动相,使用聚光科(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)针对砷形态分析专门研发的快速分析阴离子交换色谱柱进行分离,AFS进行检测。本解决方案在国标的基础上,优化了分析方法,采用快速色谱柱进行了4种As的形态分析,加快了分析速度、提高了灵敏度。吉天仪器SA-50液相色谱-原子荧光联用仪(LC-AFS形态分析仪)科研不断探索未知,攻克挑战,吉天仪器新品,强强联用,致在优质的解决方案!仪器型号:吉天仪器SA-50 与Kylin S18联用色谱柱:吉天砷形态快速分析专用柱待测物:砷酸盐、亚砷酸盐、一甲基砷、二甲基砷、砷甜菜碱均来自于中国计量科学研究院测试条件:  流动相:水、2种盐混合缓冲溶液梯度洗脱  载流:7%盐酸  还原剂:2%硼氢化钾/0.5%氢氧化钾  负高压:290V  灯电流:100mA-50mA  炉高:10mm测试结果:  1. 重复性:对于As3+、As5+、MMA、DMA(10ng/mL)混合溶液,在仪器稳定后连续进样6针,重复性RSD,结果见下图:  2. 线性: 对于不同浓度的As3+、As5+、MMA、DMA(20ng/mL、15 ng/mL 、10 ng/mL、5 ng/mL、2.5 ng/mL)混合溶液分别进样,制作曲线,结果见下表及下图;浓度(ng/mL)荧光强度As3+DMAMMAAs5+2.525002.114602.917859.17540.1550960.229006.234158.215092.61010146565544.675930.635131.21515279010056811529151291.82021360313807214945069886.4线性方程y=10662x-3189.3y=7098.1x-4971.3y=7657.9x-1870.5y=3579.7x-1798.4相关系数r0.99920.99960.99930.9994   3. 检出限:把As3+、As5+、MMA、DMA(1 ng/mL)混合溶液进样,测试结果见下图:只因内”芯“的从容!才要更出色!与国标等度方法对比分析:  在已发布的《液相色谱-原子荧光光谱法测定食品中无机砷的解决方案》文中采用了国标等度方法、HamiltonPRP-X100阴离子交换色谱柱(4.1mm*250mm*10μm)或CNWSep AX 4.0mm*250mm*10um色谱柱进行了四种As形态(As3+、As5+、MMA、DMA)的分析,测试结果与本文中采用优化方法的对比图分别如下(上图为方法一与国标法对比;下图为方法二与国标法对比),由实验结果可知四种As形态的分离时间有了较大的减少,灵敏度也有了较大提高。创新性LC-AFS分析技术,智能高效、精益求精  全内置的液相泵,结构紧凑,设计更美观  内置双柱柱温箱,实现双色谱柱同时预热  双色谱柱自动切换,提高更换效率  实现紫外消解流路自动切换  多色LED指示灯,直观显示仪器多种状态  全面的软件控制,人机友好互交  更多优异的性能、全面的解决方案等你关注哦!!!LC-AFS
  • 全新升级丨Welchrom® Alumina-B 碱性氧化铝小柱
    甜菜碱是一种碱性物质,主要为强心甙和其他甾类成分,可从天然植物的根、茎、叶及果实中提取或采用三J胺和氯Y酸为原料化学合成。 甜菜碱是枸杞果、叶、柄中主要的生物碱之一,学名三J基胺乙内酯,许多枸杞属植物果实、根皮、叶中均含有甜菜碱。枸杞对脂质代谢或抗脂肪肝的作用主要是由于所含的甜菜碱引起的,多项研究结果显示,枸杞叶片内的甜菜碱含量比其他耐盐植物高。 月旭科技根据2020年版《中国药典》枸杞子品种中甜菜碱的含量测定法开发出了新一代Welchrom® Alumina-B 碱性氧化铝小柱。概述碱性氧化铝小柱应用于枸杞子中甜菜碱的测定,该方法速度快、操作简单、准确性高。原理碱性氧化铝小柱能够特异性的纯化样品中的甜菜碱。试样中的甜菜碱经提取剂提取,提取液通过碱性氧化铝小柱净化,其中杂质吸附在小柱上,洗脱目标物后浓缩复溶,最后注入HPLC进行测定。净化程序碱性氧化铝小柱活化→上样→洗脱→浓缩→复溶色谱条件色谱柱:月旭Ultimate® Hilic NH2 4.6× 250mm,5μm。流动相:乙腈:水=85:15;流速:1.0mL/min;柱温:30℃;进样量:10μL;检测波长:195nm。 色谱图及实际样品测试结果 结论:Welchrom® Alumina-B在《中国药典2020版》下测试,加标回收率满足实验要求。订货信息‍
  • 全新升级丨Welchrom® Alumina-B 碱性氧化铝小柱
    甜菜碱是一种碱性物质,主要为强心甙和其他甾类成分,可从天然植物的根、茎、叶及果实中提取或采用三J胺和氯Y酸为原料化学合成。 甜菜碱是枸杞果、叶、柄中主要的生物碱之一,学名三J基胺乙内酯,许多枸杞属植物果实、根皮、叶中均含有甜菜碱。枸杞对脂质代谢或抗脂肪肝的作用主要是由于所含的甜菜碱引起的,多项研究结果显示,枸杞叶片内的甜菜碱含量比其他耐盐植物高。 月旭科技根据2020年版《中国药典》枸杞子品种中甜菜碱的含量测定法开发出了新一代Welchrom® Alumina-B 碱性氧化铝小柱。概述碱性氧化铝小柱应用于枸杞子中甜菜碱的测定,该方法速度快、操作简单、准确性高。原理碱性氧化铝小柱能够特异性的纯化样品中的甜菜碱。试样中的甜菜碱经提取剂提取,提取液通过碱性氧化铝小柱净化,其中杂质吸附在小柱上,洗脱目标物后浓缩复溶,最后注入HPLC进行测定。净化程序碱性氧化铝小柱活化→上样→洗脱→浓缩→复溶色谱条件色谱柱:月旭Ultimate® Hilic NH2 4.6× 250mm,5μm。流动相:乙腈:水=85:15;流速:1.0mL/min;柱温:30℃;进样量:10μL;检测波长:195nm。 色谱图及实际样品测试结果 结论:Welchrom® Alumina-B在《中国药典2020版》下测试,加标回收率满足实验要求。订货信息‍
  • 助战食安,海能仪器添彩华中科仪展
    122016年11月10日—12日,第八届华中科教仪器与技术装备展览会,在武汉国博中心拉开序幕。本届科仪展汇聚了来自国内外二十多个国家和地区的仪器企业,海能多款仪器在会上亮相,添彩华中科仪展。展位精彩海能、新仪展位号:b1展馆A08 、A09 展会第一天,展位便吸引了包括高等院校、研发机构、检验检测机构、第三方检测公司等专业观众前来。海能技术人员或与老用户交流经验,或对新朋友的咨询给出详细解答,或同经销商朋友深入洽谈……海能此次亮相展出的仪器到有哪些呢?元素分析系列、样品前处理系列、电化学系列及通用仪器系列。包括k1160全自动凯氏定氮仪、spe400全自动机械臂固相萃取仪、d100杜马斯定氮仪、uwave-2000多功能微波合成萃取仪、master超高通量密闭微波消解/萃取仪等。助战食安不同于往届,本届科仪展食品安全成为热点之一。维护食品质量与安全,维护广大消费者的身体健康,是关系到我们切身利益的大事!在食品事件频频曝出的今天,真正确保舌尖上的安全,我们有场硬战要打。海能致力于食品药品的安全营养与科学分析仪器、分析方法的研究,为科技工作者提供仪器及全面的解决方案。专注科学仪器事业,制造高品质仪器,诠释完美服务。海能仪器愿为您的食品安全保驾护航!
  • 用户之声|和黄白猫洗洁精的表面活性剂分析神器—CAD检测器
    今天赛默飞就带大家跟随“和黄白猫”,探寻下最常用的日用品之一——洗洁精。洗洁精由多种表面活性剂及助剂复配而成。可能的成分有:“烷基苯磺酸钠(LAS),脂肪醇聚氧乙烯醚硫酸钠(AES)和烯基/羟基磺酸钠(AOS)̷̷”,这些阴离子表面活性剂去油污能力强,在皮肤上残留会有干燥紧绷的感觉;因此,很多厂家会添加比较温和的两性离子表面活性剂进行复配,如椰油酰胺丙基甜菜碱,椰油酰胺丙基氧化胺,非离子表面活性剂脂肪醇聚氧乙烯醚等,以取得更好的清洁效果并降低对人体皮肤的刺激。椰油酰胺丙基甜菜碱结构式 由于成分复杂,开发合适的检测方法对这类产品进行质控分析,是一项高难度挑战。1两性表面活性剂在酸性条件下以阳离子形式存在,会影响其他阴离子表面活性剂的定量,无法用化学滴定法定量;2大部分表面活性剂无紫外吸收,缺乏标准物质,紫外检测器很难检测所有组分;3示差折光检测器重复性差、只能等度洗脱无法完全分离;4质谱检测器只能检测可以离子化的化合物,而且长时间使用离子源和四极杆会难以清洗造成交叉污染;自从接触了赛默飞的电雾式检测器CAD,以上这些难题都迎刃而解。“通过调研我们发现:CAD的重现性和灵敏度远高于示差折光检测器,与ELSD相比也具有较明显优势。2016年我们研发部门配置了CAD和紫外双检测器的Ultimate 3000双三元液相色谱,通过一个二位六通阀连接,实现了一台仪器当两台液相使用的强大功能,方便了我们的工作,降低了购买成本。”——和黄白猫公司上海和黄白猫有限公司是洗涤清洁用品行业的知名企业,在国内同行业中技术领xian、设备先进、质量过硬,享有相当高的市场信誉度;“白猫”品牌,几乎成为国内洗涤清洁用品的代名词。 电雾式检测器(CAD)电雾式检测器(CAD),是一种新型通用型检测器,重现性好,能检测大部分非挥发性和半挥发性的有机物,并提供几乎一致的响应,且不受化合物紫外吸收基团的影响,在定量分析中具有明显的优势。 赛默飞带您来看和黄白猫公司使用CAD检测器对洗洁精中表面活性剂的日常分析色谱条件数据结果分析由于表面活性剂中包含不同碳链的非极性基团,检测中会出现多个连续峰,如AES和LAS的CAD图谱无法完全分离,但由于LAS有紫外吸收,可使用紫外检测器定量;AES无紫外吸收,使用CAD检测器定量。椰油酰胺丙基氧化胺(上)和月桂酰胺丙基甜菜碱(下)标准品CAD图谱脂肪醇聚氧乙烯醚硫酸钠(AES)和烷基苯磺酸钠(LAS)标准品CAD图谱烷基苯磺酸钠(LAS)的CAD图谱和UV(254nm)图谱 对于二者同时存在的情况,可以依据CAD响应一致性的特性,使用CAD检测器以AES为标品,计算二者的总量,再减去用紫外检测器得到LAS含量,即为AES的含量,对比使用其他方法的检测结果,无显著性差异。洗洁精实际样品的CAD和UV图 以上可知,赛默飞表面活性剂专用色谱柱Acclaim Surfactant Plus(可同时提供反相机制和阴、阳离子交换保留机制),配合DAD和CAD检测器串联使用,可以有效、准确的检测各表面活性剂成分的含量。 在对某些进口品牌的洗涤剂配方研究中我们发现,大部分产品都不同程度添加了相应的两性离子表面活性剂,使同时具有良好的乳化性和分散性,其对织物有优异的柔软平滑性和抗静电性。CAD检测器为洗涤剂类产品的配方优化和产品质量控制提供了良好的检测手段。 鸣谢:感谢和黄白猫公司的徐艳丽工程师提供的实验数据!色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 2020版药典 | 您所关注的中药元素形态分析全在这里
    01什么是元素形态?元素形态通常是指某种元素在实际样品中的不同物理-化学形态,其中化学形态是指元素在该样品中的氧化还原形态(如:三价砷、五价砷),金属有机物形态(如:甲基汞),生物分子形态(如硒蛋白)等。元素形态分析为超痕量分析,需要灵敏度高、检出限低的分析方法。同时要求在样品制备和分析过程中必须尽可能避免样品中原来存在的形态平衡的破坏和变动。 不同砷形态结构(点击查看大图) 02中药为什么要检测元素形态?元素的不同形态具有不同的物理化学性质和生物活性,例如无机砷的毒性很大,有机砷的毒性较小或者基本没有毒性;甲基汞毒性较大,但无机汞却相反,毒性相对比较小。此外,六价铬对健康有很大的危害,可导致多器官功能衰竭和发生肠道肿瘤,但是三价铬却是机体中的葡萄糖耐量因子的重要组成部分,被认为适量有益健康。元素形态及其价态的分析对于评价不同形态价态元素的生物功能与毒理作用有非常重要的影响。目前形态分析已经成为分析科学领域的一个重要分支。 历史上最严重的的汞中毒事件—1953 年日本水俣病事件2012 年中国问题胶囊事件 03中药形态分析标准和法规世界各国对于毒性元素的价态,特别是无机砷、甲基汞、六价铬的价态均有明确的限量规定。美国药典通则232中明确规定注射剂砷、汞的限量以无机砷、无机汞来计算。2015版《中国药典》首次制定了通则《2322元素形态及其价态测定法》,新增汞元素形态及其价态测定法以及砷元素形态及其价态测定法。方法确定了分析3种价态汞和6种价态砷的色谱条件。通则 《0412 电感耦合等离子体质谱法》增订了第6点,高效液相色谱-电感耦合等离子体质谱法(HPLC-ICP-MS)。2020版药典对通则2322进行了修订和完善,进一步规范了矿物药及其制剂和动、植物类中药(除甲类、毛发类)的前处理方法。 04中药汞、砷元素形态及价态样品前处理方法2020版药典调整了《2322汞和砷元素形态及其价态测定法》中的部分文字描述;针对矿物药及其制剂和动、植物类中药(除甲类、毛发类)的供试品溶液制备方案给出了较为清晰明确的前处理过程,如下表格所列:表 矿物药及制剂前处理方法(点击查看大图)表 动、植物类中药前处理方法(点击查看大图) 赛默飞元素形态分析全面解决方案 应用实例:砷形态及价态分析采用赛默飞AS7 (4.0*250mm)阴离子交换柱,可实现六种砷有效分离。其中砷胆碱(AsC)和砷甜菜碱(AsB)分离度为1.65,砷甜菜碱(AsB)和亚砷酸根(As3+)分离度为4.55,完全符合药典规定的砷胆碱、砷甜菜碱、亚砷酸根分离度应不小于1的规定。图 砷形态及价态分离色谱图(点击查看大图) 应用实例:汞形态及价态分析采用赛默飞Acclaim 120 C18 色谱柱可以有效实现无机汞、甲基汞、乙基汞的分离。汞 图 汞形态及价态分离色谱图(点击查看大图) 更多元素形态分析案例详见赛默飞ICPMS联用解决方案 扫描以上二维码填写表单后立刻下载方案 应用特点(点击查看大图) 总结赛默飞拥有完整的色谱、质谱、微量元素解决方案,卓越的仪器性能能够有效的满足中药材生产企业检测的全部需求,助力药企达到质量控制的先进水平,实现质量源于设计的理念。
  • 食品药监局就化妆品用乙醇等9种原料征求意见
    关于征求有关化妆品用乙醇等9种原料要求意见的函   食药监许函[2011]21号 有关单位:   为规范化妆品原料技术要求,我司组织编制了化妆品用乙醇等9种原料要求(征求意见稿)。现向社会公开征求意见,请将修改意见于2011年2月10日前反馈我司。   联 系 人:陈志蓉   电子邮件:chenzr@sfda.gov.cn   传  真:010-88373268   附件:   1.《化妆品用乙醇原料要求》(征求意见稿)和编制说明   2.《化妆品用滑石粉原料要求》(征求意见稿)和编制说明   3.《化妆品用甘油原料要求》(征求意见稿)和编制说明   4.《化妆品用DMDM乙内酰脲原料要求》(征求意见稿)和编制说明   5.《化妆品用月桂醇聚醚硫酸酯钠原料要求》(征求意见稿)和编制说明   6.《化妆品用合成熊果苷原料要求》(征求意见稿)和编制说明   7.《化妆品用聚丙烯酰胺原料要求》(征求意见稿)和编制说明   8.《化妆品用乙醇胺原料要求》(征求意见稿)和编制说明   9.《化妆品用椰油酰胺丙基甜菜碱原料要求》(征求意见稿)和编制说明   10.反馈意见表   国家食品药品监督管理局食品许可司   二〇一一年一月二十日
  • 创新产品:电化学式酶抑制法快速农残检测仪
    仪器信息网讯 7月18日,2015北京国际食品及农产品安全检测技术展览会在北京国家会议中心召开。在同期举办的“食品和农产品安全检测技术研讨会”中,来自台湾的恩莱生医科技股份有限公司王文博士给与会听众介绍了一款全新的农药残留快速检测产品。该产品仍然采用酶抑制发的原理,但与传统相比不同的是酶抑制率是通过电化学方式进行表达。恩莱生医科技股份有限公司 王文博士  该产品原理是采用双酵素反应机制,乙酰胆碱通过乙酰胆碱酶水解生成胆碱和乙酸,胆碱在胆碱氧化酶的作用下生成双氧水和甜菜碱,双氧水通过外加电位生成氧气、两个氢离子和两个负电子,通过电极产生电信号。有机磷及氨基甲酸酯类农药对乙酰胆碱酶的抑制,影响后续的反应机制,进而产生有别电信号,通过分析有别电信号与原信号的差异来进行检测结果的判定。反应原理图  传统的酶抑制率是通过目测颜色变化或通过分光光度计测定吸光度值来计算,目测颜色变化很难精确表达检测结果 而采用分光光度计测定吸光度值尽管数据相对精确,但是在仪器小型化、便携化发展趋势下有其局限性。市场上的小型化的光学式酶抑制法快速检测仪器,通常采用LED光源,但测量准确度不高。  而电化学技术相对成熟,仪器设计简单,价格低廉,灵敏度及准确性高。在仪器满足小型化的需求的同时,还能保持高准确度,检测结果可直接读数。其优势明显,可携带,准确性和再现性佳,操作简单,检测时间短,10分钟即可完成检测。安心测农药残留快速检测系统恩莱生医科技股份有限公司展位编辑:孙立桐
  • 省时省气│形态砷与形态汞,您可以同时测!
