当前位置: 仪器信息网 > 行业主题 > >

氰化纳

仪器信息网氰化纳专题为您整合氰化纳相关的最新文章,在氰化纳专题,您不仅可以免费浏览氰化纳的资讯, 同时您还可以浏览氰化纳的相关资料、解决方案,参与社区氰化纳话题讨论。

氰化纳相关的论坛

  • 【原创大赛】铁氰化钾代替氰化钾检测水中总氰化物

    铁氰化钾代替氰化钾测定水中氰化物 本方法是一种用铁氰化钾和分光光度计测定水中总氰化物的新方法,最低检测浓度为0.004mg/L,灵敏度很高。本方法独辟蹊径,用普通而无毒的铁氰化钾代替HJ484-2009中的剧毒物品氰化钾,不仅保证了检验人员的安全,而且使不具备氰化钾的基层检验室也能准确灵敏地测定水中氰化物。向水样中加入磷酸和EDTA二钠,在pH2条件下,加热蒸馏,利用金属离子与EDTA络合能力比与氰离子络合能力强的特点,使络合氰化物离解出氰离子,并以氰化氢形式被蒸馏出,用氢氧化钠吸收,得到氰离子溶液,此过程不仅能提取样品中的氰离子,而且能富积铁氰化钾溶液中的氰离子,经硝酸银标准溶液滴定后,得到氰离子标准溶液。在中性条件下,样品中的氰化物与氯胺T反应生成氯化氰,再与异烟酸作用,经水解后生成戊烯二醛,最后与吡唑啉酮缩合生成蓝色染料,其颜色与氰化物的含量成正比。一实验部分1氰化氢的释放和吸收(1)试剂和仪器分析纯试剂和不含氰化物和活性氯的蒸馏水或具有同等纯度的水。磷酸(H3P04):1.69g/mI,1% (m/V)氢氧化钠(NaOH)溶液,10% (m/V)EDTA二钠溶液,4%(m/V)氢氧化钠(NaOH)溶液,铁氰化钾溶液(0.3 g溶于200 mI水中);500ml全玻璃蒸馏器,600W或800w可调电炉,100m1量筒或容量瓶。(2)样品氰化氢的释放和吸收量取200m1样品,移入500m1燕馏瓶中(若氰化物含量高,可少取样品,加水稀释至200 m1),加数粒玻璃珠。往接收瓶内加入1%氢氧化钠溶液l0m1,作为吸收液。当样品中存在亚硫酸钠和碳酸钠时,可用4%氢氧化钠溶液作为吸收液。馏出液导管上端接冷凝管的出口,下端插入接收瓶的吸收液中,检查连接部位,使其严密。将l0m1EDTA二钠溶液加入蒸馏瓶内。迅速加入l0ml磷酸,当样品碱度大时,可适当多加磷酸,使PH小于2,立即盖好瓶塞,打开冷凝水,打开可调电炉,由低档逐渐升高,馏出液以2∽4ml/min速度进行加热蒸馏。接收瓶内溶液近l00ml时,停止蒸馏,用少量水洗馏出液导管,取出接收瓶,用水稀释至标线,此碱性馏出液“A”待测定总氰化物用。干扰物的排除按GB7486规定进行。(3)空白试验用实验用水代替样品,按步骤(2)样品氰化氢的释放和吸收操作,得到空白试验馏出液“B”待测定总氰化物用。(4)铁氰化钾氰化氢的释放和吸收 用200m1铁氰化钾溶液代替样品,按步骤(2)样品氰化氢的释放和吸收操作,不同之处是氢氧化钠溶液加为30 m1,EDTA二钠溶液加为20 m1,磷酸加为20 m1[/fo

  • 清华施一公院士Nature发表最新研究成果

    来自清华大学、剑桥生物医学院的研究人员在新研究中揭示出了人类γ-分泌酶(γ-secretase)的三维结构,该研究对于深入了解γ-分泌酶的功能机制,开发出预防及治疗阿尔茨海默氏症及某些类型的癌症的新型γ-分泌酶抑制剂具有重要的意义。相关论文“Three-dimensional structure of human γ-secretase”发表在6月29日的《自然》(Nature)杂志上。清华大学的施一公(Yigong Shi)教授和剑桥生物医学院的Sjors H. W. Scheres是这篇论文的共同通讯作者。施一公研究组主要致力于运用结构生物学和生物化学的手段研究肿瘤发生和细胞凋亡的分子机制,集中于肿瘤抑制因子和细胞凋亡调节蛋白的结构和功能研究、重大疾病相关膜蛋白的结构与功能的研究、胞内生物大分子机器的结构与功能研究.

