当前位置: 仪器信息网 > 行业主题 > >

生物素

仪器信息网生物素专题为您整合生物素相关的最新文章,在生物素专题,您不仅可以免费浏览生物素的资讯, 同时您还可以浏览生物素的相关资料、解决方案,参与社区生物素话题讨论。

生物素相关的资讯

  • 实验室检测背后的故事之或可致命的生物素
    p   2017年11月,美国食品和药物管理局(FDA)公布近期收到一份由于生物素干扰而导致肌钙蛋白测定不准确引起患者死亡的报告,提醒临床医生及实验室工作者:大剂量补充生物素(Biotin)可能会导致实验室检测结果出现误差,从而引起临床误诊误治1。 /p p   而此前不久,国际顶级医学期刊-《新英格兰医学杂志》也发布了多例有关生物素干扰的误诊案例2。随着全球越来越多患者误诊误治案例的出现,生物素对免疫检测的干扰成为近期炙手可热的学术话题。 /p p    strong 【临床医生需了解并重视生物素对临床检测的干扰】 /strong /p p   就此,北京大学人民医院心内科许俊堂教授表示:“可靠的实验室检查结果是临床正确诊断疾病的关键。作为心肌损伤的重要标志物及临床依据,肌钙蛋白在急性心肌梗死诊断中扮演重要的角色。FDA关于生物素引起肌钙蛋白假性降低的案例,也引起了我们临床医生的关注。”他表示,临床医生在诊疗过程中,应充分了解实验室检测方法并询问患者补充含生物素制剂情况;对于一些长期服用生物素的患者,当检测结果与临床不符,应以临床判断为准并进行相应诊治,避免漏诊、漏治及所导致严重后果,同时与实验室人员商讨补救办法,如在不使用生物素标记检测系统重新测定肌钙蛋白。 /p p    strong 【生物素的应用】 /strong /p p   生物素是一种水溶性B族维生素,参与细胞的代谢及维持正常的细胞功能,被广泛添加于各种复合维生素、产前维生素和用于头发、皮肤和指甲生长的市售营养补充剂中。随着现代人群保健及美容意识的逐年上升,为了达到增强体质、防治脱发、减肥美容等各种目的,服用外源性生物素保健品的人群也越来越多3。更值得注意的是:由于保健品成分的复杂性和名称的多样性,很多人并未意识到自己服用了生物素。 /p p   生物素OTC保健品推荐剂量多为5mg-10mg,有研究显示每日摄入生物素10mg,持续7天,在循环血液中检测到的生物素浓度可超过3000pg/ml,这个浓度可影响多项实验室检测4。 /p p    strong 【重视生物素干扰并加强相关研究】 /strong /p p   在实验室免疫检测领域,生物素的应用已非常普遍。“生物素-链霉亲合素”系统是上世纪70年代末发展起来的一种生物反应放大系统。基于“生物素-链霉亲和素”系统的方法学可特异并高效地放大检测信号,提高免疫检测的灵敏度,市面上很多免疫检测产品使用了该方法学。使用这类检测产品时,患者如果服用了外源性生物素后,血液中高浓度的游离生物素可能会干扰链霉亲和素捕获目标分析物的能力。因方法学的不同,生物素可造成检测结果的假性升高或者降低。实验室的检验专业人员需要了解本实验室内检测平台的检测原理,明确受外源性生物素干扰的检测项目,并及时与临床沟通,保证检测结果的正确性。 /p p   首都医科大学附属安贞医院检验科袁慧主任表示:“生物素对免疫检测的干扰,在近年来逐渐引起国外临床检验工作者的关注,并在著名医学学术期刊《新英格兰医学杂志》和《JAMA》上均有案例分享。而在国内,目前报道仍很少。但是,我们对生物素如何干扰临床检测的了解,仍然是冰山一角。生物素的服用剂量、服用时间及受影响的项目类型等,仍需要进一步系统的研究评估。” /p p    strong 【总结】 /strong /p p   FDA建议5:“ 如果实验室检测结果与患者的临床表现不符,应考虑将生物素干扰作为可能的原因。” 在临床实践过程中,很多患者可能受到专业知识限制而根本不了解自己是否服用生物素,对生物素可能存在的干扰毫不知情。当出现检验结果和临床不符合时,需要实验室专业人员在第一时间评估实验室可能存在的风险,加强与临床的沟通。临床医生要增加对于检验的专业认识和了解,不能因为不知情而忽略, 从而对疾病的判断和诊断产生影响。生物素干扰的风险应该得到临床和检验共同的高度重视,通过临床与检验的携手,为患者提供更加优质的服务。 /p p 1. Biotin (Vitamin B7): Safety Communication - May Interfere with Lab Tests - From FDA website https://www.FDA.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm586641.htm /p p 2. Biotin Treatment Mimicking Graves’ Disease. N Engl J Med. 2016 375:7 /p p 3. Biotin: From Nutrition to Therapeutics. J Nutr. 2017 147(8):1487-1492 /p p 4. Association of Biotin Ingestion With Performance of Hormone and Nonhormone Assays in Healthy Adults. JAMA. 2017 318(12):1150-1160 /p p 5. 医脉通编译整理自:Michael O& #39 Riordan. Biotin Supplements Can Interfere With Cardiac Troponin Tests:& nbsp FDA. TCTMD. November 28, 2017 /p
  • 李灵军与叶慧团队合作成果:生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析
    瓜氨酸化是影响蛋白质结构和功能的关键的翻译后修饰。尽管它与各种生物过程和疾病发病紧密相关,但由于缺乏有效的方法来富集、检测和定位该翻译后修饰,其潜在机制仍然知之甚少。近期,威斯康星大学麦迪逊分校李灵军教授课题组报道了生物素硫醇标签的设计和开发,该标签能够通过质谱法对瓜氨酸化进行衍生化、富集来实现可靠的鉴定。作者对小鼠组织的瓜氨酸化蛋白质组进行了全局分析并且从432种瓜氨酸化蛋白质中识别出691个修饰位点,这是迄今为止最大的瓜氨酸化数据集。作者发现并阐述了这个翻译后修饰的新的分布和功能并且表示该方法有希望为进一步破译瓜氨酸化的生理和病理作用奠定基础。这项工作以“Enabling Global Analysis Of Protein Citrullination Via Biotin Thiol Tag-Assisted Mass Spectrometry”为题发表在国际化学权威杂志Analytical Chemistry上 (https://doi.org/10.1021/acs.analchem.2c03844),文章作者为Yatao Shi#, Zihui Li#, Bin Wang#,Xudong Shi , Hui Ye, Daniel G. Delafield, Langlang Lv, Zhengqing Ye, Zhengwei Chen, Fengfei Ma,Lingjun Li*。此外,李灵军教授课题组进一步拓展了此方法的实用性。作者通过应用二甲基化亮氨酸(DiLeu)等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。相关成果以“12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response”为题同样发表在Analytical Chemistry上(https://doi.org/10.1021/acs.analchem.1c04073),文章作者为Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li*。  研究的主要内容  作者设计了一种生物素硫醇标签,它可以很容易的以低成本合成并且可以与瓜氨酸残基和2,3-丁二酮发生特异性反应(图 1a)。这种衍生化不仅增加了质量转移以允许更可靠的鉴定,而且还引入了生物素部分,使修饰分子的后续富集成为可能。该生物素硫醇标签设计具有紧凑的结构,在高能碰撞解离 (HCD) 期间仅产生两个碎片/诊断离子(图 1b)。 因此,肽主链可以保持良好的裂解效率,并在 HCD 或电子转移解离 (ETD) 期间分别产生丰富的b/y或c/z离子系列。在 HCD(图 1c)、ETD或电子转移/高能碰撞解离(EThcD)碎裂下,衍生化肽标准品的序列收集质谱图几乎完全覆盖相应的肽序列。实验结果表明生物素硫醇标签衍生的瓜氨酸化肽可以产生用于解析及标注的高质量的串联质谱图,并且与各种裂解技术相结合时可以提高瓜氨酸化位点的识别可信度。  图1|用于瓜氨酸化分析的生物素硫醇标签设计。a,使用生物素硫醇标签和 2,3-丁二酮对瓜氨酸肽进行衍生化。 b,HCD、ETD 或 EThcD 片段化后生物素硫醇标签衍生的瓜氨酸化肽的片段化位点。c,HCD裂解后生物素硫醇标签衍生的瓜氨酸肽标准品 SAVRACitSSVPGVR 的串联质谱图。  在接下来的实验中作者使用该生物素硫醇标签和基于质谱的自下而上的蛋白质组学方法对瓜氨酸化进行分析(图2a)。作者在体外利用 PAD(一种可以催化瓜氨酸化的酶)催化的人组蛋白 H3 蛋白来验证这个过程。作为未被PAD催化的阴性对照,未发现组蛋白的肽段被鉴定为瓜氨酸化,证明了生物素标签反应的高特异性(图 2b)。在体外 PAD 处理后,作者 发现许多精氨酸残基被催化为瓜氨酸,并且大量的位点被高可信度的鉴定为瓜氨酸化位点(图 2c),进一步表明该方法的高效性。在 HCD 碎裂后,其产生了一系列丰富的 b/y 离子,可以帮助准确的表征在同一肽段上单个(图 2d)以及多个(图 2e)瓜氨酸化位点。  图2|使用生物素硫醇标签进行体外瓜氨酸化分析。a,使用生物素硫醇标签进行蛋白质瓜氨酸化分析的实验工作流程。b、c,在体外 PAD 处理之前 (b) 和之后 (c) 组蛋白 H3 蛋白的瓜氨酸化分析。 已识别的瓜氨酸化位点在序列中以蓝色字母突出显示。 序列下方的红色矩形表示鉴定的瓜氨酸化肽,而瓜氨酸化位点以蓝色显示。 d,PAD处理的组蛋白 H3 (R64Cit) 的已鉴定瓜氨酸化肽的串联质谱图示例。 e,PAD 处理的组蛋白 H3 的同一肽上鉴定的两个瓜氨酸化位点(R70Cit 和 R73Cit)的串联质谱图示例。  接下来,作者们尝试利用所开发的方法对复杂的生物样本中的瓜氨酸化进行全局分析,并希望能够以此提供阐明生物体中瓜氨酸化调节机制的依据。首先,作者对小鼠的六个身体器官和五个大脑区域进行了深入的瓜氨酸组分析,生成了第一个小鼠瓜氨酸组组织特异性数据库。作者从432种瓜氨酸化蛋白质中以高置信度的方式鉴定了691个瓜氨酸化位点(图 3a)。更重要的是,这些蛋白质中约有 60% 未曾在UniProt 数据库检索并被报道,这一结果极大地扩展了对瓜氨酸化以及这些底物蛋白质如何受到瓜氨酸化影响的理解。作者发现结果中与 UniProt 数据库的已知的瓜氨酸位点重叠部分较少(图 3b),这可能是因为 UniProt 中描述的近 40% 的瓜氨酸化位点是基于相似性外推理论而没有实际的实验证据。此外,许多报道的位点位于组蛋白上,尤其是蛋白质末端,可能会逃过自下而上质谱策略的检测(图 3b)。图 3c 展示了单位点瓜氨酸化和多位点瓜氨酸化蛋白质分布情况,其中 70% 的已鉴定蛋白质仅有一个瓜氨酸化位点被检测到。  这个新发现的瓜氨酸化蛋白质组为推测瓜氨酸化的调控机制提供了宝贵的资源。例如,作者在髓鞘碱性蛋白(MBP)上鉴定到了九个瓜氨酸化位点,而在 UniProt 数据库中只有四个(图3d)。作者的结果提供了高质量的串联质谱图,不仅证实了已知修饰位点的存在(图3e),而且还高可信度的识别了未知的位点(图 3f)。然后作者进行了瓜氨酸化肽段的序列分析,发现在鉴定的瓜氨酸化位点两侧并没有高度保守的氨基酸序列模式(图3g),但是谷氨酸残基更频繁地出现在瓜氨酸的N末端侧附近。这与Fert-Bober 等人报道的小鼠瓜氨酸组分析结论一致。另一方面,Tanikawa 等人发现在人体组织和血浆中大约五分之一的 PAD4 底物含有 RG/RGG 基序。同样,Lee 等人及相关研究人员观察到天冬氨酸和甘氨酸残基在瓜氨酸化位点出现频率偏高。值得注意的是,这些研究使用了不同的人源细胞系或组织,因此作者的结果可能表明在不同物种之间瓜氨酸化位点周围的序列模式是不同的。为了更好地辨别瓜氨酸化蛋白质所涉及的功能,作者展示了基因本体论(GO)富集分析的热图,其显示了二十个最显著富集的细胞成分(图3h)以及KEGG途径(图3i)。作者发现小鼠大脑组织和身体器官之间存在明显差异,而瓜氨酸蛋白更多地参与大脑功能。具体来说瓜氨酸化蛋白质集中在轴突、髓鞘、核周体和突触中,因此在中枢神经系统中可能发挥着重要的作用。  图3|不同小鼠组织的大规模瓜氨酸组分析。a,不同小鼠组织中已鉴定的瓜氨酸化蛋白和瓜氨酸化位点的数量。 b,本研究中鉴定的瓜氨酸化位点与 UniProt 数据库中报告的位点比较。 c,每个鉴定的瓜氨酸化蛋白质的瓜氨酸化位点数量分布。d,本研究中确定的瓜氨酸化位点与 UniProt 数据库中关于髓鞘碱性蛋白的瓜氨酸化位点的比较。e、f,在髓磷脂碱性蛋白 R157Cit (e) 和 R228Cit (f) 上鉴定的两个瓜氨酸化位点的示例串联质谱图。g,鉴定的瓜氨酸化肽的序列。瓜氨酸化位点位于中间的“0”位置。字母的高度表示每个氨基酸在特定位置的相对频率。 h,i,使用 Metascape 生成的热图显示不同小鼠组织中显着丰富的(p 值 0.01)细胞成分 (h) (KEGG) 通路 (i)。  为了进一步拓展该方法的实用性,作者应用了二甲基化亮氨酸(DiLeu)等重标记策略,第一次实现了对瓜氨酸化进行高通量的定量研究。作者首先使用瓜氨酸化标准肽段进行测试,证明在优化反应条件下DiLeu标记和生物素硫醇标记反应可以分步进行而不互相干扰(图 4B,4C)。同时,将标准肽段按照已知比例进行4-plex DiLeu标记并混合,再进行生物素硫醇标记和瓜氨酸化分析,结果显示了非常好的定量准确性(图5)。作者进一步优化了运用该方法在复杂生物样品中进行定量分析的实验方法,并且证明此方法依然可以实现极佳的定量准确度和精确度(图6)。  图4|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记分步反应的特异性和效率  图5|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记定量分析的准确性  图6|复杂生物样品测试DiLeu标记和生物素硫醇标记定量分析的准确度和精确度  作者接下来应用该方法对DNA损伤中瓜氨酸化的作用进行了研究。作者在MCF7细胞中用三种方法造成了DNA损伤,并定量分析了蛋白质瓜氨酸化的变化。作者一共鉴定到63种瓜氨酸化蛋白以及其包含的78个瓜氨酸化位点,并发现三个实验组中的瓜氨酸化表达相比于对照组呈现出非常不同的趋势(图7A),这一结果表明瓜氨酸化在不同类型的DNA损伤模型中具有差异性的作用。通过对实验组中显著变化的瓜氨酸化蛋白进行生物过程网络分析,作者发现瓜氨酸化主要对DNA代谢,蛋白结构变化,翻译以及DNA修复等过程进行调控(图 7B,7C)。该实验结果表明蛋白瓜氨酸化对DNA损伤以及相关发病机理具有非常重要的作用。  图7|高通量定量分析研究瓜氨酸化在DNA损伤中的变化及作用(来源:Anal. Chem.)  小结  本文章介绍了一种生物素硫醇标签的设计和开发,该标签可与瓜氨酸化肽段发生特异性反应并极大地提高了瓜氨酸化的富集和检测效率。在使用标准肽和重组蛋白证明该方法的有效性后,作者进一步优化了从复杂生物样品中检测瓜氨酸化的实验过程。通过此方法对小鼠五个大脑区域和六个身体器官的蛋白质瓜氨酸化进行分析,作者鉴定出432个瓜氨酸化蛋白以及691个瓜氨酸化位点,这是迄今为止最大的数据集。该研究揭示了这种翻译后修饰可能在神经系统中发挥的关键作用,并表明它们在包括呼吸和糖酵解在内的许多代谢过程中也可能发挥着重要作用。总的来说,实验结果表明蛋白质瓜氨酸化在不同组织中具有广泛分布并参与各种生物过程,这扩展了目前对蛋白质瓜氨酸化生理作用的认知和理解。此外,作者进一步拓展了此方法的实用性,通过应用DiLeu等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。更重要的是,该方法可以提供一种普适、简单而强大的检测方法来明确鉴定蛋白质瓜氨酸化,这也将启发和有益于未来对这种翻译后修饰在生理和病理条件下的功能作用的研究。  相关研究成果近期发表在Analytical Chemistry上的两篇文章中, 通过生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析文章的共同第一作者是威斯康星大学麦迪逊分校博士生石亚涛,李子辉,王斌,并与中国药科大学叶慧教授课题组合作 应用二甲基化亮氨酸等重标记策略进行蛋白质瓜氨酸化高通量定量研究文章的第一作者是威斯康星大学麦迪逊分校博士生李子辉,两篇文章通讯作者为李灵军教授。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • 基于流的分析微阵列 ——使用选择性生物探针进行定量和定性测定
