当前位置: 仪器信息网 > 行业主题 > >

欧标委

仪器信息网欧标委专题为您整合欧标委相关的最新文章,在欧标委专题,您不仅可以免费浏览欧标委的资讯, 同时您还可以浏览欧标委的相关资料、解决方案,参与社区欧标委话题讨论。

欧标委相关的资讯

  • 欧标委出台玩具新标准
    欧盟全体成员国将自2013年7月20日起实施严格的玩具中化学物质新限制。多年来,欧盟根据旧有玩具安全指令88/378/EEC监管玩具中的化学物质,但自采纳第2009/48/EC号指令后,针对多种重金属及化学物质的新增上限及管制已陆续生效。   从2013年7月20日起,但凡在欧盟市场出售的玩具,必须符合玩具安全新指令(第2009/48/EC号指令)附件二第三部分的新化学物质规定。新规定对多种物质实施管制,包括铝、硼、六价铬、钴、铜、锰、镍、锶、锡、有机锡及锌。   欧洲标准委员会(CEN)负责制订一套涵盖规定及检测方法的新标准,以便业者遵守化学物质限制。这套新欧洲标准名为「玩具安全—第三部分:若干元素的迁移」(Safety of toys – Part 3: Migration of certain elements) ,已于2013年6月出台,将取代第EN 71-3:1994号标准。业者可向欧洲标准委员会的成员国机构购买新标准文本。   欧盟成员国须于2013年12月前,以刊登相同文本或认可的方式,采纳上述欧洲标准为国家标准。若国家原有标准与新欧洲标准互相抵触,该成员国须于2013年12月前撤销原有国家标准。   第2009/48/EC号指令列明3类玩具物料的最高迁移限值,分别是:   第一类:干、粉状或柔软的玩具物料。例子有颜色笔笔芯、粉笔、蜡笔、胶泥等。   第二类:液体或黏性玩具物料。例子有手指油彩、清漆、笔具墨水、泡泡溶液等。   第三类:可被刮掉的玩具物料。例子有油彩及清漆涂层、纸板、纺织品、玻璃、陶瓷及金属物料、木、皮革等。   假如玩具或玩具部件由于某些原因,包括可接触性、功能、体积或质量,在正常或可预见的使用情况下显然不会因为被吸啜、舔、吞咽或长期接触皮肤而构成风险,将不受新标准的规定约束。下列是被视为很有可能被吸啜、舔或吞咽的玩具及玩具部件:   ●所有拟供儿童置于口内或接触口部的玩具、化妆品玩具、归入玩具类别的书写工具   ●拟供年龄最大至6岁儿童使用的玩具中,所有触摸得到的零部件。   有害化学物质(元素)的迁移限值以每公斤多少毫克计算,详情载于新标准附表2。业者须按照新标准第7条及第8条的规定,检测玩具所含化学物质的迁移状况,迁移值不得超过附表2列出的上限。第7条详述抽样及准备样本的要求,第8条说明分析方法,第9条说明如何计算结果。   玩具生产商可向欧洲标准委员会的成员国机构购买新标准EN 71-3的文本。这些机构的联络资料载于以下网址:   http://www.cen.eu/cen/Members/Pages/default.aspx   【原标题】欧洲标准委员会出台玩具安全新标准以配合2013年7月20日起实施的玩具安全新指令中化学物质限制要求
  • 欧盟委员会修订营养声明列表的法规
    近日,欧盟向WTO秘书处通报了“修订营养声明列表的法规”(G/TBT/N/EU/1)。   欧盟委员会法规草案修订2006年12月20日欧洲议会和理事会关于食品营养健康声明法规(EC)No1924/2006许可的营养声明的使用条件,并增加两种附加营养声明:“未添加钠/盐”和“产品所含营养成分[能量、钠/盐、脂肪、饱和脂肪或糖]降低X%”,其中X15。   该通报法规的拟批准日期:2012年2月末   拟生效日期:在欧盟官方公报上公布之后20天(大约批准之后1个月)。法规生效18个月之前上市的产品可以销售至库存售完。
  • 新闻速递丨欧波同赞助全国钢标委金相检验方法分委会2017年年会
    全国钢标委金相检验方法分委会2017年年会于10月31日在四川省攀枝花市召开。此次会议由北京金属学会承办,攀钢集团研究院协办,来自全国各地的钢铁企业委员参与了此次会议。会议主旨是对2016年金相检验方法分委会总结、讨论2017年金相检验方法分委会工作计划及多项钢铁检测方法进行了审定及宣贯。欧波同作为钢铁显微分析系统解决方案服务商也受邀赞助并参与了此次会议。会议现场 会议首先由首钢总公司首钢技术研究院鞠新华老师做了会议讲话,会议委员介绍环节,欧波同有限公司副总经理张国滨先生做现场发言。张总提出:“作为实验室系统分析解决方案的供应商,欧波同在钢铁领域高端显微检测设备市场的占有率一直独占鳌头,但我们的用户群越多,我们的责任也越大,深耕钢铁用户需求,不断提升产品与服务将是我们今后发展持续追求的目标。”欧波同(中国)有限公司副总经理张国滨先生发言 会议报告环节,欧波同产品经理管玉鑫做了题为“欧波同钢铁行业显微分析解决方案”的主题报告。欧波同(中国)有限公司产品经理管玉鑫先生报告张国滨先生与委员进行交流 近几年,在严峻的去能形势之下,提升钢材质量和生产高附加值精品钢将作为各大钢厂突出重围的有效手段,而冶金工艺控制和严格的质量检测体系将作为提升钢材质量的重要保证,也引起钢铁企业高层的高度重视。多年来欧波同不仅以提供世界领先的产品及售后服务为基础,更着眼于全方位系统解决方案的研发与技术服务的提升,陆续推出了全自动夹杂物分析系统、矿物分析系统等钢铁领域分析测试解决方案,并且依托巨资打造的“欧波同材料分析研究中心”,专注于钢铁的失效分析、钢中夹杂物、矿物分析的检测。经过多年发展,欧波同已经成为钢铁领域质量控制及研发全系统解决方案的优质供应商。未来,我们还将不遗余力地继续加大研发与技术服务的投入,为钢铁用户提供更加优质的产品与服务!