  • 【转帖】氰化物中毒的主要原理

    氰化物,英文名称(cyanide)。氰化钾,(potassium cyanide)柯南中出现频率最高的一种毒药。氰化物中毒的主要原理:由于人体细胞内部不含有叶绿素,我们必须通过体外摄取食物来维持体温,肌肉收缩和伸展,(respiration)。简单的说人体通过细胞内所有的线粒体来提取食物中的能量,主要是通过分解有机物中‘碳键’(carbon bond)和‘氢键’(hydrogen bond),从而使其释放出能量,再用此能量为能量载体A.T.P. (adenine triphosphate )‘充电’。为了能够提取到氢键中的能量,人体分泌另外一种酶NAD,NAD和食物中的氢结合成为NADH2,NADH2再将氢带入线粒体(mitochondrion),再给A.T.P 充电,用完的氢和呼入氧结合变成水,氢化物在此的作用就是,停止了线粒体内最后一道能量的转换,呼入的氧不能和氢结合便成水。同时人体不再分泌NAD,人体内过量的氧先造成‘氧中毒’,我们的细胞其实是讨厌‘氧’的,同时体内细胞不再进行呼吸作用(respiration)。最终导致心脏衰竭。(心脏是由肌肉组成)。 --------------------------------------------------------------------------------《法医学》中对氰化物中毒的解释   氰化物(cyanides)是世界公认的一类剧毒物。分有机氰化物和无机氰化物两大类。  氰化物含有-CN,毒性极大,其毒性大小取决于释放HCN能力的大小。工业上常见的有氰化钾、氰化钠和氰化钙,有机氰化物称腈,其中丙烯腈的蒸气极毒。自然界中氰化物以氰甙的形式广泛存在于植物果仁中,以苦杏仁中最多,可高达45%。  (一)中毒原因  无机和有机氰化物在工农业生产中应用广泛,尤其是电镀工业常用氰化物,故易获得,常被用于自杀或他杀。民间常有食用大量处理不当或未经处理的苦杏仁、木薯而致意外中毒者。  (二)毒理作用  氰化物进入机体后分解出具有毒性的氰离子(CN~),氰离子能抑制组织细胞内42种酶的活性,如细胞色素氧化酶、过氧化物酶、脱羧酶、琥珀酸脱氢酶及乳酸脱氢酶等。其中,细胞色素氧化酶对氰化物最为敏感。氰离子能迅速与氧化型细胞色素氧化酶中的三价铁结合,阻止其还原成二价铁,使传递电子的氧化过程中断,组织细胞不能利用血液中的氧而造成内窒息。中枢神经系统对缺氧最敏感,故大脑首先受损,导致中枢性呼吸衰竭而死亡。此外,氰化物在消化道中释放出的氢氧离子具有腐蚀作用。  (三)中毒量及致死量  口服氢氰酸致死量为0.7~3.5mg/kg;吸入的空气中氢氰酸浓度达0.5mg/L即可致死;口服氰化钠、氰化钾的致死量为1~2mg/kg。成人一次服用苦杏仁40~60粒、小儿10~20粒可发生中毒乃至死亡。未经处理的木薯致死量为150~300g。  (四)临床表现  大剂量中毒常发生闪电式昏迷和死亡。摄入后几秒钟即发出尖叫声、发绀、全身痉挛,立即呼吸停止。小剂量中毒可以出现15~40分钟的中毒过程:口腔及咽喉麻木感、流涎、头痛、恶心、胸闷、呼吸加快加深、脉搏加快、心律不齐、瞳孔缩小、皮肤粘膜呈鲜红色、抽搐、昏迷,最后意识丧失而死亡。  (五)尸检所见  由于血中有氰化正铁血红素形成,故尸斑、肌肉及血液均呈鲜红色。死亡迅速者,全身各脏器有明显的窒息征象。口服中毒者,消化道各段均可见充血、水肿,胃及十二指肠粘膜充血、糜烂、坏死,胃内及体腔内有苦杏仁味。吸入氢化物中毒死亡者,大脑、海马、纹状体、黑质充血水肿,神经细胞变性坏死,胶质细胞增生,心、肝、肾实质细胞浊肿。  尸体检验应争取在腐败开始前进行。毒化检材以胃容物、心血、肝、肾、肺及脑为佳。心血应盛放在试管中,且盛满不留空隙。附注:难读字注音:氰qing,腈jing,甙dai,绀gan,涎xianCN~:CN带一个负电荷,打不出来,以~代替。

  • 氰化钾废液处理

    做沙门氏菌鉴定是要用到氰化钾培养基,废液如果用加碱和亚铁氰化钾处理,那怎样判断氰化钾反映完全呢?培养基里面的致病菌又该如何处理呢?请各位大神指教

  • 请问水质氰化物的监测时测定的标样可以用总氰化物的标样做吗?

    我做的水质氰化物测定用的是总氰化物的标样,测定的方法是异烟酸—吡唑啉酮比色法 GB/T7486—1987 。在样品蒸馏时用的是易释放氰化物的蒸馏方法,但是测定的结果却比标样真值小5倍。之前质询过说是氰化物测定可以用总氰化物的标样。但是测定结果相差这么大。是结果应该就是这样偏小的。是不是应该做氰化物的测定就应该拿氰化物的标样。用总氰化物的标样是无法知道自己测定的其中氰化物的含量具体是多少?