    迈克尔塞德尔(Michael Seidel)• 如果要在一个样品中测定多种分析物,分析微阵列是理想的解决方案。基于流的分析系统的优势在于它们可以在现场以自动化的形式快速、定量地分析样品。• 近年来,基于流式化学发光 (CL) 微阵列的微阵列芯片读取器 (MCR) 分析平台不断优化,其在各种生物分析应用中的实用性得到了证明。• GWK Präzisionstechnik 公司以原型开发的形式进一步优化了最新一代设备。该设备提供了使用泵和阀门控制实现全自动测定性能的可能性,并通过集成的高灵敏度 CCD 相机进行后续测量图像采集,非常适合长达 2 分钟的采集时间。由于要建立各种生物分析试验进行研究,该仪器被命名为 MCR-Research (R)(图 1)。• 在下文中,将简要描述各个微阵列检测类型以及应用程序。图 1:用于 SARS-CoV-2 抗体检测的基于流式 CL 微阵列的 MCR-R 微阵列分析平台示例。 检测血液中针对 SARS-CoV-2 的抗体检测针对 SARS-CoV-2 的抗体的问题是在大流行开始时提出的,由巴伐利亚研究基金会资助。重组抗原(SARS-CoV-2 蛋白,包括刺突蛋白 (S1) 和核衣壳 (N) 蛋白以及受体结合结构域 (RBD))固定在微阵列芯片上。血液样本中的抗体可以与这些重组抗原结合。然后,带有辣根过氧化物酶 (HRP) 标记的抗人 IgG 抗体通过泵系统通过流通式微阵列芯片,在随后的步骤中通过添加鲁米诺和过氧化氢来观察结合的抗体。基于流动的微阵列免疫测定 (MIA) 原理的一个主要优点是使用间接非竞争性 MIA 非常快速和同时测定针对不同抗原的抗体(图 2)。因此,例如,可以将疫苗衍生抗体与 SARS-CoV-2 感染后的抗体区分开来。 图 2:血清和血液中 SARS-CoV-2 抗体的间接非竞争性 MIA 流程图。此外,可以确定针对不同 SARS-CoV-2 变体的抗体,或者可以通过其他呼吸道病原体扩展抗体组,例如,检测针对流感的抗体。此外,MCR 的多功能性与相关的流通微阵列芯片和程序选项也提供了建立的可能性,例如,通过竞争性 MIA 对中和抗体进行定量分析。在这里,可以确定哪些抗体实际上可以阻止病原体进入细胞,从而在预防感染方面特别有效。CL-MIA 只需不到 15 分钟,可用于现场分析,例如医疗实践。使用 CL-MIA 和 MCR 检测 SARS-CoV-2 抗体的第一个结果已经发表 [1,2]。 基于抗体的蒸发冷却系统嗜肺军团菌检测和亚型分析媒体多次报道军团菌爆发,通常可以追溯到蒸发冷却系统。这些系统可以产生含有军团菌的生物气溶胶,这取决于致病菌株,在吸入可吸入的嗜肺军团菌后,会在人体中引发轻度庞蒂亚克热或严重的肺炎,即军团病。为此,成立了第 42 届 BImSchV,负责规范蒸发冷却系统、冷却塔、湿式分离器的安全技术运行以及冷却水中军团菌的定期控制。如果超过测量值(冷却塔每 100 毫升 50,000 个军团菌,其他需要报告的系统每 100 毫升 10,000 个军团菌),则必须立即采取措施大幅降低病原体浓度。此外,必须进行血清分型。代替使用凝集试验(血清组 1 和血清组 1-15 之间的区别)对嗜肺军团菌进行常规血清分型,甚至使用大量 ELISA 微量滴定板对嗜肺军团菌血清组 1 进行亚型分型,也可以使用 MCR。根据该申请,原型设备被称为 Legiotyper。此外,在军团病爆发的情况下,尽快确定源头很重要。这也可以通过仪器实现。一组单克隆抗体固定在流通式微阵列芯片上。样品手动注入系统,然后是全自动 CL-SMIA(图 3)。单克隆抗体对L. pneumophila血清群 1的不同血清和亚群表现出不同的亲和力和选择性。图 3:CL-SMIA 示意图:(1) 样品注射,(2) L. pneumophila SG1 亚型与特异性捕获抗体的结合,(3) 抗 SG1 检测抗体与已经结合的军团菌的结合,(4 ) CL 反应和图像采集。细菌与流通式微阵列芯片上的相应单克隆抗体特异性结合。夹心是由对血清组 1 特异的生物素标记的多克隆抗体形成的。加入 CL 试剂后,进行 CL吸收。通过将单个菌落悬浮在缓冲液中并在大约 30 分钟内使用该仪器执行 CL-SMIA,在培养后的所有情况下都可以进行血清分型和亚型分型。在由德国联邦经济和技术部资助的 WIPANO 项目 LegioRapid 中,首次建立了用于蒸发冷却系统快速卫生评估的独立培养方法的标准化方法,该方法在测量后定量确定治疗成功率值已超过。除了 qPCR 和与免疫磁分离 (IMS) 相结合的流式细胞术之外,Legiotyper 被用作第三种方法。定量测量结果通过qPCR和IMS流式细胞仪从100 mL中100军团菌的浓度获得,其中100 mL水样通过聚碳酸酯过滤器(孔径=0.22µm)过滤,洗脱液直接用于定量测定。只有在样本中发现最低浓度为106个细胞/100 mL时,才能使用Legiotyper进行血清或亚型。对于培养样本,这个最低浓度不是问题。对于不依赖培养的方法,样品体积必须增加到至少 10 L 才能达到至少 10 4的浓缩系数。正在对合适的过滤方法进行研究 [3]。对于气溶胶中嗜肺军团菌的分析,可以使用相同的 CL-SMIA,但在样品制备方面存在差异。必须首先使用气溶胶收集器对气溶胶进行采样,科里奥利 µ 旋风收集器适用于该收集器。在这里,细菌以液体形式分离,其中可以直接取样和测量。在 AIF 项目 LegioAir 中,首次表明在生物气溶胶中进行血清分型是可能的。 使用 haRPA对军团菌进行分子生物学检测微阵列芯片阅读器不仅可用于基于抗体的检测,还可用于分子生物学。课题组开发了异质不对称重组酶聚合酶扩增(简称haRPA,图4)[4,5],可用于军团菌属。通过在 39°C 下加热流通式微阵列芯片在系统上进行检测。对于 haRPA,军团 菌属特异性引物在空间上固定在 DNA 微阵列芯片上。图 4:可以在 MCR-R 上执行的 haRPA 原理。(1) 带有固定反向引物的 DNA 微阵列,(2) 添加 DNA 提取物后,重组酶打开双链靶 DNA,(3) 聚合酶延伸反向引物直到 (4) 单链结合蛋白分离, (5) 生物素化的正向引物与固定的双链结合,直到 (6) 第二条 DNA 链被聚合酶延伸。(7) 最后,固定化的扩增子通过链霉亲和素-HRP 进行标记,并使用 CL 进行可视化。 等温核酸扩增可扩增基因组 DNA 的靶序列。通过第二个生物素标记的引物,形成的扩增子被标记并用作链霉亲和素-HRP 的锚点,该链霉亲和素-HRP 通过流通式微阵列芯片。最后,与其他测定一样,通过使用集成 CCD 相机记录 CL 反应生成 CL 图像。信号的强度取决于样品中 DNA 的初始量。扩增允许对非常少量的初始 DNA 进行定量。haRPA 的原理还允许通过将不同的引物固定在微阵列表面上进行多重分析。这样,样品可以在 45 分钟内区分军团 菌。以及对人类最危险的军团菌属嗜肺军团菌,它可以更好地评估潜在的健康风险。 地表水中的藻类毒素的监测MCR-R 也用于环境监测。AIF-ZIM 项目 MARCA 关注为即将到来的藻华开发早期预警系统。它是基于云的监测系统的重要组成部分,可用于预测藻类大量繁殖和地表水中蓝藻毒素的形成等。由于水体富营养化和气候变化,被称为藻华的蓝藻大量繁殖变得越来越频繁。在这种现象期间,水变得非常浑浊,水中的蓝藻毒素含量急剧增加。其后果是水生大型植物的退化和对生物体、人类和动物的危害。为了预测藻华并在早期采取预防措施,正在开发一种预警系统,该系统能够使用 Triton 水传感器系统持续监测可能指示藻华的化学和物理参数。这些是温度、电导率、总溶解固体 (TDS) 和总悬浮固体 (TSS)、浊度、溶解氧、溶解硝酸盐和总硝酸盐。此外,该仪器还监测水中的蓝藻毒素浓度。这可以通过再生间接竞争 CL-MIA(图 5)实现,并且由系统在 7 分钟内完全自动执行。例如,微囊藻毒素-LR 的检测限为 4.8 µg/L,因此低于 WHO 的 10 µg/L(对于微囊藻毒素)的限值,低于该限值可假设对健康产生不利影响的可能性较低。图5:再生间接竞争性MIA的示意图:(1)样品(抗原)与一级抗体的孵育,(2)未结合的一级抗体与固定化毒素的结合,(3)检测抗体结合,(4)CL反应和图像采集,以及(5)下一次测量的再生。细菌亲和过滤用亲和粘结剂的筛选微阵列芯片阅读器可用于定量或定性检测,以及研究新的亲和性结合物及其对细菌的结合行为。例如,这些是抗菌多肽、酶或抗体。生物素化细菌通过流通微阵列芯片自动进入设备,在该芯片上固定待研究的亲和力粘合剂。随后,链霉亲和素HRP与结合的生物素结合并催化CL反应,这被捕获为图像。用适当的缓冲液洗脱细菌后,获得第二个CL图像。因此,细菌的结合和洗脱行为可以得到快速而全面的评估。与无标签生物传感器相比,生物素标签可以更精确地跟踪这种反应。这种筛选策略的另一个优点是可以同时固定多个亲和结合物。这为一次测试许多亲和结合物提供了一种快速的方法,也允许细菌、亲和结合剂和洗脱缓冲液之间的组合具有高度的多样性。总结这里描述的例子令人印象深刻地展示了MCR-R分析平台在仪器生物分析中的广泛应用。因此,各种高度相关的领域都可以受益于生物分析方法的使用,因此必须在未来继续推动其扩展。参考文献[1] Klüpfel, J. Koros, R.C. Dehne, K. Ungerer, M. Würstle, S. Mautner, J. Feuerherd, M. Protzer, U. Hayden, O. Elsner, M. Seidel, M. Automated, flow-based chemiluminescence microarray immunoassay for the rapid multiplex detection of IgG antibodies to SARS-CoV-2 in human serum and plasma (CoVRapid CL-MIA). Analytical and Bioanalytical Chemistry, 2021, 413, 5619–5632. https://doi.org/10.1007/s00216-021-03315-6 .[2] Klüpfel, J Paßreiter, S. Weidlein, N. Knopp, M. Ungerer, M. Protzer, U. Knolle, P. Hayden, O. Elsner, M. Seidel, M. Fully automated chemiluminescence microarray analysis platform for rapid and multiplexed SARS-CoV-2 serodiagnostics. Analytical Chemistry, 2022, 94, 6, 2855-2864. https://doi.org/10.1021/acs.analchem.1c04672 .[3] Wunderlich, A. Torggler, C. Elsaesser, D. Lück, C. Niessner, R. Seidel, M. Rapid quantification method for Legionella pneumophila in surface water. Analytical and Bioanalytical Chemistry, 2016, 408(9), 2203-2213. https://doi.org/10.1007/s00216-016-9362-x .[4] Kunze, A. Dilcher, M. Abd El Wahed, A. Hufert, F. Niessner, R. and Seidel, M. On-chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria. Analytical Chemistry, 2016, 88, 898-905. https://doi.org/10.1021/acs.analchem.5b03540 .[5] Kober, C. Niessner, R. Seidel, M. Quantification of viable and non-viable Legionella spp. by heterogeneous asymmetric recombinase polymerase amplification (haRPA) on a flow-based chemiluminescence microarray. Biosensors and Bioelectronics, 2018, 100, 49-55. https://doi.org/10.1016/j.bios.2017.08.053 . 关于作者Michael Seidel德国加钦慕尼黑工业大学水化学研究所分析化学和水化学系主任Michael Seidel在斯图加特大学学习技术生物学,并在图宾根大学获得物理化学博士学位。在Miltenyi Biotec GmbH担任项目负责人后,他在分析化学主席处成立了一个微阵列研究小组,由Reinhard Niessner教授领导。2014年,他以化学发光微阵列为主题,学习分析化学。直到现在,他还是由Martin Elsner教授领导的分析化学和水化学主席“生物分析和微分析系统”小组的负责人。他的研究兴趣在于建立创新的(生物)分析方法和仪器、生物传感器、分析微阵列、超顺磁性纳米颗粒、浓缩和分离方法,以快速或自动分析药物、毒素、生物标记物、蛋白质、病原菌和病毒,或在水质监测、食品分析或体外诊断领域的抗生素抗性基因。原文:Flow-based analytical microarraysQuantitative and qualitative determinations with selective biological probesWiley Analytical Science,2 September 2022供稿:符 斌
  • 化学蛋白质组学揭示高铁血红素-蛋白互作谱
    大家好,本周为大家分享一篇最近发表在Journal of The American Chemical Society上的文章,A Chemical Proteomic Map of Heme−Protein Interactions1。该文章的通讯作者是美国斯克利普斯研究所的Christopher G. Parker研究员。高铁血红素(heme)是人体中许多蛋白质的辅助因子,也是血液中氧气的主要转运体。最近的研究也证实了高铁血红素可以作为一种信号分子,通过与伴侣蛋白质结合而不是通过其金属中心反应来发挥其作用。然而,目前关于血红素结合蛋白的注释还不够完整。因此,本文采用化学蛋白质组学的方法去揭示人体中与高铁血红素发生互作的蛋白质谱。化学蛋白质组学是揭示蛋白质功能和发现药物靶标的重要工具。其中,最常用的是基于活性的蛋白质分析(Activity-based protein profiling,ABPP),通过结合活性分子探针标记及串联质谱分析,实现对靶标蛋白的鉴定。如图1b,本文设计了一个“全功能”活性分子探针(HPAP),共包含3个部分:1. Hemin母核,用于与靶蛋白非共价结合;2.光活化基团-双吖丙啶,可在UV光照下生成卡宾,促使分子探针与蛋白发生共价交联;3. 炔基,可在铜催化下与含有叠氮的试剂(荧光标签,生物素)发生点击化学反应,后两者组成FF-control。具体实验流程如下图1a所示,用HPAP处理不同细胞(In Situ)或不同细胞来源的蛋白质组(In vitro),HPAP中的hemin母核可与靶蛋白发生非共价结合,经UV光照,HPAP-蛋白间形成共价交联,再利用点击化学可将HPAP-蛋白与荧光素(TAMRA)或者生物素标签相连,用于后续的荧光成像(In-gel fluorescence)或者链霉亲和素纯化、LC-MS鉴别定量(MS-based I.D. and quantitation)。 图1. (a)使用基于高铁血红素的光亲和探针(HPAP)识别血红素结合蛋白的流程示意图。(b) HPAP、hemin和FF-control的结构;(c) HEK293T裂解物中与HPAP结合的蛋白的荧光成像;(d) hemin加入对HPAP与蛋白结合的影响。作者首先使用了SDS-PAGE去评估了HPAP标记蛋白的能力。如图1c所示,随着HPAP浓度的提高,胶图上条带颜色也逐渐加深,说明HEK293T细胞裂解液中与HPAP结合的蛋白在逐渐增加。如图1d所示,在10 μM HPAP的条件下,逐渐加入hemin,可以看到胶图上条带颜色逐渐变浅,说明hemin与HPAP之间发生了竞争,HPAP模拟了hemin与蛋白的结合过程。随后,作者又使用已知的hemin结合蛋白来确认HPAP捕获目标蛋白的能力。如图2所示,这些已知蛋白被HPAP成功的标记上,但由于hemin的加入,条带的颜色在逐渐变浅(TAMRA)。Western blot的结果显示,蛋白的总量并无太大变化,但hemin的竞争结合,导致与HPAP结合的蛋白量在下降。以上实验均说明,HPAP具有较好的选择性标记能力,能够模拟hemin与靶蛋白的结合,并以共价交联的方式标记在蛋白上。 图2. 用已知的高铁血红素结合蛋白确认HPAP捕获目标蛋白的能力。验证了方法的可行性后,作者将HPAP与定量蛋白质组学结合用于绘制高铁血红素-蛋白质互作谱。考察了多种细胞系,包括:人胚胎肾细胞(HEK293T)、人慢性髓系白血病细胞(K562)以及人原代外周血单个核细胞(PBMCs)。每种细胞系设置了两种实验形式:1)特异性结合实验(Enrichment):通过将HPAP识别出蛋白与FF-Control识别出的蛋白进行对比,排除非特异结合的干扰(图1b),如果同一蛋白通过HPAP富集到的量是FF-control富集到的量4倍以上,则认为该蛋白是HPAP特异性结合蛋白。2)竞争性结合实验(Competition):观察HPAP富集的蛋白在hemin和HPAP同时存在时富集到的量的变化,变化大于3倍且具有显著性差异(p<0.05)的蛋白被认为是HPAP与hemin竞争性结合的蛋白。最终确定的高铁血红素结合蛋白应满足以上两种实验的筛选标准(图3a)。如图3b-d所示,总共鉴定出378个的高铁血红素结合蛋白,其中214个来自HEK293T, 182个来自K562, 107个来自PBMC。尽管三种细胞类型之间的结合蛋白有一些重叠,但大多数靶点蛋白只存在于一种或两种细胞类型中(图3b),这暗示血红素在不同细胞中可能发挥不同的功能。其中,19个靶点蛋白是在UniProt上已经注释为高铁血红素的结合蛋白,剩余都是未揭示的结合蛋白。这些结合蛋白按照功能可划分为:转运蛋白,转录因子,支架蛋白和酶(图3c),根据代谢通路又可进一步划分(图3d)。作者最后对几个新发现的结合蛋白进行了验证,并选择IRKA1进行进一步的作用机制研究。IRKA1在调节炎症信号通路中起着关键作用,IRAK1被IRAK4磷酸化,然后自磷酸化,产生NFkB介导的炎症反应。经实验确认(图4),hemin是IRKA1的一种变构活化配体,可增强其酶活性,促进IRAK1的自磷酸化。 图3. 基于蛋白质组学的HPAP-蛋白互作分析。 图4. Hemin对IRKA1的调节作用。总之,本文设计开发了一种基于高铁血红素的光亲和探针,它可以与化学蛋白质组工作流程结合,以识别不同蛋白质组中的高铁血红素结合蛋白。利用该方法也可拓展至其他分子配体靶标蛋白的识别。 撰稿:刘蕊洁编辑:李惠琳原文:A Chemical Proteomic Map of Heme-Protein Interactions参考文献1. Homan, R. A., Jadhav, A. M., Conway, L. P., & Parker, C. G. (2022). A Chemical Proteomic Map of Heme-Protein Interactions. Journal of the American Chemical Society, 144(33), 15013–15019.
