当前位置: 仪器信息网 > 行业主题 > >

偶联物

仪器信息网偶联物专题为您整合偶联物相关的最新文章,在偶联物专题,您不仅可以免费浏览偶联物的资讯, 同时您还可以浏览偶联物的相关资料、解决方案,参与社区偶联物话题讨论。

偶联物相关的资讯

  • 抗体-药物偶联物自上而下质谱分析新进展
    大家好,本周为大家分享一篇文章,Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody−Drug Conjugates [1],文章的通讯作者是加州大学洛杉矶分校化学与生物化学系的Joseph A. Loo教授。  抗体-药物偶联物(Antibody - drug conjugates, ADC)是一种很有前景的治疗药物,它通过linker为抗体提供高效的细胞毒性有效载荷,以提高其抗肿瘤功效。将linker和有效载荷偶联到抗体上,给ADC带来了额外的异质性,增加了对其全面表征的挑战。自上而下的质谱(TD-MS)技术近年来在单克隆抗体的表征中得到了广泛的应用,与自下而上质谱(BU-MS)和中下质谱(MD-MS)相比,TD-MS具有最简单的样品制备流程和保留单克隆抗体内源性修饰的优势。然而,对于抗体大小的蛋白质和具有显著二硫键组成的蛋白质,TD-MS的断裂效率较低,获得的序列和药物偶联位点信息有限。  为了增加TD-MS的序列信息含量,一种策略是将不包含蛋白质序列N端和C端的内部片段纳入数据分析工作流程中,这种方法已被证明有助于二硫化完整蛋白的TD-MS表征。在这篇文章中,作者发现在TD-MS中分配内部片段将mAb序列覆盖率提高到75%以上,并允许确定链内二硫键连接和各种N-糖基化类型。对于治疗性非特异性赖氨酸连接ADC,几乎60%的假定药物偶联位点被识别。  内部片段可以在不破坏二硫键的情况下进入结构紧密、碎片化效率高度受限的区域,因此有可能大大增强完整单克隆抗体的序列信息。作者对完整的NIST单抗的5个最丰富的电荷态采用了ECD和HCD两种碎片化方法,并将每个电荷态的两种碎片化方法的TD-MS结果结合分析。内部片段的纳入提高了二硫键约束区域的序列覆盖,例如,轻链Cys133和Cys193之间的二硫约束序列几乎完全由内部片段覆盖(图2A),重链的Cys147-Cys203和Cys264-Cys324序列区也是如此(图2B),而这些区域是末端片段难以触及的。CDR的覆盖率从53%增加到60%,这表明纳入内部片段可以更深入地了解这一关键区域。总体来说,轻链的序列覆盖率从54%提高到83%,重链从28%提高到72%,合并后整个NIST单抗的序列覆盖率从36%增加到76%(图1)。重链比轻链的覆盖率提高更为显著,这表明随着蛋白质分子量增大,分配内部片段变得更有价值。  图1. 考虑(A)轻链、(B)重链和(C)全单抗内部片段前后不同序列区域的序列覆盖率,包括非二硫约束序列(Free)、二硫约束序列(SS-constrained)、全序列(Full)和CDR序列(CDR)  图2. (A)轻链和(B)重链的NIST mAb序列覆盖图谱。蛋白质骨架上的蓝色、红色和绿色切割分别代表b/y、c/z和by/cz片段。序列上方的实线表示末端片段序列覆盖率,序列下方的实线表示内部片段序列覆盖率。紫色虚线表示链内二硫键,浅灰色表示受二硫键约束的序列区域,橙色表示互补决定区域(cdr)。  HCD能够在不破坏二硫键的同时仅碎裂蛋白质主干,因此作者在完整的NIST单抗上应用HCD来生成含有完整二硫键的片段,以确定二硫键连接。在每个形成链内二硫键的半胱氨酸上应用-1H的修饰,以表明它们的完整性。对于轻链,52个末端片段和12个内部片段穿过S - S键I, 17个末端片段穿过S - S键II, 6个末端片段穿过两个二硫键,清楚地显示了这两个二硫键的连接模式(图3A)。靠近重链两端的两个二硫键,S - S键I和S - S键IV,被89个末端片段和9个内部片段穿过 而中间的两个二硫键,S−S键II和S−S键III,只有24个内部片段穿过,没有末端片段穿过(图3B,C)。这些结果证明了NIST单抗重链的链内S - S连通性,重要的是,中间的两个S - S键模式只能由内部片段确定。除了确定链内S - S连通性外,分配内部片段也有助于鉴定N糖基化。当纳入内部片段时,额外分配了25个含有G0F的片段,42个含有G1F的片段和34个含有G2F的片段,这表明分析内部片段对N-糖基化鉴定的能力。  图3. (A)轻链、(B)重链、(C)仅含完整NIST单抗内部片段的重链,在每个形成链内二硫键的半胱氨酸上施加一个氢损失后,通过HCD TD-MS生成片段位置图。  内部片段可以确定赖氨酸连接ADC的药物偶联位点。作者采用了类似的方法,将ECD和HCD应用于先前已充分表征的非特异性赖氨酸连接ADC。ADC的TDMS在轻链上仅产生8个与DM1结合的末端片段(图4A)。分配内部片段显著提高了DM1偶联位点的测定。ADC的TD-MS在轻链上产生61个1- dm1结合和15个2 - dm1结合的内部片段,定位了3个偶联位点(K106, K114, K133),并将鉴定的两个偶联位点缩小到4个赖氨酸残基(K153, K160, K170, K175)(图4A)。对于重链也观察到类似的结果。综上所述,对于完整的ADC,仅用末端片段确认了16个偶联位点,而在包含内部片段后,这一数字增加到52个,覆盖了约58%的抗体所有假定的偶联位点。  图4. 由ECD和HCD TDMS生成的完整IgG1-DM1 ADC (A)轻链和(B)重链片段位置图。黑色垂直虚线表示赖氨酸的位置。  在这项工作中,作者首次报道了在完整的NIST单抗和异质赖氨酸连接ADC的TD-MS表征中分析内部片段的好处。内部片段的包含末端片段难以达到的二硫键约束区域,显著增加了完整单克隆抗体的序列覆盖率。重要的PTM信息,包括二硫键模式和N糖基化,可以通过包含内部片段获得。最重要的是,内部片段可以帮助确定高度异质赖氨酸连接ADC的药物偶联位点。  撰稿:夏淑君  编辑:李惠琳  文章引用:Added Value of Internal Fragments for Top-Down Mass Spectrometry of Intact Monoclonal Antibodies and Antibody-Drug Conjugates
  • 生物药岛津说-应对抗体偶联药物(ADC)分析方案
    抗体偶联药物是指将具有高度靶向性的单克隆抗体,通过特定的一段连接片段,实现同具有细胞毒性抗肿瘤药物的偶联,从而将抗体的高度选择性与药物的抗肿瘤活性合二为一。2021年8月8日,荣昌生物与Seagen(SeagenInc. 纳斯达克:SGEN)达成一项全球独家许可协议,以开发和商业化其抗体偶联药物(ADC)维迪西妥单抗,9月22日,国家药品监督管理局(NMPA)药品审评中心(CDE)官网显示,荣昌生物(09995.HK)靶向Claudin18.2的抗体偶联药物(ADC)RC118获得临床试验默示许可,适应症为Claudin18.2表达阳性的局部晚期不可切除或转移性恶性实体瘤。国内研发实力增强,中国ADC药物研究大有可为,期待为患者造福。 目前在研的ADC药物见下表:ADC结构主要由靶向抗体,连接子linker以及高效价小分子细胞毒性药物。药物研究过程涉及到重要关键质量属性,包括药物/抗体比率DAR(drug-to-antibody ratio),药物荷载分布,未偶联抗体,残留药物,大小异质性以及电荷异质性,以关键的DAR研究为例,DAR表示与抗体偶联细胞毒性药物的平均数量,是ADC药物重要质量属性。现在研厂家的pepline DAR值有不同设计的缘由,低药物荷载时,ADC效力可能会降低或达不到要求,高药物荷载,可能会影响毒性以及代谢问题。表.ADC药物重要关键质量属性 对于ADC药物DAR值分析,推荐使用液相以及液相串联质谱方法分析。根据该指南要求,岛津推荐:Nexera生物惰性液相以及Nexera LC40液相 Nexera Bio生物兼容液相系统 岛津生物兼容液相Nexera Bio系统流路采用生物惰性材料,不仅耐腐蚀,而且能减少生物大分子的吸附,保证生物大分子的完整性,有效保障分析重复性和仪器耐用性。 Nexera Bio生物兼容液相系统特点:● 泵头、混合器、进样针、样品环和接头配件等均采用生物惰性材料,耐腐蚀、抗吸附;● 耐高压不锈钢包覆的Peek管路,提升系统耐压至66MPa;● 标配输液泵柱塞清洗蠕动泵,有效降低盐析,实现良好的送液稳定性,并防止泵头腐蚀。 Nexera LC-40 系列 Nexera系列HPLC与人工智能和物联网结合,实现智能化和自动化。融合“AI”和“loT”技术,轻松应对RNA类物质分析液相色谱仪。 ADC样品DAR值分析案例通过岛津液相以及HIC色谱柱可自动化分析得到DAR值计算报告。 更多内容了解或仪器配置应用了解,请联系岛津工作人员! 参考文献:[1] Wagh A , Song H , Zeng M , et al. Challenges and new frontiers in analytical characterization of antibody-drug conjugates[J]. mAbs, 2018:0-0. 岛生物药, 津心为您
  • 安捷伦-迈百瑞共建抗体药物偶联物(ADC)分析联合实验室
    2015年6月18日上午,安捷伦科技公司与烟台迈百瑞国际生物医药有限公司在山东烟台迈百瑞公司厂区举行了&ldquo 迈百瑞国际生物医药&mdash 安捷伦科技前沿生物药研究暨抗体药物偶联物分析联合实验室&rdquo 揭牌仪式。烟台迈百瑞国际生物医药有限公司常务副总裁梁其斌、烟台迈百瑞国际生物医药有限公司质量副总裁阮懋荣、安捷伦科技大中华区生命科学事业部业务总监赵影、安捷伦科技大中华区液相与液质联用技术应用技术支持经理安蓉等出席了揭牌仪式。仪器信息网等多家媒体与双方共同见证了促进中国新药领域研究的激动时刻。 烟台迈百瑞质量副总裁阮懋荣致辞   烟台迈百瑞国际生物医药有限公司质量副总裁阮懋荣为仪式致辞,并介绍了抗体偶联药物(Antibody Drug Conjugates,ADC)的特点和研发概况。ADC具有良好的靶向性及抗癌活性,已成为目前抗肿瘤抗体药物研发的新热点和重要趋势,并受到越来越多的关注。其开发涉及四个方面,包括药物靶点的筛选、重组抗体的制备、&ldquo 连接物&rdquo 技术开发以及高细胞毒性化合物的优化,其中任何一个环节出现问题,都会影响到ADC药物的安全性和有效性。目前,ADC药物开发的技术能力仍依赖于少数几个技术提供商。阮懋荣说:&ldquo 我们非常高兴能有机会与安捷伦这样全球领先的公司展开合作。迈百瑞一直致力于提供高质量的生物药物研发和GMP生产一站式外包服务,满足客户研发和GMP生产需求,加快生物药物的研发速度。此次与安捷伦合作成立的联合实验室,将为迈百瑞在国际ADC药物研发/生产舞台竞争中取得领先地位奠定坚实的基础。&rdquo 阮懋荣还说,迈百瑞的ADC产能是亚洲之冠,在全球也是屈指可数。除此之外,迈百瑞的客户是中国申请ADC新药的首例。   该联合实验室是安捷伦科技在中国的第一间ADC分析领域前沿合作实验室,旨在以国际化视角和全球先进技术,建设先进生物药物分析测试平台,在完善工艺流程研究、ADC药物开发、提升科研质量的同时,紧跟国内外行业进展及客户需求,提供整体化解决方案,从而促进我国生物医药产业的可持续性发展。 安捷伦科技大中华区生命科学事业部业务总监赵影致辞   安捷伦科技大中华区生命科学事业部业务总监赵影女士在揭幕前致辞。赵影表示:&ldquo 安捷伦致力于为制药/生物制药行业客户提供创新高效的解决方案和技术支持。在ADC这一生物制药前沿的领域,安捷伦凭借其优异的仪器性能和完善的技术支持服务赢得了制药/生物制药客户的认可。在本次与迈百瑞的合作中,安捷伦不仅提供客户理化分析、结构表征相关的仪器平台,更是与客户紧密沟通,应对客户需求和行业动态快速响应,积极开发相应的整体解决方案。&rdquo 赵影还提到,安捷伦科技在全球已经有12000余名员工,近几年非常注重生命科学领域的发展。目前,中国的技术支持和售后服务工程师有500多位,为用户提供7天24小时无假期全天候的服务,得到了广大用户的认可。随着&ldquo 十三五&rdquo 重大新药创制中提出重点支持生物药开发创新,生物制药市场发展势头强劲,安捷伦也会继续在生物药物质量控制领域继续提供仪器平台和售后支持,协助广大制药用户以更快的速度、更低的成本将高质量的药物带入市场。 烟台迈百瑞质量副总裁阮懋荣与安捷伦科技大中华区生命科学事业部业务总监赵影签署共建联合实验室框架协议 联合实验室揭牌 参观共建实验室及迈百瑞生产线   安捷伦科技安蓉及迈百瑞姚雪静带领大家参观了共建实验室,并介绍了安捷伦的仪器应用。迈百瑞常务副总裁梁其斌带领大家参观了迈百瑞设施完备的无菌药物生产线,使大家对药物生产特别是ADC的生产流程增进了认识。   烟台迈百瑞厂区坐落于在烟台海岸线旁边,紧邻大海,环境优雅。整个厂区使用的供暖等循环水都是打井地下水循环使用,也是响应环保的典范。 双方答记者问   在媒体采访环节,安捷伦科技和烟台迈百瑞回答了记者就双方合作实验室建成的有关问题。   Instrument: 请问安老师,安捷伦科技的哪些产品已经用于联合实验室,将来会有那些产品逐步入驻?这些仪器将分别应用在药物研究的哪些层面?   安捷伦科技安蓉:目前已经用在联合实验室的安捷伦设备包括1290 Infinity 2D超高效液相色谱、6530 四极杆-飞行时间串联质谱仪(Q-TOF)、1260 Infinity 液相色谱、1260 infinity 生物惰性液相系统、低热容(LTM)柱温箱以及毛细管电泳仪。接下来,安捷伦的气质联用仪和气相色谱会很快入驻,ICP-MS等仪器也会陆续应用于合作实验室。LC-MS和GC-MS以及ICP-MS等将会用于制剂包材药物相容性控制,LC和毛细管电泳等将用于QC层面表征等。   Instrument: 请问赵总,这次与迈百瑞的合作应该是安捷伦科技六大战略领域中与诊断制药相关的一项,那么在其他几个领域是否也将与其他机构合作建立共建实验室?   安捷伦科技赵影:安捷伦一直在寻找战略伙伴,前期已与上海交大药学院、中国药科大学等实验室有合作。现在和迈百瑞的合作,也是在寻求行业中的窗口。不仅在生物医疗方面,在其他战略领域也是如此。安捷伦要给客户提供真正意义上的整体解决方案,不仅针对仪器,也针对客户的应用需求,目的是为客户提供整体、特定的解决方案。与行业前沿的具体公司和实验室的合作,是对安捷伦的一种特殊技术补充。   Instrument: 请问黄总,安捷伦和迈百瑞的合作将带来怎样的成果和收效?   烟台迈百瑞药物研发中心副总裁黄长江:迈百瑞致力于研发药物分析手段,满足新的药物生产需求,是中国生物制药ADC研发生产的先驱。而安捷伦在生命科学仪器方面是佼佼者。安捷伦与迈百瑞的合作是一种一加一大于二的强强联手,即优秀的团队利用新的分析仪器研发新的检测方法。更新更好的药物分析方法将在我们的合作实验室中产生。 编辑:郭浩楠
  • 安捷伦携手迈百瑞共建前沿生物药研究暨抗体药物偶联物分析联合实验室
    安捷伦携手迈百瑞共建前沿生物药研究暨抗体药物偶联物分析联合实验室 2015年6月18日,北京——安捷伦科技公司(纽约证交所:A)今日宣布,与烟台迈百瑞国际生物医药有限公司携手共建“迈百瑞国际生物医药—安捷伦科技前沿生物药研究暨抗体药物偶联物分析联合实验室”(以下简称“联合实验室”)。烟台迈百瑞国际生物医药有限公司常务副总裁梁其斌先生、烟台迈百瑞国际生物医药有限公司质量副总裁阮懋荣博士以及安捷伦科技大中华区生命科学事业部业务总监赵影女士等出席了揭牌仪式,共同见证双方为积极促进中国新药领域研究的里程碑时刻。烟台迈百瑞国际生物医药有限公司质量副总裁阮懋荣博士与安捷伦科技大中华区生命科学事业部业务总监赵影女士签署共建联合实验室框架协议 抗体偶联药物(Antibody Drug Conjugates,ADC)因其良好的靶向性及抗癌活性,已成为目前抗肿瘤抗体药物研发的新热点和重要趋势,并受到越来越多的关注。其开发涉及四个方面,包括药物靶点的筛选、重组抗体的制备、“连接物”技术开发以及高细胞毒性化合物的优化,其中任何一个环节出现问题,都会影响到ADC药物的安全性和有效性。目前,ADC药物开发的技术能力仍依赖于少数几个技术提供商。 该联合实验室是安捷伦科技在中国的第一间ADC分析领域前沿合作实验室,旨在以国际化视角和全球先进技术,建设先进生物药物分析测试平台,在完善工艺流程研究、ADC药物开发、提升科研质量的同时,紧跟国内外行业进展及客户需求,提供整体化解决方案,从而促进我国生物医药产业的可持续性发展。烟台迈百瑞国际生物医药有限公司质量副总裁阮懋荣博士与安捷伦科技大中华区生命科学事业部业务总监赵影女士共同为联合实验室揭牌 目前进驻联合实验室的安捷伦设备包括1290 Infinity 超高效液相色谱、6530 四极杆-飞行时 间串联质谱仪(Q-TOF)、1260 Infinity 液相色谱、1260 infinity 生物惰性液相系统、7890A GC 和低热容(LTM)柱温箱以及安捷伦毛细管电泳解决方案。其中,Agilent 1290 Infinity LC具有创新的设计,能够在确保极高准确度和精密度的同时,提供极高的灵活性和分析效率,满足用户从常规液相色谱,到超高效液相色谱各种不同分析要求。Agilent四极杆-飞行时间串联质谱仪(Q-TOF)集成了安捷伦三大核心创新技术——高精度飞行时间质谱技术、安捷伦喷射流离子聚焦技术以及强大的MassHunter工作站软件,是轮廓分析、结构表征和定量分析的理想平台。 烟台迈百瑞国际生物医药有限公司质量副总裁阮懋荣博士表示:“我们非常高兴能有机会与安捷伦这样全球领先的公司展开合作。迈百瑞一直致力于提供高质量的生物药物研发和GMP生产一站式外包服务,满足客户研发和GMP生产需求,加快生物药物的研发速度。此次与安捷伦合作成立的联合实验室,将为迈百瑞在国际ADC药物研发/生产舞台竞争中取得领先地位奠定坚实的基础。” 安捷伦科技大中华区生命科学事业部业务总监赵影女士表示:“安捷伦致力于为制药/生物制药行业客户提供创新高效的解决方案和技术支持。在ADC这一生物制药前沿的领域,安捷伦凭借其优异的仪器性能和完善的技术支持服务赢得了制药/生物制药客户的认可。在本次与迈百瑞的合作中,安捷伦不仅提供客户理化分析、结构表征相关的仪器平台,更是与客户紧密沟通,应对客户需求和行业动态快速响应,积极开发相应的整体解决方案。” 作为全球生命科学市场的领导者以及领先的实验室合作伙伴,安捷伦近年来一直致力于针对生物制药市场和客户需求,提供高通量、准确、耐用的仪器平台、分析方法和解决方案。随着“十三五”重大新药创制中提出重点支持生物药开发创新,生物制药市场发展势头强劲,安捷伦也会继续在生物药物质量控制领域继续提供仪器平台和售后支持,协助广大制药用户以更快的速度、更低的成本将高质量的药物带入市场。关于迈百瑞 烟台迈百瑞国际生物医药有限公司成立于2013年6月25日,是一家面向全球生物制药公司、生物技术公司提供符合欧美标准的临床样品及生物药品的研发、生产合作服务的生物医药公司。了解关于迈百瑞的详细信息,请访问http://www.mabplex.com/index。 关于安捷伦科技 安捷伦科技公司(纽约证交所:A)是全球生命科学、诊断和应用市场的领导者,同时也是领先的实验室合作伙伴,致力于与客户共同缔造美好世界。安捷伦为全球100多个国家的客户提供先进的仪器、软件、服务和耗材,产品覆盖整个实验室的工作流程。2014财年,安捷伦的收入达到40亿美元。公司在全球拥有12,000 名员工。今年是安捷伦进军分析仪器领域的50周年纪念。了解关于安捷伦的详细信息,请访问www.agilent.com.cn。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 2024第三届生物偶联药全球创新峰会9月无锡召开!近百位国际生命科学大咖齐聚无锡,探索偶联药的无限可能!
