当前位置: 仪器信息网 > 行业主题 > >

酶制剂

仪器信息网酶制剂专题为您整合酶制剂相关的最新文章,在酶制剂专题,您不仅可以免费浏览酶制剂的资讯, 同时您还可以浏览酶制剂的相关资料、解决方案,参与社区酶制剂话题讨论。

酶制剂相关的资讯

  • 世界最大酶制剂企业中试工厂在津投用
    新华网天津9月21日电(记者 张泽伟)世界最大酶制剂企业——丹麦诺维信公司在中国的首个中试工厂,21日在天津经济技术开发区正式投入使用。该工厂的建成将加速诺维信新产品从实验室阶段投入到工业化生产的进度。   1994年进入中国的诺维信在中国的天津、苏州、沈阳拥有多家生产工厂,但一直没有中试工厂,极大影响其产品在中国规模化生产的进度。   21日在天津开发区投入使用的这个中试工厂,借鉴了诺维信在丹麦和美国的中试工厂的成功运作经验,因此也是目前诺维信全球最好的中试工厂。   该工厂投资1600万丹麦克朗,配备了10套容积为20L的世界上最先进的全自动发酵罐和在线测量监控系统,还拥有先进的样品分析仪器。   诺维信全球副总裁皮埃尔欧里森说,中试工厂是小试的扩大,是工业生产的缩影,是新产品研发和工业化生产及工艺优化之间不可缺少的桥梁。   他表示,这家中试工厂将使诺维信最新研发的产品加速在中国生产,同时也为现有产品的进一步工艺优化提供很大的支持。   诺维信是世界酶制剂和微生物领域的先导,在全球30个国家和地区设立了分支机构,产品销售130多个国家和地区。   诺维信也是丹麦在华最大投资企业之一,目前在中国累计投资超过2亿美元。在天津的工厂是诺维信在欧美之外最大的战略生产基地,生产范围广泛的酶制剂产品,包括技术级、食品级、饲料级酶制剂和最先进的洗涤剂工业用酶。
  • 卫生部:酶制剂可复配防腐剂自身防腐
    8月18日,卫生部食品安全综合协调与卫生监督局就食品加工助剂中酶制剂在生产中遇到的具体问题,回复中国食品添加剂和配料协会:   两种以上的酶制剂合成的复合食品酶制剂属于复合食品添加剂,在符合标准规定下,允许用于食品生产。同时,对于食品防腐剂与食品酶制剂复合也给予回复,只允许对酶制剂本身防腐,不能对终端产品生效(注:此处的不发挥效果似乎很含糊,防腐所使用的食品添加剂在品种和量如果允许在终端产品标准范围内的带入,似乎更具可操作性)。
  • 食品工业用酶制剂新品种果糖基转移酶获批 7种食品添加剂扩大使用范围
    p   国家卫生计生委近期发布公告称,根据食品安全法规定,审评机构组织专家对食品工业用酶制剂新品种果糖基转移酶(又名β—果糖基转移酶)和食品添加剂单,双甘油脂肪酸酯等7种扩大使用范围的品种安全性评估材料审查并通过。 /p p    strong 果糖基转移酶(又名β—果糖基转移酶) /strong /p p   米曲霉来源的果糖基转移酶(又名β-果糖基转移酶)申请作为食品工业用酶制剂新品种。日本厚生劳动省允许其作为食品添加剂使用。 /p p   该物质作为食品工业用酶制剂,用于生产低聚果糖。其质量规格应执行《食品添加剂 食品工业用酶制剂》(GB 1886.174-2016)。 /p p    strong 单,双甘油脂肪酸酯 /strong /p p   单,双甘油脂肪酸酯作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许在各类食品中按生产需要适量使用(表A.3所列食品类别除外)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为食品添加剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量不需要限定。 /p p   该物质用于经表面处理的鲜水果(食品类别04.01.01.02)和经表面处理的新鲜蔬菜(食品类别 04.02.01.02),发挥被膜剂作用。其质量规格应执行《食品添加剂单,双甘油脂肪酸酯》(GB 1886.65-2015)。 /p p    strong dl—酒石酸 /strong /p p   dl-酒石酸作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于面糊、裹粉、煎炸粉、油炸面制品、固体复合调味料、果蔬汁(浆)类饮料、植物蛋白饮料、碳酸饮料、风味饮料等食品类别,本次申请其使用范围扩大到糖果(食品类别05.02)。澳大利亚和新西兰食品标准局、日本厚生劳动省等允许其作为酸度调节剂用于食品。 /p p   该物质作为酸度调节剂用于糖果(食品类别05.02),调节产品的口味。其质量规格应执行《食品添加剂dl-酒石酸》(GB 1886.42-2015)。 /p p    strong 可溶性大豆多糖 /strong /p p   可溶性大豆多糖作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于脂肪类甜品、冷冻饮品、大米制品、小麦粉制品、淀粉制品、方便米面制品、冷冻米面制品、焙烤食品、饮料类等食品类别,本次申请其使用范围扩大到配制酒(食品类别15.02)。日本厚生劳动省允许其作为食品添加剂用于食品。 /p p   该物质作为增稠剂、乳化剂用于配制酒(食品类别15.02),调节产品的口感。其质量规格应执行《可溶性大豆多糖》(LS/T 3301-2005)。 /p p    strong 亮蓝 /strong /p p   亮蓝作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于风味发酵乳、调制炼乳、果酱、凉果类、加工坚果与籽类、焙烤食品馅料及表面用挂浆、调味糖浆、饮料类、配制酒、果冻、膨化食品等食品类别,本次申请其使用范围扩大到腌渍的食用菌和藻类(食品类别04.03.02.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为着色剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为6mg/kg bw。 /p p   该物质作为着色剂用于腌渍的食用菌和藻类(食品类别04.03.02.03),调节产品的色泽。其质量规格应执行《食品添加剂 亮蓝》(GB 1886.217-2016)。 /p p    strong 磷酸 /strong /p p   磷酸作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于乳及乳制品、水油状脂肪乳化制品、冷冻饮品、小麦粉及其制品、杂粮粉、食用淀粉、焙烤食品、预制肉制品、水产品罐头、调味糖浆、固体复合调味料、婴幼儿配方食品、婴幼儿辅助食品、饮料类、果冻、膨化食品等食品类别,本次申请其使用范围扩大到特殊医学用途婴儿配方食品(食品类别13.01.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为酸度调节剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的最大容许摄入量为70 mg/kg bw。 /p p   该物质作为酸度调节剂用于特殊医学用途婴儿配方食品(食品类别13.01.03),调节产品的口味。其质量规格应执行《食品添加剂 磷酸》(GB 1886.15-2015)。 /p p    strong 柠檬黄 /strong /p p   柠檬黄作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于风味发酵乳、调制炼乳、冷冻饮品、果酱、凉果类、加工坚果与籽类、饮料类、配制酒、果冻、膨化食品等食品类别,本次申请其使用范围扩大到腌渍的食用菌和藻类(食品类别04.03.02.03)。国际食品法典委员会、欧盟委员会、美国食品药品管理局等允许其作为着色剂用于食品。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为10 mg/kg bw。 /p p   该物质作为着色剂用于腌渍的食用菌和藻类(食品类别04.03.02.03),调节产品的色泽。其质量规格应执行《食品添加剂 柠檬黄》(GB 4481.1-2010)。 /p p    strong 乳酸链球菌素 /strong /p p   乳酸链球菌素作为食品添加剂已列入《食品安全国家标准 食品添加剂使用标准》(GB 2760),允许用于乳及乳制品、杂粮罐头、预制肉制品、熟肉制品、熟制水产品、蛋制品、醋、酱油、酱及酱制品、复合调味料、饮料类等食品类别,本次申请其使用范围扩大到腌渍的蔬菜(食品类别04.02.02.03)、加工食用菌和藻类(食品类别04.03.02)、面包(食品类别07.01)、糕点(食品类别07.02)。国际食品法典委员会、欧盟委员会、美国食品药品管理局、澳大利亚和新西兰食品标准局、日本厚生劳动省等允许其作为防腐剂用于食品。根据联合国粮农组织、世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为2mg/kg bw。 /p p   该物质作为防腐剂用于腌渍的蔬菜(食品类别04.02.02.03)、加工食用菌和藻类(食品类别04.03.02)、面包(食品类别07.01)、糕点(食品类别07.02),起到防腐、保鲜的作用。其质量规格应执行《食品添加剂 乳酸链球菌素》(GB 1886.231-2016)。 /p p style=" text-align: right "   日期:2018-03-19 /p
  • 黑龙江五部门发文加强中药制剂调剂使用管理:积极推动中药制剂向中药新药转化
    11月3日,黑龙江省卫生健康委、省中医药管理局等五部门联合印发《关于加强医疗机构中药制剂调剂使用管理的通知》,围绕医疗机构中药制剂调剂使用规范使用、支持政策、监督管理、科技创新等四方面提出规范化管理政策。在推进医疗机构中药制剂科技创新方面,《通知》提出,要加快科研攻关,推进中医防治常见病、多发病、重大疾病技术研究,积极推动中药制剂向中药新药转化。推动中药制剂研制,加强以黑龙江道地、大宗中药材为主要原料的中药制剂开发,推进古代经典名方研发和新药转化。对于来源于经验处方的中药制剂优先纳入调剂使用目录。在规范医疗机构中药制剂调剂使用方面,《通知》提出,鼓励符合条件的医疗机构进行调剂使用申报,明确配送方式由调入方与调出方自行协商,可自行配送或委托第三方配送,明确医疗机构中药制剂实行自主定价。在支持医疗机构中药制剂调剂使用发展方面,《通知》提出,支持建设区域中药制剂中心,探索开展医疗机构中药制剂研发、委托配制等服务,建立中药制剂共享配送中心,借助“互联网+”“物联网”等新业态,提供中药制剂调剂使用等服务。同时完善医保政策,相关部门批准调剂使用的医疗机构中药制剂,已纳入基本医保基金支付范围的,按乙类药品管理,由个人账户支付。在加强医疗机构中药制剂调剂使用的监督管理方面,《通知》提出,要推进不良反应与疗效评价系统使用,鼓励医疗机构开展临床评价,探索建立与中药临床定位相适应、体现其作用特点和优势的疗效评价标准,引入真实世界证据用于中药制剂再评价。同时,要加强医疗机构中药制剂调剂使用协同管理,以部门联动带动服务优化。据了解,《通知》结合黑龙江省医疗机构中药制剂调剂工作实际,经医疗、法律等多行业专家学者反复研讨形成。《通知》的印发,对推进“健康中国”建设,逐步构建完善的药品供应政策体系,保障黑龙江人民用药安全和用药需求有重要意义。
  • 揭幕仪式| 德祥集团与药物制剂国家工程研究中心建立药物制剂联合实验室
    医药制造业是关系国计民生的重要产业,在加快推进健康中国建设精神的指导下,近年来我国政府对于医药制造业的重视程度与支持力度都在不断提升,制药行业的市场规模持续增长。而作为制药行业的重要组成部分之一,药品制剂也在快速发展,有越来越多的企业与研究机构投入到药物制剂的研究中。 2021年7月20日,德祥集团与中国医药工业研究总院旗下的药物制剂国家工程研究中心举办了药物制剂联合实验室的揭幕仪式。中国医药工业研究总院陆伟根副院长、药物制剂国家工程研究中心何军副主任和德祥集团ceo朱智华先生、总经理金莹瑛女士、副总经理金捷女士出席了揭幕仪式。 揭幕仪式合影 药物制剂国家工程研究中心是我国从事给药系统研究有且仅有的国家的级别的工程研究中心,中心一直以“创新”为原动力,致力于有自主知识产权的制剂产品和技术开发。德祥集团致力于将全球制药领域先进的技术引入国内科研院校。此次共建的药物制剂联合实验室,旨在加深德祥集团与药物制剂国家工程研究中心在药品质量控制方面的合作,同时联合实验室将作为平台和纽带,为后期双方多元化、以及更深层次的合作奠定坚实的基础,同时未来将对促进我国药物创新、推动制药工业发展具有重要意义。 中国医药工业研究总院陆伟根副院长 在揭幕仪式上,首先是中国医药工业研究总院陆伟根副院长致辞,他感谢了德祥对中国医药工业研究总院旗下药物制剂国家工程研究中心工作的支持,强调新剂型的发展离不开各个环节的支持,尤其是生产设备和评价设备。陆副院长表示本次合作对于中国医药工业研究总院药物制剂国家工程研究中心未来的剂型发展以及整个制药行业的发展都能发挥很好的作用,并期待此次合作能够为国家制药工业和制剂工业的发展做出新的贡献。 德祥集团ceo朱智华先生 随后,德祥集团ceo朱智华先生致辞,首先他对药物制剂国家工程研究中心能够与德祥集团建立药物制剂联合实验室表示感谢。从1992年成立到现在,德祥已经有将近30年的历史。作为一家代理公司,德祥将很多欧美与日本的品牌引入中国,为中国的科研院所提供先进的设备和技术服务。他表示,此次建立药物制剂联合实验室对德祥来说是一个重大的里程碑,标志着德祥从一家纯粹的代理商公司转变为实体公司,使德祥能够把更好的、更完善的解决方案提供给中国的制药企业,从而更快地在当下高速发展的制药市场中占据一席之地。在发言的结尾,他再次感谢中国医药工业研究总院以及旗下药物制剂国家工程研究中心的支持,并衷心地希望双方能在药物制剂联合实验室中进行更深入的合作。 参观实验室 揭幕仪式结束后,出席本次仪式的领导们参观了药物制剂联合实验室。仪器设备在药物的研发生产与质量控制中发挥着重要作用,德祥为实验室的仪器配置提供了重要的协助。在参观过程中,双方领导都十分关注实验室的设备情况。参观过后,双方就行业的人才、市场等现状以及双方发展情况进行了密切的交流。双方还谈及未来的合作,将在仪器、实验基地等多方面开展合作项目。 交流活动 参与建立药物制剂联合实验室的除了现场出席的双方代表以及幕后团队之外,还有一位不得不介绍的“小伙伴”:德国pharma test全自动纳米溶出仪。 德国pharma test全自动纳米溶出仪 德国pharma test 溶出仪符合usp、ep等要求设计,满足片剂、胶囊等制剂溶出度的测试。其优良的性能保证溶出实验结果的高度准确性和良好重现性。携带pt-dr释放器可对纳米级别颗粒的样品进行溶出实验。 期待未来还有更多的“小伙伴”们加入到药物制剂联合实验室中,为药品质量检验与控制添砖加瓦。 关于德祥集团 自1992年创办以来,德祥就一直是科学仪器行业内颇受尊敬的*供应商。公司业务包含仪器代理,维修售后,自主产品研发生产销售售后。实验室分析仪器、工业检测仪器及过程控制设备是德祥主营的产品,现已覆盖高校、科研院所、政府组织、检验机构及工业、企业等客户,涵盖制药、石化、食品饮料和电子等各个行业。 我们设有 13个办事处和销售点(含越南),3个维修中心,1个样机实验室,致力于为每一位客户提供*的服务。 关于药物制剂国家工程研究中心 药物制剂国家工程研究中心隶属于中国医药工业研究总院,是国内最早从事药物制剂研究的机构,也是我国从事给药系统研究有且仅有的国家的级别的工程研究中心,中心一直以“创新”为原动力,致力于具有自主知识产权的制剂产品和技术开发,在口服、注射、透皮等释药系统产业化方面形成了独特的技术优势,是国内给药系统研究的领航者。
  • 揭幕仪式| 德祥集团与药物制剂国家工程研究中心建立药物制剂联合实验室
    医药制造业是关系国计民生的重要产业,在加快推进健康中国建设精神的指导下,近年来我国政府对于医药制造业的重视程度与支持力度都在不断提升,制药行业的市场规模持续增长。而作为制药行业的重要组成部分之一,药品制剂也在快速发展,有越来越多的企业与研究机构投入到药物制剂的研究中。 2021年7月20日,德祥集团与中国医药工业研究总院旗下的药物制剂国家工程研究中心举办了药物制剂联合实验室的揭幕仪式。中国医药工业研究总院陆伟根副院长、药物制剂国家工程研究中心何军副主任和德祥集团CEO朱智华先生、总经理金莹瑛女士、副总经理金捷女士出席了揭幕仪式。 揭幕仪式合影 药物制剂国家工程研究中心是我国从事给药系统研究有且仅有的国家的级别的工程研究中心,中心一直以“创新”为原动力,致力于有自主知识产权的制剂产品和技术开发。德祥集团致力于将全球制药领域先进的技术引入国内科研院校。此次共建的药物制剂联合实验室,旨在加深德祥集团与药物制剂国家工程研究中心在药品质量控制方面的合作,同时联合实验室将作为平台和纽带,为后期双方多元化、以及更深层次的合作奠定坚实的基础,同时未来将对促进我国药物创新、推动制药工业发展具有重要意义。 中国医药工业研究总院陆伟根副院长 在揭幕仪式上,首先是中国医药工业研究总院陆伟根副院长致辞,他感谢了德祥对中国医药工业研究总院旗下药物制剂国家工程研究中心工作的支持,强调新剂型的发展离不开各个环节的支持,尤其是生产设备和评价设备。陆副院长表示本次合作对于中国医药工业研究总院药物制剂国家工程研究中心未来的剂型发展以及整个制药行业的发展都能发挥很好的作用,并期待此次合作能够为国家制药工业和制剂工业的发展做出新的贡献。 德祥集团CEO朱智华先生 随后,德祥集团CEO朱智华先生致辞,首先他对药物制剂国家工程研究中心能够与德祥集团建立药物制剂联合实验室表示感谢。从1992年成立到现在,德祥已经有将近30年的历史。作为一家代理公司,德祥将很多欧美与日本的品牌引入中国,为中国的科研院所提供先进的设备和技术服务。他表示,此次建立药物制剂联合实验室对德祥来说是一个重大的里程碑,标志着德祥从一家纯粹的代理商公司转变为实体公司,使德祥能够把更好的、更完善的解决方案提供给中国的制药企业,从而更快地在当下高速发展的制药市场中占据一席之地。在发言的尾声,他再次感谢中国医药工业研究总院以及旗下药物制剂国家工程研究中心的支持,并衷心地希望双方能在药物制剂联合实验室中进行更深入的合作。 参观实验室 揭幕仪式结束后,出席本次仪式的领导们参观了药物制剂联合实验室。仪器设备在药物的研发生产与质量控制中发挥着重要作用,德祥为实验室的仪器配置提供了重要的协助。在参观过程中,双方领导都十分关注实验室的设备情况。参观过后,双方就行业的人才、市场等现状以及双方发展情况进行了密切的交流。双方还谈及未来的合作,将在仪器、实验基地等多方面开展合作项目。 交流活动 参与建立药物制剂联合实验室的除了现场出席的双方代表以及幕后团队之外,还有一位不得不介绍的“小伙伴”:德国Pharma Test全自动纳米溶出仪。 德国Pharma Test全自动纳米溶出仪 德国Pharma Test 溶出仪符合USP、EP等要求设计,满足片剂、胶囊等制剂溶出度的测试。其优良的性能保证溶出实验结果的高度准确性和良好重现性。携带PT-DR释放器可对纳米级别颗粒的样品进行溶出实验。 期待未来还有更多的“小伙伴”们加入到药物制剂联合实验室中,为药品质量检验与控制添砖加瓦。关于德祥集团自1992年创办以来,德祥就一直是科学仪器行业内颇受尊敬的优质供应商。公司业务包含仪器代理,维修售后,自主产品研发生产销售售后。实验室分析仪器、工业检测仪器及过程控制设备是德祥主营的产品,现已覆盖高校、科研院所、政府组织、检验机构及工业、企业等客户,涵盖制药、石化、食品饮料和电子等各个行业。 我们设有 13个办事处和销售点(含越南),3个维修中心,1个样机实验室,致力于为每一位客户提供优质的服务。 关于药物制剂国家工程研究中心 药物制剂国家工程研究中心隶属于中国医药工业研究总院,是国内最早从事药物制剂研究的机构,也是我国从事给药系统研究有且仅有的的国家的级别的工程研究中心,中心一直以“创新”为原动力,致力于具有自主知识产权的制剂产品和技术开发,在口服、注射、透皮等释药系统产业化方面形成了独特的技术优势,是国内给药系统研究的领航者。
  • CFDA:仙灵骨葆口服制剂或致肝损伤
    p   国家食品药品监督管理总局(CFDA)日前发布了第七十二期《药品不良反应信息通报》,提示关注仙灵骨葆口服制剂引起的肝损伤不良反应。 /p p   仙灵骨葆口服制剂是一类补肾壮骨药,具有滋补肝肾、接骨续筋、强身健骨的功效,临床上用于骨质疏松和骨质疏松症、骨折、骨关节炎、骨无菌性坏死等。 /p p   国家药品不良反应监测数据分析结果显示,仙灵骨葆口服制剂可能导致肝损伤风险,临床表现包括乏力、食欲不振、厌油、恶心、上腹胀痛、尿黄、目黄、皮肤黄染等,并伴有谷丙转氨酶、谷草转氨酶、胆红素等升高,严重者可出现肝衰竭,长期连续用药、老年患者用药等可能会增加这种风险。 /p p    strong 国家食品药品监督管理总局建议内容如下: /strong /p p   (一)医务人员在使用仙灵骨葆口服制剂前应详细了解患者疾病史及用药史,避免同时使用其他可导致肝损伤的药品,对有肝病史或肝生化指标异常的患者,应避免使用仙灵骨葆口服制剂。 /p p   (二)患者用药期间应定期监测肝生化指标 若出现肝生化指标异常或全身乏力、食欲不振、厌油、恶心、上腹胀痛、尿黄、目黄、皮肤黄染等可能与肝损伤有关的临床表现时,应立即停药并到医院就诊。 /p p   (三)药品生产企业应当加强药品不良反应监测,及时修订仙灵骨葆口服制剂的药品说明书,更新相关的用药风险信息如不良反应、禁忌、注意事项等,以有效的方式将仙灵骨葆口服制剂的用药风险告知医务人员和患者,加大合理用药宣传,最大程度保障患者的用药安全。 /p p    strong 配发问答 /strong /p p   1、仙灵骨葆口服制剂的主要成份是什么?主要用于治疗什么疾病? /p p   仙灵骨葆口服制剂的成份包括淫羊藿、续断、丹参、知母、补骨脂、地黄。 /p p   该品种具有滋补肝肾,接骨续筋,强身健骨的功效,临床上用于治疗骨质疏松和骨质疏松症,骨折,骨关节炎,骨无菌性坏死等。 /p p   2、仙灵骨葆口服制剂导致的肝损伤有哪些风险因素? /p p   长期连续用药或老年患者出现肝损伤的风险有所升高。肝功能不全或合并使用其他可能导致肝损伤的药物等也可能增加仙灵骨葆口服制剂的肝损伤风险。 /p p   3、如何降低仙灵骨葆口服制剂的肝损伤风险? /p p   医务人员在使用仙灵骨葆口服制剂前应详细了解患者疾病史及用药史,避免同时使用其他可导致肝损伤的药品。有肝病史或肝生化指标异常的患者应避免使用仙灵骨葆口服制剂。 /p p   患者用药期间应定期监测肝生化指标 若出现肝生化指标异常或全身乏力、食欲不振、厌油、恶心、上腹胀痛、尿黄、目黄、皮肤黄染等可能与肝损伤有关的临床表现时,应立即停药并到医院就诊。 /p p br/ /p
  • 中国高端制剂会议论坛二 | 药物制剂的标准与质量
    p style=" text-align: justify text-indent: 0em " img src=" https://img1.17img.cn/17img/images/202009/uepic/0b7979bc-5826-4e08-b628-77e0e1787e58.jpg" title=" 大会分论坛二 IMG_5106_看图王.jpg" alt=" 大会分论坛二 IMG_5106_看图王.jpg" style=" text-align: center text-indent: 2em max-width: 100% max-height: 100% " / br/ /p p style=" text-align: justify text-indent: 2em " 药物制剂的标准与质量是药物制剂高质量发展的基石。8月28日下午至29日,“中国药物制剂高质量发展研讨会”的分论坛二——“药物制剂的标准与质量”如火如荼地展开了讨论。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/bfffb56d-8484-44dc-a986-109756d7d2c2.jpg" title=" 001.jpg" alt=" 001.jpg" / /p p style=" text-indent: 2em " span style=" color: rgb(255, 255, 0) background-color: rgb(0, 176, 240) " strong 报告嘉宾 /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/b37062cd-2114-43d9-93b3-ed0438833cce.jpg" title=" 003.png" alt=" 003.png" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/914f28ca-0d9e-4fa2-b509-91686112e6a3.jpg" title=" IMG_5000_看图王.jpg" alt=" IMG_5000_看图王.jpg" / /p p style=" text-align: justify text-indent: 2em " strong span style=" color: rgb(255, 255, 0) background-color: rgb(0, 176, 240) " 会议盛况 /span /strong /p p style=" text-align: justify text-indent: 2em " strong 报告主题:浅谈药品质量标准制修订与检验检测方法 /strong /p p style=" text-align: center" img style=" width: 657px height: 683px " src=" https://img1.17img.cn/17img/images/202009/uepic/218c1317-87d6-43a3-9c8f-d1737e260306.jpg" title=" 005.jpg" width=" 657" height=" 683" / /p p style=" text-align: center" img style=" width: 648px height: 428px " src=" https://img1.17img.cn/17img/images/202009/uepic/0f5e3c9f-ddfb-4f75-a7a8-1718180a79f7.jpg" title=" 006.jpg" width=" 648" height=" 428" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:吸入制剂通则技术解读 /strong /p p strong /strong /p p style=" text-align: center" img style=" width: 666px height: 585px " src=" https://img1.17img.cn/17img/images/202009/uepic/cca53e33-0833-421d-893a-843a745ab7da.jpg" title=" 007.jpg" width=" 666" height=" 585" / /p p style=" text-align: center" img style=" width: 665px height: 443px " src=" https://img1.17img.cn/17img/images/202009/uepic/94d02676-7aeb-40e9-82b3-e39404be2829.jpg" title=" 008.jpg" width=" 665" height=" 443" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:肺部沉积及肺部溶出技术在吸入制剂研究中的应用 /strong br/ /p p strong /strong /p p style=" text-align: center" img style=" width: 660px height: 778px " src=" https://img1.17img.cn/17img/images/202009/uepic/e95e2775-2b3d-48c2-9736-0fa12fb38b5e.jpg" title=" 009.jpg" width=" 660" height=" 778" / /p p style=" text-align: center" img style=" width: 666px height: 422px " src=" https://img1.17img.cn/17img/images/202009/uepic/055ed654-3c27-4151-a5db-78c2b8144862.jpg" title=" 010.jpg" width=" 666" height=" 422" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:质量源于设计与药品质量 /strong /p p strong /strong /p p style=" text-align: center" img style=" width: 664px height: 482px " src=" https://img1.17img.cn/17img/images/202009/uepic/5c687800-27fb-4a99-9ed4-9cb8e126dc05.jpg" title=" 011.jpg" width=" 664" height=" 482" / /p p style=" text-align: center" img style=" width: 658px height: 438px " src=" https://img1.17img.cn/17img/images/202009/uepic/c13a1338-0b7e-41c0-94bd-7c38a5836998.jpg" title=" 012.jpg" width=" 658" height=" 438" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:吸入制剂等特殊剂型检查项的意义与实验技术要点 /strong /p p strong /strong /p p style=" text-align: center" img style=" width: 664px height: 609px " src=" https://img1.17img.cn/17img/images/202009/uepic/6bacd47e-e6ef-449b-bc32-0cd595b59853.jpg" title=" 013.jpg" width=" 664" height=" 609" / /p p style=" text-align: center" img style=" width: 629px height: 387px " src=" https://img1.17img.cn/17img/images/202009/uepic/fb658ce5-6792-43d5-81f9-d18017360841.jpg" title=" 014.jpg" width=" 629" height=" 387" / /p p style=" text-indent: 2em " span style=" color: rgb(255, 255, 0) background-color: rgb(0, 176, 240) " strong 讨论主题:“吸入制剂的标准与质量圆桌讨论” /strong /span /p p style=" text-indent: 2em " span style=" color: rgb(255, 255, 0) background-color: rgb(0, 176, 240) " strong /strong /span /p p style=" text-indent: 2em " strong span style=" color: rgb(255, 255, 0) background-color: rgb(0, 176, 240) " 参与讨论嘉宾 /span /strong /p p style=" text-indent: 2em " span style=" color: rgb(0, 0, 0) " strong 宁保明 | 张启明 | 牛冲 | 王海盛 | 高青 /strong /span /p p strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/1d5b0e81-1058-443e-8c93-b8a64207e02c.jpg" title=" 015.jpg" alt=" 015.