  • 珀金埃尔默专业检测,“乳”此简单 | 乳制品中维生素B7/B9/B12的检测
    背景维生素(vitamin)是人和动物维持正常的生理功能所需要的一种微量有机物质,参与人体多种代谢,是食品的一类重要成分。人体必需维生素可分为两类:水溶性维生素和脂溶性维生素,其中水溶性维生素中又以B族维生素最为重要。B族维生素主要包括VB1(盐酸硫胺素)、VB2(核黄素)、VB3(烟酰胺、烟酸)、VB5(泛酸)、VB6(吡哆醇、吡哆醛和吡哆胺)、VB7(游离生物素)、VB9(叶酸)、VB12(氰钴维生素)等,它们虽然在体内的含量很少,却是调节人体各种新陈代谢必不可少的物质,是婴儿配方乳粉的重要组成部分。乳制品中维生素B7/B9/B12的检测由于食品安全国家标准有关于B7/B9/B12含量的要求,因此乳制品行业需要对其进行定量检测。目前针对维生素B7/B9/B12的国家标准检测方法是微生物方法。微生物法虽然试验周期长、对环境要求高,但因其是国标方法所以是抽检单位必用的检测依据,同时也适用于没有液相色谱仪或质谱仪等大型实验仪器的用户。乳制品中其他维生素的检测方法包括了液相色谱HPLC(或液质联用LCMSMS)、分光光度计、荧光光度计等仪器方法,这些可以为维生素B7/B9/B12的检测提供一些参考。乳制品维生素B7/B9/B12检测方案珀金埃尔默为您提供维生素B7/B9/B12整体检测解决方案,从检测试剂、前处理柱到仪器设备,“从繁至简,从慢到快,从国标方法到仪器确证”,全线产品满足不同条件的客户需求。针对我国国家标准微生物法实验周期长的特点,推出改进的微生物方法检测试剂盒以及ELISA试剂盒的产品。针对目前检测标准,步骤繁锁且重复性稍差的缺点,推出免疫亲和柱配合液相色谱或液质联用的方案。另外维生素B7/B9/B12,对热和氧极其敏感,在加工、储存中容易损失,且在样品中浓度差异较大,在进行样品前处理时也是需要解决的难点。A 微生物法检测试剂盒原理:某种微生物会对某种维生素具有极强的特异性,是其正常生长所必需的维生素,并且在一定条件下,其生长、繁殖速度与溶液中该维生素的含量成一定的对应关系,含量高则生长快,反之则慢,微生物法便利用了这种对应关系间接地测定出样品中该维生素的含量。该微生物检测试剂盒与国际规范保持一致,但试剂盒法相对缩短了检测周期,由原来的5-7天缩短为3-4天。B ELISA试剂盒原理:间接竞争ELISA方法,在酶标板微孔条上预包被抗原,样本和此抗原竞争抗体,同时抗体与酶标二抗(酶标物)相结合,经TMB底物显色得出样品中维生素的含量。特点:快速(1-2小时)、简便和灵敏度高C 液相色谱或液质联用方法特点:快速(1-2小时),方法重复性好。1 采用免疫亲和色谱法对乳制品提取液中的维生素进行富集并去除部分杂质,精密度及特异性高,处理后样品进入高效液相色谱进行分析。免疫亲和净化柱净化 FlexarTM液相色谱仪 免疫亲和柱产品介绍2 采用固相萃取的方法进行除杂,而后用液质联用仪器进行多种B族维生素分析。固相萃取 QSightTM LC/MS/MS 8种B族维生素色谱图扫码获得维生素检测的应用报告和产品介绍。
  • 蛋白质组学在病毒入侵宿主中的研究
    2020年初,一场突如其来的疫情打乱了大家的生活节奏。面对来势汹涌的疫情,全国上下正在积聚力量,全力战胜新型高致病性冠状病毒(2019-nCoV)。医护人员、解放军战士、志愿者们纷纷奔赴武汉,与疫魔竞速,守卫着国民的生命安全,致敬最美逆行者!同时疫情研究者一样没有停下自己的脚步,特别是在分子水平,我们调研了基于Orbitrap超高分辨的蛋白质组学和结构组学技术在病毒学研究中的应用,谨以此文致敬白衣天使和深耕医学研究的学者。Orbitrap技术促进病毒机理研究病毒与宿主共同进化,获得捕获和操纵宿主细胞过程进行复制的机制传播。同样,宿主细胞会通过部署防御机制或通过适应感染环境。在整个感染过程中,细胞严重依赖于时空调控的病毒-宿主蛋白-蛋白相互作用的形成。 蛋白质组学方法与病毒学的结合促进了对病毒复制、抗病毒宿主反应和病毒对宿主防御的颠覆机制的深入研究。而Orbitrap技术依靠其高灵敏度、高精度,高通量等特性在该方面表现出色。案例一:Orbitrap技术深度挖掘病毒-宿主蛋白质相互作用2019年Viruses杂志上发表了基于组学技术研究宿主变化的综述,质谱技术中基于亲和纯化分离蛋白质复合物随后进行MS分析(AP-MS)的方法可以用于分离病毒-病毒和病毒-宿主多蛋白复合物,可识别间接和直接的蛋白质相互作用,提供相互作用事件的瞬时信息,或跟踪单个病毒基因产物的过表达,以深入了解单个蛋白质的功能;表达蛋白质组学技术(定量蛋白质组学和翻译后修饰组学)可以研究病毒蛋白的组成,宿主在病毒入侵过程中蛋白质和翻译后修饰的动态变化。(Viruses 2019, 11, 878 doi:10.3390/v11090878)迄今为止,基于蛋白质组学方法的进展已经为识别数量惊人的病毒-宿主蛋白关联铺平了道路,科学家基于这些数据构建了包含了5000多种病毒成分和宿主细胞之间的非冗余蛋白相互作用数据库。这些有价值的信息库包括相互作用蛋白数据库、VirHostNet(http://virhostnet.prabi.fr/)、VirusMentha(Nucleic Acids Res. 2015 43(D1):D588–D592)、IntAct-MINT(Nucleic Acids Res. 2015 43(D1):D583–D587)和Uniprot。 案例二:Orbitrap技术揭示新型塞卡病毒宿主因子Pietro,Scaturro, Alexey, et al. Nature, 2018 寨卡病毒(ZIKV)最近成为全球健康问题,由于它的广泛传播和与严重的联系新生儿神经症状和小头症。然而,与致病性相关的分子机制关于ZIKV的大部分仍然未知。 技术路线:利用赛默飞 LTQ-Orbitrap和Orbitrap Q Exactive HF质谱进行全蛋白质组学和修饰蛋白质组学(实验路线见下图a),研究对象为神经细胞系SK-N-BE2和NPC细胞,表征细胞对病毒的反应,在蛋白质组和磷酸化蛋白质组水平上的变化,利用亲和蛋白组学方法鉴定ZIKV蛋白的细胞靶点。使用这种方法,找到了386个与zikv相互作用的蛋白质,导致宿主在神经发育受损,视网膜缺陷和不孕。此外,确定了寨卡病毒感染后1216个磷酸化位点存在上调或下调,来自AKT, MAPK-ERK和ATM-ATR信号通路中,为防范ZIKV感染扩散提供机制基础。在功能上,系统地理解了ZIKV诱导后的宿主的蛋白质和细胞通路水平的扰动,并对感染后细胞施加Rock抑制剂药物干预,利用非标定量蛋白质组学方法分析差异蛋白进行验证(下图热图),补充这一空白。技术路线图案例三:Orbitrap技术深入探寻寨卡病毒病毒与宿主的相互作用Etienne Coyaud, et al. Molecular & Cellular Proteomics,2018,技术路线技术路线:本文利用生物素识别以及IPMS亲和纯化结合MS 方法,研究寨卡病毒侵染后病毒与宿主细胞蛋白质的相互作用(技术路线见上图),实验结果揭示了1224个蛋白3033多肽形成的相互作用网络(见下图a)。相互作用包括多肽加工和质量控制、囊泡方面的作用运输,RNA处理和脂质代谢。40%的 作用都是以新报道的相互作用。通过数据挖掘分析,揭示过氧化物酶体在ZIKV感染中的关键作用。病毒宿主蛋白相互作用网络图 温馨提示:积极防护 保护自己 戴口罩 勤洗手
  • Nat. Methods | PROBER技术用于检测活细胞中与可编程特异性DNA序列相关的蛋白
    大家好,本周分享一篇发表在Nature Methods上的文章PROBER identifies proteins associated with programmable sequence-specific DNA in living cells,本文的通讯作者是来自斯坦福大学的Paul A. Khavari教授,他们组主要致力于干细胞分化与癌症的基因组调控方面的研究。在本文中,作者团队开发了一种通过游离基因招募的近端生物素化技术(PROBER),用于在活细胞中研究与特殊DNA序列相互作用的蛋白。时空和细胞类型特异性基因表达模式由称为顺式调控元件(CREs)的DNA序列控制,它可以通过招募一些蛋白因子来激活或抑制转录复合物的形成。目前已经确定了数千个富含转录因子结合基序的CRE,但其中仅有少数进行了生化表征,因此开发新的工具来定义这些相互作用蛋白是非常必要的。目前,用于识别与感兴趣DNA序列相关蛋白的方法,如CAPTURE、Chap等大多需要交联,这可能会导致偏差的引入。因此,在本文中,作者开发了一种通过近端生物素化定量检测活细胞中短DNA序列(≤80bp)相关蛋白复合物的方法——PROBER。在设计上,PROBER主要需要三种质粒。其中pBait包含目的DNA序列作为“诱饵”,克隆在酿酒酵母GAL4 结合上游激活序列 (UAS) 16的三个串联重复之间;pSprayer质粒表达融合Cal4的枯草芽孢杆菌BASU生物素连接酶(HA tag);pDriver表达SV40大T抗原用于通过它们的 SV40 复制起点对所有质粒进行高拷贝游离扩增。在生物素存在时,结合在UAS序列上的生物素连接酶可以生物素化结合在目标DNA序列上的蛋白复合物,裂解细胞后采用链霉亲和素捕获生物素化的蛋白质,并使用WB或质谱进行检测。为验证方法的可行性,作者检测了YY1(Yin Yang1),发现与乱序的对照组相比,实验组可以有效地富集到YY1,并且同时富集到了与YY1相互作用的 INO80 复合物中的NFRKB 和 RUVBL1 亚基。接下来,作者也将PROBER与DNA pull down法进行了对比,GO 分析表明,通过 DNA pull down鉴定到的大多数蛋白与 RNA 结合有关,而 PROBER 鉴定到的蛋白质与转录控制有关。最后,作者将PROBER技术应用于了hTERT启动子突变体相互作用蛋白的鉴定。hTERT被发现在多种癌症中会产生单个位点突变(C250T、C228A 和 A161C),作者克隆了这些突变并使用PROBER进行富集,发现了一些由于癌症相关突变而增加的启动子调节因子。总的来说,本文开发了一种近端生物素化方法PROBER,用于活细胞中与短DNA序列相关蛋白的检测。
  • 百灵威维生素标样 品种全 保平安 促健康
    维生素(vitamin)是人和动物为维持正常的生理功能而必需从食物中获得的y类微量有机物质,对生命机体的新陈代谢、生长发育和保持健康具有j重要作用。目前,市场上很多食品均含有维生素,其添加种类和成分的多寡,对身体健康与否显然起到举足轻重的关系。因此,百灵威为食品检测提供品种齐全的维生素标样,可协助相关部门快速精确地检测食品中维生素的营养成分及其比例,以保障人们的饮食安全与营养均衡。百灵威作为分析l域行业引l者,拥有全球化大型标样库,产品系列涉及农药、石化、环境、食品、无机、烟草等多个l域。所有化学对照物质都达到或c过了美g化学会z新的分析试剂规格标准,符合ACS 标准、NIST/NVLAP、ISO9001 认证的要求,可满足z高质量控制体系要求,每份标准样品均附带原批次质检报告、材料安全数据卡,确保实验可溯源,并且可以为用户提供专业标样的定制服务。 ■ 水溶性维生素系列标样 产品编号 产品名称 CAS 包装 目录价 VIT-001N 维生素B1盐酸盐 / 硫胺素 Vitamin B1 hydrochloride 67-03-8 1 g ¥195 C 17455500 硝酸硫胺 / 维生素B1硝酸盐 Thiamine mononitrate 532-43-4 0.25 g ¥432 C 17561000 硫代硫胺素 Thiothiamine 299-35-4 1 g ¥540 VIT-002N 维生素B2 / 核黄素 Vitamin B2 83-88-5 1 g ¥195 C 16813610 核黄素磷酸钠 Riboflavine-5 phosphate sodium 130-40-5 0.25 g ¥432 VIT-003N 维生素B6 / 盐酸吡哆辛 / 盐酸吡哆醇Vitamin B6 58-56-0 1 g ¥195 VIT-004N 抗坏血酸 / 维生素C Vitamin C 50-81-7 1 g ¥195 C 10303100 抗坏血酸钙盐 Ascorbic acid calcium salt 5743-28-2 0.25 g ¥432 C 10303900 抗坏血酸钠盐 / 维生素C钠盐 L-Ascorbic acid sodium salt 134-03-2 0.25 g ¥396C 10303930 维生素C棕榈酸酯 / L-抗坏血酸棕榈酸酯Ascorbyl palmitate 137-66-6 0.25 g ¥432 VIT-005N 烟酸 / 吡啶-3-羧酸 / 尼克酸 Vitamin B3 59-67-6 1 g ¥195 VIT-006N 烟酰胺 / 尼克酰胺 / 维生素B3 Nicotinamide 98-92-0 1 g ¥195 C 15521030 烟酸苄酯 Nicotinic acid-benzyl ester 94-44-0 0.25 g ¥360 VIT-007N 叶酸 Vitamin M 59-30-3 1 g ¥195 VIT-008N D-泛酸 / 维生素B5 D-Pantothenic acid 79-83-4 0.1 g ¥370 C 15844500 D-泛酰醇 D-Panthenol 81-13-0 0.5 g ¥936 CA15845000 泛酸钙单水合物 Pantothenic acid calcium salt 63409-48-3 0.25 g ¥360 VIT-009N-R1 D-生物素 / 维生素H / 辅酶R Vitamin H 58-85-5 0.1 g ¥195 VIT-010N-R1 维生素B12 Vitamin B12 68-19-9 0.025 g ¥234 VIT-WSK-R1-SET 水溶性维生素套装,包括:VIT-001N to VIT-010N 10 units ¥1,264 ■ 脂溶性维生素系列标样产品编号 产品名称 CAS号 规格 目录价 VIT-012N 维它命E Vitamin E 10191-41-0 0.1 g ¥273 CA17924320 维生素E醋酸酯 Vitamin E acetate 7695-91-2 0.5 g ¥540 VIT-013N 胆骨化醇 / 维生素D3 Vitamin D3 67-97-0 0.1 g ¥273 CA17924100 骨化二醇 Vitamin D3 25-hydroxy monohydrate 63283-36-3 0.05 g ¥1,134 VIT-014N 维生素A棕榈酸酯 Vitamin A palmitate79-81-2 0.1 g ¥1,206 VIT-015N 维生素E醋酸酯 Vitamin E acetate 7695-91-2 0.1 g ¥273 VIT-016N 维生素K1 / 2-甲基十六碳烯-1,4-萘二酮 Vitamin K1 84-80-0 0.1 g ¥273 VIT-017N 维生素K2 Vitamin K2 11032-49-8 0.1 g ¥1,556 VIT-018N 维生素K3 / 甲萘醌 Vitamin K3 58-27-5 0.1 g ¥273 VIT-019N BETA-胡萝卜素 b-Carotene 7235-40-7 0.01 g ¥389 CA10290900 beta-阿扑-8' -胡萝卜醛 8' -Apoaldehyde 1107-26-2 0.05 g ¥936 VIT-020N 维生素 E 琥珀酸酯 Vitamin E succinate 4345-03-3 0.1 g ¥273 VIT-022N 维生素D2 Vitamin D2 50-14-6 0.1 g ¥273 VIT-FSK-R2-SET 脂溶性维生素套装,包扩:VIT-012N to VIT-022N 10 units ¥2,457 ■ 相关分析耗材产品 产品编号产品名称 规格 目录价 116481 甲醇 99.9% [HPLC/ACS] 4 L ¥180 134752 乙腈 99.9% [HPLC/ACS] 4 L ¥400 187553 水 [HPLC] 4 L ¥375 904802 乙醇 95% 500 mL ¥22 S02001 C18 柱,150 mm× 4.6 mm, 5 &mu m 1 支¥2,500 S02302 C18 柱,250 mm× 4.6 mm, 5 &mu m 1 支 ¥2,800 S010125-3002 AB-1气相柱,30 m × 0.25 mm × 0.25 &mu m 1 支 ¥3,960 S010525-3002 AB-5气相柱,30 m × 0.25 mm × 0.25 &mu m 1 支 ¥3,960 ZTLMGL-4.1 针筒式滤膜过滤器 Ф13 0.2 &mu m(有机相) 100 片/包 ¥150 WKLM-4.2 微孔滤膜 Ф50 0.45 &mu m (有机相) 100 片/包 ¥210 901275 J&K 瓶口分配器(5.0-50.0 mL) 1 支 ¥2,000 958945 J&K单道手动可调移液器(100-1000 &mu L) 1 支 ¥645 928429 J&K磁力搅拌器(数显、加热、不锈钢) 1 台 ¥3,112 5182-0553 螺纹透明样品瓶(蓝色螺纹盖,PTFE红色硅橡隔垫) 100 个/包 ¥527 5182-0728 聚丙烯螺纹瓶盖(无隔垫) 100 个/包 ¥109 5183-4759 高j绿色隔垫(带预穿孔) 50 个/包 ¥699 CER-001-1 1.5 mL标准毛细储存瓶 1 个 ¥240 5183-2086 400 &mu L 脱活的玻璃平底内插管 500 个/包 ¥1,441 5183-4696 单细径锥不分流衬管 25 个/包 ¥6,030 5183-4693 单细径锥,带玻璃毛不分流衬管 5 个/包 ¥1,460 5188-5365 衬管O形圈 10 个/包 ¥143 5188-5367 进样口密封垫(配备垫圈,*金属铸模工艺,镀金密封工具包) 1 个 ¥389
  • 岛津原子力显微镜——KPFM在光催化中的应用
    二氧化钛(TiO2)是一种宽禁带N型半导体,其表面受到光的照射时,若光子的能量大于或等于其禁带宽度(波长低于400nm的紫外光),价带的电子将受到激发跃迁至导带,形成自由电子,同时带正电荷的空穴留在价带上,从而产生了电子-空穴对。电子和空穴分别发生氧化和还原反应,使反应体系中的原子基团被催化分解,完成光催化的功能。因此TiO2纳米颗粒有良好的光催化功能。但是因为TiO2纳米颗粒吸收截面非常小,所以光激发产生的电子与空穴复合率高,导致光催化效率降低。如何提高TiO2纳米颗粒对近紫外光的吸收截面是提升其光催化性能的一条重要途径。 通过研究发现,加入贵金属纳米颗粒可以提高电荷转移的效率,降低电子与空穴的复合率,从而提高其光催化性能。其可能的原因是贵金属纳米颗粒与光相互作用时表面产生等离子体共振,完成了能量传递,增加了光催化能力。 金纳米颗粒(AuNP)增强光催化是当前能源、环境领域的一个研究热点。AuNP和TiO2的复合材料的催化机理已被广泛研究,反应过程中对表面电荷的分布进行观察可以有效阐明催化过程。原子力显微镜的开尔文探针力显微镜(KPFM)功能是一种将开尔文定律应用于扫描探针显微镜(SPM)的分析技术,不仅可以测量样品的表面形状,还可以测量样品的表面电位分布。 因此,尝试在紫外光照射下的对AuNP和复合材料进行表面KPFM扫描,可表征样品表面上的光致电荷分布(电荷分离)。 利用生物素-链霉亲和素复合物可将AuNP有效结合到TiO2颗粒表面。设计实验,制备两种样品,一种是没有生物素-链霉亲和素复合物的对照样品,以及使用生物素-链霉亲和素复合物的样品,在照射紫外光及不照射紫外光的条件下,分别测量固定在TiO2上的AuNP的表面电位分布,以可视化光致电荷分布。 生物素-链霉亲和素复合物与AuNP作用示意图 AuNP与TiO2 复合材料表面电位分布测量图 岛津SPM-9700HT使用光照射单元通过光纤对样品表面进行紫外光照射 没有生物素-链霉亲和素复合物作用下分散在TiO2表面上的AuNP形貌图与电势分布图 有生物素-链霉亲和素复合物作用下分散在TiO2表面上的AuNP形貌图与电势分布图 从上面两组图可以看出,这两种样品,在紫外光照射时AuNP的相对电位都低于TiO2表面的相对电位。 没有生物素-链霉亲和素复合物(蓝色),有生物素-链霉亲和素复合物(红色)时AuNP对TiO2表面的相对电位统计对比 将两种样品在有紫外光照射和没有紫外光照射情况下的表面电位进行统计分析。白色框图柱表示没有紫外光照射,颜色柱表示有紫外光照射。误差条显示6-7个粒子的测量值的中值±IQR。当AuNP形成组装体时,在紫外光照射下AuNP与TiO2表面的相对电位显着降低。 本实验通过在紫外光照射下通过KPFM测量表面电位分布,实现了固定在TiO2上的AuNP杂化物的光致电荷分布的可视化。这表明使用SPM的KPFM 模式,辅助以光照射单元可以有效地观察光催化是表面的电荷分离情况。 本文内容非商业广告,仅供专业人士参考。
  • 牛津团队成果:利用光脱笼核酸实现对无细胞翻译系统的精确调控
    大家好,本周为大家分享一篇发表在J. Am. Chem. Soc.上的文章Precise, Orthogonal Remote-Control of Cell-Free Systems Using Photocaged Nucleic Acids,通讯作者是来自牛津大学的Michael Booth,他的课题组专注于核酸相关生物技术的开发。  无细胞表达(CFE)是指通过天然或合成DNA的体外转录和翻译实现RNA或蛋白质合成的技术,在高通量药物筛选和生物过程分析等研究中有重要的应用。然而,目前缺乏一种能有效控制CFE系统的手段,阻碍了该技术的进一步推广。在本文中,作者通过引入光脱笼核酸实现了对CFE系统的光控开启与关闭。  反义寡核苷酸(ASOs)是一类短DNA序列,可以在RNase H的存在下选择性降解目标mRNA。为了实现对ASOs活性的光化学控制,作者在其序列的若干个T碱基上进行化学衍生,通过UV切割linker连接上生物素,并与单价链霉亲和素孵育形成复合物。由于生物素与链霉亲和素这个体积巨大的复合物存在,ASO无法与底物产生有效结合,只有在光脱除后才会激活。  首先,作者设计了三条靶向mVenus的mRNA的ASO序列,它们都在不同位置有3个T碱基被光脱笼类似物取代。在UV或蓝光照射下,这些ASO都能脱去生物素片段,而凝胶电泳实验也证明只有光脱笼后它们才能有效切割mVenus的mRNA。在经过了进一步设计上的优化后,作者将改良的ASO uvLA-V3加到商用的CFE试剂盒中以测试其对于蛋白表达的控制效果。实验表明,在UV照射下uvLA-V3能够抑制接近90%的蛋白表达。  作者此前根据相同的思路开发过光激活CFE系统的技术,简而言之,就是将目标蛋白mRNA上游的T7启动子用蓝光切割linker连接上几个生物素,通过空间排斥阻碍mRNA转录,从而使得目标蛋白在蓝光照射后才能启动表达。考虑到这两个蓝光切割和UV切割linker的正交性,作者尝试将二者相结合,得到一个双向控制的蓝光-ON/UV-OFF开关,并成功在CFE系统中实现了蛋白表达的激活与抑制。    综上,作者利用ASO开发出了CFE系统的光控OFF开关,结合作者此前开发的ON开关,二者共同组成了用于精确控制CFE系统的化学工具,拓宽了CFE技术在分子医学与合成生物学等领域的应用前景。  本文作者:TZY 责任编辑:TZY  原文链接:https://pubs.acs.org/doi/full/10.1021/jacs.3c01238文章引用:DOI: 10.1021/jacs.3c01238