    由药明合联WuXi XDC和佰傲谷BioValley共同主办的2024第三届生物偶联药全球创新峰会(Global XDC 2024),将于9月10-12日在无锡重磅回归。大会涵盖2个主论坛+4个分论坛,预计参会企业300+家,参会专家100+位,参会观众1000+人。大会以“探索偶联药的无限可能”为主题,将聚焦于新靶点发现与验证、ADC和新型偶联药物创新技术、载荷-连接子新技术,以及CMC挑战和商业化策略等内容,探索前沿技术进步、分享国际优秀生物科技公司的创新经验、引领ADC和XDC的新未来!本届峰会邀请了众多生物偶联药领域的国际专家与会,共同探讨创新合作,碰撞思想,助力生物偶联药行业蓬勃发展。1.国际嘉宾阵容来袭,聆听偶联药的世界声音2.精选热门议题一览,探索偶联药的无限可能Keynote Speech&bull Rina-S-the missing link(er) &bull Protein homeostasis by dual-precision targeted protein degradation and stabilization &bull A novel dual-payload ADC platform to overcome payload resistance and maximize therapeutic promise of ADCs &bull MYTX-011: a cMET-targeting ADC engineered for anti-tumor activity against a broader spectrum of cMET expression&bull NTX1105: development of a best-in-class ADC targeting Nectin-4 &bull Collaborating within the global life science ecosystem to advance breakthrough science论坛一:Next generation ADCs: Novel targets, payloads, payload-linkers, and conjugation technologies&bull Next generation ADCs: novel targets, payloads, linkers and conjugation technologies&bull Nexatecan&trade : OHPAS-able Topo1 inhibitor for ADC&bull Introduction to PINOT-ADC platform: novel Top1 inhibitor payload, tandem cleavable and super-hydrophilic linker, and dual payload system&bull Versatile drug bundle-based ADC platform: achieving site-specific conjugation, DAR of 8 or 12, and dual payloads&bull CS5001, a potential best-in-class ROR1 ADC&bull Discovery of AT65474, a highly selective anti-CLDN6 ADC with a proprietary payload&bull Polysorbates in biopharmaceuticals-approaches to mitigate risk论坛二:Bioconjugates development beyond ADCs&bull RDC-the exploration of new drug modality in unmet clinical need&bull Intra-cellular mutant epitopes-novel targets for ADC and bispecific antibodies?&bull GBB’s AI-enabled ecosystem elevating biological drug development&bull Developing radiopharmaceuticals targeting CLDN 18.2 with nanobodies&bull Fully human common light chain technology for novel ADCs论坛三:Innovative bioconjugate discovery: from target selection to PreClinical Candidate (PCC)&bull Harnessing AbClick Pro® for AT-211: leading CLDN 18.2 ADCs with superior therapeutic index&bull An overview on the new topoisomerases inhibitors technologies&bull Next generation ADCs:novel targets, payloads, linkers and conjugation technologies&bull Challenges and solutions for clinical PK bioanalysis of antibody drug conjugates (ADCs)论坛四:CMC challenges and commercialization strategies&bull CMC scale-up challenges and COGs for site specific ADCs&bull Innovative bioassays: translate clinical effects into a rigorous system of XDC product assessment&bull The integrated analytical platform enables accelerated CMC development of XDCs&bull QbD considerations for ADC process&bull How WuXiBio’s Microbial Platform facilitates rapid and cost-effective ADC development and manufacturing&bull Non-clinical strategies for ADC drugs3.欢迎更多XDC研发企业加入我们主办单位:药明合联WuXi XDC、佰傲谷BioValley大会时间:2024年9月10-12日(周二/周三/周四)大会地点:中国无锡君来洲际酒店参会报名:扫码下方二维码报名【标准通票:200元/人】联系我们:定制参展/商务合作请联系:Stephen Sun 15966587556(微信同号)参会报名/媒体合作请联系:Abby Jiang 18217659261(微信同号)4.特别感谢以下单位的支持
  • 上海希美代理Randox-lifescience公司药物残留抗体及偶联蛋白
    英国Randox-lifescience公司生产药物残留检测单克隆和多克隆抗体,ELISA试剂盒,以及偶联BSA/BTG蛋白抗原,主要产品有: 抗生素(磺胺喹恶啉、磺胺嘧啶、磺胺二甲嘧啶、氯霉素、喹诺酮类药物),呋喃唑酮代谢物(AOZ、AMOZ、SEM、AHD),&beta -兴奋剂类(克伦特罗、莱克多巴胺),雌激素(玉米赤霉烯醇、沙丁胺醇)等。
  • 多肽药物/生物制剂表征会场预告:含双抗/多肽偶联物,拉曼光谱/光散射技术应用等内容
    为促进我国生物医药产业持续快速发展,仪器信息网将于2023年3月29日-2023年3月31日举办第四届“生物制药研发及质量控制” 网络大会,内容覆盖抗体/蛋白药物、细胞与基因治疗、多肽药物、核酸药物/mRNA疫苗,涉及生物药开发、质量控制、制剂的分析表征以及自动化等创新技术在生物制药领域的应用。多肽药物是现代医药研究的前沿方向,具有重要的社会价值和经济价值。然而,由于多肽属于蛋白质结构的组成部分,作为药物,其质量控制则更需要注意。本次生物制药大会特别设置多肽药物会场,4位嘉宾将从多肽药物发现、多肽二硫键的结构确证、多肽偶联物研究进展及拉曼光谱技术相关应用等角度进行讲解。点击图片免费报名报告嘉宾详情如下:多肽药物会场王珠银 董事长 深圳肽盛生物科技有限公司报告:突破多肽创新药发现的瓶颈:多肽创新药发现平台报名占位王珠银教授博士学士和硕士毕业于兰州大学化学系,博士毕业于美国Rutgers大学,博士后在纽约哥伦比亚大学做研究,现为兰州大学功能有机分子国家重点实验室教授。王教授主要研究方向为合成生物学,多肽和蛋白质生物医药,高通量药物筛选等。过去多年发表论文50余篇,申请美国和中国专利50多项,其中已获得11项美国发明专利授权,7项中国专利授权,1项欧盟专利授权,1项澳大利亚专利授权。王教授成功研发了多肽信息压缩技术,并基于此技术构建了大型多肽全库,加速多肽新药研发。梁远军 总经理 北京普诺旺康医药科技有限公司报告:化学合成多肽二硫键的结构确证报名占位梁远军,博士,毕业于军事医学科学院,在军事医学科学院从事活性多肽研究工作近20年,负责多项国家新药创制重大专项、新药创制多肽关键技术、863等课题,申请40多项新化合物专利。2017年任北京药物化学专业委员会委员,2018年聘为中国生化制药工业协会专家委员、多肽分会专家理事,2022年评为大兴“新国门”领军人才。2016年创立北京普诺旺康医药科技有限公司,专业从事多肽药物研发,公司逐步成长为国家高新技术企业,获得北京市“专精特新”企业、中关村“金种子”企业、瞪羚企业等称号。王颖 副研究员 中国药科大学报告:多肽偶联物的研究现状及展望报名占位中国药科大学副研究员,海洋药学硕士生导师。中国药科大学微生物与生化药学专业,获博士学位。长期从事多肽新药的一线研发工作,获得新药临床批件2件。致力于探讨非编码RNA及其来源的新型微肽在疾病发生发展中的功能机制,发现人体内源性微肽并对其进行优化提高成药性,开发成FIC多肽药物,为这些疾病的诊断和治疗提供了新思路。曾在Signal Transduct Target Ther(IF:38.104)、J Am Chem Soc(IF:15.419)、Acta Pharm Sin B(14.903)、Cell Death Dis(IF:6.304)、Oncogene(IF:7.519)和Mol Ther Nucleic Acids(IF:7.032)等杂志发表多篇论文,第一作者累计影响因子为105分,参与文章影响因子120分以上;申请发明专利两项;获中国产学研合作创新成果奖二等奖、第六届江苏医药科技进步奖二等奖;获得两件药物临床试验批件(批件号2013L01914,2018L02321)。王睿 产品经理 瑞士万通中国有限公司报告:拉曼光谱技术在药物质量控制中的应用报名占位瑞士万通中国有限公司拉曼产品线产品经理,硕士研究生学历。从事分子光谱技术的产品开发,仪器销售和应用推广工作十余年。在农业,食品,化工,高分子等行业有丰富的产品应用开发和实测经验。从2014年入职瑞士万通中国有限公司,负责近红外光谱和拉曼光谱产品的推广工作至今。生物制药分析表征会场生物药物结构上的细微差别可以显著影响其安全性和有效性,对此类药物的准确表征就需要精密的分析表征手段。本次生物制药大会特别设置生物制剂表征会场,邀请到杭州奕安济世、上海晟国医药、北京市科学技术研究院分析测试研究所的多位专家从不同角度对生物制剂的表征内容进行阐述。高原 高级工程师 北京市科学技术研究院分析测试研究所(北京市理化分析测试中心)报告:生物制剂检测中的关键表征技术 报名占位现任中国颗粒学会测试专业委员会副秘书长,北京粉体技术协会副秘书长。主要研究粉体材料的物理性能表征方法及应用。主持及参与了与纳微米粉体表征技术相关的省部级项目4项。目前是国际标准化组织(ISO)的粒度分析工作组和孔径分析工作组成员人。同时作为全国颗粒表征与分检及筛网标准化技术委员会及微泡技术委员会委员,主持、参与制修订并颁布实施粉体物理性能相关国家标准9项,团体标准1项,合作研制国际实物标准1项、主持研制国家二级标准物质3项。获得中国分析测试协会(CAIA)奖一等奖,中国颗粒学会科技进步奖二等奖等奖项。杨泗兴 总监 上海晟国医药发展有限公司报告:双抗制剂表征 报名占位杨泗兴 博士,上海晟国医药CDMO业务制剂开发和生产负责人。杨博士毕业于上海交通大学,在生物制药领域从事制剂技术研究及CMC工艺、质量等相关工作超过15年,成功申报过20个以上生物药IND及BLA,覆盖重组蛋白、单抗/双抗/ADC、融合蛋白、酶、疫苗等。在生物药缓控释微球/微针等制剂技术、抗体高浓度注射液、双抗制剂、冻干制剂等领域具有丰富的经验。胡裕迪 制剂工艺开发/高级主管研究员 杭州奕安济世生物药业有限公司报告:商业化生产和BLA申报中的生物药制剂工艺表征和验证的研究 报名占位 硕士毕业于中国医药工业研究总院的药剂专业;本科毕业于中国药科大学药物化学专业。拥有超过5年的生物制剂开发经验,以制剂或CMC负责人参与“高浓度抗体、双抗、ADC冻干、siRNA、后期工艺表征”等研发项目超过15个,获得“制备一种抗Claudine18.2抗体制剂的方法”等5篇专利。目前专注于抗体药物的理化表征,成药性,制剂处方和工艺开发,制剂工艺表征,工艺转移等多个领域研究。宁辉 产品总监 丹东百特仪器有限公司报告:光散射技术在生物制剂中的应用报名占位 宁辉博士,全国专业标准化技术委员会委员,《分析仪器》第十一届编委会委员,现任丹东百特仪器有限公司产品总监兼任研发中心副主任。 2004年至2007年从事胶体物理领域研究,并于2007年取得荷兰屯特大学物理学博士学位。2007年至2008年在德国于利希研究中心从事博士后研究,关注胶体的热扩散行为及其表征手段。 宁辉工作和研究经历过程中,在Langmuir, J. Chem. Phys.等等期刊发表超过10篇学术论文。 宁辉于2008年入职于国外某知名粒度仪生产商,担任产品经理,并于2019年离开工作11年的外企,于2020年加入中国著名的粒度表征设备制造商,辽宁省A级高新技术企业,丹东百特仪器公司。在丹东百特仪器有限公司的工作过程中,宁辉先后参与了多项与光散射相关的设备的研发和产品推广工作。点击报名:https://www.instrument.com.cn/webinar/meetings/biopharma2023/扫码进入会议交流群
  • 西南大学唐超课题组MME:硅烷偶联剂接枝hBN对绝缘纸纤维素的热性能和力学性能的提升
    摘要:西南大学工程技术学院唐超课题组通过使用不同硅烷偶联剂接枝纳米氮化硼掺杂绝缘纸纤维素,发现KH550接枝氮化硼能显著提升绝缘纸纤维素的散热性、热稳定性和材料的力学特性(热导率提升了114%,延展性和抗形变能力提升了50%以上),为提升变压器内部绝缘材料的使用寿命和抗热老化性能提供了理论指导。关键词:硅烷偶联剂,氮化硼,变压器绝缘纸纤维素,热力学性能图1 KH550接枝hBN原理图。图2 不同改性的纤维素模型,(a)纯纤维素,(b)hBN/纤维素,(c)KH550 hBN/纤维,(d)KH560-hBN/纤维素和(e)KH570-hBN/纤维素。电力设备运行寿命的提升,与其内部绝缘材料性能的提升有着重要关联。以变压器为例,利用新兴的纳米技术来修饰纤维素绝缘纸能较为高效、显著地提升材料的性能。然而,现有的纤维素绝缘纸的纳米改性研究,往往局限在纤维素力学性能的分析上,较少关注其热性能的改进。因此,利用一种新型的纳米颗粒对纯纤维素进行改性,以同时提高纤维素绝缘纸的力学性能和热性能成为大家关注的热点。针对这一问题,西南大学工程技术学院唐超教授课题组采用了分子模拟的方法,将三种不同硅烷偶联剂接枝到氮化硼表面,并与纤维素混合,得到了具有相对较高热稳定性和力学特性的改性绝缘纸纤维素(KH550 hBN/纤维),相关结果发表在Macromolecular Materials and Engineering上。氮化硼具有较高的固有导热性和良好的介电性能,是一种常用的导热填料。由于其结构与石墨烯相似,氮化硼也具有较高的机械强度和优良的润滑性,可以显著提高聚合物的热稳定性。然而,氮化硼在纤维素内部容易发生团聚,这使得它无法直接用于改善聚合物的性能。因此,本研究将硅烷偶联剂与氮化硼接枝,对传统绝缘纸纤维素进行改性。通过分析比较得出,硅烷偶联剂氮化硼对纤维素的改性使得纤维素链间的空隙得到填充,纤维素与硅烷偶联剂间形成了更多的氢键,连接更为紧密,从而在聚合物内部形成了导热网络,改性纤维素的导热性能显著提高,热稳定性显著增强。同时,硅烷偶联剂的增加使得纤维素材料的韧性、抗形变能力、延展性增加,便于其在高温高压条件下有更长的使用寿命。图3 (a)CED、(b)力学性能、(c)热导率图4 均方位移图5 玻璃转变温度论文信息:Enhancement on thermal and mechanical properties of insulating paper cellulose modified by silane coupling agent grafted hBNXiao Peng, Jinshan Qin, Dong huang, Zhenglin Zeng, Chao Tang*Macromolecular Materials and EngineeringDOI: 10.1002/mame.202200424
  • 【赛纳斯】对氨基苯甲酸在纳米结构金电极表面的等离激元光电化学偶联反应研究