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:复杂成分药物的质控思路 /strong /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-align: justify text-indent: 2em " img style=" width: 661px height: 918px " src=" https://img1.17img.cn/17img/images/202009/uepic/acc9250b-dfa3-446a-9fd8-9d895c13a9b3.jpg" title=" 016.jpg" width=" 661" height=" 918" / /p p style=" text-align: center" img style=" width: 665px height: 442px " src=" https://img1.17img.cn/17img/images/202009/uepic/2de0c64b-a5c5-46c4-a994-27acdc378730.jpg" title=" 017.jpg" width=" 665" height=" 442" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:通用技术(单层,双层,三层,包芯,渗透泵)在缓控释新药的应用案例 /strong /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-align: justify text-indent: 2em " img style=" width: 665px height: 663px " src=" https://img1.17img.cn/17img/images/202009/uepic/37bd7848-d8f4-4040-91cc-8948b404a93d.jpg" title=" 018.jpg" width=" 665" height=" 663" / /p p style=" text-align: center" img style=" width: 669px height: 444px " src=" https://img1.17img.cn/17img/images/202009/uepic/2c846172-546f-42c3-8287-34a6a36125cd.jpg" title=" 019.jpg" width=" 669" height=" 444" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:基因毒杂质的挑战与控制策略-从ICH指导纲领到实际操作层面 /strong /p p strong /strong /p p style=" text-align: center" img style=" width: 643px height: 865px " src=" https://img1.17img.cn/17img/images/202009/uepic/2b74517f-d34f-4723-b225-9d604044439d.jpg" title=" 020.jpg" width=" 643" height=" 865" / /p p style=" text-align: center" img style=" width: 645px height: 430px " src=" https://img1.17img.cn/17img/images/202009/uepic/72dfae01-9404-4aef-9cc5-040a123a10a1.jpg" title=" 021.jpg" width=" 645" height=" 430" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:注射用原位凝胶的研究展望 /strong br/ /p p strong /strong /p p style=" text-align: center" img style=" width: 639px height: 662px " src=" https://img1.17img.cn/17img/images/202009/uepic/1180ee60-d72e-4ed1-8651-caff4d158dff.jpg" title=" 022.jpg" width=" 639" height=" 662" / /p p style=" text-align: center" img style=" width: 639px height: 420px " src=" https://img1.17img.cn/17img/images/202009/uepic/e20b7741-bbd1-4026-9faf-d18ad9d03e68.jpg" title=" 023.jpg" width=" 639" height=" 420" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:预灌封注射剂的包装形式,选择和相容性要求 /strong br/ /p p strong /strong /p p style=" text-align: center" img style=" width: 653px height: 637px " src=" https://img1.17img.cn/17img/images/202009/uepic/7fff80fe-dc79-47ac-a348-d29b6094bac3.jpg" title=" 024.jpg" width=" 653" height=" 637" / /p p style=" text-align: center" img style=" width: 659px height: 439px " src=" https://img1.17img.cn/17img/images/202009/uepic/ad9d4b33-9e6b-4e5e-bdc3-1490e18537c2.jpg" title=" 025.jpg" width=" 659" height=" 439" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:新法规的思考与应对 /strong /p p strong /strong /p p style=" text-align: center" img style=" width: 646px height: 440px " src=" https://img1.17img.cn/17img/images/202009/uepic/91bec26c-203d-4ddc-88af-54ffb4b7815b.jpg" title=" 026.jpg" width=" 646" height=" 440" / /p p style=" text-align: center" img style=" width: 654px height: 436px " src=" https://img1.17img.cn/17img/images/202009/uepic/beb68135-6d34-466f-943d-c12859a0fa5d.jpg" title=" 027.jpg" width=" 654" height=" 436" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:球晶造粒技术在制备难溶性药物固体分散体中的应用 /strong /p p style=" text-align: justify text-indent: 2em " strong /strong /p p style=" text-align: center text-indent: 0em " img style=" width: 626px height: 792px " src=" https://img1.17img.cn/17img/images/202009/uepic/86e06b11-cbc7-4cb5-bbd6-be05e47979c6.jpg" title=" 028.jpg" width=" 626" height=" 792" / /p p style=" text-align: center" img style=" width: 648px height: 432px " src=" https://img1.17img.cn/17img/images/202009/uepic/cb80c8bb-bf58-4014-add5-3bb84cdb7e8b.jpg" title=" 029.jpg" width=" 648" height=" 432" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:流池法溶出度测试在口服缓控释制剂及复杂注射剂中的应用 /strong br/ /p p strong /strong /p p style=" text-align: center" img style=" width: 659px height: 556px " src=" https://img1.17img.cn/17img/images/202009/uepic/c2116f22-acfe-45eb-807f-d780881863a3.jpg" title=" 030.jpg" width=" 659" height=" 556" / /p p style=" text-align: center" img style=" width: 642px height: 428px " src=" https://img1.17img.cn/17img/images/202009/uepic/e833cfa1-b2e6-4e13-b68b-13df3e85aa93.jpg" title=" 031.jpg" width=" 642" height=" 428" / /p p style=" text-indent: 2em " strong 报告主题:高端制剂仿创相关知识产权的权利获取与侵权防范 /strong br/ /p p strong /strong /p p style=" text-align: center" img style=" width: 653px height: 714px " src=" https://img1.17img.cn/17img/images/202009/uepic/80e52cfd-14b6-462d-82d7-8475f4a83ca4.jpg" title=" 032.jpg" width=" 653" height=" 714" / /p p style=" text-align: center" img style=" width: 652px height: 433px " src=" https://img1.17img.cn/17img/images/202009/uepic/8164042c-fd68-4b2b-8ed5-1747c1e3b529.jpg" title=" 033.jpg" width=" 652" height=" 433" / /p p style=" text-align: justify text-indent: 2em " strong 报告主题:ICH元素杂质指导原则增修订历程及对中国药典的启示 /strong br/ /p p strong /strong /p p style=" text-align: center" img style=" width: 653px height: 621px " src=" https://img1.17img.cn/17img/images/202009/uepic/be3f7ecc-249c-4ece-bcd1-de6ebe207f06.jpg" title=" 034.jpg" width=" 653" height=" 621" / /p p style=" text-align: center" img style=" width: 654px height: 435px " src=" https://img1.17img.cn/17img/images/202009/uepic/26419d1a-5c40-4fc7-a8e9-cba8d4fbdc49.jpg" title=" 035.jpg" width=" 654" height=" 435" / /p p style=" text-align: center " span style=" color: rgb(255, 255, 0) background-color: rgb(0, 176, 240) " strong “大会主持” /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong 涂家生|闻晓光|宁保明|吴传斌|卢京光 /strong /span /p p span style=" color: rgb(0, 0, 0) " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/77829410-0492-4c73-98d3-2cd6bf96e735.jpg" title=" 大会主持.png" alt=" 大会主持.png" / /p p style=" text-align: center " span style=" background-color: rgb(0, 176, 240) " strong style=" color: rgb(255, 255, 0) text-align: center " 闭幕致辞 /strong /span /p p style=" text-align: center " span style=" color: rgb(255, 255, 0) background-color: rgb(0, 176, 240) " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/c032c36d-9157-42f6-912e-7cdc66b00cfb.jpg" title=" 042.jpg" alt=" 042.jpg" / /p p style=" text-align: center " strong 卢京光 青岛市食品药品检验研究院党总支书记 /strong /p p style=" text-align: justify text-indent: 2em " “本次会议汇集了药物制剂领域顶级权威的专家,带来了专业的解读和观点的分享,参会者之间也展开了充分的交流,会议的内容精彩纷呈,权威高端,取得了圆满的成功。” /p p style=" text-align: center " strong span style=" color: rgb(255, 255, 0) background-color: rgb(0, 176, 240) " 会议现场 /span /strong /p p style=" text-align: center" img style=" width: 666px height: 442px " src=" https://img1.17img.cn/17img/images/202009/uepic/5d9f5b5d-ebd0-41e8-b3cf-239eaf4a101a.jpg" title=" IMG_5033_看图王.jpg" width=" 666" height=" 442" / /p p style=" text-align: center" img style=" width: 670px height: 444px " src=" https://img1.17img.cn/17img/images/202009/uepic/ad8a560c-a2e3-4b1a-b68c-62ec772d1e82.jpg" title=" IMG_5034_看图王.jpg" width=" 670" height=" 444" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/c9cdb187-b194-4906-81e3-5d32cf67dd88.jpg" title=" 043.jpg" alt=" 043.jpg" / /p p br/ /p
  • 中国高端制剂会议论坛一 | 药物制剂的开发与评估
    p style=" text-align: justify text-indent: 2em " 药物制剂实现高质量发展的第一步便是药物制剂开发与评估,在药物全生命周期中,研发的重要性不言而喻。8月28日下午至29日,“中国药物制剂高质量发展研讨会”的分论坛一——“药物制剂的开发与评估”如期举行,专业人士济济一堂,会场座无虚席。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/81b3fe4c-0cbf-41d0-9d6f-d0faa724202b.jpg" title=" 分论坛1 现场_看图王.jpg" alt=" 分论坛1 现场_看图王.jpg" / /p p style=" text-align: center text-indent: 0em " 报告嘉宾 br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/b199aa2e-5c8a-4bfc-89ab-11b1eee98586.jpg" title=" 002.png" alt=" 002.png" / /p p style=" text-align: justify text-indent: 2em " 会议实况 /p p style=" text-align: center" img style=" width: 575px height: 382px " src=" https://img1.17img.cn/17img/images/202009/uepic/931bc35f-9cba-4bd2-8583-00f8362dd576.jpg" title=" 004.jpg" width=" 575" height=" 382" / /p p style=" text-align: center" img style=" width: 533px height: 355px " src=" https://img1.17img.cn/17img/images/202009/uepic/c091f546-9e51-4931-b765-745e93ed6fbd.jpg" title=" 005.jpg" width=" 533" height=" 355" / /p p style=" text-align: center " strong 报告主题: span style=" text-align: center text-indent: 0em " 特殊注射剂仿制药药学研究的一般要求 /span /strong /p p span style=" text-align: center text-indent: 0em " /span /p p style=" text-align: center" img style=" width: 543px height: 695px " src=" https://img1.17img.cn/17img/images/202009/uepic/bd511216-5d5a-42a6-b947-f39a7654c7e1.jpg" title=" 006.jpg" width=" 543" height=" 695" / /p p style=" text-align: center" img style=" width: 510px height: 340px " src=" https://img1.17img.cn/17img/images/202009/uepic/699731ef-4a11-404e-8367-8584cf22e17f.jpg" title=" 007.jpg" width=" 510" height=" 340" / /p p style=" text-align: center " strong style=" text-align: center text-indent: 0em " 报告主题: /strong strong style=" text-align: center text-indent: 0em " 高技术壁垒和改良型新药产品的产业化开发和国际注册策略 /strong /p p style=" text-align: center" img style=" width: 517px height: 611px " src=" https://img1.17img.cn/17img/images/202009/uepic/6443d400-a031-47be-904f-166907aea38f.jpg" title=" 008.jpg" width=" 517" height=" 611" / /p p style=" text-align: center" img style=" width: 462px height: 308px " src=" https://img1.17img.cn/17img/images/202009/uepic/ad29601c-a74a-45f8-9f2c-b6037d27c25c.jpg" title=" 009.jpg" width=" 462" height=" 308" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:高端药物制剂开发技术新进展 /strong /p p style=" text-align: center " img style=" width: 502px height: 523px " src=" https://img1.17img.cn/17img/images/202009/uepic/f70961bc-610c-4f1c-a894-918b23b3e129.jpg" title=" 010.jpg" width=" 502" height=" 523" / /p p style=" text-align: center " img style=" width: 477px height: 318px " src=" https://img1.17img.cn/17img/images/202009/uepic/2fad5299-9314-44e8-afef-8d477be49b6b.jpg" title=" 011.jpg" width=" 477" height=" 318" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:复杂制剂的技术与发展 /strong /p p style=" text-align: center" img style=" width: 490px height: 550px " src=" https://img1.17img.cn/17img/images/202009/uepic/cccf3bc6-1ad1-4d85-bd6d-7c118193065b.jpg" title=" 012.jpg" width=" 490" height=" 550" / /p p style=" text-align: center" img style=" width: 465px height: 310px " src=" https://img1.17img.cn/17img/images/202009/uepic/e4a8b27b-e872-4f68-84ad-013558c6189d.jpg" title=" 013.jpg" width=" 465" height=" 310" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:长效制剂的工业开发 /strong /p p style=" text-align: center" img style=" width: 485px height: 385px " src=" https://img1.17img.cn/17img/images/202009/uepic/04422b5b-7ed8-4ee2-b6ac-1ac72bc6bdbd.jpg" title=" 