  • 可生食鸡蛋的检测标准不明
    随着养生潮的兴起,杭州百姓生活中兴起各种“食尚主义”,一颗蛋上的标签也越来越多——近日,一种标明了“高营养、可生食”的生鲜鸡蛋进驻万象城、联华超市及一些高端食材店,生食鸡蛋这种始终在民间流传的食用方法再次走入大众视野。   有位MM,一个星期要吃三个生鸡蛋   可专家有冷水要泼:鸡蛋生食不靠谱   家住解放东路的裴娜,每星期都要去买一盒“可生食鸡蛋”。在她看来,这批号称使用日本技术出产的生食鸡蛋,让她很放心。“从小爸爸说生鸡蛋最营养,所以他让我每星期吃三个生鸡蛋。”   裴娜是典型的“生食鸡蛋高营养”论信奉者,而且在各地持有同样观点的老百姓不在少数。   但原杭州蛋鸡试验场总畜牧师袁映创想给她泼盆冷水。袁映创和鸡蛋打了半辈子交道,在专业类杂志上发表过有关营养保健蛋和鸡蛋营养的研究论文。在他来看,可生食鸡蛋并不靠谱。   “生鸡蛋里头有一种‘抗生物素蛋白’,会把生物素(维生素H)给破坏掉,使得鸡蛋里的一些营养物质没法被人体所吸收。”袁映创说如果长期使用生鸡蛋,严重的时候,人会感觉乏力,有的还会引起过敏、皮肤病,肌肉痛等。   此外,生鸡蛋里还有一种抗胰蛋白酶,不利于消化吸收。而鸡蛋生出来的时候,毕竟是经过鸡的生殖器官出来的,容易带菌带寄生虫卵。虽然鸡蛋表面看来光滑细致,但袁映创告诉记者其实蛋壳上遍布小孔:“你在打蛋的时候,不小心碰到蛋壳那生鸡蛋就污染了 鸡蛋刚生出来的时候外面有一层保护膜,一周左右保护膜被酶解,细菌就会透过蛋壳上的小孔跑进去了。”   而那些跑进去的细菌,对人体最有害的就是大肠杆菌和沙门氏菌。   即使解决了这些细菌问题,生鸡蛋的蛋白质结构比较致密,又是流体。在胃里停留时间短,蛋白质也不容易吸收消化。   记者也从浙江农林大学动物科学类鸡禽方面的专家赵阿勇老师得到了同样的观点。他补充说:“据检测,抗生物素蛋白在85摄氏度时,依然不会失活。因此对青少年的生长发育不但没有好处,还会有影响。这是一个误区。”   那什么样的鸡蛋最具营养价值,两名专家的答案完全一致——白煮蛋。   可生食鸡蛋,一个价格超3块   高价背后,厂家底气十足   记者在杭州各农贸市场跑了一圈,询问了一些商户,问题只有一个:你们卖的鸡蛋,你们会生吃吗?得到的回答比较集中:不会。有摊贩很直接:谁也说不清现在的鸡饲料里有没有加激素,加了多少,所以现在一般不太敢吃生鸡蛋。   在一家超市的冷藏柜中,记者找到了一批号称“可生食”的生鲜鸡蛋,6个装的售价为18.8元人民币,折合下来每个鸡蛋的价格超过3元。在产品包装上,这批生鲜鸡蛋写明生食期限为15天,常温下保质期限为30天。   世纪联华庆春店负责生鲜鸡蛋的柯处长告诉记者,这类鸡蛋因为价格很高,因此销售量属于中等,但购买的人一般都是20~35岁之间的年轻人。   高价背后,是否具有足够的卫生营养保证?记者联系上了这家日资企业的销售经理陈先生。   对于记者关于安全方面的疑问,他告诉记者,大肠杆菌一般存在于鸡蛋表面,他们公司有专门的机械方法对此进行处理,同时在出厂时也会有专门的卫生处理,另外对于存在于蛋黄内的沙门氏菌,他们也在饲料内加入了特殊的酵母菌用来抑制沙门氏菌的生长。同时,在菌落总数方面质监局的标准是在10万个单位以下,而他们的菌落总数远低于这个标准,基本都在10个单位以下。另一方面,为了产品卫生,他们的流水线每天都会进行酒精消毒,而工厂和其他设备也会每天进行消毒处理。   他很骄傲地告诉记者,他们与上海南汇质监局有着长期合作关系,每个月都会有几次质监局的随机检测,以做好对产品卫生及质量的把关。   那么,蛋清中的抗生物素蛋白呢?陈经理无法再侃侃而谈,只是和记者一再强调他们的可生食鸡蛋是按照食品标准来进行的,而抗生物素蛋白不属于检测标准内。之后,他拒绝再回答关于抗生物素蛋白的任何问题,并告诉记者在饲养及饲料方面都是由日本公司技术人员负责,如果有疑问可写邮件亲自向日方提出。   记者随后与上海南汇质监局的赵所长取得了联系。他说:“我们这边是企业委托检测鸡蛋指标的,也只是对该公司所提供的来样进行检测。”   而对于他们的检测标准,赵所长的回答则是根据他们的企业标准来进行衡量是否合格,“所谓的企业标准就是企业自己定义的标准,一般都会高于国家或行业标准,同时也要经过卫生局等相关部门备案通过。”   杭州市工商局处长朱飞也告诉记者,工商局对于商场产品的检测都是根据每一批产品各自的标准来进行,可目前没有专门针对可生食鸡蛋的食品标准。   那么,能生吃的鸡蛋,到底和普通鸡蛋有什么不同呢?   温岭市合兴禽业发展有限公司的老总杨女士告诉记者,在鸡农看来,只要鸡的生长环境干净,饲料成分健康,如用玉米粒或直接用稻谷喂养的鸡产下的鸡蛋一般都可以直接食用,像他们自己偶尔也会生吃几个鸡蛋的,但最好是刚出生就马上吃。   而杭州萧山志伟家禽有限公司的沈经理则坦言自己从来不吃生鸡蛋,当记者提及生鸡蛋内含有一些有害因素时,沈经理给了记者一个让人啼笑皆非的答案:“鸡蛋本身营养价值很高,所以即使含有一些有害的,也和有用的相抵了。”   杭州有名的健身达人傅建陈以前是无蛋不欢,但现在他说健身房已经没人生吃鸡蛋:“以前我们认为生吃鸡蛋营养价值比煮熟的更高,这是向国外运动员借鉴过来的经验,那时候吃的都是农村一些家养的土鸡蛋。但是现在大部分人都选择水煮蛋了,因为怕不卫生。”   你的家乡流行吃生鸡蛋吗   对于生鸡蛋的种种吃法,浙江各地习俗不尽相同,不少地方的说法也是南辕北辙。   1在浙西淳安一带,当地有句关于吃鸡蛋的俗语,叫“一生二发,三煮四摊”,意思就是说,吃鸡蛋是非常有讲究的:一生,是指生鸡蛋的营养含量最高 二发,意思是用开水或热饮冲生鸡蛋,营养价值次之,比如打两个生鸡蛋到碗里,再倒入稀饭,搅拌后食用 再接下来,就是白煮蛋 四摊的摊,有点类似于摊大饼的摊,指的是煎鸡蛋,这属于营养较差的品种。   2浙北湖州一带,民间相传蛋形如心,而且生鸡蛋具有很足的阳气,吃生鸡蛋可以补气。   3杭州及周边郊县一带,民间的说法是生鸡蛋可以吃,但必须是新鲜的生鸡蛋,最好是刚产下不久的生鸡蛋。不过,对于杭州人来说,还是糖氽蛋比较普遍一些。所谓糖氽蛋,就是把生鸡蛋敲开,飘在开水中稍煮一下即可捞起,这时的鸡蛋黄往往还是半生不熟的液体。   而在浙东、浙南一带,糖氽蛋再加上桂圆、红糖等,经常被用来伺候给坐月子的产妇吃。
  • 大分子互作出类拔萃,小分子互作不咸不淡?用“实例”证明“实力”
    近年来,分子互作分析仪市场涌现出很多新品牌、新产品参与市场竞争,技术多元化,“百花齐放”。目前国内外分子互作分析仪厂商已涌现近20余家,为帮助广大科研工作者了解前沿分子互作分析技术、增强业界相关人员之间的信息交流,同时也为用户提供更丰富的分子互作分析产品与技术解决方案,仪器信息网特别策划了《“百舸争流”,谁将成为下一代金标准?——分子互作技术与应用进展》专题。本期,我们特别邀请到赛多利斯生物分析高级应用经理陈涛先生谈一谈赛多利斯的分子互作技术以及应用进展。赛多利斯生物分析高级应用经理 陈涛陈涛,赛多利斯生物分析高级应用经理,从事生物层干涉技术(BLI)类产品的技术支持12年,有着丰富的Octet®使用和troubleshooting经验,承担了国内华东地区现有客户的售后支持,并多次举办了在线培训和其他各种形式的培训班。在他的支持下,目前仅国内利用生物层干涉技术发表的SCI就有500余篇,是互作技术领域非常知名的“陈老师”生物层干涉(BLI)技术是一种非标记技术,可实时提供高通量的生物分子相互作用信息。此技术采用”浸入即读”的生物传感器对样品直接进行检测,无需对检测样品做任何荧光或同位素标记【1】,也不存在流路系统,从而实现更简便、更快速的分子互作定量分析。2020年,BLI技术被收录于美国药典1108章节,成为药物结合活性分析的标准方法之一。作为将BLI技术应用于分子互作检测的开创者和引领者,赛多利斯Octet®分子互作分析系统被广泛应用于包括蛋白、抗体、病毒颗粒、疫苗、多肽、小分子以及DNA/RNA等各类生物分子间相互作用分析。BLI技术的动力学分析可用于检测相互作用的亲和力以及可逆的非共价结合的结合常数(kon)、解离常数(koff)以及亲和力常数(KD)。典型的非共价结合由静电作用、氢键、范德华力和疏水作用组成。分子之间的特异性相互作用对生物学的许多过程以及药物研发至关重要【2】。凭借高通量、非标记、实时定量且无液路的特点,Octet®在大分子相互作用分析和生物药研发领域具有突出优势。越来越多的高分文献及应用实例证明了BLI技术在小分子、化合物片段、未知样品垂钓、竞争分析等应用中表现优异,传感器分析模式也更容易开发灵活和创意的检测方案。BLI技术在小分子互作分析的应用案例BLI技术用于片段化合物筛选基于生物传感器的片段化合物筛选是药物研发过程中一个非常具有价值的工具。这种方法优于许多其他的生化方法,因为苗头化合物可有效地通过具体的结合图谱以及响应值从非特异性或非理想的相互作用中区分开来,从而降低假阳性。BLI技术通过监测生物分子结合导致的光的干涉图谱的变化实现分子间的相互作用的实时检测。Charles A. Wartchow等【3】将重组表达纯化得到AVI-Tag生物素标记的蛋白或通过体外的方式标记生物素(biotin-LC-LC-NHS)固化至链酶亲和素传感器上。通过缓冲液建立基线噪音信号,以基线噪音信号的3倍标准差为阈值筛选苗头化合物(图1)。使用了包含6500种化合物的片段文库,以BCL-2、JNK1、eIF4E等蛋白为靶点进行了筛选,比较了这些靶点的苗头化合物的比率。图1 根据化合物的信号值筛选苗头化合物【3】Francesca E. Morreale等【4】同时使用差示扫描荧光(DSF)和BLI技术筛选E2泛素连接酶Ube2T的抑制剂。将Ube2T固化在链霉亲和素传感器上,对片段库的化合物进行筛选。利用DSF方法筛选出4种化合物,而采用BLI方法也筛选出4种化合物,其中有2种是同时用两种方法都筛选了出来。所有六种化合物用核磁共振(NMR)进行了验证并确认这些化合物在靶点蛋白上的结合位点。新冠病毒的RNA依赖的RNA聚合酶(RdRp)是理想的抗病毒靶点。中国医学科学院的研究人员【5】首先通过基于结构的虚拟筛选,选择结合最强的几十个hits,通过Octet高通量分析这些化合物与靶点SARS-CoV-2 RdRp的结合活性,发现Corilagin (RAI-S-37)作为SARS-CoV-2 RdRp的非核苷抑制剂,KD值达到0.54 μM。在细胞外和细胞活性检测中均能有效抑制聚合酶活性。Corilagin具有良好的安全性和药代动力学的数据,使其成为新冠肺炎潜在的治疗药物。化合物为分析物的亲和力检测 化合物药物与靶点的动力学参数是非常重要的表征参数,直接影响到了化合物在体内的半衰期以及所需的药物剂量。苗头化合物的亲和力通常比较低(10uM),而通过修饰改造后的小分子化合物的亲和力可以化合物为固化物的亲和力检测考虑到空间位阻与修饰后化合物的活性,一般在化合物的非活性基团上偶联一个生物素,再将化合物固化在链霉亲和素传感器上,并且生物素与小分子之间有10个碳的连接臂。Basudeb Maji等【7】利用BLI技术筛选cas9的小分子抑制剂,并且合成了生物素化的小分子,固化在链霉亲和素传感器上,然后和七个浓度的Cas9/gRNA复合物结合,测得亲和力为700 nM(图3)。 图3 化合物与不同浓度的Cas9/gRNA复合物的结合解离图,右边为生物素化小分子的结构【7】如果化合物有氨基,也可以用氨基偶联传感器对化合物进行固化。Terry F. McGrath等【8】将软骨藻酸(Domoic acid),固化在氨基偶联传感器上,用竞争法检测软骨藻酸的浓度,灵敏度可以达到2 ng/mL。另外,化合物也可以偶联在诸如牛血清白蛋白(BSA)等载体蛋白上,然后疏水固化在传感器上。Melanie Sanders等【9】将鸡卵白蛋白(OVA)偶联的呕吐毒素固化在疏水传感器上,与呕吐毒素的抗体反应,其亲和力在pM级别。化合物竞争实验如果已知某化合物与蛋白结合,需要观察另一个化合物是否阻断这种结合。可以参考前面“化合物为固化物的亲和力检测”部分将化合物进行固化,然后检测另一个化合物与蛋白的混合物。Kahina Hammam等【10】将生物素化的Masitinib固化在链霉亲和素传感器上,然后检测Imatinib与脱氧胞苷激酶(dCK)的混合物。如果Imatinib与Masitinib结合的是dCK的同一位点,那么dCK/Imatinib复合物就不会和Masitinib结合了。图4 竞争法实验示意图【10】通过竞争实验可见,Masitinib与Imatinib几乎完全竞争,这证明了他们的结合位点一致。但是与核苷类化疗药物(吉西他滨、阿糖胞苷和地西他滨)竞争关系不明显。BLI技术还可以检测化合物是否可以阻断受体配体的结合,并计算IC50。Zhu J 等【11】用BLI技术检测化合物NUCC-555对激活素(activin)和其配体结合的影响。将激活素配体ALK4-ECD-Fc固化至ProA传感器上,检测激活素与不同浓度NUCC-555的混合物。随着NUCC-555的浓度提高,由于NUCC-555与ALK4-ECD-Fc竞争结合激活素导致激活素与ALK4-ECD-Fc结合信号降低,IC50大概为1.6 μM。由此证明NUCC-555是选择性的竞争抑制激活素和其配体的结合。总结BLI技术不仅可以用来检测化合物与蛋白、细胞的相互作用【12】,也可以检测化合物与DNA/RNA【13,14】等其他物质的相互作用。应用BLI技术可以灵活的设计相互作用实验,比如将小分子固化或者蛋白质固化。固化方式可以根据蛋白所带的标签决定:组氨酸融合标签可以用NTA传感器或者已经固化了组氨酸标签抗体的传感器;如果蛋白带有生物素标签,可以用链霉亲和素传感器。一般来说,为了克服空间位阻和获得比较高的固化密度,建议选择链霉亲和素传感器固化蛋白。一般分析物需要知道明确的分子量和摩尔浓度才能获得结合常数(ka)和亲和力常数(KD)。分析物的分子量检测下限约为150 Da, Chenyun Guo等【15】用BLI技术成功检测了分子量142 Da的化合物并且获得了可观的信号(0.1 nm)。总之,BLI技术可以实现对相互作用更加定量化地测定,非常适合亲和力比较低的化合物检测。化合物解离比较快,传统方法有洗涤等步骤,可能造成结合的小分子被洗掉后产生假阴性结果。另外传统方法多数需要标记,可能改变靶点分子的构象,产生假阳性结果。BLI技术的非标记和实时检测能够克服传统方法的弊端,因此,小分子相互作用检测结果更加真实可靠。参考文献:1.A, Sultana. et al. Measuring protein‐protein and protein‐nucleic acid interactions by biolayer interferometry. Current protocols in protein science. 2015,79:19.25.1-262.Concepcion, Joy. et al. Label-free detection of biomolecular interactions using Biolayer interferometry for kinetic characterization. Combinatorial Chemistry & High Throughput Screening.2009,12(8):791-8003.Wartchow, C. A. et al. Biosensor-based small molecule fragment screening with biolayer interferometry. J. Comput. Aided Mol. Des.2011, 25 :669-6764.Francesca E. Morreale. et al. Allosteric Targeting of the Fanconi Anemia Ubiquitin-Conjugating Enzyme Ube2T by Fragment Screening. J. Med. Chem.2017, 60:4093-40985.Li Q, et al. Corilagin inhibits SARS-CoV-2 replication bytargeting viral RNA-dependent RNA polymerase, Acta Pharmaceutica Sinica B, 2021.6.Chen P. et al. Discovery and Characterization of GSK2801, a Selective Chemical Probe for the Bromodomains BAZ2A and BAZ2B. Journal of medicinal chemistry,2016,59(4) :1410-14247.Basudeb Maji. et al. A High-Throughput Platform to Identify Small-Molecule Inhibitors of CRISPR-Cas9. Cell,2019,177:1067-10798.Terry F. McGrath. et al. An evaluation of the capability of a biolayer interferometry biosensor to detect low-molecular-weight food contaminants. Anal Bioanal Chem.,2013,405:2535-25449.Melanie Sanders. et al. Comparison of Enzyme-Linked Immunosorbent Assay, Surface Plasmon Resonance and Biolayer Interferometry for Screening of Deoxynivalenol in Wheat and Wheat Dust. Toxins,2016, 8, 10310.Kahina Hammam. et al. Dual protein kinase and nucleoside kinase modulators for rationally designed polypharmacology. Nature Communications,2017,8:1420.11.Zhu J. el al. Virtual high-throughput screening to identify novel activin antagonists. J. Med. Chem.,2015,58:5637–564812.Verzijl, D. et al. A novel label-free cell-based assay technology using biolayer interferometry. Biosensors & Bioelectronics,2017,87:388-39513.Ting-Yuan Tseng. et al. Binding of Small Molecules to G-quadruplex DNA in Cells Revealed by Fluorescence Lifetime Imaging Microscopy of o-BMVC Foci. Molecules.,2019,24(1), 3514.Ezequiel-Alejandro Madrigal-Carrillo. et al. A screening platform to monitor RNA processing and protein-RNA interactions in ribonuclease P uncovers a small molecule inhibitor. Nucleic Acids Research,2019,47(12): 6425–643815.Chenyun G. et al. Anti-leprosy drug Clofazimine binds to human Raf1 kinase inhibitory protein and enhances ERK Phosphorylation. Acta Biochem Biophys Sin. ,2018,1-6
  • ELISA试剂盒告诉你鸡蛋应该怎么吃
    一、鸡蛋与豆浆同食降低营养价值  人们经常食用豆浆冲鸡蛋,认为两者都富含蛋白质,食之对身体有益,从科学饮食角度讲,豆浆性味甘平,含植物蛋白、脂肪、碳水化合物、ELISA试剂盒维生素、矿物质等很多营养成分,单独饮用有很好的滋补作用。  但两者不宜同食。因为生豆浆中含有胰蛋白酶抑制物,它能抑制人体蛋白酶的活性,影响蛋白质在人体内的消化和吸收,鸡蛋的蛋清里含有粘性蛋白,可以同豆浆中的胰蛋白酶结合,使蛋白质的分解受到阻碍,从而降低人体对蛋白质的吸收率。二、吃未熟鸡蛋易引起腹泻  鸡蛋蛋白含有抗生物素蛋白,会影响食品中生物素的吸收,使身体出现食欲不振、全身无力、肌肉疼痛、皮肤发炎、脱眉等症状。鸡蛋中含有抗胰蛋白酶,影响人体对鸡蛋蛋白质的消化和吸收。未熟的鸡蛋中这两种物质没有被分解,因此影响蛋白质的消化、吸收。鸡蛋在形成过程中会带菌,细菌会穿过蛋壳上的小孔,进入蛋内,而未熟的鸡蛋又不能将细菌杀死,轻则会引起腹泻。因此鸡蛋要经高温煮后再吃,不要吃未熟的鸡蛋。  生鸡蛋的蛋白质结构致密,有很大部分不能被人体吸收,只有煮熟后的蛋白质才变得松软,人体胃肠道才可消化吸收。生鸡蛋有特殊的腥味,会引起中枢神经抑制,使唾液、胃液和肠液等消化液的分泌减少,从而导致食欲不振、消化不良。三、炒鸡蛋放味精破坏鲜味  鸡蛋中含有氯化钠和大量的谷氨酸,ELISA试剂盒这两种成分加热后天生谷氨酸钠,有纯正的鲜味。味精的主要成分也是谷氨酸钠,炒鸡蛋时假如放进味精,会影响鸡蛋本身合成谷氨酸钠,不但破坏鸡蛋的鲜味,对菜肴起不到增加鲜味的作用。四、吃煮老的鸡蛋影响吸收  鸡蛋煮老未必更好,因为一项研究文献表明,鸡蛋煮老后会增加营养素的损失和脂肪的氧化。研究发现,煮老的蛋和炒鸡蛋相比,其维生素E的损失要大16%,而且脂肪氧化程度要高30.4%。研究者还发现,对于富含omega-3脂肪酸的鸡蛋来说,烹调会增加其脂肪氧化程度3-9倍之多。鸡蛋煮得时间过长,蛋黄表面会形成灰绿色硫化亚铁层,很难被人体吸收。蛋白质老化会变硬变韧,鸡蛋会变得很硬,既不好吃,又影响消化吸收。  煮蛋小贴士:把鸡蛋放冷水中,大火煮开之后,马上转最小火,四五分钟之后把火关掉,用余热把鸡蛋焖熟。这样煮出来的鸡蛋,蛋清柔嫩,蛋黄滋润,吃起来就美味多了。五、鸡蛋与糖同煮导致血液凝固  因为在长期加热的条件下,鸡蛋中的氨基酸与糖之间会发生化学反应,结果生成一种叫糖基赖氨酸的化合物,破坏了鸡蛋中对人体十分有益的氨基酸成分。所产生的化合物不仅不容易被人体所吸收,还带有毒性,而且这种物质有凝血作用,ELISA试剂盒进进人体后会造成危害。  如需在煮鸡蛋中加糖,应该等稍凉后放进搅拌,味道不减。
  • 史上最精准的测序技术诞生啦!