  • 欧波同参加全国钢标委《钢中非金属夹杂物的评定和统计 扫描电镜法》宣贯会
    2018年1月18-19日欧波同应邀参加了全国钢标委主办的《钢中非金属夹杂物的评定和统计 扫描电镜法》宣贯会,为与会者做了分享报告并参与标准宣贯会交流与讨论。随着国内钢铁冶炼技术的进步和高品质钢研发水平的不断提高,对钢中非金属夹杂物的控制越来越严,从而对非金属夹杂物的分析也提出了越来越高的要求。越来越多的非金属夹杂物的评价和表征要求在扫描电镜下进行统计分析。GB/T30834-2014《钢中非金属夹杂物的评定和统计 扫描电镜法》在2014年6月24日发布,2015年4月1日实施。该标准自实施以来,钢中非金属夹杂物的扫描电镜统计技术应用越来越广。本次会议的召开为大家深入解读了GB/T 30834《钢中非金属夹杂物的评定和统计扫描电镜法》标准,对样品制备、数据采集及数据处理做了全面系统的讲授和培训,并结合扫描电镜和能谱仪系统进行了实操培训和上机练习。全自动钢中非金属夹杂物分析系统——最准确、最快速的钢中非金属夹杂物自动分析系统非金属夹杂物尤其是大颗粒夹杂物对高品质钢性能危害极大,冶金工作者为了尽可能的将其去除,必须首先对钢样中非金属夹杂物的组成、形貌、尺寸、数量及分布等进行准确快速的表征,目前采用的传统光学显微检验方法因不能对夹杂物的化学成分进行分析,仅依靠其形貌辨别,因此夹杂物检测评级的结果受人为因素影响较大,结果的可重现性较低。全自动钢中非金属夹杂物分析系统是一套由蔡司扫描电子显微镜、大面积X射线能谱仪及相关夹杂物自动分析软件组成的综合性分析系统。该系统不仅具有完备的电子光学成像系统,能对钢中非金属夹杂物的微观形貌进行清晰观察,而且配有业界领先的大面积X射线能谱仪,自动对试样选定区域内所有钢中非金属夹杂物的化学成分进行快速准确分析。该产品的高性能、高精度以及高稳定性能已得到全世界广大用户的信赖与认可。系统功能介绍 能够自动对大面积钢样中非金属夹杂物颗粒的成分、尺寸、数量和分布进行快速准确的分析,并可精确检测尺寸为亚微米级的夹杂物和析出物。 直观显示自动检测到的所有夹杂物的微观形貌和其化学组成;并能精确确定每个夹杂物的尺寸及位置分布。 能够根据夹杂物的尺寸、化学成分和位置分布等信息对试样中的所有夹杂物进行分类统计。 能够对复合夹杂物中的各种相进行精确辨别,对该夹杂物用SmartMap进行物相分析。 可根据各类夹杂物评级标准的要求,结合夹杂物自动检测结果出具详细的评级报告。案例说明钢帘线夹杂物分析 Steel Tire Cord Analysis使用此系统分析面积相等的两个样品,A和B。共计2830个夹杂物被检出和测量。经过数据处理后将钢夹杂物组成使用三元图来表示。样品A和B的相图绘制如下,相图细分为三个区域。其中绘制于相图中的粉红色区域C区为富含Al2O3的夹杂物。该类夹杂物通常会在材料服役过程中引起断裂和失效。并且通过比较两个样品中C区颗粒数量发现,样品B的颗粒数量有所减少。如表1所示。但引起材料长时间服役失效的不仅与夹杂物类型有关,也与其夹杂物尺寸的分布有密切的关系。这个数据很容易显示,且能轻松导出到至Excel表格中,用于额外的数据处理。表2显示了两个样品中夹杂物的粒度分布。样品B的夹杂物数量虽有减少,但是大于5μm的颗粒数量却大于样品A的。
  • 标乐欧洲技术经理Mike Keeble亚洲巡讲中国站落下帷幕
    2012年11月16日,长春汽车材料研究所,标乐欧洲技术经理Mike Keeble先生的亚洲巡讲中国站的最后一次讲座正在举行。与会人员比报名人员多出几十人,场面十分热烈,主办方不断为到场晚的人临时加座。在会间休息及会后,很多人走到Mike Keeble先生身边,讨论讲座中的技术要点,询问工作中遇到的技术问题。长春是Mike Keeble先生中国巡讲的最后一站,之前他已经在成都的四川大学和武汉的华中科技大学举办了两场讲座,受到业界的一致好评。 Mike Keeble是英国威尔士大学材料科学与工程专业的博士。曾在英国国防部的评估和研究机构的先进金属材料部担任研究员。致力于航空材料的耐疲劳损伤性研究。现在他是标乐欧洲的技术经理,提供金相和分析技术的支持和培训。他在沃里克大学的沃里克制造业协会为各种研究活动提供专家指导。他在超过20家的大学和科研院所进行技术讲座和培训,其中包括英国皇家显微学会和金属表面处理研究所。 在进入中国16年的时间里,标乐的材料制备设备和耗材已经被中国诸多制造工厂、质量检验实验室、研究院所和大学采购,用来对材料进行检测、失效分析,以及基础材料的研究工作。越来越多的工程师发现,制备出完美的材料试样是几乎所有检测或实验的基础,所以他们也迫切想了解学习先进的材料制备方法和技术。最为全球领先的材料制备设备厂商,标乐致力于材料试样制备和分析技术的研究工作。标乐在美国和欧洲的研究部门定期出版关于材料试样制备和分析技术的技术评论,并通过技术讲座、探讨会、培训班等形式,将最新研究成果传递给客户。
  • 欧盟委员会发布SVHC物质筛选计划表
    欧委会于2013年2月5日发布了从现在到2020年的高关注度物质(SVHC)筛选计划表,表达了在2020年年底前将欧盟境内所有已知的应该属于SVHC的物质都纳入欧盟REACH法规附件XIV候选清单的意向。   实现计划表上的目标就意味着到2020年有大量的物质信息需要被分析,不仅包括已知的SVHC相关物质,还包括在REACH注册和评估过程中可能出现的新的SVHC物质。针对这一现状,欧委会希望能确定一种程序对以下几种SVHC来源物质进行评估和筛选:   第1类和第2类致癌,致畸和具有生殖毒性的物质,即CMR1类和2类物质   持久性、生物累积性和毒性的物质,即PBT物质   高持久性、高生物累积性的物质,即 vPvB物质   具有内分泌干扰特性,或具持久性、生物累积性和毒性,或具高持久性、高生物累积性但不符合2、3两项标准,同时有科学证据证明对人类或环境引起严重影响的物质,即同等关注物质。   在计划表中,就有针对上述物质如何进行检查的详细描述。 欧委会认为实现计划表上的目标需要欧委会、ECHA与所有成员国之间的合作,而欧盟成员国执法当局也表达了参与合作一起实现目标的意愿。由于ECHA和成员国都有足够的资源独立开展相关工作,因此就需要参与方就如何共享工作成果制定相关协议,因此,计划表建议参与方在各种会议如风险管理专家(RIME)小组会议及REACH和CLP执法当局会议(CARACAL)上交流定期进度报告。   虽然计划表并没有明确到2020年有多少物质需要被列入候选清单上,但欧委会希望SVHCs的提名工作能顺利进行从而确保2020年的目标。计划表也对2020年可能会被判定为SVHC的物质做出了预估,以助各方合理的制定计划和分配资源。一个最坏的预估是从2013年到2020年将有约440个物质需要进行评估并判定是否要纳入候选清单,也即每年有约55个物质要被评估。计划表最初的计划是到2014年底对80个物质进行评估,因而对于更多的评估目标,各方就需要开展更多的工作付出更多的努力。
  • 欧委会发表降低2009/48/EC中玩具铅含量限值征求意见
    近日,欧盟委员会发表修订2009/48/EC中铅含量的限值的征求意见稿,征求时间为2012年2月13日~5月7日止。   2009/48/EC对玩具中重金属铅的迁移量做了严格规定。该限制是基于儿童每日可接受的化学物质暴露的摄入量(TDI)的最大水平。然而,儿童接触暴露的铅并不只是通过玩具,还有其他一些渠道 故而铅限制中的部分限值仅能试用于玩具,其他则不然。如此将铅限值(除造型粘土、指画颜料外)分为三个不同的区域。   随着新的科学实验数据的提出,为了确保儿童得到更为适当的保护,欧委会拟修改铅限值。欧洲食品安全局EFSA曾经建议减少食品和非食品产品中的铅暴露,EFSA指出,小剂量的铅摄入都可能对儿童的健康产生严重的影响。   意见稿的主要内容有: 元素 在干燥、粉末状或柔软的玩具材料中mg/kg 在液态或粘稠的玩具材料中mg/kg 在玩具表面涂层刮出物中mg/kg 2009/48/EC 铅Pb 13.5 3.4 160 建议修订 铅Pb 4 1 47 2.降低除造型粘土、指画颜料的所有玩具产品的铅限值:考虑到若造型粘土和指画颜料也执行该限值,则其无法在市场销售;故此建议造型粘土和指画颜料的限值保持不变。 元素 锑Sb 砷As 钡Ba 镉Cd 铬Cr 铅Pb 汞Hg 硒Se 造型粘土、指画mg/kg 60 25 250 50 25 90 25 500