    导读 对于从事砷元素形态和汞元素形态分析的小伙伴们来说,更换色谱柱更换流动相是一项令人烦躁的存在,总想一劳永逸。然而,砷元素和汞元素化学形态多、性质差异大,通常需要独立的分离条件才能实现各自准确的定量。定量两个元素多种形态,耗费时间长,仪器运行成本高,员工期盼下班早,有没有解决办法呢?这里有锦囊妙计与您分享。汞好极性攀比,砷喜离子交换自然界中常见的砷形态有亚砷酸(As(Ⅲ))、砷酸(As(Ⅴ))、一甲基砷酸(MMA)、二甲基砷酸(DMA)、砷甜菜碱(AsB)和砷胆碱(AsC)等;常见的汞形态有无机汞(iHg)、甲基汞(MeHg)和乙基汞(EtHg)。对于以上6种形态砷和3种形态汞的定量来说,HPLC-ICPMS联用是常用的分析方法,其中,LC的分离条件是关键。在现有的法规标准和文献资料里,无机汞、甲基汞和乙基汞由于具有比较明显的极性差异,分离方法多选用反相色谱原理为依据;6种形态砷由于具有一定的离子特性,以离子交换的方式来实现对它们的分离是常用的手段。以《中国药典2020版》第四部通则2322为例,形态汞分离选用的是C18柱,而形态砷分离选用的是阴离子交换色谱柱。实验希望降成本,人员期盼提效率受限于形态砷和形态汞的液相色谱分离通常需要不同的色谱柱和不同的流动相,当需要定量分析两种元素的形态时,往往需要分别测试。抛开色谱柱的消耗更换以及流动相的区别配制不说,实验耗费时间常常是最受每一位实验人员关注的,既影响了仪器运行成本,也降低了分析效率。质谱定量原省气,液相分离更省时如果在HPLC的分离部分能够实现同时对6种形态砷和3种形态汞的分离,那么分析效率和运行成本将会得到有效改善。方案选用岛津LC-20Ai高效液相色谱仪和ICPMS-2030系列电感耦合等离子体质谱仪联用系统。2017年 AnTop智能化节能ICPMS开创者奖的获得者,岛津公司ICPMS-2030系列电感耦合等离子体质谱产品通过快速匹配的高频发生器降低对氩气纯度要求、Mini炬管减少工作时氩气的流量消耗以及ECO模式待机时更低的功率和氩气损耗,综合可实现降低70%的使用成本。① 超低氩气消耗运行;② 全惰性液相系统;③ 集成软件同时实现对LC和ICPMS的控制• HPLC分离条件:形态砷、汞共用一根色谱柱,相同的流动相,在等度洗脱的条件下实现分离。HPLC分离时间10min。表1. HPLC 分析条件• ICP-MS定量条件:在总氩气消耗量为9.80L/min条件下稳定运行Mini炬管示意图您要的图我没忘,定量结果这也有元素形态的分离是大家关心的永恒问题,让我们一起看看6种形态砷和3种形态汞在一针进样的条件下分离情况如何吧:形态砷和形态汞混合标准溶液色谱图1. 砷胆碱(AsC) 2. 砷甜菜碱(AsB)3. 亚砷酸(As(Ⅲ)) 4. 无机汞(iHg)5. 二甲基砷酸(DMA) 6. 甲基汞(MeHg)7. 一甲基砷酸(MMA) 8. 乙基汞(EtHg)9. 砷酸(As(Ⅴ))基于反相色谱原理我们使用HPLC同时分离了6种形态砷和3种形态汞,使用ICPMS-2030系列测定了地表水中的6种形态砷和3种形态汞的含量,并进行加标回收率实验。表2. 环境地表水样品分析结果注:N.D.表示未检出写在最后在探索中前进,从客户需求出发。困扰您的费时费力问题,也许,联系我们,您就可以豁然开朗。形态砷与形态汞,您可以同时测定。撰稿人:钟跃汉本文内容非商业广告,仅供专业人士参考。
  • 追求卓越 助力教育发展 上海衡平携重磅产品为高博会添彩
    追求卓越 助力教育发展 上海衡平携重磅产品为高博会添彩 科教兴国,教育强国,教育的发展对一个*来说是举足轻重的。为助力高等教育发展,2020年11月8日-10日,由中国高等教育学会主办,国*励展展览有限责任公司承办的第55届中国高等教育博览会(简称“高博会”)在长沙会展中心盛大召开。作为政府、高校、企业之间协同创新和共谋发展的重要桥梁,本届高博会吸引了近1000家高等教育产业的企业前来参展。展会上,上海衡平仪器仪表厂也应邀前来,向观众展示了多款重磅产品。 上海衡平展位 上海衡平成立于1996年,是一家专注于*、生产各类实验室仪器的科技创新型企业,能为客户提供一体式解决方案。上海衡平主要经营的产品包括全自动表面张力仪、微波消解仪、*高低温恒温槽、旋转式粘度计、低温冷却液循环泵、沉降式粒度仪及各类*电子天平等。凭借着雄厚的*实力、*的产品品质及*的服务质量,上海衡平的产品得到了市场的*,深受石油化工、环境保护、*卫生、纺织印染、油漆涂料等领域用户的青睐。 此次展会上,上海衡平重点展示了DC-0506数显式低温恒温槽、Titan 6高通量密闭式微波消解/萃取工作平台两款产品。得益于上海衡平的品牌影响力,产品一经亮相便得到了新老客户的关注,参展观众也纷纷前往展台咨询。 DC-0506数显式低温恒温槽 DC-0506数显式低温恒温槽是上海衡平为恒温、生化、材料、物化等领域*的一款仪器。该设备采用单片微处理控制、自整定PID调节,仪器工作稳定*;测温单元采用的是*铂电阻(Pt100),控温*、波动度小;**的压缩机不仅制冷*,且噪声低;低温恒温槽采用整体发泡工艺,具有*的隔热性能、*减少了冷量的损失;*的循环搅拌*,保证了槽内液体在内循环中分散均匀流畅,热交换平稳。在*上,为方便搬运仪器,这款产品在两边设有折叠式把手,20L及以上系列和低于-40℃低温恒温槽则采用重型带自锁脚轮,便于移动。为了*延长仪器使用寿命,这款恒温槽*了多种保护功能,如断电保护功能、温度失控保护功能、低水位防干烧功能、防爆功能、报警功能等。 据工作人员介绍,这款仪器不仅可用于直接加热或制冷,还能作为辅助加热或制冷的温度来源, 如对反应釜、全自动合成仪器、萃取以及冷凝装置的控温。由于该仪器可以为用户提供*的、受控的、温度均匀的恒定场源,目前已经被*应用于生物工程、医*、食品、化工、冶金、化学分析、石油等领域。 Titan-6高通量密闭式微波消解/萃取工作平台 TITAN系列高通量密闭式微波消解/萃取工作平台是上海衡平集多年*经验与行业**于一体的重磅产品,可*用于实验室极端条件下的微波工作。秉承操作便捷、*、**的理念,上海衡平将仪器硬件、操作软件、监控手段、高压罐体高度融合在一起,使TITAN系列性能得到了很大的提升。 Titan-6采用了自主创新的多重*监护系统,即可从终端实时观察并监控微波腔体中的一切情况,给予操作者*角度*距离的*监控;仪器使用了*的PID控制理论,运用高性能微处理器和新传感*,实现了微波功率对温度、压力的闭环控制;该设备采用的压电晶体测压*,可隔绝测压元件与样品,避免了交叉污染;*的非脉冲微波功率自动变频控制*,提高了磁控管的微波发射效率,节能*。此外,*式宇航复合纤维材料制成的防爆外罐具备三维定向防爆*,不仅具有很强的耐压和防腐蚀性能,还有多重主被动*措施,*人员*。 历经二十多年的发展,上海衡平始终遵循“品质为先,服务至上"的企业宗旨,力求以更好的产品,更优的服务及更完善的解决方案来回报的*位用户。此次展会上,上海衡平以饱满的热情接待了来自五湖四海的新老客户,向他们展示了上海衡平的*与真诚,同时也向业界展示了公司的雄厚实力。未来,上海衡平还会继续专注于实验室仪器的研究和开发,为促进实验教学改革、提升高校实验室建设水平提供助力。
  • 《功能性饮料中维生素B12的测定 液相色谱-质谱/质谱法》等5项团体标准征求意见
    2021年2月22日,宁夏化学分析测试协会发布《功能性饮料中维生素B12的测定 液相色谱-质谱/质谱法》、《枸杞清汁(浆)中甜菜碱含量的测定 液相色谱法》、《黑(果)枸杞》、《再生活性炭负载Ce3+-TiO2光催化剂》、《再生活性炭负载纳米零价铁催化剂》5项团体标准征求意见的通知。宁夏化学分析测试协会起草组已完成五项团体标准征求意见稿的编制工作。现按照协会《团体标准制修订程序》要求,公开征求意见,希望有关单位及专家提出宝贵意见,并将征求意见表(附件)于2021年3月22日前反馈给秘书处。联系人:张小飞 电 话:13995098931E-mail:1904691657@qq.com征求意见稿:附件:团标表格-专家意见表.doc黑(果)枸杞.pdf再生活性炭负载纳米零价铁催化剂.pdf再生活性炭负载Ce3+-TiO2光催化剂-送审稿.pdf
  • 6大系列41种固定相,岛津新品ShimNex系列色谱柱重磅发布!
    津心匠造,慧启未来。岛津全新液相色谱柱ShimNex系列于2021年6月8日线上隆重发布。该款色谱柱,是岛津公司全流程研发、品控、应用开发的色谱柱产品,自此SGLC产品阵容更加壮大,服务与技术能力又上新台阶。研发初心伴随着分析测试领域日新月异的变化,液相色谱柱产品呈现多样、高效、品质统一的趋势。岛津公司顺应客户的需求,从研发、生产、品质管理、应用开发等方面,投入了近两年的时间,开发了这一款一系列包含6大系列41种固定相的ShimNex系列色谱柱。品牌概念ShimNex,传承SHIMADZU基因,蕴含岛津精心打磨的匠心品质,与岛津Nexera系列液相色谱仪一脉相承。岛津公司以精益求精的专业态度不断探索,以打造一款引领未来,更尖端更智慧的液相色谱柱为追求。同时,岛津公司也秉承一贯的“惠及客户”之宗旨,使ShimNex的性能更符合实际需求,与客户协作进取,合作共赢。适用领域该系列色谱柱应用领域广泛。可应用包括中药、化药、生物药、食品、化妆品在内的多种日常项目以及疑难项目,可以满足教育科研、医药、食品安全、环境化工、临床检验、公安司法、工业制造等领域的需求。产品阵容该系列产品包含六大系列,针对不同的项目,各具特色:n ShimNex CS C18高柱效、高保留、高分离,适合复杂组份分析n ShimNex WR 系列高惰性、耐碱柱n ShimNex UP系列规格丰富,实现方法的快速转移n ShimNex WP 系列300Å 大孔径色谱柱,适合大分子量样品分析n ShimNex HE 系列20种固定相,丰富的选择性n ShimNex 专用柱系列ShimNex S-NH2-SUG 糖类专用柱ShimNex S-NH2-TMG 甜菜碱专用柱ShimNex S-SAX-CS 硫酸软骨素钠专用柱ShimNex S-Sil-SB 大豆专用柱ShimNex S-C18-PR 经济型农残专用柱ShimNex S-C18-PAH 多环芳烃专用柱
  • 《饲料行业国家标准汇编》免费领取!