  • 大战白酒氰化物

    氰化物,你这磨人的小妖精!要做氰化物,首先你得有标品氰化钾,剧毒物质,每次去取标品时都像是大明星出街一样,口罩手套齐全。度娘说,白酒中的氰化物来源是木薯及木薯类的野生植物在发酵过程中产生的。但是大部分都挥发掉了,只有小部分残留,为了这小部分,消耗我不少心血。废话不多说,先安利一下检测原理。样品在氢氧化钠溶液中碱解,氰化物以氰化钠的形式存在,在中性介质中氰化物与氯胺T反应生成氯化氰,再与异烟酸反应,颜色为红色,经水解生成戊烯二醛,戊烯二醛与吡唑啉酮缩合产生蓝色染料。原理是挺复杂,其实检测过程很简单,从头反尾都是在10mL的比色管中。不简单的是在等待比色的时候,它竟然变浑了,产生了乳白色浑浊物。头疼的事来了,百度了各种解决方案,主要有以下几种:1.定容前加入EDTA-2Na;2.在沸水浴上蒸发3分钟,除去酒中醛类物质,说是因为醛类才导致的浑浊;3.比色时用0.45um或者0.22um的滤膜过滤。以上方法都试过了,1.2法不是很好用,所以暂且用了第三法,准确是准确,但是每次比色都得半小时以上,费时费力。帖友们有没有更好的方法,一起分享下。

  • 【求助】氰化物标液咨询

    氰化钾是剧毒,但是我们没有证,以前有听说可以买标液,那氰化钾的标液算不算剧毒,我们可以购买不????

  • 水质总氰化物质控偏高

    各位大神好,我取200ml总氰化物质控加入10ml磷酸和EDTA-2NA,蒸馏出50ml,用异烟酸-巴比妥酸法在紫外可见分光光度计上测量,测出的吸光度2.1209,在一计算直接超出质控标准值巨多,所以我想问一下到底是哪一步出现了问题,下面是总氰化物质控的证书[img]https://ng1.17img.cn/bbsfiles/images/2023/04/202304140756434980_4042_5975863_3.png[/img]

  • 氰化物蒸馏

    一个样品做氰化物加入edta二钠变蓝,是怎么回事?

  • 【求助】奇怪的铁氰化钾峰形

    【求助】奇怪的铁氰化钾峰形

    我在做玻碳修饰金纳米,0.5M硫酸中含有1mM氯金酸,循环伏安修饰。修饰后在铁氰化钾中检测电流增量。发现修饰后第一次扫描铁氰化钾的峰是正常的,当连续扫第二次之后峰形就变了,氧化峰越来越尖锐,电流也变大了,这是怎么回事呢。有高手指导一下吗。谢谢。[img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006100914_223350_2062781_3.jpg[/img]

  • 【资料】氰化物及其简介!

    氰化物是指化合物分子中含有氰基[-C≡N]的物质,根据与氰基连接的元素或基团是有机物还是无机物可把氰化物分成两大类,即有机氰化物和无机氰化物前者称为腈,后者常简称为氰化物,无机氰化物应用广泛、品种较多,在本书中,按其组成、性质又把它分为两种,即简单氰化物和络合氰化物。 易溶的:HCN、NaCN、KCN、NH4CN、Ca(CN)[sub]2[/sub] 简单氰化物 难溶的:Zn(CN)[sub]2[/sub]、Cd(CN)[sub]2[/sub]、CuCN、Hg(CH)[sub]2[/sub] 稳定性差的:Zn(CN)4[sup]2[/sup]-、Cd(CN)[sub]4[/sub][sup]2-[/sup]、Pb(CN)[sub]4[/sub][sup]2-[/sup] 无机氰化物 氰化物 稳定性强的:Cd(CN)[sub]4[/sub][sup]2-[/sup]、Ni(CN)[sub]4[/sub][sup]2-[/sup]、Ag(CN)[sub]2[/sub][sup]-[/sup]氰化物 Au(CN)[sub]2[/sub][sup]-[/sup]、Fe(CN)[sub]6[/sub][sup]4-[/sup]、Co(CN)[sub]6[/sub][sup]4-[/sup] Fe(CN)[sub]6[/sub][sup]3-[/sup] 有机氰化物:乙二腈、丙烯腈等黄金行业所涉及到的各种氰化物均属无机氰化物,因此重点介绍常见的各种无机氰化物;除了上述氰化物外,黄金行业还涉及到氰的衍生物,如氰酸盐,硫酸盐,氯化氰等。由于其重要性以及与氰化物的极密切关系,在此也加以介绍。

  • 土壤氰化物

    土壤氰化物曲线最高点不显色是为什么呢,测了ph最高点太高了,其余差不多中性,那怎么调最高点的ph呢[img]https://ng1.17img.cn/bbsfiles/images/2022/06/202206151146184634_6450_5603242_3.jpg[/img]

  • 水质检测——总氰化物GB7486--87

    总 氰 化 物 GB7486--87 总氰化物是指在磷酸和EDTA存在下, pH小于2的介质中,加热蒸馏,能形成氰化氢的氰化物,包括全部简单氰化物(多为碱金属和碱土金属的氰化物,铵的氰化物)和绝大部分络合氰化物(锌氰络合物、铁氰络合物、镍氰络合物、铜氰络合物等),不包括钴氰络合物。 预 处 理1.方法原理 向水样中加入磷酸和Na2-EDTA,在pH<2条件下,,加热蒸馏,利用金属离子与EDTA络合能力比与氰离子络合能力强的特点,使络合氰化物离解出氰离子,并以氰化氢形式被蒸馏出来,并用氢氧化钠溶液吸收。仪 器 (1) 500ml全玻璃蒸馏器。 (2) 600W或800W可调电炉。 (3) 100ml量筒或容量瓶。 (4) 仪器装置。 试 剂 (1) 磷酸:ρ=[font='Ti