  • 欧盟科学委员会就三种纳米物质发表意见
    2013年7月26日消息,欧盟委员会消费者安全科学委员会就纳米二氧化钛(titanium dioxide)所带来的风险发表了自己的意见,以及先前对纳米氧化锌在化妆品中用作紫外线过滤器的意见的附录。公众可以在9月6日前就上述两个意见展开评论。   欧盟科学委员会发表的第三个意见是关于纳米物质2,2'-亚甲基-双-(6-(2H-苯并三唑-2-基)-4-(1,1,3,3 -四甲基丁基)苯酚)(2,2’-methylene-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol,MBBT),这种物质也作为紫外线过滤器用于化妆品中。
  • 欧奇奥(Occhio)首次提出卫星化粉末微观表征参数
    第九届全国颗粒测试学术会议成功举行, 卫星化粉末表征被首次提出 2013年5月30日 2013年5月25&mdash 27 日,由中国科协与贵州省人民政府共同主办的&ldquo 中国科协第十五届年会&rdquo 在贵州省贵阳市举行。作为第十五届中国科协年会第16 分会场,第九届全国颗粒测试学术会议暨现代颗粒测试技术发展与应用研讨会得到成功举办。会议期间,国产动态光散射技术的突破和颗粒形貌分析技术的发展成为令人瞩目的焦点。 在本届研讨会上,美国康塔仪器公司北京代表处杨正红先生根据欧奇奥颗粒形貌技术的发展,首次介绍了卫星化粉末(颗粒)及其微观形态表征参数。 理想的工业粉体应该是接近于球形,但由于表面能的缘故,大颗粒与小颗粒往往吸附在一起,从而对粉体的许多性质都产生重要影响。卫星化粉末就是在雾化过程中产生的非常微小的球,同较大的球粘在一起而产生的不规则颗粒(见图1)。粉末的卫星化将影响其流动性、附着力、填充性、增强性及研磨特性和化学活性(包括燃烧效率)等。任何非球形粒子对产品的流动性都可以产生不利影响,甚至可能引起非常有害的粉末堆积,最终将导致进程停止(焊接,等离子喷涂等)从而产生非常高的固定成本! 欧奇奥(Occhio)图像分析法是颗粒分析领域革命性的进步。随着光学、信息科学技术的飞速发展,将直观的显微观察方法与统计学相结合的最新图像法粒度粒形表征不仅能够得到个别颗粒的直观信息,还能够得到大量样本的粒径、粒形的统计信息,从而帮助使用者全方位地表征样品。 Occhio FlowCell 200S+图像法粒度粒形分析仪仪器采用同等仪器中最高水平的 1000 万像素的照相机,拍摄分散在液体中的粉体颗粒的高分辨率照片,可拍摄到小于粒径为 200 nm 的颗粒,进行粒度分布和形状分布的分析,并可进行绝对和相对计数。由于焦距较深,它可以在全视野范围内利用光学系统控制摄影成像,粒子成像鲜明,没有像差,可测量普通图像法粒度分布仪器无法测量的粒子形状,可进行动态或静态的湿法测量,也可对异物进行有效的跟踪分析(趋势分析/动力学)。利用独自开发的CALLISTO(骄子)粒形分析软件,粒径可与激光粒度仪比较或衔接,可进行微观的形状分析,并且对粉体样品的特性进行评价。将粒子的各种形状数值化后,可进行相互比较,除了一般的ISO粒形参数外(如最大内切圆直径、最大长度、凹度、凸度、延伸度、圆形度等),还提供独有的微观粒形参数,包括钝度(Bluntness)、卫星化指数(Satelity Index)和赘生物指数(Outgrowth),共计超过43个参数的有关粒度粒形信息,为粉体颗粒的性能表征提供一种新的手段。
  • 欧盟委员会在BPD授权列表中添入物质
    日前,欧盟委员会在OJ上发布了两项指令——2012/2/EU和2012/3/EU,主要是在杀虫剂指令(BPD)中的附件I中新添入了以下几种物质:氧化铜(II),强氧化铜(II),磷酸铜和恶虫威。这些物质的使用将需要授权。   各成员国需要将此在2013年1月31日前转化为本国的法律,自2014年2月1日开始实施。   详情可参考2012/2/EU 和2012/3/EU 。
  • 宝马,大众的HPC充电测试使用德国科尼绍CCS欧标分析仪
    宝马集团、梅赛德斯-奔驰公司和大众集团的奥迪和保时捷与福特汽车公司共同成立合资企业IONITY。近期IONITY对外发布了其HPC超级充电站的规划与站点,终于让我们得以窥见这个足以为整个欧洲所有电动汽车提供电力支持的HPC多么厉害。德国Comemso集团成功参与充电测试并提供技术支持。德国Comemso欧标CCS联合充电测试仪能分析测试最新HPC高压充电技术。HPC的全称是High Power Charging,就是大功率充电。IONITY的HPC表现要更为突出,将提供350kW的输出功率,将近特斯拉的3倍。除大功率外,该网络还将基于联合充电系统(CCS)标准技术建立。所谓的联合充电系统(CCS),其实是由一系列知名厂家联合构建的充电技术标准,目的是为了促使这项标准成为全世界电动车充电的主要规格(之一)。成员包括宝马、菲亚特克莱斯勒集团、福特、通用汽车、菲尼克斯电子、保时捷、雷诺、特斯拉等厂商。欧盟委员会规定使用符合IEC 62196标准的CCS 2型充电系统作为整个欧洲统一的充电标准。组合式充电系统(CCS)符合IEC 62196-3和SAE J1772标准,也就是涵盖了欧洲和北美标准。总之,HPC超级充电网络建立,就意味着该组织旗下的车型均能享受其充电服务,比如宝马i系、大众e-Up和e-Golf、奔驰EQ子品牌以及丰田后续电动车等,而同样推行此标准的通用、特斯拉等,也不排除将会使用该充电站的可能。此外,在充电类型上,每个车站将会配备2级的AC(交流)充电器和3级的DC(直流)充电器,这与联合充电系统(CCS)的规划一致。德国科尼绍Comemso电动汽车充电模拟器(欧标,日标,国标)EV充电分析仪用于新能源电动汽车充电过程的分析与评价符合交流AC标准:IEC61851-1,SAEJ1772和GB/T18487.1-2015符合直流DC标准: IEC 61851-1, DIN 70121, ISO 15118, SAE J1772 和IEC 61851-23.通讯协议分析标准:GB/T27930-2011和GB/T27930-2015标准电动汽车的发展为汽车和充电系统制造商带来了新的挑战。由于230V交流电源分布普遍,新能源电动汽车的导电充电系统得到广泛应用。相关各种新的标准IEC 61851-1,DIN 70121,ISO 15118、 SAE J1772描述了欧洲和美国交流和直流充电系统的要求,同时中国GB/T也对充电系统和协议进行了规范和要求;充电回路波形以及充电过程的控制信号提出了各自的表述和要求。德国Comemso欧标CCS联合充电测试仪随着电动汽车与充电设施的不断开发与更新,不同的电动汽车和充电桩之前可能会出现系统的相容性问题以及难以避免的干扰问题。同时,由于充电过程耗时相对较长,充电中断等情况的原因往往很难直接找到。科尼绍ComemsoEV充电分析仪/模拟器欧标CCS联合充电测试仪,通过对充电过程中控制信号和负载回路的监测与评价,为充电中各种问题的分析和解决提供有效的途径。科尼绍Comemso电动充电分析仪/模拟器设备欧标CCS联合充电测试仪,是面向新能源领域充电桩/电动汽车的一款优秀检测设备,不仅可以模拟车、模拟桩,也可以设置在车与桩之间进行监测,同时又具备机架式和便携式两种产品类型。该设备,在欧洲/北美早已作为充电测试首选,国际知名整车厂如宝马、奔驰、奥迪、福特等和充电桩设备制造商有广泛的使用。德国Comemso科尼绍进口充电分析仪产品优势:* 可同时提供实验室专用机架式和用于室外使用的便携式* 充电回路、CP控制信号、PLC信号同时解析* 长时间无损数据分析* 满足IEC、DIN 、SAE、ISO 、GB/T等全球各种标准的测试需求* 应对全世界范围内的各种插头和接口符合各种标准的充电分析仪,德国Comemso欧标CCS联合充电测试仪符合交流AC标准:IEC61851-1,SAEJ1772和GB/T18487.1-2015符合直流DC标准:IEC 61851-1, DIN 70121, ISO 15118, SAE J1772 和IEC 61851-23.