    《饲料行业国家标准汇编》免费领取!饲料是人饲养动物的食物的总称。饲料是畜牧业的基础,在畜牧业的发展中发挥这重要的作用,是畜产品向农产品转变的重要环节。目前我国的饲料年总产值接近万亿元市场规模。针对这庞大的市场,仪器信息网特意整理了一份关于饲料的标准:《饲料行业国家标准汇编》。上期我们整理了一份《食品农残国标G B23200系列标准汇编 》 ,就有用户强烈要求整理一份饲料行业的标准汇编,为了满足大家的需求,小编网络资源,汇编成册,以飨读者。《饲料行业国家标准汇编》共收集了现行的304个最新的饲料行业国家标准,旨在提升饲料行业的质量水平,促进优质、高效、安全、健康、生态的产业链。为了方便查询,我们特意增加了书签,便于检索之用。扫描二维码免费下载收藏汇编包括标准如下:GBT 5915-2020 仔猪、生长育肥猪配合饲料 1GBT 5916-2020产蛋后备鸡、产蛋鸡、肉用仔鸡配合饲料 8GBT 5917.1-2008 饲料粉碎粒度测定 两层筛筛分法 18GBT 6432-2018 饲料中粗蛋白的测定 凯氏定氮法 22GBT 6433-2006 饲料粗脂肪测定方法 29GBT 6434-2006 饲料中粗纤维测定方法 38GBT 6435-2014 饲料中水分的测定 50GBT 6436-2018 饲料中钙的测定 61GBT 6437-2018 饲料中总磷的测定 分光光度法 68GB 6438-2007T 饲料中粗灰分的测定 74GBT 7292-1999 饲料添加剂 维生素A乙酸酯微粒 81GB 7293-2017 饲料添加剂 DL-α-生育酚乙酸酯(粉) 86GB 7294-2017 饲料添加剂 亚硫酸氢钠甲萘醌(维生素K3) 121GB 7295-2018饲料添加剂 盐酸硫胺-维生素B1 98GB 7296-2018 饲料添加剂 硝酸硫胺 (维生素B1) 109GBT 7297-2006 饲料添加剂 维生素B2(核黄素) 134GB 7298-2017 饲料添加剂 维生素B6(盐酸吡哆醇) 140GBT 7299-2006 饲料添加剂 D-泛酸钙 151GB 7300-2017 饲料添加剂 烟酸 161 GB 7300.101-2019 饲料添加剂 第1部分:氨基酸、氨基酸盐及其类似物 L-苏氨酸 174 GB 7300.102-2019 饲料添加剂 第1部分:氨基酸、氨基酸盐及其类似物 甘氨酸 183 GB 7300.103-2020 饲料添加剂 第1部分:氨基酸、氨基酸盐及其类似物 蛋氨酸羟基类似物 192 GB 7300.201-2019 饲料添加剂 第2部分:维生素及类维生素 L-抗坏血酸-2-磷酸酯盐 201 GB 7300.203-2020饲料添加剂 第2部分:维生素及类维生素 甜菜碱 211 GB 7300.204-2019 饲料添加剂 第2部分:维生素及类维生素 甜菜碱盐酸盐 226 GB 7300.301-2019 饲料添加剂 第3部分:矿物元素及其络(螯)合物 碘化钾 237 GB 7300.302-2019 饲料添加剂 第3部分:矿物元素及其络(螯)合物 亚硒酸钠 246 GB 7300.401-2019 饲料添加剂 第4部分:酶制剂 木聚糖酶 255 GB 7300.402-2020 饲料添加剂 第4部分:酶制剂植酸酶 262 GB 7300.601-2020 饲料添加剂 第6部分:非蛋白氮 尿素 269 GB 7300.801-2019 饲料添加剂 第8部分:防腐剂、防霉剂和酸度调节剂 碳酸氢钠 274 GB 7300.901-2019 饲料添加剂 第9部分:着色剂 β-胡萝卜素粉 281 GB 7300.1001-2020 饲料添加剂 第10部分:调味和诱食物质 谷氨酸钠 291GB 7301-2017 饲料添加剂 烟酰胺 300GB 7302-2018 饲料添加剂 叶酸 311GB 7303-2018饲料添加剂 L-抗坏血酸-维生素C 320GBT 8381-2008 饲料中黄曲霉毒素B1的测定 半定量薄层色谱法 327 GBT 8381.2-2005 饲料中志贺氏菌的检测方法 340 GBT 8381.3-2005 饲料中林可霉素的测定 353 GBT 8381.4-2005 配合饲料中T-2毒素的测定 薄层色谱法 361 GBT 8381.5-2005 饲料中北里霉素的测定 366 GBT 8381.6-2005配合饲料中脱氧雪腐镰刀菌烯醇的测定薄层色谱法 374 GBT 8381.7-2009 饲料中喹乙醇的测定 高效液相色谱法 379 GBT 8381.8-2005 饲料中多氯联苯的测定气相色谱法 384 GBT 8381.9-2005 饲料中氯霉素的测定 气相色谱法 389 GBT 8381.10-2005 饲料中磺胺喹(口恶)啉的测定高效液相色谱法 394 GBT 8381.11-2005 饲料中盐酸氨丙啉的测定高效液相色谱法 398GBT 8622-2006 饲料用大豆制品中尿素酶活性的测定 403GB 9454-2017 饲料添加剂 DL-α-生育酚乙酸酯 409GBT 9455-2009 饲料添加剂 维生素AD3微粒 424GB 9840-2017 饲料添加剂 维生素D3(微粒) 431GBT 9841-2006 饲料添加剂 维生素B12(氰钴胺)粉剂 444GBT 10647-2008 饲料工业术语 451GB 10648-2013 饲料标签 481GBT 10649-2008 微量元素预混合饲料混合均匀度的测定 489GB 13078-2017 饲料卫生标准 493GBT 13079-2006 饲料中总砷的测定 504GBT 13080-2018 饲料中铅的测定 原子吸收光谱法 513GBT 13081-2006饲料中汞的测定 520GB 13082-1991 饲料中镉的测定方法 528GBT 13083-2018 饲料中氟的测定 离子选择性电极法 531GBT 13084-2006 饲料中氰化物的测定 536GBT 13085-2018 饲料中亚硝酸盐的测定 比色法 542GBT 13086-2020 饲料中游离棉酚的测定方法 547GBT 13087-2020 饲料中异硫氰酸酯的测定方法 555GBT 13088-2006 饲料中铬的测定 562GBT 13089-2020 饲料中噁唑烷硫酮的测定方法 569GBT 13090-2006 饲料中六六六、滴滴涕的测定 574GBT 13091-2018 饲料中沙门氏菌的测定 581GBT 13092-2006 饲料中霉菌总数测定方法 597GBT 13093-2006 饲料中细菌总数的测定 604GBT 13882-2010 饲料中碘的测定 硫氰酸铁-亚硝酸催化动力学法 612GBT 13883-2008 饲料中硒的测定 617GBT 13884-2018 饲料中钴的测定 原子吸收光谱法 623GBT 13885-2017 饲料中钙、铜、铁、镁、锰、钾、钠和锌含量的测定 原子吸收光谱法 628GBT 14698-2017 饲料原料显微镜检查方法 645GBT 14699.1-1993 饲料采样方法 652GBT 14700-2018 饲料中维生素B1的测定 656GBT 14701-2019 饲料中维生素B2的测定 665GBT 14702-2018 添加剂预混合饲料中维生素B6的测定 高效液相色谱法 674GBT 14698-2017 饲料原料显微镜检查方法 628GB 14924.1-2001 实验动物 配合饲料通用质量标准 682GB 14924.2-2001 实验动物 配合饲料卫生标准 688GBT 15399-2018 饲料中含硫氨基酸的测定 离子交换色谱法 691GBT 15400-2018 饲料中色氨酸的测定 698GBT 17243-1998 饲料用螺旋藻粉 707GBT 17480-2008 饲料中黄曲霉毒素B1的测定酶联免疫吸附法 713GBT 17481-2008 预混料中氯化胆碱的测定 720GBT 17776-2016 饲料中硫的测定 硝酸镁 727GBT 17777-2009 饲料中钼的测定 分光光度法 732GBT 17778-2005 预混合饲料中d-生物素的测定 737GBT 17810-2009 饲料级DL-蛋氨酸 743GBT 17811-2008 动物性蛋白质饲料胃蛋白酶消化率的测定 过滤法 750GBT 17812-2008 饲料中维生素E的测定 高效液相色谱法 755GBT 17813-2018 添加剂预混合饲料中烟酸与叶酸的测定 高效液相色谱法 762GBT 17814-2011 饲料中丁基羟基茴香醚、二丁基羟基甲苯、乙氧喹和没食子酸丙酯的测定 769GBT 17815-2018 饲料中丙酸、丙酸盐的测定 781GBT 17816-1999饲料中总抗坏血酸的测定 邻苯二胺荧光法 789GBT 17817-2010 饲料中维生素A的测定 高效液相色谱法 793GBT 17818-2010 饲料中维生素D3的测定 高效液相色谱法 801GBT 17819-2017 添加剂预混合饲料中维生素B12的测定 高效液相色谱法 809GBT 17890-2008 饲料用玉米 816GBT 18246-2019 饲料中氨基酸的测定 820GBT 18397-2014 预混合饲料中泛酸的测定 高效液相色谱法 832GBT 18632-2010 饲料添加剂 80%核黄素(维生素B2)微粒 838GBT 18633-2018 饲料中钾的测定 火焰光度法 845GBT 18634-2009 饲用植酸酶活性的测定 分光光度法 850GBT 18823-2010 饲料检测结果判定的允许误差 857GBT 18868-2002饲料中水分、粗蛋白质、粗纤维、粗脂肪、赖氨酸、蛋氨酸快速 867GBT 18869-2019 饲料中大肠菌群的测定 875GBT 18872-2017 饲料中维生素K3的测定 高效液相色谱法 892GBT 18969-2003 饲料中有机磷农药残留量的测定 气相色谱法 899GBT 18970-2003 饲料添加剂 10%β,β-胡萝卜-4,4-二酮(10%斑蝥黄) 907GBT 19164-2003 912GBT 19370-2003 饲料添加剂1%β-胡萝卜素 923GBT 19371.1-2003 饲料添加剂 液态蛋氨酸羟基类似物 928GBT 19371.2-2003 饲料中液态蛋氨酸羟基类似物的测定 高效液相色谱法 934GBT 19372-2003 饲料中除虫菊酯类农药残留量测定 气相色谱法 939GBT 19373-2003 饲料中氨基甲酸酯类农药残留量测定-气相色谱法 944GBT 19422-2003 饲料添加剂 L-抗坏血酸-2-磷酸酯 949GBT 19423-2020 饲料中尼卡巴嗪的测定 956GBT 19424-2018 天然植物饲料原料通用要求 967GBT 19539-2004 饲料中赭曲霉毒素A的测定 976GBT 19540-2004 饲料中玉米赤霉烯酮的测定 983GBT 19541-2017 饲料原料 豆粕 990GBT 19542-2007 饲料中磺胺类药物的测定 高效液相色谱法 998GBT 19684-2005 饲料中金霉素的测定 高效液相色谱法 1003GBT 20189-2006 饲料中莱克多巴胺的测定 高效液相色谱法 1007GBT 20190-2006 饲料中牛羊源性成分的定性检测 定性聚合酶链式反应(PCR)法 1012GBT 20191-2006 饲料中嗜酸乳杆菌的微生物学检验 1021GBT 20192-2006 环模制粒机通用技术规范 1028GBT 20193-2006 饲料用骨粉及肉骨粉 1046GBT 20194-2018 动物饲料中淀粉含量的测定 旋光法 1051GBT 20195-2006 动物饲料 试样的制备 1063GBT 20196-2006 饲料中盐霉素的测定 1071GBT 20363-2006饲料中苯巴比妥的测定 1082GBT 20411-2006 饲料用大豆 1088GBT 20715-2006 犊牛代乳粉 1092GB 20802-2017 饲料添加剂 蛋氨酸铜络(螯)合物 1102GBT 20803-2006 饲料配料系统通用技术规范 1109GBT 20804-2006 奶牛复合微量元素维生素预混合饲料 1127GBT 20805-2006 饲料中酸性洗涤木质素(ADL)的测定 1134GBT 20806-2006 饲料中中性洗涤纤维(NDF)的测定 1140GBT 20807-2006 绵羊用精饲料 1146GBT 21033-2007 饲料中免疫球蛋白IgG的测定 高效液相色谱法 1153GBT 21034-2007饲料添加剂 羟基蛋氨酸钙 1157GBT 21035-2007 饲料安全性评价 喂养致畸试验 1162GBT 21036-2007 饲料中盐酸多巴胺的测定 高效液相色谱法 1168GBT 21037-2007 饲料中三甲氧苄胺嘧啶的测定 高效液相色谱法 1173GBT 21100-2007 动物源性饲料中骆驼源性成分定性检测方法 PCR方法 1178GBT 21102-2007 动物源性饲料中兔源性成分定性检测方法 实时荧光PCR方法 1184GBT 21103-2007 动物源性饲料中哺乳动物源性成分定性检测方法 实时荧光PCR方法 1190GBT 21104-2007 动物源性饲料中反刍动物源性成分(牛,羊,鹿)定性检测方法 PCR方法 1197GBT 21105-2007 动物源性饲料中狗源性成分定性检测方法 PCR方方法 1204GBT 21106-2007 动物源性饲料中鹿源性成分定性检测方法 PCR方法 1210GBT 21107-2007 动物源性饲料中马、驴源性成分定性检测方法 PCR方法 1216GBT 21108-2007 饲料中氯霉素的测定 高效液相色谱串联质谱法 1222GBT 21264-2007 饲料用棉籽粕 1230GBT 21514-2008 饲料中脂肪酸含量的测定 1235GBT 21515-2008 饲料添加剂 天然甜菜碱 1248GBT 21516-2008 饲料添加剂 10%β-阿朴-8 -胡萝卜素酸乙酯(粉剂) 1257GBT 21517-2008 饲料添加剂 叶黄素 1264GBT 21542-2008 饲料中恩拉霉素的测定 微生物学法 1272GBT 21543-2008 饲料添加剂 调味剂 通用要求 1279GB 21694-2017 饲料添加剂 蛋氨酸锌络(螯)合物 1285GB 21695-2008-T 饲料级 沸石粉 1292GBT 21696-2008 饲料添加剂 碱式氯化铜 1300GBT 21979-2008 饲料级L-苏氨酸 1307GBT 21995-2008 饲料中硝基咪唑类药物的测定 液相色谱串联质谱法 1313GB 21996-2008-T 饲料添加剂 甘氨酸铁络合物 1320GBT 22141-2008 饲料添加剂 复合酸化剂通用要求 1328GBT 22142-2008 饲料添加剂 有机酸通用要求 1334GBT 22143-2008 饲料添加剂 无机酸通用要求 1340GBT 22144-2008 天然矿物质饲料通则 1346GBT 22145-2008 饲料添加剂 丙酸 1352GBT 22146-2008 饲料中洛克沙胂的测定 高效液相色谱法 1360GBT 22147-2008 饲料中沙丁胺醇、莱克多巴胺和盐酸克仑特罗的测定 1365GBT 22259-2008 饲料中土霉素的测定 高效液相色谱法 1371GBT 22260-2008 饲料中甲基睾丸酮的测定 高效液相色谱串联质谱法 1376GBT 22261-2008 饲料中维吉尼亚霉素的测定 高效液相色谱法 1383GBT 22487-2008 水产饲料安全性评价 急性毒性试验规程 1389GBT 22488-2008 水产饲料安全性评价 亚急性毒性试验规程 1398GB 22489-2017 饲料添加剂 蛋氨酸锰络(螯)合物 1404GBT 22544-2008 蛋鸡复合预混合饲料 1412GBT 22545-2008 宠物干粮食品辐照杀菌技术规范 1420GBT 22546-2008 饲料添加剂 碱式氯化锌 1426GBT 22547-2008 饲料添加剂 饲用活性干酵母(酿酒酵母) 1435GB 22548-2017 饲料添加剂 磷酸二氢钙 1444GB 22549-2017 饲料添加剂 磷酸氢钙 1453GBT 22919.1-2008 水产饲料 第1部分:斑节对虾配合饲料 1463GBT 22919.2-2008 水产饲料 第2部分:军曹鱼配合饲料 1470GBT 22919.3-2008 水产饲料 第3部分:鲈鱼配合饲料 1475GBT 22919.4-2008 水产配合饲料 第4部分:美国红鱼配合饲料 1480GBT 22919.5-2008 水产配合饲料 第5部分:南美白对虾配合饲料 1486GBT 22919.6-2008 水产配合饲料 第6部分:石斑鱼配合饲料 1493GBT 22919.7-2008 水产配合饲料 第7部分:刺参配合饲料 1499GBT 23179-2008 饲料毒理学评价 亚急性毒性试验 1505GBT 23180-2008 饲料添加剂 2%d-生物素 1510GBT 23181-2008 微生物饲料添加剂通用要求 1516GBT 23182-2008 饲料中兽药及其他化学物检测试验规程 1520GBT 23184-2008 饲料企业HACCP安全管理体系指南 1527GBT 23185-2008 宠物食品 狗咬胶 1545GBT 23186-2009 水产饲料安全性评价 慢性毒性试验规程 1551GBT 23187-2008 饲料中叶黄素的测定 高效液相色谱法 1564GBT 23385-2009饲料中氨苄青霉素的测定 高效液相色谱法 1559GB 23386-2017 饲料添加剂 维生素A棕榈酸酯(粉) 1570GBT 23387-2009 饲草营养品质评定 GI法 1581GBT 23388-2009 水产饲料安全性评价 残留和蓄积试验规程 1588GBT 23389-2009 水产饲料安全性评价 繁殖试验规程 1596GBT 23390-2009 水产配合饲料环境安全性评价规程 1602GBT 23710-2009 饲料中甜菜碱的测定 离子色谱法 1610GBT 23735-2009 饲料添加剂 乳酸锌 1616GBT 23736-2009 饲料用菜籽粕 1623GBT 23737-2009 饲料中游离刀豆氨酸的测定 离子交换色谱法 1628GBT 23741-2009 饲料中4种巴比妥类药物的测定 1633GBT 23742-2009 饲料中盐酸不溶灰分的测定 1641GBT 23743-2009 饲料中凝固酶阳性葡萄球菌的微生物学检验 Bair 1649GBT 23745-2009 饲料添加剂 10%虾青素 1659GBT 23746-2009 饲料级糖精钠 1666GBT 23747-2009 饲料添加剂 低聚木糖 1672GBT 23873-2009 饲料中马杜霉素铵的测定