014.jpg" width=" 485" height=" 385" / /p p style=" text-align: center" img style=" width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202009/uepic/b194379b-21dd-4765-aab2-5eda75f9747f.jpg" title=" 015.jpg" width=" 450" height=" 300" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:改良型新药研发关键技术及案例分析 /strong /p p style=" text-align: center" img style=" width: 490px height: 623px " src=" https://img1.17img.cn/17img/images/202009/uepic/bc714b4d-3f1e-4586-8def-db6bbf773aa0.jpg" title=" 016.jpg" width=" 490" height=" 623" / /p p style=" text-align: center" img style=" width: 480px height: 317px " src=" https://img1.17img.cn/17img/images/202009/uepic/4a0f8e0a-533d-4963-babe-60fc0a081e53.jpg" title=" 017.jpg" width=" 480" height=" 317" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:高端药物制剂的发展现状与挑战 /strong /p p style=" text-align: center" img style=" width: 513px height: 581px " src=" https://img1.17img.cn/17img/images/202009/uepic/15a4332e-128f-4642-aef0-86c9aa2655f2.jpg" title=" 018.jpg" width=" 513" height=" 581" / /p p style=" text-align: center" img style=" width: 495px height: 330px " src=" https://img1.17img.cn/17img/images/202009/uepic/d4430225-57ab-4821-be1a-7e42cdd82738.jpg" title=" 019.jpg" width=" 495" height=" 330" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:生物等效性评价的临床试验设计与分析 /strong /p p style=" text-align: center" img style=" width: 501px height: 574px " src=" https://img1.17img.cn/17img/images/202009/uepic/4cadb0bb-b567-4d59-b818-613ef915e9eb.jpg" title=" 020.jpg" width=" 501" height=" 574" / /p p style=" text-align: center" img style=" width: 482px height: 319px " src=" https://img1.17img.cn/17img/images/202009/uepic/e6324a28-aed6-41c1-9714-6a2d7fd5c902.jpg" title=" 021.jpg" width=" 482" height=" 319" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:生物等效性试验(BE)严谨规范高效运行体会 /strong /p p style=" text-align: center" img style=" width: 520px height: 400px " src=" https://img1.17img.cn/17img/images/202009/uepic/34b80359-9e52-40e4-968c-0343eaa3bbf9.jpg" title=" 022.jpg" width=" 520" height=" 400" / /p p style=" text-align: center" img style=" width: 510px height: 339px " src=" https://img1.17img.cn/17img/images/202009/uepic/21633a53-75c1-4fff-8101-9a856fdc0af7.jpg" title=" 023.jpg" width=" 510" height=" 339" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:生物等效性研究的审评考虑 /strong /p p style=" text-align: center" img style=" width: 527px height: 561px " src=" https://img1.17img.cn/17img/images/202009/uepic/77055e0e-4a0a-42dc-8a7b-26c23b80a99c.jpg" title=" 024.jpg" width=" 527" height=" 561" / /p p style=" text-align: center" img style=" width: 510px height: 340px " src=" https://img1.17img.cn/17img/images/202009/uepic/f7000dab-db10-4dd0-ac4e-d746e4d01387.jpg" title=" 025.jpg" width=" 510" height=" 340" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:浅析创新药药学评审的策略及相关技术要求 /strong /p p style=" text-align: center " img style=" width: 513px height: 553px " src=" https://img1.17img.cn/17img/images/202009/uepic/21d3d8cf-e605-4894-af52-7ffc6c6d8de3.jpg" title=" 026.jpg" width=" 513" height=" 553" / /p p style=" text-align: center " img style=" width: 486px height: 323px " src=" https://img1.17img.cn/17img/images/202009/uepic/4fc82dee-2d0b-465b-b2b3-4e9579541a16.jpg" title=" 027.jpg" width=" 486" height=" 323" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:溶蚀型缓释制剂、肠溶片剂开发中的关键特性,释放度研究与体内BE的关联建立 /strong /p p style=" text-align: center" img style=" width: 519px height: 560px " src=" https://img1.17img.cn/17img/images/202009/uepic/fb2329bc-e073-42cc-a100-1833199846b5.jpg" title=" 028.jpg" width=" 519" height=" 560" / /p p style=" text-align: center" img style=" width: 489px height: 326px " src=" https://img1.17img.cn/17img/images/202009/uepic/1bb11be6-92c9-4678-ab6c-8a0be11e0226.jpg" title=" 029.jpg" width=" 489" height=" 326" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:PPI肠溶片:从预BE到BE研究的陷阱 /strong /p p style=" text-align: center" img style=" width: 543px height: 532px " src=" https://img1.17img.cn/17img/images/202009/uepic/f9e6f15a-8b4f-49c5-a90b-dcdb060a54ca.jpg" title=" 030.jpg" width=" 543" height=" 532" / /p p style=" text-align: center" img style=" width: 509px height: 334px " src=" https://img1.17img.cn/17img/images/202009/uepic/158d8e89-50f6-428d-9e9c-c4944d805de5.jpg" title=" 031.jpg" width=" 509" height=" 334" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:反向工程分析与药物一致性评价 /strong /p p style=" text-align: center" img style=" width: 534px height: 443px " src=" https://img1.17img.cn/17img/images/202009/uepic/5ebf3a1c-3c1f-456b-a885-614e85fe126c.jpg" title=" 032.jpg" width=" 534" height=" 443" / /p p style=" text-align: center" img style=" width: 542px height: 361px " src=" https://img1.17img.cn/17img/images/202009/uepic/d52b0976-0d18-49be-bb7a-b2de8cdc27f7.jpg" title=" 033.jpg" width=" 542" height=" 361" / /p p style=" text-align: center text-indent: 0em " strong 报告主题:注射剂一致性评价的技术要求 /strong /p p style=" text-indent: 0em " br/ /p p style=" text-align: center text-indent: 0em " span style=" background-color: rgb(0, 176, 240) color: rgb(255, 255, 0) " strong “报告主题:注射剂一致性评价”——圆桌讨论 /strong /span /p p style=" text-align: justify text-indent: 2em " strong 参与讨论嘉宾 /strong /p p style=" text-align: justify text-indent: 2em " strong 魏世峰 | 王亚敏 | 姚晨 | 刘万卉 | 郑爱萍 | 周立春 | 孙亚洲 | 余立 | 韩军& nbsp /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/0c2fc2f7-aad1-47bc-aed5-fb24c5ab3a34.jpg" title=" 034.jpg" alt=" 034.jpg" / /p p style=" text-align: justify text-indent: 2em " ——“大会主持” /p p style=" text-align: justify text-indent: 2em " strong 王海盛| span style=" text-indent: 2em " 黄从海| /span span style=" text-indent: 2em " 胡欣| /span span style=" text-indent: 2em " 余立| /span span style=" text-indent: 2em " 魏世峰| /span span style=" text-indent: 2em " 王维剑 /span /strong /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/39c4cb2a-ce47-452c-a28c-02bf2a469036.jpg" title=" 007大会主持.jpg" alt=" 007大会主持.jpg" / /span /strong /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " br/ /span /p p style=" text-align: center text-indent: 2em " span style=" color: rgb(255, 255, 0) background-color: rgb(0, 176, 240) " strong 闭幕致辞 /strong /span /p p style=" text-indent: 2em " span style=" color: rgb(255, 255, 0) background-color: rgb(0, 176, 240) " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/e4834d54-b5ca-47c5-a818-a60576f81925.jpg" title=" 041.jpg" alt=" 041.jpg" / /p p style=" text-align: center text-indent: 0em " strong 王维剑 山东省食品药品检验研究院纪委书记 /strong /p p style=" text-align: justify text-indent: 2em " “希望这样有深度和引领的高端学术会议能持续开展下去,也为提高我们药物制剂产业在市场上核心竞争力建言献策。期待今后可以有更多高端的专业学术会议能在山东举办!” /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(255, 255, 0) background-color: rgb(0, 176, 240) " 会议现场 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/01a9d4bb-304b-42be-b14b-c49e9960cde6.jpg" title=" 大会分论坛一 IMG_5106_看图王.jpg" alt=" 大会分论坛一 IMG_5106_看图王.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202009/uepic/519eee54-57e7-4592-b05e-1c0902aa091b.jpg" title=" 042.jpg" alt=" 042.jpg" / /p p br/ /p
  • 2018第十二届药物制剂大会落下帷幕---锘海生命科学助力药物制剂研发
    为获取全球最前沿的药物制剂研发技术信息,把握药物制剂研究领域发展的国内外新动态,促进药物制剂行业交流与合作,提高我国药剂学研究水平,推动我国药剂学科的快速发展,中国药学会于2018年11月30日至12月2日在广东省广州市举办了第十二届中国药物制剂大会。锘海生命科学作为行业内供应商和服务商,为科研和企业药物研发人员提供纳米药物制造、生产、分析及药物体内外评价整体解决方案。 锘海带来的行业科技和产品吸引众多科研和企业行业人士,展位人气爆棚! 展出产品◆ 药物制造和表征分析 ◆加拿大 Precision Nanosystems 纳米药物载体制造系统世界TOP25大药企的选择!通过微流控芯片技术制造纳米颗粒包裹体,可包裹药物,mRNA、siRNA,CRISPR,DNA,蛋白等,从低通量至高通量均可覆盖,适合于临床及临床前研究,并可在纳米颗粒表面添加marker制造靶向药物。西班牙Bionicia静电纺丝及静电喷雾设备通过电流体动力学制备纳米/微纤维和颗粒流程(EHDA)俗称静电纺丝(纤维)或电喷雾(颗粒)。并且提供与之相关的产品和服务(CRO\CMO)。美国 Spectradyne 高分辨纳米微米颗粒分析仪Astra Zeneca的选择!测量纳米颗粒时应用电学性质识别混悬介质中的粒子,而无需依赖其光学参数。该仪器可测量单个粒子并快速整合粒子尺寸、定量浓度以及Zeta电荷的统计数据。这一特殊性能将nCS1与市面上其他纳米分析仪区分开来。◆ 药物体外筛选 ◆瑞士regenHU3D 生物打印机Novartis的选择!高性价比的3D生物打印平台,3D Discovery系列为高端医用活性细胞组织材料打印制造系统,可以按需制造出符合个体需求的单个器官或组织,真正实现医学的个性化需求。美国etaluma全自动活细胞成像系统FDA、Amgen、Merck的选择!Lumascope?720 三色激发光源全自动荧光显微镜具有更自动化的产品性能与更高端的三色荧光成像系统,精确的X-Y载物台控制系统,可进行自动对焦,还可置于培养箱中。高内涵筛选选择! ◆ 药物体内筛选 ◆法国 VILBERNEWTON 7.0 小动物荧光/生物发光成像系统Novartis、Pfizer、Roche、Boehringer Ingelheim的选择!采用7通道 LED双光源激发,双磁控溅射镀膜的滤光片技术,可进行高效的光谱分离,检测光谱范围可以从400nm至900nm,可同时实现GFP,YFP, Dyelight 680, Cy5.5, Cy7等多种染料标记的小动物荧光/生物发光成像。美国 Photosound小动物3D光声/荧光成像系统(PAFT)可同时实现近红外一区&近红外二区3D光声成像 具有100 um等向分辨率、高通量 (256个电子通道)、灵敏度高(60nM ICG )、桌面式设计,方便使用、成像速度快 (完成一次3D扫描只需30秒)的特点。比利时 Molecubes临床前成像PET/SPECT/CTPET/SPECT/CT能够实现小鼠(4只)和大鼠高灵敏度全身3D成像。PET具备出色的分辨率和灵敏度;SPET系统拥有高分辨探测器和专利准直器;CT系统能够以超低放射剂量获取很高的图像对比度。长按识别二维码关注我们关于锘海锘海生物科学仪器(上海)股份有限公司(Nuohai Life Science)成立于2004年,总部设在上海,并陆续在北京,广州,成都等地设立了8个办事处。锘海致力于提供先进的实验/研究与生产仪器、相关试剂耗材, 并提供专业的应用和技术服务支持。不断促进生命科学领域新技术发展,及时引进国外新的技术和产品。同时,锘海生命科学为科研及企业客户提供全方位的CRO/CMO 服务,满足产业中的研发和生产需求。
  • 本草奇遇记——干燥制剂之旅
    4本草奇遇记干燥制剂之旅”在上一期的本草奇遇记中,我们详细介绍了步琦在中药分离纯化方面的解决方案,希望能通过高效且操作简单的分离纯化系统助力“十四五”中医药的发展。这期我们将带领大家开启活性物质分离提纯后的旅程,领略步琦在中医药研究发展领域中最为全面的产品解决方案。干燥 & 制剂中草药原料经过萃取、分离、提纯后的活性成分,一般需要干燥长期保存或与其他组分混合再利用。根据活性成分特性和所用试剂类型,选择合适的干燥方式及制剂再制备方式非常重要。步琦拥有多种干燥及制剂应用的产品仪器——冷冻干燥机、微米级和纳米级喷雾干燥仪以及微胶囊造粒仪,不管是干燥还是包埋再造粒,均可满足不同应用需求,为您耗费精力提取出的活性组分保驾护航。冷冻干燥机 L-300第一款双冷阱实验室冷冻干燥机冷冻干燥机 L-300 最瞩目的功能是通过交替冷凝器加载,实现了无限捕冰能力。通过 Smart-Switch 确保稳定、可重现的参数(包括冷却温度、搁板温度变化 ±1°C 以及真空压力),首次实现冻干过程的连续升华。市场首台具有双冷凝器交替工作的冷冻干燥机,搭载 Infinite-Technology TM 技术,捕冰能力无极限自动蒸汽除霜,无需耗费人力工作,删除实验停工时间冷凝器温度 -105 ℃,凝冰能力 ≥12 kg/24 h多种干燥配件可供选择,满足不同应用需求推荐配件:Pt 1000 样品温度探头实时监测冻干过程中样品温度变化可以判定冷冻干燥终点(左右滑动查看)推荐配件:干燥配件不同层数、可加热和不可加热的样品搁板多种歧管配件,满足不同应用需求应用实例中药浸提膏冷冻干燥样品:白果皮甘草浸提膏(水煎)冷冻干燥参数:(点击放大查看)干燥后样品:小型喷雾干燥仪 B-290世界领先的喷雾干燥研发解决方案拥有超过 400 项专利的小型喷雾干燥仪 B-290 获得业界众多研究人员的信任。基于我们超过 40 年的喷雾干燥经验,我们的喷雾干燥解决方案备受业界推崇:样品消耗量少(低至 5 g)、高产出量(高达 70 %)及操作直观等,轻松实现经济高效、便于升级至工业生产规模等目的。仪器配置灵活,多种玻璃组件和喷嘴尺寸可供选择喷雾干燥过程清晰可见,颗粒大小可调 1 – 60 μm标配红宝石喷嘴,喷雾效果稳定蒸发量:1 L/h H2O,有机溶剂蒸发量更高推荐配件:高效旋风分离器内镀纳米涂层,有效防止静电粘连适用于处理少量样品,回收率更高应用实例使用小型喷雾干燥仪 B-290 制备丹参微囊粉末样品:丹参提取物+明胶+羧甲基纤维素钠乳化液喷雾干燥参数:加热温度 80 ℃,蠕动泵速 6 %,雾化气流 357 L/h,核壳比(质量比)1/4 或 1/6纳米喷雾干燥仪 B-90 HP小颗粒,小样品,高产出纳米喷雾干燥仪高性能款 B-90 HP 能够将最少量的样品温和处理成亚微米级颗粒,且几乎不产生损失。该用户友好型系统可提高生产效率,适用于小颗粒关系影响重大的行业。压电驱动喷头,优化生产效率和操作性,颗粒大小 200 nm – 5 μm专利气流系统实现温和溶剂蒸发,静电粒子收集器实现更高回收率(高达 90 %)样品量需求小(推荐配件:惰性气体循环系统 B-295 SE惰性气体分为,安全处理有机溶剂,可避免喷雾干燥过程发生爆炸配备氧气和压力传感器,双重保险防止出现爆炸条件有机试剂回收再利用,加大降低环境污染并控制实验成本微胶囊造粒仪 B-390 / B-395 Pro用于创新的微型液珠和微胶囊微胶囊造粒仪 B-390 / B-395 Pro 是一个多功能系统,适用于包埋活性成分和材料。从制药、化工到食品样品,步琦微胶囊造粒仪的适应性可让您获得创新的微型液珠和微胶囊。同时,我们提供广泛的技术支持,让您可以轻松地使设备适应您的特定样品和应用需求。可制得 150 – 2000 μm 的微型液珠或微胶囊液滴形成全过程可视,有助于快速优化,设备操作直观并易于维护多种尺寸喷嘴可选,满足不同造粒尺寸需求可无菌包埋细胞、微生物和活性物质,符合 GMP标准推荐配件:同心喷嘴系统生产芯材 & 壁材结构的微胶囊包埋、缓释和控释的首选配件死体积极小,有效控制样品量应用实例制备白藜芦醇海藻酸盐微粒样品:白藜芦醇+海藻酸钠,氯化钙(接收液)喷嘴类型:单喷嘴系统制备参数:频率 1200Hz,电压 1000V,喷嘴尺寸 300μm,接收液搅拌转速 100rpm制备的湿粒和冷冻干燥后的样品 SEM 图(点击放大查看)此次中草药干燥制剂的旅程就在此告一段落,步琦还有很多精彩纷呈的旅行线路等待着大家,下期会为您带来步琦旁线与在线近红外产品对中药质量把控的解决方案,尽情期待我们后续的分享吧!
  • 石药软胶囊制剂研究中心成立
    近日,石药集团恩必普药业申请的“石家庄市软胶囊制剂工程技术研究中心”挂牌成立,这标志着石药集团恩必普药业向高端制剂领域又迈进了一步。   石药集团恩必普药业成立以来,始终将软胶囊技术平台建设作为一项重点工作来抓,工程中心建成了完备的软胶囊制剂综合性实验室,下一步还要加大投资,目标是为软胶囊制剂的产品立项、技术开发等多个方面提供技术支持,不断提升我国软胶囊制剂研发水平,最终赶超国际先进水平。   目前,此工程中心已通过各种技术手段对胶皮处方进行调整,使软胶囊的崩解稳定性和溶出度达到了国际先进水平。通过工艺摸索并与有关单位合作,最终使石药集团恩必普药业在国内软胶囊行业拥有真正的核心竞争力。
  • 合全药业与药明康德集团制剂部合并
    p style=" text-align: center "   日前,药明康德宣布,其旗下业务部分制剂部(PDS)与全资子公司合全药业制剂部合并。 /p p   据了解,PDS的业务范围包括处方前研发、制剂研发和临床试验药品的生产、包装及贴标等服务。支持剂型包括片剂、胶囊、袋装颗粒等口服固体制剂,及口服溶液或混悬剂。此外,PDS为支持低溶解性的药物也已搭建了各类技术平台,包括喷雾干燥分散、热熔挤出、微米或纳米混悬及液相胶囊灌装技术等。目前,PDS的两个商业化规模制剂生产基地正在建设中,预计将分别于2017年底和2018年初投入运营。 /p p style=" text-align: center " img width=" 450" height=" 336" title=" 20170731093435987.jpg" style=" width: 450px height: 336px " src=" http://img1.17img.cn/17img/images/201708/insimg/784fe469-f313-40ba-868e-c62bcdc4ceb7.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   与PDS业务整合后,合全药业将为全球合作伙伴提供从小分子原料药到制剂的一体化解决方案,实现整个CMC产业链的无缝衔接, 以此加快其合作伙伴的创新小分子药物(NCE)从临床前到新药申报并最终获批上市的进程。 /p p   “整合后的合全药业将打造最有实力和最具创新活力的小分子新药研发和生产国际化平台,”药明康德董事长兼首席执行官李革表示。“药明康德与合全药业将继续致力通过开放式的能力和技术平台,帮助任何人、任何公司更加经济高效地研发新药和医疗健康产品,与全球合作伙伴一起为为病患开发更好的新药,造福人类健康。” /p
  • 两种原料药及其制剂被停止生产销售
    p   11月24日,国家食药监总局官网发布公告称,根据相关法规条例,经国家食品药品监督管理总局组织再评价,认为氯美扎酮和苯乙双胍两种原料药在我国使用风险大于效益,要求停止生产销售该药品及其制剂,已上市销售的药品由生产企业负责召回。 /p p   根据《中华人民共和国药品管理法》第四十二条和《中华人民共和国药品管理法实施条例》四十一条规定,经国家食品药品监督管理总局组织再评价,认为氯美扎酮可造成中枢及外周神经系统、皮肤及其附件、胃肠系统损害,特别是严重的皮肤不良反应发生率较高,临床价值有限,在我国使用风险大于效益。 /p p   国家食品药品监督管理总局决定停止氯美扎酮原料药及其制剂在我国的生产、销售和使用,撤销药品批准证明文件。已上市销售的氯美扎酮原料药及其制剂由生产企业负责召回,召回工作应于2016年12月31日前完成,召回产品在企业所在地食品药品监督管理部门监督下销毁。 /p p   根据《中华人民共和国药品管理法》第四十二条和《中华人民共和国药品管理法实施条例》四十一条规定,经国家食品药品监督管理总局组织再评价,认为苯乙双胍可导致乳酸酸中毒,发生率较高,临床价值有限,在我国使用风险大于效益,决定停止苯乙双胍原料药及其制剂在我国的生产、销售和使用,撤销药品批准证明文件。 /p p   已上市销售的苯乙双胍原料药及其制剂由生产企业负责召回,召回工作应于2016年12月31日前完成,召回产品在企业所在地食品药品监督管理部门监督下销毁。 /p p br/ /p
  • 路易公司携手美国LOGAN参加 “全国首届经皮给药医院制剂研讨会”, 助力经皮给药制剂新技术发展!