通讯协议分析标准:GB/T27930-2011和GB/T27930-2015WPT无线充电标准:JSON (SAE J2954)产品应用1、车辆开发企业(1)使用EVCA模拟充电桩, 根据自己的厂内标准,模拟异常信号, 设计出比国标要求更严格的电动汽车以符合市场上所有的充电桩(2)使用EVCA对电动汽车进行是否符合当地标准的检测(3)使用EVCA搭配电动汽车/充电桩实现充电过程的全称检测2、充电桩设备企业(1)使用EVCA模拟充电桩, 根据自己的厂内标准,模拟异常信号, 设计出比国标要求更严格的电动汽车以符合市场上所有的充电桩(2)使用EVCA对电动汽车进行是否符合当地标准的检测(3)使用EVCA搭配电动汽车/充电桩实现充电过程的全称检测3、第三方检测机构(1)使用EVCA对充电桩是否符合当地标准进行检测(2)使用EVCA发现充电过程中的不良问题,并对送检 单位提出改善的意见以及改善方法专为不同类型的使用而设计1、充电全过程中进行实时测试分析(Man-in-the-Middle模式):放在EVSE-EV中间,对充电过程进行监测;可以长时间进行数据记录*电流负载回路品质监测:设定负载电流的允许波动范围,自动纪录超过设定范围的片段数和位置。* CP信号品质监测:设定控制信号的平台值、频率、占空比等参数的误差允许范围。2、 EV Test模式 电动汽车测试模拟EV Test模拟充电桩,和电源组合进行动作,检测电动汽车* CP信号耐受性模拟测试* EV端响应速度测试* PP响应模拟测试 3、EVSE Test模式测试EVSE充电桩EVSE Test模拟电动汽车,搭配电源电子负荷,检测充电桩* EVSE输出CP信号的品质检测* 负载响应速度测试* EV端R误差模拟测试* EV端故障模拟测试* 线路、接口故障、老化测试* CP信号短路测试
  • 欧盟采纳批准食用香料物质列表
    欧盟于近日采纳了一项新的可被添加到食品中的食用香料物质列表。这一步骤是实施2008年12月通过的欧盟(EC)第1334/2008号法规框架的重要里程碑。该列表要求所有物质经认证后是安全的,不会对消费者造成误导。   经议会或理事会全票通过,欧盟委员会采纳了两项法规,从2012年10月1日起,食品中的食用香料物质将变得更为安全和透明。第一项措施为建立一个已批准食用香料物质共同列表 第二项为其他食用香料过渡性措施。新法规已公布于欧盟10月2日发布的官方公报上。只有批准列表上的食用香料物质才被允许在食品行业中使用。众所周知,食用香料物质被用于改变食品味道和/或气味,在各种食物中的安全使用已有悠长历史,如软饮料、糖果、谷物食品、蛋糕和酸奶等,而现在对其安全性的评估已上升到了欧盟层面。   欧盟健康和消费者政策专员John Dalli对欧洲食品安全局(EFSA)和其他科学机构不谢努力表示了感谢,对公民和同类行业而言,这项关于食用香料物质的立法将大大提高信息的透明度,更易辨别何种香料可被用于食品中。   第一项法规(欧盟第872/2012号)规定了一个新的欧盟食用香料物质列表。基于EFSA和其他科学组织开展的针对2800多种香料的分析,这项法规建立了一个包含2100种批准食用香料物质的共同列表,另外的400种香料在EFSA评估结束之前将继续在市场上流通,此项临时措施将在2015年结束。该法规将从2013年4月22日起实行,旨在给予食品行业更多适应时间。同样,行业将有18个月逐步淘汰未被批准的食用香料物质。   第二项法规(欧盟第873/2012号)则关注其他食品添加剂,如非食品来源添加剂的过渡性措施,已从2012年10月22日起生效。
  • 英国脱欧将会对仪器仪表行业知识产权产生哪些影响?
    英国脱欧将会对仪器仪表行业知识产权产生哪些影响? 过去的6月,英国通过全民公投决定脱离欧盟(EU)。据相关人士介绍,这次全民公投具有法律约束力,并非支持度投票,根据投票结果,预计英国最早会在2018年脱离欧盟。 不过,对于英国脱欧会产生哪些影响,现在还不得而知。这是因为,英国虽然定下了脱欧的大方向,但围绕是否保留欧盟的部分条约、是否继续留在已经加入的欧洲经济区(EEA)、是否加入欧洲自由贸易联盟(EFTA),英国可以作出的选择很多,而这些选择将会左右脱欧的影响。 从这个意义上来说,在英国正式脱欧的2018年之前,知识产权领域受到的影响非常有限。现在似乎有不少看法认为在这段时间里应该做好准备,以应对英国脱欧的进展及其作出的选择。 众所周知,在欧洲申请专利可以通过欧洲专利局(EPO)统一办理,英国专利权也可以通过这一渠道取得。而且,因为EPO及其成立的依据——欧洲专利条约(EPC)并不隶属于欧盟,所以也有观点认为,这一渠道在英国脱欧之后还会继续保留。但是否保留这一渠道,估计也在英国可以选择的范围之内。 那么,在进入2018年之后,英国脱欧的影响是否依然有限?答案是否定的。比如说,有看法认为,对于以2017年生效为目标开展相关工作的欧洲统一专利制度,英国作为主要专利国家,其脱欧对这项工作的进展及生效时间会产生严重影响。而且,按照欧盟下属的欧洲统一专利法院(UPC)的规定,除巴黎总部外,该院还将在伦敦设置分院,这一规定也很可能化为一纸空谈。 另外,现在在欧洲注册设计和商标,可以在欧盟内部统一办理,而英国脱欧后,则必须要将欧盟与英国分开办理。带来的问题就是,已经在欧盟统一注册的设计和商标,很有可能不会直接转换成英国的设计权和商标权,而是需要另行注册。 这可能会引发下面这些实际问题:在知识产权及制药等若干领域,英国过去是直接沿用欧盟的条例和规则作为国内法律。但随着英国脱欧,在使用英国国内法律时,这些规定将不再适用。如此一来,英国国内法律就会缺失条例、规则等细则,变得“漏洞百出”,因此,英国必须要自己制定相关的条例、规则。英国新制定的自主条例、规则是沿袭欧盟的条例和规则,还是完全重新制定?不同的选择将会决定这些领域受到的实际影响的大小。 以上分析表明,与“有限”相比,用“不确定”来形容英国脱欧对知识产权领域的影响更为贴切。不过,受英国脱欧的影响,相对于1年之前的水平,日元汇率预计还将继续保持高位,阻碍制造现场回归日本国内的潮流。对于需要在地方创利中扮演主角的中小企业,其所处的环境很难说是顺风顺水。本文内容来自仪器仪表商情网
  • 欧盟拟撤消活性物质肯定列表中6种农药
    欧盟拟从活性物质肯定列表中撤消丁苯吗啉等6种农药   2008年12月24日,欧盟委员会发布了修订欧洲议会和理事会指令98/8/EC将丁苯吗啉、硫酰氟、氧化硼、硼酸、四硼酸钠和四水八硼酸二钠作为活性物质包括在附录I中的欧盟委员会指令草案。   这6个欧盟委员会指令草案将可能用于生物农药产品的丁苯吗啉、硫酰氟、氧化硼、硼酸、四硼酸钠和四水八硼酸二钠包括在欧共体活性物质肯定列表中。本欧盟委员决议草案涉及企业原先打算提交风险及功效评估信息—基于此这些活性物质被允许保留在生物农药市场上-的活性物质清单。然而,提交信息的最后截止期限到来时,文件没有被提交。因此,这些物质无法按照生物农药指令98/8/EC第16条第2款规定的10年审查计划被审查,现决定12个月的逐步退出期之后从生物农药市场撤销这些物质。
  • 欧盟理事会代表会议放弃RoHS优先清单
    MEPs、部长理事会和欧盟委员举行的三方会议时就放弃RoHS指令禁止物质优先评估清单(即附件III,这些物质基于RoHS的限制物质)达成协议之后,该协议被2010年11月中旬举行的欧盟成员国常驻欧盟理事会代表会议(COREPER)通过,随后将提交欧洲议会表决。其实在10月初举行的COREPER就已讨论过放弃具有法律效益的优先评估清单,而改为政治声明或类似的形式。   非政府组织ChemSec批评这是一种倒退,但是绿色组织采取了较为务实的做法。其顾问称:该政治声明不具有与附件同样的法律效应,但是它将确定应进行调查的物质。但是,它也只是提到了之前由委员会提出的四个优先物质:DEHP,DBP,BBP和HBCDD,而未加入由议会的环境委员会建议加入的物质(包括其他的溴化阻燃剂和聚氯乙烯)。   附件III被弃用的原因之一是溴化阻燃剂的制造商强烈的游说。绿色组织也放弃了禁止使用纳米银的要求,而接受了文本中的在未来对其“进行优先审查”。英国也没能获得委员会的支持以通过一项新的标准,即对指令豁免条款的“合理的时间的可用替代品”。虽然欧盟轮值主席国比利时已在第二轮的三方会谈上弃用了这项提议,但是英国又再次重拾。有消息称,英国已离力排阻难非常近了,但是MEPs坚持认为该标准主观性太强而可能被滥用。   最终的结果将在议会的全体会议上进行表决。