  • 土壤氰化物

    土壤氰化物

    土壤氰化物曲线最高点不显色是为什么呢,测了ph最高点太高了,其余差不多中性,那怎么调最高点的ph呢[img]https://ng1.17img.cn/bbsfiles/images/2022/06/202206151146184634_6450_5603242_3.jpg[/img]

  • 【资料】氰化物中毒

    氰化物是一类剧毒物,常见的有氰化氢、氰化钠、氰化钾、氰化钙及溴化氢等无机类和乙睛、丙睛、丙烯晴、正丁睛等有机类,另外某些植物果实中如苦杏仁、桃仁、李子仁、枇杷仁、樱桃仁及木薯等都含有氰苷,分解后可产生氢氰酸。 [B]氰化物介绍[/B]  氰化物可分为无机氰化物,如氢氰酸、氰化钾(钠)、氯化氰等,有机氰化物,如乙腈、丙烯腈、正丁腈等均能在体内很快析出离子,均属高毒类。很多氰化物,凡能在加热或与酸作用后或在空气中与组织中释放出氰化氢或氰离子的都具有与氰化氢同样的剧毒作用。   工业中使用氰化物很广泛。如从事电镀、洗注、油漆、染料、橡胶等行业人员接触机会较多。日常生活中,桃、李、杏、枇杷等含氢氧酸,其中以苦杏仁含量最高,木薯亦含有氢氰酸。在社会上也有用氰化物进行自杀或他杀情况。   职业性氰化物中毒主要是通过呼吸道,其次在高浓度下也能通过皮肤吸收。   生活性氰化物中毒以口服为主。口腔粘膜和消化道能充分吸收。[B]氰化物的中毒途径[/B]  氰化物一种可迅速致命的血液性毒剂,曾经被用作毒气室执行死刑以及战争时的杀人武器。氰化物可由自然界的某些细菌、黴菌及藻类产生,并在一些植物性的食物如杏仁、樱桃、李子、桃子、银杏(百果)、乾果梨、苹果和梨种子、树薯和特殊竹芽,以及维他命B12中取得。氰化物会存在於植物自然产生的糖或其他的有机复合物中,成为其中的一部分。由其化学结构来看,氰化物包含碳氮三键(C≡N)通常是以化合物(结合两种或以上的化学物质形成的物质)的形态存在,例如无色气体的氰化氢(HCN)或氯化氰(CNCl),白色粉末或结晶的氰化钠(NaCN)或氰化钾(KCN),以及有机化合物。  除了一般被蓄意下毒外,也可能是腈(nitriles)类化物,如乙腈(acetonitrile)、亚硝醯铁氰化盐类(nitroprussid)等化学物质在进入人体後可代谢成氰化物,而可能导致中毒。桃、杏、批杷、李子、杨梅、樱桃的核仁皆含有苦杏仁甙和苦杏仁甙酶。苦杏仁甙遇水在苦杏仁甙酶的作用下,分解为氢氰酸、苯甲醛及葡萄糖。因此服食过量可以发生氢氰酸中毒(hydrocyanic acidpoisoning)。  苦的桃仁、杏仁比甜的毒性高数十倍,生食数粒即可出现症状。氢氰酸中毒的原理是氰酸离子(CN-)易与三价铁(Fe+++)结合,但不能与二价铁(Fe++)结合,当其被吸收入血后,因血红蛋白含二价铁,故不与结合,而随血流运送至各处组织细胞,很快与细胞色素及细胞色素氧化酶的三价铁结合,使细胞色素及细胞色素氧化酶失去传递电子的作用,而发生细胞内窒息正常人体内含有硫氰生成酶,能使少量CN-转变为无毒的硫氰化物,由肾脏排出,但这种机体解毒反应进行比较缓慢,当不足以解除氢氰酸的毒性时,即发生中毒。  另一种小说和电影中较少提到的非自然氰化物的来源,包括有电镀业、金属表面处理、电子废料中贵金属回收(剥金剂)、化学合成、尼龙(nylon)中间产物、相片显影、毒鱼、火灾现场等。其中值得特别一提的是火灾现场的氰化物。为何其与火灾现场有关系呢?因有些氰化物(腈类)是石化工业中的原料及中间产物,目前许多不绉衣物均可能是石化产物,所以燃烧时易有氰化物产生,另外火灾现场的毛料、丝质衣物燃烧亦是氰化物的来源。[B]氰化物中毒机理[/B]  氰化物可经由口服、吸入及皮肤黏膜被吸收到体内。氰化物由於可以抑制多种酶,被吸收後和细胞中粒线体(mitochondria)上细胞色素氧化酶(cytochrome oxidase)三价铁离子产生错合物,抑制细胞氧化磷酸化作用(oxidative phosphylation),阻断能量ATP(adenosine triphosphate)的生成,并使得细胞缺氧窒息。  一般而言,对於微量的氰化物人体可藉由与变性血红素(methemoglobin)作用,而不是与色素氧化酶结合的方式,而达到排除毒性的效果。而氰化变性血红素(Cyanomethemoglobin)之後与一种硫化物转移酶-硫氰酸生成酶 (rhodanese)作用,形成硫氰化铵(thiocyanate)错合物。硫氰化铵由肾脏排泄(也就是由尿液排出)。当过多的氰化物进入人体,前述反应机制无法负荷,因而产生毒性。