    2018年6月1日-3日,路易企业有限公司携手美国LOGAN,参加在上海皮肤病医院举办的“全国首届经皮给药医院制剂研讨会暨“经皮健康工程”启动会”。来自全国各地的专家教授就“全国皮肤病药物治疗学新进展暨外用制剂新技术”进行了学术交流。借此平台,我们现场展出了美国LOGAN 全自动透皮扩散测试系统,引起与会老师们的极大关注。全自动干热加热透皮测试系统 914-6 设计用于自动的将透皮吸收的样品精准的传输到HPLC 样品瓶或者样品试管中,从而节省了实验的宝贵时间。本系统包括DHC-6AT 透皮扩散池控制台、SYP 系列注射泵、DSC-800 系统控制器和SCR-DL 样品收集器。用于测试乳霜、乳液、药膏和外敷药贴等。其模块化设计,方便系统根据需要进行扩充。 研讨会上,来自大连理工大学制药科学与技术学院的院长汪晴教授做了“经皮给药系统的临床前研究与一致性评价诊治”的学术报告。LOGAN透皮扩散系统为药物渗透性研究提供全面解决方案,为体内外相关性(IVIVC)研究模型的构建发挥了重要的作用。 美国LOGAN 仪器公司专注于药物溶出实验的方法研究和实验设计,以及外用经皮给药系统的方法研究和实验设计。Logan 公司总裁Luke Lee 博士从事这类仪器的研发和生产35 年,多次参与美国药典的标准制定, 所研发的药品检测仪器已被世界顶尖的制药公司使用超过20 年,其溶媒传输系统、以及中心点摄像自动3 速区12 位溶出取样系统等都针对2015 版药典,并充分考虑操作的简便性和兼容性,提高实验效率,减少工作强度,使实验室获得最大效率。尤其是近年来开发的全自动透皮吸收系统、自动化人体支架测试系统和全自动USP7 溶出系统,使得LOGAN 仪器逐步成为在制药行业测试仪器方面的全球领导者。 关于路易公司路易公司自 1990 年创立以来,见证了中国科学仪器领域的进步与发展,始终致力于引进世界领先的技术和设备,为高端实验室提供专业设备,帮助用户提高实验效率、获得更好的实验成果。目前业务涉及医药、生物工程、科研院校、检验检疫、化工、食品、纳米材料、烟草、农业等领域。
  • 食品添加剂检测方案 赛智科技正积极研究
    食品添加剂本意是让食品更安全,改善食品色、香、味等品质,以及为防腐和加工工艺的需要而加入食品中的化合物质或者天然物质。目前我国食品添加剂有23个类别,2000多个品种,包括酸度调节剂、抗结剂、消泡剂、抗氧化剂、漂白剂、膨松剂、着色剂、护色剂、酶制剂、增味剂、营养强 化剂、防腐剂、甜味剂、增稠剂、香料等。  成人每天大概要吃进八九十种添加剂  泡菜里有着色剂,果冻里有防腐剂;一支雪糕含16种食品添加剂,一袋方便面中有14种̷̷近九成的食品含有添加剂,而生活中的“食品添加剂”有2000多种。不管是直接添加,还是间接添加,每个成人每天大概要吃进八九十种添加剂。  食品添加剂不可怕,可怕的是滥用、违法使用等。  合理使用食品添加剂,对丰富食品生产和促进人体健康都有好处。但也必须看到,食品添加剂毕竟不是食品的天然成分,如使用不当,或添加剂本身混入一些有害成分,就可能对人体健康带来一定危害。  近年来食品安全问题层出不穷,食品添加剂的滥用、违法使用等现象频曝,而我们日常生活中食品添加剂又无处不在,导致吃什么都心慌慌。赛智科技(杭州)有限公司作为一家有社会责任感的高科技企业,正在积极利用企业自主研发生产的液相色谱仪研究食品添加剂的检测方案。谨请关注!                              赛智科技(杭州)有限公司                             市场部
  • 中药浸膏制剂Brix值检测-固形物含量
    近日,ATAGO(爱拓)工作人员对上海的用户做客户回访并交流仪器使用心得,工程师对某药厂2002年购买的ATAGO(爱拓)PRM-85在线折光仪用于浓缩工艺管道Brix值检测进行售后维护工作。 从生药原料到制造浸膏制剂的工艺流程 根据提取工艺的升温、提取时问、加入溶剂比饲的探讨,浓缩工艺、干燥工艺及制剂化工艺的各 种试验数据,设定各工艺的制造设备和制造条件.然 而,如今现代化快速的社会,服用汤剂具有操作麻烦,药物长时间存放出现稳定性降低等不便或缺点。ATAGO(爱拓)的自动台式折光仪正好满足现今中药浸膏制剂制作过程中的各种数据的验证,中药浸膏制剂Brix值的检测更加充分肯定ATAGO(爱拓)产品的性能以及应用领域的发展。 中药浸膏制剂的制造工艺流程: 生药&mdash 切裁-称重-调和-提取液-浓缩-干燥-浸膏粉 在提取液和浓缩工艺对药液中固形物含量及糖度的控制非常重要,也是品质监控必检项目,检测固形物含量和糖度国标规定可以用折光的方式来检测。 客户实用举例: 某药厂购买ATAGO(爱拓)PR-101a做取样测量 某药厂购买ATAGO(爱拓)自动台式折光仪RX-5000a用于控温测样 RX-5000a特点: RX-5000&alpha 是能够内部设定测量温度的自动折射仪,能够快速地测量折射指数、糖度或各式液体的浓度,以下为本产品的特性: &bull 因为RX-5000&alpha 具有电热模块以控制温度,所以不需要恒温水箱。 &bull 在样本达到目标温度之后,测量会自动开始。 &bull 在目标温度下,折射指数与糖度会快速显示 &bull 可取得高糖度 ± 0.03% 与折射指数 ± 0.00004 准确度。 &bull RX-5000&alpha 会显示您所设的控制范围的高低界线。 &bull 如果测量值与您的标准液体值或其它折射仪测量的不同,将能做部分调整。 &bull 根据您的样本,能够输入60种使用者标度。 &bull RX-5000&alpha 能够显示最少30个最近的测量值。 某药厂2002年购买的ATAGO(爱拓)PRM-85在线折光仪用于浓缩工艺管道糖度检测 ATAGO(爱拓)工程师身旁的PRM-85在线浓度计 2011年ATAGO(爱拓)将PRM-85升级为PRM-100a,高精度在线浓度计PRM-100&alpha 由检测部件(传感器)与显示部件构成,与其前身PRM-85相比,其测量范围更加广泛( Brix 0.00 至 100.00% ),精度更高( 折射率± 0.00010, Brix ± 0.05 ),可以选择最小标度来显示。 在线折射仪能够提供给制造工厂、混和设备与清洗设备一起使用以持续测量各式液体的浓度。适用于混和、浓缩、发酵的控制与水性和碱性清洁剂等的浓度控制。 PRM-100a特点: ★大幅降低工人劳动强度、生产安全保证 ★显著提到产品质量 、无滞后监测 ★产品质量始终如一性 ★自动化程度高 ATAGO(爱拓)为您提供100种以上物质浓度检测方案,欢迎您的咨询。 您可以通过以下方式联系我们: 官方网站:http://www.atago-china.com 企业QQ:800064900 广州分公司电话:86-20-38108256/38106065/38106057 上海办事处电话:86-21-61131991/61131992/61131993
  • 显微 CT 成像在药物制剂结构分析中的应用
    显微 CT 成像在药物制剂结构分析中的应用引言药物是用于预防、治疗、诊断疾病的活性物质,需制成一定的剂型才能作用于人体。药物攸关人民生命安全,因此对药物制剂的质量进行控制和评价至关重要。制剂的结构影响药物的疗效发挥,同时也影响制剂的释药行为,因此制剂的结构在制剂设计和评价方面发挥着重要的作用。药物制剂结构表征常用的技术有光学显微镜、电子显微镜等技术工具,但这些技术手段仅能给出制剂的表面特征,无法有效地表征其内部特征。X 射线具有波长短、分辨率高和穿透力强等特点,能够实现对样品内部结构进行成像,曝光时间短、效率高,可用于观察分析多种微观物理、化学变化以及微纳米结构,在生物医学、材料科学上有着广泛的应用。利用显微 CT 成像研究药物制剂结构的应用包括:&bull 药物制剂的晶型研究&bull 制剂内部结构的表征研究&bull 制剂涂层结构的无损表征&bull 药物释放机制研究图注:NEOSCAN 台式显微 CT 扫描抗过敏药盐酸西替利嗪片本文通过文献资料摘录 3 个实际应用案例介绍显微 CT 技术在固体制剂药品领域的应用和功能。Part 01 利用显微CT对仿制药开展一致性评价昝孟晴等利用显微 CT 技术对盐酸特拉唑嗪片的内部微观结构进行观察分析,发现溶出度测定结果不满足标准限度要求的样品与参比制剂相比具有更大的孔隙率。将溶出度不合格样品和参比制剂的结构进行对比分析,二者局部孔径大小分布见下图。由图可知,二者的局部孔径尺寸大多数都分布在 10~20 μm,平均孔径大小分布没有较大差别。图注:参比制剂样品(蓝色)和溶出度不合格样品(橘色)的局部孔径大小分布但通过分析制剂的孔隙率(片剂表观体积中,除原辅料外,内部的孔隙占总体积的比例),发现溶出不合格样品的孔隙率远大于参比制剂,分别为 32.851%(仿制制剂)和 6.545%(参比制剂),见下图(图中白色部分代表主药和辅料, 红色部分代表孔隙)。从结构对比结果推测,溶出度不合格样品可能是由于孔隙率偏大,因而能迅速吸收大量水分,由于重力作用而沉积在普通溶出杯底部。显微 CT 技术能够提供药品固体制剂的高分辨率三维内部结构图像,包括活性成分的分布、空隙、颗粒大小和分布等,这有助于了解药品的均匀性和质量分布。图注:参比制剂(左图)和溶出度不合格样品(右图)的三维结构图Part 02 显微CT 中药制剂结构研究中药制剂重视药辅合一, 其剂型和辅料的运用蕴含着丰富的药方配比智慧。中药活性成分从剂型里溶出、释放受制于制剂的结构, 并影响其疗效的发挥。制剂结构的创新是中药制剂的发展趋势, 在以缓控释制剂和靶向给药系统等为代表的新剂型发展过程中, 制剂结构发挥着重要作用。微丸压制片是由可持续释药微丸与适宜辅料混合后压制成的制剂, 压片后具有体积小、可刻痕和可分剂量使用等优点。使用显微 CT 无损成像技术对微丸压制片的三维微结构与药物、辅料的空间分布的研究, 有助于进行深度的质量评价与控制。茶碱微丸片 (THEODUR) 为 24h 骨架型缓释制剂, 微丸在片剂径向上的分布均匀, 但在轴向上存在明显的微丸富集区。片剂内部呈现 3 种不同的区域: 基质层、保护缓冲层与载药微丸, 基质层和保护缓冲层并无特定的结构, 两层依次包裹在微丸周围。基质层主要分布有茶碱、蔗糖、乳糖和十二烷基硫酸钠, 而单硬脂酸甘油酯主要存在于缓冲层 (图 A)。琥珀酸美托洛尔微丸片 (倍他乐克) 遇介质快速崩解成单个微丸, 持续释放药物 24h。其中, 微丸在片剂内均匀分布, 且呈光滑球形, 具三层球形结构。此外, 片剂中基质并非十分紧实, 基质中以及基质和微丸之间均有一些空隙, 这不仅有利于片剂在介质中快速崩解, 也保证微丸在压片过程中结构的完整性 (图 B)。另外, 肠溶型微丸压制片的结构研究也有报道, 如埃思奥美拉唑微丸片 (耐信)。图注:显微 CT 分析茶碱微丸片Part 03 显微 CT 对原辅料粉体结构中药物晶型的辨别制剂是由药物活性成分和辅料组成, 原辅料粉体中的药物晶型、粉体粒径及其分布、 配比与规格直接影响药物制剂的质量。显微 CT 成像可以避免剂型中辅料的干扰, 准确识别药物的晶型, 且能无损伤、原位检测制剂内药物微粒的粒径及其分布。该方法解决了固体制剂内药物晶体的识别和药物粒径及其分布的测定难题, 具有重要应用价值, 为仿制药一致性评价中原辅料粉体结构的研究提供了新的视角和思路。例如,Yin 等采用 SR-μCT 研究多晶型混合物中硫酸氢氯吡格雷的晶型, 基于两种晶型颗粒表面的粗糙度差异, 有效地识别硫酸氢氯吡格雷的不同晶型。关于台式显微 CT可在不破坏样品的同时,得到样品的结构信息(空腔孔隙)、密度信息(组分差异),同时可以输出三维模型,进行仿真分析。 参考文献《采用高分辨显微成像技术从药物制剂结构角度分析盐酸特拉唑嗪片溶出度测定结果》昝孟晴,黄韩韩,张广超,马玲云,许鸣镝,牛剑钊*,刘倩*(中国食品药品检定研究院,国家药品监督管理局化学药品质量研究与评价重点实验室)《结构药剂学与中药制剂结构研究进展》杨 婷, 李 哲, 冯道明等(1. 中国科学院上海药物研究所;2. 江西中医药大学)《从结构出发的制剂一致性研究策略》张继稳, 孟凡月, 肖体乔(1. 安徽中医药大学药学院 2. 中国科学院上海药物研究所 3. 中国科学院上海应用物理研究所)《高分辨三维 X 射线显微成像在药物制剂结构分析中的应用》昝孟晴,黄韩韩,南楠等(中国食品药品检定研究院,国家药品监督管理局化学药品质量研究与评价重点实验室)
  • 人冠状病毒广谱抑制剂的研究进展及展望
    展鹏教授团队分享了聚焦冠状病毒生命周期中的药物靶点,综述了现有广谱冠状病毒抑制剂的研究进展,以期为研发抗冠状病毒药物提供参考,更好地应对当下及未来的冠状病毒疫情。人冠状病毒广谱抑制剂的研究进展(一)(点击查看)人冠状病毒广谱抑制剂的研究进展(二)(点击查看)4.3靶向冠状病毒多聚蛋白裂解过程的抑制剂SARS-CoV-2进入细胞后完成生命周期并制 造出子代病毒的关键步骤是多聚蛋白的裂解,这个过程依赖的是病毒自身产生的蛋白酶Mpro和 PLpro[84]。测序结果表明,编码SARS-CoV-2和 SARS-CoV蛋白酶的RNA序列显示出高度的一 致性[85]。因此针对上述蛋白酶的抑制剂是阻断各种冠状病毒在宿主细胞内增殖的有效手段。在抗病毒药物治疗中已经有多种蛋白酶抑制剂在临床上用于治疗HIV等病毒感染。随着对 NT。活性催化位点及其周边结构的认识不断深入(图10),基于靶标的合理药物设计也促进了此类 药物的发现与发展。在针对SARS-CoV-2的治疗 中,大多数蛋白酶抑制剂仅处于计算机模拟(in silico)研究阶段,急需进一步的体外与临床研究数据。4.3. 1 主蛋白酶(Mpro)抑制剂洛匹那韦(lopinavir,20,图11)是已经上市的 拟肽类HIV蛋白酶抑制剂[86]。利托那韦 (ritronavir,21,图11)可抑制药物代谢酶,常与洛匹那韦联合应用以起到增效作用[87],二者组成的复方制剂Kaletra相对于单一的洛匹那韦作用时 间更长[88]。2004年一项非盲临床试验显示,在 SARS-CoV感染者中,服用洛匹那韦-利托那韦 (400 mg:100 mg)的试验组产生负面临床结果的风险以及病毒载量明显降低[89]。洛匹那韦针对 MERS-CoV也有抑制作用師如,但仍需进一步的 临床试验确认。洛匹那韦在体外细胞中抑制 SARS-CoV-2 的 EC50值为 26.1μmol• L-1,但单 一的利托那韦无抗病毒活性。洛匹那韦-利托那 韦复方疗法在新冠治疗中受到普遍关注[92-94]。N3(22,图12)是含有迈克尔加成受体的拟 肽类冠状病毒抑制剂[95]。作为共价抑制剂,N3 分子的乙烯基与SARS-CoV-2的Mpro催化中心的 Cysl45共价结合,并通过3个侧链分别结合于催化中心周边的各个口袋,形成额外的作用力。此外,α-酮酰胺片段被看作高效的共价结合基团,可增强分子柔性、提高稳定性和透膜性,常用于病毒蛋白酶抑制剂的设计[96]。基于此,Zhang等[97]设计了一系列以α-酮酰胺为“共价弹头”的广谱主 蛋白酶抑制剂,针对α属、β属冠状病毒与肠病毒Mpro 均有良好的抑制活性。其中代表化合物为 23(图12),其抑制 SARS-CoV 与 HCoV-NL63 主 蛋白酶的IC50值分别为0.71μmol• L-1和12.27μmol• L-1,在 Huh-7 细胞系中针对MERS- CoV的EC50值达到0. 0004 μmol• L-1。为进一步提高酮酰胺类抑制剂针对SARS-CoV-2的抑制作 用,Zhang等[98]对化合物23的结构进行修饰,将疏水性过强的肉桂酰基替换为具有一定亲水性的基团从而得到一系列化合物,其中化合物24(图 12)抑制 SARS-CoV-2、SARS-CoV与MERS-CoV 主蛋白酶的IC50值分别为(0.67±0.18)、(0.90 ±0.29)、(0.58 ±0.22) μmol• L-1。Rupintrivir ( AG7088,25,图12)对肠道病毒 EV71与鼻病毒有突出的抑制作用,但对冠状病毒活性不佳[99]。Dai等[100]通过解析AG7088与EV71 3Cpro的共晶结构,以醛基共价弹头取代了易水解失活的α,伊不饱和酯基,并结合数个蛋白 酶抑制剂的优势结构,设计了 一类靶向肠道病毒 EV71 3C蛋白酶的共价抑制剂。高亲电性的醛 基作为共价弹头,与主蛋白酶Cysl45的疏基结合稳定,广泛用于设计高活性的蛋白酶抑制剂。其中代表化合物26(图12)对各种肠道病毒、鼻病毒有广谱抑制作用。与先导化合物及同时合成的其他修饰物相比,化合物26具有更好的药代动力学特性与广谱抗冠状病毒作用,对SARS-CoV-2 Mpro。及病毒复制均有较好的抑制作用(IC50 = 0.034μmol• L-1 ,EC50 =0. 29 μmol• L-1)。四川大学杨胜勇团队基于SARS-CoV-2的 Mpro催化中心周边结构,结合已上市蛋白酶抑制剂的优势片段,设计了以双环脯氨酸为核心骨架的拟肽分子,部分化合物为27~32(图13)[101]门, 并首次在动物模型中测定了所合成化合物对Mpro 的抑制作用。该类化合物以环状γ-丁内酰胺基团(P1)靶向S1区域,脂肪稠环结构(P2)靶向S2 区域,并以结构多样的取代芳环(P3)靶向S4区域(图14)。在P2提高分子刚性与疏水性、增强 靶标结合力的同时,P3大小合适的疏水芳基有助 于进一步增强分子的活性与代谢稳定性。抑酶活性结果显示,化合物29、30、31的IC50值分别为7.6 ,7.6,9. 2 nmol• L-1。在 Vero E6 细胞中,化合物28,31,32抑制SARS-CoV-2复制的 EC50值分别为 0. 53,0.67,0.54μmol• L-1(表 2)。在体内活性测试中,化合物32的药代动力学性质较好,在鼠体内有效抑制了SARS-CoV-2的增殖,显著降低了病理损伤,经治疗的感染小鼠 未出现任何体重损失与异常状况。4.3.2 PLpro抑制剂PLpro在不同的冠状病毒中具有类似的氨基 酸序列与空间构象,显示出高度相似性(图15)。因此,针对特定冠状病毒PLpro抑制剂也具有开发 为广谱PLpro抑制剂的潜力。Figure 15 The conformation and amnio acid sequence of SARS-CoV PLpro ( PDB:2FE8 ) and SARS-CoV-2 PLpro(PDB:7CMD)Ratia等[102]建立了基于荧光的高通量筛选方法,在包含上万种类药分子的化合物库中发现了先导化合物33(图16),其R型异构体抑制SARS- CoV PLpro的 IC50值为(8.7±0.7)μmol• L-1 此类分子结构按药效团可分为“头部-链接基团-尾 部”三部分,其中,“头部基团”一般是1-萘基或2-萘基,而“链接基团”中的亚氨基作为氢键供体对分子活性至关重要,N-甲基化修饰的化合物34(图 16)活性则明显减弱(IC50=22.6μmol• L-1)。为进一步提高药效,Bdez-Santos[103]结合此 类分子中的先导化合物35(图17-A)与SARS- CoV PL。,。的共晶结构以及构效关系,设计了尾部 含有不同取代苯基的新一代SARS-CoV PL。”抑 制剂36 -39(图17-A)。共晶结构显示,此类分 子结合于Tyr269与活性中心围绕而成的狭长空 腔内(图17-B、C),活性与代谢稳定性均有提高, 活性数据如表3所示。双硫仑(disulfiram, 40,图18)是乙醛脱氢酶抑制剂,用于辅助矫正酒精成瘾[104]。2018年, Lin等[105]发现双硫仑针对SARS-CoV主蛋白酶 具有竞争性抑制作用,针对MERS-CoV PLpro。则具 有变构抑制作用。证据表明,双硫仑通过分子中 的硫原子与金属离子配位,或与蛋白质疏基相互作用,因此可以靶向PLpro和NT。中具有催化作用 的半胱氨酸[106]。在以往的临床实践中,双硫仑 表现出毒副作用小、作用机理明确、成本低的独特优势。但其针对包括SARS-CoV-2在内的多种冠 状病毒的体外实验及临床试验尚待完成。疏瞟吟即6-疏基瞟吟(6-MP,41,图18)早已 广泛用于治疗急性淋巴细胞白血病和急性髓细胞白血病。2008年,Chou[107]等首先报道了疏嚓吟作为SARS-CoV PLpro小分子可逆抑制剂的活性。 在MERS-CoV与SARS-CoV的蛋白酶的相似性 被确证之后,Cheng等[109]质旳又发现了疏瞟吟针对 MERS-CoV PLpro的竞争性抑制作用。但不可忽视的是,PLpro抑制剂的设计与研发 相对存在一定难度。候选分子中的游离疏基可能 与人体内各种蛋白质的半胱氨酸残基发生作用,导致专一性较差以及毒副作用增强[108]。此外, 宿主细胞的去泛素酶与PLpro 的相似性还会带来 抑制剂脱靶的风险。Figure 18 The structures of disiilfiram (40) and6-MP(41)5 结语与展望本文作者总结了靶向冠状病毒刺突蛋白、RdRp、蛋白酶及宿主靶标的一系列冠状病毒广谱抑制剂,对抗击新冠肺炎疫情、预防未来的冠状病 毒传播具有重要意义。针对冠状病毒的高效广谱抑制剂,是疫情爆发初期迅速响应危机、并在第一时间治疗患者的法宝[109]。对冠状病毒广谱抑制剂的发现、评估和修饰,是人类对抗未来的公共卫生危机的重要 战略举措。对于具有“老药新用”潜力的已上市药物,要尽快开展科学严谨的大规模双盲临床实 验,为大范围推广提供最真实可靠的依据,最大程 度保护患者的生命健康。长远看来,从头研发出一款针对新型冠状病 毒的“魔弹”药物需要进行漫长的设计、开发及疗效验证。一方面,不同的冠状病毒生命周期中发 挥关键作用的生物大分子有明显的种间同源性,为基于靶标结构寻找广谱抑制剂提供了重要信息;另一方面,从治疗新型冠状病毒的中药方剂中寻找天然来源的先导化合物,也是开发抗冠状病 毒药物的重要源泉。参考文献见 中国药物化学杂志 第31卷 第9期,2021年9月总173期