  • 耗资5亿打造仪表计量系统研发基地产品主供欧洲
    耗资5亿打造仪表计量系统研发基地产品主供欧洲深圳某科技公司在蓉投资计量系统研发生产基地。据了解,总投资超5亿元的项目,从落户到投产用时不到5个月。该公司相关负责人把这样的速度解读为“信心和决心”。近日的投产意味这家中国500强企业正式开启了“立足天府 计量全球”的新征程。研发部门迁至成都据了解,该公司1994年在深交所挂牌上市,是中国电子信息产业集团的核心企业,主要业务包括硬盘零部件、固态存储、通讯及消费电子、医疗器械、芯片封装与测试、关键零部件等产品的先进制造服务,以及计量系统、支付终端、自动化设备的研发生产;在国内外设有六个研发制造基地,在美、英、荷等十多个国家拥有分支机构或研发团队。今年2月24日,该公司与成都高新区签署项目投资合作协议,初期设计日电表产能将超过10000台。借蓉欧铁路对接欧洲市场从投产仪式上获悉,该项目落户成都高新区,是在成都、重庆两市考察了8个区县投资环境之后的选择。该公司董事长谭文鋕表示:“专业的政务环境、良好的产业基础、成熟的配套条件,保证项目快速推进、顺利实施的重要基础。”据介绍目前基地主要生产的是供应欧洲市场的智能表计。目前蓉欧快铁从成都到波兰罗兹或德国杜伊斯堡大概需12天,这比海运时间节省三分之二。根据测算,如果用40尺货柜,产品价值能高于100万美金,走蓉欧铁路就会比较划算。“这样既节约了成本,又更能及时地满足客户对货物交接的需求,还降低了企业运营的成本。而且成都正在和东南亚国家合作建设泛亚班列,这条线路一旦开通,将对产品出口东南亚带来极大的便利。”本文来自仪器仪表商情网
  • 欧盟活性物质肯定列表中拟增三种物质
    欧盟委员会2010年5月12日发布G/TBT/N/EEC/326、G/TBT/N/EEC/327、G/TBT/N/EEC/328号通报:委员会指令草案,修订欧洲议会和理事会指令98/8/EC,将二氧化碳(CO2)、多杀菌素、木馏油作为一种活性物质包括在其附件I中。本委员会指令草案将二氧化碳、多杀菌素、木馏油包括到可以在生物灭杀制品中使用的欧盟活性物质肯定列表中。   该三项通报拟于2010年10月底批准,自欧盟官方公报上公布起20天生效,评议截至期为自通报日期起60天。
  • 欧波同成功举办2017矿物识别及表征技术研讨会
    p   5月25日,由北京欧波同光学技术有限公司联合北京普瑞赛司仪器有限公司和布鲁克(北京)科技有限公司共同举办的“2017矿物识别及表征技术研讨会”在欧波同材料分析研究中心正式召开,共有40多名地矿行业的专家及技术人员参与了此次会议。 /p p   会上,首先由北京普瑞赛司仪器有限公司产品技术部应用总监贺垒先生做了自动化矿物学解决方案发展历史与当前各解决方案的优劣势分析的报告,针对矿物学分析检测技术的以往经验与未来发展方向做了详细阐述。 /p p style=" TEXT-ALIGN: center"    img title=" 欧1.jpg" src=" http://img1.17img.cn/17img/images/201705/noimg/e414e65f-3206-442e-b52d-3bc1f802f023.jpg" / p   随后,来自布鲁克(北京)科技有限公司的产品经理Jens Bergmann就最新一代自动化矿物分析解决方案——AMICS产品特点进行了介绍,为大家带来了矿物与地质行业最前沿的分析测试方法与解决方案。 /p p style=" TEXT-ALIGN: center"    img title=" 欧2.jpg" src=" http://img1.17img.cn/17img/images/201705/noimg/2bc4552b-09e2-4a0f-ae78-5e977a77ff43.jpg" / p   在介绍了地矿行业发展趋势与最新解决方案之后,会议特约邀请到的AMICS矿物分析系统应用专家——中国科学院地质与地球物理研究所博士原园女士,与工艺矿物学专家——包头稀土研究高级工程师王其伟老师分别进行了《AMICS在地质领域应用》与《SEM-EDS分析在白云鄂博》的专题报告,为与会嘉宾提供了矿物分析方面更为专业的方法与具体应用。 /p p /p p style=" TEXT-ALIGN: center" & nbsp img title=" 欧3.jpg" src=" http://img1.17img.cn/17img/images/201705/noimg/8e19abaf-8a0a-44ab-9445-54e9f068c7cf.jpg" / /p p style=" TEXT-ALIGN: center" & nbsp img title=" 欧4.jpg" src=" http://img1.17img.cn/17img/images/201705/noimg/da9e321c-c11d-4806-a61c-35c578dc0b45.jpg" / p   AMICS自动矿物特征分析系统中蔡司扫描电镜的应用是必不可少的,而应用扫描电镜对矿物样品进行表征和分析,选用适当的制样方法进行矿物样品制备更是极为重要的,会上,欧波同材料分析研究中心的产品经理许骏蒙为大家分享了制样方法及测试条件对实验结果的影响的实际操作经验。 /p p   报告及讨论结束后,与会嘉宾在欧波同材料分析研究中心实验室进行了分组上机演示,深入了解并体验AMICS自动矿物特征分析系统的相关功能及具体应用。 /p p /p p style=" TEXT-ALIGN: center" & nbsp img title=" 欧5.jpg" src=" http://img1.17img.cn/17img/images/201705/noimg/606a2cbf-f2aa-4cbe-9c1c-b2df3fc188ef.jpg" / /p p /p p style=" TEXT-ALIGN: center" & nbsp img title=" 欧6.jpg" src=" http://img1.17img.cn/17img/images/201705/noimg/3def79ec-e37a-48c4-bad5-0225670932dd.jpg" / /p /p /p /p
  • 欧盟食品业要求欧委会批准进口食品含痕量转基因成分
    路透社报道,继6月欧盟批准转基因饲料进口之后,近日欧盟食品与饮料行业要求欧委会批准进口食品含痕量转基因成分。   6月份欧盟投票通过了进口饲料可以含不高于0.1%的转基因成分,这可以避免2009年美国大豆产品因含有微量的转基因成分而被拒绝入境欧盟的状况再次发生。   欧盟食品与饮料协会表示,6月份通过的进口转基因饲料法规是欧盟批准转基因商品征途中迈出的第一步,那么下一步亟需将批准范围扩大至食品。   由于全球化食品供应链复杂而庞大,供应商很难保证其出口商品不会含有少量转基因成分。   据了解,目前欧盟对转基因食品进口的认证过程长达2年,远远超过商品出口国的认证时间。   这是第一次欧盟食品饮料行业联合起来竭力要求欧盟政府批准转基因食品的进口。2010年对欧盟委员会的调查中,57%的委员反对转进口基因食品。
  • 欧盟肯定列表新增六种欧盟杀生剂物质
    2011年7月28日消息,英国健康和安全执行委员会(HSE)日前宣布,从2011年9月1日起,将有六种新的活性物质被添加至欧盟杀生剂产品指令附录I中,这六种活性物质分别为:   ◆磷化铝(Aluminium phosphide)   ◆氮气(Nitrogen)   ◆硼酸(Boric acid)   ◆氧化硼(Boric oxide)   ◆四水八硼酸钠(Disodium octoborate tetrahydrate)   ◆四硼酸钠(Disodium tetraborate)   英国健康和安全执行委员会称所有经《英国农药管理法规》(COPR)批准的产品已经发出告示,并将从2011年8月31日起撤销COPR原先的批准。委员会还提醒企业人员,务必根据《英国生物农药产品法规》(BPR)申请授权,以保证在9月1日截止期后,企业还可在英国市场上销售其抗杀生剂产品。