  • 【分享】DNA之父沃森探访清华

    “你们的发现很有趣!”堪称人类“DNA之父”的诺贝尔奖得主、美国科学家詹姆斯沃森博士在清华大学聆听中国学生的课题介绍时,这样兴奋地表示。10月26日下午,应邀访问清华大学的DNA双螺旋结构发现者沃森刚刚抵达北京,就来到清华大学生物系罗永章教授领导的蛋白质化学实验室,了解该实验室正在进行的各项研究。沃森一见到罗永章,便高兴地说:“你们的‘恩度’给我留下了非常深刻的印象,其低毒性的特点有可能改变人类治疗癌症的思路。”由于沃森博士此次行程非常紧凑,实验室的三位同学争分夺秒,先后用流利的英文介绍了三项抗肿瘤研究课题的最新进展。短短45分钟的会面,80岁的沃森博士丝毫不显旅途劳顿,在座位上挺直了腰身,饶有兴致地凝神倾听,并不时打断,问了约30个问题,与师生们就前沿领域的热点问题进行了深入的交流。“沃森的思路十分敏捷,每个问题都很有针对性,对我们的研究思路很有启发。”一位学生说。早在此次来华之前,沃森博士就得知该实验室已在原有基础上,承担建立了“蛋白质药物北京市重点实验室”和“抗肿瘤蛋白质药物国家工程实验室”。他在致清华大学顾秉林校长的信中表示:“非常期盼能够到罗永章教授的实验室参观”。该实验室负责人、留美归国学者罗永章教授由于主持研发了首例具有自主知识产权的内源性血管抑制剂类抗肿瘤药物“恩度”而获得国际学术界的广泛关注。沃森曾于1981年首次访华,并于2006年第二次访华期间到访清华。此次中国之行,中国生命科学研究和教育的变化使他感到“印象深刻”。罗永章介绍说,清华大学已提出“大力发展药学学科,为解决人类重大疾病做贡献”的目标,并将以该实验室为试点,进一步探索建设高水平学术团队的管理运行模式。沃森得知这个消息后十分欣喜,他说,中国科研机构如此重视“癌症治疗”这一困扰人类的重大科学问题,值得赞赏。中国科学家正在这个多年来人类共同探究的领域中“寻求新的发现”。据了解,作为美国冷泉港实验室的名誉主席,沃森博士目前正在推动该实验室与清华大学建立长期战略合作关系。他期待着两国的中青年学者可以为推动人类科学进步做出更多贡献。

  • 概述氰化钠的应用领域

    氰化钠是一种重要的基本化工原料, 用于基本化学合成、电镀、冶金和有机合成医药、农药及金属处理方面。络合剂、掩蔽剂。金银等贵重金属提炼和电镀等。  在机械工业中用作各种钢的淬火剂。  电镀工业中作为镀铜、银、镉和锌等的主要组分。在电镀溶液中可使阳极极化作用降低,保证阳极正常溶解,稳定镀液并能提高阴极极化作用,获得均匀的镀层。  冶金工业中用于提取金、银等贵重金属。  化学工业中是制造各种无机氰化物和发生氢氰酸的原料,也用于制造有机玻璃、各种合成材料、丁腈橡胶、合成纤维的共聚物。  染料工业中用于制造三聚氰氯(活性染料中间体,又为生产增白剂的原料)。 [2]  医药工业中用于制造氰乙酸甲酯和丙二酸二乙酯等。纺织工业中用作媒染剂,还用于钢的液式渗碳,渗氮。  直接利用氰化钠生产的重要无机氰化物主要有黄血盐钠、黄血盐钾、氰化钾、氰化锌、氰化钡、氰化亚铜、硫氰化钠、硫氰化钾;有机氰化物有氰乙酸、丙二腈、蛋氨酸、氰苄、三聚氰氯等。利用氰化钠发生氰化氢再生产的主要产品有:甲基丙烯酸甲酯、甲基丙烯酸丁酯、甲基丙烯酸、偶氮二异丁腈、偶氮二异庚腈、次氨基三乙酸、羟乙腈等。

  • 土壤氰化物显色

    土壤氰化物最高点不显色,用1g/L NaOH定容,测了最高点PH ,很高,其余中性,那最高点怎么调PH 呢[img]https://ng1.17img.cn/bbsfiles/images/2022/06/202206151155260729_5742_5651227_3.png[/img]