  • 普析公司2017年10月23日至10月26日举办原子荧光形态分析仪应用及维护培训班,敬请参加,欢迎垂询。
    邀 请 函____________ 先生/女士:  随着现代科学技术的不断发展,人们对分析化学的要求已不能满足于元素总浓度的测定。元素的生理活性或毒性依赖于其不同的化学形态,如甲基汞、乙基汞等有机汞化合物的毒性远大于无机汞;砷糖、砷甜菜碱等有机砷化物的毒性要远小于无机砷;而硒代蛋氨酸已经没有无机硒化物的毒性,甚至成为一种营养物质。因此,元素形态分析在食品安全、环境保护和临床检验等领域具有十分重要的意义。  为使您在今后的工作中更好地掌握和使用原子荧光形态分析仪器,提高工作效率,我公司定于2017年10月23日至10月26日举办原子荧光形态分析仪应用及维护培训班,敬请贵单位参加。培训采用理论讲解及实践操作相结合方式,突出对学员实验操作能力的培养。报到时间: 2017年10月23日下午13:00-15:00报到地点:北京市昌平区回龙观科星路43号楼培训时间: 2017年10月24日-26日培训地点: 普析公司平谷总部 (北京市平谷区距北京市内80公里)培训内容:1、原子荧光形态仪理论知识2、原子荧光形态仪操作讲解3、仪器日常维护、保养4、常见故障的排除5、上机操作及最佳测试条件选择6、应用实例分析收费标准:2360元/人汇款信息:单位名称:北京普析通用仪器有限责任公司开户银行:中国银行股份有限公司北京平谷支行;银行账号:344161842701感谢贵公司及您对普析公司的支持!祝您工作顺利!全家平安幸福! 北京普析通用仪器有限责任公司     备注:1、请您把报名回执表认真填好后在有效时间内回传,以便会务组安排学习资料以及席位,为确保您报名无误,请您再次电话确认!2、 如果您在公司规定的报到时间内无法报到,请在备注一栏里注明具体到达日期,以便我们作出相应安排。3、 每期安排25人,额满之后收到回执我们将及时通知您安排在下次培训班学习。4、 报名截止时间为:2017年10月20日。5、 参加考核人员请提前与 于国军 联系,做好考核前的报名申请工作。 (一寸免冠照片两张及身份证复印件一份、填好考核报名表)联系人:于国军 报名咨询电话:010-69910518 /13911519606 传真:010-69910609电子邮箱:guojun.yu@pgeneral.com.cn参加培训班报名学员,请您与培训班联系人,电话确认您的报名信息已收到。具体位置(报道地点):见下图:乘车路线:1.北京西站 乘坐 地铁7号线在 菜市口站 (焦化厂方向)下车, 站内换乘 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,站内换乘 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。2.北京站乘坐地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。3.机场到公司的路线:可乘机场快轨至东直门站,换乘地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。4.北京南站乘坐 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,乘坐 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。
  • 普析公司2017年03月27日至03月30日举办原子荧光形态分析仪应用及维护培训班,敬请参加,欢迎垂询
    邀 请 函____________ 先生/女士:  随着现代科学技术的不断发展,人们对分析化学的要求已不能满足于元素总浓度的测定。元素的生理活性或毒性依赖于其不同的化学形态,如甲基汞、乙基汞等有机汞化合物的毒性远大于无机汞;砷糖、砷甜菜碱等有机砷化物的毒性要远小于无机砷;而硒代蛋氨酸已经没有无机硒化物的毒性,甚至成为一种营养物质。因此,元素形态分析在食品安全、环境保护和临床检验等领域具有十分重要的意义。  为使您在今后的工作中更好地掌握和使用原子荧光形态分析仪器,提高工作效率,我公司定于2017年03月27日至03月30日举办原子荧光形态分析仪应用及维护培训班,敬请贵单位参加。培训采用理论讲解及实践操作相结合方式,突出对学员实验操作能力的培养。报到时间: 2017年03月27日下午13:00-15:00报到地点:北京市昌平区回龙观科星路43号楼培训时间: 2017年03月28日-30日培训地点: 普析公司平谷总部 (北京市平谷区距北京市内80公里)培训内容:1、原子荧光形态仪理论知识2、原子荧光形态仪操作讲解3、仪器日常维护、保养4、常见故障的排除5、上机操作及最佳测试条件选择6、应用实例分析收费标准:2360元/人汇款信息:单位名称:北京普析通用仪器有限责任公司开户银行:中国银行股份有限公司北京平谷支行;银行账号:344161842701感谢贵公司及您对普析公司的支持!祝您工作顺利!全家平安幸福! 北京普析通用仪器有限责任公司培训班报名回执表          备注:1、 请您把报名回执表认真填好后在有效时间内回传,以便会务组安排学习资料以及席位,为确保您报名无误,请您再次电话确认!2、 如果您在公司规定的报到时间内无法报到,请在备注一栏里注明具体到达日期,以便我们作出相应安排。3、 每期安排25人,额满之后收到回执我们将及时通知您安排在下次培训班学习。4、 报名截止时间为:2017年03月24日。5、 参加考核人员请提前与 于国军 联系,做好考核前的报名申请工作。 (一寸免冠照片两张及身份证复印件一份、填好考核报名表)联系人:于国军 报名咨询电话:010-69910518 /13911519606 传真:010-69910609电子邮箱:guojun.yu@pgeneral.com.cn参加培训班报名学员,请您与培训班联系人,电话确认您的报名信息已收到。具体位置(报道地点):见下图:乘车路线:1. 北京西站 乘坐 地铁7号线在 菜市口站 (焦化厂方向)下车, 站内换乘 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,站内换乘 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。2. 北京站乘坐地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。3.机场到公司的路线:可乘机场快轨至东直门站,换乘地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。4. 北京南站乘坐 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,乘坐 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。
  • 普析公司2017年8月7日至8月10日举办原子荧光形态分析仪应用及维护培训班,敬请参加,欢迎垂询。
    邀 请 函____________ 先生/女士:  随着现代科学技术的不断发展,人们对分析化学的要求已不能满足于元素总浓度的测定。元素的生理活性或毒性依赖于其不同的化学形态,如甲基汞、乙基汞等有机汞化合物的毒性远大于无机汞;砷糖、砷甜菜碱等有机砷化物的毒性要远小于无机砷;而硒代蛋氨酸已经没有无机硒化物的毒性,甚至成为一种营养物质。因此,元素形态分析在食品安全、环境保护和临床检验等领域具有十分重要的意义。  为使您在今后的工作中更好地掌握和使用原子荧光形态分析仪器,提高工作效率,我公司定于2017年08月07日至08月10日举办原子荧光形态分析仪应用及维护培训班,敬请贵单位参加。培训采用理论讲解及实践操作相结合方式,突出对学员实验操作能力的培养。报到时间: 2017年8月7日下午13:00-15:00报到地点:北京市昌平区回龙观科星路43号楼培训时间: 2017年8月8日-10日培训地点: 普析公司平谷总部 (北京市平谷区距北京市内80公里)培训内容:1、原子荧光形态仪理论知识2、原子荧光形态仪操作讲解3、仪器日常维护、保养4、常见故障的排除5、上机操作及最佳测试条件选择6、应用实例分析收费标准:2360元/人汇款信息:单位名称:北京普析通用仪器有限责任公司开户银行:中国银行股份有限公司北京平谷支行;银行账号:344161842701感谢贵公司及您对普析公司的支持!祝您工作顺利!全家平安幸福! 北京普析通用仪器有限责任公司     备注:1、请您把报名回执表认真填好后在有效时间内回传,以便会务组安排学习资料以及席位,为确保您报名无误,请您再次电话确认!2、 如果您在公司规定的报到时间内无法报到,请在备注一栏里注明具体到达日期,以便我们作出相应安排。3、 每期安排25人,额满之后收到回执我们将及时通知您安排在下次培训班学习。4、 报名截止时间为:2017年8月7日。5、 参加考核人员请提前与 于国军 联系,做好考核前的报名申请工作。 (一寸免冠照片两张及身份证复印件一份、填好考核报名表)联系人:于国军 报名咨询电话:010-69910518 /13911519606 传真:010-69910609电子邮箱:guojun.yu@pgeneral.com.cn参加培训班报名学员,请您与培训班联系人,电话确认您的报名信息已收到。具体位置(报道地点):见下图:乘车路线:1.北京西站 乘坐 地铁7号线在 菜市口站 (焦化厂方向)下车, 站内换乘 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,站内换乘 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。2.北京站乘坐地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。3.机场到公司的路线:可乘机场快轨至东直门站,换乘地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。4.北京南站乘坐 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,乘坐 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在e出口直行至回龙观科星路43号楼(霍营中心小学对面)。
  • 2016年12月19日普析公司原子荧光形态分析仪应用及维护培训班开班在即
    邀 请 函____________ 先生/女士:随着现代科学技术的不断发展,人们对分析化学的要求已不能满足于元素总浓度的测定。元素的生理活性或毒性依赖于其不同的化学形态,如甲基汞、乙基汞等有机汞化合物的毒性远大于无机汞;砷糖、砷甜菜碱等有机砷化物的毒性要远小于无机砷;而硒代蛋氨酸已经没有无机硒化物的毒性,甚至成为一种营养物质。因此,元素形态分析在食品安全、环境保护和临床检验等领域具有十分重要的意义。为使您在今后的工作中更好地掌握和使用原子荧光形态分析仪器,提高工作效率,我公司定于2016年12月19日至12月22日举办原子荧光形态分析仪应用及维护培训班,敬请贵单位参加。培训采用理论讲解及实践操作相结合方式,突出对学员实验操作能力的培养。 报到时间: 2016年12月19日下午13:00-15:00报到地点:北京市昌平区回龙观科星路43号楼培训时间: 2016年12月19日-22日培训地点: 普析通用公司生产基地 (北京市平谷区距北京市内80公里)培训内容:1、原子荧光形态仪理论知识2、原子荧光形态仪操作讲解3、仪器日常维护、保养4、常见故障的排除5、上机操作及最佳测试条件选择6、应用实例分析收费标准:2360元/人 汇款信息:单位名称:析致通标技术检测(北京)有限公司开户银行:中国银行股份有限公司北京平谷支行;银行账号:327256009131感谢贵公司及您对普析通用的支持!祝您工作顺利!全家平安幸福! 北京普析通用仪器有限责任公司 析致通标技术检测(北京)有限公司 培训班报名回执表 参加时间原子荧光形态培训班:2016年12月19日单位名称发票抬头□服务费 地址 邮编订单类型联系人手机电话参加人数 人费用共计付款方式□现金 □电汇产品型号附件安装时间参加人员姓名性别手机号所属部门/职务是否参加考核到京时间关注重点内容和需要解决的问题:备注:1、 请您把报名回执表认真填好后在有效时间内回传,以便会务组安排学习资料以及席位,为确保您报名无误,请您再次电话确认!2、 如果您在公司规定的报到时间内无法报到,请在备注一栏里注明具体到达日期,以便我们作出相应安排。3、 每期安排25人,额满之后收到回执我们将及时通知您安排在下次培训班学习。4、 报名截止时间为:2016年12月16日。 联系人:于国军 报名咨询电话:010-69910518 /13911519606 传真:010-69910609 电子邮箱:guojun.yu@pgeneral.com.cn 参加培训班报名学员,请您与培训班联系人,电话确认您的报名信息已收到。 具体位置(报道地点):见下图: 乘车路线:1. 北京西站 乘坐 地铁7号线在 菜市口站 (焦化厂方向)下车, 站内换乘 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,站内换乘 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。2. 北京站乘坐地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。3. 机场到公司的路线:可乘机场快轨至东直门站,换乘地铁2号线到鼓楼大街站(东直门方向)下车,站内换乘地铁8号线(朱辛庄方向)到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。4. 北京南站乘坐 地铁4号线大兴 线在 平安里站 (安河桥北方向)下车,乘坐 地铁6号线, 在 南锣鼓巷站(潞城方向) 下车站内换乘地铁8号线到霍营站下车(朱辛庄方向)在E出口直行至回龙观科星路43号楼(霍营中心小学对面)。
  • 合作研究|岛津HPLC-ICPMS助力砷中毒患者尿液中砷形态研究