    传统的高通量测序会产生不少错误,掩盖基因组中的罕见突变。前不久科学家们开发了一种新测序法,能够成功从背景噪音中分离出信号,实现极为准确的测序。   肿瘤是异质性细胞的混合体,测序可以检测其中的罕见突变,但成本较高而且容易出现错误。华盛顿大学的研究团队为此开发了新测序技术,将靶序列纯化与高精度的DNA测序法结合起来。这一成果发表在近日的Nature Methods杂志上。   &ldquo 这一技术可以帮助人们检测那些能够抵抗靶向性药物的突变,更好的监控癌症复发情况,&rdquo 文章的资深作者,华盛顿大学的Lawrence Loeb说。&ldquo 它可以与全基因组测序结合,为癌症治疗提供指导性的信息。&rdquo   这一测序技术主要是用生物素化的DNA寡核苷酸进行两轮捕获,然后进行双重测序。双重测序是Loeb等人之前开发的高精度测序技术,使用特殊的分子标签分别扩增和测序DNA的两条链。如果两条链同一个位置上出现突变,该突变就被认为是真实的 如果只在一条链上出现突变,该突变就被认为是测序错误。   研究人员使用生物素化的探针,在人类基因组中捕获ABL1基因的外显子。ABL1基因与伊马替尼(imatinib)抗性有关,伊马替尼是一种治疗慢性粒细胞白血病CML的药物。他们通过两轮捕获得到了极高的测序深度和覆盖度(与传统方法相比)。(延伸阅读:遗传学大牛Nature发表新技术:单分子互作测序)   研究人员选择的是一名在接受伊马替尼治疗后复发的CML患者。传统高通量测序没有检测出任何与药物抗性有关的突变,而他们的新技术鉴定到了E279K突变,已知这个突变能够抵抗伊马替尼。   对外显子组或者基因组进行双重测序的成本很高,但这种技术很适合测序较小的基因组区域,比如某个人类外显子或者人类样本中的病毒序列。   研究人员准备用这一技术在不同癌症患者中研究他们对药物的敏感性和疾病复发的风险。他们还将进一步优化这一技术,以便测序单个循环肿瘤细胞。&ldquo 除了癌症以外,这个技术还可以用于法医检测,&rdquo 文章的第一作者,华盛顿大学的Michael Schmitt说。&ldquo 这一技术可以帮助人们解决更多的生物学问题。&rdquo
  • 内江市某公司通过仪器信息网成功订购远慕KIM-1蛋白和人L-FABP蛋白
    上海远慕是国内elisa试剂盒优质供应商,本司代理销售不同elisa试剂盒品牌的进口/国产elisa试剂盒,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询! 内江市某公司通过仪器信息网成功订购远慕KIM-1蛋白和人L-FABP蛋白: ELISA的样本实验准备 在收集样本前都必须有一个完整的计划,必须清楚要检测的成份是否足够稳定。对收集后当天就进行检测的样本,及时储存在4℃备用。对于隔天再检测的样本,及时分装后冻存在-20℃备用,有条件的,最好-71℃冻存备用。标本反应(此时蓝色立转黄色)。终止液的加入顺序应尽量与底物液的加入顺序相同。为了保证实验结果的准确性,底物反应时间到后应尽快加入终止液。 8.用酶联仪在450nm波长依序测量各孔的光密度(OD值)。 在加终止液后15分钟以内进行检测。 注: 1. 用户在初次使用试剂盒时,应将各种试剂管离心数分钟,以便试剂集中到管底。 2. 每次实验留一孔作为空白调零孔,该孔不加任何试剂,只是最后加底物溶液及2N H2SO4。测量时先用此孔调OD值至零。 3. 为防止样品蒸发,试验时将反应板放于铺有湿布的密闭盒内,酶标板加上盖或覆膜。 4. 未使用完的酶标板或者试剂,请于2-8℃保存。标准品、生物素标记抗体工作液、辣根过氧化物酶标记亲和素工作液请依据所需的量配置使用。请勿重复使用已稀释过的标准品、生物素标记抗体工作液或、辣根过氧化物酶标记亲和素工作液。 5. 建议检测样品时均设双孔测定,以保证检测结果的准确性。 洗板方法 手工洗板方法:吸去(不可触及板壁)或甩掉酶标板内的液体;在实验台上铺垫几层吸水纸,酶标板朝下用力拍几次;将推荐的洗涤缓冲液至少0.3ml注入孔内,浸泡1-2分钟。根据需要,重复此过程数次。 自动洗板:如果有自动洗板机,应在熟练使用后再用到正式实验过程中。 计算 以标准物的浓度为横坐标(对数坐标),OD值为纵坐标(普通坐标),在半对数坐标纸上绘出标准曲线,根据样品的OD值由标准曲线查出相应的浓度;再乘以稀释倍数;或用标准物的浓度与OD值计算出标准曲线的直线回归方程式,将样品的OD值代入方程式,计算出样品浓度,再乘以稀释倍数,即为样品的实际浓度。 注意事项 1. 当混合蛋白溶液时应尽量轻缓,避免起泡。 2. 洗涤过程非常重要,不充分的洗涤易造成假阳性。 3. 一次加样时间最好控制在5分钟内,如标本数量多,推荐使用排枪加样。 4. 请每次测定的同时做标准曲线,最好做复孔。 5. 如标本中待测物质含量过高,请先稀释后再测定,计算时请最后乘以稀释倍数。 6. 在配制标准品、检测溶液工作液时,请以相应的稀释液配制,不能混淆。 7. 底物请避光保存。 8. 不要用其它生产厂家的试剂替换试剂盒中的试剂。 我们给这位客户介绍了该产品并报完价格发去产品说明书,客户和我们沟通的非常顺畅,了解我们的产品后,客户对我们非常有信心,当即就下了订单,下面是和客户的沟通记录: 远慕生物,专业供应科研实验所需的培养基,抗体,动物血清血浆,标准品对照品,化学试剂,酶联免疫试剂盒,白介素试剂盒,金标检测试剂盒,微生物,蛋白质,ELISA种属涵盖广,凭借多年行业经验,完善的售后服务,高质量的产品,赢得客户一致好评,欢迎来电咨询与订购!
  • ELISA方法学开发实践版3:杂交瘤和噬菌体展示筛选方法开发
    双十一结束小奥的购物车都清空了没法儿给你抄了我借ELISA实践笔记给你抄快到期末/年底了实验汪们可要抓紧搬砖咯前面三份笔记拉到文末看哦以下,可都是尖货儿哟!??Part 1 —— 前 言 | ELISA方法用于杂交瘤和噬菌体展示筛选是最为广泛的高通量的抗体发现的筛选方法,其实质是亲和力测定方法的一种变种,其目的是需要建立ELISA信号值和样品亲和力大小之间的正相关性。相对于采用ELISA进行抗体的亲和力测定方法,用于杂交瘤和噬菌体展示筛选的ELISA方法有以下难点:1.待测样本极具多样性,且单一样品通常也是混合物,有很大的可能存在非特异吸附;2.不同的待测样品之间可能存在较大的浓度差异,浓度的大小和亲和力的大小均会对检测结果产生影响。在进行杂交瘤和噬菌体展示筛选方法开发时,需要选择合适的条件使信号值主要能够表征亲和力的大小而一定程度上忽略浓度差异造成的影响。本文是ELISA定量测定方法开发和亲和力测定方法开发的进阶版本,配体受体反应的基本原理解析,和两种应用的差异性区分是进行ELISA筛选方法的开发的基础。 Part 2 - 原理解析 - ELISA信号值和亲和力大小的关系 无论是进行杂交瘤的筛选还是噬菌体展示的筛选,其化学原理的实质是抗体和抗原可逆的相互作用,John McCafferty在Phage Display of Peptides and Proteins A Laboratory Manual一书的第七章节Phage Display:Factors Affecting Panning Efficiency中对可逆反应的数学原理有过理论的推导和实验的验证,简而概之可以用下面的公式进行描述:Abinput代表可逆反应中抗体的加入量,Aginput 代表可逆反应中抗原的加入量,Kd代表Ab和Ag的亲和力大小。由公式可知,当反应完成时,形成的抗原抗体偶联物占抗体的加入量的比值(proportion bound),是一个与抗原的加入量和亲和力大小这两个参数相关的特征函数。具体在ELISA测定过程中当抗体的加入量是恒定值时,proportion bound可以用检测的信号值来等价表示,在ELISA反应中抗原的加入量和Kd将决定信号的大小。相同浓度的抗体,因为亲和力不一样,在同一抗原浓度下其proportion bound的比例也不一样,用具体的图形演示如下图:红色实线是亲和力为1nM的抗体Ab1随抗原浓度变化其proportion bound的函数曲线,蓝色实线是亲和力为10nM的抗体Ab2随抗原浓度变化其proportion bound的函数曲线,绿色虚线为在相同抗原浓度下,Ab1/ Ab2 proportion bound的比值。在抗原浓度为10nM的条件下,90%的Ab1(Kd=1nM)和50%的Ab2(Kd=10nM)能够形成抗体抗原偶联物,作为ELISA检测的信号值,Ab1,Ab2亲和力10倍的差异反应到ELISA信号值上1.8倍的信号差异;在抗原浓度为1nM的条件下,50%的Ab1(Kd=1nM)和9.1%的Ab2(Kd=10nM)能够形成抗体抗原偶联物,作为ELISA检测的信号值,Ab1,Ab2亲和力10倍的差异反应到ELISA信号值上5.5倍的信号差异;在加入的抗体浓度是相同的情况下,加入反应的抗原的浓度越少,ELISA信号比值的差异和抗体亲和力比值的差异更具相关性。抗原的浓度决定了ELISA筛选方法的选择性!以上是关于杂交瘤和噬菌体展示筛选理论状态的推导,也是ELISA筛选结果出来了做出客观解读的理论依据,在实际的筛选应用过程中由于不同的待测抗体样品之间可能存在较大的浓度差异。在抗原浓度较高的情况下ELISA信号差异很多情况下由于抗体样品的浓度差异导致的,ELISA信号值对于亲和力大小不具有选择性;只有在抗原浓度较低时,信号值主要能够表征抗体亲和力的大小而一定程度上忽略浓度差异造成的影响,而在ELISA方法开发时当抗原浓度较低时,相对于抗原浓度较高时,其ELISA信号值要弱很多,提升ELISA方法信号的灵敏度,如何通过优化酶联抗体的浓度,挑选显色液和选择显色时间以增强ELISA检测的信号值是一个有区分度的ELISA筛选方法的关键。当ELISA检测的信号值得到提升时,由于筛选样品复杂性,往往其背景信号也会极大的提升,如何通过封闭液,酶标板材等降低背景信号值,得到好的信噪比是一个高质量的ELISA筛选方法的另一个关键。Part 3 - 实例分享 - ELISA用于噬菌体展示筛选布 局——————(Note 1)一 般 操 作 流 程1.酶标板的制备取浓度为100 ug/ml抗原,室温溶解,混匀用包被液按如下步骤稀释至0.2ug/ml,0.5ug/ml,1ug/ml,按加样布局表加入100ml/孔,分别加入酶标板条中 (Note 2),其中加入包被液做包被抗体的空白对照,2-8℃过夜。2.用洗涤液洗板3次,拍干,加入300ml/孔封闭液(Note 3)室温封闭1小时;洗涤液洗板3次,拍干待用;3.取出包含有阴性对照和阳性对照过夜孵育制备含有噬菌体的深孔96孔板,在奥豪斯高速离心机中2000g离心15min,取上清,稀释10倍,一一对应加入包被好酶标板中。(Note 4)4.放入奥豪斯微孔板振荡器内 (如ISLDMPHDG- 30391935),设置37℃、600rpm振荡1小时; 5.用洗涤液洗板3次,拍干;6.抗M13 p8酶联抗体稀释到合适的浓度(Note 5),在漩涡混合器上(如VXMNFS-30392112)混匀,100ul/孔。7.放入微孔板振荡器内,设置37℃、600rpm振荡1小时; 8.用洗涤液洗板4次,拍干;9.取酶联抗体对应的TMB显色液,临用前20分钟拿出平衡到室温,在漩涡混合器上混匀;(Note 6)10.使用8道排枪以100 ml/孔加入TMB显色液;11.显色液室温避光放置10-30分钟 (Note 7);12.使用8道排枪以100ml/孔加入终止液终止反应;13.用酶标仪测定信号值;14.结果分析(Note 8)。Note1:由于不同的噬菌体样品有不同的亲疏水性,其对酶标板材的非特异吸附强度不一样,做一块没有抗原包被的阴性对照板是十分有必要的。Positive和Negtive是和样品有同样噬菌体制备过程,Positive Stock为早已经制备好的分装保存的阳性噬菌体,前者目的是监控在不同时间内噬菌体样品制备过程的差异,后者是监控在不同时间内ELISA检测操作的差异。Note2:在包被过程中,建议选择疏水性酶标板材(polysorp),这样可以极大的减少背景信号值,提高整个方法的信噪比。在实验初期包被的抗原浓度需要少量0.2-1ug/ml,然后根据不同包被条件下同一样品信号大小来进行判断优化。一个已知亲和力的展示阳性抗体的噬菌体是十分有必要的,根据该阳性展示噬菌体样品的信号值来确定最终筛选过程中抗原的包被浓度。抗原直接包被酶标板材上会屏蔽部分结合位点,造成部分假阴性的结果,如果条件允许可采用生物素化抗原,首先5ug/ml的链霉亲和素包板,然后加入0.05-0.2 ug/ml不等的生物素化抗原。抗原直接包被和间接包被其效率不太一样,采用间接包被可适当降低生物素化抗原的包被浓度。Note3:在有生物素化抗原参与的ELISA实验中,不要加入含脱脂奶粉的封闭剂,脱脂奶粉含有微量生物素,会干扰整个检测体系。Note4:噬菌体上清液的稀释比例,可提前根据阳性噬菌体样品做好稀释预实验进行确定。Note5:应选择抗噬菌体的P8蛋白的酶联抗体,噬菌体有2000个以上的P8蛋白,适当的增加酶联抗体的浓度可以提高方法的灵敏程度,笔者曾增加5倍的酶联浓度得到了3倍的信号提升。Note 6:市面上TMB底物最低和最高有10倍的显色差异,建议选择市面上最强的TMB显色底物。需要提前确认检测仪器的信号线性范围,比如一般的酶标仪吸光度值的信号线性范围在0-3,吸光度值在3-4之间为非线性的,信号值超过3时,信号和亲和力的相关性变差。Note 7:显色时间可适当的延长,一般来说在30分中内显色的信号值和显色的时间成线性。Note 8:条件的选择最终是通过阳性噬菌体的信号值决定的,阳性噬菌体的亲和力大小是一个非常重要的选择参数。如阳性噬菌体的亲和力为1nM时,筛选的目的是得到高亲和力的抗体,可以选择阳性噬菌体的信号在OD值为0.5时的条件作为最终的筛选条件,这样很多OD值很小的低亲和力的抗体均被过滤掉;筛选的目的是尽可能得到多的亲和力抗体,可以选择阳性噬菌体的信号在OD值为2-3时的条件作为最终的筛选条件,低亲和力的抗体在OD值上也不会太小,可以得到体现。不论如何抗原的浓度大小决定了选择性,选择较小的抗原浓度进行反应是信号和亲和力大小匹配的关键和趋势性选择,信号大小的调节可以通过酶联抗体浓度,高显色能力的显色液和显色时间进行调节。如果在一块板的检测中未知样品的信号值大小呈合理的分布是ELISA条件较好的表现。Part 4 - 总结 - ELISA用于杂交瘤和噬菌体展示筛选是ELISA用于亲和力测定方法的一种变种,想要得到好的信号和亲和力大小的相关性,低抗原浓度条件下进行方法学开发是必须的。低抗原浓度条件下会有低的信号值,通过增加酶联抗体浓度,选择高显色能力的显色液和延长显色时间,增加ELISA灵敏程度是ELISA优化的技术方向。由于检测样品的多样性和复杂性,高灵敏的ELISA检测体系必然会导致背景信号的增加,无法得到很好的信噪比,疏水性的酶标板条,尽可能低的样品的稀释倍数是解决这个问题的关键。一个稳健的能用于杂交瘤和噬菌体展示筛选方法是ELISA各种耗材,试剂和实验条件的完美组合,需要对试剂耗材的多种可能进行探索,也是平台经验的系统汇总,以下是用于筛选方法的优化方向的汇总。 以上,就是小奥带给大家的第四篇ELISA方法学开发的干货内容!我们下期再见哦!