  • 欧洲国家与欧委会对《化学品注册、评估及许可规例》的分歧扩大
    2013年7月4日,比利时、丹麦、法国、德国以及瑞典等五个欧盟成员国以及非成员国挪威就《化学品注册、评估及许可规例》(简称REACH规例)内甚具争议性的条款发出指引文件。   REACH规例第7.2及第33条规定,制品生产商及供应商有责任通报,以及向制品接收者或消费者提供制品的安全资料。欧洲化学品管理局(ECHA)的指引订明,每当候选清单纳入某种高度关注物质(SVHC),通报及提供资料的责任随即产生。   欧洲化学品管理局发出的指引已获欧洲委员会确认,适用于整个欧盟。据指引解释,候选清单内高度关注物质,在制品不同部件(例如笔记本电脑的底盘与变压器)的浓度各异。根据REACH规例第7.2条及第33条,以整件制品的重量计算,如高度关注物质的平均浓度超出0.1%,便须通报及提供安全资料。   不过,上文提及的国家和奥地利并不同意这项诠释。这些国家的诠释是以整件复杂制品内的每一件简单物件计算,以按重量计浓度超出0.1%作为通报及提供安全资料的门槛。   无疑,这些国家的规定大大加重了供应商的负担,他们必须检查及纪录每件预备作组装用的物件是否含有高度关注物质。若复杂制品包括数以百计甚至千计的细小物件,供应商的检测负担势必沉重。   法国生态及永续发展部认为,只要物体符合REACH规例对「物件」的定义,便可以被当作物件,而制品可以由一件或以上物体组成。以进口皮带为例,皮带由皮革带及金属扣组成,因此必须计算每件组件的高度关注物质浓度。   欧洲化学品管理局预期,由于意见分歧,企业将会面对两套不同的执法标准。瑞典化学品管理局在网站内发表的声明指出,上述6个国家一致认为,若企业遵守这些国家订立的指引,便能符合整个欧盟/欧洲经济区市场的规定。   指引表明,无论物件是分拆出售或是包括在组装制品内,若物件所含的候选清单物质浓度超过0.1%,供应商便须向消费者提供安全资料。另一方面,根据欧洲化学品管理局的诠释,即使制品物件所含的候选清单物质浓度远超出0.1%,只要制品其余部分够重,计算出来的平均浓度便可能低于门槛,换言之,毋须向消费者提供资料。含邻苯二甲酸酯的单车手柄便是一例。   新指引亦承认,由于候选清单物质的数目众多,亦不断增加,计算制品内每件组装零件的候选清单物质浓度,将会为供应商带来沉重负担。   不过,指引称,特定物质往往或只会在某些物料中使用,例如塑料,这些物料亦只会在若干类物件中使用。因此,指引建议利用「机率为本方法」减轻负担。「机率为本方法」首先以物件使用的物料,评估含有候选清单物质的可能性。例如:单车手柄可能含有经常用于塑料的软化剂。经评估后,供应商只需要针对目标物件及物质,便可以增加找出候选清单物质的机会。   指引列出多种制品的例子,以及0.1%浓度限制的适用方法。这些例子包括塑料庭园家具和其他家具、单车、印花T恤、电子制品以及厨具。指引内容载于以下网址:   http://www.kemi.se/Documents/Forfattningar/Reach/Guidance_for_suppliers_of_articles_EN.pdf   总括而言,假如制品含有候选清单高度关注物质,其浓度按重量计超过0.1% (欧洲化学品管理局和某些欧盟成员国对此0.1%门槛的诠释有别),供应商便须履行以下责任:   REACH规例第33.2条列明,制品供应商必须向接收者提供足够资料,让接收者安全使用制品。这些资料至少包括物质名称,供应商亦必须应消费者要求提供相同资料(需要在提出要求后45日内免费向消费者提供)。当某种物质被纳入候选清单,供应商即须履行第33条的责任。   如每名生产商或进口商每年生产或进口的制品中,高度关注物质超过1公吨,必须在高度关注物质纳入候选清单后6个月内,由欧盟生产商或进口商向欧洲化学品管理局通报。如生产商或进口商可以保证制品在正常或合理可预见的条件下使用,并不会接触人体或曝露于环境中,或是该物质已经注册,便可以豁免REACH规例第7.3条的通报规定。   现时,候选清单内共有144种高度关注物质,详情载于以下网址:   http://echa.europa.eu/chem_data/authorisation_process/candidate_list_en.asp   详情:   http://economists-pick-research.hktdc.com/business-news/article/%E6%AC%A7%E7%9B%9F%E5%95%86%E6%83%85%E5%BF%AB%E8%AE%AF/%E6%AC%A7%E6%B4%B2%E5%9B%BD%E5%AE%B6%E4%B8%8E%E6%AC%A7%E5%A7%94%E4%BC%9A%E5%AF%B9-%E5%8C%96%E5%AD%A6%E5%93%81%E6%B3%A8%E5%86%8C-%E8%AF%84%E4%BC%B0%E5%8F%8A%E8%AE%B8%E5%8F%AF%E8%A7%84%E4%BE%8B-%E7%9A%84%E5%88%86%E6%AD%A7%E6%89%A9%E5%A4%A7/baeu/sc/1/1X2ZT68A/1X09UKUI.htm#sthash.ChHGPPCB.dpuf
  • 欧委会修改2009/48/EC设定TCEP新限量
    布鲁塞尔时间9月10日,欧洲玩具委员会召集各主管当局,主持会议对“玩具安全新指令”(2009/48/EC)的两项修订法案进行技术性意见交流,以更好的执行2009/48/EC,保护儿童健康。   第一项修订法案为COM2012/002。2012年3月3日,欧委会在其官方公报上发布2012/7/EU指令,修改了2009/48/EC附件2的第三部分第十三条内容,修订了镉限值,新限值要求于公报发表之日二十日后正式生效。 元素 干燥、易碎、粉末状或易弯曲的材料(mg/kg) 液体或粘性材料(mg/kg) 可刮去的玩具材料(mg/kg) 钡 1500 375 18750   第二项修订法案为COM/2012/003。3月末,欧洲报检和环境科学委员会(SCHER)就玩具中的三(2-氯乙基)磷酸酯(TCEP)表述科学观点,SCHER表示应该禁用玩具中TECP及其同系物,此观点获得欧洲标准化消费者之声(Anec)和欧洲消费者联盟 (Beuc)的声明支持。为了更好的保护儿童,欧委会接受相关组织的建议,发布2009/48/EC修订法案COM/2012/003。
  • 欧标委发布橡胶奶嘴及安抚奶嘴检测新标准 将LC-MSn作为亚硝胺和亚硝基物质的替代性分析方法
    欧洲标准化委员会(CEN)针对中弹性体或橡胶奶嘴及安抚奶嘴中释放的亚硝胺和亚硝基物质发布了EN 12868:2017。与之冲突的国家标准将于2017年7月前撤销。  1993年4月,欧盟(EU)发布了93/11/EEC指令,限制弹性体或橡胶奶嘴及安抚奶嘴中释放的亚硝胺和亚硝基物质。该指令也规定了检测此类物质的基本原则以及分析方法。  1999年8月,CEN发布了EN 12868:1999,将其作为符合93/11/EEC指令要求的标准方法。该标准提供了详细的橡胶奶嘴和安抚奶嘴中亚硝胺和亚硝基物质的提取及分析流程。  2016年10月,CEN审批通过了弹性体或橡胶奶嘴及安抚奶嘴中亚硝胺和亚硝基物质相关的新标准EN 12868:2017。  EN 12868:2017对1999版进行了更改,主要体现在:  ——重新定义了“正-亚硝胺”和“即用产品”   ——更改了“弹性体”和“橡胶”的定义   ——要求进行两次迁移测试和两次测定   ——更改程序,包括亚硝化的温度,并规定了测试中弹性体样本和橡胶的最低样品量   ——将N-亚硝基二异丁胺(NDiBA,CAS号 997-95-5)归为奶嘴中的可识别的亚硝胺,这一规定与测试和校准标准相关   ——提供n-亚硝胺校准液的气相色谱法(GC)以及用热能分析仪(TEA)检测仪分析得到的的保留时间用于辅助分析(附件B)   ——将液相色谱-质谱联用(LC-MSn)作为亚硝胺和亚硝基物质的替代性分析方法。技术设置见本标准的附件D。  EN 12868:2017或其之前的版本以及玩具安全标准EN 71-12都是检测亚硝胺和亚硝基物质,应注意的是,两种方法的提取和分析程序存在差异。