    导读 临床金属组学是金属组学的一个分支,主要研究尿液、血液和组织中的金属组。砷中毒的临床诊断主要依据尿中总砷的浓度,由于不同形态砷的毒性差异很大,分析尿中总砷超标的砷形态,可为精确治疗提供依据,也可用于了解砷中毒患者经二巯基丙烷钠治疗后体内砷的去向。首都医科大学附属北京朝阳医院职业病与中毒医学科是国家临床重点专科,多年来承担着中毒事件的处置工作。近期,岛津企业管理(中国)有限公司与该单位合作,利用LC20-Ai+ICPMS-2030测定了砷中毒患者经过治疗后不同时间段内尿液中不同形态和价态砷的含量分析。合作文章发表在Atomic Spectroscopy期刊上,岛津应用工程师宋晓红老师为第一作者,首都医科大学附属北京朝阳医院职业病与中毒医学科李惠玲老师为通讯作者。 砷中毒主要由砷化物引起,其中以毒性较大三氧化砷(俗称砒霜)多见,还包括二硫化砷(雄黄)、三硫化二砷(雌黄)及砷化氢等。一般经口、皮肤或伤口吸收,当体内的砷蓄积到中毒量,机体会产生一系列病理生理变化及其临床表现,临床表现为急性胃肠炎、神经系统、肝和砷功能损害等,严重者可危及生命。 (期刊截图) 砷形态分析强有力手段图1. 岛津LC-20Ai+ICPMS-2030元素形态分析联用系统• 全PEEK的泵头和管路,更好的惰性• TRM软件同时控制LC和ICPMS方法参数设置• 节约气体,提高工作效率 方法建立:文章中尝试了不同的梯度洗脱条件,优化了砷化合物的分离度和检测灵敏度。表1.和表2.分别为优化的色谱参数和梯度洗脱参数。图2.为在表1.和表2.设定的参数条件下,各砷化合物的色谱图。 表1. 色谱参数表2. 梯度洗脱参数图2. 色谱图1. 砷胆碱(AsC)+ 砷甜菜碱(AsB) 2. 二甲基砷(DMA) 3. 亚砷酸(As(Ⅲ)) 4. 一甲基砷(MMA) 5. 砷酸(As(Ⅴ)) 临床应用取服用雄黄粉后引起砷中毒患者的尿样进行尿砷形态分析,该患者随机尿检结果显示尿砷浓度6.7 µg/mL。采用二巯基丙磺酸钠治疗后,收集该患者的尿样进行尿砷浓度测定评估疗效。检测结果显示(见表3.),尿中AsC+AsB均未检出,其余形态砷在治疗过程中浓度逐渐下降,其中As(III)降低明显,至第16天未检出。第15天总砷结果显示<0.1 µg/mL,低于中毒限值。雄黄中溶于水的As(III)及As(V),进入体内后,一般认为砷在体内的简要代谢过程为:iAs(Ⅲ)→iAs(Ⅴ)→MMA(Ⅴ)→MMA(Ⅲ)→DMA(Ⅲ)→DMA(Ⅴ)→尿排出。本研究发现雄黄摄入后砷在体内代谢导致患者尿中DMA和MMA增高,明显高于健康人群。在用二巯基丙磺酸钠治疗后,As(III)被络合排出体外,其余各种形态的砷也逐渐减少。 表3. 砷中毒患者治疗后尿液测定结果(ng/mL)结论建立高效液相色谱-电感耦合等离子体质谱(LC-ICP-MS)测定尿液中形态砷含量的检测方法,用于评估总砷超标患者体内形态砷的浓度。该方法可应用于健康人尿液、接受砷剂治疗的患者尿液和其他砷中毒患者尿液中砷形态的分析 专家观点 文章通讯作者李惠玲老师表示:砷的毒性与其存在的形态密切相关,生物样品中砷形态分析需要精准可靠的联用技术和仪器设备。岛津LC-20Ai和ICPMS-2030联用完成了砷中毒患者的中毒筛查及治疗过程中尿砷形态的检测。该方法实现了尿中砷形态良好的分离,准确度、灵敏度及稳定性均满足检测的需求。
  • 深扒中国特色的“形态分析仪”
    历史总是裹挟着泥沙咆哮在纷繁的世间把真相搅得混乱,真相就在泥沙俱下的潮流中左右飘摇,沾染了人的情感后沦落为主观的历史,生活如此,科学亦如此!还好“造物主”为了使通往真理的道路不那么拥堵,选择让大部分人保持无知。这种无知保护了真相安静地立在圣洁的角落窥视这戏剧的凡尘消长浮沉。 不知从什么时候开始,无论哪个领域,凡是国人创造出异于国际的新鲜事物,都被冠以“中国特色”的名号,在那个特殊的年代“中国特色”作为一个中性词而被国人贴上了激进的标签,这无疑是个引以为傲的字眼,而近些年又是在不同的历史环境下这个字眼显得格外刺眼,很多语境下略带几分嘲讽的意味。“中国特色”、“中国制造”到底怎么了?这不应该是“穷矮搓”的代名词。今天小编不想论证什么,只是想通过讲述一台国产实验室分析仪器的前世今生,为“中国制造”发声。 在整个实验室仪器界,气态氢化物发生法原子荧光光谱仪是为数不多的具有中国自主知识产权的实验室分析仪器,可以说到目前为止原子荧光光谱仪是唯一一款可以为国产实验室分析仪器代言的大型实验室分析设备。商品化原子荧光光谱仪的诞生有其特殊的历史原因,在特定的历史环境下,这是上世纪第一代仪器人共同努力的结果。虽然那些曾经参与研发的老一辈科学家都已迟暮,有的甚至早已离我们而去,但这些前辈的研发轶事至今还被业内的后人津津乐道。而新世纪下,在这种仪器基础上发展起来的液相色谱与原子荧光联用仪既形态分析仪有着怎样的研发历程,恐怕听闻者甚少。 事情要从本世纪初说起,随着现代科学技术的迅猛发展,科技工作者发现,一种元素的生理毒理特性、生物利用度、环境行为和迁移性在很大程度上取决于它的形态,形态间差异造成了这些特性截然不同。这样仅测定体系中元素的总量已不能满足科学家们在生物、环保、临床医学、毒理学等各个研究领域的需要,研究人员迫切地需要知道元素在样品内的实际状态以及化学活性、生物活性和毒性等重要信息。以砷为例,在自然界,砷元素可以以许多不同形态的化合物存在,在空气、土壤、沉积物和水中发现的主要砷化物有三氧化二砷或亚砷酸盐(As(III))、砷酸盐(As(V))、一甲基砷酸(MMA)和二甲基砷酸(DMA);在海产品中则主要以砷甜菜碱(AsB)和砷胆碱(AsC)形式存在。另外,还有其他更复杂的砷化合物,例如砷糖(Arsenosugars)、砷脂类化合物等。不同形态的砷其毒性相差很大,如砷的无机化合物一般具有毒性,无机三价砷As(III)能与带巯基(SH)的酶生成稳定的螯合物,使得很多的酶活性降低或消失,严重干扰细胞的生物功能、结构和正常代谢;而有机砷的毒性一般比无机砷小得多,有些形态甚至几乎无毒,像一些海产品中,虽然总砷含量较高,但绝大部分都是以砷糖、砷甜菜碱等无毒形态存在,因此人吃了后并不会引起砷中毒。 那时国际上早有研究者在研究用于形态分析的各种方法,其中以冷阱法和色谱法的研究最为热门,并且均有相应的产品上市。在贸易市场方面,检测手段的落后,使得国际社会的进口标准对中国部分水产品的出口形成强大的贸易壁垒,国内出口贸易受损事件屡见不鲜。针对这些情况,清华大学张新荣教授团队率先开始着手研究液相色谱与原子光谱联用技术,用以解决样品检测中元素形态分析的难题。北京吉天仪器有限公司再得知此消息后,立即联系该研究团队,并将一台当时生产的AFS-820型原子荧光光谱仪送到张教授实验室,进行联用试验。经过一段时间的摸索,基本攻克了液相色谱与原子荧光联用接口技术的难题,2004年吉天公司开始正式上马形态分析仪项目,组建以刘霁欣博士牵头的研发队伍,欲将这种仪器商品化。经过反复的硬件调试和方法开发,于2005年10月正式推出SA-10型形态分析仪,同年被仪器信息网评为“2004-2005年仪器新产品”。至此,又一完全具有中国自主知识产权的“中国特色”形态分析仪正式登上历史舞台。不久这一仪器就在全国范围内得到实际应用,其中2006年12月12日的《科学时报》、2006年第6期《现代科学仪器》和2006年12月26日的《仪器信息网》分别报道了《北京吉天色光联用仪纠正“紫菜”错案》的信息。此时,针对这一新型仪器,吉天的应用工程师通过大量实验摸索已经开发和优化出诸多样品如海产品、饲料,血、尿等的前处理和检测方法。由于这款仪器的出色表现,于2007年不负众望勇折当年BCEIA桂冠。SA-10型形态分析仪 随后的几年中,根据检测市场的需求,吉天又先后开发出硒、汞、锑的形态分析方法,并在多个检测领域推广应用。尤其是对汞元素不同形态的检测条件的摸索,直接推动了深圳出入境检验检疫局和湖南出入境检验检疫局关于汞形态行标的制定,为我国海产品的出口检测做出重要贡献。而SA-10也经过反复改进,升级为SA-20型形态分析仪,仪器性能有了进一步提高。SA-20型形态分析仪 这款仪器的诞生无疑为当时过分依赖进口仪器而国产仪器普遍疲软的的检测市场注入了一针强心剂,中国除了制造也可以创造。当然同为一类色谱联用技术的高端仪器“液相色谱与电感耦合等离子体质谱联用仪”不得不直面形态分析仪带来的挑战。毫无疑问,与价格高昂、运行成本昂贵、操作复杂的“液质联用”仪相比,形态分析仪在中国现有的经济条件下更具备普适性,就如同当年原子荧光一样,形态分析仪的普及有着它独特的土壤,等到“春暖花开时”必定会红遍大江南北。 现在,这股春风来了!随着食品中砷汞检测新国标的正式实施,形态分析仪这个国产仪器的宠儿再一次被推到了风口浪尖。只不过这次不再是吉天来唱独角戏,而是整个原子荧光厂商的联袂演出。我们可喜的看到经过众多国内仪器人的努力,国产仪器的整体实力有了飞跃式的发展,当下的时代再不是“唯进口论”的时代,为国产仪器而发声的呼吁越来越多。这场大戏刚一开锣,舞台上的群演们就按捺不住,吵得沸反盈天,煞有群猴大闹凌霄殿的气势,个个誓要在猴年把这猴戏唱到底,殊不知这闹得天宫的只有那吉天大圣一人,我们暂且不评论这场开年大戏,先来看看这佛祖的经文上写了什么。 此次国标GB 5009.11当中将2003版的GB/T 5009.11“食品中总砷及无机砷的测定”这一标准名称改为“食品安全国家标准 食品中总砷及无机砷的测定”,仔细辨认标准号少了一个T,这意味着 “砷标”从此由推荐标准升级为强制标准,既然上升到国家食品安全的高度那么无机砷由过去的总砷超标才检测变为必须检测,这对检测人员的职业技能是个不小的考验。取消了总砷测定的砷斑法及硼氢化物还原比色法,取消了食品中无机砷测定的原子荧光和银盐法。毫无疑问,手工方法一直存在着操作繁琐,重现性差的缺陷,此次被取消意料之内。增加了食品中总砷测定的电感耦合等离子体质谱法;增加了食品中无机砷测定的液相色谱与原子荧光光谱法和液相色谱与电感耦合等离子体质谱法。那么重点来了,ICP-MS被作为总砷检测的第一方法,意味着这一国际上常用的方法,逐渐被国内所接受,在未来将会对原子荧光产生不小的冲击。今天主扒形态分析仪,总砷的测定方法暂不展开论述。而无机砷的检测的第一方法被规定为液相色谱与原子荧光联用法,这是各原子荧光厂家为之躁动的主要原因,为什么不将液相色谱与ICP-MS联用的方法作为第一方法而选了液相与荧光联用作为第一方法,小编猜测除了ICP-MS操作繁琐,运行成本高,现阶段不利于推广外,还与它本身原理上存在的问题会对砷信号产生影响有关。从总体上看“液相色谱与原子荧光光谱联用”这一标准方法前处理相对简单,对于含油脂脂肪和大分子蛋白质的样品专门设计了样品净化的过程,可降低色谱柱的损耗。当然作为一类针对性强的标准,也存在部分不足。比如标准中只列出了稻米样品、水产动物样品和婴幼儿辅助食品三类样品的提取方法,而对于广泛食用的植物性水产品没有给出相应提取方法。所有样品均用稀酸浸泡过夜,虽然提高了提取率,但是也延长了检测周期。对于动物性水产品洗脱采用梯度程序,提高了无机砷与有机砷的分离效果,但是流动相平衡时间较长,检测一个样品所用时间为32分钟,那么做一条7个点的标准曲线就需要将近4个小时,同时还要消耗掉大量的反应试剂,这不利于样品的大量检测。另外,整个标准缺乏相应的编制说明或指导性文件,没有向操作者解释条件选择优化的过程和机理以及遇到问题后的解决对策。吉天拥有成熟的应用案例,可在两小时内完成样品的提取,并且可以在等度条件下完成动植物水产品的检测,提高检测效率。 另一个备受关注的国标GB 5009.17将2003版的GB/T5009.17“食品中总汞及无机汞的测定”改为“食品国家安全标准 食品中总汞及无机汞的测定”,这也意味着“汞标”同样成为食品安全标准而被强制推行。取消了总汞测定的二硫腙比色法,有机汞测定的气象色谱法和冷原子吸收法,和“砷标”类似手工检测方法存在重现性差的缺陷,而气象色谱法和冷原子吸收法的检出限和灵敏度均不及原子荧光光谱法。增加了甲基汞测定的液相色谱-原子荧光光谱法(LC-AFS),并作为甲基汞检测的第一法被写入该标准。这同样为形态分析仪的全面爆发,吹响了号角。从整体上看,甲基汞的检测方法与吉天早期摸索的方法类似,均是将样品经酸提取后,用C18反相柱分离,分离液再经紫外消解将有机汞转化为易于氢化物发生的无机汞,然后被原子荧光检测。这一方法分离效果佳,检测速度快,但是也存在一些不足,比如标准中对样液的pH 范围的规定太宽泛,2-7的范围足以影响到样品中目标组分的电离度,进而影响样品极性,造成甲基汞在反相柱中的分离状况出现差异。另外标准溶液以流动相定容,这又与样品pH不一致,造成两个基体间存在差异。150mm的色谱柱虽然能将无机汞和甲基汞分离,但是分离效果不佳,如果改用250mm的色谱柱分离效果会更好。吉天自主研发的恒温混悬离心集成系统,可在短时间内完成样品的提取,无需浸泡过夜,超高效的紫外消解装置,不需要通入辅助氧化剂,简化了管路,减小柱后扩散的风险。 以上是关于食品新国标的简单分析,不难看出吉天的形态分析仪足以满足国标方法的要求,而吉天长期摸索的检测方法,又是对国标方法的补充,既可以满足广大用户对国标方法的需求,又可以适应不同类型用户对特殊方法的需求。 这次食品国标对“液相色谱与原子荧光光谱联用”技术的肯定,将为形态分析仪带来新一轮的采购热潮,连锁反应下又会带动仪器生产、销售以及终端检测甚至技能培训环节的快速增长,这对国产仪器扩大影响力是个很好的契机,我们呼吁各位仪器界同仁在赚得盆满钵满的同时,认真思考国产仪器的未来,积极探索国产仪器突围的新道路,相信通过各界关心国产仪器同仁们的努力,国产仪器真正与进口仪器分庭抗衡公平竞争的时代指日可期。
  • 浅谈元素形态分析技术现状及发展前景——访中国计量科学研究院国家标准物质研究中心韦超先生、赛默飞世尔科技高级应用化学师Julian David Wills先生
    元素的不同形态具有不同的物理化学性质和生物活性,如无机砷的毒性比较大,有机砷的毒性较小或者基本没有毒性。因此,元素总量的分析已经不能对其毒性、生物效应以及对环境的影响做出科学的评价,“元素形态分析”作为一个崭新的应用研究领域应运而生,对于公共食品安全有着重要意义。经过近三十多年的发展,目前元素形态分析已经成为分析科学领域的一个重要分支。   在中国元素形态分析的研究领域中,中国的倪哲明、江桂斌、张新荣、严秀平、牟世芬、韩恒斌、王秋泉、韦超等科研人员进行了大量高水平的前沿研究,吉天、海光、瑞利等仪器公司也相继推出了基于原子荧光的形态分析仪器。   2012年初,赛默飞世尔科技(以下简称赛默飞)采用离子色谱系统与等离子体质谱仪联用技术,建立了离子色谱-电感耦合等离子体质谱(IC-ICP-MS) 法检测苹果汁中的不同形态的微量砷元素,再一次引起大家的关注。那么,目前用于元素形态分析的方法有哪些?中国元素分析技术的标准现状及未来发展前景如何?基于此,仪器信息网编辑采访了中国计量科学研究院化学所/国家标准物质研究中心韦超老师和赛默飞世尔科技高级应用化学师Julian David Wills先生。 中国计量科学研究院国家标准物质研究中心韦超老师   Instrument:韦超老师,您好,首先请介绍一下目前用于元素形态分析的方法及各自的优缺点?   韦超老师:目前元素形态分析多用仪器联机分析方法,传统化学法用的比较少。联机分析法中主要是液相色谱(LC)、气相色谱(GC)、毛细管电泳(CE)、离子色谱(IC)等分离设备和电感耦合等离子体质谱(ICP-MS)、原子荧光(AFS)和原子吸收(AAS)等元素检测仪器联用,随着有机质谱的发展,GC-MS和LC-MS/MS也越来越多地应用于元素形态分析。   传统化学法由于其检出限和抗干扰性的问题,目前应用受到一些限制,原有的一些国标方法(如银斑法测无机砷)也面临着替换问题。联机分析法,结合了LC、GC、CE、IC的高效在线分离功能和ICP-MS、AFS和AAS(注:AFS和AAS一般还需要附加氢化物发生或冷阱等装置)等低检出限、高抗干扰性的元素检测能力,是当前形态分析的主流方法 相关文献很多,目前元素形态分析方法国家标准也集中在这个方面。   有机质谱应用于形态分析是一个新的发展方向,其具备复杂基体中化合物结构鉴定的能力,在当前化学分析仪器中发展最快、受到的关注最多,利用其方法在高水平的学术期刊上也最容易发表文章。   Instrument:赛默飞日前宣布创建了IC-ICP-MS方法并用于苹果汁中砷元素形态的分析,Julian David Wills先生,请您介绍一下这种方法的技术难点和优势有哪些?IC和ICP-MS联接是否属业界首次?   Julian David Wills先生:赛默飞创建的IC-ICP-MS方法不是IC和ICP-MS的首次联接,但是是戴安的IC和赛默飞的ICP-MS的第一次联接。该方法通过IC将不同形态的砷元素分离,利用ICP-MS检测IC中分开的各种形态的元素,其优势体现在高的检测灵敏度和低的检出限,该方法可用于分析不同种类的果汁类饮品,主要元素形态的分析都可以达到ppb级,而且稳定性和重复性都很好。   相比传统的检测方法,IC和ICP-MS联用为砷元素的分离以及不同形态砷元素的检测提供了强有力的分析和检测手段,具有很大的竞争力,在国内或国际也有越来越多的研究人员通过这种方法做出了研究成果并发表。   IC-ICP-MS方法中,IC 采用戴安的IC-5000系统,柱子是Dionex IonPac™ AS7 (2 mm i.d. 250 mm length),该阴离子交换柱不仅能有效分离6种不同形态的砷,还可以将每一种洗脱组分集中到一个很窄的峰,提高了灵敏度。另外比较慢的流速(0.3mL/min)还可以减少样品和流动相的消耗。   IC与ICP-MS可以直接相连,操作非常简单。