  • CAR-T 疗法新时代—通用型CAR-T细胞
    p style=" text-indent: 0em " span style=" color: rgb(0, 112, 192) " strong /strong /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/21d6c421-917b-44fa-8975-b1f0c73f3125.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 437" height=" 249" style=" width: 437px height: 249px " / /p p style=" text-indent: 2em " strong style=" text-indent: 2em color: rgb(0, 112, 192) " CAR-T疗法 /strong /p p style=" text-indent: 2em " CAR-T(Chemeric Antigen Receptors T-cell Immunotherapy)疗法,全称嵌合抗原受体T细胞免疫疗法,其主要原理是,从癌症病人身上分离免疫T细胞,利用基因工程技术为T细胞引入一个能够识别肿瘤细胞并同时激活T细胞的嵌合抗体,然后将扩增好的CAR-T细胞回输到病人体内。 /p p style=" text-indent: 2em " 截至目前,全球共两种CAR-T产品获批上市,分别是来自诺华的Kymriah和Kite制药的Yescarta,它们分别用于治疗儿童和年轻成人的急性淋巴细胞白血病和特定类型大B细胞淋巴瘤。 /p p style=" text-indent: 2em " 由于目前大部分的CAR-T细胞都是利用患者自身的T细胞来产生的,属于个体化产物,而患者与患者之间存在个体差异,产生定制T细胞是一个昂贵且耗时的过程。除此之外,每种CAR具有固定的抗原特异性,每种CAR-T制剂仅能靶向特定的表位,因此科学家们致力于开发一种通用型CAR-T细胞,生产一种现成的(off-the-shelf)即用型治疗剂。本篇文章作者总结了通用CAR、通用T细胞的设计原理和开发以及通用型CAR-T细胞临床应用的最新进展。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong CAR结构 /strong /span /p p style=" text-indent: 2em " 嵌合抗原受体(CAR)是CAR-T的核心部件,赋予T细胞HLA非依赖的方式识别肿瘤抗原能力,这使得经过CAR改造的T细胞相较于天然T细胞表面受体TCR能够识别更广泛的目标。 /p p style=" text-indent: 2em " 第1-4代CAR结构如图1所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/7b98fe6c-1ca5-4b65-aba7-afb9c3fa3c65.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em " 第一代CAR含有一个胞内信号组分,能够识别靶抗原并激活T细胞,但因为无共刺激分子,不能转导增值信号和诱导细胞因子产生,所以T细胞无法增殖而导致杀伤肿瘤效果不佳。 /p p style=" text-indent: 2em " 第二代CAR增加了一个共刺激分子或者可诱导共刺激分子,在没有外源性共刺激分子的情况下,T细胞也能持续增值并释放细胞因子。 /p p style=" text-indent: 2em " 第三代CAR包含了两个共刺激分子,提高T细胞的杀伤能力。 /p p style=" text-indent: 2em " 第四代CAR在此基础上将额外的分子原件插入到CAR中以表达功能性转基因蛋白,例如诸如白细胞介素基因的功能原件,可以提高杀伤能力,或者是调控开关、自杀基因,以提高CAR-T疗法的安全性和可控性。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 通用CAR的设计原则 /strong /span /p p style=" text-indent: 2em " 目前CAR-T疗法受到抗原特异性和可拓展性的限制,为了提高CAR的灵活性,希望能设计一种通用型CAR,以便能识别更多的抗原。通用型CAR使用“第三方”中间系统,拆分抗原靶向结构域和T细胞信号单位,以赋予CAR-T细胞识别多种抗原的能力,这种“第三方”中间系统有BBIR CAR和 SUPRA CAR。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong BBIR CAR:生物素结合免疫受体 /strong /span /p p style=" text-indent: 2em " 靶向生物素的免疫受体(biotin-bidingimmune receptor,BBIR)T细胞,是将活化的生物素与抗体相结合,亲和素结合在CAR-T细胞表面,通过亲和素和生物素之间非共价作用实现T细胞的靶抗原激活。BBIR系统含有二聚体亲和素,可以有效识别和结合多种生物素化抗原特异性分子,如scFV、mAbs或肿瘤特异性配体(图2)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d3880dd7-6948-4920-8342-88c3983ae8a7.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-indent: 2em " 研究结果显示,在0.1ng/mL低浓度生物素化分子的情况下,BBIR T细胞仍能与靶向抗原发生特异性反应。通过在生物素上逐步添加相应的抗体,发现BBIR T细胞可以按顺序识别多种肿瘤相关抗原,说明BBIR系统可以拓展常规CAR方法,具有产生无限抗原特异性T细胞的潜力。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong SUPRA CAR /strong /span /p p style=" text-indent: 2em " 为了增强CAR的灵活性和可用性,科学家发明了一种分离、通用、可编程式(split、universal、programmable, SUPRA)的CAR系统。SUPRA CAR是一种双组份受体系统,通用受体是带有亮氨酸适配器的T细胞(zipCAR),另一部分是带有亮氨酸适配器的能靶向特异性抗原的scFV(zipFV)(图3)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/bdbd4e51-386c-448c-bb25-e9c71668ea29.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-indent: 2em " 这种具有亮氨酸适配器的分体式SUPRA CAR的临床优势有: /p p style=" text-indent: 2em " 1、自由切换zipFV: zipFV可以针对不同的肿瘤抗原进行切换,或者通过扩增组合成针对多种肿瘤抗原的CART细胞,而无需进一步修饰T细胞。 /p p style=" text-indent: 2em " 2、能控制细胞活性和毒性:SUPRA CAR系统可以通过两个亮氨酸适配器的结合强度来控制细胞的活性,从而调节T细胞活化的程度。还可以通过没有特异性抗原靶标的zipFV竞争结合通用系统上的亮氨酸适配器,减少T细胞的活化程度从而控制细胞毒性。 /p p style=" text-indent: 2em " 3、可改变信号域和效应细胞的类型:例如研究人员已经开发一种正交的SUPRA CAR系统,可以独立调节不同的T细胞亚群。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 通用T细胞的设计原则 /strong /span /p p style=" text-indent: 2em " 生产通用CAR-T细胞的设计原则是从同种异体健康受体产生肿瘤抗原特异性T细胞,通过基因编辑的方法破坏T细胞的TCR基因和HLAⅠ类基因,消除移植物抗宿主病(GVDH)。ZFN、TALEN和CRISPR/Cas9是比较常用的基因编辑手段。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong ZFN:锌指核酸酶 /strong /span /p p style=" text-indent: 2em " ZFN是一种特异性DNA核酸内切酶,针对目的基因序列设计并合成ZFN,使之对DNA进行特异性切割,从而形成DNA双链断裂区,通过非同源末端连接或借助同源重组等方式完成DNA的修复连接,从而导致靶基因表达丧失。 /p p style=" text-indent: 2em " 使用这种基因编辑技术,破坏T细胞中TCRα恒定区的表达,使TCR功能丧失,从而不能对TCR特异性刺激做出反应。使用相同的方法,破坏HLA基因(图4),研究结果显示TCR-/HLA-缺陷型的T细胞在动物模型中不引起GVDH。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/c29332de-f191-407e-91b7-a1ac61795e0e.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong TALEN:类转录激活因子效应物核酸酶 /strong /span /p p TALEN也是一种位点特异性核酸内切酶,图5是应用TALEN基因编辑技术生产通用的CD52-/TCR-& nbsp T细胞,同时破坏CD52和TCRα(TRAC)基因,CD52抗原是一个抗体依赖性补体靶点,所以切除CD52基因,可以更好地避免GVDH。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/58097db2-71f5-462e-b252-6d682611548a.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-indent: 2em " strong span style=" color: rgb(0, 112, 192) " CRISPR/Cas9:规律成簇的间隔短回文重复序列 /span /strong /p p style=" text-indent: 2em " 由于ZFN和TALEN都需要针对不同的基因设计特定的核酸酶对,导致该技术的广泛应用受到限制。CRISPR-Cas9系统于2012年被发现,科学家们利用靶点特异性的RNA引导Cas9核酸酶带到基因组上的具体靶点,从而对特定基因位点进行切割、修饰。如图6所示,通过CRISPR方案可以一次性切除内源性TCR和HLAⅠ类基因产生同种异体的通用CAR-T细胞。与ZFN和TALEN相比,CRISPR/Cas能够极快地测试任何新提出的基因改造。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/44c1d101-e7b5-40ba-a655-bc9b631f8188.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p style=" text-indent: 2em " CRISPR-Cas9已被成功用于CAR-T细胞的多重基因编辑,例如两种基因(TRAC和B2M)和三种基因(TRAC、B2M和PD-1),通过敲除人PD-1基因,阻断免疫检查点的抑制信号,可以增强CAR-T细胞的体内抗肿瘤活性。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong FT819,IPSC CARIT cells /strong /span /p p style=" text-indent: 2em " Fate Therapeutics公司开发了一款现成的CAR-T细胞产品FT819,FT819来自健康供试者,创建一个能诱导多功能干细胞(IPSC)主细胞系,并使用主细胞系生产大量不受患者限制的“通用型”CAR19T细胞。研究人员通过将CAR引导至TCRα(TRAC)基因座,确保完全消除GVDH,除此之外,CAR19T细胞含有CD19的基因,能靶向CD19阳性肿瘤细胞是能显示出高效的细胞毒性作用。 /p p style=" text-indent: 2em " Fate Therapeutics公司下一步计划是开展人体临床实验,全面评估CARIT产品的安全性和有效性。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 通用CAR-T细胞临床应用 /strong /span /p p style=" text-indent: 2em " TALEN基因编辑的TCR缺陷型CAR-T细胞处于临床试验阶段,两名患有高度复发难治性CD19+B-ALL的婴儿用通用CAR-T细胞治疗后,都得到了缓解,并成功接受了同种异体干细胞移植。 /p p style=" text-indent: 2em " 两种使用CRISPR-Cas9基因编辑的通用CAR-T细胞都启动了临床试验(NCT03166878,NCT03229876),但目前还没有详细的结果。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " strong 通用CAR-T细胞面临的挑战 /strong /span /p p style=" text-indent: 2em " 通过破坏结合“第三方”中间系统的同种异体T细胞的TCR基因和HLAⅠ类基因,可以产生不引起GVDH并能广泛用于生产的通用CAR-T细胞。然而在实际应用中,仍存在一些关键性问题,例如微量TCR阳性的CAR-T细胞引起的GVDH反应、基因编辑过程存在的脱靶效应等,除此之外,还有许多问题需要进行进一步探索,例如: /p p style=" text-indent: 2em " 1、需要更多的临床数据,以确定通用CAR-T细胞的有效性和毒性; /p p style=" text-indent: 2em " 2、长期随访检测急性和慢性GVDH、排斥反应等副作用; /p p style=" text-indent: 2em " 3、建立和统一CAR-T细胞疗法的临床、工业和监管标准。 /p p style=" text-indent: 2em " 总结:包括ZFN、TALEN和CRISPR-Cas9在内的基因编辑方法可以产生通用的T细胞,一种分离、通用和可编程的(SUPRA)CAR可以使CAR-T细胞灵活地针对不同的靶点,还能有效控制T细胞活性。新一代通用CAR-T细胞在临床试验中的应用,为癌症免疫治疗提供了新型的治疗手段。 /p p style=" text-indent: 2em " span style=" color: rgb(127, 127, 127) " 参考文献:Juanjuan Zhao, Quande Lin. et al.& nbsp Universal CARs, universal T cells, and universal CAR T cells.& nbsp Journal of& nbsp Hematology & amp Oncology.(2018)11:13 /span /p
  • 新品发布 | 人源C1q结合试剂盒
    补体依赖的细胞毒性(complement dependent cytotoxicity,CDC )是指补体参与的细胞毒作用,即通过特异性抗体与细胞膜表面相应抗原结合,形成复合物而激活补体经典途径。补体经典激活途径是抗体介导的体液免疫应答的主要效应方式之一。补体分子C1q是补体经典激活途径中的启动蛋白,具有调节各种免疫细胞反应的能力。多分子蛋白质复合物C1通过C1q亚基结合免疫复合物中的Fc片段而被激活。活化的C1依次酶解C4和C2,形成C3转化酶,C3转化酶进一步酶解C3形成C5转化酶。当C5转化酶裂解C5形成C5a和C5b时,即开始了膜攻击复合物(MAC)的装备,膜攻击复合物由C5~C9构成,在功能上作为一个整体可导致靶细胞的溶解破坏。CDC是抗体的一个重要效应功能。C1q是CDC的核心成分。C1q与IgG的结合能力和由此产生的CDC活性影响着治疗性单克隆抗体的安全性和有效性,因此需要在开发过程中进行分析表征。HTRF人源C1q结合试剂盒旨在测量IgG Fc区与人源C1q的结合能力。Figure 1. Role of C1q in the classical pathway of CDC# 实验原理 #HTRF人源C1q结合试剂盒采用夹心法在均相体系下测量人源C1q和IgG Fc端的结合,实验方便快捷。该试剂盒里的检测试剂为Eu标记的抗C1q抗体(供体),生物素化的抗人IgG Fab抗体与标记了染料d2的链霉亲和素结合后的复合物(受体)。当被检测抗体Fc与C1q结合,供体荧光团会接近受体,从而产生一个FRET信号。FRET信号的强度与抗体Fc区与人C1q的结合程度成正比。Figure 2. HTRF® C1q binding kit assay format# 实验流程 #人源C1q结合试验在依次加入实验试剂后只需要一步孵化步骤。先将被测抗体(或标准品)加入到检测板中。然后加入预混物(生物素化的抗人源IgG-Fab抗体和标记有d2的链霉亲和素),接着加入人C1q蛋白和Eu标记的抗C1q抗体。在室温条件下孵育3小时后,可以在HTRF兼容的酶标仪上记录FRET信号。Figure 3. HTRF® Human C1q Binding assay protocol# 验证数据 #将纯化的人IgG1、IgG2和IgG4抗体用试剂盒里的稀释液梯度稀释后作为样品,用人源C1q结合试剂盒进行测试。实验结果如Figure 4所示,人IgG1与C1q有效结合,人IgG2与C1q的相互作用较弱,而人IgG4没有与C1q结合。此结果与文献相符。[1]Figure 4. Binding profiles of Human IgG isotype controls# 相关产品 #ProductCat. numberHTRF Human C1q Binding Kit64C1QPET/G, 100/500 tests参考文献[1] Almagro et al., 2018, Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy. Front. Immunol. 8:1751
  • 问答合集|第二届“分子互作创新技术与前沿应用”网络研讨会成功召开
    仪器信息网讯 2024年6月5日,仪器信息网举办的“第二届分子互作创新技术与前沿应用”主题网络研讨会圆满落幕,特别邀请12位来自知名高校、科研院所、科学仪器企业的专家学者,围绕SPR、BLI、MST、ITC、FIDA、AUC和BiFC等分子互作创新技术,从抗体研发、中药活性发现、药物靶标研究,再到分子互作传感器、高通量分子相互作用分析等前沿应用展开深入探讨,本次会议共吸引逾1500人次业内相关人员观看。“第二届分子互作创新技术与前沿应用”网络研讨会报告时间报告主题专家单位09:00-09:30生物层干涉技术在抗体研发中的应用樊峥中国科学院微生物研究所 高级工程师09:30-10:00高通量分子互作Octet® 在生物医药领域的应用张财辉赛多利斯 生物分析产品南区应用经理10:00-10:30分子相互作用技术在中药活性成分发现和靶标确认中的应用王静北京大学药学院副主任技师/特聘副研究员10:30-11:00多维分子互作分析技术及应用介绍张达威普瑞麦迪(北京)实验室技术有限公司 产品总监11:00-11:30分析超速离心技术在生物分子相互作用研究中的应用李文奇清华大学 蛋白质研究技术中心蛋白质制备与鉴定平台主管/高级工程师11:30-12:00荧光互补技术在分子互作研究中的应用陈明海中国科学院深圳先进技术研究院 副研究员12:00-13:30午休时间13:30-14:00表面等离子体共振技术——原理、仪器设计及创新应用毕研刚清华珠三角研究院 研究员14:00-14:30鱼与熊掌皆可得之—国产高端分子互作分析系统分享陈雍硕极瞳生命科技(苏州)有限公司 市场总监14:30-15:00表面等离子共振技术在药物研究多种领域中的应用曹岩海军军医大学药学系副教授15:00-15:30分子互作技术联用发现活性天然先导物和靶标研究刘将新中国科学院昆明植物研究所 研究员15:30-16:00靶向互作清除肿瘤起始细胞李珂中国医学科学院医药生物技术研究所 研究员16:00-16:30两种微量热技术在分子互作检测中的应用吴萌中国科学院分子细胞科学卓越创新中心 高级工程师报告期间Q&A合集汇总(仅限文字答疑部分)Q1:一般设置多少温度用于检测蛋白互作?樊峥:老型号的仪器无法降温控制,只能设置室温以上温度,新型号的设备可以控温,一般设置为室温,可根据具体实验要求调控温度。Q2:样品无损失,可回收的话,还可以使用吗?樊峥:可以的。Q3:请教表位竞争实验孔板的排布设计,7X7的矩阵为什么H行还要设计不同的抗体?樊峥:H行抗体可以作为单独抗体结合的对照。Q4:SA传感器,loading生物素化FcRn,想问一下信号一直掉该怎么优化条件呢?樊峥:SA传感器信号不稳的常见原因是生物素的问题。Q5:检测小分子与蛋白之间的互作一般推荐使用哪种传感器?樊峥:小分子一般建议用SSA传感器。Q6:请问各位老师:1).不同抗体,分子大小一样,loading高度一致,和同一个抗原的反应的response高度不一致,这个可能是什么因素引起的,亲和力,表位?2).根据我的一些项目数据,同样的样品,在SPR和BLI检测出来的亲和力数据不太一致,尤其在亲和力比较高的样品里,往往BLI测出来的亲和力会高出一个数量级,这个现象你们有了解不,我该相信哪个数据。3).我们测亲和力一般是在25度反应,为什么不在生理条件,比如37度去做,这样更真实反映在人体内的结合解离情况?张财辉: 1).抗体的分子构型是一致的吧?不同抗体的活性比例不一样,抗原的结合信号也就会不一样。2).由于分子互作是样品在特定的条件下的结合活性,因此不同的方法的比较需要在相同的条件下比较,不同方法会有一定差异,但不会特别多大,如果差异很大,可以把两种方法的实验条件和方法发给我们分析一下。3).一般体外动力学分析的温度设置25或37℃。Q7:您好,请问在做亲和力动力学精确表征时浓度要选择几个呐,我看您的例子里有很多浓度都不足5个,这样也是可以的吗?张财辉:动力学实验,一般浓度建议>4个浓度,结果的准确性会更好。Q8:通过BLI结果怎么判断化合物与蛋白是共价结合还是非供价结合?张财辉:首先可以从分子的结构进行分析,如果化合物没有可形成共价的基团,则不可能是共价结合。如果是共价结合,在BLI上面会显示不解离,需要结合结构的信息综合评估。Q9:NI NITA传感器固化那么低,为什么也能做小分子?张财辉:不同his标签蛋白,与NTA结合的强弱差异很大,如果固化的牢固,且信号足够高,一般建议>4nm,可以使用NTA传感器。Q10:请问小分子化合物与核酸的互作适合吗?张财辉:小分子和核酸的互作,一般会合成带biotin的核酸,然后用SA传感器固化生物素标记的核酸,分析与小分子的结合,有很多这个方向的文章发表了。Q11:一个96孔板最多能够检测多少个单浓度样品?张财辉:看机型,如果是16/96通道的,可以整块96孔板或384孔板都加样品,如果是2-8通道的机型,需要扣掉2-3列的缓冲液。Q12:BLI和SPR都能检测动力学行为,请问什么场景选BLI,什么时候用SPR?张财辉:SPR和BLI都是基于动力学的方式检测,SPR能够测试的样品,BLI都可以进行,由于BLI技术采用无流路的设计,对溶剂不敏感,因此粗样品,含有高浓度有机溶剂的样品,BLI检测效果更好。Q13:请问在做小分子垂钓后想验证某一种物质的结合亲和力KD值,双扣除实验应该如何确定浓度范围?王静:小分子浓度梯度范围一般可以从200uM到0.1uM。Q14:BLI的靶点只能是蛋白吗?可以是细胞或者纳米颗粒吗?王静:都可以。Q15:固定到传感器上的Aβ是单体还是寡聚体?王静:固定的是生物素修饰的单体。Q16:MST不纯化的话,非特异结合影响不大吗?王静:MST检测的是荧光标记的蛋白信号,没有荧光标记的蛋白不会被检测到。Q17:用SPR做小分子单浓度筛选时,您提到的分子量矫正如何去做?王静:在编辑方法时,把所有小分子的分子量输入进去,在分析数据时,在分析软件里点击分子量校正即可。Q18:垂钓再生液有什么推荐的吗?Gly会影响打质谱吗王静:垂钓中药靶点,再生可以用0.5% 三氟乙酸,做质谱时一般还会用超滤管进行超滤张财辉:一般建议使用下游质谱能够兼容的缓冲液,比如0.5% PFA三氟乙酸等,如果是核酸样品,可以用NaCl,小分子结合弱,可以直接解离到PBST+DMSO缓冲液中。Q19:请问SPR垂钓小分子容易造成仪器IFC损坏吗?过程中用的洗脱液和再生液可以相对固定是吗?王静:垂钓小分子,洗脱液可以是5% DMSO PBS-T,或者0.5% 三氟乙酸。Q20:请问毕老师您的仪器设计有基于目前市场哪个品牌吗?毕研刚:原理是我们自己提出来的,全部工作都是我们自己开展的。具体原理可以查阅一些我们课题组发表的文章[1] 王大千. SPR 双分差动干涉成像阵列检测生物分子相互作用技术.北京:清华大学,2012Q21:SPR能做细胞与药物分析时,细胞固化到芯片吗?毕研刚:细胞是以贴壁的方式在芯片表面生长的,不需要固化。Q22:固化细胞用什么技术?谢谢毕老师毕研刚:不是固化,是自然沉降,贴壁的过程。Q23:谢谢毕老师,还有一个怎么给药?毕研刚:通过注射方式。Q24:FIDA技术是怎么获得粘度呢?张达威:是通过样品加入毛细管到检测器的扩散时间直接获得的。Q25:溶液不纯也能检测吗?张达威:可以的,对蛋白标记特定荧光即可。Q26:不同压力下平衡曲线位移,代表的应该是不同压力下有不同的亲和力表现,如何跟kon koff联系起来?张达威:可以参考一下FIDA的动力学note,在网站上可以下载到,非常巧妙的方式。Q27:如果蛋白失活了对数据有什么影响?标记没有影响?张达威:特定蛋白需要标签,可以提前表达荧光标签如GFP或者HIS标签。也可以标记配体,对混合样品进行梯度滴定。Q28:请问这款国产SPR(S-CLASS高通量分子相互作用分析系统)能做单循环动力学模式吗?陈雍硕: SCK模式已经在我们今年的研发计划中,很快就能正式上线。Q29: ITC实验中,滴定针一直向样品池加入样品,样品池的样品会不断的被排出样品池,是这样吗?吴萌:不是的,池子的体积以及加入的样品量都是有要求的,池子中的样品是不会被排出的。问答互动环节1问答互动环节2分子互作交流群(备注姓名+单位+职位)敬请期待,2025年第三届“分子互作创新技术与前沿应用”网络研讨会,会议内容及报告赞助请联系赵编辑 zhaoyw@instrument.com.cn相关推荐:1.“分子互作技术与应用进展”专题(点击查看)2.“重新认识分子互作仪”话题(点击查看)3.“分子互作仪”仪器优选栏目(点击查看)