  • 28批次中西药制剂产品不符合标准
    记者9月2日从国家食品药品监督管理局获悉,近期该局在全国组织对国家基本药物品种三七胶囊以及大活络丸等其他11个制剂品种质量抽验。日前发布的2010年第2期国家药品质量公告显示,28批次产品不符合标准规定。   此次抽验的国家基本药物品种三七胶囊,共抽样189批次,涉及17家生产企业,经检验,全符合标准规定。抽验其他制剂品种包括大活络丸制剂、灯盏花素制剂、骨肽注射液、七厘散制剂、硫普罗宁注射液、人参健脾丸等11个制剂品种,共计2226批次,其中2198批次产品符合标准规定,28批次产品不符合标准规定。   不符合标准规定的产品有:银杏叶片3批次含量测定不合格(广西半宙大康制药有限公司批号080601、080701)。人参健脾丸2批次含量测定不合格(云南省腾冲县东方红制药有限责任公司批号20080902)、3批次鉴别不合格(山西万辉制药有限公司批号080301、河北安国药业集团有限公司批号076605、076606)。七厘散制剂2批次装量不合格(四川大千药业有限公司批号090101、090102)。复方甘草口服制剂,3批次pH值或装量不合格(广西广明药业有限公司批号071114、081020、090321),2批次含量测定不合格(江西天施康中药股份有限公司批号081101、张家口长城药业有限责任公司批号080612),1批次鉴别及含量测定不合格(长春大政药业科技有限公司批号080901)。
  • 固定化酶技术在中药酶抑制剂筛选中的研究现状
    中药资源丰富,历史悠久,在预防与治疗疾病中扮演着重要的角色。然而,中药的化学成分多种多样,作用机制更是复杂多样,如何从中药中筛选疾病相关药效物质是当前亟待解决的关键问题。大量研究表明,人体许多疾病过程都与体内生物酶调节作用相关,如痛风[1]、阿尔茨海默症[2]、糖尿病[3-5]等。而且,中药在治疗各种疾病中也扮演着重要角色,如白芷提取物能促进新生血管形成与成熟,从而提高自发2型糖尿病小鼠创面愈合速率和质量[6];绞股蓝叶水提物能够降低链脲佐菌素诱导的糖尿病大鼠的血糖,其作用机制可能与增加骨骼肌肌膜葡萄糖转运体4蛋白表达和抑制骨骼肌炎症有关[7]。因此,基于酶在疾病发生发展的重要性,以酶为靶点从中药中筛选新药是一有力途径,而且开发一种快速、高效的酶抑制剂筛选方法是当前首要任务。固定化酶技术是20世纪60年代发展起来的,该技术利用物理或化学方法将游离酶固定在相应的载体上用于筛选酶抑制剂。固定化酶技术可以有效提高酶的催化性能和操作稳定性,并降低成本,是目前广泛使用的技术[8]。此外,相比于游离酶,固定酶更有利于酶-配合物的分离纯化,在pH耐受性,底物选择性,热稳定性和可回收性等方面表现出优越的性能[9-10]。不同的酶发挥催化作用的活性部位不同,将酶进行固定时,要使载体材料与酶的非活性部位结合,才可以保留酶的活性,因此载体材料的选择是固定化酶技术发挥作用的关键。本文以固定载体材料(表1)为分类综述了近10年固定化酶技术在中药酶抑制剂[α-葡萄糖苷酶(α-glucosidase,α-Glu)、脂肪酶等] 筛选中的研究现状,希望可以为后续的相关研究提供一定的参考依据。1 磁性载体磁性载体材料是利用铁、锰、钴及其氧化物等化合物制备的一类具有磁性的材料[11],通过改变磁力大小和外部磁场的方向来改变粒子的运动轨迹,从而使酶与载体的结合与分离可以在可控条件下完成,便于固定化酶的分离和收集,并用于酶抑制剂的筛选[12]。以磁性载体为材料的固定化酶技术的最大优点在于利用磁力吸引可使固定化酶快速从反应体系中分离,且固定化方法简单,能有效减少筛选时间及实验试剂的消耗。因此,通过不同方法对磁性载体材料进行功能化修饰,在充分发挥磁性材料优势的基础上改善其表面性质,提高对不同类型目标物的特异性,从而在各类复杂样品的前处理过程中有着良好的应用潜力[13]。目前,磁珠是近年来发展起来的一种常用的磁性载体材料,也叫做磁性纳米粒子,包括氧化铁(Fe3O4和γFe2O3)、合金(CoPt3和FePt)等。其中,Fe3O4纳米粒子具有生物相容性和无毒性等优点,被广泛应用于酶的固定化。中药酶抑制剂筛选中的常用磁珠其磁核以Fe3O4纳米粒子为主,壳层为二氧化硅、琼脂糖、葡聚糖等,是具有超顺磁性的小球形磁性粒子[14-15],可借助外部磁场从生物催化体系中分离酶抑制剂。该方法机械稳定性高、孔隙率低,利于降低反应中的传质阻力,提高了固定化酶的重复使用性。由于其具有操作稳定性高、磁响应强、磁分离速度快等优点,在生物和药物研究中得到了广泛的应用[16]。在进行酶抑制剂筛选时,磁珠的修饰位置不同,所固定的位点也不同。因此,在实验中,往往要根据靶蛋白的分子结构选择合适的磁珠或将某一磁珠进行修饰后作为固定载体。将酶固定在合适的磁珠上会增强酶与待筛选酶抑制剂的亲和力,利用磁力将固定化酶及其抑制剂从提取液中分离,然后洗去与酶不相互作用的化合物,随后可得到酶固定化磁珠配体配合物,最后通过洗脱溶剂使配体释放进而通过质谱表征[17]。在这种方法中,潜在的配体与酶相互作用,生成酶配体配合物,这有利于利用磁性[18-23]从复杂混合物中分离活性化合物。在酶抑制剂的筛选中,磁性载体材料是最常用的固定化载体材料[24-30]。1.1 无机载体材料二氧化硅是磁性纳米粒子表面修饰最常用的无机材料[23,31-34],此外还有二氧化钛[35]、介孔二氧化硅[16]等。Li等[23]首先将Fe3O4分散在水中加入聚乙烯吡咯烷酮(polyvinylpyrrolidone,PVP)室温搅拌得到产物。然后在超声作用下将产物分散在含有异丙醇和氨水的混合溶剂中,室温搅拌下缓慢加入正硅酸乙酯(tetraethylorthosilicate,TEOS)溶液得到SiO2@Fe3O4磁性微球,并加入3-氨丙基三甲氧基硅烷(3-aminopropyltrimethoxysilane,ATPES)对其表面进行改性。最后将α-淀粉酶固定在表面改性的SiO2@Fe3O4磁性微球上。将制得的酶固定化磁性微球用于黄花草中α-淀粉酶抑制剂的筛选,最终得到3种黄酮类化合物对α-淀粉酶具有较好抑制作用。Liu等[35]采用溶剂热法(也称水热法或水热合成法)制备了Fe3O4@TiO2纳米粒子,并通过静电相互作用固定脂肪酶。采用透射电镜、傅里叶变换红外光谱和X射线衍射等方法对磁性纳米粒子进行表征,以确定脂肪酶是否已经被固定。研究中应用脂肪酶固定化Fe3O4@TiO2纳米粒子从6种具有脂肪酶抑制活性的藏药中筛选出脂肪酶抑制剂,获得5种具有与临床常用减肥药物奥利司他活性类似的化合物,其中1种化合物(山柰酚)的抑制活性优于奥利司他。Yi等[16]将谷胱甘肽S-转移酶固定在介孔二氧化硅磁性微球表面筛选紫苏中的酶抑制剂,利用高效液相色谱和四极飞行时间质谱法进行鉴定,筛选出6种具有谷胱甘肽S-转移酶抑制作用的物质,其中,迷迭香酸、(−)表没食子儿茶素-3-没食子酸酯和 (−)-表儿茶素-3-没食子酸酯具有较好的抑制活性。最后利用分子对接技术确定潜在抑制剂与谷胱甘肽S-转移酶的结合方式。首先,用FeCl3与柠檬酸三钠和乙酸钠合成Fe3O4,然后将其分散在含有乙醇、去离子水和氨水的混合溶液中,搅拌均匀后加入TEOS制得SiO2@Fe3O4磁性微球。为进一步合成介孔二氧化硅磁性微球(mSiO2@SiO2@Fe3O4),将SiO2@Fe3O4磁性微球分散在十六烷基三甲基氯化铵、去离子水和三乙醇胺中并滴加TEOS,产物用磁铁分离并清洗除杂后得mSiO2@SiO2@Fe3O4磁性微球。最后用PDA对mSiO2@SiO2@Fe3O4磁性微球进行表面改性并将谷胱甘肽S-转移酶固定在其表面。1.2 有机载体材料在酶抑制剂的筛选中,有机载体材料相比于无机载体材料应用较少。目前,用于磁性纳米粒子表面修饰的有机载体材料有聚酰胺(polyamidoamine,PAMAM)[36]、共轭-有机骨架[37]和金属-有机骨架[38]等。Jiang等[36]以PAMAM包覆磁性微球为基础,建立了一种筛选和鉴定赤芍提取物中α-Glu抑制剂的方法。首先,采用微修饰法合成了Fe3O4-COOH微球。然后,通过Fe3O4-COOH微球表面羧基与PAMAM氨基的偶联反应,制备了Fe3O4@PAMAM微球。最后,通过GA的交联,成功地将α-Glu连接到其表面。结果表明,没食子酸和(+)-儿茶素对α-Glu均具有较好抑制作用。Zhao等[37]将乙酰胆碱酯酶(acetylcholinesterase,AchE)固定在适配体功能化磁性纳米颗粒共轭有机骨架上构建固定化酶反应器,并将该方法用于酒石酸、(−)-石杉碱A、多奈哌齐和小檗碱4种AchE抑制剂抑制活性的测定,发现酒石酸的IC50与已报道的结果相当,证明了该固定化酶反应器的可行性。Wu等[38]将α-Glu固定在磁性纳米材料Fe3O4@ZIF-67上,构建了快速筛选α-Glu抑制剂的生物微反应器。然后,将酶生物微反应器通过外加磁场固定在连接高效液相色谱仪(high performance liquid chromatography,HPLC)和微注射泵2端的管中,形成一个磁性在线筛选系统。以信阳毛尖粗茶提取物为实验对象,对该在线筛选方法进行验证,利用该在线筛选系统筛选出3种抑制剂(儿茶素、表没食子儿茶素没食子酸酯和表没食子酸酯)。与传统方法相比,该方法可将筛选、洗脱和分析结合起来,可以简单、高效、直接地从天然来源筛选和鉴定潜在的α-Glu抑制剂。磁珠分散性好,磁分离速度快,酶结合量大,酶活性高,是固定化酶的理想载体,现已广泛应用于酶抑制剂的筛选中。将酶固定在特定的磁珠上,可实现酶抑制剂的分离。此方法操作较稳定,非特异性结合率低。因此,酶固定化磁珠技术因其快速的生物分析、导向性分离和从复杂混合物中直接捕获配体而受到越来越多的关注。2 非磁性载体2.1 无机载体材料2.1.1 石英毛细管 毛细管电泳(capillary electrophoresis
  • 展会回顾|北京合邦中国制剂大会-透皮技术大会
    2023年8月3-4日,中国制剂大会-透皮技术大会在苏州成功举办。本次会议旨在解决国内透皮制剂行业面临的起步晚、立项周期长、耗材和设备依赖进口等问题。中国透皮制剂联盟发起人北京合邦兴业科学仪器有限公司联合药事纵横(北京)公司共同组织了会议,就透皮制剂行业的发展机遇、挑战以及法规和注册等话题展开了深度交流。合邦兴业总经理汤宏敏先生在本次大会上就透皮制剂实验室仪器一站式解决方案进行深度演讲。这个方案的引入将大大提升实验室的效率和准确性,为药物研发和生产过程带来变化。合邦兴业的参与,为本次活动增添了亮点,为医药行业的发展和创新贡献了力量。参展人员对仪器设备很感兴趣,纷纷向合邦兴业的工作人员咨询了相关信息。合邦兴业的工作人员耐心解答了他们的问题,并为他们提供了详细的技术支持和服务。PART 1明星产品旋转流变仪《皮肤外用化学仿制药研究技术指导原则》、《化学仿制药透皮贴剂药学研究技术指导原则》都有强调:皮肤外用制剂的关键质量属性(CQAs),对于流变特性需进行对比研究。粒度分析仪《皮肤外用化学仿制药研究技术指导原则》、《化学仿制药透皮贴剂药学研究技术指导原则》表示:皮肤外用制剂的关键质量属性(CQAs)等,需对粒度和液滴粒径进行考察。自动取样透皮扩散系统FDA-IVRT、USP、FDA-IVPT、等法规或指导原则,对自动取样透皮扩散设备的仪器性能、池型要求,都有相关设定和推荐。水分活度仪《非无菌药品微生物控制中水分活度应用指导原则》(征求意见稿)提出:可以从水分活度等方面关注生产过程中的微生物控制。自动取样透皮扩散系统皮肤电阻率仪中表示,在使用皮肤进行IVPT实验前后需要测量皮肤的完整性,且皮肤电阻率测定法是推荐方法之一。皮肤均质器
  • 人冠状病毒广谱抑制剂的研究进展(二)
    上期,展鹏教授团队分享并阐述了冠状病毒的基本结构、冠状病毒的生命周期、抗冠状病毒药物的主要靶点等内容,本期将分享靶向冠状病毒刺突蛋白、RdRp、蛋白酶及宿主靶标的一系列冠状病毒广谱抑制剂,以及其对抗击新冠肺炎疫情、预防未来的冠状病毒传播具有的重要意义。本文讨论的冠状病毒广谱抑制剂是针对冠状 病毒与宿主的关键靶点开发的抗病毒化合物。现 阶段,根据这类化合物靶向的生理过程不同,分别靶向冠状病毒的侵入过程、RNA复制过程、多聚 蛋白裂解过程以及宿主靶标。4.1靶向冠状病毒侵入过程的抑制剂在抗病毒药物中,侵入抑制剂可以使病毒的生命周期停止在第一步,使其对宿主的危害最小化。SARS-CoV和SARS-CoV-2是通过刺突蛋白与人类呼吸道上皮细胞的ACE2结合而侵入[16], 而MERS侵入所利用的胞外受体是CD26,也称 作二肽基肽酶(DPP4)。刺突蛋白是一种I型跨膜蛋白(图3),分子 表面高度糖基化,它组装成三聚体后,分布在病毒颗粒的最外层,形成了冠状病毒独特的外观。所有冠状病毒刺突蛋白的胞外部分都是由两个相同的结构域结合而成:氨基端的S1亚单位与受体结 合相关,含有受体结合域(receptor binding domain,RBD);羧基端的S2亚单位含有融合肽 (fusion peptide),与病毒融合相关。在S1完成结合后,S2被细胞表面的TMPRSS2蛋白酶裂解,该过程是病毒与宿主细胞膜融合所必需的[17]。因此,靶向S蛋白或TMPRSS2的分子可成为有效的冠状病毒侵入抑制剂。Figure 3 (A-B ) Structure of S protein trimer, from different angles of view ( PDB code :6XM5) ; ( C) Structure of S protein monomer and location of NTD and RBD; (D) Binding mode of S protein with ACE2 ( PDB code: 7KNY)4.1.1 靶向S蛋白的侵入抑制剂在S蛋白抑制剂中,肽类具有高效、低毒的优势[18]。基于ACE2胞外序列设计的水溶性肽 作为潜在的侵入抑制剂曾受到重视,但其体内半衰期短,难以转运到肺泡[19]。为提高成药性, Lei[20]将ACE2片段与人免疫球蛋白IgGl的Fc结构域结合,提高了血浆中稳定性并增强了结合力。目前,已设计并合成了一系列模拟ACE2的N端螺旋结构域的肽类化合物,如Barh[21]通过扫 描现有的抗菌、抗病毒肽类数据库,得到了10个可能有效阻断S蛋白RBD区域与人ACE2作用 的肽类,但其体内外活性有待进一步研究。在此 基础上,Larue[22]设计了一系列针对刺突蛋白的 ACE2多肽类似物(SAP1 ~SAP6,表1),并在编码荧光素酶并负载SARS-CoV-2刺突蛋白的慢病毒侵染HEK293T-ACE2细胞体系中测定各个多 肽对病毒侵入的抑制作用,各物质活性以半数抑 制浓度(IC50)计量,活性最好为SAP6[(1.90 ± 0. 14) mmol • L-1 ]。同时,上述多肽对SARS- CoV-2刺突蛋白RBD区域的亲和力(Kd)最高为 (0.53 ±0.01) mmol-L-1(SAPl)。Table 1 Amino acid sequence of ACE2 derivatives targeting S proteinCompd.SequenceLocationSAP127-TFLDKFNHEAEDLFYQ42Helix-1SAP237-EDLFYQSSLS5Helix-1SAP379-LAQMYPL-85Helix-3SAP4352-GKGDFRYL-359Helix-11SAP524-QAKTFLDKFNHEA-36Helix-1SAP637-EDLFYQ42Helix-1Curreli等[23]基于ACE2蛋白结合区中30个 氨基酸残基长度的螺旋结构,以8 ~11碳的不饱 和炷链连接肽链上一定跨度的邻近氨基酸,设计了 4个高度螺旋化的装订肽(stapled peptide) NYBSP-1~NYBSP-4,并在 HT1080/ACE2 细胞 与人肺A549/ACE2细胞系中使用基于假病毒的 单循环方法测定了上述多肽分子的EC50值。其中3 个多肽分子显示出了潜在的抗病毒活性:HT1080/ ACE2 中的 EC50值为(1. 9 ~ 4. 1 )μmol• L-1 , A549/ACE2 中 EC50值为(2. 2 ~ 2. 8) μmol • L-1,且在最高测试剂量时,未显示出任何细胞毒性。使用SARS-CoV-2病毒侵染Vero E6细胞时, NYBSP-1显示出了最高的抑制活性,在 17.2 μmol• L-1的浓度完全阻止了细胞病理效应。NYBSP-2和NYBSP-4活性稍低,EC100值为 33 μmol • L-1,NYBSP-4在血浆中的半衰期为289 min,代谢稳定性好。Glasgow 采用“受体陷阱”,(receptor trap)策略,合成出高亲和性、高溶解性的ACE2胞外部分结构域,阻止病毒刺突蛋白与人体细胞表面的 ACE2的结合与入侵[24]。基于此策略设计的肽类分子使冠状病毒难以产生抗药性,并可以抑制几乎所有通过ACE2侵入细胞的冠状病毒[25]。在进一步研究中,Glasgow[24]利用计算机/实验组合的蛋白质工程方法,重新设计了能与SARS- CoV-2刺突蛋白结合的ACE2胞外可溶性区域 (氨基酸18-614) 。