  • 氰化物/氢氰酸测试纸

    氰化物/氢氰酸测试纸

    氰化物特指带有氰基(CN)的化合物,包含有机和无机氰化物。通常我们说的氰化物是指无机氰化物,如由氢氰酸(HCN)反应生成的盐氰化钾、氰化钠等。氰化物/氢氰酸即使含量很低仍会有毒性,甚至是剧毒。事实上,它在工农业生产中的应用却十分广泛。所以,对氰化物/氢氰酸的检测就格外重要。  为了食品和饮品的安全和环境安全,我们需要快速检测判断食品和饮品中是否存在氰化物/氢氰酸。例如在制造白酒或水果白兰地酒时,使用的原材料中可能含氰化物,生产时如果处理不当,就可能导致酒中氰化物超标。该产品可应用于食品、饮料、化工、废水加工处理等行业。  德国MN公司生产的氰化物/氢氰酸测试纸(产品编号906 04)可以做到快速、精确检测氰化物的目的,它可用于溶液中、液态萃取液中(如含氰化物的废水,杏仁苷)氰化物/氢氰酸的测定。除此之外,它还适用于玉米和面粉中以及空气中氢氰酸的测定。https://ng1.17img.cn/bbsfiles/images/2021/06/202106151603235453_5114_5050799_3.png!w651x419.jpg  德国MN氰化物/氢氰酸测试纸906 04  这款产品的检测限值是0.2 mg/L氢氰酸(HCN),也就是说当样品中氢氰酸含量≥0.2 mg/L时,试纸就会由灰绿色变为蓝色,氢氰酸含量越高,蓝色会越深。一般反应10分钟就会变色,如果样品中氰化物/氢氰酸含量约为检测限值0.2 mg/L,那最起码要15分钟才能变色。  如果低于检测限值,反应时间会更长,也可能需要过夜颜色才能变化。相对其它的氰化物检测产品,该试纸的使用方法既简单又能快速帮助用户做出判断,受到许多客户的认可和好评。  氰化物/氢氰酸测试纸:http://www.zimex.com.cn/news/83.html?lang=zh-cn

  • 【原创】硫氰化钠已经列入黑名单,有没有相关的检测方法???

    硫氰化钠已经列入黑名单,有没有相关的检测方法??? 硫氰化钠英文名:Sodium Thiocyanate   化学式:NaSCN   分子量:81.07  物化性质:  白色斜方晶系结晶或粉末,相对密度1.735,熔点约为287℃,易溶于水、乙醇、丙酮等溶剂,水溶液呈中性,遇铁盐生成血红色的 硫氰化铁,遇亚铁盐不反应,与浓硫酸生成黄色的硫酸氰钠,预钴盐作用生成深蓝色的硫氰化钴,与银盐或铜盐作用生成白色的硫氰化银或黑色的硫氰化铜沉淀,在空气中易潮解。  用途:  用作丙烯睛纤维抽丝溶剂,化学分析试剂,彩色电影胶片冲洗剂,某些植物脱叶剂以及机场道路除莠剂,还用于制药、印染、橡胶处理,黑色镀镍及制造人造芥子油等。

  • [求助]作铁氰化钾伏安测试的一个问题

    我想测试电极在铁氰化钾+Na2SO4混合体系的伏安特性,请问一下如何选择K3Fe(CN)6和Na2SO4的浓度和用量??这对测试结果有什么影响吗??采用K3Fe(CN)6和Na2SO4的混合体系与K3Fe(CN)6,K4Fe(CN)6和Na2SO4的体系有什么区别吗??我是新手,刚刚接触电化学,还希望大家多多指教,谢谢!!

  • 食盐中亚铁氰化钾

    一篇题为《中盐之恶,触目惊心!》的自媒体文章刷屏朋友圈,文中“食盐添加亚铁氰化钾导致慢性中毒”的说法令大家担忧。文中讲述了“中央党校余教授”的亲身经历:余教授此前肾脏出现问题,经一一排查后发现罪魁祸首正是食盐中的抗结剂亚铁氰化钾。改为食用不含抗结剂的盐之后不久,所有的症状都消失了,化验单恢复正常。文章作者就此得出结论,“食盐添加剂是多么可怕”,“中国人早晚会从地球消失”。截至目前,该文章访问量已超10万次。不少人留言直斥盐业公司“对全民下毒”,并询问何处能买到不含亚铁氰化钾的食盐。事实果真如此吗?我国允许的食盐抗结剂有亚铁氰化钾、亚铁氰化钠、柠檬酸铁铵、硅铝酸钠、二氧化硅和硅酸钙,综合考虑工艺、成本、效果等因素,其中以亚铁氰化钾最常用。2014年12月,原国家卫计委发布的《食品安全国家标准食品添加剂使用标准》明确规定,盐及盐制品可添加亚铁氰化钾作为抗结剂使用。“食用盐里使用抗结剂,是世界各国普遍采取的措施,其中亚铁氰化钾(钠)在国外市场上销售食盐中时常可见。作为合法食品添加剂的亚铁氰化钾加入食盐中,其安全性不用担心。事实上,“食盐含亚铁氰化钾致慢性中毒”的传闻并不新鲜。早在六七年前就有网友发帖讨论,2017年、2018年此类自媒体文章更是频繁出现,并多数出自“中央党校余教授”的亲身经历。为此,全国盐业标准化技术委员会曾于2018年8月27日发布《就近日有关自媒体传播“盐里面加进了亚铁氰化钾”危害消费者健康不实信息的有关说明》,驳斥传闻。说明指出,目前我国制盐行业在食盐中添加抗结剂“亚铁氰化钾”,是严格按照原国家卫计委发布的《食品安全国家标准食品添加剂使用标准》(GB2760)执行的,我国食盐安全是有保障的。