  • 国际食品法典委员会修订营养标签指引
    世界卫生组织(WHO)国际食品法典委员会于近期采纳了国际膳食补充剂联盟IADSA所倡导营养素参考值(NRVs),将11种营养素加入营养标签准则。   这11种营养素及其参考值分别为:维生素K(60微克) 维生素B6(1.3毫克) 维生素B12(2.4微克) 生物素(30微克) 叶酸(400微克) 烟酸(15毫克) 泛酸酯(5毫克) 维生素B2(1.2毫克) 维生素B1(1.2毫克) 钙(1000毫克) 碘(150微克)。   该营养标签指引准则要求,对于声称含有营养素的食品需要在标签上注明。   另外15种营养素将于今年晚些时候在国际食品法典营养与特殊用途食品委员会(CCNFSDU)会议上进行讨论。
  • 82项食品安全国家标准于3月起实施
    与百姓生活密切相关的82项食品安全检测标准已于2017年3月1日起实施。  新实施的国家标准包括GB 4789食品微生物学检验、 GB 5009食品理化检测、GB 14883食品中放射性物质检测、GB 31604食品接触材料及制品检测等。产品涉及食盐、味精、食醋、水果、蔬菜、酒、水产品、生乳、婴幼儿食品、食品接触材料及制品等,检测项目涵盖肠杆菌科、水分、灰分、过氧化值、酸价、维生素B1、叶黄素、生物素以及放射性物质钋-210、碘-131等。  这些即将实施的国家标准中,多数是替代老的标准,也有部分是新制定的标准,如GB 4789.41-2016《食品安全国家标准 食品微生物学检验 肠杆菌科检验》、GB 5009.258-2016 《食品安全国家标准 食品中棉子糖的测定》,是为了适应国内食品安全需要而新制定的国标。  江苏的食品企业较多,检验检疫部门提醒相关企业及检测机构关注标准变化,仔细解读新的食品安全国家标准,及时完成标准变更。
  • 《婴幼儿配方食品》新国标今起实施,都涉及这些科学仪器
    备受关注的婴幼儿配方食品系列标准将于2023年2月22日正式实施,分别是《食品安全国家标准 婴儿配方食品》(GB10765-2021)、《食品安全国家标准 较大婴儿配方食品》(GB10766-2021)、《食品安全国家标准 幼儿配方食品》(GB10767-2021),对应的也就是我们通常所说的1段、2段、3段婴幼儿奶粉。新国标对婴幼儿配方奶粉中营养元素添加量、营养元素完整性等方面做出了更加严格的要求。现在,小编就带领大家一起学习下新国标都有哪些变化,又涉及哪些科学仪器。一、三大国标变更对比1. GB 10765-2021 1段婴儿配方食品(适用于0-6月龄)新国标修订了1段婴儿配方食品中蛋白质、脂肪、多种维生素、矿物质及部分可选择性成分含量的限值。同时,将胆碱由之前的“可选择性成分”调整为“必需成分”,最小值和最大值均调高了2~3倍。新国标还新增了牛磺酸和DHA的最小值,二者均有助于婴儿大脑和视力发育。详细的变化请见下表:表1. 1段婴儿配方食品新国标变化对照表(以每100KJ计)指标分类具体指标GB 10765-2010(旧)GB 10765-2021(新)最大值最小值最大值最小值宏观营养素蛋白质(乳基)/g 0.450.700.43 ↓0.72 ↑蛋白质(豆基)/g0.500.700.53 ↑0.72 ↑脂肪/g1.051.401.051.43 ↑亚油酸/g0.070.330.070.33α-亚麻酸/mg12N.S.12N.S.亚油酸与α-亚麻酸比值5:115:15:115:1碳水化合物/g2.23.32.23.3维生素维生素A/μg RE14431436 ↓维生素D/μg0.250.600.48 ↑1.20 ↑维生素E/mg α-TE0.121.200.121.20维生素K1/μg1.06.50.96 ↓6.45 ↓维生素B1/μg14721472维生素B2/μg1911919120 ↑维生素B6/μg8.545.08.4 ↓41.8 ↓维生素B12/μg0.0250.3600.024 ↓0.359 ↓烟酸(烟酰胺)/μg7036096 ↑359 ↓叶酸/μg2.512.02.9 ↑12.0泛酸/μg9647896 ↑478维生素C/mg2.517.02.4 ↓16.7 ↓生物素/μg0.42.40.36 ↓2.39 ↓胆碱/mg可选择→必需1.712.04.8 ↑23.9 ↑矿物质钠/mg5147 ↑14钾/mg144317 ↑43铜/μg8.529.014.3 ↑28.7 ↓镁/mg1.23.61.23.6铁/mg0.100.36乳基:0.10豆基:0.15 ↑乳基:0.36豆基:0.36锌/mg0.120.36乳基:0.12豆基:0.18 ↑乳基:0.36豆基:0.36锰/μg1.224.00.72 ↓23.90 ↓钙/mg12351235磷/mg624乳基:6豆基:7 ↑乳基:24豆基:24钙磷比值1:12:11:12:1碘/μg2.514.03.6 ↑14.1 ↑氯/mg12381238硒/μg0.481.900.72 ↑2.06 ↑可选择性成分肌醇/mg1.09.51.09.6 ↑牛磺酸/mgN.S.30.8 ↑4.0 ↑左旋肉碱/mg0.3N.S.0.3N.S.二十二碳六烯酸(DHA)/mgN.S.0.5%3.6 ↑9.6 二十碳四烯酸(AA/ARA)/mgN.S.1%N.S.19.1 注:N.S.为没有特殊说明2、GB 10766-2021 2段较大婴儿配方食品(适用于6-12月龄)此前,2段和3段婴幼儿配方食品共同遵循国标《较大婴儿和幼儿配方食品》(GB 10767-2010)。本次修订将该标准分成了2个:《较大婴儿配方食品》(GB 10766-2021)和《幼儿配方食品》(GB 10767-2021)。同时,在《较大婴儿配方食品》(GB 10766-2021)中,胆碱、锰、硒也由之前的“可选择性成分”调整为“必需成分”。新国标具体的变化包括以下几个方面:表2. 2段较大婴儿配方食品新国标变化对照表(以每100KJ计)指标分类具体指标GB 10767-2010(旧)GB 10766-2021(新)最大值最小值最大值最小值宏观营养素蛋白质/g 0.71.2乳基:0.43 ↓豆基:0.53 ↓乳基:0.84 ↓豆基:0.84 ↓脂肪/g0.71.40.84 ↑1.43 ↑亚油酸/g0.07N.S.0.070.33 ↓α-亚麻酸/mg//12N.S.亚油酸与α-亚麻酸比值//5:115:1碳水化合物/g//2.23.3维生素维生素A/μg RE18541843 ↓维生素D/μg0.250.750.48 ↑1.20 ↑维生素E/mg α-TE0.15N.S.0.14 ↓1.20 ↓维生素K1/μg1N.S.0.96 ↓6.45 ↓维生素B1/μg11N.S.14 ↑72 ↓维生素B2/μg11N.S.19 ↑120 ↓维生素B6/μg11N.S.11.0 41.8 ↓维生素B12/μg0.04N.S.0.041 ↑0.359 ↓烟酸(烟酰胺)/μg110N.S.110 359 ↓叶酸/μg1N.S.2.4 ↑12.0 ↓泛酸/μg70N.S.96 ↑478 ↓维生素C/mg1.8N.S.2.4 ↑16.7 ↓生物素/μg0.4N.S.0.41 ↑2.39 ↓胆碱/mg可选择→必需1.712.04.8 ↑23.9 ↑矿物质钠/mgN.S.20N.S.20钾/mg18691854 ↓铜/μg7358.4 ↑28.7 ↓镁/mg1.4N.S.1.2 ↓3.6 ↓铁/mg0.250.50乳基:0.24 ↓豆基:0.36 ↑乳基:0.48 ↓豆基:0.48 ↓锌/mg0.10.3乳基:0.12 ↑豆基:0.18 ↑乳基:0.36 ↑豆基:0.36 ↑锰/μg可选择→必需0.2524.00.24 ↓23.90 ↓钙/mg17N.S.1743 ↓磷/mg8.3N.S.乳基:8 ↓豆基:10 ↑乳基:26 ↓豆基:26 ↓钙磷比值1.2:12:11.2:12:1碘/μg1.4N.S.3.6 ↑14.1 ↓氯/mgN.S.52N.S.52硒/μg可选择→必需0.481.900.482.06 ↑可选择性成分肌醇/mg1.09.51.09.6 ↑牛磺酸/mgN.S.30.8 ↑4.0 ↑左旋肉碱/mg0.3N.S.0.3N.S.3.6维生素维生素A/μg RE185418
  • 最高奖励200万!攻关核酸检测提速
    关于组织申报2022年青岛市科技计划科技惠民示范专项(生命健康领域—应急攻关)项目的通知各区(市、功能区)科技主管部门,各有关部门和单位:为妥善应对当前形势,满足不同场景检测要求,为疫情防控提供科技支撑、贡献青岛力量,提升我市产业自主创新能力,根据《青岛市科技计划项目管理办法》(青科规〔2021〕16号)和《青岛市科技惠民示范专项管理暂行办法》(青科规〔2021〕6号)等要求,经研究决定,现启动2022年青岛市科技计划科技惠民示范专项(生命健康领域—应急攻关)项目。有关事项通知如下:  一、申报方向方向1:新型冠状病毒抗原快速检测产品研发及产业化  研究内容:针对目前新型冠状病毒核酸检测需专业设备、耗时长,且专业人员经培训后才能进行操作等问题,通过集成超大纳米金颗粒制备、超大纳米金颗粒标记抗体、亲和素与生物素放大系统、生物素标记抗体及纯化和样品垫处理液等关键技术,建立规模化新冠抗原检测试剂生产工艺,完善产业化标准生产流程,构建抗原检测研发平台,实现新冠抗原检测产品产业化。  考核指标:实现1种灵敏度高、操作简单、无需专业设备即可测试的新型冠状病毒抗原检测产品的产业化,满足专业人员使用和家庭自测双重需求,产品检测介质包括鼻拭子和口咽拭子;试剂最低检测限为64TCID50/ml,特异性符合率>99%,灵敏度Ct值<30,样本符合率>94%;建立1套规模化新冠抗原检测试剂生产工艺,制定1套符合GMP要求的新冠抗原检测试剂技术规范和生产质量管理规范;根据国家药品监督管理局的要求完成注册审批申报;新建2条新型冠状病毒抗原检测试剂生产线,根据市场需求实现年产新冠病毒检测试剂3亿人份,销售收入10亿元以上,实现利税1亿元以上。  拟支持项目1项,支持资金不超过200万元。  方向2:自动化新型冠状病毒核酸快速检测产品开发  研究内容:聚焦新型体外诊断装备研发,针对目前新型冠状病毒核酸检测出报告慢、数据无法实时自动上传,需要后台人员人工输入结果的难题,研究新型冠状病毒核酸自动化快速检测系统,开发具有核酸检测、结果实时显示、自动上传功能的新型冠状病毒快速检测设备。  考核指标:突破新型冠状病毒核酸提取和检测关键技术,形成一套具备快速检测、结果实时显示、自动上传功能,可实现在基层医疗单位使用的新型检测产品;核酸检测时间缩短为1小时以内,新型冠状病毒核酸检测限为500copies/ml;完成至少200例临床样本实验室验证;完成国家药品监督管理局注册检验并取得报告,成功提交三类医疗器械注册申请。拟支持项目1项,支持资金不超过200万元。二、申报条件(一)申报项目必须符合本指南所规定的支持领域和方向,创新性强、技术含量高,实施方案科学合理,技术路线成熟,预期目标明确,经费预算合理。  (二)项目申报单位须为在青岛市注册、具有独立法人资格的企事业单位,优先支持产学研用协同创新项目。参与单位须具有独立法人资格。(三)申报单位应具有较强的技术创新能力、管理水平和人才团队,具备完成项目所必须的基础条件,须有项目核心技术的所有权或使用权,无知识产权纠纷。(四)申报单位应具有健全的专项资金管理制度(或办法),对项目资金能够全面实行预算管理,科研经费设专账管理、专款专用。(五)申报单位要对申报材料中涉及的指标、数据的科学性和真实性负责。经审核发现申报材料有不实情况的,取消申报单位项目评审和承担资格,并记入信用档案。(六)申报项目须明确项目负责人。项目负责人应具有领导和组织开展创新性研究的能力,科研信用记录良好。(七)申报单位须具有新冠病毒检测试剂盒或设备研发经验,并有相关产品销售。(八)联合申报须签订联合申报协议,明确各自承担的工作任务和目标、知识产权和利益归属、合作经费(包括自筹经费)的额度和来源等。三、资金支持方式(一)项目执行期12个月。(二)财政资金支持不超过项目总投资额度的50%。市拨经费低于申报数额时,不足部分由承担单位自筹解决。(三)项目采取无偿资助方式给予支持,立项后拨付支持总额的50%,通过验收或综合绩效评价后拨付剩余资金。四、申报说明(一)申报渠道申报单位使用“科技计划项目服务平台(试用版)”(http://222.173.102.106:28090),注册项目申报账号,经科技主管部门审核通过后即可登录系统,进行网上申报(推荐使用火狐、360、谷歌浏览器登录,请勿使用IE浏览器)。登录后,通过“项目管理”—“项目申请”—“新建”对话框选择:申报年度“2022”—“一级类别、二级类别、三级类别”根据所申报项目选择正确的对应选项(例如,科技惠民示范专项—生命健康领域—应急攻关),网上填报并提交相关材料。网上提交的项目申报材料将作为后续形式审查、项目评审的依据。申报系统注册成功后,请妥善保存登录名和密码,以便随时进入系统查看项目申报及任务书签订、项目管理等情况。在线填写相关表单及附件材料(附件仅用于证明申报书中陈述内容真实性的证明材料,供项目评审专家参考)。相关附件包括:符合申报总体要求的有关项目及申报单位情况的证明文件;青岛市科学技术局2022年3月21日
  • 华盛顿大学研究人员利用“Serine Ligation”产生有效且稳定的GLP-1类似物
    大家好,今天为大家介绍一篇ACS Chemical Biology的文章,标题为“Generation of Potent and Stable GLP-1 Analogues Via ‘Serine Ligation’ ”,文章的通讯作者是来自美国华盛顿大学的David Baker教授。在这项工作中,作者受“Serine Ligation”方法的启发,介绍了一种具有位点特异性的生物偶联策略。该策略依赖于带有 1-氨基-2-羟基官能团的非天然氨基酸的多肽和水杨醛酯之间的偶联,实现多肽上的化学修饰。具体来说,作者利用这个技术对类似于索马鲁肽 (Semaglutide) 的胰高血糖素样肽-1 (GLP-1) 26位的赖氨酸以及18位的丝氨酸分别修饰,得到了GLP-1类似物G1和G2。结果显示,修饰后的G1和G2在基于细胞的激活试验中比GLP-1更有效,同时能提高其在人血清中的稳定性以及体内葡萄糖处理效率。这种方法展示了“Serine Ligation”在化学生物学中各种应用的潜力,特别是发展稳定的多肽治疗剂(图 1)。图 1 基于“Serine Ligation”的GLP-1位点特异性修饰胰高血糖素样肽-1 (GLP-1) 是一类多肽激素,源自于胰高血糖素原肽的组织特异性翻译后加工,具有通过增强胰岛素分泌从而降低血糖水平的能力。二肽基肽酶 (DPP-4)可以切割GLP-1 N端8位的丙氨酸,因此内源GLP-1的半衰期只有2 min左右。虽然有许多旨在于解决稳定性问题的方法,例如在降解位点引入“不可切割”的氨基酸,但这些方法通常以牺牲稳定性为代价来换取多肽的功能和效力。因此人们对开发既能维持效力,又能稳定多肽治疗剂的新技术产生了很大兴趣。另一方面,多肽和蛋白质的偶联彻底改变了人们对于引入各种官能团来扩展新应用的认识。其中便包括蛋白质组学和高分辨率成像技术。由于多肽或蛋白质中存在多个可反应的活性位点,利用传统的共轭策略,例如N-羟基琥珀酰亚胺 (NHS) 酯,会导致产物的异质性,进而引起分离提纯困难以及生物学活性下降等诸多问题。因而具有位点特异性的新修饰方法亟待开发。作者从“Ser/Thr Ligation”(STL) 中获取灵感,发现该偶联主要发生在C 端的水杨醛酯和 N 端含有丝氨酸或苏氨酸的残基之间。因此,作者通过合成和引入带有1-氨基-2羟基的非天然氨基酸,并将其与水杨醛酯的衍生物偶联,实现了多肽位点特异性的化学修饰(图 2)。图 2 “Serine Ligation”与引入非天然氨基酸的位点特异性生物偶联作者首先评估了该方法的普适性,合成了生物素、花青-3、一种棕榈酸类似物,以及单分散PEG 水杨醛酯。然后将这些探针特定地偶联到带有 1-氨基-2-羟基的非天然氨基酸的模型肽 1 上,生成产物 2-5(图 3)。为了代表性地评估产物的转化率和纯度,作者监测了多肽反应物1和生物素水杨醛之间的反应,发现几乎在30 min后实现了定量转换。图 3 对未保护模型肽的位点特异性修饰之后作者探究如何利用该生物偶联技术增强多肽的稳定性。最常用的方法包括聚乙二醇化和脂化。事实上,两种 GLP-1药物,索马鲁肽和利拉鲁肽都是脂化的,目前用于治疗 2 型糖尿病。基于此,作者利用STL合成了两种GLP-1类似物G1和G2。二者都含有一个类似索马鲁肽的杂合 PEG 和脂肪酸侧链。不同之处在于,G1的修饰在26位的赖氨酸上,与索马鲁肽的修饰位置相同。同时,为了增强稳定性,对G1多肽8号位的丙氨酸也进行了修饰,引入了2-氨基异丁酸 (Aib)。G2的修饰则在18位的丝氨酸上。借助于冷冻电镜,发现18位的丝氨酸在GLP-1与GLP-1受体的结合模型中是溶剂暴露的,因此不会干扰多肽激素的天然功能。在这种条件下,我们可以不对G2的8号位丙氨酸引入修饰,因为18号位丝氨酸引入的脂肪链离N端的距离近,可以保护8号位的丙氨酸不被蛋白水解(图 4)。图 4 GLP-1多肽类似物G1, G2的设计许多生化和结构研究表明GLP-1 内的一个扩展的两亲性 α-螺旋是负责与GLP 受体 (GLP-1R) 的细胞外结构域高亲和力结合的。为了去评估这些外加修饰是否会破坏多肽二级结构,作者使用圆二色谱 (CD) 来表征。相对于显示出特征性螺旋折叠的GLP-1,G1 和 G2 也都显示出螺旋结构;然而,它是低于天然GLP-1的。G1与G2的数据与在索马鲁肽上的脂质修饰相一致,说明了二级结构的丢失是脂质修饰引起的。GLP-1 与 GLP-1R 的内源性结合会导致募集G蛋白的细胞内重排,随后刺激cAMP的产生。cAMP来源于ATP并会导致葡萄糖刺激的胰岛素分泌。为了去评估GLP-1 类似物 G1 和 G2 去激活人源GLP-1R的能力,在过表达人 GLP-1R 的 CHO-K1 细胞中去监测cAMP的积累。细胞最初用天然 的GLP-1 和索马鲁肽进行处理。相比之下,G1 和G2 比未加修饰的GLP-1表现更好,并且与 Semaglutide 大致等效,EC50值为 0.97 ± 0.2 和 0.73 ± 0.2 nM(图 5A)。这些数据表明26位的赖氨酸和18位的丝氨酸的脂质修饰不会对其内源功能造成影响。为了补充体外的药理学分析,作者接下来用反向高效液相色谱 (RP-HPLC) 比较GLP-1类似物G1,G2,天然 GLP-1以及索马鲁肽在人血清中的稳定性。在这个测定中,每种肽在人血清中孵育最多48 小时,取出等分试样并通过 RP-HPLC 分析(图 5B)。相对于天然 GLP-1,G1 显示出显著的稳定性曲线,t1/2 ≈ 40 小时。同时G2也非常稳定,相对于天然 GLP-1 稳定性增幅超过了14倍,几乎与索马鲁肽相似。在得到理想的激活和稳定性数据之后,作者接下来使用标准葡萄糖耐量实验 (GTT) 在动物体内进行测试。更具体地说,在禁食 16 小时后,用 10 nmol/kg 剂量向小鼠注射多肽,其次是 2 g/kg 葡萄糖。血糖水平用血糖仪测量,然后在不同的时间长度之后进行定量(图 5C)。在这种急性 GTT 实验中,G1 和 G2 相比于天然的GLP-1显示出具有统计学意义的血糖控制能力,这与他们的体外数据相一致。这些数据表明脂质化修饰能够在不损害效力的前提下显著增加稳定性,从而改善急性高血糖小鼠模型的体内活性。图 5 脂化对细胞活性,蛋白水解的稳定性以及控制血糖能力的影响为了深入了解 G1 和 G2 是如何与GLP-1R相互作用,作者对相应的配体-受体复合物进行了计算建模。GLP-1R 肽结合模型是基于最近发表的GLP-1R 与未修饰的 GLP-1 复合物的Cryo-EM 结构。索马鲁肽、G1 和 G2 模型与 GLP-1R 的复合物表明脂质化18位的丝氨酸或26位的赖氨酸是溶剂暴露的,可能不会干扰与激活有关的相互结合作用(图 6)。图 6 GLP-1R-Semaglutide、GLP-1R-G1 和 GLP-1R-G2 复合物模型总结来看,作者介绍了一种强大的,基于“Serine Ligation”的位点特异性生物偶联策略。作者应用该方法合成了有效且稳定的GLP-1类似物。该类似物具有一个混合聚乙二醇和脂肪酸侧链,类似于广泛使用的糖尿病药物索马鲁肽。这两种化合物在激活GLP-1R的能力上与索马鲁肽等效;相比于天然的GLP-1,G1,G2在人血清中显示出显著改善的稳定性,并且在小鼠体内的改善血糖能力优于天然的GLP-1。在未来,该方法也显示出构建其他GPCRs稳定且有效的类似物潜力。原文:https://pubs.acs.org/doi/10.1021/acschembio.2c00075
  • 大龙上新啦|大容量强劲搅拌器重磅来袭
    今天给大家带来一个振奋人心的好消息!大龙产品线又双叒叕上新啦!磁力搅拌器家族迎来一“重磅”成员!zui 大搅拌量 30L!令人瞩目!!10 英寸超大陶瓷玻璃盘面!耐高温!耐腐蚀!这就是我们的 MS10-H500-Pro!磁力搅拌器界的新秀!现在 MS10-H500-Pro 老师正在成品库等待发货中~~~主要优势大容量:强劲搅拌,zui 大搅拌 30L。大盘面:10 英寸方盘。高性能陶瓷玻璃盘面:耐高温、耐化学腐蚀。精确控温:LCD显示设定温度或实际样品温度,可外接PT1000温度传感器,控温精度±0.2℃。转速范围广:100-1500 rpm,旋钮设定转速。加热温度范围广:室温-500℃ ,旋钮设定温度。余温警示:关机后,显示屏持续显示,工作盘>50℃,警示灯持续闪烁,防止误触导致烫伤,为您的安全保驾护航。数据传输:SD 卡可实时记录仪器运行数据,温度转速数据可溯源。定时功能:可设定仪器的运行时间。优质的直流无刷电机:采用直流无刷电机驱动旋转磁场,免维护,更安全。多功能:可分别控制加热、搅拌或加热搅拌多个功能。日常工作首先在食品研究方面:食品研发阶段,不同配料的混匀,筛选zui 优条件。可以代替人工搅拌,解放研发人员的双手,轻松完成实验。微生物检测过程中大量培养基的制备。加热和搅拌,加速培养基的溶解,快速完成培养基的制备。在材料学方面:高温烤硅片时,具有 10 寸大盘面,可同时进行多组平行实验。在理化分析领域:各种试剂配置,通过加热搅拌,加速溶解。溶液的蒸发、浓缩或结晶。干法灰化、酸消解等加热实验。油浴或水浴的加热搅拌实验在生物制药、生物工程方面:加速固体粉末在体液中的分散或反应。生物制剂的溶解及混匀前处理。方法学可靠,不受生物素干扰
  • NanoTemper邀您盘点2023
    新 品 汇 总1.PR Panta+机械臂 (点击查看)*全自动化操作提升运行通量*无需手动完成≥1536个样品检测*可装载多达4个384微孔板*用于检测所有蛋白质候选分子2.生物素化靶点标记试剂盒*专为光谱位移技术研发的试剂盒*仅需15分钟完成标记*无需去除多余染料,提升效率3.人Fc标记试剂盒 (点击查看)*专为使用光谱位移技术进行亲和力检测而优化的荧光染料*仅需30分钟实现高效的抗体标记15周年,砥砺前行,精彩不停!7月,上海办公室乔迁新址8月-11月,成功开启NanoTemper十五周年活动,三重超值福利和惊喜吸引上千粉丝参与。您与NanoTemper的精彩故事还将继续!敬请期待后续报道。官网新模块-支持中心全新的支持中心模块,可协助客户获取更多实用的信息,提供强大的技术支持。点击图片 查看详情丰富的市场活动与专家面对面交流👇 公众号-菜单栏-企业资讯-市场活动实验指南系列电子书-速速收藏【点击图片 下载查看】1.PROTAC电子书2.DLS动态光散射技术指南3.nanoDSF技术应用指南4.一图看懂生物制品的稳定性评估5.抗体药物开发实验指南6.勃林格殷格研发单克隆抗体应用案例精选CNS文献&权威验证(点击对应标题 查看更多)盘点使用PR蛋白稳定性分析仪发布的国内外文献PR系列蛋白稳定性分析仪-文献汇总北大瞿礼嘉团队又一Cell力作!MST再次助力植物有性生殖机制研究获得突破!斯坦福医学院案例分享MST技术检测蛋白的二聚体亲和力Nature案例分享Monolith助力靶向RNA降解剂研究权威验证系列(一) 看nanoDSF技术如何在生物制品热稳定性分析上替代金标准DSC权威验证系列(二) 湖北省药检院使用Panta对人纤维蛋白原质品进行快速质量控制 应用专题汇总PROTAC专题汇总(点击查看)结构生物学应用汇总 (点击查看)2024,NanoTemper已整装待发!迎接新的热爱与新的挑战!