最终得到的ACE2变体对于单体刺突蛋白RBD区域的KD app ( apparent binding affinity)值已接近100 pmol• L-1。同时,最理想的 “受体陷阱”分子抑制SARS-CoV-2假病毒和真正 SARS-CoV-2 病毒的 IC50值已达到(10~100) ng-mL-1的范围。这类多肽分子有望真正实现针对利用ACE2入侵宿主细胞的冠状病毒的广谱抑制。由于S蛋白分子高度糖基化,可与多糖衍生物产生多种相互作用,引导人们去探索针对S蛋 白的多糖类抑制物。早在2013年,Milewska就证实了N-(2-羟丙基)-3-三甲氨基甲壳素氯化物 (HTCC,1,图4)及其疏水性修饰的同系物(HM- HTCC)是HCOV-NL63的潜在抑制剂[26],并制备 了不同比例的氨基被甲壳素取代的HTCC衍生物, 各自具有对不同种类人冠状病毒的抑制作用[27]。近期,文献报道了在人呼吸道上皮细胞中,HTCC 具有抑制 SARS-CoV-2 和 MERS-CoV 的 活性。尽管HTCC中单个正电基团对于靶标的作用较弱,但冠状病毒连环化的特性和多聚物分 子中的多个位点协同作用使得HTCC可以稳定 结合S蛋白。目前,虽然HTCC仍未被批准用于 临床,但实验已经证明其在肺部局部给药的可行 性,且毒副作用极低口旳。综合考虑,上述各种甲 壳素衍生物联合使用,有望成为广谱抗人冠状病 毒感染的防治药物。Griffithsin(2,图4)是由海藻中分离得到的天 然血凝素,可利用糖基结构域结合病毒包膜糖蛋白中特定的寡糖[29]。已有研究表明,griffithsin可以与多种病毒表面的糖蛋白相互作用,包括HIV gpl20 以及 SARS-CoV 的 S 蛋白[30-31]。2016 年,Millet 等[32]报道了 griffithsin 对于 MERS-CoV 的抑制作用。在2μg • mL-1 浓度下,griffithsin抑制了 MERS 病毒对 Huh-7、MRC-5 和 Vero-81 细 胞系90%以上的感染性。针对迅速爆发的新冠 肺炎疫情,一系列针对griffithsin抗新冠病毒活性 的研究正在展开。Xia等[33]首先发现griffithsin 对SARS-CoV-2假病毒侵染呈现剂量依赖性地抑 制作用,EC50值为293 nmol• L-1 Cai等[34]网进一 步在体外试验中测定了 griffithsin对SARS-CoV- 2的抑制活性,结果表明,griffithsin对SARS-CoV- 2活病毒的EC50值达63 nmol• L-1,同时对S蛋白 介导的细胞间融合的EC50 值为323 nmol-L-1值得注意的是,该研究团队还报道了 griffithsin与肽 类冠状病毒侵入抑制剂EK1的协同作用。未来, griffithsin可以单独或与EK1联合制成鼻喷剂、吸入剂或凝胶,以预防或治疗新冠肺炎。4. 1.2 TMPRSS2 抑制剂在SARS-CoV或 MERS-CoV的刺突S蛋白 发挥作用之前,要依赖宿主细胞的跨膜蛋白酶 TMPRSS2将其裂解为S1和S2亚单位[35]。针对 这类蛋白酶的抑制剂也可用于阻断各种冠状病毒 的入侵过程。蔡莫司他(nafamostat,3,图5 )最初用于治疗胰腺炎,后发现也是TMPRSS2抑制剂,对MERS- CoV具有拮抗活性[36]。进一步研究发现,蔡莫司 他甲磺酸盐对SARS-CoV-2的EC50值达到了纳摩尔级[37]。同时,在日本批准用于治疗胰腺炎的 药物甲磺酸卡莫司他(camostat mesilate,4,图5) 同样具有抑制TMPRSS2的活性[17],在微摩尔浓度即可有效抑制MERS-CoV感染中合胞体的形成[38],EC50值达到 0.11 μmol• L-1[39]:对 SARS- CoV-2的EC50值为87 nmol• L-1[37]o现阶段仍无 法确定该化合物能否在肺部达到抑制病毒的有效浓度[40],但已有临床研究正在评估其对新冠肺炎的治疗作用。4. 1. 3 宿主细胞激酶抑制剂病毒在生命周期中利用了宿主细胞的若干信 号通路。冠状病毒以内吞方式入侵宿主细胞的过 程中,除S蛋白与ACE2的作用外,还需要Abel- son激酶(Abl)的介导。Abl是细胞中重要的管 家蛋白,参与正常细胞的多个生理过程,同时也与 病毒的入侵与复制密切联系,是开发广谱冠状病 毒抑制剂的有效靶点[41]。伊马替尼(imatinib ,5, 图5)是Abl的抑制剂,已被批准用于治疗慢性粒 细胞白血病。已有研究证实,伊马替尼通过阻断病毒颗粒与胞内体膜融合,从而抑制病毒以内吞 路径入胞,并在感染早期抑制SARS-CoV和 MERS-CoV的增殖關。据报道,伊马替尼抑制 SARS-CoV-2 增殖的 EC50值达到130 nmol-L-1 , 同时对SARS-CoV-2 S蛋白的RBD区域结合活 性高达2. 32 pimol-L-1,可通过双靶点作用有效 抑制SARS-CoV-2的侵入關。但在细胞实验中, 其毒性较为明显,用于治疗新冠肺炎或其他冠状 病毒感染前还要经过充分评估。目前,世界范围 内已有多项伊马替尼针对新冠肺炎的临床试验正 在进行(NCT04394416、EudraCT2020-001236-10、 NCT04357613)。4. 1. 4 组织蛋白酶L与Furin蛋白酶抑制剂组织蛋白酶L位于宿主细胞的胞内体,在无 TMPRSS2表达的细胞中,组织蛋白酶L发挥裂 解活性,介导病毒粒子与胞内体膜融合,从而完成侵入过程[44]。2003年,SARS-CoV疫情引起了人 们对组织蛋白酶L抑制剂研发的重视。随后的十几年内,已发现数种具有抗冠状病毒活性的组 织蛋白酶L抑制剂。其中,K11777(6,图5)是通 过筛选2 000余个人组织蛋白酶抑制剂发现的[45],其对人体或某些寄生虫的半胱氨酸蛋白酶具 有显著抑制作用。K11777抑制SARS-CoV和 MERS-CoV感染的EC50值分别达到0.68 nmol• L-1与46 nmol• L-1,但其不可逆的共价结合机制可能导致较强的毒副作用。目前,K11777仅作为锥虫 病治疗药物进行临床试验M ,其针对SARS- CoV-2的抑制作用有待于进一步确证。SARS-CoV-2 S蛋白的裂解过程也可依赖 Furin蛋白酶进行。Cheng[47]研究了以蔡基荧光 素(naphthofluorescein, 7,图5 )为代表 的数个 Furin蛋白酶抑制剂,证实了此类分子可抑制SARS-CoV-2的感染进程及细胞病理效应。但冠状病毒侵入细胞的不同路径中的关键酶具有互补作用,因此单一种类的蛋白酶抑制剂难以起效[48],而多种抑制剂联用的毒性可能大幅度增加。针对冠状病毒生命周期中宿主蛋白酶的药物应用尚存在一定的风险与挑战。4.2靶向冠状病毒RNA复制过程的抑制剂针对冠状病毒另一类极为重要的治疗靶标是 RNA依赖的RNA聚合酶(RdRp),由非结构蛋白 nspl2、nsp7与nsp8结合构成。其活性位点高度保守,包括在一个β转角中突出的两个连续的天 冬氨酸残基样[49],在不同的正链RNA病毒如冠状病毒和HCV中结构相似[50]。RdRp作为RNA复 制的工具,在病毒的复制中具有重要作用[51]。同 时该酶结构高度特异化,人体无同源酶,是药物开 发的优良靶点。4. 2. 1 RNA依赖的RNA聚合酶抑制剂瑞德西韦(remdesivir ,8,图6-A)是一种腺昔 酸类似物,作为RNA聚合酶的广谱抑制剂,能够抑制人与鼠冠状病毒[52]。更为重要的是,研究证明瑞德西韦在体外针对SARS-CoV-2具有抑制活性, 其抑制 SARS-CoV-2 的 EC50值为 0.77μmol• L-1, 且CC50值大于100 μmol• L-1[53]。基于“老药新用”的原则,2020年10月23日,瑞德西韦获得美 国FDA的正式使用批准,用于治疗12岁以上的新冠肺炎患者[54]。作为一种核昔类似物,瑞德西韦可以与 SARS-CoV、MERS-CoV 和 SARS-CoV-2 RdRp 的 NTP结合位点相互作用。其代谢后以核昔母体9 (GS-441524,图6-A)的形式掺入新生的子代 RNA链中,但允许子链RNA的进一步延长。瑞 德西韦在新生链中移动到-4位时,分子中1,-氰基 与RdRp侧链的Ser861残基发生空间上的碰撞,阻碍了 RdRp在RNA链上的进一步移动,进而导致RNA复制终止(图6-B)。由于终止作用是在瑞德西韦结合RdRp后发生的,该过程称为延迟链终止[54]。延迟链终止机制的RdRp抑制剂针对冠状病 毒具有一定的抗耐药性。包括SARS-CoV-2在内 的冠状病毒会编码具有核酸外切酶活性的nspl4,该酶可以在3,端切除掺入RNA链的异常 碱基,并重启正确的RNA合成[56]。在此机制下, 导致RNA合成即时终止的分子,如去除3,羟基 的核甘类似物,在插入后会被nspl4切除。相对地,在一定延迟后使RNA链合成终止的RdRp抑制剂可有效逃脱nspl4的校对。但研究证实,核酸外切酶仍会识别并切除部分含有瑞德西韦的子 链RNA,并重启RNA复制[57]。同时,病毒体外 传代实验中发现了针对瑞德西韦的耐药现象。与 SARS-CoV-2相似的鼠肝炎病毒(MHV)传代培 养至23代后,其RdRp中出现了不利于瑞德西韦 结合的氨基酸突变[58]。一系列瑞德西韦的临床试验也引起了研究人 员对其临床疗效的争议。2020年5月,原研公司 吉利德发布了适应性试验的“最终报告” (NCT04280705)[59],称瑞德西韦在临床中可缩短住院时间,改善呼吸系统症状。但WHO在2020 年12月2日发表的“团结实验” (NCT04315948) 结果显示,瑞德西韦无法显著改善总体死亡率、通气时间与住院时间,疗效仍待改进[60]。Spin-ner[61]在为期11天的周期内研究了瑞德西韦针 对新冠肺炎轻中症患者的疗效(NCT04292730), 结果表明,在治疗期间,虽然患者的某些临床数 据出现显著改变,但并不表示任何程度的病情改善。近H,Li[62]在一系列细胞实验中比较了瑞德 西韦与核昔母体GS-441524在体外细胞中的抗病毒能力。结果显示,GS-441524在Vero E6细胞 系中对SARS-CoV-2的抑制能力略强于瑞德西韦,但在Calu-3和Caco-2细胞系中活性稍弱。GS-441524亦可显著提高感染鼠肝炎病毒 (MHV)小鼠的生存率,初步展示出广谱抗病毒作用。由于GS-441524合成方便、成本低、可口服, 同样有望成为治疗SARS-CoV-2的候选药物。法匹拉韦(favipiravir, 10,图7)最早在日本上 市,用于治疗流感,其通过与RdRp活性位点结合 发挥抑制活性[63],对所有种类及亚型的流感病毒均有拮抗作用,具有治疗多种RNA病毒感染的 潜力。此外,法匹拉韦在抑制病毒RdRp的同时, 不对哺乳动物机体的RNA及DNA合成路径产生影响[64-65]。虽然法匹拉韦在体外试验中对 SARS-CoV-2的抗病毒活性较低(EC50 = 62μmol• L-1),但在两次临床试验中均显示出良 好的效果3项7]。利巴韦林(ribavirin, 11,图7)是已上市的广谱抗病毒药物,已被批准用于治疗丙型肝炎与呼吸道合胞病毒感染。其作用机制是通过靶向病毒 RdRp而使病毒基因组RNA中出现多位点突变, 最终导致病毒mRNA加帽终止,进而抑制病毒 RNA合成[68]。利巴韦林的疗效已经在SARS- CoV和MERS感染者中得到了证实,但严重的不 良反应限制了其临床应用[69]。且在体内外实验中,利巴韦林对SARS-CoV-2感染的疗效约为瑞德西韦的1 /100[53]。综合考虑,利巴韦林治疗 SARS-CoV-2感染的药效、安全性及潜在的毒性 作用有待在临床试验中进一步研究。Galidesivir( BCX4430,12,图 7 )也是腺昔酸 类似物,最初为病毒RNA聚合酶抑制剂,曾被用 来治疗丙型肝炎,且对多种RNA病毒如SARS- CoV,MERS-CoV, Ebola 病毒和 Marburg 病毒具 有广谱抑制活性。在生物体内,galidesivir首先被 转化成相应的三磷酸核昔,再以此形式插入病毒 新合成的RNA链中,导致RNA转录或复制的提 前终止[70]。因此,其有望成为治疗新冠肺炎的候 选药物[71]。阿兹夫定(azvudine,FNC,13,图7)是首个核 首类双靶点HIV抑制剂,针对多种HIV耐药毒株有良好的抑制活性[72]。新冠肺炎疫情爆发后,在我国进行的一项临床试验(CTR2000029853)显 示,阿兹夫定可以显著缩短新冠肺炎轻中症状患 者的核酸转阴时间,对重症患者也具有潜在的治 疗作用。同时临床上未观察到任何与药物有关的 不良反应,安全性有充分保障。目前针对阿兹μmol• L-1。特别是 S416的选择指数达到10 000以上,且无激酶抑制 活性,在治疗浓度下对宿主细胞毒性极小,基本克 服了脱靶效应,作为广谱抗冠状病毒抑制剂具有 极大的开发潜力。此外,DHODH抑制剂有望在 新冠肺炎的治疗中发挥免疫抑制作用,降低“细 胞因子风暴”产生的炎症损伤。参考文献见 中国药物化学杂志 第31卷 第9期,2021年9月总173期
  • 第六届给药系统与制剂研发亚洲峰会
    第六届给药系统与制剂研发亚洲峰会解读法规政策 洞悉市场趋势 突破技术瓶颈 促进医药产业发展2016年10月27-28日 | 中国,上海 第六届给药系统与制剂研发亚洲峰会(DDF Asia 2016)将于2016年10月27-28日在上海举办。大会由Best Media主办,支持单位包括药监局南方所、上海医药行业协会、台湾财团法人生物中心等。本次大会继续秉承了为医药领域专业人士创建绝佳交流平台的传统,探讨最新的趋势与发展机遇,国内新型的给药与制剂技术,国内改良型新药和创新药发展侧略。 自去年以来,国家发布了包括临床自查核查、集中评审、药品上市许可人制度、仿制药一致性评价等在内的一系列药审政策,医药行业改革正式拉开序幕。在新的药品分类改革大势下,原分类下的仿制药及“小三”失去了原有的吸引力,促使国内实力企业纷纷将目光投向了改良型新药;一致性评价席卷全国,并且其中关于允许“曲线救国”的规定也促使国内的许多企业思考将产品走出国门。众多周知,新药研发是一项开发周期长、资金投入大、风险性极高的系统工程。从发现阶段到立项、临床前研究、临床试验申请、临床试验到上市,基本要10年时间。中国创新药物研发的现状怎样?医药企业如何从仿制药红海中转型发展,抢占制高点?此次峰会直面“改良型新药与创新研发战略与策略”主题,全方位把脉我国新药研发创新之路,深入探讨新药研发国际化路径,追梦中国医药长远未来。 经过多年的行业摸索,DDF Asia已经成为亚太地区化药领域给药与制剂方面专业性最高的国际会议。我们预计会有专家、学者以及企业合作伙伴200位以上的代表参会,与会代表可以通过大会与同道们进行专业领域内的最新研究和动态的交流,以此来增进彼此间的友谊,促进双方的合作。届时,大会还将设立为期两天独立交流环节,为参会企业提供技术交流及战略合作的机会!期待您的积极参会。 我们以促进行业发展为使命,在经过多年积累的基础上,为了帮助更多的企业,我们在价格方面大幅让利。真诚相邀,共商行业发展大计,共同谱写中国医药行业更美好的明天。加入我们您必将不虚此行。 五大参会理由:探讨新药研发法规、市场、技术最新趋势30+ 来自国际、中国的知名演讲嘉宾4 大热点议题:最新的趋势与发展机遇、前沿的给药制剂技术与产业化,国内505(b)(2)和创新药研发策略与200+来自中国药企与国际亚太药企的决策者互动交流2个分论坛+3个小组讨论深入剖析新药研发 会议热点议题将涵盖:最新发展趋势与机遇▽ 给药发展新趋势- 最新进展与展望▽ 探讨目前中国政策法规环境下的研发策略▽ 如何区分给药与制剂技术并选择一个而获取商业成功▽ 小组讨论: 通过商业合作促进药品研发前沿的给药制剂技术与产业化▽ 前沿的给药制剂技术与产业化▽ 关键制剂技术以及产业化概念和实践▽ 利用新技术来促进药物研发▽ 口服缓释悬浮剂研发中的关键点:溶解度和稳定性▽ 结肠靶向给药系统和胃滞留剂技术平台:增加价值与商业成功的利弊▽ 口服纳米粒促进药物吸收的研究与应用▽ 为商业竞争优势和企业成功选择理想与最佳的给药系统平台会场一 改良型新药/505b2 研发策▽ 中美两国市场改良型新药的前景▽ 识别一种可行的505b2 候选药物的关键因素▽ 口服缓释液体制剂的设计、研发与生产▽ 小组讨论 :505b2 产品的研发策略▽ 利用新剂型走505b2研发新路- - 案例分析▽ 专利侵权与诉讼程序:专业研发应该知道什么及如何避免潜在的法律诉讼▽ 成功的505b2申请案例包含固定剂量复合制剂,改善药物吸收,改变给药途径▽ 稳定性研究和临床研究是否是505b2提交的限制因素▽ 如何使改良型新药通过临床审批会场二 新药研发策略▽ 原创新药的研发概要和中国创新药的研发思路和对策▽ 新药的成药性评价策略▽ 新药研发:后期开发和早期筛查▽ 小组讨论:新药研发:研发与商业合作▽ 新药研发:临床前研究▽ 新药研发:临床研究阶段▽ 法规评估来支持临床研究▽ 新药研发:药物化学、药品生产及生产和质量控制▽ 新药研发:审查的监管过程FDA是在行动还是在控制 上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • 药辅制剂企业约定质控标准 盼出药辅GMP