    我司亲密的合作伙伴厦大田中群院士团队吴德印教授、周剑章副教授在等离激元介导光电化学反应的研究中取得重要进展,相关结果“Plasmonic Photoelectrochemical Coupling Reactions of para-Aminobenzoic Acid on Nanostructured Gold Electrodes”发表于《美国化学会志》 (J. Am. Chem. Soc. 2022, 144, 3821-3832. DOI: 10.1021/jacs.1c10447)。纳米金电极的表面等离激元,通过将入射光汇聚至纳米尺度、激发高能载流子的方式,增强拉曼散射效应并催化化学反应。针对“等离激元介导光电化学反应的机理和选择性”这一关键科学问题,该工作以对氨基苯甲酸(PABA)为研究对象,通过电化学原位表面增强拉曼光谱(EC-SERS)等方法,结合多尺度理论化学模型,阐明了PABA在纳米结构金电极表面的等离激元光电化学氧化偶联反应过程。在光照激发和氧化电位下,PABA首先与光生热空穴作用生成阳离子自由基,后续反应则与溶剂和pH等因素有关。在水电解质溶液中,氧化偶联产物为头-头偶联产物,p, p’-偶氮二苯甲酸盐(ADBA),和头-尾偶联产物,4-[(4-亚胺-2,5-环己二烯-2-亚基)氨基]苯甲酸(ICBA)。在pH值低的酸性条件下,反应主要产物为ADBA,而在pH值高的碱性条件下,反应主要产物为ICBA。在非水有机溶剂中,观测到PABA发生脱羧偶联反应,生成氧化态联苯胺(BZOX)。为深入阐释反应机理,研究组结合密度泛函理论(DFT)计算和循环伏安法、质谱、EC-SERS、电化学原位紫外-可见光谱等多种实验方法,确定了金纳米结构电极表面反应产物及其相关中间体,并结合电极过程反应动力学模型,数值拟合循环伏安图,确定重要动力学参数;对等离激元催化条件下的偶氮键、碳氮键及碳碳键等化学键的形成过程,给出了更清晰的认识,为调控等离激元光电催化反应的选择性提供了新的思路。该研究在田中群教授、吴德印教授和周剑章副教授指导下完成,主要的实验和理论工作由厦大化工学院博士后Rajkumar Devasenathipathy、2018级博士生王家正和2021级博士生肖远辉同学完成,Karuppasamy Kohila Rani、林建德、张益妙、战超等参与了论文的研究工作。该研究工作得到国家自然科学基金的资助。赛纳斯SHINS推出的全新科研型电化学拉曼系统“EC Raman光谱仪系统”。由恒电位仪、便携式拉曼光谱仪、显微成像系统组成。它具备超高的谱图分辨率,与大型台式拉曼系统相当。并且它的尺寸更小,方便携带。可在任何地方提供科研级的性能。强大的功能和独特的设计,为你的研究提供更多的可能性。智能的自研软件助您轻松应对各种测试,是您实验数据的强有力保障。全新EC-RAMAN电化学拉曼系统EC-RAMAN 产品优势:◆ 785nm制冷型拉曼光谱,可拥有更加优异的信噪比◆ 配合独创壳层隔绝表面增强技术,信号放大至百万倍级别◆ 外观简单,轻松便携:适应于实验室,现场等多种场合◆ 宽光谱范围:光谱范围最高可覆盖至3350cmˉ◆ 光纤耦合,采样更方便◆ 建模简单:只需按照软件的提示逐步操作即可使用我司电化学拉曼光谱系统取得代表性科研成果:●Nature,2021,600,81●Nature Energy,2019,4,60●Nature Mater. 2019,18,697●Angew. Chem. Int. Ed,2021,60,9●J. Am. Chem. Soc. 2019,141,12192●Angew.Chem. Int. Ed. 2021,60,5708●Angew. Chem. Int. Ed. 2022,61, e202112749EC-RAMAN 技术参数:
  • 大连化物所开发单原子合金材料促进电催化CO2还原的C-C偶联
    近日,中国科学院大连化学物理研究所太阳能研究部太阳能制储氢材料与催化研究组研究员章福祥团队设计合成了一种单原子铋修饰铜合金催化剂,用于电催化CO2还原。该催化剂展现出优异的C-C偶联功能,显著提高了多碳(C2+)产物的法拉第效率。太阳能光催化技术是实现太阳能至化学能转化的重要方式之一,而高效助催化剂的开发是实现高效光化学转化的重要一环。近期,章福祥团队致力于通过电催化剂的优化设计,开发高效光催化助催化剂,在电催化水氧化、电催化析氢和电催化氧还原等催化剂设计合成方面取得系列进展。 电催化还原CO2(CO2RR)制备燃料或化学品,不仅可实现CO2的资源化利用而且可用于绿色氢能的液态储存,可为太阳能光催化制储氢一体化技术奠定基础。该领域的文献调研发现,单原子合金(SAA)作为一种具有特殊电子结构的单原子催化剂,虽已被用于CO2RR制备C1产物,但尚未有实验结果证明其可用于高效制备C2+产物。 本工作设计合成了一种单原子铋修饰铜合金催化剂(BiCu-SAA)。研究发现,该催化剂具有显著的C-C耦合促进作用。与纯铜催化剂相比,BiCu-SAA催化剂显著提高了C2+产物选择性以及FE(C2+)/FE(C1)比率。一系列原位红外、XAS等表征和理论计算结果表明,单原子铋修饰可有效调节铜的电子结构,促进CO2活化和C-C偶联步骤,解释了获得较高C2+产物选择性的原因。 相关研究成果以Single Atom Bi Decorated Copper Alloy Enables C-C Coupling for Electrocatalytic Reduction of CO2 into C2+ Products为题,发表在《德国应用化学》上。研究工作得到国家重点研发计划、国家自然科学基金、中科院战略性先导科技专项(A类)“变革性洁净能源关键技术与示范”以及北京光源机时等的支持。南开大学和中国科学技术大学的研究人员参与研究。大连化物所开发单原子合金材料促进电催化CO2还原的C-C偶联
  • 基于“借氢机制(氢转移)”,通过胺与醇的C-N偶联合成有机胺
    1. 文章信息标题:Single Pd-Sx Sites In Situ Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven C-N Coupling页码:4481-4490(2022),DOI:https://doi.org/10.1021/acscatal.2c004332. 文章链接Single Pd-Sx Sites In Situ Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven C-N Coupling3. 期刊信息期刊名:ACS CatalysisISSN:2155-54352021年影响因子:13.084分区信息:中科院1区Top;JCR分区(Q1)涉及研究方向:光催化4. 作者信息: 首要作者是香港中文大学(深圳)理工学院博士后钮峰。通讯作者为香港中文大学(深圳)理工学院涂文广教授、周勇教授和邹志刚院士。文章简介: 随着工业的发展与进步,有机胺广泛应用于农业、医药、家居、军工等领域,其合成在工业生产中有着越来越明显的重要性。基于“借氢机制(氢转移)”,通过胺与醇的C-N偶联被认为是一种较为绿色的合成有机胺的理想路径。这一过程主要包含醇的脱氢、亚胺的生成以及亚胺的加氢这三个主要步骤。其中醇的脱氢是整个反应的决速步骤。然而,基于这一机制,在热催化合成有机胺的过程中存在一些缺点:(1)醇的脱氢决速步骤需要较苛刻的条件(高温高压);(2)易发生过度偶联,使得产物分布广,不利于分离;(3)反应中使用的催化剂多为高负载量的负载型贵金属催化剂(如Ru/Al2O3、Pd/Al2O3、Rh/Al2O3等),成本较高。因此,开发出高效低成本的催化剂具有一定的挑战性。近年来,利用光氧化还原技术实现常温常压条件下有机胺的合成引起了广泛的关注。研究者们通常采用一些贵金属有机配合物分子进行均相催化反应,但反应后催化剂难以进行分离,在实际工业生产中难以大规模应用。而采用传统的半导体光催化剂进行多相催化反应,则可以有效解决这一难题。然而仅仅依靠半导体本身的催化能力,很难达到较高的催化活性,实际应用过程中往往需要通过负载一些助催化剂或表面修饰来提高催化性能。近些年,单原子催化被认为是较有前景的领域。单原子催化剂由于其独特的电子结构和较高的原子利用效率而表现出优异的催化活性,被广泛应用于光催化水分解制氢、二氧化碳还原、固氮和有机物降解等领域。因此,我们课题组设计开发了一种单原子光催化剂CdS-Pd,该催化剂可以有效地用于可光催化苯甲醇和苯胺的C-N偶联反应,获得具有工业应用价值的二级胺。同时反应过程中释放出清洁能源氢气。这一工作将为温和条件下实现C-N偶联反应提供一种新的途径。文章DOI : https://doi.org/10.1021/acscatal.2c00433原文链接:Single Pd-Sx Sites In Situ Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven C-N Coupling
  • 红外多光子解离用于Top-Down表征膜蛋白复合物和G蛋白偶联受体
    大家好,本周为大家分享一篇来自Angewandte Chemie - International Edition的文章:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors[1],文章的通讯作者是牛津大学化学系的Carol V. Robinson教授。  非变性质谱(Native MS)是结构生物学中一个成熟的工具。在电喷雾电离过程中使用非变性缓冲液可以保存多组分蛋白质复合物之间的非共价相互作用,以及它们的配体、辅因子或其他结合蛋白。它可以用于探究蛋白质复合物的相互作用和功能,因为结合事件导致质量变化,可以在质谱仪中跟踪和剖析。然而,由于膜蛋白的疏水性,使得它们在传统的非变性质谱缓冲液中不溶且容易聚集,因此在非变性质谱中呈现出独特的挑战。目前采用的方法是将蛋白质复合物溶解到膜类似物中,例如:去垢剂、纳米脂质盘、两性聚合物等,再将这些膜类似物通过碰撞激活去除。其中去垢剂是应用的最广泛的一种。然而由于碰撞激活的能量在应用中受到限制,该方法并不能在质量分析前很好地去除去垢剂。此外,在非变性质谱条件下,键的断裂也受到非共价相互作用强度的影响(例如蛋白质-蛋白质、蛋白质-去垢剂剂以及去垢剂胶束内的相互作用)。  基于光子的方法,如紫外光解离(UVPD)和红外多光子解离(IRMPD)已被证明有利于可溶性蛋白质及其复合物的Top-Down质谱分析。与此同时,基于光子的膜蛋白Top-Down模式的应用正在兴起。原理上,激光束路径中的离子被连续地驱动到振动激发态。因此,在基于光子的方法中,能量储蓄通常与前体离子的电荷状态和分子量无关。然而,电荷状态和分子量仍然会影响肽键解离需要的输入能量。先前报道的通过UVPD对79 kDa的五聚体的大电导机械敏感通道(MscL)Top-Down的断裂得到了令人印象深刻的54%的序列覆盖。然而,对于氨通道(AmtB)一个127 kDa的同源三聚体,通过碰撞激活和UVPD两种不同的方式破碎,仅实现了20%的序列覆盖率。事实上,相对较低的序列覆盖率是由于大分子量以及三聚体中增加的非共价相互作用影响的结果。尽管这些工具能够在非变性状态下实现Top-Down质谱分析,但其在膜蛋白表征中的应用仍不广泛。这就要求建立一种能使低电荷密度的高分子量蛋白质稳定地产生蛋白质序列离子的方法,而膜蛋白嵌入异质膜或膜类似物则使这一问题更加复杂。虽然IRMPD之前被用于从去垢剂中释放膜蛋白,但使用IRMPD对非变性的膜蛋白进行测序的研究相对较少。  图1. (A)改进的Orbitrap Eclipse Tribrid的原理图,其中包括一个红外激光器直接进入四极线性离子阱(QLIT)的高压细胞。离子化的蛋白质胶束被转移到高压QLIT中,在那里整个离子群受到红外光子的照射,然后被转移到Orbitrap进行质量分析。通过调节激光输出功率(W)和照射时间(ms),可以使膜蛋白从去垢剂胶束中完全解放出来。(B)三聚氨通道(AmtB)在3.0 W输出功率和200ms辐照时间下的非变性质谱。(C)在3.3 W输出功率和200ms辐照时间下AmtB的非变性质谱。  因此,作者利用改进的Orbitrap Eclipse Tribrid质谱仪,与连续波远红外(IR) CO2激光器连接,使光束聚焦到双四极杆线性离子阱(QLIT)的高压池中(图1A)。红外激活可以有效地去除蛋白质复合物中的去垢剂胶束,随后通过IRMPD使得膜蛋白碎片化。在这种安排下,由纳米电喷雾电离产生的蛋白质复合物被转移到高压池中。在转移到Orbitrap进行检测或m/z分离和随后的碎片化之前,整个离子群将受到943cm-1红外光子的照射。利用红外的方法去除去垢剂胶束,红外激光有两个可调控参数:激光输出功率(高达60瓦)和照射时间(毫秒到秒)。因此,可以更好地控制从蛋白质胶束中释放膜蛋白,确保非变性复合物的保存,同时完全去除包裹复合物中的去垢剂。通过对激光输出功率和照射时间的优化,作者发现红外激活的参数是高度可调的,不同的激光功率和照射时间的组合也可以产生分辨率相当的谱图。其中例如在3.3 W下照射200 ms时,可以得到多个电荷态的三聚体峰(~6500 m/z),也可以观察到三聚体与脂质结合的峰,而且对于图谱中的单体也能观察到与脂质结合的峰(图1C)。作者还对不同的去垢剂产生分辨率较高的图谱所需要红外参数进行了评估,从而评价了这几种去垢剂得到高分辨率图谱的难易程度(图2)。  图2. 红外辐射去除膜蛋白离子中的去垢剂是高度可调的。增加激光输出功率对三种常用的MS兼容去垢剂(C8E4,G1和DDM) AmtB三聚体峰外观的影响。辐照时间固定为200 ms,激光输出功率分别为2.1、2.4、3.0和3.6 W。去垢剂在真空中按易去除的顺序显示,这是由完全释放膜蛋白复合物所需的激光输出功率决定的,从而在m/z光谱中产生良好分辨的电荷状态峰。为了探究IRMPD分离蛋白质和去垢剂胶束的机制,作者对三种不同的去垢剂:四聚乙二醇单辛醚(C8E4)、树突状低聚甘油(G1)和十二烷基-β-D-麦芽糖苷(DDM)的溶液相和气相红外光谱进行了表征,并利用密度泛函理论(DFT)计算得到了C8E4头部基团的红外谐波光谱,用来验证所得到的红外吸收光谱会受到振动耦合的影响,对于质子化的去垢剂离子,氢键和富氧去垢剂内的质子共享可以改变观察到的振动频率。结果表明C8E4胶束的溶液相吸收光谱包含一个与预期激光波数943cm-1重叠的显著带,这就解释了为何较低的激光能量可以将去垢剂胶束和蛋白质复合物分离。而在谐波光谱中在预期的激光波数处的确产生了峰,并推测该峰来自于O-H伸缩、C-C伸缩,C-H弯曲和C-O伸缩振动的耦合。而G1和DDM的最大吸收则偏离了943cm-1的预期波数,作者认为这是不同去垢剂氢键作用的结果。而蛋白质在真空中的红外吸收能力较弱,由此推测在IRMPD的过程中,去垢剂是主要的吸收对象。所以仅需要较低的能量就可以使蛋白质从复合物中剥离而不至于破坏蛋白质的非共价作用。完整的蛋白质离子还支持串联质谱的实验,为了得到蛋白质的序列信息,作者分离了m/z在6674处(电荷态为+19)的AmtB三聚体蛋白,并将其置于高激光输出功率(9 W)下照射5 ms,在m/z 1750~4000之间产生密集的多电荷态离子片段,并得到了26%的序列覆盖,这优于之前基于碰撞激活的方法(  图3. 三聚体AmtB的IRMPD。(A)在m/z 6674处分离19+电荷态离子阱后,IRMPD后观察到的碎片离子MS2谱。多重带电碎片被高亮显示 来自相同地点的重复片段用虚线分组。为了清楚起见,许多指定的离子没有注释 (B)片段丰度相对于裂解原点(残基数)的条形图,其中丰度表示来自每个位点的片段归化一强度之和。条形图的颜色强度表示每个片段的加权平均电荷。将AmtB的拓扑域叠加在条形图上 α-螺旋跨膜区域用黄色方框表示,编号为1到11。跨膜区由质周环和细胞质环连接,用灰色线表示。(C)主干裂解位点覆盖在AmtB (PDB: 1U7G)的结构上。蓝色和红色阴影区域分别代表b型和y型离子。颜色强度对应于所分配片段的丰度。从气相分子动力学模拟中得到的高温(500 K)下的跨膜螺旋快照用虚线圈标出。为了验证这一个推测,作者又对另外两种GPCR蛋白:β -1-肾上腺素能受体(β1AR)和腺苷A2A受体(A2AR)用IRMPD进行了MS2图谱的测定,结果也观察到了片段离子相似的二级结构定位,在跨膜结构区域有着高丰度的片段,但是在二硫键相连的螺旋中并没有观察到丰富的离子片段。并再次利用分子动力学模拟研究了两种GPCR的结构对断裂的影响。在500 K下的最终结构中显示,两种GPCR中都保留了α-螺旋特征,并与观察到的裂解位点密切相关。此外,还对这两种蛋白进行了HCD和IRMPD的比较分析。对于β1AR, IRMPD产生的片段离子平均分子量为8866 Da,高于HCD产生的5843 Da。IRMPD产生的片段离子也保留了更高的平均电荷(4.7 + vs 3.6+ z)。最终,IRMPD的碎片化导致β1AR的序列覆盖率更高,为28%,而HCD为17%。在A2AR中也观察到类似的趋势,IRMPD的覆盖率为19%,而HCD为9%。  总的来说,作者证明了可以在改进的Orbitrap Eclipse质谱仪的高压QLIT下,通过红外照射可以完全释放一系列去垢剂胶束中的膜蛋白。然后,通过增加激光输出功率,获得直接从膜蛋白及其复合物中释放的序列信息片段离子,证明红外光去除去垢剂是通用的和高度可控的,为保存和鉴定膜蛋白和配体之间脆弱的非共价相互作用构建了一个可靠的方法。而且还对片段离子的产生机制做了阐述,即质子可以通过沿蛋白质骨架迁移来稳定和诱导连续的肽键裂解。  撰稿:李孟效  编辑:李惠琳  文章引用:Infrared Multiphoton Dissociation Enables Top-Down Characterization of Membrane Protein Complexes and G ProteinCoupled Receptors  参考文献  Lutomski, C.A., El-Baba, T.J., Hinkle, J.D., et al. Infrared multiphoton dissociation enables top-down characterization of membrane protein complexes and g protein-coupled receptors[J]. Angewandte Chemie-International Edition,2023.
  • ADC药物的深度表征