  • 沃特世参加婴幼儿配方食品检测技术交流会
    北京/广州 – 2009年10月20日–中美婴幼儿配方食品营养与安全检测技术交流培训会议于2009年10月15日-16日和 2009年10月19-20日分别在在中国北京和广州两地举行。沃特世公司应邀作了题为“A Solution for Residue and Contaminant Screening” 的主题报告。向各位食品营养与安全检测领域的专家介绍了沃特世公司在食品安全筛查领域的最新的解决方案。   此次会议由中国检科院承办,旨在落实2007年中美合作协议中食品安全信息技术交流有关条款,加强两国在婴幼儿食品营养与质量安全法规与技术的交流, 共同提高两国食品检测机构和进出口食品企业自身的检验技术能力。会议由11位授课专家,5位来自检验检疫和卫生系统,6位来自美国雅培公司。北京与广州分别有近100位专家学者参加会议。   在大会报告中,雅培测试技术研发科学家唐纳德• 格里兰德博士(Dr.Donald.Gilliland)做了题为“UPLC® -MS/MS快速同时QC测定维生素B1、维生素B2、维生素B6、烟酸、叶酸、泛酸和生物素”的报告,Dr. Donald在他的报告中着重阐述了Waters® UPLC-MS/MS平台的优势,并称赞沃特世公司专有的"Z-Spray™ "电离源的高效技术。         关于沃特世公司 (www.waters.com)   沃特世公司(NYSE:WAT)为实验室型组织提供实用、可持续的创新技术,帮助他们在全球范围内的保健服务、环境管理、食品安全以及水质等领域保持领先水平。   沃特世技术创新和实验室解决方案在一系列分离科学、实验室信息管理、质谱和热分析等相关领域均处于领先地位,为客户的成功提供了长远持久的平台。   2008 年,沃特世公司年收入达 15.8亿美元,拥有 5000 名员工,为推动全球客户的科学发现和卓越运营不懈努力。
  • 适配靶向测序,睿科NGS杂交捕获自动化解决方案
    靶向测序是通过富集特定的基因组区域,并针对该区域进行高深度的测序,以得到精准测序结果的一种测序方式,主要应用于肿瘤检测、遗传病检测、病原检测等方向。根据靶向捕获原理的不同,通常分为两种方法:探针杂交靶向捕获和多重PCR靶向捕获。探针杂交靶向捕获是先针对目标区域进行探针(DNA/RNA)设计,利用生物素标记的探针与目标区域进行杂交,然后通过链霉亲和素标记的磁珠对目标区域进行捕获、富集;而多重PCR靶向捕获则是通过针对目标区域进行引物设计,将目标区域进行PCR扩增富集。两种方法中探针杂交靶向捕获整个文库构建过程步骤繁多,耗时长,其中在杂交、捕获环节,温度的控制、操作的均一性会影响目标区域的捕获效率以及后续测序的准确性。杂交捕获原理:根据已知基因组区域序列设计合成特定探针,通过杂交结合目标区域实现捕获、富集的目的,方便实现更高效地测序。睿科Vitae 180 NGS建库仪能实现文库构建及杂交捕获实验的自动化,为实验室高效、稳定测序提供解决方案。Vitae 180 NGS 建库仪Vitae 180 NGS建库仪适用于中通量(1-32个样本/run)的建库需求,自动化完成文库构建、杂交捕获、文库均一、文库pooling等流程,减少手工操作时间,提高工作效率,同时保证结果的重复性和均一性。开放式平台,可自定义仪器操作流程,适配不同厂家建库、捕获试剂盒,一键启动已适配商品化杂交捕获试剂盒流程,实现标准化、经验证的自动化实验操作。睿科NGS杂交捕获自动化解决方案产品优势小结将测序前繁琐的文库构建进行自动化和标准化是一个必然趋势,睿科Vitae 180-NGS建库仪可以有效保证文库质量的均一性和稳定性,避免文库的重复构建,节省人力成本和经济成本。
  • 如何获得精准的Western Blot实验结果?
    &emsp &emsp 蛋白质免疫印迹杂交实验(Western Blotting)是成熟 mRNA 翻译指导蛋白质合成量分析检测手段中经典和广泛为业界认可的一种,也是论文中常见的数据呈现形式之一。虽然Western Blot实验原理比较简单,但是实验耗时长、步骤繁琐和实验结果重复性差,导致刚进实验室的小伙伴们,实验做的焦头烂额。&emsp &emsp 那么如何做出一手漂亮的Western Blot实验结果呢,请小伙伴们跟随远慕生物的脚步,了解Western Blot实验的相关知识,let's go!&emsp &emsp Western Blotting实验原理:&emsp &emsp 蛋白质印迹法(免疫印迹试验)即Western Blot,简称WB。其基本原理是通过特异性抗体对凝胶电泳处理过的细胞或生物组织样品进行着色,将电泳分离后的细胞或组织总蛋白质从凝胶转移到固相支持物(NC膜或PVDF膜)上,然后用特异性抗体检测某特定抗原的一种蛋白质检测技术。&emsp &emsp Western Blotting实验步骤:&emsp &emsp -样品制备&emsp &emsp 样本制备是决定蛋白质免疫印迹是否成功的关键步骤之一。样本必须进行研磨、匀浆、超声处理。膜蛋白需用剧烈的方法抽提,低丰度膜蛋白可能还要分步抽提(超速离心)。还需要注意的一点就是组织中的蛋白酶活性强,需要加入PMSF抑制酶的活性。远慕为大家提供强、中、弱三种RIPA裂解液,以及适用于各种类型的蛋白酶抑制剂。&emsp &emsp -电泳分离&emsp &emsp 准备好样品后,第二步就是上样和电泳分离了,上样之前小伙伴们要做的必要步骤是确定蛋白质浓度,根据蛋白质浓度确定上样量。远慕给大家推荐BCA和Bradford两款蛋白浓度测定试剂盒,小伙伴们可以根据自己的实验需求自行选择。&emsp &emsp 测完了蛋白质浓度,接下来就是上样了。首先要制备凝胶,选用SDS-PAGE凝胶配制试剂盒(EC0003),简单省时。然后安装电泳槽,将胶片安置在电泳槽中,在电泳装置中加入SDS-PAGE电泳液。远慕提供10×的电泳液,稀释后直接使用,方便快捷。&emsp &emsp 上样结束后,设置电泳程序一般浓缩胶80V,分离胶120V,电泳时间一般为1-2小时,根据溴酚蓝指示位置选择停止电泳时间即可。&emsp &emsp -转膜&emsp &emsp 针对特定分子量大小靶蛋白而选择适当转膜条件(转膜时间,转膜缓冲液和必要低温环境)能够将 SDS-PAGE 胶上蛋白样品尽可能完全转移到印迹膜上,同时减少蛋白不必要的降解,这对于终获得清晰、可信结果也是需要考虑因素。转膜方式主要包括湿式电印迹法(佳转膜方法)、半干式电印迹(可选的替代转膜方法)以及干式电印迹(有限灵敏度的转膜方法)。根据实验室习惯和需求,小伙伴们可以自行选择转膜方式。&emsp &emsp 膜的选择&emsp &emsp 膜的选择主要从实验目的和实验要求来考虑,例如做分子量小于20kDa的小蛋白,0.45um的膜是不可取的,因为可能会使得蛋白因透过膜孔而造成膜结合的目的蛋白含量不确定,从而影响终结果的可靠性。通常小于20KDa的蛋白选择0.2um的膜,而大于20KDa的蛋白选择0.45um的膜。&emsp &emsp 转膜方式的选择&emsp &emsp 湿转:&emsp &emsp 通常我们在做湿转的时候,选择100V恒压(高强度,因为低强度时间较长,且效率较低),电流控制在120-350mA之间,分子量在60KD以下的60分钟即可,分子量在60KD以上的需要延长转膜时间60-150分钟才能确保高效率的转膜。所以如果你所研究的两个蛋白分子量差异比较大(如GAPDH 37KD,Ki67 358KD),你可以考虑将胶从中间分开,两部分分别采用不同时间转印,能达到你理想的效果。电转液一般可以重复使用3次,之后电流会过大,不适合再使用。&emsp &emsp 半干转:&emsp &emsp 对于半干转来说,也需要进行堆叠组装(滤纸,胶,膜需要放在转印buffer中进行预平衡)放在装置电极板的底部,盖上上极板,高强的电流通过三明治结构,转印速度较快,一般小于1h。&emsp &emsp 需要注意的是:低温对于膜的转印是至关重要的,尤其是在转印时间较长而无人监管的情况下。针对刚建的实验室平台或者一些新蛋白的研究,经过转印的胶和膜都要通过染色确定转膜效率(胶用考马斯亮蓝加热染色,膜用丽春红染色,均只需几分钟,并不耽误太多时间),不然后面的实验既费时也费抗体。&emsp &emsp -封闭&emsp &emsp 在做Western blot实验中,因固相载体(如NC膜,PVDF膜)表面有很多孔,通过电转,胶上的蛋白被转移到膜上,蛋白以机械填补(堆积)和吸附的方式结合于表面。蛋白塞进了表面孔里面,但是蛋白并不是连续的,而有很多空隙,抗体也是蛋白,也会被吸附在空的洞里,这样就会有很多非特异性的信号。&emsp &emsp 因为有“填补”和“覆盖”蛋白结合位点以避免一抗的非特异性结合,所以有“封闭”的说法。星博士在此介绍常见封闭液的一些特点,有助于大家选择:&emsp &emsp 常见的封闭液——BSA&emsp &emsp BSA是常用的封闭液,成分单一适用于大多数情况。若免疫原是偶联BSA的,BSA有很强的免疫原性,会导致产生很多针对BSA的抗体,为避免交叉反应,不能用BSA,脱脂奶粉封闭,可以选用酪蛋白或无蛋白的封闭液。&emsp &emsp 常见的封闭液——脱脂奶粉&emsp &emsp 脱脂奶粉大的优点是价格便宜,但由于成分相对复杂,所以适用范围要狭窄一些。针对磷酸化蛋白的检测不能用脱脂奶粉,脱脂奶粉含有酪蛋白,该蛋白本身就是一种磷酸化蛋白,使用会造成高背景磷酸化抗体也许会导致背景增加,此外,因为自身含有生物素,不能用于生物素标记的抗体系统。&emsp &emsp 封闭体系并不是一成不变的,不同的封闭体系往往会得到不一样的实验结果,由此可见,做Western Blot实验中,封闭液的选择也是需要谨慎的。&emsp &emsp 不同封闭体系结果的差异&emsp &emsp -抗体孵育&emsp &emsp 一抗一般按照说明书进行稀释后,室温孵育1-2h,或者4℃过夜。为了让抗体充分与蛋白结合,大多数实验室一般会选择4℃过夜。一抗孵育结束后TBST洗涤三次,用稀释后的二抗,室温孵育1-3小时,TBST洗涤三次。&emsp &emsp 抗体是决定Western Blot实验成败的关键因素,选择具有一定文献引用数的品牌不仅容易得到清晰可信的结果同时能够得到同行认可,针对一些表达峰度高且稳定的蛋白可以选择国产化抗体,既能保证实验结果准确性又可降低实验成本,抗体的保存往往也是大家容易忽略的一个环节,而因抗体保存不当造成实验失败的例子比比皆是。&emsp &emsp 保存温度和条件(仅供参考)&emsp &emsp 对于很多抗体而言,分装成小等份并冻存于-20℃或-80℃是佳保存条件。分装成小等份可大程度减少由冻融造成的抗体效价降低,以及从单个试剂瓶中多次吸取而引入的污染。小等份只需冻融一次,如有剩余,可将剩余物保存于4℃,建议一周内用完。在收到抗体时,在10000×g下离心20秒以沉积截留于试剂瓶螺纹的溶液,并以小等份转移至低蛋白结合微量离心管中。小等份的量取决于实验人员在实验中通常采用的量。小等份应不小于10μl;等份越小,储液浓度因抗体蒸发及吸附于保存瓶表面而受到的影响越大。&emsp &emsp 在大多数情况下,收到抗体时在4℃下保存一至两周,然后再冷冻进行长期保存是可以接受的,但也许腹水液是例外,它可能包含蛋白酶,因而应该尽快冻存。不同品牌的抗体保存方式往往不同,具体保存方式需参考产品说明书。&emsp &emsp -检测&emsp &emsp 抗体孵育完,就到了Western Blot实验的后一步——检测了。&emsp &emsp 目前常用的检测方法是ECL化学发光法,主要针对HRP标记的二抗。远慕为大家提供极超敏和超敏两种ECL发光液供大家选择。一款合适的发光液能使你的Western Blot图片加美观
  • 蛋白质组学药物发现成果|μMap光催化临近标记支持小分子结合位点映射
    大家好,本周为大家分享一篇2023年发表在Journal of the American Chemical Society上的文章,μMap Photoproximity Labeling Enables Small Molecule Binding Site Mapping1。该文章的通讯作者是来自美国普林斯顿大学化学系的David W. C. MacMillan教授。  目前,药物发现主要分为两种方式:基于靶点的药物研发(Target-based drug discovery,TDD)和基于表型的药物筛选(Phenotypic drug discovery, PDD)。表型筛选主要是在细胞或动物水平开展实验,因此蛋白靶点以及蛋白-配体结合模式一开始就是未知的,如何在确定活性分子后快速地找到其作用通路、靶点、结合位点、结合模式(正构/别构)一直以来都是众多研究员所关心的问题。常规的蛋白质组学差异性分析能够帮助我们快速确认作用通路、发现潜在靶点,但却缺少更精细的结构信息。光亲和标记(Photoaffinity Labeling)能够有效地补充这方面的信息,将PAL探针靶向交联至靶蛋白结合口袋,再利用LC-MS去寻找标记位点或肽段,从而提供肽段或残基分辨率的结合位点信息。然而,由于PAL探针与蛋白是按照一定的化学计量比进行结合的,所以产生的标记信号和序列覆盖都非常有限。除此之外,每个PAL探针都有不同的二级碎裂模式,使质谱分析复杂化。基于此,David W. C. MacMillan团队开发了一种稳健且通用的光催化标记方法来定位蛋白结合位点。  如图1B所示,活性分子上连接有具有光催化功能的标签(Catalytic tagging),本文使用的是铱光催化剂。活性分子-铱光催化剂偶联物能够靶向至蛋白的结合口袋,在可见光的照射下,铱通过能量转移的方式催化附近的双吖丙啶探针生成卡宾自由基,卡宾自由基能够与邻近的氨基酸残基发生反应,从而实现结合口袋的邻位标记。值得一提的是,这种独特的μMap光催化临近标记法将靶向定位和邻近标记分配给不同的分子去完成,邻位标记不受限于靶向定位所需要满足的化学计量比的要求,可实现多个邻近位点的标记,具有信号放大的效果。此外,所有活性分子-铱光催化剂偶联物都可以配合使用统一的邻位标记探针,具有一致二级碎裂模式,有助于简化后续LC-MS数据分析。  图1 μMap光催化邻近标记法原理  为了确认该方法的选择性标记能力,作者以牛碳酸酐酶(CA)为例,探究磺胺类抑制剂-铱催化剂偶联物(图2A sulfonamide-Ir (1))能否触发CA上邻近结合位点的选择性标记。将CA与BSA蛋白按照1:1混合,向中加入sulfonamide-Ir,随后加入带有生物素标签的邻位标记探针(图2A Diazirine-PEG3-biotin(2)),根据Western blot的结果可知(图2B),sulfonamide-Ir (1)的加入触发了CA上的选择性标记,相比于未开启光照以及直接加入free-Ir的两组样品,加入sulfonamide-Ir的样品中CA条带明显变深,说明此条件下,CA上有较多的带有生物素标签的标记位点。随后,作者对样品进行柱上酶切,利用LC-MS鉴定标记肽段、定位标记位点(图2C-E)。值得注意的是,为了获得高置信度的标记残基信息,作者将free-Ir设置为对照组,通过统计sulfonamide-Ir组与free-Ir组中同一标记肽段信号强度的倍差变化(fold change)以及显著性差异分析,筛选出最可靠的标记位点。此次实验结果显示,邻近标记位点为Q135和H2,将其映射至CA的晶体结构上可知两个位点距离磺胺类小分子与CA的结合位点分别17和11Å,说明μMap光催化临近标记法在小分子结合位点的鉴定上是准确且可靠的。  图2 μMap光催化邻近标记法用于sulfonamide-CA结合位点的表征。为了展现μMap光催化临近标记法的普适性。作者将该方法应用到了其它一些蛋白-配体复合物模型上,如:(+)-JQ-1与BRD4(图3A)、dasatinib与BTK(图3B)、AT7519与CDK2(图3C)和lenalidomide与CRBN(图3D),以上实验均获得符合预期的结果。此外,作者还将μMap光催化临近标记法应用到了分子胶rapamycin介导的FKBP12-rapamycin-mTOR蛋白复合物结合界面的表征,展现了该方法“穿越空间”的结构表征能力,从蛋白FKBP12与小分子rapamycin互作到小分子rapamycin与蛋白mTOR的互作,描绘了整个结合界面的轮廓(图3E)。  图3 μMap光催化邻近标记法用于A)(+)-JQ-1与BRD4 B)dasatinib与BTK C)AT7519与CDK2 D)lenalidomide与CRBN E)FKBP12-rapamycin-mTOR蛋白复合物结合位点的鉴定。  以上均是在已知结合位点的蛋白-配体模型中开展的方法学验证实验,后续作者还将μMap光催化临近标记法应用到难成药靶点STAT3。MM-206是STAT3的小分子抑制剂,在临床前疾病模型研究中显示出较好的抗STAT3活性,但到目前为止还没有STAT3与MM-206结合的晶体结构报道,也没有关于MM-206与STAT3结合位点的信息。在本文中,μMap光催化临近标记的结果显示MM-206主要是结合在STAT3的CCD结构域上,大致在Q198和V291位点附近,属于一种变构调节剂(图4A-B)。最后,作者进一步探究了μMap光催化临近标记法在活细胞水平上的标记能力。如图C-E,使用μMap光催化临近标记法成功找到了(+)-JQ-1的结合蛋白:BRD2、BRD3及BRD4,并定位到了(+)-JQ-1与BRD4结合位点,大致在V90、K91、W81氨基酸残基附近。  图4 μMap光催化邻近标记法用于A-B)MM-206与难成药靶点STAT3结合位点的鉴定 C-E)组学样品中小分子(+)-JQ-1结合蛋白的鉴定及结合位点的锁定。  总之,本文开发了一种通过标记近端残基来绘制小分子结合位点的通用方法。该方法已被证明适用于一系列小分子配体-蛋白质、多蛋白质复合物和“不可成药”的靶点蛋白的互作表征,从单一蛋白到组学层面均展现出良好的应用前景。  撰稿:刘蕊洁编辑:李惠琳原文:μMap Photoproximity Labeling Enables Small Molecule Binding Site Mapping  参考文献  Huth SW, Oakley JV, Seath CP, et al. μMap Photoproximity Labeling Enables Small Molecule Binding Site Mapping. J Am Chem Soc. 2023 145(30):16289-16296.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制