    药用辅料GMP实施指南正在产业的期待中酝酿发酵。近年来,药用辅料的质量管理模式正在不断磨合改造。随着药品安全监管“严”时代的到来,加强药用辅料的质量控制已不仅仅是药用辅料生产企业的事,也是制剂生产企业的重要责任。然而,由于我国药用辅料起步和发展较晚,质量水平参差不齐。尽管2001年出台的《药品管理法》以及2006年出台的《药用辅料生产质量管理规范》对药用辅料的管理提出了相关要求,但仅为指导性原则。   记者日前在采访中了解到,无论是基于国家政策的引导还是出于产业升级发展的需要,产业界对药用辅料生产质量管理的实施指南呼声渐高。有业内人士认为,质量管理的提升仍需要一段时间的努力。制药企业与药辅企业通过约定标准提升产品质量控制,可望成为未来行业重要的发展趋势之一。   实施指南如箭在弦   2006年3月出台的《药用辅料生产质量管理规范》分别在机构、人员和职责、厂房和设施、设备、物料、卫生、验证、文件、生产管理、质量保证和质量控制、销售、自检和改进等方面作了规定,供企业在生产过程中参照执行。   全国医药技术市场协会药用辅料技术推广专业委员会主任宋民宪指出,该文件要求各地结合本地实际情况参照执行,只是规定了相关原则。   据记者了解,不少药用辅料生产企业对上述文件中的“参照执行”并没有足够的认识和重视,甚至有部分药用辅料企业认为这意味着“不要求执行”。   对此,宋民宪表示:“这是错误的!根据文件,这只是没有实行强制性认证 而且,不认证也并不代表不执行。对此,无论是制药企业还是药辅企业,都应该统一认识。”   在药品安全问题频发、社会对健康生活质量重视程度提高的今天,国家对药品质量控制的政策导向也不断明晰。5月6日召开的国务院常务会议提出,建立最严格的食品药品安全监管制度,完善食品药品质量标准和安全准入制度。   事实上,今年2月起执行的《加强药用辅料监督管理的有关规定》(以下简称《有关规定》)已经要求地方各级药品监督管理部门加强药用辅料生产监管。对本行政区域内药用辅料生产企业开展日常监督,或根据在药品制剂生产企业监督检查中发现的问题,对药用辅料生产企业进行延伸检查。   《有关规定》还提出,要重点检查药用辅料生产是否符合《药用辅料生产质量管理规范》,是否严格控制原材料质量,是否按照核准或备案的工艺进行生产,是否建立完善批号管理制度和出厂检验制度。对不接受检查的,药品制剂生产企业不得使用其生产的药用辅料。   山东赫达股份有限公司研发中心经理李猛向记者表示,相关文件要求药用辅料企业按《药用辅料生产质量管理规范》进行生产管理,“但由于目前还没有相关实施指南,我们暂时只按照原料药的GMP进行管理。因此,我们也呼吁相关指南能尽快推出。”   行业自律落实质控   “药用辅料GMP实施指南具有指导作用,可以由政府部门或领导组织编写、行业组织组织编写或者由药用辅料企业自己编写。”宋民宪如是表示。   安徽山河药用辅料股份有限公司董事长尹正龙向记者表示:“欧美等国家对药用辅料采取的是以行业自律为主的管理模式,由行业协会制定药用辅料GMP实施指南,企业自觉遵守执行。协会也可承接企业的GMP申请,对其进行审计、认证,产品采取全面的备案管理等。”   据透露,全国医药技术市场协会药用辅料推广专业委员会(以下简称专委会)已将制定药用辅料GMP的实施指南列入议程。   专委会相关负责人向记者透露,“参考2010版药品GMP实施指南和中药饮片GMP实施指南,目前协会正在药用辅料行业和制剂行业征集意见,希望能在今年拿出相关草案。从易到难,逐步推进。”   在实施指南逐步推进的同时,通过进行相关的质量协议,制药企业与药辅生产企业之间的合作也变得越来越紧密。   事实上,《有关规定》已明确,“对未取得批准文号且历史沿用的药用辅料,应按照与药品制剂生产企业合同约定的质量协议组织生产。”   事实上,除了针对暂时没出台国家标准的药用辅料供需双方可以进行共同约定外,这一办法也适用于已有国家标准的药用辅料的生产。   宋民宪表示:“按照《有关规定》,在国家标准基础上,根据制剂需要,制剂企业与药辅企业还可以再约定标准。”   在宋民宪看来,药辅企业与制药企业关系连接点主要在于执行标准、给药途径、用量、辅料工艺原理(含原料)、载何种药物、制剂工艺、制剂适用对象等方面,“而这些连接点,恰恰也是双方约定相关生产标准的关键点。”   据记者了解,国内已有部分药辅生产企业在生产具有国家标准的药用辅料时,会根据制剂企业的需要,尤其是功能性方面的需要,提高药辅的生产标准。   湖州展望药业有限公司市场营销中心主任谈家红向记者表示:“可以说,这是对制剂企业的一种个性化服务,也是生产企业进行内控的重要途径,更是越来越激烈的行业竞争中企业综合竞争力的一种体现。”   “相信这将是未来药用辅料行业发展的重要趋势。”谈家红坚信。
  • 锐拓大讲堂——《难溶性药物的制剂策略》
    时间:2022年09月15日(星期四)19:30-20:25地点:深圳锐拓仪器知识店铺(线上)报名方式:扫码报名(单位/姓名等)课程简介难溶制剂因为其较低溶解度及较低的生物利用度,一直是制剂开发的难点,同时这些难点也是开发创新制剂,改善企业盈利能力需要克服的技术壁垒。锐拓仪器邀请著名的聊城大学生物制剂研究院院长,泰山学者韩军教授为广大制药同仁分享对于难溶性药物的制剂策略,希望为各位制药同仁带来更好的创新制剂开发思路。讲师简介韩军教授,聊城大学生物制药研究院院长、国家重大人才项目特聘专家、山东师范大学及济南大学博士生导师、山东省“泰山学者"特聘教授(二级)、第二军医大学药学学士、美国明尼苏达大学药剂学博士,兼任聊城高新生物技术有限公司总经理、国家药品监督管理局仿制药研究与评价重点实验室(济南)学术委员、海藻活性物质国家重点实验室(青岛)学术委员、曾任抗体药物与靶向治疗国家重点实验室(上海)科学家等。韩教授在聊城大学领导建设山东省抗体制药协同创新中心及山东省纳米药物与释药系统工程技术研究中心,并任中心主任。目前,主持和参与包括国家“重大新药创制"科技重大专项等多项国家和省部级项目,与几十家国际国内企业和研究机构有项目合作及学术交流。韩教授在美国工作生活20多年,曾就职于Sanofi, Pfizer, Abbott, Novartis, Teva等国际制药企业。负责和参与几十个新药和上百个仿制药的研发上市(美国),曾任位于波士顿的美中生物医药协会(CABA)创会会长和首届董事会主席。
  • 约稿:激光衍射技术在吸入制剂研究中的应用
    1. 引言   通过吸入方式将药物直接输送到人体肺部,已是世界公认的治疗哮喘和慢性阻塞性肺病的最好方法,同时肺部及呼吸道也可作为一个通道,递送的药物通过气道表面进入人体血液系统,然后再进入到身体其他器官,达到全身作用的目的。然而影响药物在肺部及呼吸道沉积的因素有很多,其中气雾的粒度大小分布就是最重要的影响因素之一。目前吸入制剂粒度大小测量最经典的方法还是惯性撞击器法,其利用不同大小的药物颗粒具有不同的动能,从而具有不同的动力学特征而将其分离,不但能够得到雾滴中不同大小的活性成分的绝对含量,而且也是美国药典和欧洲药典评价吸入制剂体外粒度分布推荐使用的方法。但惯性撞击器法本身也存在不足,比如测试比较麻烦,尤其是其洗涤干燥以及色谱分析过程,往往测试一个样品需要较长的时间,这在现代医药研发过程中就显得&lsquo 节奏&rsquo 偏慢,同时随着吸入制剂研究的发展,大家不但对揿次之间的稳定性有更高的要求,而且希望对于每一揿次的吸入或者喷射过程能够获得更多的信息,而在这些方面,惯性撞击器法都略显不足,而激光衍射技术恰恰可以弥补。激光衍射技术是基于不同大小的颗粒其衍射光在空间分布的不同,利用米氏理论反演计算而获得颗粒体系的粒度分布,其本身快速无损的测试方式、对于喷雾细节的展现、以及快速比对的特点,使其在吸入制剂研究和筛选过程中大大提高研究效率,尤其是其本身可以跟惯性撞击器以及USP人工喉联合使用,大大拓展了其应用范围。本文将根据其特点选取一些剂型和领域就激光衍射技术的应用研究跟大家做一些沟通和介绍。   2. 鼻喷剂   近年来,通过鼻粘膜给药已被认为是一种药物能被快速高效吸收的给药方式,鼻粘膜细胞上有很多微细绒毛,因此大大增加了药物吸收的有效面积,粘膜细胞下有着丰富的血管和淋巴管,药物通过粘膜吸收后可直接进入体循环,此外,鼻腔内酶的代谢作用远远小于胃肠道,因此,鼻腔给药系统正日益受到人们的重视,比如,在肽类和蛋白质类药物的剂型研究领域。 图1. 马尔文喷雾粒度仪测试鼻喷剂粒度分布   在众多给药剂型中,喷雾剂是比较常见的剂型,仅通过雾化装置借助压缩空气产生的动力使药液雾化并喷出,由于其不含抛射剂,不使用耐压容器,目前应用越来越广泛。在鼻喷剂研究过程中,对于鼻喷剂粒度分布大小有两个因素影响至关重要,即药物配方和喷射装置,下面我们就通过一些模拟实验来看看激光衍射技术如何来体现这些影响因素。   首先简单介绍一下激光衍射技术测量鼻喷剂的一个过程。图1为马尔文的喷雾粒度仪,两端竖起的装置分别为激光的发射端和接收端,其可以自由移动以调整空间位置,中间的装置为鼻喷的触发装置,通过该装置我们可以按需求设置不同的触发压力或者触发速度(也有用触发时间的),同时可以调整喷射角度,这样我们就可以灵活快速地调整测试参数。   测试完成后,激光粒度仪将会实时给出整个喷射过程的状态。图2为鼻喷剂一个揿次的数据。其中横坐标为时间,纵坐标为粒径大小,几条不同颜色的曲线分别代表D10、D50、D90以及喷射浓度随喷射时间的变化。在整个0.16秒的喷射过程,可以被被分为三个阶段,0-0.02秒为触发阶段,此时颗粒喷出还不稳定,粒度迅速变小,浓度也迅速变低 0.02-0.09秒为稳定阶段,此时粒度分布数据趋于稳定 0.09-0.16秒为消散阶段,此时粒度分布变得极其不稳定,有大量大颗粒出现。激光衍射技术不但可以给出清晰的变化过程,而且可以给出整个测试过程或者每个阶段的平均粒径,图3给出每个阶段的平均粒度分布及粒径数据。 图2. 鼻喷剂一个揿次整个过程 图3. 鼻喷剂一个揿次三个阶段的分别的粒度分布及累计数据   从这也可以看出,初始阶段平均粒径在68微米左右,而稳定后粒径变小达到37微米,而消散阶段粒径进一步变大达到45微米左右。而图4则给出了连续4个揿次的喷射数据,这样我们不仅可以看到每个揿次的粒径变化、粒径平均值等,而且还可以方便快捷地看到其不同揿次间的数据变化及稳定性。 图4. 鼻喷剂4个揿次的喷射数据   图5为一款设计为50揿次的喷雾剂配方整个喷射周期内的粒径数据,从该数据可以看出,除第一揿次粒径偏大外,一直到60揿次数据都还是比较稳定,其中41揿次可能是由于操作失败造成喷射粒径明显变大,这样对于鼻喷剂以及罐体设计的喷射周期及稳定性提供了良好的数据基础。 图5. 一款设计为50揿次的鼻喷剂整个喷射周期内的粒径数据   除了看揿次间的稳定性,我们还可以观察不同配方、不同喷射泵以及不同喷射口径对于喷射粒径的影响。图6为同一鼻喷剂配方采用不同的喷射泵条件下的液滴粒径大小。 图6. 同一种鼻喷配方在两种不同泵条件下的喷射粒径影响   从该图可以看出,两种泵随着触发压力增大,液滴粒径都在显著减小,但相比之下,B泵对压力并不敏感,而A泵在压力比较低的时候,随着压力变化粒径会发生巨大变化,这些在泵体设计和选型时必须考虑的问题。 图7. 不同浓度的PVP对喷射粒径的影响(A泵)   当然药物配方对于喷射粒径也会产生较大的影响,在这里我们通过一个模拟实验来观察结果。我们在同样的装置、同样的泵速条件下(40mm/S),分别采用不同浓度的PVP水溶液来观察雾化效果,PVP浓度分别为0、0.25%、0.5%、1.0%以及1.5%。图7给出了五种配方下的喷雾中值粒径结果,从中可以看到,随着PVP浓度的增加,雾化的粒径逐渐变大,而且雾化稳定期越来越短,当PVP浓度达到1.5%时,基本已经无法找到稳定的雾化状态了。产生这样的原因可能是随着PVP浓度的增加导致雾化液粘度增加,从而导致雾化液滴粒径显著变大,但对于同样趋势的配方,我们更换了喷射泵B,结果见图8。 图8. 不同浓度的PVP对喷射粒径的影响(B泵) 图9. 孔径更小的喷嘴实验结果(B泵)   从该图可以看到,虽然随着PVP浓度增加粒度变大的趋势没有变,但喷雾稳定性明显增加,这也说明B泵提供的剪切力完全克服了雾化液粘度增加带来的波动。为了进一步考察影响喷雾粒径的影响因素,在保持图8的实验条件下,我们更换了更细的喷嘴观察雾化效果。图9展示了PVP浓度在0、0.5%和1.0%三种情况下,在更细的喷嘴下的雾化粒径结果,可以发现雾化液粒径分布显著变小,尤其是1.0%PVP浓度下,其雾化液滴中值粒径由200微米降到120微米左右。   3. Nebulizer喷雾剂   喷雾剂是指通过压缩空气驱动药液通过喷孔达到分散药物的给药剂型,其无需抛射剂、储罐容器无需加压、一般采取水性配方辅以固定的辅料等,同时对于吸入剂量较高的药物(比如诺华公司300mg妥布霉素)其雾化递送也具有明显的优势,再加上可以采取潮式呼吸的方式,因此目前喷雾剂广泛应用于医院急救室,特别是患哮喘或慢阻肺的儿童和老年患者。喷雾剂也是一个非常强调配方和雾化方式的剂型,换句话说,只有一个好的配方搭配以合适的雾化方式,才能够做出一款好的喷雾剂。当然由于呼吸的模式不同,可能也会对吸入雾滴粒径产生影响,因此我们在研究过程中,就必须三方都要考虑到,即雾化配方、雾化方式以及呼吸模式等。   图10是马尔文喷雾粒度仪测试喷雾制剂的一个示意图。其中两边是激光的发射和接收端,紧贴中间的是一个吸入式样品池,模拟人的呼吸道,而上面白色的弯管为USP人工喉,而吸入式样品池下面是接泵或者呼吸装置,这样液雾通过上面人工喉进入激光测试区域,然后通过我们的吸入样品池被泵抽走。 图10. 马尔文喷雾粒度仪测试液雾示意图   图11是一个持续液雾雾化的粒径分布结果,图中横坐标为时间,纵坐标为粒径大小,三种颜色的曲线分别为雾滴粒径的D10、D50以及D90,可以看到雾滴的粒径分布在长达10分钟的雾化时间内相对比较稳定。下面我们就将结合一些实验来考察影响雾化粒径的各种因素。我们知道,液雾雾化的方式较多,比如常见的喷射雾化、振动雾化或者超声雾化等,每种雾化都有各自的优缺点,其中喷射雾化就是比较常见的一种方式,其主要原理是通过一定速度的压缩空气携带药液通过狭小喷嘴而雾化,这时候压缩空气的流动速率就对雾化效果产生非常大的影响,图12给出了同一喷嘴在不同空气流速下的雾化粒径结果。 图11. 持续的nebulizer雾化粒度测试结果 图12. 压缩空气流动速率对雾化粒径的影响   从图中可以看出,随着空气流速速率增大,雾化液滴的粒径参数D10、D50以及D90都呈下降趋势,当流速达到11L/min时,雾化粒径达到最小,随后空气流速进一步增大,其雾化粒径反而变大,这可能是流速太大导致部分大的液滴越过挡板造成的。   同时马尔文喷雾粒度仪可以跟呼吸模拟机相连使用,从而对雾化进行更加深入的研究。图13给出了一个雾化系统在正弦呼吸模式下的雾化粒度结果,刚开始随着吸入速率逐渐增大,雾化液滴浓度迅速增加并趋于稳定,而雾化液滴粒径迅速减小然后缓慢增加,而当吸入速率逐渐变小时,雾化液浓度迅速衰减并且雾化液粒径开始显著增加并且很不稳定,这个数据也很好地体现了呼吸过程中发生的变化。 图13. 某雾化系统在正弦呼吸模式下的雾化粒度结果 图14. 不同呼吸频率下的雾化液滴粒径结果   当然我们也可以改变呼吸的方式,比如保持相同的配方和管路结构,增加呼吸频率,观察呼吸方式对于雾化粒径的影响(图14)。从图中可以看出,随着呼吸频率的增加,吸入时间也相应减少,同时吸入雾滴的流动速率也跟着增加,液滴粒径显著减小。   除了呼吸方式,雾液配方对于雾化粒径也会有显著的影响,图15给出了三种不同浓度的PVP溶液的雾化粒径结果。可以看出随着PVP的加入以及浓度的增加,其雾化粒径显著增加,这主要是由于PVP的加入增加了雾化液的粘度造成的。 图15. 不同浓度的PVP溶液雾化粒径结果 图16. 不同浓度的PVP溶液雾化吸入浓度的结果   同时图16给出了上述三种雾化液在吸入过程中雾液吸入浓度的变化,从图中可以看出,随着PVP的加入以及浓度增加,吸入浓度明显变小,这也就意味着,要想达到相同的递送剂量,对于粘度较高的雾化液可能需要更长的吸入时间。   4. DPI干粉吸入剂   干粉吸入剂(DPI)又称吸入粉雾剂,是在定量吸入气雾剂的基础上,结合粉体输送工艺而发展起来的新剂型。它是将微粉化药物单独或与载体混合后,经特殊的给药装置,通过患者的主动吸入,使药物分散成雾状进入呼吸道,从而达到局部或者全身给药的目的。干粉吸入剂具有自身显著的特点:比如无需氟利昂抛射剂,不存在大气污染问题 不含酒精、防腐剂等溶媒溶剂,减少对于喉部的刺激,同时也更加易于保存 不受药物溶解度限制,可以携带的剂量较高 固体剂型,尤其适合多肽和蛋白类药物。然而干粉吸入剂虽然不需要考虑溶解悬浮等问题,但由于粉体颗粒之间容易产生团聚,同时活性成分与辅料载体之间包覆或者相互作用因素也必须详细考量,这就对吸入装置有着更高的要求,换句话说,必须是合适的活性成分及载体,控制合适的颗粒大小,并配以合适的吸入装置,才能达到稳定安全的剂量输送。   为了进一步说明这个问题,我们用了两种不同的药物采取不同的吸入装置观察雾化效果。其中两种粉体药物分别为柳丁氨醇和布地奈德,表1给出了雾化细颗粒所占的比例。 表1. 两种粉体在不同的吸入装置下的细颗粒比例   其中可以看出,同一种物料在不同的吸入装置中分散效果差异非常大,比如布地奈德的细颗粒比例可以从14%变为63%。而如果单从粉体物性角度来说,布地奈德的分子表面能是柳丁氨醇的5倍以上,这意味着分散布地奈德的颗粒要比柳丁氨醇难得多,但我们看到最终结果却恰恰相反,布地奈德粉体分散的细颗粒更多,这也进一步说明粉体吸入分散并不是简单的按照其物理性质的规律进行的,因此如果要进行干粉吸入制剂的研究开发,就必须将粉体配方和吸入装置同时相互考量。   接下来,我们就通过一个小的实验来看看粉体配方工艺、吸入装置以及吸入速率是如何影响雾化效果的。我们选了三种配方的粉体(见表2),第一种就是普通微粉化的乳糖粉体,第二种是微粉化的乳糖添加了5%的MgSt,采取实验室普通的混合设备加工,第三种同样是微粉化乳糖添加5%的MgSt,但采用的是高强度的混合设备混合(该技术由Vectura开发)。由于硬脂酸镁本身作为一个两性的物质,可以对微粉化的乳糖形成包覆结构,从而减少乳糖的团聚,但同时混合的方式和效率也将极大地影响乳糖的包裹效率和均匀程度,这也就直接导致粉体输送的复杂性。图17给出了纯的微粉乳糖在不同吸入速率下的粒径分布情况,从图中可以看出随着吸入速率增大,其颗粒粒径明显减小,这说明虽然乳糖本身颗粒是比较小的,但由于细颗粒具有较强的团聚作用,因此随着吸入速率增加,剪切作用力增强,导致颗粒越来越小,但团聚情况依然明显。   表2. 三种不同配方及加工工艺的粉体 图17. 纯微粉化乳糖在不同吸入速率下的粒径分布 图18. 普通混合的乳糖+硬脂酸镁粉体在不同吸入速率下的粒径分布 图19. 采取高能混合的乳糖+硬脂酸镁粉体在不同吸入速率下的粒径分布   图18则给出了普通混合的乳糖+硬脂酸镁粉体在不同吸入速率下的粒径大小,相比较纯的乳糖,首先在低吸入速率条件下,其颗粒分散粒径更小,尤其是大颗粒方面显著减小,这说明硬脂酸镁的包裹从一定程度下减小了乳糖团聚,但随着吸入速率增大,其粒度变化不明显,而且团聚依旧非常明显,这说明硬脂酸镁的包裹并不均匀,换句话说其并没有形成单个乳糖颗粒表面的包裹,而是多个乳糖团聚颗粒被包裹,这样这些大的包裹颗粒并不会随着吸入速率增加而分散,因此就造成了在高流速下,其粒径反而要比纯乳糖的要大。但如果改善了加工方式,提高了硬脂酸镁的分散均匀性和包裹效率,实现了单个乳糖颗粒的包裹,则可大大改善其分散粒径。图19则是采取高能混合方式的粉体在不同吸入条件下的粒径结果,从图中可以发现其分散粒径大大减少,基本上都在20微米以下,而且其粒度分布对于吸入速率并不敏感,这些都说明乳糖的包裹效率和均匀性得到了显著提升。   5. 激光衍射&撞击器连接 图20. 激光衍射粒度仪和安德森撞击器相连接   为了能够使激光衍射的测量条件跟碰撞法的测试条件一致,激光粒度仪还可以跟相关碰撞器相连接。图20是马尔文喷雾粒度仪跟安德森撞击器相连接的示意图,其中吸入制剂通过上面的人工喉进入到吸入样品池中进行粒度检测,然后通过下部的接口进入到撞击器中,由于是在同一通路中,大大提高了测试条件的匹配性,同时激光衍射作为一种无损检测技术,其本身不会对通路中的液滴、雾滴造成任何影响,因而大大扩展了其应用性。   6. 总结   现在吸入制剂越来越受到大家的重视,不论是气雾、液雾还是粉雾,不论何种形式,粒度检测毫无疑问都是体外检测中不可或缺的一环。当前医药研发的过程实际上就是跟时间赛跑的一个过程,因此在研发期间如何能够快速对大量配方、喷射装置以及测试条件进行筛选和甄别就显得非常关键。而激光衍射技术恰恰具有快速无损的特性,同时其结果比对性又非常强,能够快速提供大量粒径检测的相关数据,为吸入制剂的研发和生产提供坚实的保障。   (作者:李雪冰,英国马尔文仪器公司激光衍射产品专家,负责激光衍射及颗粒图像等产品的技术支持。)   注:文中观点不代表本网立场,仅供读者参考。
  • 2020中国药物前沿技术--特殊制剂峰会