    抗体偶联药物(antibody-drug conjugate,ADC)是一类通过特定的连接子将靶向单克隆抗体与高杀伤性的细胞毒性小分子药物偶联起来的生物药,以单克隆抗体为载体将小分子细胞毒性药物高效地运输至目标肿瘤细胞中,起到治疗的目的。与传统抗体药相比,ADC药物的结构复杂度和异质性更高,因为添加了多变的有效载荷和连接子1。为确保药物安全性和有效性,ADC的深度表征在其开发过程中至关重要。这不仅包括对mAb的翻译后修饰(PTM)的鉴定和定位,还包括药物偶联的鉴定。由于质谱技术的飞速发展,质谱已经成为ADC药物表征中最广泛使用的方法。完整质量分析是用于确定小分子药物与抗体比率(DAR)的常规方法,而对结合位点的深入表征,通常依赖于bottom-up的方法。现在最广泛采用的碰撞诱导解离(CID)技术能够提供氨基酸序列确认,但是这种能量比较大的碎裂技术也将有效载荷碎裂为更小的片段,从这种方法获得的高度复杂的谱图可能很难解析。而能量更柔和的碎裂方法可以促进此类复杂样品的解析,一种基于电子活化裂解(EAD)2,3的创新、高度可重复的碎裂方法用于分析来自商业化ADC药物的偶联肽。使用10 Hz快速非靶向的数据依赖采集(DDA)方法采集数据,通过此工作流程,一次进样就可以应用基于EAD的碎片进行常规和高级表征。曲妥珠单抗美坦新偶联物(T-DM1)是最早的ADC治疗药物之一,于2013年获得FDA批准用于治疗人表皮生长因子受体2(HER2)阳性转移性乳腺癌。T-DM1是由单克隆抗体曲妥珠单抗和细胞毒素美坦新(DM1)通过不可裂解连接子共价偶联而成(图1)。将单克隆抗体(mAb)的靶标特异性与细胞毒性药物的高效率相结合,可充分利用两个方面的优势,最大限度地减少副作用3。T-DM1是与氨基连接,如连接在曲妥珠单抗的赖氨酸残基的侧链中。先前的完整质量研究表明,T-DM1的平均DAR约为3.5.1,4。但是曲妥珠单抗中有88个赖氨酸残基和4个N端基团,可能会出现450万个以上的不同分子形式1。有效载荷的位点和结构将直接影响药物的功效和安全性,因此将其归类为关键质量属性(CQA),并且需要在开发过程中进行全面表征和严格监控。图1. 细胞毒药物有效载荷和连接子与mAb偶联的示意图。T-DM1由DM1(黑色),靶向连接氨基残基的MCC连接子(linker,蓝色)和单克隆抗体组成。本研究选择了与Zeno&trade EAD相结合的DDA方法。采用这种方法,不仅可以执行常规的肽图分析,而且EAD可以在同一针分析中进行高级表征。此外,Zeno EAD增强了碎片离子的检测能力,从而正确鉴定了低丰度物质。图2展示了在偶联肽SCDK [DM1]THTCPPCPAPELLGGPSVFLFPPKPK上观察到的碎裂模式的例子。在分析中未观察到没有连接子和药物或其部分的肽,表明其完全偶联。获得了此肽段高质量的MS / MS谱图,从而使该特定肽段的MS / MS序列覆盖率达到96.6%。一个更占优势的碎片从 m/z大于500的有效载荷产生(请见图2中的标记)。观察到的有效载荷结构的主要裂解位点是DM1的COO-C键,这种碎裂模式与先前利用CID技术产生的一系列小碎片的数据不同1。较大分子量的药物碎片可以用作特征碎片,以更具体地确认有效载荷的存在,并可以用来确认有效载荷的结构。图2. 应用Zeno EAD得到的偶联肽SCDK [DM1] THTCPPCPAPELLGGPSVFLFPPKPK(z =+4)的碎片数据。来自肽段主链指定偶联肽段离子的全扫描MS / MS数据,以及有效载荷中的碎离子信息。此外,通过将Zeno EAD技术用于增强的碎片离子检测,还可以很好地检测到来自肽段主链的片段信息,从而提供有关肽段的分子完整性的信息。由于酶的空间位阻,抗体上偶联药物的存在会导致样品制备酶解过程中的更多漏切位点。另外,赖氨酸残基和有效载荷之间的结合过程是随机反应,偶联的比率并不总是100%,这导致了多样性和低丰度物质存在。当一个肽段中存在多个潜在连接形式时,鉴定正确的连接位点可能是一个挑战。肽段ASQDVNTAVAWYQQKPGKAPK是这种具有挑战性的另一个例子(图3)。它包含一个漏切位点和一个脯氨酸相邻的N端赖氨酸,导致偶联位点的多种选择。但是,有了从EAD技术碎裂得到丰富、高质量的MS / MS质谱图,就可以实现药物定位的自动匹配(图3A)。由于有效载荷靠近肽的C端,因此检测到的C离子比Z离子丰富(图3A),而未结合的肽显示出来自C端和N端的丰富片段(图3B)。众所周知因为电子活化解离技术不会解离脯氨酸的N端,我们还检测到了除了C15以外的从C3到C17的全系列C片段7。这提供了确凿的证据表明K15未与细胞毒药物偶联。此外,z4,z5和z7表明K18(而非K21)是药物偶联的正确位点。图3. 应用Zeno EAD得到的来自偶联/非偶联肽ASQDVNTAVAWYQQKPGK [DM1] APK(z =+3)的碎片的数据。A:来自肽段主链指定偶联肽段离子的全扫描MS / MS数据,以及有效载荷中的碎离子信息。B:来自肽段主链指定非偶联肽的全扫描MS / MS数据。 连接子显示为蓝色,DM1药物显示为黑色。结论:通过EAD的新型碎裂模式,实现了具有多个潜在位点的多肽中药物偶联的准确定位与传统的MS / MS分析相比,EAD技术获得更丰富的MS/MS碎片信息。应用Zeno EAD技术,即使对于中等强度或极低强度的母离子(例如低丰度的偶联肽),也能获得令人信服的二级碎片和出色的数据质量SCIEX ZenoTOF&trade 7600系统强大、高重现性且易于使用的多重碎裂技术,使用户能够以简单的方式解决具有挑战性的分析问题(CN)Characterization of an antibody-drug-conjugate (ADC) using electron activated dissociation (EAD).PDF点击下载声明:版权为 SCIEX 所有。欢迎个人转发分享。其他任何媒体、网站如需转载或引用本网版权所有内容须获得授权, 转载时须注明「来源:SCIEX」。申请授权转载请在该文章下“写留言”。
  • 【PNP】聚合物纳米药物载体使用多检测器SEC分析的应用案例
    纳米药物载体热点应用#本文由马尔文帕纳科GPC应用专家冯慧庆供稿#2022 PNP聚合物纳米药物载体纳米药物载体可实现靶向药物治疗。靶向给药治疗是指供助载体、配体或抗体将药物通过局部给药或全身血液循环而选择性地定位于靶组织、靶器官、靶细胞或细胞内结构的给药系统。在特定的导向机制作用下,纳米药物载体输送药物到特定靶点,发挥治疗作用,可达到药剂用量少、毒副作用低、药效持续、生物利用度高、长时间保持靶目标的有效药物浓度的效果。常见的纳米药物运载体系在药学研究中,正确定位小分子药物的给药位置和控制药物释放曲线是一个关键的挑战。通过小分子药物与聚合物纳米载体偶联起来,在很大程度上实现细胞内精准靶向给药,在实际应用过程中有较好的效果。该方法既可用于控制药物释放曲线,又可用于控制药物释放位置,以最大限度地减少可能的副作用。阿霉素(Doxorubicin)阿霉素(Dox)是一种高效抗肿瘤抗生素,对肺癌、急慢性白血病等多种恶性肿瘤都有很强的细胞毒性,其机制是:通过将自身插入细胞的DNA碱基对中,破坏DNA的双螺旋结构,阻断DNA复制和RNA转录。通常是通过血液循环导入肿瘤细胞实现其抗肿瘤功能。聚谷氨酸(PG)是一种以氨基酸谷氨酸为基础的具有生物相容性的聚合物。试验结果表明Dox和PG的偶联,可以实现靶向给药,提高药物在靶体内的聚集度,延长体内循环时间,降低毒副作用。在本文中我们展示了马尔文帕纳科OMNISEC多检测器SEC如何对PG、Dox 和两个PG-Dox 偶联样品进行表征。这种先进的分析技术可用于研究药物加载效率和药物加载后发生的聚合物结构变化。研究方法 PG和PG-Dox偶联物溶解在在pH7.4的PBS缓冲液中,通过OMINISEC进行样品的分离和检测。OMNISEC是一个多检测器SEC系统,包括示差检测器(RI)、紫外检测器(UV)、光散射检测器(LS)和粘度检测器(IV)。流动相为PBS pH 7.4,含30%(v/v)甲醇水溶液;采用马尔文A6000M和A3000色谱柱分离。OMNISEC多检测器SEC检测结果与讨论 测试PG样品和两个PG-Dox偶联物样品色谱图如图1所示,PG的数值结果见表1。PG样品分离显示一个单峰,测得其平均分子量(MW)约为13KDa。再看两个偶联样品,都分离出和PG具有相似保留体积的多峰。较早洗脱的光散射色谱图(绿色,12-14mL)表明存在一些大的聚集体。而且,这些峰包含明显的紫外吸收信号,表明Dox的存在成功地偶联到聚合物上。图1 PG(A)、PG-Dox 1(B)和PG-Dox 2(C)多检测器色谱图表1 PG测试结果在图2 A中可以看到,在不同进样量下检测游离Dox的UV色谱图,可以看到游离的Dox从柱上洗脱得很晚,实际上已经在整个柱体积之后。这清楚地表明了Dox与色谱柱发生了显著的相互作用,延迟了Dox的洗脱。但从图2 B所示浓度响应曲线可以看出,尽管存在相互作用,回收率仍然接近100%。该校准曲线用来测量存在于PG-Dox样品中的Dox的量。图2 A:不同进样量Dox在UV(490nm)色谱图;B:Dox浓度校准曲线如果我们确定36mL处的峰为游离Dox,这样PG-Dox样品中的相同位置峰也能确定为游离Dox。如图3所示,可以清楚地确定偶联样品含有PG-Dox偶联物和游离Dox。图3 UV色谱图显示偶联样品含有PG-Dox偶联物和游离Dox使用图2 B中的浓度校准曲线,可以计算偶联样品中存在的Dox量。如表2所示,两种PG-Dox偶联物都含有游离的Dox。在一次注射体积中,PG-Dox 1的偶联物中含有大约11μg的Dox,而PG-Dox 2的偶联物中含有大约39μg的Dox。然后,可以计算出样品中注入的总Dox质量和Dox浓度。然后,可以根据溶解物质的质量计算出近似的总样品浓度。这样就可以计算每个PG-Dox偶联物中Dox的近似负载量。由此可以近似地看出,样品2的偶联物中含有的Dox是样品1的三倍。表2 计算两个偶联样品中Dox的负载量我们可以对PG-Dox偶联物进一步表征(其中dn/dc假设分析),计算偶联聚合物的近似分子量、特性粘度和结构数据,如表3所示。表3 PG-Dox偶联物测试结果结论 本文展示了如何将多检测器SEC用于高分子聚合物
  • 助力生物药研发,浅谈ADC药物DAR值测定
    导语从上世纪初德国医学家、诺贝尔奖得主Paul Ehrlich(保罗埃尔利希)提出ADC(Antibody-Drug Conjugate,抗体药物偶联物)的概念至今,ADC药物已经发展至第三代,一系列特异性偶联技术使得生产工艺变得更加稳定,能够得到稳定药抗比的药物,对于ADC药物的疗效和安全性都有很大的贡献,推动了ADC药物的研发。抗体药物偶联物ADC是具有靶向作用的单克隆抗体与具有特定药理学特性(如细胞毒作用)的化合物的结合,两部分通过连接子偶联为一个整体。DAR(Drug-to-Antibody Ratio,药物抗体比值)是抗体药物偶联物的一个关键属性,是ADC药物研发过程重要的质控环节。 ADC药物 带您了解DAR值如何检测 ADC药物从本质上讲是混合物,是由连接不同个数小分子药物的单抗组成,DAR代表的是每个单抗上连接小分子药物的平均数量,DAR直接影响ADC药物的疗效和安全性,药物研发阶段应尽量缩小DAR值的变动区间。 ADC药物的偶联位点分为单抗赖氨酸残基上的氨基和半胱氨酸残基上的巯基。通过赖氨酸偶联的DAR往往比较小,而潜在的偶联位点却很多,偶联反应具有随机性,产物异质性较大;ADC药物研发使用的单抗有4对链间二硫键,抗体通过部分还原使链间二硫键转换成游离的半胱氨酸残基,半胱氨酸残基中的巯基与连接子中的马来酰亚胺基反应形成ADC,一般连接的小分子数量为0、2、4、6和8,如图所示。 半胱氨酸偶联的ADC药物DAR分布 DAR测定的方法有多种,可分为光谱法、色谱法和质谱法,可根据ADC的特性及偶联工艺等因素选择合适的方法,具体如下: 紫外/可见光谱法(UV/Vis)紫外/可见光谱法是检测DAR值最简单稳定的方法,这种方法需要抗体和小分子药物具有不同的最大吸收波长,分别计算二者的浓度进而得到ADC的DAR值,适用于多种ADC。 色谱法色谱法包括疏水作用色谱(HIC)和反相高效液相色谱法(RP-HPLC)两种,适用于测定半胱氨酸偶联的ADC。疏水作用色谱法能将不同DAR值的组分根据疏水性的差异分离开,且保持ADC分子的结构完整性;反相高效液相色谱法需要先将抗体还原得到轻、重链再进行分析,可用于补充验证疏水作用色谱法的结果,并且适用于质谱分析。 质谱法质谱法适用于赖氨酸偶联的ADC的DAR值测定,包括液相色谱串联质谱和MALDI-TOF-MS。赖氨酸偶联的ADC具有较强的异质性,增加了质谱谱图解析的难度,通常在测定前需对ADC进行额外的前处理,如去糖基化和去除C端赖氨酸异质性。 我们能做什么?疏水作用色谱法解决方案我们使用生物兼容液相系统(Nexera Bio)建立了一种疏水作用色谱方法用于抗体药物偶联物(ADC)中药物抗体比值(DAR)和药物分布的测定。 生物兼容液相系统(Nexera Bio) Nexera Bio系统通过对关键部位的惰性化升级,在耐受高压的前提下,升级的惰性表面降低了生物大分子在管路进样针、检测器中的吸附,并且可耐受高盐洗脱体系,更适合于生物大分子样品的分析。通过梯度洗脱,降低盐浓度,增加有机相比例,可将偶联不同药物数量的ADC分离,未偶联药物的抗体疏水性最弱,最先被洗脱,连接8个药物的抗体疏水性最强,最后被洗脱。峰面积百分比代表特定药物数量连接的ADC的相对分布。通过峰面积百分比和偶联药物数量计算加权平均DAR。 我们将此方法应用于实际药物的分析,并进行了重复性考察,发现液相系统稳定,方法重复性良好。 实际样品色谱图 表2. 6次进样数据重复性结果我们还能做什么? 岛津的产品线比较全面,包括紫外-可见吸收光谱、高效液相色谱、LCMS-Q-TOF以及MALDI-TOF质谱,可满足不同用户对于仪器的需求,较全面覆盖ADC药物DAR值测定以及其它生物制品的研发质控。 结语 经历了几十年的发展,ADC药物研究取得了巨大进展,已上市药物数量达到了12个,在研管道300多种。无论是赖氨酸偶联还是半胱氨酸偶联的ADC药物,都是复杂的混合药物,应该通过工艺的改进更好地控制DAR值变动区间,降低ADC药物的异质性。岛津一直关注生物药行业的发展,希望以我们的仪器平台为产品研发助力,推动新药安全、有效地走向临床,造福社会。
  • 未来已来:ADC药物精准制导癌症治疗
    抗体药物偶联物(ADC)作为一类新型靶向抗癌药物,近年来在抗癌药物研发领域备受关注。ADC药物由单克隆抗体、细胞毒素、连接子和偶联位点组成。单克隆抗体能够特异性识别并结合癌细胞表面的抗原,连接子则起到将抗体和细胞毒素结合在一起的作用。当ADC药物进入体内并结合靶细胞后,通过内吞作用进入细胞内,连接子在细胞内被降解,从而释放出细胞毒素,最终导致靶细胞的死亡,从而实现高效杀伤肿瘤细胞并减少对正常组织的损伤。据统计截止到今年5月底,全球有超过800款ADC药物处于不同的研发阶段,其中国产ADC新药研发项目占到了519项,充分体现了我国在ADC药物研发领域的强劲实力。一般的,用于ADC生产的偶联方法可分为三类。第一类是天然赖氨酸偶联或半胱氨酸偶联;第二类是通过半胱氨酸残基进行抗体工程和修饰,或结合非天然氨基酸残基作为有效载荷偶联的反应标签;第三类是使用酶催化偶联;目前,商业市场上所有的ADC都是通过化学偶联进行生产的,化学定点偶联的方法有高DAR值偶联、天然半胱氨酸重桥接、Fc亲和肽结合三种。高DAR值偶联在工艺稳健性和跟踪记录方面具有显著优势,天然半胱氨酸重桥接在偶联反应条件方面具有很高的灵活性,Fc亲和肽结合则能够应用于各种抗体和药物接头,该方法能提供位点特异性DAR2的ADC。从ADC药物的发展可以看出,随着技术的变革,ADC药物的开发逐渐从初期的探索性阶段进入到临床应用与优化阶段。以下是目前研究中ADC药物的研究热点内容:新型连接子的开发与优化ADC药物的疗效与安全性在很大程度上取决于连接子的设计。传统的连接子设计较为简单,但在体内稳定性和靶细胞内的释放效率方面存在不足。为了提高ADC药物的疗效,研究者们正在开发更加智能和高效的连接子,例如酸敏感连接子和酶敏感连接子。这些新型连接子能够在肿瘤微环境中或特定酶的作用下被特异性降解,从而提高药物的靶向性与毒性释放效率。抗体工程技术的发展抗体工程是ADC药物开发中的另一项关键技术。通过抗体工程技术,研究人员可以优化抗体的结构,以提高其与目标抗原的结合力,同时减少免疫原性。目前,双特异性抗体和抗体片段等新型抗体形式正逐渐进入ADC药物开发的视野,靶向同一抗原上不同位点的双特异性ADC可以改善受体聚集并导致靶标的快速内化。此外,抗体片段由于其较小的分子量,可以更容易地渗透到肿瘤组织中,增加药物的治疗效果。高效细胞毒素的筛选细胞毒素是ADC药物的核心杀伤成分,其毒性和选择性直接影响药物的疗效与安全性。传统的细胞毒素如卡瑞里霉素和美登素虽然毒性强,但对正常细胞也具有较大的杀伤作用。为了提高ADC药物的安全性与降低耐药性,研究者们使用两种不同的细胞毒性药物作为有效载荷的双有效载荷ADC,通过精确控制两种药物的比例,通过将两种协同有效载荷递送入癌细胞,可以达到更有效的治疗效果。并且随着两种不同机制的有效载荷的应用,耐药性的发生率将大大降低。质谱技术在ADC药物研发中的应用质谱技术是当前ADC药物研究中的重要工具,主要用于分析和表征ADC药物的化学结构及其代谢产物。在ADC药物的研发过程中,研究者将LC-MS/MS技术用于深入表征ADC药物的偶联位点异质性,评估药物抗体比(DAR)和偶联位点的载荷分布,从而保证药物的安全性和有效性。将高分辨质谱技术用于ADC药物的分子量及DAR值检测、肽图分析、HCP的鉴别和定量等方面,为药物的质量控制和表征提供了重要信息。同时,基于高分辨质谱的完整蛋白质谱分析技术,可以在不进行酶解或碎片化的情况下,直接对蛋白类药物进行表征。另外,质谱成像技术还可以用于分析ADC药物在肿瘤组织中的分布情况,从而帮助优化药物的设计和给药方案。单细胞分析技术的引入单细胞分析技术近年来逐渐在ADC药物研究中崭露头角。通过单细胞分析,可以更精确地识别和选择在肿瘤细胞表面高表达、而在正常组织低表达或不表达的靶点,这对于提高ADC药物的特异性和减少副作用非常重要。这项技术有助于更准确地理解药物在肿瘤组织中单个细胞水平上的作用,这对于优化ADC药物的设计和效果至关重要。目前,越来越多的ADC药物进入临床试验,并展现出良好的治疗前景。随着ADC药物技术的不断进步以及研究人员的努力,未来ADC药物在癌症靶向治疗中会展现出更多的惊喜。
  • 使用NanoPhotometer®丰富的应用程序进行ADC药物分析
    抗体-药物偶联物即ADC是一类生物制药药物,是通过化学链将具有生物活性的小分子药物连接到抗体上,抗体作为载体将小分子药物靶向运输到目标细胞中被设计用于治疗癌症的靶向疗法。与化学疗法不同,ADC 旨在靶向并杀死肿瘤细胞,同时保留健康细胞。类似的还有新兴的AOC(抗体-寡核苷酸偶联物)基因治疗技术。NanoPhotometer® 超微量分光光度计作为标准的紫外-可见法分析设备,已广泛的应用于包括ADC在内的单抗、双抗的定量。同时,设备的多波长/全波长测量功能,能够同时测量抗体及偶联物的吸光值和浓度。这使测量药物抗体比(DAR)变得十分方便。DAR能明显影响ADC药物的毒性。如DAR过低,则抗体携带的效率较低;反之,如DAR 过高,机体易将其识别为异物从而快速清除。DAR的异质性也可能导致毒性的不确定,造成毒性脱靶。应用程序1UV法蛋白定量标准的UV法蛋白定量模块,提供基于消光系数法的蛋白浓度测量,测量主波长默认为280nm,同时也可根据抗体样品实际的最大吸收波长进行设置。对于空载抗体的定量,通常使用默认的UV280法,并使用默认的320nm背景校正。当测量ADC样品时,由于偶联药物的吸收峰通常出现在300-400nm之间,并于抗体之间有连续的紫外吸收,因此建议关闭背景校正功能(对于澄清样品),以获得准确的吸光值/浓度。在此模式下,如想在获得抗体浓度的同时,也测量偶联物的吸光值,可点击光谱曲线,可选择查看任意波长下的吸光值,找到对应的偶联物的最大吸收波长和吸光值即可。应用程序2多波长测量在分析化学应用界面中,选择单/多波长测量模块,根据抗体和偶联物的最大吸收波长,进行测量波长设置,并进行背景校正波长设置(可根据需要设置在可见光/近红外波长区域)。测量结果可直接显示抗体和偶联物的吸光值,并输出为报告。应用程序3 比值测量核酸样品的A260/A280、A260/A230比值是大家熟知的,而对于其他样品而言,吸光值比值测量模块可支持自定义的双波长下吸光值比值的计算。如抗体测量A280值,偶联物测量A378,则可得到两个波长的吸光值和比值结果,并输出为报告。ADC样品测量的良好实践:1. 可使用N60/NP80的混匀器进行5-10秒的样品充分混匀2. 基于测量目的,选择对应的应用程序3. 正确设置背景校正波长,这非常重要4. 正确的清洁,高浓度或高粘度样品建议进行空白回测NanoPhotometer® 还可配置完全符合GxP及《药品数据管理规范》要求的合规性软件,具有多层级用户管理、电子记录和电子签名、审计追踪和接入控制等功能,满足客户的合规性流程需要,在包括ADC在内的生物制药工艺开发、中试、生产、质控中具有广泛的使用场景和用户基础。
  • 如何实现纳米药物的靶向递送?