  • 欧盟食品添加剂列表已于2013年6月1日生效
    从2013年6月1日起,新的欧盟授权食品添加剂列表将开始生效,此前的欧盟指令也将被这一单一法规所替代。   2013年6月1日,根据欧盟委员会法规NO 1129/2011建立的新的欧盟授权食品添加剂列表将开始使用。只有包括在欧盟积极列表中的添加剂才能在特定条件下使用。欧盟食品添加剂数据库可在欧盟健康和消费者保护总理事会(DG SANCO)网站上查看。据悉,欧盟对欧洲食品安全局(EFSA)的科学建议开展了为期五年的考虑,从市场上移除了一些添加剂或缩小了其使用范围。新的欧盟列表将进一步加强对消费者的保护,向食品经营者提供更大的清晰度。   授权的添加剂及其使用条件在欧盟(EC)食品添加剂第1333/2008号法规附件二中列出。添加剂列表基于其可能被添加到的食品类别进行归类。   添加剂可被用于多种用途。他们还能被用作:   着色剂-用于增加或恢复食品颜色。   防腐剂-被添加通过保护食品免受微生物破坏而延长食品保质期。   抗氧化剂-延长食品保质期,保护他们免受氧化(如脂肪酸败和颜色变化)。   该列表是EFSA对添加剂的安全性的长期评估的结果。有关阿斯巴甜的评估,由于提交至EFSA供评估的数据量较大,计划将于2013年底完成。
  • 浙江首获欧盟CE-MID指令认证电能表试验资质
    近日,欧盟认证公告机构(NB)TÜV莱茵匈牙利公司Gergely Bakos 先生一行7人对浙江省计量院进行了为期一天的欧盟公告机构电能表实验室监督评审。这是疫情后浙江省计量院开展的首次国际实验室评审,浙江省计量院副院长沈才忠,及院相关人员参加本次监督评审。此次监督性评审分为两大环节,首先对院质量管理体系和拥有的EN 50470-1,-2,-3和IEC 62052-11标准全项目的ILAC认可等资质能力进行了详细、全面的资料审查;在现场试验环节,莱茵技术专家全程查看技术人员试验操作过程和技术能力,现场查看设备技术指标和溯源性。经过一天紧张的监督评审,TÜV莱茵匈牙利公司对省计量院ISO/IEC 17025质量体系、电能表检测设备、人员能力给予充分认可,签署了双方合作技术协议,并授权省计量院作为匈牙利莱茵认证内部实验室,拥有欧洲CE-MID计量器具指令的完整授权,为进入欧盟市场的电能表、汽车充电桩等计量器具出具相关证书,开启了我省电能表产业进军欧盟市场的首趟直通车。浙江省计量院电能实验室作为拥有欧洲CE-MID计量器具指令的完整授权的实验室,将不断提升技术水平,为我国电能表、充电桩出口企业提供欧洲CE-MID计量器具指令试验服务。真正实现企业在家门口就能获得欧洲CE-MID试验服务,帮助企业降低成本,打破技术壁垒,推动测量技术进步。欧盟计量器具指令(Measuring Instruments Directive,MID)是欧盟用来监督管理计量器具的法规,规定指令范围内的计量器具出厂前必须通过相应的合格评定程序,符合2014/32/EU指令,并加贴带NB号码的CE标志,方能投放到欧盟市场。此指令的颁布目的是为制造商建立计量器具的单一市场,最终使消费者获益。计量器具指令能够使制造商获得一个证书,通用全欧洲的目的。
  • 欧美克仪器正式入驻中国机械总院颗粒表征联合实验室
    近日,中国机械总院怀柔科技创新基地中国机械总院雁栖湖基础制造技术研究院(简称基础院)正式揭牌成立。基础院地处北京市怀柔区中高路9号,总占地面积超100,000平方米。内部研发、实验、试生产、会务和生活起居区域一应俱全。新落成的实验中心将按照符合CNAS标准的相关配置进行运营。珠海欧美克仪器有限公司、罗姆(江苏)仪器有限公司、福建强纶新材料股份有限公司、弗尔德(上海)仪器设备有限公司、苏州纽迈分析仪器股份有限公司有幸参与到基础院此次实验中心颗粒表征联合实验室的共建工作中,并与基础院展开深度合作。同时,专门开设了基础院和欧美克仪器联合的颗粒表征实验室并计划在将来对相关颗粒表征检测工作的推进以及相关检测人员的培训贡献力量。怀着激动的心情,欧美克仪器销售总监吴汉平先生及北区销售经理李宏成先生作为欧美克代表与全国颗粒表征与分检及筛网标准化技术委员会委员单位成员、颗粒表征专家代表共同出席了揭牌仪式。中国机械总院雁栖湖基础制造技术研究院是中国机械研究总院为落实国家推进装备制造业“产业基础高级化、产业链现代化”战略要求,在中机生产力促进中心有限公司的总体架构基础上,整合集团国家级重点实验室、国家级工程研究中心在京创新资源,成立的一家装备制造业基础共性技术研究机构。基础院测试技术与装备研究所致力于为汽车、机器人、航空、兵器、船舶、轨道交通、风电、石油化工等领域用户提供规划-标准-测试-装备-软件-咨询全套传动系统解决方案。以试验检测为桥梁,帮助企业构建产品全寿命周期一体化体系,从而提高工艺水平、提高产品性能、降低制造成本、缩短开发周期、减少售后赔付,全方位提高产品竞争力,推动行业高质量发展。颗粒表征联合实验室的成立依托怀柔基地零部件试验检验和标准验证能力建设,在丰富基础院服务颗粒表征领域技术能力的同时,将有力推动颗粒表征标准、方法和检测技术研究与应用,促进颗粒表征标准人才培养。目前,基础院欧美克颗粒表征联合实验室已配备了多款欧美克仪器最新的激光粒度分析仪、纳米粒度电位仪、颗粒图像系统和颗粒计数器等多款颗粒表征检测分析设备。纳米科学与技术是当今国家战略新兴科技领域之一。纳米技术在材料制备、分析、功能化材料等方面有着独特优势,被广泛应用于生物医学、环境保护、信息技术、人工智能、新能源、新材料等领域。得益于服务新能源、制药以及各工业领域三十年的粒度粒形检测技术的积累,珠海欧美克仪器有限公司在成功引进和吸收马尔文帕纳科 (Malvern Panalytical)纳米颗粒表征技术后,于2023年8月正式推出全新升级的NS-90 Plus纳米粒度分析仪和NS-90Z Plus纳米粒度及电位分析仪,以更优越的粒度和电位分析性能,新颖易操作的新软件界面满足广大纳米材料、制剂开发和生产用户的颗粒粒度和Zeta电位的测试需求!NS-90Z Plus纳米粒度及电位分析仪在上一代NS-90Z的基础上进一步优化了光学电子测量技术和分析性能,同时融合马尔文帕纳科恒流模式下的M3-PALS快慢场混合相位检测分析技术,有效缓解电极极化的影响,使得结果重现性更好,准确性更高,且可获得电位分布的信息。相比上一代产品,NS-90Z Plus能满足具有更高电导率的样品的Zeta电位和电泳迁移率测试,同时可以提高电位样品池的使用次数。▲ 快慢场混合相位检测Zeta电位分布、相位、频移及电压和电流图而Topsizer激光粒度分析仪作为一款全自动干、湿二合一激光粒度分析仪,具有量程宽、重复性好、精度高、测试结果真实、自动化程度高等诸多优点,真正站在了当前粒度检测领域的前沿,是广受客户赞誉的国产高性能干、湿法激光粒度仪。该款仪器湿法测试范围0.02-2000um,干法测试范围0.1-2000um,能够满足绝大多数材料粒度检测要求。Topsizer型号激光粒度仪自上市以后,广受锂电池、生物制药、精细化工等行业用户的青睐。除了对欧美克品牌和技术的信赖外,还因为Topsizer系列产品保证了测试结果和分析能力与国内外、行业上下游黄金标准保持一致,这不仅为用户节省了方法开发和方法转移上的时间和成本,重要的是可避免粒度检测不准带来的经济损失和风险,无论在研发、过程控制还是质量控制上,都能够为用户带来真正的价值。此次联合实验室的成立将进一步融合多方资源,不断提高科研水平和创新能力,扩大国产仪器在颗粒表征领域的核心竞争力和影响力。欧美克仪器也将肩负中国颗粒表征领域的先导及创新者的职责,以材料粒度检测技术推进产业智能质造发展,为实现产业技术向低碳、数字、智能化的高质量发展贡献欧美克力量!