而且,ICS-5000不是唯一一款可以与ICP-MS联接的仪器,其它型号的IC,比如ICS-1100,ICS-1600,ICS-2100等也可以与赛默飞的ICP-MS联用。除此之外,还有很多可以与ICP-MS相联接的仪器,比如GC、LC、CE等,而且,LC-ICP-MS的接口与IC-ICP-MS的接口类似。   Instrument:韦超老师,您如何评价赛默飞推出的IC-ICP-MS形态分析方法?   韦超老师:赛默飞推出的IC-ICP-MS联用方法,用于果汁中砷元素的形态分析,其优势主要是利用Dionex的阴离子交换柱的高效分离能力,使用单一流动相可以将6种不同形态的砷化合物或离子团进行基线分离,且淋洗时间控制在10分钟内。目前国内也有部分仪器厂商针对砷、汞、硒等元素生产元素分析联用仪,主要使用液相色谱-氢化物发生-原子荧光/原子吸收,虽然其分离度、检出限等性能指标略逊于LC/IC/GC-ICPMS联用,但其价格更亲民一些,适用于国内基层实验室应用推广。   Instrument:韦超老师,您作为中国形态分析方面的专家,请介绍一下您及您的团队在元素形态分析方面的工作?   韦超老师:目前我单位有四名同事,包括我、巢静波、吴冰和崔彦杰,从事关于元素形态分析的计量研究,具体的说,包含标准物质研究、高准确度方法研究和相关国际比对等方面。   在量值溯源性和准确性方面,形态分析对相关标准物质的需求是非常必要和迫切的。近年来,我们在标准物质的研究方面作了很多工作,具体成果包括:水中三甲基铅成分分析标准物质(2种) 砷元素形态分析溶液标准物质(系列)包括亚砷酸根、砷酸根、一甲基砷、二甲基砷、砷甜菜碱和砷胆碱 甲基汞溶液标准物质 鱼肉中总汞与甲基汞成分标准物质 乙基汞溶液标准物质 冻干人尿中砷形态成分标准物质 硒元素形态分析溶液标准物质(系列)包括亚硒酸根、硒酸根和硒代蛋氨酸 三丁基锡溶液标准物质等。   高准确度方法又称权威方法或者绝对测量法,我们在这方面的工作也取得了不少成果:汞元素形态(甲基汞、无机汞)分析同位素稀释-液相/气相色谱-电感耦合等离子体质谱联用方法研究 硒元素形态(无机硒、硒代蛋氨酸)分析同位素稀释-液相色谱-电感耦合等离子体质谱联用方法研究 锡元素形态(无机锡、三丁基锡)分析同位素稀释-液相色谱-电感耦合等离子体质谱联用方法研究 砷元素形态(亚砷酸根)库仑法研究 铬元素形态(三价铬离子、重铬酸根)库仑法研究等。以上方法均可通过同位素比值测量或物理量测量直接溯源至SI基本单位,是国际计量界认可的高准确度测量方法。除此之外我们还以相对测量方法(如LC-ICPMS法、LC-HG-AFS法和GC-ICPMS法)研究了铅、溴等其它元素或砷、汞、硒、锡的其它形态。   另外,国际计量委员会非常关注元素形态分析方面的计量学研究,相继开展了十余次该领域的国际比对,以验证各个国家的元素形态测量校准能力,特别是其溯源性和国际的等效一致程度。自2005年以来,中国计量科学研究院化学所(国家标准物质研究中心)获得良好的成绩,确保了我国元素形态分析的量值溯源和国际等效一致。   Instrument:请您介绍一下中国目前有关形态分析的方法标准建立情况?  韦超老师:目前中国有关形态分析的方法标准主要有:GB/T5009.17 -2003 食品中总汞及有机汞的测定 GB/T5009.11 -2003食品中总砷及无机砷的测定 GB/T 20188-2006小麦粉中溴酸盐的测定 离子色谱法 GB/T 22932-2008皮革和毛皮 化学试验 有机锡化合物的测定 行业性标准主要有:SNT 2316-2009 动物源性食品中阿散酸、硝苯砷酸、洛克沙砷残留联的检测方法 液相色谱-电感耦合等离子体质谱法。以上形态分析的检测方法标准的推出,填补了相关领域的国内空白,在国际上也属于先进水平。   Instrument:形态分析联用技术的市场需求及发展前景如何?   韦超老师:经过十几年的发展,形态分析联用技术的学术研究已经获得了丰厚的成果,但是相关的市场需求还没有完全激发出来。第一个原因是相关的国家限量标准较少,目前仅对部分产品的甲基汞、无机砷等有强制限量标准,从法规上对产品厂商的约束较少,开展相关检测项目的实验室也不多 第二个原因是形态分析联用技术的成本较高,如ICP-MS仪器单价就要一百万人民币以上(国产形态联用分析仪器也在二十万元以上),同时技术难度较大,分析人员需要具备较高的专业素养。以上两个原因导致形态分析联用技术的市场还处于培育阶段。   但考虑到我国经济贸易的蓬勃发展和人民群众对食品安全环境保护的日益关注,形态分析联用技术市场的发展前景还是十分乐观的,一旦相关技术法规、限量标准得以确立完善,联用仪器开发生产形成规模化,将会带来爆发性增长。   Julian David Wills先生:面对当前食品安全频发的现状,亟待建立一种简单、高效并且准确的快速检测方法。而IC-ICP-MS具有高的灵敏度、低的检出限,未来将会有很多的用户。不过,IC-ICP-MS方法还不是美国或者欧盟用于砷元素形态分析的标准方法。   备注:据悉,用于食品当中砷元素形态分析的标准已经通过审核,并将于近期颁布,其中AFS与色谱联用是第一方法,ICP-MS是第二方法。业内有关专家预测,一旦相关标准颁布实施,将有力推进该系列仪器的推广,对相关仪器生产厂商来说是一个利好的消息。   采访编辑:叶建   附录: 表一:中国计量科学研究院(国家标准物质中心)研制的元素形态分析标准物质 时间 标准物质编号 标准物质名称 2006 GBW(E)080971 GBW(E)080972 水中三甲基铅成分分析标准物质 (2种) 2007 GBW08666~ GBW08671 砷元素形态分析溶液标准物质(系列)包括亚砷酸根、砷酸根、一甲基砷、二甲基砷、砷甜菜碱和砷胆碱2008 GBW08675 甲基汞溶液标准物质 2008 GBW10029 鱼肉中总汞与甲基汞成分标准物质 2008 GBW(E)081524 乙基汞溶液标准物质 2009 GBW09115 冻干人尿中砷形态成分标准物质 2009 GBW10032~ GBW10034 硒元素形态分析溶液标准物质(系列)包括亚硒酸根、硒酸根和硒代蛋氨酸 2009 GBW08710 三丁基锡溶液标准物质 表二:国际物质量咨询委员会(CCQM)组织的元素形态分析相关国际比对 Time Code Analyte Matrix Pilot laboratory The number of participants 2001 CCQM P18 Organo-tin Sediment NRCC & LGC 11 2003 CCQM P43 Organo-tin Sediment NRCC & LGC 13 2003 CCQM K28 Organo-tin Sediment NRCC & LGC 7 2004 CCQM P39 Methylmercury Tunafish IRMM 14 2005 CCQM P39.1 Methylmercury Salmonfish IRMM 8 2005 CCQM K43 Methylmercury Salmonfish IRMM 5 2006 CCQM P86 Selenomethionine Yeast LGC & NRCC 10 2007 CCQM K43.1 Methylmercury Swordfish NMIJ 10 2007 CCQM P96 Arsnobetaine Swordfish NMIJ & NIM 8 2008 CCQM K60 Selenomethionine Se-rich wheat flour LGC & NRCC 14 2009 CCQM P114 PBDE & PBB Plastic IRMM 7 2010 CCQM P96.1 Arsnobetaine Solution & Codfish NMIJ & NIM 8 2012 CCQM K97&P133 Arsnobetaine Solution & tunafish NIM & NMIJ 8
  • 热管理相变浆料PCM的稳定性表征
    PCM 浆料由于其高效的传热和热能存储特性,是高效热能管理的替代解决方案,受到越来越多关注。PCM 浆料有多种类型,例如冰浆、笼状物浆料和盐水合物 PCM 浆料 (SHPCMS)、微胶囊化 PCM 浆料 (MPCMS)、形状稳定 PCM 浆料 (SSPCMS) 和相变乳液 (PCE)。PCE 中的 PCM 液滴/颗粒可以在表面活性剂的帮助下分布到不混溶的载体流体中,这简化了材料的制备,使其成为一种有前途的 PCM 浆料。由于晶体生长的固有特性和与温度相关的固体分数,原始盐水合物 PCM 浆料无法呈现出良好的流动性和稳定性特征,有研究发现,表面活性剂和稳定剂的共同作用可以抑制晶体颗粒的生长,从而有助于浆体稳定性。本文基于为最佳开发盐水合物 PCM 浆料而提出的一种方法,介绍了 CaCl2&sdot 6H2O 浆料的制备、特性和性能改进。通过重力和离心稳定性测试研究了浆料的稳定性,以验证稳定剂的有效性。材料: 六水氯化钙 (CaCl2&sdot 6H2O)——基料;六水氯化锶 (SrCl2&sdot 6H2O) ——成核剂;十六烷基二甲基甜菜碱 (C16H33N+(CH3)2CH2COO-)——两性离子表面活性剂;聚乙烯醇 PVA——稳定剂;水杨酸钠——添加剂。浆料稳定性表征进行两组稳定性试验,其中设置了冷水浴系统以方便进行重力稳定性试验。在重力稳定性试验中,将装在单独试管中的不同CaCl2&sdot 6H2O浆料样品浸入浴中,观察颗粒沉降过程。晶体颗粒的沉降导致相分离界面,其变化由数码相机记录。本研究进行了大约一周的重力稳定性试验。另一项稳定性测试是在基于LUMiFuge的加速力场下进行的。它被用来深入了解不同添加剂对稳定性增强的影响。与重力稳定性试验相比,它依靠透射率百分比对时间的积分来分析浆料样品的“不稳定指数”,避免了在没有明显相分离的情况下引入的不确定性,并允许加速沉降过程。在本研究中,使用 LUMiFuge进行稳定性测试的转速在 30 分钟的测试期内设定为 1000 r/min。图1 重力稳定性试验中晶体颗粒的沉降过程(浆体样品从左到右分别为:原始CaCl2&sdot 6H2O浆体;添加成核剂;添加成核剂和表面活性剂;添加成核剂、表面活性剂和稳定剂)a) 刚生成时;b) 5分钟后;c) 15分钟后;d) 1小时后;e) 18小时后;f) 2天后;g) 4天后;h) 7天后。 图 2. 加速稳定性试验中不同 CaCl2&sdot 6H2O 浆料样品的不稳定性。 图1比较了不同浆料样品的重力稳定性,图2进一步展示了部分浆料样品在离心场下的稳定性测试,以深入了解不同添加剂提高稳定性的机理。稳定性测试在 15℃的水浴或环境空气中进行(分别用于重力和离心稳定性测试),浆料的质量固体分数约为 17w.t.%。从图1 可以清楚地看到,原料 CaCl2&sdot 6H2O 浆料迅速分层,在整个过程中呈现出沉积层高度最低和上方清澈透明溶液。原料 CaCl2&sdot 6H2O 浆料的相对较大的粒径是阻碍布朗运动的关键因素,导致沉降过程更快。重力稳定性试验中,添加成核剂和同时添加成核剂和表面活性剂的样品的沉降层高度在前18小时内相似(见图1)。有趣的是,沉降高度出现了交叉,添加成核剂和表面活性剂的样品在第一个小时内呈现出较快的分离过程,而之后速度减慢。这种交叉现象在加速稳定性试验中得到了证实,如图2所示。在重力稳定性试验中,添加成核剂的样品的沉降高度在18小时后继续略有降低,而同时添加成核剂和表面活性剂的浆料样品没有明显变化(见图1)。一开始的相似是因为晶体颗粒经历了一个长大过程,布朗运动对这些尺寸较小的颗粒影响较大。交叉现象可能是由于表面活性剂在晶粒表面积累起缓冲作用,阻碍了晶粒与溶液中分子的碰撞,从而抵消了部分布朗运动的影响。 但随着晶体的生长,由于仅含成核剂的 CaCl2&sdot 6H2O 浆料的粒径较大,布朗运动的相对影响减弱(图3b和c)。此外,在含成核剂和表面活性剂的浆料中,针状晶粒的尺寸相对较小,长宽比较大,在两性离子表面活性剂电位引入的排斥力的帮助下,可以形成更高的沉积层。图2证实了在加速稳定性测试中,含成核剂和表面活性剂的浆料样品的不稳定性低于仅含成核剂的浆料样品。相比之下,在重力和离心稳定性试验中,含有所有添加剂的浆料样品仅观察到轻微的分层。除了小粒径的影响外,PVA 在水杨酸钠的帮助下引入的综合效应也起到了一定作用,水杨酸钠作为支撑基质来容纳和隔离晶体颗粒。为了区分水杨酸钠的影响,在离心稳定性试验中测试了含有成核剂、表面活性剂和水杨酸钠的额外浆料样品。如图2所示,额外浆料样品的分层似乎经历了较慢的沉降过程,但最终的不稳定性与同时含有成核剂和表面活性剂的浆料样品相同。这是由于水杨酸钠的存在通过重构胶束增加了粘度,但粘度的增加与PVA和水杨酸钠共同的基质支持作用不同。图3. 不同浆料样品的晶体颗粒形态特征:a) 原始 CaCl2&sdot 6H2O 浆料;b) 添加成核剂;c) 添加成核剂和表面活性剂;d) 添加成核剂、表面活性剂和稳定剂。
  • 元素形态分析——一个环境与食品安全检测的新领域 ——访清华大学分析中心主任张新荣教授
    编者按:元素形态分析领域方兴未艾,其中涉及的方法学,标准和仪器也是专业人士关注的话题。清华大学分析中心主任张新荣教授目前在接受本网采访时,对元素形态分析领域知识进行了科学的讲解,同时也对其课题之一—建立环境与生命体中重要毒性元素的形态分析方法,并研究毒性元素在环境与生命体中的积累、转移和代谢规律,对研究元素形态分析标准方法与标准物质做出了系统的介绍。我们相信,在越来越多专家的推动下,政府将在中国元素分析领域的标准化和应用化方面给出更得力的措施。   Instrument: 据我们了解,您近期从事的科研项目――建立环境与生命体中重要毒性元素的形态分析方法十分重要,可以介绍一下这个项目的研究背景吗?   张教授:元素分析研究已经做了很多年,大家发现仅做元素总量对某些元素意义不大,例如甲基汞比无机汞毒性大很多;砷化学形式可分为无机砷和有机砷,无机砷如三价砷和五价砷毒性很大,但其甲基化后则毒性大大降低。硒被认为是营养型微量元素,但是硒的各种形态中,也有有毒的和无毒的,或者说是对人体有害或是有益的。过去我们说补微量元素,但到底是补哪种形态? 无机硒,还是有机硒,和氨基酸结合的硒, 还是和蛋白质结合的硒,这个问题是很重要的。元素的存在形式,也就是它的形态,在很多情况下起着至关重要的作用。现在人们已经建立起了这种意识:应该进行人体微量元素分析,但如果分析总量,意义不大,重要的是进行元素形态的分析,不同形态的元素对生物体的作用是很不一样的。   以砷的形态分析为例,砷是环境中重要的污染物,中国有好几个省份地下水砷污染非常严重,几千万人口面临砷中毒。一些海洋生物有很强的能力,可以将有毒砷转化为无毒砷。例如海带含有大量砷,但存在形式是无毒的砷糖。科学家们感兴趣的是哪些物质有这种转化能力,哪些酶,那些生命过程在主导这些转化。已知几种甲基化酶有可能把有毒的砷甲基化成低毒或无毒的砷,完成减毒或去毒的过程。因此研究这些酶对于寻找去毒和解毒的物质十分重要,是减轻砷中毒危害研究的一个重要方面。   Instrument: 据我们所知,您与普析通用仪器公司合作开发的原子吸收和高效液相联用仪获得了BCEIA的金奖,可以从方法学,标准和仪器这三方面具体介绍一下你这个课题具体内容和进展情况么?   张教授:我在国外攻读博士学位时期就开始从事元素形态分析方面的研究,涉及两方面的研究内容:一是建立形态分析的方法,二是研究砷在人体内的代谢过程。在国外时,关于砷方面发表了10多篇论文。承担科技部这个项目时,方法学问题已经基本解决了,主要内容是标准化,和在环境与食品安全检测等各个领域的应用问题。   我国在元素形态分析领域有三个方面要做:第一,尽快建立重要有害元素的形态分析的国家标准;第二,推荐针对不同样品的标准操作程序(SOP), 并通过与国际相关实验室比对,取得比较可靠一致的数据;第三,研究标准参考物质。此外,研制用于形态分析的仪器设备,是开展这一工作的前提和条件。所以我们几个单位合作开展的科技部重大标准专项也是从这几个方面做了研究。我们在研究阶段主要选了四种重要的有害元素:As, Hg, Pb, Se,由国家标准物质中心、中科院生态环境中心、南开大学和我们对其进行研究。目前这一工作已经基本完成,取得了一些成果,包括申请了10个专利、研制了2个标准参考物质、与普析通用和吉天仪器分别合作研发设计了两台砷元素分析仪,与普析通用合作研发的仪器还获得了金奖。下一步我们希望能扩展到其它元素。   我们和普析通用仪器公司合作开发的AS-90砷元素形态分析仪,是我国第一台具有自主知识产权的基于高效液相色谱-氢化物原子吸收联用技术的专用砷元素形态分析仪。我们和吉天仪器公司合作开发了高效液相色谱和原子荧光联用仪器。当然效果最好是高效液相色谱和ICP-MS联用。但是考虑到价格问题,普通的检测机构和生产食品及海产品的公司采用高效液相与原子吸收联用仪或者高效液相与原子荧光联用仪就能达到元素形态分析的效果。仪器的关键技术是接口。液相色谱分离后原子吸收检测,需要变成氢化物,因此必须有在线消解的过程。