    脂质体及聚合物作为纳米药物的常用载体,在药物合成方面已取得了巨大的成功,但在靶向递送方面,仍存在着诸多挑战,纳米药物该如何实现靶向递送呢?在谈论靶向之前,先要了解一个关键的药理学概念,以器官靶向为例:器官靶向药物输送不是将所有给药剂量都输送到目标器官,而是提供足够的剂量以达到所需的生物效果,同时限制脱靶积累的毒性;即使大部分注射剂量没有到达目标器官,也应该足以引起生理效应并为患者提供益处。靶向方式分类纳米药物靶向的方式多种多样,总的来讲,可以分为三大类(如图1)。图1. 靶向方式归类图被动靶向被动靶向依赖于调整纳米颗粒的物理性质,如大小、形状、硬度和表面电荷,使其与解剖学及生理学相结合。例如,调节纳米颗粒的大小可以确定纳米颗粒从不连续的血管(如肝脏和脾脏中的血管)外渗的趋势。主动靶向主动靶向包括用化学或生物的方法修饰纳米颗粒的表面,使其特异性地与靶器官高度表达的受体或其他细胞因子相结合。例如,用单克隆抗体修饰纳米颗粒,以使核酸传递到难以转染的免疫细胞中。内源性靶向内源性靶向包括设计纳米颗粒的组成,使其在注射时与血浆蛋白的一个不同的亚群结合,从而将其引导到目标器官并促进特定细胞的摄取。例如,参与体内胆固醇运输的蛋白质已被证明是脂质纳米颗粒有效的肝细胞传递所必需的。对比而言,被动靶向和内源性靶向的设计度与可控性相对较低,主动靶向自然成为了靶向递送的研究焦点。在肝外靶向的研究中,就涉及了较多的主动性靶向,表1也列出了多种肝外给药的纳米颗粒组合物。表1. 用于肝外给药的纳米颗粒组合物靶向修饰方法药物靶向本质上为官能团之间的相互作用,即纳米药物表面的核心基团与受体部位的基团进行化学结合。以脂质纳米颗粒为例,载体组分中的PEG脂质多位于颗粒表面且本身易于修饰,因此,可以在PEG脂质上加载受体部位的结合基团以实现靶向目的。以下列举了几种常见的PEG脂质修饰方法。马来酰亚胺修饰使用DSPE-PEG2000-马来酰亚胺作为功能化PEG脂质,替换LNP中一定摩尔量的聚乙二醇脂质,通过其取代的羧基端半胱氨酸直接与肽偶联,可以形成肽靶向的纳米粒子。再如SS-31,一种线粒体靶向的四肽,具有巯基,只需与马来酰亚胺标记的脂质纳米颗粒孵育,即可进行硫酰马来酰亚胺偶联。NHS修饰NHS酯通常用于标记胺基生物分子。NHS酯与胺基的反应具有pH依赖性,结合的较佳pH值与生理环境的pH值相同。使用DMG-PEG-COOH-NHS作为功能化PEG脂质,替换LNP中一定摩尔量的聚乙二醇脂质,通过在C端添加赖氨酸修饰MH42,并通过其侧链的伯胺偶联,可以形成肽靶向的纳米粒子。同样,许多具有胺基的抗体和靶向肽也可通过该反应偶联到脂质纳米颗粒上:乳铁蛋白可特异性结合活化的结肠巨噬细胞上的LRP-1,实现细胞靶向抗炎治疗;还有较为熟知的程序性死亡配体1单克隆抗体的应用。氨基修饰氨基有利于醛酮分子的化学选择性附着。甘露聚糖还原端醛基与氨基羧基修饰的脂质之间肟偶联反应的正交特性保证了脂质纳米颗粒表面多糖分子的取向。甘露聚糖受体靶向脂质体既可以作为抗菌药物递送的载体,也可以作为用于免疫治疗的重组疫苗的载体。DBCO修饰DBCO标记可促进巯基-炔反应,并可选择性偶联荧光探针、亲和标记和细胞毒性药物分子。例如,抗体scFv-N3可被有效地偶联到DBCO修饰的脂质纳米颗粒上。研究发现,抗体修饰的脂质纳米颗粒可穿越血脑屏障,并诱导脑特异性积累,以治疗中枢神经系统疾病。结论:人体复杂的生化环境给纳米药物的靶向递送制造了诸多阻力。在实际探索中,被动靶向,主动靶向和内源性靶向,可作为靶向设计的联合工具,在寻找绝对的靶向位点、真实的靶向机理与达到实际的靶向效果之间寻求平衡。在此当中,主动性靶向的尝试值得支持,正如文中所讲PEG脂质的各种修饰方式,大量的设计性尝试定能排除越来越多的靶向干扰因素,朝靶向机理的挖掘处更深一步。参考文献:1. Menon, Ipshita et al. “Fabrication of active targeting lipid nanoparticles: Challenges and perspectives.” Materials Today Advances (2022): n. pag.2. Dilliard, S.A., Siegwart, D.J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater (2023).3. Herrera-Barrera, Marco et al. “Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates.” Science Advances 9 (2023): n. pag.应用范围:纳米药物制备系统:
  • 沃特世ADC药物分析技术交流会成功举办
    近日,沃特世ADC药物分析技术交流会在上海张江圆满召开。本次研讨会聚焦ADC药物在研究开发、表征分析、工艺开发、质量控制、生物分析等方面的应用方案,吸引了众多业内专家和同行的关注与参与。 本次分析技术交流会邀请了上海凯莱英生物技术有限公司分析测试中心执行副总经理陈维斌博士、映恩生物制药(苏州)有限公司ADC总监张禹博士、上海中科新生命生物科技有限公司研发总监唐家澍博士、沃特世大中华区消耗品部市场经理胡学桥博士、沃特世大中华区生物药应用经理聂爱英博士、怀雅特市场开发经理罗宇文等嘉宾出席。 会议伊始,沃特世大中华区市场部制药市场总监蔡麒先生发表致辞。他首先对与会嘉宾表示了热烈的欢迎,并强调沃特世在ADC药物分析技术领域的持续创新。蔡麒提到,沃特世作为全球领先的分析仪器制造商,一直致力于为ADC药物研发提供先进的分析技术和解决方案,支持药物研发新突破。此次会议,沃特世携手业界知名企业,并邀请多位专家学者,围绕ADC药物分析的新技术、方法及应用进行深入交流,以促进行业合作与发展。 图1.沃特世大中华区制药市场总监蔡麒先生致辞。 专家报告,干货满满会议进入主题报告环节。首先,上海凯莱英生物技术有限公司分析测试中心执行副总经理陈维斌博士为大家带来了精彩的报告。他详细介绍了抗体偶联药物的目前市场状态及发展趋势,并结合实际案例,深入剖析了ADC关键质量属性和相对应的分析方法,让在场的嘉宾对ADC药物DAR值测定、偶联位点分布及占有率分析、药物分布以及游离毒素的定量分析有了更为深刻的认识。 图2.上海凯莱英生物技术有限公司分析测试中心执行副总经理陈维斌博士作题为“抗体偶联药物的新趋势暨质量控制分析方法的研究”的报告。 随后,映恩生物制药(苏州)有限公司ADC总监张禹博士就ADC药物的CMC开发和工艺优化过程进行了深入解读。他结合丰富的行业经验和实际案例详细阐述了产品质量控制的重要性,并探讨了工艺参数变更对产品性能的影响,同时结合案例介绍了可比性研究是评估不同批次或不同工艺条件下生产的ADC药物是否具有相似性和等效性的重要手段,为与会者带来了一场精彩纷呈的专业分享。 图3.映恩生物制药(苏州)有限公司ADC总监张禹博士分享“ADC工艺开发与关键质量属性考量”报告。 上海中科新生命生物科技有限公司研发总监唐家澍博士针对ADC药物的临床前研究进行了深入分享。唐博聚焦ADC药物的临床前DMPK研究,首先详细解读了ADC药物在生物体内的代谢路径和动力学特性;进一步从细胞、组织到动物体内,多层面地分析了Payload的体外释放和代谢过程;最后结合具体案例,重点介绍了基于质谱的ADC药物的临床前生物分析策略,为行业同仁提供了宝贵的专业见解。 图4.上海中科新生命生物科技有限公司研发总监唐家澍博士分享“ADC药物研发中的生物分析策略”报告。 沃特世ADC分析解决方案分享 沃特世始终与全球生物制药行业保持着密切互动,为生物制药行业提供全方位的技术支持和解决方案。在本次ADC药物分析技术交流会上,沃特世也充分展示了自己在ADC分析领域的深厚经验与实践成果。 沃特世大中华区消耗品部市场经理胡学桥博士深入解析了不同液相分析方法的分离原理,涵盖了孔径、键合相和柱管处理技术等多个方面,并针对ADC药物聚集体分析、DAR值鉴定和电荷异质体分析给出了专业的色谱柱推荐。特别是MaxPeak Premier系列色谱柱能够有效减少ADC药物与色谱柱键合相之间的吸附效应,从而提高分析的准确性和可靠性。此外,沃特世大中华区生物药应用经理聂爱英博士从药物抗体偶联比、聚集体分析、药物分布、游离毒素分析、偶联位点及电荷变异体等关键质量属性出发,详细阐述了ADC药物的分析挑战与解决方案。最后,沃特世-怀雅特市场开发经理罗宇文还为我们介绍了怀雅特的辉煌历史,并回顾了光散射原理,强调了SEC-MALS和FFF-MALS在抗体及偶联药物表征分析中的重要作用。 图5.沃特世大中华区消耗品部市场经理胡学桥博士作题为“MaxPeak Premier技术如何助力ADC分析平台的建立”报告。 图6.沃特世大中华区生物药应用经理聂爱英博士分享“沃特世ADC药物完整解决方案”报告。 图7.沃特世-怀雅特市场开发经理罗宇文作题为“抗体与XDC的分子量,尺寸,形貌与载荷分析与表征”的报告。 左右滑动查看更多 结束语 此次交流会的成功举办,不仅展示了ADC药物领域的最新研究成果和技术进展,更为与会者提供了对ADC药物关键质量属性、工艺开发及分析方法的深刻理解。我们衷心感谢每一位参与者的支持与贡献,并期待未来有更多这样的交流机会,共同促进ADC药物分析技术的创新与发展。
  • ADC赛道竞争激烈,药物研发热潮来袭
    ADC(抗体偶联药物)作为抗癌药物研发的前沿领域,近年来发展迅猛,吸引了众多药企的关注和投入。据统计,目前全球已有15款ADC药物获批上市,治疗领域涉及淋巴瘤、白血病、乳腺癌、多发性骨髓瘤、乳腺癌、头颈癌、尿路上皮癌等。昨日(8月12日),又有两家药企在ADC药物研发领域取得了重要进展,为癌症患者带来了新的治疗希望。康宁杰瑞生物制药宣布,其HER2双特异性抗体偶联药物(ADC)JSKN003在治疗铂耐药卵巢癌和晚期HER2阳性实体瘤方面取得了积极成果。JSKN003是利用康宁杰瑞特有的糖基定点偶联平台自主研发的HER2双抗ADC,较同类ADC药物具有更好的血清稳定性、更强的旁观者杀伤效应,有效地扩大了治疗窗。在澳大利亚和中国进行的Ⅰ期临床研究结果显示,JSKN003具有良好的耐受性、安全性和初步的抗肿瘤活性。相关研究结果将于2024年9月13日至17日在西班牙巴塞罗那召开的欧洲肿瘤内科学会(ESMO)大会上公布。再鼎医药同日宣布,其全球首个宫颈癌抗体偶联药物(ADC)TIVDAK(tisotumab vedotin-tftv)已于2024年8月6日在澳门获批上市,用于治疗化疗期间或化疗后疾病发生进展的复发性或转移性宫颈癌患者。TIVDAK的获批基于一项多中心、开放标签、随机的III期innovaTV 301研究的结果,该研究证实TIVDAK相比化疗能够显著降低死亡风险,延长患者总生存期。这是全球首个在二线、三线转移性或复发性宫颈癌患者中具有明确生存获益的ADC药物。再鼎医药预计将于2024年或2025年上半年在中国递交TIVDAK的上市申请。ADC药物的出现为癌症治疗提供了新的思路和方法。随着靶向扩展和技术多样化,越来越多的实体肿瘤获批药物,为个性化癌症治疗提供了切实的机会,为患者带来更多治疗选择。写在最后:ADC药物中A是单克隆抗体(antibody),它能跟癌细胞上的抗原高度特异性的结合,所以进入血液循环后就会跑到肿瘤部位去,不会跑到别的地方;但抗体本身往往没有杀伤肿瘤的作用,所以A还需要带着D毒素(drug),也就是能够杀伤癌细胞的毒素一起去;D要跟着A,不能还没到癌细胞那,走一路毒素掉一路,这就需要C连接子(conjugate),是把抗体和毒素绑定在一起的连接子。所以ADC药物的工作流程是,进入人体后,通过血液循环一路被吸引到肿瘤处,牢牢抓住,癌细胞感到被攻击,直接启动胞吞作用,自以为将ADC“吃”进肚子就高枕无忧了,然而被癌细胞吞噬的ADC药物中的毒素,此时才在敌人内部亮剑,癌细胞后知后觉,吃了个祸害,相当于服毒自尽。此外,现在部分新一代ADC药物的毒素还能通过扩散杀死临近的癌细胞,被称之为“旁观者效应”。
  • ADC药物研发壁垒太高?给你的浓缩过程一种高效新选择
    一 抗体偶联药物:肿瘤治疗领域的“生物导弹”抗体偶联药物(antibody-drug conjugate,ADC)是一种有效的肿瘤靶向治疗药物,由具有特异性靶向作用的单克隆抗体,具有强大细胞杀伤力的小分子细胞毒素和连接二者的连接物(linker)组成。以靶向性抗体为载体,将抗肿瘤活性极强的毒素带到肿瘤部位,提高抗体的活性的同时,扩大小分子毒素的治疗窗。ADC既保留了单克隆抗体的特异性,又利用了细胞毒性药物的高活性,是一类新型的靶向抗肿瘤药物,被称为肿瘤治疗领域的“生物导弹”。ADC的概念最早始于1913年Paul Erlich提出的“Magic Bullet”设想:即利用具有致病机体特异性靶向的化合物做载体,将毒素带入病灶,从而只在靶组织部位发挥作用。在技术不断进步,加上学者不断钻研的情况下,ADC药物已经经历了三代技术变革,技术日臻成熟。二 ADC药物主要优势1.疗效优异ADC药物靶向肿瘤微环境中的肿瘤细胞或其他细胞,较传统疗法精度更高,选择性更好,较单独使用单抗更具疗效。可以按原本无法忍受的剂量水平使用有效的细胞毒素,是一种高效的治疗方法;2.安全性优传统化疗无法区分健康细胞和肿瘤细胞,因此通常治疗窗口狭窄。相比之下,ADC药物将细胞毒素靶向运输到肿瘤细胞,可*程度减少正常组织的暴露,减少对周围健康组织的损害;3.联合疗法潜在协同作用将ADC药物与其他疗法(如化疗)联合已证明可以*化ADC药物在癌症治疗的效果。给药方案变更或新型生物标志物选择等方法具有更高灵活性,从而优化治疗效果或根据不同癌症适应症扩大患者人群;4.大量潜在患者单抗药物对肿瘤的杀伤力有限,在大量患者中仍无法得到高缓解率。ADC药物或可将这些患者转为潜在的目标患者人群。此外,针对复发或难治癌症,部分ADC药物被证明较传统疗法具有更大潜力。[1]三 ADC研发壁垒高 图1:ADC药物的结构特征[2]抗体偶联药物包含三种组分:1. 高特异性和高亲和性的抗体:要求高特异性、内吞作用,是决定ADC疗效的关键因素;2. 高稳定性的连接子,是抗体和药物之间的桥梁,控制癌细胞内药物的释放:要求*切割、高均一性,是决定 ADC 安全性的关键因素;3. 高效的小分子细胞毒药物,摧毁癌细胞的弹头:要求高毒性、高稳定性,是决定 ADC 活性的关键因素。总之,ADC抗体偶联药物研发壁垒很高。但是,Genevac离心浓缩设备可以满足连接子和小分子工作流程中的浓缩需求。 参考文献:[1] 《医药行业抗体偶联药物(ADC)行业专题:群雄纷争ADC药物领域快速发展-220117(59页).pdf》[2] Fu Z,Li S,Han S,et al.Antibody drug conjugate: the "biological missile" for targeted cancer therapy.[J].Signal Transduct Target Ther,2022.
  • 2012化学诺奖“跨界”医学 其成果为药物研发奠基
    ●罗伯特莱夫科维茨1943年在美国出生,1966年在哥伦比亚大学获得医学博士学位,现任美国霍华德休斯医学研究所和杜克大学医学中心医学和生物化学教授。   ●布赖恩科比尔卡1955年在美国出生,1981年在耶鲁大学获得医学博士学位,现任斯坦福大学医学院医学以及分子和细胞生理学教授。   原标题:化学诺奖“跨界”医学   美国人罗伯特J莱夫科维茨和布赖恩K科比尔卡因为对蛋白受体的研究而获得2012年度诺贝尔化学奖。诺贝尔化学奖评审委员会认定,两名获奖者对G蛋白偶联受体的研究所获成果具有“奠基意义”,揭示了这一类重要受体发挥作用的内在机理。在新闻发布会现场,宣布这一消息后,一名委员会成员10日向新华社驻瑞典首都斯德哥尔摩的一名记者确认,两人获奖成果涉及医学,堪称“跨界”成果。   寻“受体”   莱夫科维茨及其同事的获奖研究始于1968年,针对生物细胞“感知”周围环境的能力,试图解密肾上腺素之类激素物质促生血压升高和心跳加快等生理反应的机理。   这以前,科学界推测,细胞表面包含某种激素“受体”。   在莱夫科维茨的实验室内,研究人员把一种碘同位素附着到多种激素物质上,借助同位素的辐射性状追踪以至揭示多种激素受体,包括β肾上腺素受体。他的研究小组最终在细胞壁内分离出β肾上腺素受体,继而对这种受体发挥作用的机理形成了初步认识。   依照现有理解,人体包含数以10亿计个细胞,由这些细胞构成一个相互作用、精细调适的系统,而每个细胞都包含细小的受体。受体的作用,是让细胞感知所处环境,进而调整并适应环境。   再“挑战”   科比尔卡二十世纪80年代加入莱夫科维茨的研究小组,接受一项挑战,即在人类染色体基因组中确定为β肾上腺素受体“编码”的特定基因。   在包含浩瀚信息的人体基因组中,科比尔卡以创新方式实现了这一目标。   后续研究中,借助对与β肾上腺素受体相关基因的分析,研究人员发现这种受体与促使眼睛具备捕捉光线能力的受体相似。他们意识到,存在一整类受体,不仅形似,发挥作用的机理也相同。   这类受体如今名为G蛋白偶联受体。   诺奖评审委员会在向媒体发布的新闻稿中介绍,大约1000种基因为G蛋白偶联受体“编码”,与人体对光线、味觉和气味的感知以及肾上腺素、组胺、多巴胺和血清素等物质相关。   显“跨界”   评审委员会说,现有所有药物中,大约半数借助G蛋白偶联受体发挥效用。   2011年,科比尔卡实现一项新突破:他主持的研究小组捕捉到β肾上腺素受体的画面,恰逢它由某一种激素激化、向细胞发出“信号”的瞬间。评审委员会说,这一画面,集几十年研究成果为一体,是“分子层面的杰作”。   与莱夫科维茨和科比尔卡的学历以及两人的研究历程吻合,本年度诺贝尔化学奖获奖成果似乎与诺贝尔生理学或医学奖有某种“渗透”,无法界定包含更多化学因素还是更多医学因素。   现场回答新华社记者刘一楠提问时,一名评审委员说,本年度获奖成果确实涉及化学和医学,这种“跨界”现象构成科学“美感”。   审视近些年诺贝尔化学奖,获奖成果相对集中在材料学和生物化学领域 材料学多与物理关联,生物化学多与医学关联。
  • 领先科技:超级微波固相多肽合成(UE-SPPS)为多肽药物带来无限可能!
    超级微波固相多肽合成(Ultra-Efficient Solid Phase Peptide Synthesis,UE-SPPS)代表着肽生产领域的一次新突破,它完荃摒弃了传统固相肽合成中不可或缶夬的树脂洗涤环节。这项技术通过在反应环境中直接中和过剩的活化氨基酸单体以及精确控制去保护基的蒸发,达成了无需任何洗涤过程的目标。此外,所有反应步骤,包括偶联反应和去保护反应,均在经过优化的微波辐射下进行,大大提升了肽和蛋白质(即使是长达 100 个氨基酸的序列)的合成质量。UE-SPPS 技术相较于传统的 SPPS 方法,能够减少多达 95% 的废物产生。有关这项创新技术的详细讨论已发表于《自然通讯》杂志。请在附件中查看。Total wash elimination for solid phasepeptide synthesis.pdfUE-SPPS 代表了肽合成技术的重大飞跃,目前这项技术已在 CEM 公司的 Liberty Blue 2.0 和 Liberty PRIME 2.0 系统上得到应用。欢迎探索 UE-SPPS 背后的益处与技术精髓:超髙纯度 Exceptional Purity顶空气体冲洗技术11. 微波加热促使 Fmoc 去保护反应完全进行。2. 氮气(N2)流入反应器中。3. 去保护基通过微波加热蒸发。4. 氮气(N2)和去保护基一同流出反应器,进入废液。5. 剩余的试剂和副产物被过滤至废液中。简而言之,清洁的反应环境带来了更纯净的合成产物。CEM 公司专有的顶空气体冲洗技术能够在去保护基在反应器上部表面凝结之前,有效清除反应顶部的挥发性去保护基。去保护基的凝结和(常常不合时宜的)反应液重新进入反应环境会严重影响合成产物的纯度,这在长序列合成中尤为关键,因为即使是微量的杂质也可能迅速积累,影响最终产品的质量。彳切底排除反应溶液和顶部空间中的去保护基带来了额外的好处:它消除了复杂且重复的容器清洗环节。JR 10-merCarboMAX 偶联2当合成纯度至关重要时,选择合适的偶联策略也同样关键。碳二亚胺促进的偶联方法在许多方面优于磷盐促进的偶联(例如 HBTU/DIEA)方法,特别是在较高温度下更是显著。碳二亚胺方法的优势包括大幅降低烯醇化和差向异构化的反应速率,以及减少其他基于碱催化的副反应的发生。R = Amino Acid Side ChainY = Side Chain Protecting GroupA = OH, NHCarboMAX&trade 是 CEM 公司针对标准碳二亚胺肽偶联方法的升级改进版。这一创新技术常规实现超越传统碳二亚胺方法的偶联效率和更低的差向异构化率。点击此处获取更多详情。Crude PurityPeptideSequenceStandardCarboMAXThymosinSDAAVDTSSEITTKDLKEKKEVVEEAEN63%75%GRPGRPVPLPAGGGTVLTKMYPRGNHWAVGHLM62%74%BivalirudinfPRPGGGGNGDFEEIPEEYL80%82%1-34PTHSVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF67%85%35-55MOGMEVGWYRSPFSRVVHLYRNGK77%91%Magainin 1GIGKFLHSAGKFGKAFVGEIMKS71%79%Dynorphin AYGGFLRRIRPKLKWDNQ74%82%Liraglutide*HAEGTFTSDVSSYLEGQAAK(γ-Glu-palmitoyl)EFIAWLVRGRG-OH74%88%*Synthesized with ~ 0.32 mmol/g Fmoc-Gly-Wang PS resin微波能量3每一步都实现更优的反应转化。微波辐射技术在提升固相肽合成所制肽段的纯度方面已经是一项成熟的技术,并在全球范围内的众多出版物中得到了描述。作为微波 SPPS 领域的全球令页导者,CEM 于 2003 年推出了第壹台自动化微波肽合成仪。卓跃效率 Unmatched Efficiency极大减少浪费减少废物的产生,而不是牺牲合成的产量或纯度。通过使用碳二亚胺促进的偶联方法,UE-SPPS 工艺省去了偶联后的洗涤步骤。偶联过程中任何剩余的活化氨基酸在可能导致副反应之前,都会被随后加入的去保护基有效中和。基于这一原理,UE-SPPS 扩展应用了“一锅法”偶联和去保护步骤,在现有的偶联溶液中只需加入少量的去保护溶液,这样几乎可以将两个反应所需的总溶剂量减少一半。(也就是说,偶联步骤中的溶剂可以在后续的去保护步骤中重新使用。)Traditional SPPS Cycle (Extensive Wash Related Waste)UE-SPPS Cycle (No Wash Related Waste)通过开发顶部空间气体冲洗技术(如前所述的基于蒸发的过程),UE-SPPS 同样去除了去保护后的洗涤步骤。在超过 90°C 的温度下,挥发性的去保护基(吡咯烷)会在快速的微波辅助脱保护步骤期间迅速从反应器内蒸发。通过顶空气体的冲洗,防止了挥发的去保护基在反应器上部表面的凝结。这些过程的结合使得肽酰树脂在无需洗涤的情况下即可直接进入下一次偶联反应。通过方法优化、精心选择试剂以及工程技术的突破,UE-SPPS 实现了高达 95% 的废物减量,同时不牺牲合成产率和纯度。Traditional SPPSUE-SPPSWaste per AA addition*100 mL 5 mLWaste per 10-mer*1 L 50 mL不可否认的节省时间更快的合成周期促进了更为敏捷的研究和探索。UE-SPPS 在减少废物方面的高效同样体现在节约时间上。通过采纳上述相同的策略性方法优化、精选试剂以及工程上的创新,UE-SPPS 还能将合成所需时间缩减至仅占原来的 5%,成效卓跃。Traditional SPPSUE-SPPSTime per AA addition*2 hours 4 minutesTime per 10-mer*20 hours20 hours*@ 0.1mmol