  • 瑞典百欧林携手大昌华嘉开拓表面张力仪中国业务
    瑞典百欧林携手大昌华嘉开拓表面张力仪中国业务2016-06-29 瑞典百欧林瑞典百欧林科技有限公司与专注于亚洲地区的市场拓展服务领导者大昌华嘉签订合作协议,为瑞典百欧林的先进仪器表面张力仪开拓中国市场。大昌华嘉科技事业部为瑞典百欧林提供全方位的市场拓展服务,以确保充分开拓表面张力仪产品在中国的业务。大昌华嘉在中国庞大、完善的售前和售后网络,与高校、科研及各类政府、企业客户的良好合作关系是瑞典百欧林选择大昌华嘉作为在中国地区的合作伙伴的原因。 “我们很高兴能与大昌华嘉在中国建立合作关系。他们的专业知识,以及长期以来的成熟的客户关系,使我们相信大昌华嘉是支持我们业务增长的绝佳合作伙伴,从而使更多的客户能够从我们的创新解决方案中获益。”瑞典百欧林分析仪器副总裁Johan Westman说道。大昌华嘉中国区科技事业部总经理Oliver Hammel进一步谈道“百欧林选择与我们建立了充满前景的合作关系,我们感到非常自豪,因为我们拥有系统化的市场发展策略以及我们的行业和服务专家。此次战略合作配合了百欧林的尖端技术以及大昌华嘉的市场准入和应用专业知识,这将会促使双方的持续盈利增长。“ 关于大昌华嘉大昌华嘉是一家专注于亚洲地区,在市场拓展服务领域处于领先地位的集团。正如“市场拓展服务”一词所述,大昌华嘉致力于帮助其他公司和品牌拓展当前市场及新兴市场业务。总部位于瑞士苏黎世的大昌华嘉是一家全球性企业,自2012年3月在瑞士证券交易所上市。大昌华嘉在全球36个国家设有770个营运地点 --其中740个分布于亚洲地区,拥有28,300名专业员工。2015年,大昌华嘉的销售净额为101亿瑞士法郎。大昌华嘉于1865年成立,凭借深厚的瑞士传统背景,公司在亚洲开展业务历史悠久,深深植根于亚太地区的社会和企业界。大昌华嘉科技事业部是领先的市场拓展服务提供商,提供基建投资产品和分析仪器的技术解决方案。大昌华嘉科技事业部的强势业务领域涵盖制造和生产、能源、研究、分析仪器、食品和饮料、重金属和基建设施,其服务组合包括市场准入研究与咨询、市场营销、销售、应用工程、售后服务以及项目融资。科技事业部在18个国家设有75个分支机构,拥有约1370名员工- 其中包括500名服务工程师。2015年,大昌华嘉科技事业部的净销售额为3.722亿瑞士法郎。 关于瑞典百欧林瑞典百欧林科技有限公司是一家先进科研仪器生产商,在北欧的瑞典,丹麦和芬兰都有主要产品的研发和生产基地。我们为用户提供高科技、高精度的科研设备,可用于表界面、材料科学、生物科学、药物开发与诊断等研究领域。我们同时专注于用户的技术和应用支持,以及科技的发展与进步。我们的产品均基于最先进的测量技术,而这些技术,或为我们专利,或为我们特有,或在长期科研与发展中占主导地位。我们的核心战略是,通过寻找具有广阔商业前景的科研领域,来应用我们的产品与技术。目前,百欧林的用户已遍布全球70多个国家和地区。 我们的产品:Attension: 界面科学与材料技术的表面张力测试Q-Sense: 纳米尺度分子界面以及相互作用研究 KSV NIMA: 单分子层薄膜的构建与表征工具Sophion: 基于细胞离子通道功能检测的高通量全自动膜片钳
  • 中欧国际合作产业园被认定为江苏省仪器仪表产业园
    近日,江苏省市场监督管理局发布了苏市监计量【2023】319号文件,认定常州市天宁区中欧(常州)检验检测认证国际合作产业园为江苏省仪器仪表产业园。据悉,这是江苏省第三家被认定的省级仪器仪表产业园。关于中欧国际园科学仪器分园作为中欧检验检测产业园延链补链强链的重要组成部分,科学仪器分园规划性占地面积2.2万平方米,总建筑面积4.6万平方米,目前已完成土地征收、土地证办理及项目建设的发改备案,2024年春节后启动项目建设。今后,园区将加大仪器仪表类企业的招引力度,助力科学仪器仪表加速国产替代,为检验检测行业的上游链添砖加瓦,同时也为中欧国际园在以检验检测认证为主的前提下协同发展仪器仪表行业,推动检验检测认证行业规模化、系统化、集约化发展做出积极的贡献。
  • 欧洲委员会建议修订现行医疗器具监管法规
    欧洲委员会于2012年9月26日发表方案,建议修订现行医疗器具监管法规。欧洲议会将于2013年10月23日首读该份方案,并进行投票。   欧委会就监管医疗器具所用化学物质提出的建议措施,欧洲议会很可能在投票时要求收紧。最近,议会议员与数个卫生及环保团体对医疗器具的有害化学物质含量表示关注,特别是致癌、诱变及生殖毒性物质(CMR物质),以及可能干扰荷尔蒙系统的化学物质 (EDC物质),将来的法规应更严格管制。   法国制造商Poly Implant Prothèse曾经提供有问题的乳房植入物,超过400,000名欧洲女性受到影响,促使欧洲委员会提出上述方案,建议修订欧盟现行医疗器具法例。   中国大陆和香港向欧盟出口多种医疗器具,心跳计、血压计、电子温度计,以至药水胶布及塑料针筒皆有。隐形眼镜、验孕棒、牙科用品甚至X光机均符合医疗器具的定义。   最近,一些卫生及环保团体连同数名议员,促请欧盟加强管制医疗器具,特别是取缔医疗器具内的有害化学物质。建议如获采纳,若干物质将被禁用,这类产品的生产规定将更严格。   据称,两类有害化学物质,即CMR 及 EDC物质,今天仍被广泛应用于医疗器具。这些卫生及环保团体主张,除非没有更安全的替代物质,否则应取缔所有医疗器具中的CMR 及 EDC物质。   CMR物质包括一些邻苯二甲酸盐,例如邻苯二甲酸二(2-乙基己基)酯(DEHP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异丁酯(DIBP) 及邻苯二甲酸丁苄酯(BBP),这些邻苯二甲酸盐常用于塑料中,以增加塑料弹性和韧度。CMR物质亦包括某些金属,例如镉、钴及铬。EDC物质可以在双酚A (BPA)找到,医疗器具如软管及导管均可能含有双酚A。   玩具、食品包装、胶管、雨衣,以及化妆品如甲油、喷发剂和洗发水均可能含有邻苯二甲酸盐。由于邻苯二甲酸盐可干扰内分泌系统,欧洲已禁止使用于儿童玩具。邻苯二甲酸盐已受欧盟的化学品注册、评估、授权和限制法规(REACH法规)监管,但是丹麦卫生部长克拉格(Astrid Krag)希望,将来的医疗器具法规同样禁用邻苯二甲酸盐。   卫生及环保团体与议员在共同提出的建议书中表示,应就医疗器具订立更严格的面市前审批程序及面市后监察措施,认为急需检讨申领欧洲合格评核认证(即CE标记)的审批程序。   来自德国的议会议员罗特拜伦特(Dagmar Roth-Behrendt)建议为对病人构成最大风险的“第三类”(Class III)器具,例如起搏器及髋关节植入物,设立统一的上市前审核制度。   法案有机会在未来数月内投票通过,并于欧盟层面采纳。法案如获通过,欧盟成员国便须推行,过渡期为3年。   详情参见:http://economists-pick-research.hktdc.com/business-news/article/Business-Alert-EU/Calls-from-EU-campaigners-unite-for-the-outlawing-of-hazardous-chemicals-in-medical-devices/baeu/en/1/1X2ZT68A/1X09UTUR.htm
  • 欧洲议会环境委员会通过议案加强食品安全
    欧洲议会环境委员会4日通过一项议案,禁止在食品中添加克隆动物产品,并要求对采用纳米技术生产的食品在许可销售并添加标识前,进行特别的危害评估。   此项议案旨在规范涉及新型食品的法规,集中并简化审批程序,在允许新型食品生产销售的同时确保食品安全。根据新议案,只有通过欧盟食品安全机构的评估并在该机构注册的新型食品才能够上市销售。   该议案涉及的新型食品是指1997年5月后未在欧盟市场大量消费的食品,既包括一些近来运用新生产工艺、如纳米技术加工的食品,也包括过去只在非欧盟市场销售的食品。欧盟1997年5月首次就新型食品立法。   环境委员会各委员表示,他们决心禁止在食品中添加克隆动物产品,并对获得批准的新型食品在安全性和标识方面严加限制,以保障食品安全,保护消费者、环境和动物。   该议案将提交欧洲议会全会审议表决。

厂商最新资讯

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制