  • 【资料】让人害怕的氰化物

    【资料】让人害怕的氰化物

    [color=#DC143C]氰化物[/color][img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910222352_177320_1610969_3.jpg[/img]定义  氰化物特指带有氰基(CN)的化合物,其中的碳原子和氮原子通过叁键相连接。这一叁键给予氰基以相当高的稳定性,使之在通常的化学反应中都以一个整体存在。因该基团具有和卤素类似的化学性质,常被称为拟卤素。通常为人所了解的氰化物都是无机氰化物,俗称山奈(来自英语音译“Cyanide”),是指包含有氰根离子(CN-)的无机盐,可认为是氢氰酸(HCN)的盐,常见的有氰化钾和氰化钠。它们多有剧毒,故而为世人熟知。另有有机氰化物,是由氰基通过单键与另外的碳原子结合而成。视结合方式的不同,有机氰化物可分类为腈(C-CN)和异腈(C-NC),相应的,氰基可被称为腈基(-CN)或异腈基(-NC)。氰化物可分为无机氰化物,如氢氰酸、氰化钾(钠)、氯化氰等;有机氰化物,如乙腈、丙烯腈、正丁腈等均能在体内很快析出离子,均属高毒类。很多氰化物,凡能在加热或与酸作用后或在空气中与组织中释放出氰化氢或氰离子的都具有与氰化氢同样的剧毒作用。  工业中使用氰化物很广泛。如从事电镀、洗注、油漆、染料、橡胶等行业人员接触机会较多。日常生活中,桃、李、杏、枇杷等含氢氰酸,其中以苦杏仁含量最高,木薯亦含有氢氰酸。在社会上也有用氰化物进行自杀或他杀情况。  职业性氰化物中毒主要是通过呼吸道,其次在高浓度下也能通过皮肤吸收。  生活性氰化物中毒以口服为主。口腔粘膜和消化道能充分吸收。  氰化物进入人体后析出氰离子,与细胞线粒体内氧化型细胞色素氧化酶的三价铁结合,阻止氧化酶中的三价铁还原,妨碍细胞正常呼吸,组织细胞不能利用氧,造成组织缺氧,导致机体陷入内窒息状态。另外某些腈类化合物的分子本身具有直接对中枢神经系统的抑制作用。  在发现HCN也存在于宇宙空间中的同时,据S Miller实验指出它是通过放电从甲烷、氨、水生成氨基酸时的中间产物,因此认为它是生物以前的有机物生成中的重要中间产物。实际上,通过以氨和水溶液加热而生成腺嘌呤,虽HCN在生物体内的存在并不多,但它可经苦杏仁苷酶水解而生成,能和金属原子形成非常好的络会物,因此易和金属蛋白质结合,常常显著地抑制金属蛋白质的机能,尤其是对细胞色素C氧化酶,即使10-4M浓度,也会强烈地抑制,因而使呼吸停止。在高浓度时,和磷酸吡哆醛等的羰基结合,对以磷酸吡哆醛为辅酶的酶的作用可抑制。还因作用于二硫键,使之还原(-S-S-+HCN→-SH+NC-S),所以也能抑制木瓜蛋白酶(papain)的活性。  氰化氢(HCN)是一种无色气体,带有淡淡的苦杏仁味。有趣的是,有四成人根本就闻不到它的味道,仅仅因为缺少相应的基因。氰化钾和氰化钠都是无色晶体,在潮湿的空气中,水解产生氢氰酸而具有苦杏仁味。  氰化物毒性:6级  毒性等级划分(针对正常人)  6级 剧毒 少于5mg/kg 少于7滴  5级 极毒 5-50mg/kg 7滴至1勺  4级 很毒 50-500mg/kg 1勺至1盎司  3级 有毒 0.5-5g/kg 1盎司至1品脱或1磅  2级 轻毒 5-15g/kg 1品脱至1夸脱  1级 微毒 15g/kg以上 1夸脱或2.2镑以上  氰化物拥有令人生畏的毒性,然而它们绝非化学家的创造,恰恰相反,它们广泛存在于自然界,尤其是生物界。氰化物可由某些细菌,真菌或藻类制造,并存在于相当多的食物与植物中。在植物中,氰化物通常与糖分子结合,并以含氰糖苷(cyanogenic glycoside)形式存在。比如,木薯中就含有含氰糖苷,在食用前必须设法将其除去(通常靠持续沸煮)。水果的核中通常含有氰化物或含氰糖苷。如杏仁中含有的苦杏仁苷,就是一种含氰糖苷,故食用杏仁前通常用温水浸泡以去毒。  人类的活动也导致氰化物的形成。汽车尾气和香烟的烟雾中都含有氰化氢,燃烧某些塑料也会产生氰化氢。

  • 总氰化物标准曲线和质控测定

    求大神分析,谢谢~在做总氰化物蒸馏过程中,加入了EDTA-2Na和磷酸之后,吸收瓶中的氢氧化钠吸收液变成了黄色,是正常的吗?最后做出来的测量结果也低了很多。测量过程中的试剂都是临用的时候配的,药品也是新的,应该不存在问题。