  • 第五届抗体药物研发及质量分析网络大会即将召开!附全日程
    在生物药众多的品类中,抗体药物是当前最大的治疗用生物剂类别,单克隆抗体是研发最早、研究最为深入的抗体药,具有较高的安全性与有效性。近年来随着单抗药物各个靶点不断进入红海竞争状态,双抗项目研发日渐火热。双特异性抗体药物(简称“双抗”)是新型的二代抗体,拥有两种特异性抗原结合位点,可以同时与靶细胞和功能细胞相互作用,进而增强对靶细胞的杀伤。与但双抗药物开发复杂性和技术壁垒更高,对于技术平台和靶点选择的适配性要求也有所提高。抗体-药物偶联物(ADC)是通过化学反应,把传统的小分子抗癌药物与重组单克隆抗体(mAb)分子通过连接分子结合,所形成的新分子。抗体工程在10年间也已经取得了相当大的进展,允许更多的位点特异性偶联,提高了ADC的均一性和稳定性。新的第二代和第三代ADC已经进入临床,以期获得更好的治疗效果和安全性。几十种基于半胱氨酸残基、非天然氨基酸或分子工程模式的生物偶联技术也已经在临床前研究获得了验证。此外,更多的肿瘤特异性抗原靶点和肿瘤内细胞毒性药物的释放机制使ADC获得了爆炸式的发展,ADC药物进入了黄金时代。为促进我国抗体药物产业持续快速发展,仪器信息网将于2022年9月14日-15日举办第五届“抗体药物研发与质量分析”主题网络研讨会,特别邀请二十余位多位业内研发专家、质量控制专家,对当前抗体药领域研究热点双抗、ADC相关研发、分析技术开发、质量研究、CMC开发、生命周期管理等广受关注的内容进行精彩分享,欢迎广大相关从业人员免费报参会!点击图片报名参会大会亮点一、专家阵容:恒瑞、信达、复宏汉霖等国内知名生物医药企业总经理、高级副总裁、研发总监、质量控制总监等大咖阵容二、热点内容:双抗、ADC药物研发策略和案例分享、 质量研究、质谱、色谱分析方法解析、 CMC开发、全生命周期管理考量和经验分享3、 参会人员专业、垂直:制药企业、CRO/CDMO、生物技术公司、政府主管部门、药检机构、科研院所免费报名链接:https://www.instrument.com.cn/webinar/meetings/antibodydrug2022/大会日程时间 Time报告题目Topic演讲嘉宾The Speakers抗体药物研发(上)(09月14日)9:00聚焦热点——ADC药物张娟(中国药科大学 教授)9:30更新中锐欧森中国10:00双特异抗体生物学活性分析方法的开发易继祖(友芝友生物 高级副总裁)10:30心血管代谢系统的抗体新药研发张成(鸿运华宁(杭州)生物医药有限公司 高级副总裁和首席科学官)11:00肿瘤免疫新药研发策略赵永浩(江苏康宁杰瑞生物制药有限公司 研发总监)抗体药物研发(下)-双抗、ADC药物(09月14日)13:30ADC研发进展与挑战陶维康(恒瑞医药股份有限公司 副总经理)14:00自动化时代下聚焦细胞株开发的自动化解决方案刘达潍(贝克曼库尔特生命科学 自动化应用专家)14:30高通量分析技术助力双抗新药开发探讨谢红伟(信达生物制药集团 产品开发部副总裁)15:00更新中SCIEX中国()15:30抗体偶联药物的CMC研发挑战及策略黄鹏(东曜药业有限公司 ADC研发负责人)16:00创新全人双抗设计/筛选及双靶点ADC新药开发案例杨勇飞(百奥赛图(北京)医药科技股份有限公司 新药研究院 总监)抗体药物分析与质量控制(09月15日)9:00抗体药物的质量研究策略及质控标准建立黄懿(上海探实生物科技有限公司 总经理)9:30更新中多宁()10:00复杂蛋白质药物体系异质性的质谱解析王冠博(北京大学生物医学前沿创新中心 研究员)10:30线性pH梯度分析单克隆抗体变体的创新技术李国荣(苏州科技大学 兼职教授)11:00高通量质谱用于抗体药物的结构表征卢颖洪(南京理工大学 副教授)抗体药物后期工艺开发和商业化生产(09月15日)13:30质量研究对抗体药物CMC研发关键节点的把控吕品(上海博威生物医药有限公司 质量分析部/执行总监)14:00基于cIEF-MS联用技术的抗体药物电荷异质性分析解决方案张为(永道致远科学技术有限公司 应用科学家)14:30抗体药物工作参比品的全生命周期管理李镭(浙江博锐生物制药有限公司 研发质量副总监)15:00抗体药后期CMC开发和商业化郭文晖(KKH Consultant LLC Principal Consultant)15:30全生命周期管理下生物药技术转移考量李孟捷(三生制药集团 质量 商务负责人 高级工程师)16:30抗体委托生产期间委托方和受托方的质量责任李醒(杭州奕安济世生物药业有限公司 QA执行总监)免费报名链接:https://www.instrument.com.cn/webinar/meetings/antibodydrug2022/ 专家阵容(更新中)第五届抗体药物会议交流群
  • CDE指导原则4连发,涉及药物相互作用、中药药效学研究等
    2024年7月17日,国家药品监督管理局药品审评中心(CDE)连续发布1个指导原则、2个指导原则征求意见稿和1个ICH《M12:药物相互作用》指导原则及问答文件实施建议和中文版意见:《胃食管反流病治疗药物临床试验技术指导原则》;《疫苗佐剂非临床研究技术指导原则(征求意见稿)》;《中药药效学研究技术指导原则(征求意见稿)》;ICH《M12:药物相互作用》指导原则及问答文件实施建议和中文版意见。01《胃食管反流病治疗药物临床试验技术指导原则》通知原文:为规范和指导胃食管反流病治疗药物临床试验,提供可参考的技术规范,在国家药品监督管理局的部署下,药审中心组织制定了《胃食管反流病治疗药物临床试验技术指导原则》(见附件)。根据《国家药监局综合司关于印发药品技术指导原则发布程序的通知》(药监综药管〔2020〕9号)要求,经国家药品监督管理局审查同意,现予发布,自发布之日起施行。特此通告。国家药监局药审中心2024年7月16日适用范围:本指导原则适用于化学药品和治疗用生物制品的药物研发,仅作为推荐性建议。应用本指导原则时,还应同时参考药物临床试验质量管理规范(GCP)、国际人用药品注册技术协调会(ICH)和其他境内外已发布的相关指导原则。附件:胃食管反流病治疗药物临床试验技术指导原则.pdf02 ICH《M12:药物相互作用》指导原则及问答文件实施建议和中文版意见通知原文:为推动新修订的ICH指导原则在国内的平稳落地实施,我中心拟定了《M12:药物相互作用》指导原则及问答文件实施建议,同时组织翻译了中文版。现对M12指导原则及问答文件实施建议和中文版公开征求意见,为期1个月。如有修改意见,请反馈至联系人电子邮箱:gkzhqyj@cde.org.cn 。国家药品监督管理局药品审评中心2024年7月17日适用范围:本指导原则的适用范围仅限于药代动力学相互作用,重点关注代谢酶和转运体介导的相互作用。这些方面通常适用于化学小分子的开发。仅简要介绍了生物制品的DDI评价,重点是单克隆抗体和抗体-药物偶联物。本指南提供了体外和体内(本文中“体内”和“临床”可以互换)代谢酶或转运体介导的抑制或诱导相互作用的研究方法,以及如何将研究结果转化为适当的治疗建议。本指导原则还包括如何评价代谢产物介导的相互作用的建议,同时也涵盖了采用基于模型方法的数据评价和DDI预测。其他治疗技术的发展和出现,如寡核苷酸、小干扰核糖核酸和肽,得到了认可。但这些内容超出了本指南的范围。 建议参考地区性指导原则。其他类型的药代动力学相互作用,例如对吸收的影响 (如,胃pH值变化、胃动力变化、形成螯合物或络合物等)、 食物影响或蛋白结合置换,不属于本文件的范围,建议参照 地区性指导原则。同样,药效动力学相互作用导致的DDI也不在本指导原则的范围内。附件:M12及问答实施建议.pdf M12指导原则中文版.pdf M12指导原则英文版.pdf M12问答文件中文版.pdf M12问答文件英文版.pdf03 《疫苗佐剂非临床研究技术指导原则(征求意见稿)》通知原文:为更好地指导疫苗佐剂非临床研究和评价,促进新型佐剂以及创新佐剂疫苗的研发,经广泛调研和讨论,我中心组织起草了《疫苗佐剂非临床研究技术指导原则(征求意见稿)》。我们诚挚地欢迎社会各界对征求意见稿提出宝贵意见和建议,并及时反馈给我们,以便后续完善。征求意见时限为自发布之日起1个月。请将您的反馈意见发到以下联系人的邮箱:联系人:吴爽、尹华静联系方式:wush@cde.org.cn、yinhj@cde.org.cn感谢您的参与和大力支持。国家药品监督管理局药品审评中心2024年7月17日适用范围:本指导原则适用于预防和治疗感染性疾病的疫苗中的佐剂,旨在为其非临床研究的设计和开展提供一般性技术建议,以促进新型佐剂以及创新佐剂疫苗的研发。本指导原则不适用于可对疫苗其他活性成分起佐剂效应的抗原或通过重组 DNA 技术使之成为抗原分子(如融合蛋白)或免疫原(如载体疫苗)的固有组成部分的免疫刺激分子,也不适用于半抗原或抗原的载体蛋白〔如用于结合多糖的 CRM197、脑膜炎球菌外膜蛋白(OMP)、破伤风类毒素和白喉类毒素〕。本指导原则中涉及的新佐剂是指尚未用于已上市疫苗的佐剂,包括以往未研究过的全新佐剂或含有以往未研究过的全新成分(注释 2)的佐剂/佐剂系统、已获得一定安全性数据(动物和/或人体数据)但尚未上市的佐剂或在已用于上市疫苗的佐剂基础上发生重大变更的佐剂附件:《疫苗佐剂非临床研究技术指导原则(征求意见稿)》.pdf 《疫苗佐剂非临床研究技术指导原则(征求意见稿)》起草说明.pdf 《疫苗佐剂非临床研究技术指导原则(征求意见稿)》征求意见反馈表.docx04《中药药效学研究技术指导原则(征求意见稿)》通知原文:为促进中医药传承创新发展,遵循中医药研究规律,提高中药药效学试验的水平和质量,推动中药新药的研究与发展,经广泛调研和讨论,我中心组织起草了《中药药效学研究技术指导原则(征求意见稿)》。我们诚挚地欢迎社会各界对征求意见稿提出宝贵意见和建议,并及时反馈给我们,以便后续完善。征求意见时限为自发布之日起1个月。您的反馈意见请发到以下联系人的邮箱:联系人:黄芳华,周植星联系方式:huangfh@cde.org.cn,zhouzhx@cde.org.cn感谢您的参与和大力支持!国家药品监督管理局药品审评中心2024年7月17日主要内容:本指导原则的主要内容包括概述、中药药效学研究一般原则、中药新药药效学研究的阶段性、基本内容、结果分析与评价五个部分。第一部分“概述”介绍了指导原则的起草背景,明确了指导原则的适用范围。第二部分“中药药效学研究一般原则”阐述了中药药效学研究的研究目的和一般原则。第三部分“中药新药药效学研究的阶段性”阐述了中药研发过程中的中药药效学研究的分阶段要求。第四部分“基本内容” 阐述了受试物、主要药效学研究、次要药效学研究的关注点和相关要求。第五部分“结果分析与评价”阐述了对药效学研究结果进行科学分析和全面评价必要性和重要性。附件:《中药药效学研究技术指导原则(征求意见稿)》.pdf 《中药药效学研究技术指导原则(征求意见稿)》起草说明.pdf 征求意见反馈表.docx
  • BPC重磅首发议程公开,从源头到CMC到临床转化,加速FIC药物开发
    BPC 2022 创新药系列专题会议将于2022年3月22-23日在上海宝华万豪酒店全新亮相。大会分设5大专场,从创新抗体药物(新靶点/ADC/双多抗/… )、小分子创新药物(PROTAC/AI/变更/… )、临床转化三大维度出发,特邀200余位创新药研发领军企业、科研学者、法规监管专家与科学家深入新药“源头”进行分享,以临床价值为目标,探索“大小分子”多线发展策略。大会将吸引1500+创新药领域行业精英的踊跃参与。更多会议详情,欢迎咨询:手机:180 1793 9885(微信同号)邮箱:marketing@bmapglobal.com官网:www.bmapglobal.com/bpc2022干货满满!首发议程抢鲜看:亮点• 一网打尽!从源头到CMC案例解析,应对小分子创新药的开发实际挑战• 追踪靶向不可成药靶点的小分子创新药研发的领先实践案例• 解析前沿创新平台技术与品类的成药性开发:PROTAC / 分子胶与更多TPD,AIDD/CADD/SBDD/FBDD/DEL等前沿技术• 聆听小分子创新药在肿瘤激酶、免疫,及非肿瘤(抗感染、神经)领域的药物研发最新进展• 学习小分子药物临床与上市后变更和审查的CMC应对策略• 掌握创新药在冲刺最后一公里NDA申报的注意事项,以及以终为始的CMC开发策略• 学习高端制剂:透皮、缓控释注射剂等高端制剂的处方与工艺开发领先实践结构小分子创新药发现与创新论坛DAY1:靶向不可成药—研发具有竞争壁垒的小分子创新药靶向蛋白降解与PROTAC基于临床价值的创新药药理毒理研究关注点New!程鲁榕,CDE 前药理毒理审评专家 PROTAC肿瘤全新靶点的识别、验证与药物发现New!丁克,中科院上海有机所/暨南大学教授基于新一代结构生物学技术MicroED加速新药发现New!夏荣森,苏州青云瑞晶生物科技有限公司商务总监、合伙人分子胶和PROTAC交叉融合对于肿瘤和免疫药物的开发New!杨小宝,标新生物创始人&董事长&CEO冷冻电镜结构解析指导PROTAC向分子胶的演化New!颜晓东,佰翱得副总裁圆桌讨论:应对PROTAC药物成药性挑战,我们有哪些应对策略?杜武,海创药业资深副总裁马连东,开拓药业副总裁/新药研究院院长戴晗,维亚生物创新中心负责人 基于蛋白质相互作用的E3连接酶设计与TPD化合物的优化以降低毒性(拟)冯焱,领泰生物创始人/CEO分子伴侣介导的蛋白降解平台(CHAMP)助力小分子新药发现New!叶龙,珃诺生物医药新药研发高级总监AIDD/CADD/SBDD/FBDD/DEL等前沿技术制药AI药物设计与临床前开发领先经验New!李铭曦,湃隆生物总裁基于结构的新型FGFR4抑制剂药物发现研究以及FBDD药物发现平台New!邵宁,保诺-桑迪亚药物化学副总裁AI➕分子模拟,打造新一代药物设计开放平台孙伟杰,深势科技创始人、CEO圆桌讨论:我们准备好了吗?新兴跨界技术赋能新药发现中的挑战与落地思考主持人:单波,德琪医药首席科学官党群,真实生物总裁DAY2: 基于临床需求的差异化药物发现AI赋能药物研发案例分享任峰,英矽智能首席科学官肿瘤药物发现与创新-对于疾病的深入理解话题待定张翱,上海交通大学药学院院长化繁为简 - 构建自动化医药研发实验室张晨曦,力扬企业有限公司产品经理 搞药化——新药研发上市成功因素邓炳初,成都百裕制药CSO,复旦大学药学院特聘教授肿瘤免疫小分子PD-1/L1药物研发进展New!王玉光,再极医药董事长圆桌讨论:小分子药物在抗肿瘤领域的机遇与挑战——差异化药物的靶点选择与立项思考主持人:陶维康,恒瑞医药副总经理兼研发中心CEO张劲涛,捷思英达医药技术有限公司董事长兼CEO靶向恶性实体瘤的小分子靶向偶联新药研发New!段建新,艾欣达伟医药创始人、董事长非肿瘤药物发现与创新(抗感染、CNS、慢病等)-对于疾病的深入理解创新药发现:从靶标结构到临床药物徐华强,凯斯凯迪创始人及董事长,中科院受体结构与功能重点实验室创始主任话题待定唐国志,维申医药共同创始人、首席执行官帕金森靶点验证与小分子新药发现(拟)周显波,中泽医药CEO抗乙肝病毒活性天然小分子作用机制及1类新药研发New!许敏,昆明理工大学生命科学与技术学院,教授,博士生导师小分子创新药CMC申报与开发论坛DAY1:冲刺最后一公里—CMC申报与上市应对变更合规挑战对创新药(化学药)临床试验期间药学变更技术要求的相关解读New!李眉,原CDE化学药品及生物制品室室主任兼化药组组长高活性药物从早期开发到商业化生产的控制策略王新峰,赛默飞Patheon™ 制药服务部全球SME已上市药学临床变更实践案例分享(拟)杜争鸣,百济神州高级副总裁,药学部首席总监圆桌讨论:面对各种大小变更,我们该如何尽可能减少变更、符合监管要求与平衡成本最优?主持人:马元辉,海和药物临床前研发部副总裁李景荣,劲方医药CTO、总经理刘波,和记黄埔医药副总裁IND/NDA申报策略与实践小分子创新药评价,处方开发及IND法规要求探讨王志宣,赛诺菲中国研发中心,CMC商务&外部合作总监新药研发中的关键晶型问题陈岑,苏州晶云药物科技股份有限公司/全球商务负责人小分子创新药NDA现场动态核查注意事项与应对策略New!付宜磊,华领医药质量与风险控制部高级副总裁,首席质量官圆桌讨论:我们该如何以最少的工作量与成本合理设计与布局,以满足NDA申报核查要求?滕尚军,亚盛医药化学开发与生产副总裁陈桂良,上海药品审评核查中心主任张津州,华海药业制剂研究院研发总监范文源,百济神州制剂高级总监DAY2:以终为始—小分子创新药物药学与工艺开发创新药物质量分析与开发小分子创新药物基因毒杂质的合规要求与检测策略New!李敏,华海药业副总裁、上海华汇拓医药总经理临床期间/preNDA药学工艺变更的申报要求与桥接试验策略New!郭振荣,前同润生物CMC小分子执行副总裁从QbD的思想平台上来探讨溶出检测在新药研发过程中的功能与角色韩建华,药物溶出检测技术专家美国药典分析方法生命周期通则解析刘捷,美国药典委员会中华区总部科学事务部副总监化学药高端制剂摸索优化、工艺开发与质量分析新型治疗实体的药物递送:挑战与机遇陈霖,Bayer研发总监制剂工艺验证中的过程控制和关键工艺参数的确认吴正红,中国药科大学药学实验中心副主任、教授长效微球高难度注射剂的处方与工艺开发(拟)Connie Yu, 辉凌制药(Ferring)研发创新体系突破技术难点疑点江新安,产品创新与研发管理专家、项目管理专家亮点• 中国创新药出海,如何破局中美澳申报及制定临床开发策略?• 如何丰富自有管线或另辟蹊径?聆听创新药license-in临床重塑开发具体成功案例分享• 后疫情时代,面对全球疫情,国际化及国际多中心临床开发策略与运营将如何高效开展?• 学习生物标志物/类器官模型/AI大数据模型算法等领先技术赋能临床转化与开发的实际案例• 新政频出,抗肿瘤药物,非肿瘤领域罕见病、抗感染、细胞基因治疗疗法等领域临床注册与开发有哪些科学考量?• PD-1/L1,(V)EGFR同质化靶点开发,如何探索下一代抗肿瘤临床适应症以及联合疗法?结构创新药临床转发与开发论坛DAY1: 创新药转化与临床开发 ,新规下的国际化道路中国创新药2.0时代:新药监管与国际化开发趋势大分子药物免疫原性评价策略与FDA法规申报严皓珩,复宏汉霖药政总监,前FDA免疫原性资深评审中国创新药及出海临床试验三期临床开发策略与研究进展New!徐英霖,徐诺药业(南京)有限公司董事长兼首席执行官新指导原则下基因(细胞)治疗临床研发策略与设计(拟)姚毅,前美国FDA资深医疗评审官中国电子递交元年——eCTD法规解读以及准备思路的分享阙兆麟,辉瑞(中国)研究开发有限公司,药品注册文件出版团队经理生物标志物在创新药加速审评/附条件批准中的转化案例解析张韵,百济神州临床生物标志物总监临床药理如何推动创新药物进行全球开发New!胡志强,前华奥泰生物首席医学官圆桌讨论:机遇与挑战并存, 如何提高生物导弹ADC药物临床转化与开发的成功率?New!1. 有效性挑战-耐药 2. 适应症选择 3. 风险隐患决策点主持人:夏钢,浙江医药CSO转化医学加速肿瘤临床开发:生物标志物/AI/模型前沿DAY2: 基于临床需求的创新药适应症开发与试验设计热点疾病、靶点和品类:医学科学考量下的临床开发中国肺癌PD-1/L1临床试验进展与数据分析New!周彩存,上海市肺科医院首席专家、牵头PI头颈部肿瘤的创新药开发:小肿瘤会有大作为New!郭晔,同济大学附属东方医院肿瘤医学部副主任兼一期临床中心主任圆桌讨论:以临床价值为导向的创新药临床申报与开发策略New!1. 何为临床价值 2. 怎样选取对照标准 3. 哪些灵活地带 主持人:华烨,烨辉医药科技有限公司创始人/CEO黑永疆,智康弘义Co-CEO申华琼,纽欧申医药创始人、首席执行官顾娟红,Immune-Onc中国总经理谢志逸,英派药业CMO未满足的乳腺癌临床需求的创新药开发与试验进展New!张剑,复旦大学附属肿瘤医院肿瘤内科行政副主任、I期临床研究病房医疗主任圆桌讨论:PD-1/L1之后,下一代肿瘤免疫/靶向及联合的创新临床开发策略1.差异化立项 2. 适应症的选择 3. 终点定位及设计 等主持人:陈兆荣,百奥赛图副总裁,祐和医药CMO彭彬,岸迈生物 CMO秦续科,科望医药CMO戚川,创胜集团全球临床开发高级副总裁为满足的神经疾病及罕见病药物临床需求及研究思考(拟)王艺,复旦大学教授,儿科神经内科主任医师,博士生导师圆桌讨论:孤儿药物临床申报与研发策略1. 快速通道申报策略2. 附条件批准科学考量 3. 真实世界研究政策与应用条件 等陶晓路,和铂医药转化开发高级副总裁亮点• 全新靶点单抗,创新双/多特异性抗体药物,双/多功能融合抗体,ADC及新型偶联药物一网打尽• 新靶点发现、通路研究、靶点组合逻辑及Biology/MOA探索源头创新• 抗体工程/分子结构设计进一步提高药效、降低毒性打通成药性/可开发性难关• 靶点/适应症创新选择、抗体/偶联方法/Linker/Payload五大要素,逐步探讨• 从1到N,从ADC到AOC/ABC/PDC/RDC/SMDC… 创新偶联药物设计与机制分享• 创新抗体药物复杂结构的系统化CMC管理与国际申报指导结构创新抗体药物专场DAY1:下一步开发之抗体工程/分子设计与更优成药性/可开发性DAY2:拒绝“内卷”之通路/靶点发现与组合策略/生物学/机制与早期研发创新偶联药物专场DAY1:差异化立项之“三元件与五要素”DAY2:从1到N之复杂结构CMC策略与开发创新抗体药物专场——靶点、双/多特异性/功能抗体药物早期研发与成药性/可开发性下一步开发之抗体工程/分子设计与更优成药性/可开发性• 双特异性/功能抗体激活性抗体发现/工程改造平台构建及创新双特异性抗体开发王结义,礼进生物创始人兼首席执行官纳米抗体发现过程中常用技术及方法齐帮若,上海佰英生物科技有限公司研发总监抗PD-L1/TIGIT双特异性抗体创新开发设计与药效优化New!