接口管路如果太长,色谱峰会展宽,多个形态的砷分不开。我们研究的接口采用40cm管道进行紫外消解,具有较强的技术优势,申请了两个专利。目前已在北京普析通用仪器公司和北京吉天仪器公司生产。   Instrument: 您可以谈谈元素形态分析的实际应用案例吗?   张:元素形态分析在世界经济和生活领域中有很多具体应用。   去年,大陆的鱼罐头运到香港后,发现砷超标,一时引起各界关注。我曾经在中国海域采了五个点,检测上百种海产品包括鱼虾,海带,紫菜等的砷含量。检测出来发现,其实中国海产品,有毒的砷含量很低,绝大部分以无毒的形态存在。如鱼主要是以砷甜菜碱,海带和紫菜主要是以砷糖形态存在,这两种砷无毒。某些产品砷超标,但也可能以无毒的形态存在。我在国外时,曾对当地玻璃厂和冶炼厂工人砷中毒的情况做过检测,主要是区分工作中暴露所引起的砷中毒,还是由于吃鱼引起的砷含量增高。可以通过砷形态分析技术给出科学的答案。元素形态包括价态,无机态,有机态,和蛋白质的结合状态等,是个广谱的定义。摄入体内的砷会和蛋白质结合,被载带到肝脏,被甲基化酶转化为一甲基砷,一甲基砷进一步变成二甲基砷,二甲基砷就不能进一步和蛋白质结合了,然后从肝脏进入肾脏,通过尿液排出。吃鱼引起的砷含量增高主要表现为三甲基砷,代谢最多为二甲基砷,不能代谢成三甲基砷。通过二甲基砷和三甲基砷的区别,就可以给出可信的结论。   Instrument: 您认为我国在这个领域有那些需要注意和加强的地方呢?   张教授:欧盟和美国现在做元素分析,不仅做总量,在形态方面也给予相当的重视。而中国在这方面还没有给予足够的重视,这一点让我们在很多方面都比较吃亏。   中国以前不是很重视标准,往往是到被人家卡住了,才制订新标准。明智的方法是自己先提出新技术和新标准。不能只是别人卡我们,我们也可以卡别人。国家应该尽早建立微量元素的相关形态标准,以减少由其他国家制定标准,限制国产相关产品出口,而造成巨大经济损失的事件。   Instrument: 这个课题有了完满的结果,那么您今后的研究兴趣又将集中在哪些方面呢?   张:不久前,我联合另两家单位又拿到国家自然科学基金委的“元素与生物物质的相互作用”的课题。对砷与人体的相互作用,包括砷和基因的相互作用,影响蛋白质表达的机制继续给予关注。   此外,我除继续从事分析化学方法学的基础研究外。下一步,我还会对分析仪器的研究与设计投入更多的精力,尽自己所能为我国分析仪器的发展做出自己的贡献。  非常感谢张教授的精彩介绍!希望更多的专家和仪器厂商能够群策群力为中国元素形态分析领域的标准化做出更多贡献。   普析通用仪器公司As元素形态分析仪具体信息,请访问本网链接:http://www.instrument.com.cn/netshow/SH100307/mostlylist.asp?IMShowNameid=C15894  吉天仪器公司As元素形态分析仪具体信息,请访问本网链接:http://www.instrument.com.cn/netshow/SH100202/mostlylist.asp?IMShowNameid=C16052   张新荣教授简介:   清华大学教授,博士生导师,清华大学分析中心主任,化学系副主任。兼《光谱学与光谱分析》杂志副主编,《分析化学》、《分析仪器》、《岩矿分析》、《化学通报》、《中国地方病杂志》等国内刊物的编委,以及国际刊物《LUMINESCENCE》杂志中国区编辑。北京市化学会副秘书长,长期从事环境与生物分析方法、仪器和应用研究,共发表论文百余篇。是第7、8、9、10届 “International Symposium on Luminescence Spectrometry”科学委员会委员,第11届该会议在北京召开时担任主席。   联系方式   电话010-62787678(Lab)62776888(O)  传真010-62770327   Email:xrzhang@chem.tsinghua.edu.cn
  • 应对新国标 | HPLC-ICP-MS元素形态分析,为饮用水安全保驾护航
    安全的饮用水是人类健康的基本保障,是关系国计民生的重要公共健康资源。新GB5749-2022《生活饮用水卫生标准》以保护人群身体健康和保证人类生活质量为出发点,对饮用水中与人群健康相关的各种因素做出量值规定,于2022年3月由国家市场监督管理总局和国家标准化管理委员会联合发布,并将自2023年4月1日实施。GB/T 5750《生活饮用水标准检验方法》 作为生活饮用水检验技术的推荐性国家标准,与《生活饮用水卫生标准》(GB 5749)配套,是《生活饮用水卫生标准》的重要技术支撑。根据最新GB/T 5750.6 《生活饮用水标准检验方法第6部分:金属和类金属指标》(报批稿,2021年4月),新增了9个检验方法,其中有4个方法为“液相色谱-电感耦合等离子体质谱法”用于砷、铬、硒和氯化乙基汞的元素形态分析。元素的不同存在形态决定了其在环境和生命过程中表现出不同的行为,并发挥着不同的作用。例如:砷元素在自然界中常见的形态有亚砷酸盐[As(III)]、砷酸盐 [As(V)]、一甲基砷 (MMA)、二甲基砷 (DMA)、砷甜菜碱(AsB)和砷胆碱(AsC)等。不同形态的砷,其理化性质和毒性各异,其中As(III)和As(V)毒性最大,它们可以引起肺癌、皮肤癌和膀胱癌等,被国际癌症研究委员会(IARC)确认为一类致癌物。铬元素广泛分布于自然界中,也是生物体所必须的微量元素之一。铬可以形成+2、+3、+4、+6等多种价态化合物,水中铬主要是以三价和六价的形式存在。微量的三价铬是人体必需的微量元素,参与人体和动物体内糖与脂肪的代谢。医学研究证实,六价铬的危害比三价铬强100倍,且易被人体吸收,在体内蓄积产生毒害作用,接触、吸入或吞入会产生皮肤敏感、致癌或造成遗传基因缺陷,对人类和环境有持久危险性。根据传统分析方法所提供的元素总量的信息已经不能对某一元素的毒性、生物效应以及对环境的影响做出科学的评价,而元素形态分析比元素总量能提供更多的信息,在环境和生命科学领域发挥着重要作用。以铬元素为例:对于饮用水中六价铬的检测传统方法主要为二苯碳酰二肼分光光度法,该方法步骤繁琐,物理和化学干扰较多。随着色谱与原子光谱联用技术的发展,元素的形态与价态分析有了长足的发展。由于ICP-MS具有灵敏度高、检出限低、宽的动态线性范围和多元素同位素检测等优点,近年来成为元素分析应用最广泛的分析技术,在多种测定铬形态的方法中液相色谱与电感耦合等离子体质谱法联用技术(HPLC-ICP-MS)灵敏度最高、最适宜饮用水中铬形态的测定。最新GB/T5750.6(报批稿)新增了包括铬及砷、硒、汞指标检验的“液相色谱-电感耦合等离子体质谱法”。13.2.1 最低检测浓度 取25mL水样进行络合,定容体积为50mL时,六价铬的最低检测质量浓度为0.7μg/L,三价铬的最低检测质量浓度为1.6μg/L。13.2.2 原理 水样经乙二胺四乙酸二钠(EDTA-2Na)络合后,使用阴离子交换色谱柱进行分离,分离后的六价铬和三价铬经雾化由载气送入电感耦合等离子体(ICP)炬焰中,经过蒸发、解离、原子化、电离等过程,转化为带正电荷的离子,经离子采集系统进入质谱仪,以色谱保留时间与铬的质荷比定性,外标法定量。PerkinElmer NexSAR HPLC-ICP-MS形态分析解决方案应对日益增长的元素形态分析需求,PerkinElmer为简化实验室的形态分析工作流程,推出NexSAR HPLC-ICP-MS形态分析解决方案—让具有挑战性的应用变得简单!NexSAR HPLC-ICP-MS形态分析系统液相色谱及惰性流路色谱等多款色谱系统针对不同用户需求,助力应对各类复杂元素形态分析挑战。NexION系列ICP-MS采用第三代自激式射频发生器,三个锥、三种工作模式和三重四极杆设计,提供超乎寻常的稳定性,性能优异的抗干扰能力和无与伦比的采集速度。形态分析切换阀,可实现元素总量分析和形态分析的自动切换,日常分析更高效,更简单。Clarity工作站,简单易用、功能强大,轻松实现形态分析日常检测。应用案例:使用生物惰性液相色谱NexSAR HPLC-ICP-MS定量分析水中低含量的六价铬分析了不同类型的饮用水,包括泉水、自来水和地下水源等的12种水样,本方法具有广泛适用性。由于三价铬为必需的微量营养素,不具有毒理学意义,未分析样品中的三价铬,但是仍将其添加到校准标准物中以确保达到峰的分离。参数描述色谱分离离子交换流动相离子交换试剂流速1.5mL/min分离方式等度进样体积200μL,满环进样参数
  • 2015年新版药典新增As和Hg形态分析方法
    新药典的更新内容   根据2015年新版药典,电感耦合等离子体质谱(ICP-MS)法已经成为重金属安全性的检测的重要手段,不但新增了方法检出限和方法定量限,而且ICPMS方法可用于I、II、III部。   同时,在2015年新版药典中新增 As 和 Hg 形态分析。进一步确定了药物中的元素不仅需要考虑总量,也需要考虑形态和价态;元素的价态形态已经成为药物科研的一个前沿方向。新版药典 As 的形态及其价态分析应用于雄黄及其制剂;Hg 元素的形态及其价态分析应用于朱砂及其制剂。   新药典引入形态分析的背景知识   因为早期研究发现,元素形态不同,其毒性、生物利用度、生物累计效应及迁移率等性质就会有差别[1]。很多金属和非金属在毒理学和生物学上的重要性主要取决于其化学形态,不同元素形态具有不同的物理化学性质、毒性或疗效。色谱-ICP-MS联用作为分析体内药物代谢、毒理学的手段之一在元素的体内代谢机制、毒理学研究等方面具有独特的优势。例如,应用色谱-ICPMS分离生物体内含Se、As、Cd、Cu、Zn、Pb等元素与多种氨基酸、多肽和蛋白质的结合机理以及研究元素对酶的作用位点。此外,维生素、大环化合物等的研究和DNA片段与金属元素的作用也日益在色谱-ICPMS技术发展中得到应用。因此元素形态分析对控制药品的安全性具有重要的意义。   2015年药典新增的As和Hg形态分析就充分考虑到了不同形态毒理学性质的不同:As化合物被认为是对人的皮肤和肺有致癌作用的物质,不同形态的As具有各种化学和毒物学性质,其中As(III)和As(Ⅴ)的毒性最大,一甲基砷(MMA)和二甲基砷酸(DMA)具有中等毒性,而As-甜菜碱(AB)和砷胆碱(AC)相对来说是无毒的。在动物体内,无机砷的生物甲基化作用被认为是一个去毒性过程,产物被排泄或储存。为分析低含量(ppb级)As化合物的形态,不仅需获得有关化合物形态的信息,又要有极高的灵敏度,目前最为理想的方法应属HPLC或IC与ICP-MS联用,该方法对于砷化合物的生物检测极为有用。   Hg是人体必需监控的有毒元素,主要以甲基汞、Hg(II) 与乙基汞形式存在,其中生物与人类对Hg的甲基化及富集所产生的影响尤为重要。目前WHO法规不仅对人体中总Hg的限量极低(   针对元素形态分析的样品前处理与元素的总量分析有着较大的不同。对于注射剂、澄清、均匀的口服液(不含混悬液)等液体制剂中微量元素的形态分析,可在过滤和稀释后直接进行形态分析;而对于固体样品,则需要采用较温和的方法将微量元素的不同形态提取出来。提取方法既要考虑较高的回收率,又要保持初始的化学形态。传统的提取方法有水煎法、索氏提取法等。近几年,一些先进的提取技术如超临界流体萃取、微波辅助萃取、酶解法等在中药微量元素形态分析中也有应用。   由于西药多为人工合成药,而中药大部分是天然产物,因此元素的形态分析多应用于中药中。中药有多种剂型,服用方法大多为水煎剂和酊剂,所以研究较多的是中药中微量元素在水或乙醇中的溶出率。目前样品前处理方法制药分三类:第一类也是最常见的一类方法为经典的水提法或索氏提取法,例如王京宇等[2]在考察若干中药中25种元素在不同浸取液中的分布情况时,采用了水提、二氯甲烷浸取、残渣消化及不同浓度乙醇浸取等方法处理;第二类为聚焦微波辅助萃取[3] (microwave assisted extraction,MAE),是在微波能的作用下,选择性地将样品中的目标组分以其初始形态的形式萃取出来的一种技术。它具有高回收率、高选择性和低溶剂消耗的优点。更多的关于中药砷和汞形态分析的前处理方法及关键技术请参考《矿物药检测技术与质量控制》[4]中第十章(朱砂)、第十三章(雄黄)和第三十一章(朱砂和雄黄的毒理研究)内容。   严冬,宋娟娥   安捷伦科技(中国)有限公司   参考文献:   [1] Das A K, Chakraborty R, Cervera M L, et al. Metal speciation in biological fluids: a review [J]. Microchim Acta, 1996, 122 (3-4): 209-246.   [2] 王京宇,欧阳荔,刘雅琼,等 若干中草药中25种元素在不同浸取液中的分布 [J],中国中药杂志,2004,29(8):753-759.   [3] 傅荣杰,冯怡,等 微波萃取技术在中药及天然产物提取中的应用 [J]. 中国中药杂志,2003,28(9):804-807   [4] 林瑞超 主编. 《矿物药检测技术与质量控制》. 科学出版社,2013年出版.
  • 元素形态分析及其必要性
    1.元素形态   元素的形态是指某一元素以不同的同位素组成、不同的电子组态或价态以及不同的分子结构等存在的特定形式。元素形态又分为物理形态和化学形态,其中物理形态是指元素在样品中的物理状态如溶解态、胶体和颗粒状等 化学形态是指元素以某种离子或分子的形式存在,其中包括元素的价态、结合态、聚合态及其结构等。一般意义上所说的元素形态泛指化学形态,元素形态不同于元素价态,同一元素的相同价态可能有多种形态,如价态为五的砷元素,其元素形态可分为无机态和多种有机态的砷形态。不同元素的主要常见形态如表1所示: 表1 不同元素的主要常见形态 元素名称 元素形态 As 三价无机砷(As(III)),五价无机砷(As(V)),一甲基砷(MMA(V)), 二甲基砷(DMA(V)),砷甜菜碱(AsB), 砷胆碱(AsC),砷糖(AsS)等 Hg 无机汞(Hg(II)), 一甲基汞(MeHg(I)),二甲基汞((Me)2Hg) Cr 三价铬(Cr(III)), 六价铬(Cr(VI)) Se 四价硒(Se(IV)),六价硒(Se(VI)),硒代胱氨酸(SeCys),硒代蛋氨酸(SeMet),硒多糖,硒多肽,硒蛋白等 Pb 二价铅(Pb(II)), 三甲基铅(TriML), 四乙基铅(TetrEL)等 Sn 二丁基锡(DBT), 三丁基锡(TBT)等   元素的不同存在形态决定了其在环境和生命过程中表现出不同的行为 不同的元素形态由于具有不同的物理化学性质和生物活性,在环境和生命科学领域发挥着不同的作用。元素总量或者浓度的相关信息已经不能满足环境和生命科学研究的需要,有时候甚至会给出一些错误的信息。   甲基汞的毒性要远高于无机汞,并且具有极强的生物亲和力,同时无机汞易于在生物体内富集并转化为甲基汞。人们首次认识到甲基汞的危害是在1955年,在日本的Minamata,因孕妇食用遭受甲基汞污染的鱼类,造成22名新生儿严重的脑损伤。在1971-1972年,伊拉克发生了大面积的甲基汞中毒事件,其原因在于当地人食用了经过甲基汞处理过的小麦做成的面粉。   Cr(III)是维持生物体内葡萄糖平衡以及脂肪蛋白质代谢的必需元素之一,而Cr(VI)却对生物体具有很大的毒性和致癌作用,原因在于其更强的氧化性和化学活性及迁移性 砷是一种有毒元素,但是不同形态砷的毒性却差别比较大,一般无机态砷毒性比较大,三价砷的毒性要大于五价砷 而有机态的砷中,甲基砷的毒性要强于其他的有机态砷,砷甜菜碱、砷胆碱和砷糖等则基本上没有毒性 对汞、锡和铅等重金属元素来说,有机态的化合物的毒性要远远高于无机态。作为人体必须的元素,铁仅仅是在二价时才能被生物体吸收和利用,食品中的总铁并不能代表可吸收利用的有效铁 硒是人体必需的元素,但是吸收过量时会导致硒中毒,不同形态硒的生物可利用性和毒性也差别较大 铝的毒性也和其形态密切相关,自由态的铝离子、水化羟基化合物Al(OH)2+和Al(OH)2+等是致毒形态,多核羟基铝也具有一定的毒性,而铝的氟配合物以及有机态配合物则基本无毒。   根据传统分析方法所提供的元素总量的信息已经不能对某一元素的毒性、生物效应以及对环境的影响做出科学的评价,为此,分析工作者必须提供元素的不同存在形态的相关信息。元素形态具有多样性、易变性、迁移性等不同于常规分析对象的特点,因此其分析方法也成为一个崭新的研究领域,即“元素形态分析”。   2.元素形态分析   元素形态分析是分析科学领域中一个极其重要的研究方向,IUPAC将其定义为定量测定样品中一个或多个化学形态的过程。Lobinski将其定义为确定某一元素在样品中不同化学形态分布的过程 Caroli指出,形态分析为识别和定量检测对人体健康和环境有危害的不同形态的无机分析物 Hieftje则将获得相关目标分析物原子的氧化态、键合特征、电荷态及原子缔合体的过程定义为形态分析 Welz则认为所谓元素形态分析是指测定特定条件下不同化合物的氧化态或可溶态的过程。