  • 亚铁氰化钾 和 碘化亚铜 的问题

    1.亚铁氰化钾 国标中:鉴别方法 本品应呈亚铁氰化物反应和钠、钾盐反应。  亚铁氰化物反应 取1%的试液10mL,加2.5%三氯化铁溶液1mL,生成暗蓝色沉淀,过滤。取滤液中和后浓缩至1/3,加高氯酸(1:10)溶液2滴,即产生白色沉淀。不溶于氢氧化钠溶液或氨水,溶于硫酸溶液。(1).....取滤液中和.....是中和滤液中的什么?用什么来中和?(2).....2滴,即产生白色沉淀.....所产生的白色沉淀是什么??2.碘化亚铜 本来这东西不溶于水,取样品(分析纯)少量与少量固体硝酸银混合,加水,有黑色沉淀,溶液部分变绿色,原以为是鉴别碘离子的反应,看现象估计银离子和亚铜离子反应了。。。。求一个碘化亚铜的鉴别反应谢谢~~!

  • 食盐中添加亚铁氰化钾是否安全,大家如何看待

    近日,《中国卖盐的是畜生》一文在网上广为传播,文章以某教授的名义,指出盐里面的抗结剂亚铁氰化钾对人体肝脏肾脏造成伤害。文章的传播引起了一些人的恐慌,毕竟,食盐是生活中最常用的调味品。食盐中添加亚铁氰化钾是否安全?就此《民生周刊》记者采访了北京市卫计委、国家食品安全风险评估中心等机构及相关专家。“亚铁氰化钾是一种常见的抗结剂,添加到食盐中是经过安全性评估的,很多国家都在用,没有问题。”对于亚铁氰化钾的安全性,国家食品安全风险评估中心研究员李宁表示。根据我国《食品安全国家标准食品添加剂使用标准》(GB2760-2014)的规定,亚铁氰化钾在食盐中的最大添加量是0.01g/kg。“只要在这个限值内使用都是安全的。”国家食品安全风险评估中心标准三室副研究员王华丽表示,目前,国家食品安全风险评估中心也没有收到过相关风险报告。《民生周刊》记者从北京市卫计委了解到,临床方面,尚未发现因亚铁氰化钾中毒的聚集病历。“亚铁氰化钾是食品添加剂,有相应的国家标准,标准量值源于毒理学实验,严格按照标准添加应该是安全的。”北京市卫计委相关人员表示。其实亚铁氰化钾在国外也是主要用作抗结剂(anticakingagent),防止食盐结块。欧盟可以用亚铁氰化钾/钠/钙,限量为20毫克/每公斤。美国可以用亚铁氰化钠,限量(四舍五入)和中国其实一样。日本可以用亚铁氰化钾/钠/钙,限量值是中国的2倍。澳大利亚和新西兰也是允许使用的,批准的是亚铁氰化钾和亚铁氰化钠。针对食盐中添加亚铁氰化钾是否安全,大家如何看待这个问题呢?

  • 铁氰化钾在铂盘电极上的电位差

    铁氰化钾作为探针,在玻碳电极上是一个电子转移,理论峰电位差是59mv,那在铂电极上呢?用的是铂盘电极。由于天气冷,工作站无法正常工作,所以在这里求助大家了,谢谢。

  • 总氰化物盲样做不出,请问您是怎么做的?谢谢!!

    各位老师: 您好,先谢谢! 发过帖子求助关于水中氰化物盲样的测定,没得到明确的回答,请您指点啊! 先说一下我做的步骤: 一、将盲样按证书上要求用1%NaOH溶液稀释(10mL至1000mL); 二、量筒量取200mL至蒸馏瓶中,加入10mLEDTA-2Na(此处EDTA-2Na溶解时可能没在烧杯中溶解完全就转移,可能没到达标准上的浓度)和10mL磷酸溶液,加入防爆玻璃沸珠后加热,温度为130℃; 三、因本身仪器标配250mL容量瓶,我用100mL容量瓶接的,导致馏出液导管没放入瓶底(中间大量损失了?),收集至约80mL左右时停止冲洗导管定容; 四、这里有疑问了,其实我的蒸馏液体积为70mL左右,怎么能求出总氰化物的浓度?真心求助啊!

  • 亚铁氰化钾 和 碘化亚铜 的问题

    1.亚铁氰化钾 国标中:鉴别方法 本品应呈亚铁氰化物反应和钠、钾盐反应。  亚铁氰化物反应 取1%的试液10mL,加2.5%三氯化铁溶液1mL,生成暗蓝色沉淀,过滤。取滤液中和后浓缩至1/3,加高氯酸(1:10)溶液2滴,即产生白色沉淀。不溶于氢氧化钠溶液或氨水,溶于硫酸溶液。(1).....取滤液中和.....是中和滤液中的什么?用什么来中和?(2).....2滴,即产生白色沉淀.....所产生的白色沉淀是什么??2.碘化亚铜 本来这东西不溶于水,取样品(分析纯)少量与少量固体硝酸银混合,加水,有黑色沉淀,溶液部分变绿色,原以为是鉴别碘离子的反应,看现象估计银离子和亚铜离子反应了。。。。求一个碘化亚铜的鉴别反应谢谢~~!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制