朱向阳,华奥泰生物CEO下一代T细胞导向双特异性抗体开发及细胞因子风暴与改进安全性研究New!Christian Klein,罗氏瑞士研发中心负责人(online)新型生物药免疫原性方法建立的关键考量以及案例分享祝永琴,熙宁生物高级技术总监圆桌讨论:不同双抗结构与分子设计如何更优化:稳定性/纯度,更高药效,更低毒性?王结义,礼进生物创始人兼首席执行官朱向阳,华奥泰生物CEO• 多特异性/功能抗体靶向 EGFR/c-MET 的抗体药及创新三抗设计与开发New! 韩淑华,嘉和生物首席科学官肿瘤“靶向免疫”治疗的免疫学与多抗GNC药物研发朱义,百利药业董事长&CSOIL-15/IL-15R与双抗融合构建创新三抗分子与开发设计(拟)屈向东,启愈生物创始人兼总经理拒绝“内卷”之通路/靶点发现与组合策略/生物学/机制与早期研发• 差异化靶点/通路研究/适应症开拓最新人源化VH抗体片段研究与新一代双抗开发在抗肿瘤及病毒中的应用New!Dimiter S. Dimitrov 美国匹兹堡大学医学院抗体中心主任,前美国国立卫生研究院癌症中心NIH主任 (Online)创新非肿瘤双抗开发思路与靶点/机制差异化研究(拟)New! 房健民,荣昌生物联合创始人、首席执行官兼首席科学官全球首创靶点与机制研究及抗非肿瘤抗体药物开发New! 梁瑞安,中国抗体创办人、董事会主席兼首席执行官新型癌症免疫治疗Treg-Teff调节剂——TNFR2抗体激动剂和拮抗剂New! 殷刘松,盛禾(中国)生物制药有限公司执行总裁兼首席科学官靶向肿瘤新生抗原的新型生物技术药物潘利强,浙江大学药学院百人计划研究员/浙大一院兼聘教授• 靶点组合策略探索与验证PD-L1×TGF-βRII双抗的肿瘤微环境机制研究与转化医学 廖成,恒瑞医药副总经理基于抗4-1BB纳米抗体的双特异性抗体开发New! Andy Tsun曾竣玮,普米斯生物技术Discovery Biology副总裁CD47/SIRPα双抗靶点组合选择策略及临床研究进展田文志,宜明昂科创始人、董事长兼总经理Claudin 18.2/4-1BB双抗的肿瘤免疫机制研究与生物学考量天境生物创新双抗开发与靶点组合机理机制的研究陈明久,博奥信生物CEO圆桌讨论:创新双/多抗药物,如何创新? 靶点选择/组合逻辑 适应症选择 biology挑战:MOA研究谢毅钊,基石药业CSO创新偶联药物专场——ADCs/XDCs药物R&D与CMC开发差异化立项之“三元件与五要素”• 靶点与适应症的选择策略• 抗体部分及偶联方法ADC药物中更优抗体的属性研究New!谭淼,科伦博泰大分子研发 VP非天然氨基酸技术定点偶联优化设计ADC的稳定性与有效性New!张韶辉,Ambrx高级研发运营副总裁,中国区总负责人(Online)圆桌讨论:差异化的偶联药物开发中“三部件”如何突破与创新?秦刚,启德医药科技(苏州)有限公司董事长/总裁刘东舟,华东医药cso兼创新药研发中心总经理桂勋,迈威生物创新发现部高级总监• Linker及 PayloadDS-8201后时代ADC技术平台的设计与发展思路花海清,映恩生物研发副总裁基于体内活性、旁观者效应和安全性的新一代ADC亲水性Linker研究开发New!刘海东,普方生物药化部高级总监独特“双控”设计:PBD前毒素载荷和连接子ADC开发思路与最新数据New!于海翔,基石药业抗体研究高级总监第四代抗体偶联药物的结构特点和未来展望蔡家强,苏州宜联生物CSO• 从1到N之复杂结构CMC策略与开发 • CMC工艺与质量等开发与合规偶联药物“三部件”的合规要求指导与系统性管理策略(拟) 上海药品审评核查中心ADC药物工艺开发与工艺放大挑战与解决思路刘文超,美雅珂生物工艺总监PAT新技术在冻干工艺开发与生产中的应用刘祥运,德祥科技产品经理偶联药物中涉及偶联部分的CMC问题与探索New!杨金纬,浙江新码生物化学总监ADC药物开发中参数分析与CMC策略(拟)魏紫萍,百力司康生物医药(杭州)有限公司创始人• 其他偶联药物开发有效荷载免疫毒素等新一代ADC药物创新开发New!朱建伟,上海交通大学“致远”讲席教授、教育部抗体工程中心主任PDC-多肽偶联药物的设计与开发New!孙立春,美国杜兰大学医学院兼职教授,泰尔康生物创始人及CEO基于肿瘤研发策略与机制研究的双抗ADC开发案例New!赵永浩,江苏康宁杰瑞研发总监… … BPC 2022 创新药专题系列会议BPC 2022 创新药系列专题会议将于2022年3月22-23日在上海宝华万豪酒店全新亮相。三大精品——BioCon-Antibody,PharmaCon,ClinCon同期联袂,设置5大分论坛,聚焦全球创新药行业热点,集结生物制药、化学制药领域精英,围绕下一代双多抗、ADC等偶联药物、PROTAC、AI下小分子创新药等多品类,吸引招商截止倒计时一周仅剩最后两个展位!预订从速!详情咨询:电话:180 1793 9885(同微信)或扫描下方二维码咨询扫描上方二维码了解更多会议详情
  • 华盛顿大学研究人员利用“Serine Ligation”产生有效且稳定的GLP-1类似物
    大家好,今天为大家介绍一篇ACS Chemical Biology的文章,标题为“Generation of Potent and Stable GLP-1 Analogues Via ‘Serine Ligation’ ”,文章的通讯作者是来自美国华盛顿大学的David Baker教授。在这项工作中,作者受“Serine Ligation”方法的启发,介绍了一种具有位点特异性的生物偶联策略。该策略依赖于带有 1-氨基-2-羟基官能团的非天然氨基酸的多肽和水杨醛酯之间的偶联,实现多肽上的化学修饰。具体来说,作者利用这个技术对类似于索马鲁肽 (Semaglutide) 的胰高血糖素样肽-1 (GLP-1) 26位的赖氨酸以及18位的丝氨酸分别修饰,得到了GLP-1类似物G1和G2。结果显示,修饰后的G1和G2在基于细胞的激活试验中比GLP-1更有效,同时能提高其在人血清中的稳定性以及体内葡萄糖处理效率。这种方法展示了“Serine Ligation”在化学生物学中各种应用的潜力,特别是发展稳定的多肽治疗剂(图 1)。图 1 基于“Serine Ligation”的GLP-1位点特异性修饰胰高血糖素样肽-1 (GLP-1) 是一类多肽激素,源自于胰高血糖素原肽的组织特异性翻译后加工,具有通过增强胰岛素分泌从而降低血糖水平的能力。二肽基肽酶 (DPP-4)可以切割GLP-1 N端8位的丙氨酸,因此内源GLP-1的半衰期只有2 min左右。虽然有许多旨在于解决稳定性问题的方法,例如在降解位点引入“不可切割”的氨基酸,但这些方法通常以牺牲稳定性为代价来换取多肽的功能和效力。因此人们对开发既能维持效力,又能稳定多肽治疗剂的新技术产生了很大兴趣。另一方面,多肽和蛋白质的偶联彻底改变了人们对于引入各种官能团来扩展新应用的认识。其中便包括蛋白质组学和高分辨率成像技术。由于多肽或蛋白质中存在多个可反应的活性位点,利用传统的共轭策略,例如N-羟基琥珀酰亚胺 (NHS) 酯,会导致产物的异质性,进而引起分离提纯困难以及生物学活性下降等诸多问题。因而具有位点特异性的新修饰方法亟待开发。作者从“Ser/Thr Ligation”(STL) 中获取灵感,发现该偶联主要发生在C 端的水杨醛酯和 N 端含有丝氨酸或苏氨酸的残基之间。因此,作者通过合成和引入带有1-氨基-2羟基的非天然氨基酸,并将其与水杨醛酯的衍生物偶联,实现了多肽位点特异性的化学修饰(图 2)。图 2 “Serine Ligation”与引入非天然氨基酸的位点特异性生物偶联作者首先评估了该方法的普适性,合成了生物素、花青-3、一种棕榈酸类似物,以及单分散PEG 水杨醛酯。然后将这些探针特定地偶联到带有 1-氨基-2-羟基的非天然氨基酸的模型肽 1 上,生成产物 2-5(图 3)。为了代表性地评估产物的转化率和纯度,作者监测了多肽反应物1和生物素水杨醛之间的反应,发现几乎在30 min后实现了定量转换。图 3 对未保护模型肽的位点特异性修饰之后作者探究如何利用该生物偶联技术增强多肽的稳定性。最常用的方法包括聚乙二醇化和脂化。事实上,两种 GLP-1药物,索马鲁肽和利拉鲁肽都是脂化的,目前用于治疗 2 型糖尿病。基于此,作者利用STL合成了两种GLP-1类似物G1和G2。二者都含有一个类似索马鲁肽的杂合 PEG 和脂肪酸侧链。不同之处在于,G1的修饰在26位的赖氨酸上,与索马鲁肽的修饰位置相同。同时,为了增强稳定性,对G1多肽8号位的丙氨酸也进行了修饰,引入了2-氨基异丁酸 (Aib)。G2的修饰则在18位的丝氨酸上。借助于冷冻电镜,发现18位的丝氨酸在GLP-1与GLP-1受体的结合模型中是溶剂暴露的,因此不会干扰多肽激素的天然功能。在这种条件下,我们可以不对G2的8号位丙氨酸引入修饰,因为18号位丝氨酸引入的脂肪链离N端的距离近,可以保护8号位的丙氨酸不被蛋白水解(图 4)。图 4 GLP-1多肽类似物G1, G2的设计许多生化和结构研究表明GLP-1 内的一个扩展的两亲性 α-螺旋是负责与GLP 受体 (GLP-1R) 的细胞外结构域高亲和力结合的。为了去评估这些外加修饰是否会破坏多肽二级结构,作者使用圆二色谱 (CD) 来表征。相对于显示出特征性螺旋折叠的GLP-1,G1 和 G2 也都显示出螺旋结构;然而,它是低于天然GLP-1的。G1与G2的数据与在索马鲁肽上的脂质修饰相一致,说明了二级结构的丢失是脂质修饰引起的。GLP-1 与 GLP-1R 的内源性结合会导致募集G蛋白的细胞内重排,随后刺激cAMP的产生。cAMP来源于ATP并会导致葡萄糖刺激的胰岛素分泌。为了去评估GLP-1 类似物 G1 和 G2 去激活人源GLP-1R的能力,在过表达人 GLP-1R 的 CHO-K1 细胞中去监测cAMP的积累。细胞最初用天然 的GLP-1 和索马鲁肽进行处理。相比之下,G1 和G2 比未加修饰的GLP-1表现更好,并且与 Semaglutide 大致等效,EC50值为 0.97 ± 0.2 和 0.73 ± 0.2 nM(图 5A)。这些数据表明26位的赖氨酸和18位的丝氨酸的脂质修饰不会对其内源功能造成影响。为了补充体外的药理学分析,作者接下来用反向高效液相色谱 (RP-HPLC) 比较GLP-1类似物G1,G2,天然 GLP-1以及索马鲁肽在人血清中的稳定性。在这个测定中,每种肽在人血清中孵育最多48 小时,取出等分试样并通过 RP-HPLC 分析(图 5B)。相对于天然 GLP-1,G1 显示出显著的稳定性曲线,t1/2 ≈ 40 小时。同时G2也非常稳定,相对于天然 GLP-1 稳定性增幅超过了14倍,几乎与索马鲁肽相似。在得到理想的激活和稳定性数据之后,作者接下来使用标准葡萄糖耐量实验 (GTT) 在动物体内进行测试。更具体地说,在禁食 16 小时后,用 10 nmol/kg 剂量向小鼠注射多肽,其次是 2 g/kg 葡萄糖。血糖水平用血糖仪测量,然后在不同的时间长度之后进行定量(图 5C)。在这种急性 GTT 实验中,G1 和 G2 相比于天然的GLP-1显示出具有统计学意义的血糖控制能力,这与他们的体外数据相一致。这些数据表明脂质化修饰能够在不损害效力的前提下显著增加稳定性,从而改善急性高血糖小鼠模型的体内活性。图 5 脂化对细胞活性,蛋白水解的稳定性以及控制血糖能力的影响为了深入了解 G1 和 G2 是如何与GLP-1R相互作用,作者对相应的配体-受体复合物进行了计算建模。GLP-1R 肽结合模型是基于最近发表的GLP-1R 与未修饰的 GLP-1 复合物的Cryo-EM 结构。索马鲁肽、G1 和 G2 模型与 GLP-1R 的复合物表明脂质化18位的丝氨酸或26位的赖氨酸是溶剂暴露的,可能不会干扰与激活有关的相互结合作用(图 6)。图 6 GLP-1R-Semaglutide、GLP-1R-G1 和 GLP-1R-G2 复合物模型总结来看,作者介绍了一种强大的,基于“Serine Ligation”的位点特异性生物偶联策略。作者应用该方法合成了有效且稳定的GLP-1类似物。该类似物具有一个混合聚乙二醇和脂肪酸侧链,类似于广泛使用的糖尿病药物索马鲁肽。这两种化合物在激活GLP-1R的能力上与索马鲁肽等效;相比于天然的GLP-1,G1,G2在人血清中显示出显著改善的稳定性,并且在小鼠体内的改善血糖能力优于天然的GLP-1。在未来,该方法也显示出构建其他GPCRs稳定且有效的类似物潜力。原文:https://pubs.acs.org/doi/10.1021/acschembio.2c00075
  • 上海药物所等解析糖皮质激素与GPR97和Go蛋白复合物的冷冻电镜结构
    中国科学院上海药物研究所研究员徐华强团队与山东大学教授孙金鹏团队、浙江大学教授张岩团队等首次解析了糖皮质激素与其膜受体GPR97和Go蛋白复合物的冷冻电镜结构,这也是国际上首次解析的黏附类GPCR与配体和G蛋白复合物的高分辨率结构。相关研究成果以Structures of glucocorticoid-bound adhesion receptor GPR97-Go complex为题,于2021年1月6日在线发表在Nature上。  黏附类G蛋白偶联受体(Adhesion G protein-coupled receptors, aGPCRs)是GPCR超家族成员之一,在生物体一些重要的生理过程中发挥关键分子开关的作用,如脑的发育、水盐调节、炎症以及细胞命运决定等。与GPCR超家族其他成员相比,aGPCRs除了具有经典的7次跨膜核心(7TM)外,还具有较长的胞外区域,组成了拥有不同功能的结构域。目前普遍认为aGPCRs可被结合胞外的基质蛋白或可溶性小分子激活,然而,学界尚不清楚小分子配体是否可以直接结合7TM并激活受体。  糖皮质激素对机体的发育、生长、代谢及免疫等功能发挥重要的调节作用,是机体应激反应最重要的调节激素和临床上使用最广泛的抗炎及免疫抑制剂之一。经典理论认为,糖皮质激素通过与糖皮质激素核受体结合,并穿过核孔,在细胞核内发挥调控相关基因表达的作用。该作用方式通常需要较长的反应时间,被称为基因组机制。徐华强课题组分别在2002年和2014年解析了糖皮质激素核受体与地塞米松(Cell, 110: 93-105)和内源性糖皮质激素——氢化可的松(Cell Research, 24: 713–726)的晶体结构,揭示了糖皮质激素识别与功能调控其核受体的机制,推动了糖皮质激素受体靶向药物的开发。此外,糖皮质激素被发现能够快速引起细胞和机体的变化,这提示生物体内可能存在糖皮质激素的膜受体,其能够介导糖皮质激素的快速反应。研究发现,糖皮质激素的快速反应与G蛋白有密切关系,Gi的抑制剂PTX能够抑制糖皮质激素的快速作用,并据此推测GPCR是糖皮质激素的潜在膜受体。孙金鹏和山东大学教授易凡团队等对GPR97进行了受体生理学和内源性配体发现等工作,发现包括糖皮质激素类的氢化可的松、可的松以及11-脱氧皮质醇等在内的内源性类固醇激素均能够激活GPR97,其中,地塞米松具有更强的GPR97激活能力,并最终确认Go是GPR97激活后偶联的G蛋白通路。  在前期工作基础上,合作团队采用单颗粒冷冻电镜技术,分别对外源配体倍氯米松(BCM)以及内源性配体氢化可的松(cortisol)激活GPR97后形成的复合物进行了结构解析,最终分别获得了两个配体激活态的GPR97受体与Go蛋白的复合物结构,分辨率分别为3.1埃和2.9埃(图1a和1b)。  与其他GPCR亚家族成员相比,GPR97的7TM呈现独特的空间分布,其螺旋展现出与其他受体不同的长度。根据传统理论,aGPCR特有的胞外GAIN结构域和7TM在激活GPCR的过程中作为整体发挥其核心功能,然而,研究人员在结构中首次发现糖皮质激素结合在GPR97 7TM核心中的一个椭圆形正构结合口袋(图1c);此外,GPR97还展现出不同于其他A类GPCR成员的独特激活机制。GPR97序列中不含有保守的PIF、DRY和NPxxY等motif,其首先通过toggle switch W6.53识别配体并被激活。激活的受体借助首次发现的upper Quaternary core(UQC)将受体TM3-TM5-TM6捆绑在一起,继而通过HLY motif介导与Go蛋白的结合。受体7TM组成较大的胞内侧G蛋白结合口袋,3个胞内环均参与受体与G蛋白的相互作用,胞内环与受体的组成性激活密切相关;该研究中,研究人员还首次阐述了G蛋白的棕榈酰化修饰在其偶联GPCR中的关键作用。研究首次发现Gαo的α5螺旋C351位点被棕榈酰化修饰(图2),并进一步验证了该修饰在Go与GPR97的偶联中的独特作用。  综上,合作团队首次发现了糖皮质激素的高亲和力膜受体,并通过单颗粒冷冻电镜技术,解析了黏附类GPCR家族中GPR97在糖皮质激素的激活作用下与Go蛋白复合物的结构,从而在近原子分辨率上揭示了糖皮质激素识别并激活膜GPR97,以及受体偶联Go蛋白的分子机制。该成果将对糖皮质激素膜受体功能研究和黏附类GPCR的激活机制理解发挥重要的示范及推动作用。  上海药物所为该研究的第一完成单位。上海药物所与山东大学基础医学院联合培养博士生平玉奇,浙江大学基础医学院博士后毛春友,山东大学基础医学院副教授肖鹏、硕士研究生赵儒嘉,上海药物研究所研究员蒋轶为论文的共同第一作者;孙金鹏、张岩、徐华强为论文的共同通讯作者;易凡和山东大学教授于晓为论文的共同作者。研究工作得到国家基金委、科技部、上海市科委等单位的支持。  论文链接图1.GPR97的冷冻电镜结构图2.Go棕榈酰化修饰
  • 雾化之后,反应提速1000000倍!南开大学张新星团队质谱分析成果登上《JACS》
    微液滴质谱探索自发超快的C-H/N-H氧化偶联反应近日,南开大学张新星研究员在微液滴质谱分析领域取得了又一重要突破,他们在室温下将一系列反应底物的水溶液喷雾成微液滴,生成了一系列的C-H/N-H氧化偶联产物,这些产物以自发和超快的方式惊人地产生。与相同的体相反应相比,反应速度加快了6个数量级。基于关键自由基中间体的质谱分析,他们认为微液滴表面存在的超高电场(~109 V/m)通过氧化夺取底物的一个电子,促进了C-N偶联反应的发生。该工作预示着微液滴化学在构建C-杂原子键的良好绿色前景。C-N键的构建是有机化学中最重要的反应之一,它促进了多种天然产物、农用化学品和药物的模块化合成。传统的C-N键形成方法涉及芳基卤化物或硼酸的胺化,包括著名的钯催化的Buchwald-Hartwig芳胺化反应、铜催化的Chan-Evans-Lam偶联反应及Ullmann型C/N偶联反应。而氧化C-H/N-H偶联近年来发展成为一种有前途的新方法,它避免了底物的预功能化。然而,触发反应需要强氧化剂或高温条件,阻碍了脆弱官能团进入底物,并可能引发不必要的副反应。因此,在温和条件下的光诱导和电化学氧化C-H/N-H偶联受到越来越多的关注,显著地提高了底物的多样性。从机理上讲,这些反应是通过电化学或光催化从反应底物上夺取一个电子,生成相应的阳离子自由基,并进一步发生C-N偶联反应。在本工作中,仅仅使用底物,不需要过渡金属催化剂、强氧化剂、高温、有机溶剂、光和电化学电池等条件,在水喷雾生成的微液滴中,就实现了氧化C-H/N-H偶联。近年来,水微液滴化学成为一个令人兴奋的领域,因为许多原本在水溶液中难以进行的化学反应,通过微液滴可以自发发生,甚至可以被加速到原来的一百万倍。该方法已成功地用于加速许多不同的有机反应。微液滴的一系列独特性质,如极端pH条件、部分溶剂化、试剂的富集和排列、超高电场等被认为是反应加速的原因,其中最有趣的性质是在微液滴表面自发形成的超高电场(~10 9 V/m)。该电场甚至可以撕裂水中的OH -,在微液滴中产生电子和• OH, 由此产生的电子和• OH可以进一步引发还原和氧化反应,这看似完全矛盾的两个性质居然同时存在,使得微液滴成为了“神奇的矛盾统一体”。由于氧化C-H/N-H偶联的关键步骤是通过氧化底物去除一个电子,本研究的主要策略是利用微液滴在气液界面的超高电场从底物中夺取电子,产生底物的阳离子自由基。底物多为具有扩展π共轭体系的芳香化合物,因此它们的氧化电位应该低于OH -。改工作采用鞘气喷雾的方式产生水微液滴,在质谱中直接观测到了N,N-二甲基苯胺的阳离子自由基(DMA • +)、吩噁嗪的阳离子自由基(POA • +),以及C-N偶联产物的质谱(图1)。图1. 水微液滴中DMA和POA自发进行的C-N偶联反应的质谱分析。图2. 微液滴促进的五种自发的氧化C-H/N-H交叉偶联反应。此外,本工作还研究了其他四种氧化C-H/N-H偶联体系。这些反应主要发生在DMA与吩噻嗪(PTA)、DMA与4,4' -二甲基二苯胺(DTA)、4-甲氧基苯酚(MOP)与POA、MOP与PTA之间。研究结果表明,这五种不同的反应在微液滴中都是自发的,并且都是超快的。图3 . (a) DMA与POA之间自发的自由基/自由基偶联反应;(b) MOP与POA之间自发的分子/自由基偶联反应。红框表示的物种是在质谱中观察到的。以DMA和POA之间的反应作为自由基/自由基偶联的例子(图3a),以MOP和POA之间的反应作为分子/自由基偶联的例子(图3b)来讨论这些产物的形成机理和动力学。反应的第一步是通过微液滴表面的高电场从底物上去除一个电子。接下来,POA • +(4)被脱质子,形成化合物(5),该化合物在电场中也会失去一个电子,在 m/z 182处形成一个 (POA-H) +的小峰,即POA的乃春(6)。然后,(3)和(5)发生自由基/自由基交叉偶联构成C-N键,形成质荷比为 m/z 303的产物(7),比最终产物多一个质子。随后(7)脱质子产生了不带电的产物(8),由于产物(8)仍然暴露在微液滴上的电场中,在 m/z 302处也可以看到它的阳离子自由基(9)。(6)也可以与(3)直接反应生成(9)。所有支持这一机制的关键自由基和中间体都可以在质谱中观察到。中性MOP分子和POA • +形成C-N键的机理步骤是分子/自由基偶联(图3b)。自由基/自由基偶联和分子/自由基偶联之间的另一个细微差别是形成质谱可观测的带电的(Product+H) +物种(7)或形成质谱不可观测的中性的Product+H物种(11)。在涉及MOP反应的质谱图中,(Product+H) +的峰几乎可以忽略不计,这表明MOP形成C-N键的关键步骤确实是分子/自由基偶联,产生中性物质。图3b中的其他步骤与图3a中的类似。该文章发表在Journal of the American Chemical Society上,本文的第一作者是南开大学的博士研究生张冬梅。
  • 倒计时两周!BPC闪耀8月金陵,重燃大小分子创新药物研发!