曾有人根据Tessier连续萃取法将土壤中元素形态分为可交换态、碳酸盐结合态、铁-锰氧化物结合态、有机物结合态和残渣态等五种,但这并不是严格意义上的形态分析,这一萃取过程并不能提供涉及分子结构和电荷状态的元素形态的详细信息。   在20世纪70年代末至80年代初,Van Loon和Suzuki分别在权威期刊Anal. Chem.和Anal. Biochem.上发表了元素形态分析领域的开创性的工作,将广大的分析工作者的研究重点转移至元素形态分析技术的开发上来。经过二十多年的发展,元素形态分析已经成为分析科学领域的一个重要分支,随着这一技术的不断发展,已经为环境科学、生命科学、临床医学、营养学、毒理学、农业科学等领域提供了越来越多的有用信息。   3.元素形态分析的技术特点   元素形态分析技术主要由样品采集、样品制备、分离/富集、定性/定量、分析报告等五部分组成。在整个形态分析过程中,样品制备过程是形态分析的关键环节,需要注意保持待测元素形态,同时避免污染,这使得样品制备过程较常规总量分析更加复杂和困难。因此,对操作人员提出了更高的要求,同时延长了前处理时间。此外,由于元素的某一形态,仅仅是元素总量的一部分,甚至是极少的一部分,因此对分析方法的灵敏度提出了更高的要求,只有高灵敏的检测技术才能满足元素形态分析的要求。此外,用于元素形态分析的标准物质和标准参考物还需要倚赖进口,在一定程度上影响了形态分析技术的推广。   4.元素形态分析方法   由于一种元素存在几种甚至是几十种元素形态,因此分析方法已不同于传统的总量分析。在前处理方法上需要保持元素的现有形态,因此也不能沿用传统的酸消解方法 在测定方法上,形态分析也远不同于传统的总量分析,对方法的检出能力和稳定性提出了更高的要求。   早期的形态分析方法一般采用差减法进行测定,通过控制某些测量条件,实现总量和某些元素形态的测量,然后通过差减的方法得到其它元素形态的含量信息。如通过测量总砷和三价砷,二者相减即可得到五价砷的浓度 如通过四价硒和总硒的测量,即可测得六价硒的含量。差减法相对比较简单,整个分析过程对实验条件的要求不高,但是该方法仅仅适用于元素形态较少的条件,且操作较为繁琐。   元素形态分析的通用方法是先对元素的各种形态/组态进行有效分离,然后再进行检测。近年来,人们在追求元素形态分析方法的高灵敏度、高选择性的同时,也一直在致力于提高分析过程的效率,缩短分析过程的时间,力图实现整个分析过程的自动化。传统的元素形态分析方法将元素形态的分离与测定分别进行,使得操作过程变得比较繁琐,同时在操作过程中可能会造成样品的损失以及元素形态的变化,对最终的测定结果产生比较大的影响。联用技术将高效的分离技术与高灵敏的检测技术有机结合,元素形态经过分离后通过在线“接口”直接进入检测器进行检测,这样灵敏度、准确度和分析过程的效率都得到很大提高。  5.HPLC-ICPMS联用   自1983年第一台商品仪器问世以来,ICP-MS经过近20多年的发展,已经成为各行业用于元素分析和同位素分析最有力工具,具有极低的检出限(10-15~10-12量级)和极宽的线性范围(8~9个数量级)以及极强的多元素快速检测能力。由于检测的是质量/电荷比(m/z),不存在光谱分析中的光谱干扰问题,但存在同量异位素、多原子分子离子以及多电荷离子的干扰问题,如40Ar35Cl干扰75As、40Ar40Ar干扰80Se、36Ar18O干扰54Fe的测定。   HPLC-ICP-MS联用技术已经成为分析化学中最热门的研究领域之一,已经被认为是目前最有效和最有发展前景的形态分析技术,已经得到了较为广泛的应用。但是ICP-MS对色谱分离中所普遍使用的高盐组分和高含量有机组分,如甲醇、乙腈等承受能力有限,大大限制了其在与色谱联用中的应用。此外,ICP-MS昂贵的价格、对操作人员的较高要求以及极高的运行和维护成本限制了ICP-MS在元素形态分析领域的广泛应用。中国经济相对不发达的现状,决定了HPLC-ICP-MS不可能在中国进行普及和推广。   6.HPLC-VG-AFS联用   原子荧光光谱仪是具有中国特色的分析仪器,它具有分析灵敏度高、线性范围宽、仪器结构简单、成本低廉、易于维护、光谱干扰及化学干扰少等独特优点。对于As、Hg、Se、Pb等元素的特征谱线均处于原子荧光最佳的检测波长范围,在采用了高效的蒸气发生进样技术后,具有其他分析手段无可比拟的检出能力,可以获得与电感耦合等离子体质谱(ICP-MS)相当的检出限和灵敏度。VG-AFS与色谱的联用技术的研究已经开展30多年,但由于缺乏理想的商品化仪器,一直没有太大的发展。随着近年来国内原子荧光技术的不断发展和完善,在各项性能上都得到了很大提高,已经具备了与色谱联用的条件。如果将原子荧光的高效检出能力与色谱的高效分离技术完美结合,就可以实现As、Hg、Se等元素的形态分析。   原子荧光采用的蒸气发生进样技术能够使待测组分与基体有效分离,因此具有极强的耐高盐组分和有机组分的能力,能够和任意的色谱分离条件相匹配。此外原子荧光还具有成本低廉和操作简单等优点,使得HPLC-VG-AFS联用技术应用于元素形态分析具有极大的发展前景,易于在各个行业推广和使用。   7.元素形态分析的必要性   砷作为常见的有毒有害元素,一直倍受人们关注。砷摄入过多可引起急性中毒,长期低剂量暴露可引起慢性砷中毒,诱发各种皮肤病并可导致肝肾功能受损,甚至导致癌症。砷的毒性与砷的赋存形态密切相关,不同形态的砷毒性相差甚远。在主要的砷化物中,亚砷酸盐和砷酸盐毒性大,而MMA和DMA毒性小, AsB和AsC则被认为没有毒性。亚砷酸盐、砷酸盐、MMA、DMA、AsB、AsC和AsS对实验小鼠的半数致死量(LD50)分别为14、20、700~1800、700~2600、10000、6500、8000mg/kg。GB 2762-2005《食品中污染物限量》中规定贝类及虾蟹类水产品(鲜重)的无机砷限量标准为0.5mg/Kg, 干重的限量标准为1 mg/Kg,。GB/T5009.11-2003提供了食品中总砷和无机砷的测量方法,为有毒的无机砷检测提供了技术手段。   近年来, 国内质检机构一直依据GB/T5009.11-2003来检测食品中的无机砷。继广西检出大量紫菜中无机砷超标以来, 国家工商局又报道了44.9%的紫菜、海带中无机砷超标,甚至引发了紫菜、海带能否安全食用的讨论。紫菜属海生植物型食品,其中砷主要是以AsS的形式存在,几乎不含无机砷。2004年在香港媒体上报道多次的鱼罐头事件,香港消费者委员会测试了市面上的48款吞拿鱼、沙甸鱼等鱼类罐头,发现当中的17种砷含量超标,引起规模超过5亿元的内地鱼罐头产业近年来一直不景气。   实际情况是,国内绝大多数海产品并未超标,只是目前的检测方法存在问题。我们以海带、紫菜类植物性海产品为例,加以详细说明。植物性海产品中,砷主要以砷糖(AsS)的形式存在,此外还含有少量的二甲基砷酸(DMA)。如果依照GB5009.11-2003的样品前处理方法,采用6mol/L的盐酸进行提取,则植物性海产品中的AsS会部分分解,转化为DMA,如图1所示。标准中所采用的原子荧光检测方法,是以蒸气发生化学反应作为基础的,其检测过程如下:   (1) 样品中的五价砷在进样前,首先被还原剂还原成三价无机砷   (2) 然后在进样后和KBH4反应,生成AsH3和H2   (3) AsH3经过气液分离后,在氩气和氢气的携带下,进入原子化器   (4) AsH3最终在Ar-H火焰中解离,生成砷原子。   (5) 砷原子受到特征谱线的辐照,其外层电子受到激发,跃迁至较高能级,在其返回至基态时,发出共振荧光   (6) 共振荧光被检测器所接收,经过前置放大后,转化为电信号,输出至控制软件中,进行定量计算。   由于DMA也会和KBH4反应,生成气态的As(CH3)2H, 而As(CH3)2H也会在Ar-H火焰中解离,生成砷原子,所以GB5009.11-2003的样品前处理方法造成的AsS分解所产生的DMA以及样品中原有的DMA均会被以无机砷的形式检出,得到“假阳性”的分析结果。因此,检出的大规模海带、紫菜中无机砷超标的结果是错误的,究其原因,主要在于其前处理方法使得以无毒有机砷存在的AsS被当成无机砷被检出。   对于GB5009.11-2003的标准方法,存在两个问题:   (1)样品前处理问题   6mol/L的盐酸使得紫菜、海带类样品中的AsS部分分解,其方法值得商榷。   (2) 检测方法的问题   由于采用蒸气发生-原子荧光检测方法,样品中的有机砷,如DMA和MMA也会生成氢化物,被误认为是无机砷被检出。因此,该方法对无机砷检测而言,不是特异性检测方法,部分有机砷形态也会同时干扰测量,造成结果偏高的现象。   因此,针对上述两个问题,只能采用高效液相色谱-原子荧光联用的方式加以解决,将所测量的砷形态经过色谱分离后,再检测,就不会存在上述问题。   北京金索坤公司生产的形态分析原子荧光光谱仪,是金索坤公司多年技术研究成果,专门针对元素形态分析需求设计的高端产品,内置了在线消解装置,配备了液相泵,并采用索坤的连续进样技术和液相泵无缝对接,实现对柱后流出液实时监测,连续采集数据,大大提高了形态分析原子荧光光谱仪的准确度。   不仅是形态分析原子荧光光谱仪,北京金索坤公司的SK系列原子荧光光谱仪还有预留联用接口,可与任何型号的液相色谱仪无缝对接,进行形态分析,更是以其卓越的稳定性和可以检测多种元素深受广大用户的青睐,索坤公司成功研制出新一代的原子荧光,其在保持了传统原子荧光设备的技术优点外,更具备了三大主要特点:   ▲超高重复性指标   ▲多达18种的测试元素   ▲简便快捷的操作   实现以上三大特点,归功于2大核心技术彻底由理论化为生产,两大核心技术:   2010年11月通告的发明专利《连续流动进样氢化物发生系统》(专利号:ZL.200610113008.4)   《小火焰法原子化技术在无色散原子荧光上的应用》(专利号:03134241.8)   索坤公司经过了无数次的试验和研发改进,以及配套的十多个实用新型专利,才得以将原子荧光技术-中国为数不多的具有自主知识产权的分析仪器-更新换代,且填补了国际空白,为国家的仪器发展事业增砖添瓦!   应用了换代技术的产品性能,重复性将比现在的优越一倍,具体的数据正在提交权威机构检测中。索坤公司的新世代原子荧光光谱仪,分为三大产品系列:   ▲企业系列---为企业量身定做,超高性价比:   SK-830 │SK-2003A │SK-2003AZ   ▲质检系列---更多的可检测元素及强大功能:   SK-盛析│SK-锐析│SK-2002B│SK-2003│SK-2003AZ   ▲科研系列---全面的重金属检测及形态分析:   SK-博析│ SK-典越
  • 量子先驱|世界上第二种天才,被称为“魔术师”的狄拉克
    数学家马克凯克曾说,世界上天才有两种:一种是普通的天才,他们的成就其他人也可以做到,只要他足够的努力并且有一点好运;另一种是超常的天才,他们有着惊人的、不循常理的洞察力,很难有其他人能达到那一种智慧,保罗狄拉克就是这一类天才,被称为“魔术师”。“保罗狄拉克1902年8月8日出生于英格兰布里斯托,是英国理论物理学家,量子力学的奠基者之一,并对量子电动力学早期的发展作出重要贡献。他的风格以精确和沉默寡言而著称,是一个少见的“纯粹”的学者型人物。尼尔斯玻尔说:“在所有物理学家中,狄拉克拥有最纯净的灵魂。” ”1925年,维尔纳海森堡提出量子力学,狄拉克几乎同时开始研究量子力学。起因是他基于海森堡提出的量子力学矩阵公式对经典力学进行了规范量化,他独立的数学等价于海森堡的矩阵公式,包括一个用于计算原子性质的非交换代数,这是狄拉克迈向新量子理论的第一步。1928年,狄拉克发表了著名的“狄拉克方程”,作为电子波函数的相对论运动方程。这项工作还使他预测了正电子(电子的反粒子,除其电荷外在所有方面都与它相同,其存在后来被卡尔安德森在1932年观察并证实)和物质-反物质的存在湮灭,以及有助于解释量子自旋的起源作为一种相对论现象。1930年,狄拉克出版了量子计算著作《量子力学原理》,这是物理史上的里程碑,成为量子力学的经典教材。在这本书中,狄拉克将海森堡先前关于矩阵力学的工作和薛定谔关于波动力学的工作整合成一个数学体系。此外,他还创造了互补对易的所谓“q数”间的运算规则,并以此发展出一个漂亮的量子力学符号运算体系,包括用以表示量子态的著名的左矢(1933年,因为“发现了在原子理论里很有用的新形式”,即量子力学的基本方程——薛定谔方程和狄拉克方程,狄拉克和薛定谔共同获得了诺贝尔物理学奖。1984年,狄拉克去世。总结狄拉克的一生,毫无疑问是历史上最伟大的物理学家之一,三个关键的工作,奠定了量子力学、量子场论以及量子电动力学的基础,即便是爱因斯坦也没有办法在这么短的期间内对本世纪物理的发展作出如此决定性的影响。公众号
  • 贺江鱼死5天才检出水质超标 预警主要靠鱼?
    贺江铊污染事件发生了5天后才被发现,这带来了人们对于水质监测准不准的担忧。有监测专家表示,类似铊等很多重金属,不在水质监测范围内,监测水中这些重金属超标与否,全靠鱼。  2013年7月1日,广西贺州市贺江部分河段网箱出现死鱼现象,7月5日,死鱼现象加重,当地向自治区环保厅报告情况,经检测才发现,原来贺江上游马尾河口至贺州市与广东省交界处江段水质中的镉、铊出现不同程度的超标。  “类似铊这样的重金属,并不在常规的水质监测中。”水质监测专家、珠江流域水环境监测中心原副总工程师曹永旭告诉羊城晚报记者,国家对河段水质的监测有设基础指标,铜、铅、锌、镉、六价铬和锰等几种重金属是常规检测项目,以人力采样、分析、监测为主,也难以每日每时监测。  “即使这些重金属,如果不在检测时段出现污染,监测部门也未必能发现。”曹永旭解释说,而像铊这样的重金属,并不在常规水质监测指标内。监测这样的重金属污染只能靠鱼类。贺江污染事件曝光后,每小时从江水取样后,环保部门都要开车几个小时到南宁或广州进行检测,数据有滞后性。水质监测受距离、人力、仪器、经费等各种外在客观条件所限。即使有这些设备,也不是实时监测水中的重金属超标情况,还要送到有科研力量的机构,这些机构也需要花很长时间,才能测出重金属是否超标。  “并非政府不想监测铊这些重金属,主要是条件限制。监测铊的设备都是进口仪器,对存放环境要求十分高,要求是无尘的。一套设备200万元。目前只有广州自来水公司等大型单位科研机构才有设备。”  曹永旭说,在监测设备缺少时,水生物鱼类是一种有效的生物监测和预警手段,国外和国内不少自来水厂会在前置的取水口专门养鱼,通过观察鱼的特殊回避特性来看水质是否出现污染。鱼类可通过嗅觉、味觉、视觉,侧线及其他感受器而感受水中化学成分变化,对水中有些重金属离子(如汞、铜、锌等),具有很高的敏感性。  曹永旭建议,在韶关、广东广西交界处等冶炼、矿业较多地区,最好开展铊等重金属的监测,以保证人们健康。
  • 贺江鱼死5天才检出水质超标 预警主要靠鱼?
    贺江铊污染事件发生了5天后才被发现,这带来了人们对于水质监测准不准的担忧。有监测专家表示,类似铊等很多重金属,不在水质监测范围内,监测水中这些重金属超标与否,全靠鱼。   7月1日,广西贺州市贺江部分河段网箱出现死鱼现象,7月5日,死鱼现象加重,当地向自治区环保厅报告情况,经检测才发现,原来贺江上游马尾河口至贺州市与广东省交界处江段水质中的镉、铊出现不同程度的超标。   &ldquo 类似铊这样的重金属,并不在常规的水质监测中。&rdquo 水质监测专家、珠江流域水环境监测中心原副总工程师曹永旭告诉羊城晚报记者,国家对河段水质的监测有设基础指标,铜、铅、锌、镉、六价铬和锰等几种重金属是常规检测项目,以人力采样、分析、监测为主,也难以每日每时监测。   &ldquo 即使这些重金属,如果不在检测时段出现污染,监测部门也未必能发现。&rdquo 曹永旭解释说,而像铊这样的重金属,并不在常规水质监测指标内。监测这样的重金属污染只能靠鱼类。贺江污染事件曝光后,每小时从江水取样后,环保部门都要开车几个小时到南宁或广州进行检测,数据有滞后性。水质监测受距离、人力、仪器、经费等各种外在客观条件所限。即使有这些设备,也不是实时监测水中的重金属超标情况,还要送到有科研力量的机构,这些机构也需要花很长时间,才能测出重金属是否超标。   &ldquo 并非政府不想监测铊这些重金属,主要是条件限制。监测铊的设备都是进口仪器,对存放环境要求十分高,要求是无尘的。一套设备200万元。目前只有广州自来水公司等大型单位科研机构才有设备。&rdquo   曹永旭说,在监测设备缺少时,水生物鱼类是一种有效的生物监测和预警手段,国外和国内不少自来水厂会在前置的取水口专门养鱼,通过观察鱼的特殊回避特性来看水质是否出现污染。鱼类可通过嗅觉、味觉、视觉,侧线及其他感受器而感受水中化学成分变化,对水中有些重金属离子(如汞、铜、锌等),具有很高的敏感性。   曹永旭建议,在韶关、广东广西交界处等冶炼、矿业较多地区,最好开展铊等重金属的监测,以保证人们健康。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制