    BPC 2022 第八届创新药系列专题会议将于2022年8月9-10日在南京全新亮相。大会分设4大专场,从创新抗体药物(新靶点/ADC/双多抗/… )和小分子创新药物(PROTAC/AI/CMC/IND/NDA… )两大维度出发,特邀100+创新药研发领军企业、科研学者、法规监管专家与科学家深入新药“源头”进行分享,以临床价值为目标,探索“大小分子”多线发展策略。大会结构粉丝福利本媒体作为BPC 2022第八届创新药系列专题会议的官方合作媒体,为粉丝申请到10张免费参会票,扫描下方二维码领取,数量有限,先到先得。* 该门票为BioCon-Antiboby和PharmaCon两会入场券,仅限药企/科研院校/政府研究机构使用,不含会议资料和自助午餐。详情欢迎咨询:17721120767 (同微信)。大会议程创新偶联药物专场——ADCs/XDCs药物R&D与CMC开发 8月9日(Day1)差异化立项之“三元件与五要素” • 靶点/适应症与抗体部分及偶联方法9:00-9:30 PI视角:ADC药物针对消化道肿瘤未满足临床需求的开发可能与进展(拟)束永前,江苏省人民医院肿瘤中心主任、南京医科大学第一/二附院肿瘤中心主任、苏州市立医院肿瘤中心主任9:30-10:00糖链定点ADC:小分子“hide inside”策略与优势黄蔚,中国科学院上海药物研究所研究员10:00-10:30ADC药物中更优抗体的属性研究谭淼,科伦博泰大分子研发 VP10:30-11:00茶歇与交流11:00-11:30 非天然氨基酸技术定点偶联优化设计ADC的稳定性与有效性张韶辉,Ambrx研发运营执行副总裁兼中国区总经理(Online)11:30-12:15 圆桌讨论:机遇与挑战并存, 如何提高生物导弹ADC药物临床转化与开发的成功率?1.有效性挑战-耐药 2. 适应症选择 3. 风险隐患决策点 主持人:夏钢,浙江医药CSO谭淼,科伦博泰大分子研发VP赵永新,多禧生物董事长曹国庆, 明慧医药创始人、董事长&CEO12:15-13:30 午餐与交流13:30-14:00 创新全人双抗设计/筛选及双靶点ADC新药开发案例杨勇飞,百奥赛图(北京)医药科技股份有限公司,抗体新药研究院总监• Linker及Payload 14:00-14:30 DS-8201后时代ADC技术平台的设计与发展思路花海清,映恩生物研发副总裁14:30-15:00 基于体内活性、旁观者效应和安全性的新一代ADC亲水性Linker研究开发刘海东,普方生物药化部高级总监15:00-15:30茶歇与交流15:30-16:00 创新 Linker 设计及 ADC 药物开发与临床前药效研究案例周清,上海诗健生物科技有限公司创始人兼CEO16:00-16:30 第四代抗体偶联药物的结构特点和未来展望蔡家强,苏州宜联生物CSO16:30-17:15 圆桌讨论:差异化的偶联药物开发中“三部件”如何突破与创新?主持人:周清,诗健生物创始人&CEO李虎,乐普生物副总裁兼上海美雅珂副总裁秦刚,启德医药科技(苏州)有限公司董事长/总裁刘东舟,华东医药CSO兼创新药研发中心总经理蔡家强,苏州宜联生物 CSO创新偶联药物专场——ADCs/XDCs药物R&D与CMC开发 8月10日(Day2)从1到N之复杂结构研发与CMC开发策略• 创新开发到CMC工艺与质量 9:00-9:30 加强审评检查分中心建设,推进生物医药产业创新发展李冉,国家药品监督管理局药品审评检查长三角分中心综合业务部临时负责人9:30-10:00 ADC药物开发中参数分析与CMC策略魏紫萍,百力司康生物医药(杭州)有限公司共同创始人、董事长和首席执行官10:00-10:30 PAT新技术在冻干工艺开发与生产中的应用刘祥运,德祥科技产品经理10:30-11:00 茶歇与交流11:00-11:30 偶联药物中涉及偶联部分的CMC问题与探索杨金纬,浙江新码生物化学总监 11:30-12:15 圆桌讨论:ADC及XDC药物开发从Discovery到成药性/CMC的挑战与考量要素主持人:魏紫萍,百力司康生物医药(杭州)有限公司共同创始人、董事长和首席执行官赵永浩,江苏康宁杰瑞研发总监伍维思,无锡诺宇医药科技有限公司首席技术官刘树民,康源久远CEO12:15-13:30 午餐与交流• 其他偶联药物开发 13:30-14:00 抗体偶联药物的创新与未来冯振卿,南京医科大学教授、博士生导师;国家卫生健康委员会抗体技术重点实验室主任14:00-14:30 基于肿瘤研发策略与机制研究的双抗ADC开发案例赵永浩,江苏康宁杰瑞研发总监14:30-15:00 RDC药物在肿瘤的精准靶向治疗及诊疗一体化中的应用伍维思,无锡诺宇医药科技有限公司首席技术官15:00-15:30 茶歇与交流15:30-16:00 全球首创的PEG-BsADC技术及最新临床前数据刘树民,康源久远CEO16:00-16:30 创新其他偶联药物的设计与开发确认中创新抗体药物专场——靶点、双/多特异性/功能抗体药物早期研发与成药性/可开发性8月9日(Day1)下一步开发之抗体工程/分子设计与更优成药性/可开发性 • 双/多特异性/功能抗体 9:00-9:30抗体工程改造平台构建及创新双特异性抗体开发应天雷,复旦大学基础医学院上海合成免疫工程技术研究中心主任9:30-10:00 T cell engager &免疫治疗抗体技术平台:双抗更优成药探索陈汉阳,天劢源和研发副总裁10:00-10:30 纳米抗体开发技术及应用案例分析许龙,上海百英生物科技有限公司研发总监10:30-11:00 茶歇与交流11:00-11:30 抗PD-L1/TIGIT双特异性抗体创新开发设计与药效优化朱向阳,华奥泰生物CEO11:30-12:15 圆桌讨论:差异化创新单抗、双/多抗药物,如何创新? 分子设计/结构优化 靶点选择/组合逻辑 适应症选择 biology挑战:MOA研究主持人:朱祯平,博士朱向阳,华奥泰生物CEO黄岩山,浙江道尔生物科技有限公司创始人、CEO赵晓峰,先声药业研发高级总监12:15-13:30 午餐与交流13:30-14:00 抗体药物的重新设计和“老药新用”马步勇,上海交通大学药学院教授14:00-14:30 下一代T细胞导向双特异性抗体开发及细胞因子风暴与改进安全性研究Christian Klein,罗氏瑞士研发中心负责人(online)14:30-15:00 新型生物药免疫原性方法建立的关键考量以及案例分享祝永琴,熙宁生物高级技术总监15:00-15:30 茶歇与交流15:30-16:00 IL-15/IL-15R与双抗融合构建创新三抗分子与开发设计屈向东,启愈生物技术(上海)有限公司创始人、董事长、总经理16:00-16:30 CD3/CD19/CD20 T细胞介导三抗的设计与开发张洁,恩沐生物联合创始人兼COO16:30-17:00 肿瘤“靶向免疫”治疗的免疫学与多抗GNC药物研发朱义,百利药业董事长&CSO创新抗体药物专场——靶点、双/多特异性/功能抗体药物早期研发与成药性/可开发性8月10日(Day2)拒绝“内卷”之通路/靶点发现与组合策略/生物学/机制与早期研发• 差异化靶点/靶点组合/通路研究/适应症开拓8:30-9:00 单细胞技术发现结直肠肿瘤靶点研究苏冰,上海市免疫学研究所所长9:00-9:30PD-L1×TGF-βRII双抗的肿瘤微环境机制研究与转化医学廖成,恒瑞医药副总经理9:30-10:00 PKPD模型如何助力提升创新抗体药临床研究的效率邵凤,江苏省人民医院国家药物临床试验机构办副主任10:00-10:30 后PD-1时代: 抗体药物的开发策略和新靶点凌虹,维立志博SVP/CSO10:30-11:00茶歇与交流11:00-11:30 新型癌症免疫治疗Treg-Teff调节剂——TNFR2抗体激动剂和拮抗剂 殷刘松,盛禾(中国)生物制药有限公司执行总裁兼首席科学官 11:30-12:00 创新药临床转化现状与发展趋势郑晓南,中国生物医药产业链创新与转化联盟常务副理事长兼秘书长12:00-13:30 午餐与交流13:30-14:00 基于免疫学研究的药物开发:IL-2的生物学和治疗前景陈波,齐鲁制药集团创新药物研究院副院长兼免疫炎症部负责人14:00-14:30 靶向肿瘤新生抗原的新型生物技术药物潘利强,浙江大学药学院院长助理、百人计划研究员、浙大一院兼聘教授14:30-15:00 抗体药物优化设计及非肿瘤适应症开拓(拟)刘恒,天辰生物医药(苏州)有限公司总经理15:00-15:30 茶歇与交流15:30-16:00 PD-1/ILT4双特异抗体的作用机制及开发策略陈明久,博奥信生物技术(南京)有限公司总裁16:00-16:30 高抗肿瘤活性与安全性的CLDN18.2x4-1BB双特异性抗体开发罗羿,普米斯生物技术新药生物学总监小分子创新药发现与创新论坛 8月9日(Day1)靶向不可成药——研发具有竞争壁垒的小分子创新药• 靶向蛋白降解与PROTAC9:00-9:30 PROTAC在激酶非催化功能发现和调控中的应用丁克,中科院上海有机所/暨南大学教授9:30-10:00基于蛋白稳态调控的新药发现董晓武,浙江大学药学系副主任,浙江大学创新药物研究中心副主任10:00-10:30自动化高通量筛选助力快速找到新药进入IND刘旸,贝克曼库特 Application Manager10:30-11:00茶歇与交流11:00-11:40基于临床价值的创新药药理毒理研究关注点程鲁榕,CDE 前药理毒理审评专家11:40-12:10冷冻电镜结构解析指导PROTAC向分子胶的演化颜晓东,佰翱得副总裁12:10-13:30午餐与交流13:30-14:00靶向自噬-溶酶体降解“不可成药”靶点的分子机制丁澦,复旦大学生命科学学院教授• AIDD/CADD/SBDD/FBDD/DEL等前沿技术制药14:00-14:30分子伴侣介导的蛋白降解平台 (CHAMPTM)助力小分子新药发现叶龙,珃诺生物医药科技(杭州)有限公司新药开发(CMC),执行总监14:30-15:00 FBDD及DEL平台助力First-in-Class 新药发现李翔,保诺-桑迪亚,药物发现总裁15:00-15:30 茶歇与交流15:30-16:00基于AI for Science新范式的药物研发新工具与新流程范梦奇,深势科技生物医药事业群副总裁16:00-16:30PROTAC Nano-SPUD药物研发平台和进展概述冯焱,领泰生物创始人、总经理16:30-17:00AI赋能药物研发案例分享任峰,英矽智能联合首席执行官兼首席科学官17:00-17:45圆桌讨论:1.应对PROTAC药物成药性挑战,我们有哪些应对策略?2.我们准备好了吗?新兴跨界技术赋能新药发现中的挑战与落地思考 任峰,英矽智能联合首席执行官兼首席科学官党群,真实生物总裁夏明德,英诺湖医药创始人、董事长和首席执行官申华琼,纽欧申医药创始人、首席执行官戴晗,维亚生物创新中心负责人 小分子创新药发现与创新论坛 8月10日(Day 2)基于临床需求的差异化药物发现 • 肿瘤药物发现与创新-对于疾病的深入理解8:30-9:00抗肿瘤免疫治疗小分子药物研究张翱,上海交通大学药学院院长9:00-9:30选择性Axl激酶抑制剂FC084的研发习宁,北京范恩柯尔生物科技有限公司创始人、CEO9:30-10:00靶向恶性实体瘤的小分子靶向偶联新药研发段建新,艾欣达伟医药董事长10:00-10:30话题待定10:30-11:00茶歇与交流11:00-11:30新一代EP4受体小分子拮抗剂YY001的临床前开发周文波,上海宇耀生物科技有限公司CEO11:30-12:00CAS SciFinder Discovery Platform助力创新药发现与创新程小燕,CAS 解决方案专家12:00-12:45圆桌讨论:小分子药物在抗肿瘤领域的机遇与挑战——差异化药物的靶点选择与立项思考主持人:华烨,烨辉医药科技有限公司创始人/CEO张劲涛,捷思英达董事长兼CEO段建新,艾欣达伟医药董事长胡邵京,思康睿奇(上海)药业有限公司创始人、董事长兼CEO12:45-13:30午餐与交流13:30-14:00中国创新药及出海临床试验三期临床开发策略与研究进展徐英霖,徐诺药业董事长兼首席执行官• 非肿瘤药物发现与创新(抗感染、CNS、慢病等)-对于疾病的深入理解14:00-14:30创新药发现:从靶标结构到临床药物徐华强,凯思凯迪创始人及董事长,中科院受体结构与功能重点实验室创始主任14:30-15:00 RORγt小分子药物的发现与临床前研究王永辉,上海辉启生物医药科技有限公司创始人、董事长15:00-15:30茶歇与交流15:30-16:00针对慢性乙肝治愈的创新疗法和解决方案唐国志,维申医药联合创始人、CEO16:00-16:30帕金森靶点验证与小分子新药发现周显波,中泽医药CEO16:30-17:00抗乙肝病毒活性天然小分子作用机制及1类新药研发许敏,昆明理工大学生命科学与技术学院,教授,博士生导师 小分子创新药CMC申报与开发专场8月9日(Day1)冲刺最后一公里——CMC申报与上市9:00-9:10开幕致辞潘广成,中国化学制药工业协会执行会长 • 差异化靶点/靶点组合/通路研究/适应症开拓9:10-9:50对创新药(化学药)临床试验期间药学变更技术要求的相关解读李眉,原CDE化学药品及生物制品室室主任兼化药组组长9:50-10:20高活性药物从早期开发到商业化生产的控制策略王新峰,赛默飞Patheon™ 制药服务部全球SME10:20-10:50茶歇与交流10:50-11:30案例浅析:化学新药研发中基于科学的各学科间相互协调及设计李三鸣,沈阳药科大学教授11:30-12:00小分子药物基因杂质研究策略马建国,维亚生物高级副总裁、浙江朗华制药有限公司总裁12:00-13:30午餐与交流• IND/NDA申报策略与实践13:30-14:10小分子创新药评价,处方开发及IND法规要求探讨王志宣,赛诺菲中国研发中心,CMC商务&外部合作总监14:10-14:40新药研发中的关键晶型问题陈岑,苏州晶云药物科技股份有限公司/全球商务负责人14:40-15:20美国药典药用辅料中有机杂质的控制策略介绍袁耀佐,江苏省食药检院检验技术研究室主任15:20-15:50茶歇与交流15:50-16:30基因毒杂质的挑战和控制策略郑枫,中国药科大学药物分析系教授/博士研究生导师16:30-17:10中国电子递交元年——eCTD法规解读以及准备思路的分享阙兆麟,辉瑞(中国)研究开发有限公司,药品注册文件出版团队经理17:10-17:55圆桌讨论:1. 面对各种大小变更,我们该如何尽可能减少变更、符合监管要求与平衡成本最优?2. 我们该如何以最少的工作量与成本合理设计与布局,以满足NDA申报核查要求?李敏,华海药业副总裁、上海华汇拓医药科技董事长滕尚军,亚盛医药化学开发与生产副总裁王志宣,赛诺菲中国研发中心,CMC商务&外部合作总监张津州,再鼎医药高级总监 小分子创新药CMC申报与开发专场8月10日(Day2)小分子创新药CMC申报与开发专场• 创新药物质量分析与开发8:30-9:10 话题待定李文捷,药捷安康CMC副总裁(确认中)9:10-9:50“以病人为中心”的药品质量风险控制杨劲,中国药科大学药代中心教授9:50-10:20 欧美儿科药物开发法规和指导原则解读毕明达,维亚生物副总裁10:20-10:50 茶歇与交流10:50-11:30 美国药典分析方法生命周期通则1220解析刘捷,美国药典委员会中华区总部科学事务部副总监11:30-12:10 临床期间/preNDA药学工艺变更的申报要求与桥接试验策略(拟)郭振荣,美迪西药学研究板块执行副总裁12:10-13:30 午餐与交流• 化学药高端制剂摸索优化、工艺开发与质量分析13:30-14:10 新型治疗实体的药物递送:挑战与机遇陈霖,Bayer研发总监14:10-14:50 制剂工艺验证中的过程控制和关键工艺参数的确认吴正红,中国药科大学药学实验中心副主任、教授14:50-15:20 茶歇与交流15:20-16:00 3D打印药物制剂开发与CMC质控策略左翔昊,三迭纪研发副总监16:00-16:40 研发创新体系突破技术难点疑点江新安,产品创新与研发管理专家、项目管理专家 *截止更新于7月26日12时,以大会现场为准扫描下方二维码咨询参会/议程/合作事宜详情咨询:180 1793 9885/177 2112 0767欢迎联系组委会咨询电话:180 1793 9885参会电话:177 2112 0767邮箱:marketing@bmapglobal.com 网址:www.bmapglobal.com/bpc2022
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制