    2020年9月3日-4日,由世界中医药学会联合经皮给药专业委员会主办,山东省食品药品检验研究院承办指导,上海意凡森医药、LOGAN以及迦南科技联合承办,山东中医药大学、北京盈科瑞创新药物研究、南京从一医药和上海十衍淘信息科技协办的“世界中医药学会联合会经皮给药专业委员会第六届学术会议暨中国药物前沿技术--特殊制剂峰会”在山东济南鲁能希尔顿隆重召开。本次峰会主要以高难度注射剂、经皮给药制剂、口服固体制剂、吸入制剂四个方向为主题,旨在进行深入广泛的研讨,推动制药行业产学研交流。会议共吸引近800多位医药领域专家、药品监管部门、科研院所、制药企业、药品研发公司、投资机构及专业院校的相关从业人员前来交流学习。多位专家参与峰会在本此峰会中,“经皮给药之父”梁秉文教授、山东中医药大学校长高树中、沈阳医科大学药学院院长方亮等专家相继分享成果与经验。峰会进行的首日,对于外用半固体制剂体外试验的方法学研究,浙江大学药学院梁文权教授对此进行分享,其中也着重提到了在体外透皮实验中会遇到的问题,如扩散池(参考于LOGAN干加热透皮扩散仪)、皮肤选择、水浴温度等。在此次峰会中,LOGAN协同青岛荣升必达团队参展了LOGAN新款12位溶出自动取样系统、自动释放率取样系统、生物等效预测系统、水夹层/干加热自动透皮系统、新款流通池法、涂布机以及溶出配套仪器等。我们将为到场的老师提供全方位的药物溶出和透皮扩散的技术咨询以及解决方案。另外还备有丰富的小礼品,欢迎各位老师莅临LOGAN展位。LOGAN荣获“年度贡献奖”本文使用权归禄亘仪器设备(上海)有限公司所有,未经授权请勿转载,如需转载,请与工作人员联系,并注明出处。
  • 酶工程: 回归本源方能“兼济天下”
    目前,食品、饲料、纺织等传统工业正借助生物技术通往美好未来,而未来之“美”一定程度上来自于生物技术之“酶”。   酶是一种生物催化剂,具有作用专一性强、催化效率高等特点,能够替代传统工艺或化学品,达到提高效率、降低污染、节能减排的目的。酶工程是研究酶的开发、生产和应用的技术性学科。   世界领先的酶制剂企业诺维信(中国)投资有限公司研发中心高级研发总监吴文平表示,酶工程研究并非距离实际应用遥不可及的空中楼阁,而是已经和产业化实践紧密结合,并且在食品、饲料、洗涤剂、制药等领域的研究和应用都已相当成熟。   上述应用意味着酶工程已起到了“兼济天下”的作用,并正在延伸至更广泛的领域。   吴文平向《中国科学报》指出,在推而广之的过程中,酶工程研究也遇到了问题:酶制剂的应用成本偏高,需要开发更高效、廉价的酶制剂。   尽管近些年基因工程、蛋白工程等相关学科的发展推动了上述问题的解决,但吴文平强调,酶工程也应重视回归本源,即发现和开拓更多的野生微生物资源,因为大多数酶制剂是由微生物来源的,而大自然在过去许多亿年的进化历程中已为我们造就出了许许多多高效的微生物,这是酶工程的基础和本源。另外,开发高效的重组蛋白质表达生产系统也是降低酶制剂成本的有效途径。   他认为,这些是当前酶工程研究不可忽视的问题。“但是这些基础工作现在很少有人愿意做了,很大程度上是由于耗时耗力但很不容易出成果。酶工程研究最重要的应该是把挖掘自然界微生物资源和现代生物技术手段相结合。”   此外,对于未来发展方向,吴文平表示,合成生物学正在为酶工程带来新契机,通过基因和全合成、代谢调控以及未来高效的生物体的集成等方式,促进酶的修饰、改造和生产,“高效生物体的合成生物学起到实际作用仍然需要较长时间,但在未来几十年有可能为酶工程带来巨大变化”。
  • CMBA发布:《干细胞制剂制备质量管理自律规范》
    2016年10月25日,中国医药生物技术协会(CMBA)发布了《干细胞制剂制备质量管理自律规范》的公告,公告对为规范我国干细胞制剂制备、管理、检测安全等进行了详细规范说明,《规范》自发布之日起施行。以下为“规范”原文:关于发布《干细胞制剂制备质量管理自律规范》的公告各有关单位:  为规范我国干细胞制剂制备,加强质量管理,促进行业自律,中国医药生物技术协会自2015年4月组织业内骨干企业及专家参照《药品生产质量管理规范》(GMP)、《干细胞制剂质量控制及临床前研究指导原则(试行)》和《干细胞临床研究管理办法(试行)》等,经过一年多的研讨,制订了《干细胞制剂制备质量管理自律规范》。经广泛征求意见并进一步修改完善,现将《干细胞制剂制备质量管理自律规范》予以发布,并自发布之日(2016年10月25日)起施行。  附件:《干细胞制剂制备质量管理自律规范》文件如下:  干细胞制剂制备质量管理自律规范  中国医药生物技术协会  第一章 总 则  第一条为加强干细胞制剂制备质量管理的行业自律,避免干细胞制剂制备过程中污染、交叉污染以及混淆、差错等风险,确保持续稳定地制备出符合质量标准和预定用途的干细胞制剂,参照国内外相关规定和指南,制定本规范。  第二条干细胞制剂是指用于治疗疾病或改善健康状况的、以不同类型干细胞为主要成分、符合相应质量及安全标准,且具有明确生物学效应的细胞制剂。  第三条本规范适用于干细胞制剂制备的所有阶段。  第二章 一般要求  第四条干细胞制剂的制备应遵循《药品生产质量管理规范》(GMP)的基本原则及其相关规定以及其他适用的规范性文件。  第五条干细胞制剂制备机构(以下简称制备机构)应建立符合 GMP 要求、完整的干细胞制剂制备质量管理体系,并设立独立的质量管理部门,履行质量保证和质量控制的职责。  第六条制备机构应根据每种干细胞制剂的特性及其制备工艺进行风险评估,并建立合理的质量管理策略。  第七条制备机构的工作区域应合理设计及布局。各功能区域应相对独立,应有满足其功能需要的空间、设施、设备和洁净度要求。质量控制区应与制备区实施物理隔离,行政区、生活区及辅助区等应不防碍干细胞制剂的制备。  第八条干细胞制剂制备的内、外环境应满足其质量保证和预定用途的要求,应严格控制微生物、各种微粒和热原的污染风险。  第九条干细胞制剂制备管理负责人、质量管理负责人和质量受权人应具有与职责相关的专业知识(细胞生物学、微生物学、生物化学或医药等),同时应具有 5 年以上的相关工作经验或接受过相应的专业培训,应能够履行干细胞制剂制备或质量管理的职责。制备管理负责人与质量管理负责人、质量受权人不得相互兼任。  第十条从事干细胞制剂制备、质量保证、质量控制及其他相关人员(包括清洁、维修人员、物料仓储管理人员等 )均应根据其工作性质进行专业知识、安全防护、应急预案的培训和继续教育。制备机构应建立人员档案,包括卫生及健康档案。对直接进行制备和质控操作的已离职员工档案,应至少保留 30 年。  第十一条从事干细胞制剂制备的人员、质量控制人员、包装人员应及时记录并报告任何可能导致污染的情况,包括污染的类型和程度。制备机构应采取严格的措施,避免体表有伤口、患有传染性疾病或其他可能污染干细胞制剂的人员从事制备、质量控制和包装的操作。  第十二条应建立设备、仪器、设施的管理档案,并建立唯一的编码标识系统,确保其使用情况的可追溯性,并对相关设备按照其说明书要求建立完善的使用及维护管理制度。  第十三条与细胞制备、质量控制直接相关的仪器、设备,如灭菌柜、超净工作台、生物安全柜、空气净化系统和工艺用水系统等,应经过验证或确认,经质量管理部门批准后方可使用,并进行计划性校验和维护。  第十四条如采用电子信息系统进行管理,制备机构应建立电子信息系统的设计、运行、使用、升级、变更等管理程序,并对其运行的准确性和完整性进行定期验证。  第三章 供者与采集  第十五条制备机构应建立并执行干细胞供者评估标准,通过筛查既往病史、家族史、当前健康报告,必要时还应包括出入疫区等其他情况的报告及样本检测(包括但不仅限于HIV、HBV、HCV、HTLV、EBV、CMV、梅毒螺旋体等)进行干细胞供者的评估,以预防传染性疾病和明确的遗传性疾病通过干细胞制剂进行传播。  第十六条有下列情况的人员不应作为异体干细胞制剂的供者:  (一)现病史或既往病史有严重传染性疾病   (二)家族史有明确的遗传性疾病   (三)未排除可能感染严重传染病(如近期出入过严重传染病疫区等),或其他不宜作为供者的情况。  第十七条自体干细胞制剂的供者,应根据所制备干细胞制剂的来源、特性和预定用途,制定合理的自体供者的评估标准和制备要求,并完成上述病原体筛查。  第十八条如使用诱导的多能性干细胞作为干细胞的来源,应能追溯到体细胞的供者,应进行供者评估所需的筛查和检测。  第十九条如使用体外授精术产生的多余胚胎作为建立人类胚胎干细胞系的主要来源,应能追溯配子的供者,应进行供者评估所需的筛查和检测。在使用多余胚胎前,应取得胚胎所有人的知情同意和授权,并经过伦理委员会批准。  第二十条所有人源采集物的采集必须得到供者或其法定代表人、监护人的同意,并签署知情同意书。  第二十一条采集机构应是取得《医疗机构执业许可证》的具有供者筛查能力的医疗机构。胚胎干细胞提供机构,必须是经国家相关部门批准的专业机构。制备机构应对采集机构或提供机构的资质进行确认,并定期进行评估。  第二十二条 采集工作应由采集机构的医护人员实施。采集人员应持有医师或护士执业证书,并经过相应的培训后方能进行采集。制备机构应向采集机构和采集人员明确采集物的质量标准、对采集信息和采集记录的要求、采集物发运前在采集场所的临时保存条件以及对采集物包装和发运的要求,必要时制备机构应对采集人员进行培训和指导。  第二十三条采集机构应制定采集标准操作规程,并备有采集过程中的应急预案。采集过程应严格执行标准操作规程并有真实记录,采集信息应双人复核。  第二十四条采集过程应采取措施保护供者的健康和安全,并通过无菌技术操作最大限度降低污染、感染和病原传播的风险。采集用的接触采集物的试剂和物料应无菌、符合临床安全标准,且在有效使用期内。需由制备机构提供的无菌试剂和物料,应经过制备机构质量控制部门的验证并合格。  第二十五条采集机构应向制备机构提供采集物的获取方式、途径以及相关的临床资料,包括但不限于供者的一般信息、既往病史、家族史和当前健康报告等。既往病史和家族史要对遗传性疾病相关信息进行详细收集,必要时应收集供者的 ABO 血型、HLA-I 类和 II 类分型资料及 DNA 样本以及过去三个月内出入疫区的情况报告,以备追溯性查询。采集机构和制备机构应建立供者个人隐私保护机制,确保个人信息受控。  第二十六条应建立采集物的唯一标识系统,以配合后续的各个标识系统满足干细胞制剂的可追溯性。  第四章 接收与制备  第一节 接 收  第二十七条制备机构应制定并执行每一种采集物的质量标准和接收标准操作规程。应设置采集物的接收取样工作区,执行采集物的登记、编号、初检、核对、取样和暂存功能。接收取样工作区应与制备区隔离并有独立的洁净环境,接收时的取样操作应在A级洁净环境下进行。  第二十八条接收人员收到采集物时应对采集物登记并进行唯一识别编码,并准确填写交接信息。  第二十九条接收人员应对采集物进行初检,初检内容包括但不限于:  (一)采集物信息核对,包括名称、数量、重量、供者信息、健康调查、表单等   (二)检查采集物内外包装及运输容器是否完整、密封状态等   (三)目检采集物是否有变质、损坏或污染   (四)取样并送检。  第三十条采集物如有异常或特殊情况,接收人员应及时通知质量管理人员。制备机构应建立采集物异常或特殊情况处置操作规程,进行无害化处理。  第三十一条当采集物某些检测项目周期较长时,可先进行后续工艺操作,但应对细胞进行有效的识别和隔离,待检验合格后方可对由该采集物制备的干细胞和干细胞制剂予以放行。  第二节 制 备  第三十二条制备机构应对每种干细胞制剂制备的全过程,建立相应的工艺规程,包括干细胞的富集、扩增、诱导、收获、冻存、分装等操作,并进行全面的工艺研究和验证。  第三十三条干细胞制剂制备的工艺规程内容包括但不限于:  (一)细胞的富集、分离、纯化、扩增和传代、冻存、细胞系细胞库的建立、向功能性细胞定向分化   (二)培养基、辅料和包材的选择标准及使用   (三)细胞复苏、分装和标记,以及残留物去除   (四)干细胞制剂成分及含量   (五)干细胞制剂制备标准操作规程   (六)过程质量控制点和中间制剂的质量标准   (七)终制剂质量标准   (八)包装标准操作规程。  第三十四条应为干细胞制剂的制备设立专用和独立的制备区、制备设施和设备。应建立干细胞制剂制备区、质量控制区和包装区的标识制度,包括但不限于工序标识、功能间/区标识、状态标识、警示标识、应急处置标识等。  第三十五条应按照工艺规程设计相应操作区的洁净度级别,非完全密封状态下的细胞操作(如分离、培养、灌装等)以及与细胞直接接触的无法终端灭菌的试剂和器具的操作,应在 B 级背景下的 A 级环境中进行。  第三十六条应建立严格的清场操作规程和建立完整的洁净区环境监测操作规程,并对每项监测指标制定相应的检测方法和频次。  第三十七条应合理安排制备工序的操作区域,不同质量标准或者工艺规程的干细胞制剂应在不同的房间操作 试剂的准备,干细胞的分离、扩增和诱导分化,干细胞制剂的配制和灌装或分装等操作,应在洁净区内分区域进行 不同批次的干细胞制剂不应同一时间在同一 A 级区域内操作。  第三十八条干细胞制剂应严格按照经批准的重悬液的配方进行配制和灌装,应尽可能缩短从细胞消化到制剂灌装的间隔时间。  第三十九条根据干细胞的特性及制备工艺,应在工艺的不同阶段(包括细胞库)制定相应的过程控制项目及质量标准,包括无菌、支原体、内外源病毒、细胞鉴别、细胞活力及生长特性、细胞纯度及均一性、细胞染色体核型、生物学效力、临床适应证特定指标、异常免疫学反应、内毒素及致瘤性等检测。  第四十条应建立干细胞制剂批次和记录的管理规程。每批干细胞制剂均应编制唯一的批号,并且该批号能追溯到该批次干细胞相应的所有制备信息。  第四十一条为保证干细胞制剂批次的稳定性、安全性和有效性,可根据干细胞的特性、制备工艺及预期用途,建立细胞库分级管理体系,如胚胎干细胞可建立细胞种子、主细胞库和工作细胞库的三级管理体系。  第四十二条应根据干细胞制剂的质量标准及制备工艺,明确限定各级细胞库和干细胞制剂所使用的干细胞的传代水平(细胞群体倍增水平或传代次数),不得随意变更。  第三节 培养基与其他  第四十三条制备机构应建立并执行物料的采购、接收、检验、贮存、发放、使用和运输的标准操作规程,并予以记录。关键物料应得到药品监督管理部门的注册批准,进口物料应同时符合国家进口管理规定。  第四十四条干细胞制备所用物料的供应商应经过质量管理部门的供应商评估并合格。物料接收前应确认供应商提供的该批物料的说明文件完整并符合相应的质量管理要求,说明文件包括但不限于说明书、合格证、组成成分说明、质量分析证书和化学品安全数据说  明书等。如需要,应由专业检定机构对物料进行质量检验,并出具检验报告。  第四十五条与干细胞直接接触的物料,应选择国家批准的临床应用产品,并建立抽样检验制度,达到所规定的质量标准之后由质量管理部放行以供使用。如无国家批准的临床应用产品,应符合国家相关管理要求。  第四十六条干细胞体外扩增培养所用的培养基应无菌、无病毒、无支原体及低内毒素,干细胞制剂中残留的培养基成分对受者应无不良影响。  第四十七条培养基在满足干细胞正常生长的情况下,不得影响干细胞的生物学活性。  第四十八条应尽可能避免在干细胞培养过程中使用人源或动物源性材料。如需要使用动物血清,应确保其无特定动物源性病毒污染。如需要使用猪源胰酶,应确保其无猪源细小病毒污染。严禁使用来自海绵体状脑病疫区的牛血清。  第四十九条若培养基中含有人的血液成分,如白蛋白、转铁蛋白等生物源性成分,应尽量采用国家已批准的可临床应用的产品,并明确其来源、批号、制造商及制造商提供的质量检定合格报告。  第五十条干细胞培养过程中,尤其是在最后的培养阶段中,除非必要,不应使用抗生素。  第五十一条 干细胞制剂制备过程中所用的培养用液体,如盐溶液、消化液、缓冲液、水等,所有成分应满足要求的纯度级别(例如水应符合注射用水标准),并应无菌、无病毒、无支原体及低内毒素。  第五十二条干细胞制剂中的重悬液成分应采用国家已批准的可临床应用的产品,每种成分应满足现行《中华人民共和国药典》的质量要求。如无临床应用产品,应符合国家相关管理要求。  第五十三条用于特定病原体(HIV、HBV、HCV、EBV、HTLV、CMV 及梅毒螺旋体等)检查的体外诊断试剂,应使用国家批准的试剂,并严格按照检测规范进行检测。  第五章 干细胞制剂的贮存和放行  第一节 贮 存  第五十四条制备机构应建立干细胞中间制剂和终制剂贮存管理规程,并有足够的贮存容器。贮存方式应满足质量要求,应能防止差错、混淆、污染和交叉污染。未经检验合格批准放行的干细胞制剂,应在待检区域中隔离存放。  第五十五条干细胞制剂的贮存区应建立标准规程管理人员进出、安全保障、应急事故处理等。干细胞制剂的入库、出库应建立台账,并进行相关记录信息的核对确认,交接双方应遵循交接标准规程操作。  第五十六条 干细胞制剂在制备完成至检验合格批准放行阶段的贮存,应根据干细胞制剂的生物学特性确定贮存方式和管理规程。干细胞制剂的冻存、贮存、复苏等应有记录。  (一)无需冻存的干细胞制剂,因质检、包装等原因需暂时存放的,其暂存期间的环境要求、安全保障、转移交接等应按相应的管理规程执行并记录。  (二)因工艺规程、检测时间、预定用途等原因,需深低温冻存后再进入放行程序的干细胞制剂,无论是否需要复苏,都应按照细胞库质量管理规范执行并记录。  第五十七条干细胞制剂深低温贮存库的设计和建造应确保良好的存放条件,冷冻保存温度不应高于 –150 ℃,应有通风和照明设施,以及必要的气体监控设施。  第五十八条干细胞制剂深低温贮存库应根据所储存干细胞制剂的制备阶段、生物学特性、储存目的和终极应用目标采用分级管理制度。分级管理的级别包括但不限于初级细胞库,主细胞库和工作细胞库。不同的分级库应根据各自用途制定相应的质量标准、检验项目和管理规程。  第二节 放 行  第五十九条制备机构应在符合干细胞制剂质量标准的基础上制定干细胞制剂的放行标准。  第六十条干细胞制剂的放行应至少符合以下要求:  (一)在批准放行前,应对每批干细胞进行质量评价   (二)干细胞制剂的质量评价应有明确的合格结论   (三)每批干细胞制剂均应由质量受权人签名批准放行。  第六十一条干细胞制剂放行前的质量评价包括但不限于:  (一)干细胞来源供者筛查和采集物检测结果符合相应标准要求   (二)试剂、耗材等物料的检测结果符合相应标准要求   (三)干细胞制剂在冻存前或收获发放前各项质量控制点均符合质量标准要求,所有必须的检查、检测已完成,相关的管理人员已签字确认   (四)主要制备工艺和检验方法已经过验证   (五)留样检测已启动,制备记录真实完整   (六)干细胞制剂的制备全过程符合其要求的环境下进行   (七)变更已经经过质量管理部门批准并已按照相关规程处理完毕   (八)对变更或偏差已完成所有必要的取样、检查、检验和审核   (九)所有与该批次干细胞制剂有关的偏差均已有明确的解释或说明,或者已经过彻底调查和适当处理 如偏差还涉及其他批次制剂,也一并得到了处理   (十)经过质量管理部门综合评价后,由质量受权人确认准予放行。  第六章 运输与追溯  第一节 采集物的运输  第六十二条采集物从采集机构到制备机构的运输应保证采集物的完好以及运输人员的健康和安全。  第六十三条采集物的运输容器应能够将运输过程中的温度控制在规定的标准范围内并减少运输过程中温度的变化。运输容器的性能应定期进行确认和验证,以确保其能为采集物提供符合要求的贮运条件。  第六十四条采集物运输容器表面应有明确的标识,包括但不限于:内容物名称、发运人及联系方式,接收人及联系方式、运输条件、警示标志等。  第六十五条采集物运输应有完整运输记录。根据运输记录,应能够追溯采集医疗机构的名称、采集物的名称、采集物的采集时间、离开采集医疗机构的时间、送达干细胞制剂制备机构时间以及交接的确认。  第六十六条运输过程中应保证采集物不被放射线照射。  第二节 干细胞制剂的运输  第六十七条干细胞制剂的运输条件应经过验证,应尽量缩短干细胞制剂从制备机构到应用机构的运输时间。应建立发生紧急或意外情况时的运输应急预案,确保干细胞制剂运抵使用时仍在有效期内。  第六十八条每批次干细胞制剂均应有发运记录,并能够追踪每批次干细胞制剂的运输过程,必要时能够及时全部追回。发运记录内容应包括但不限于:干细胞制剂名称、批号、规格、数量、接收单位和地址、发运方及联系方式、承运方及联系方式、发运时间、运输方式等。  第六十九条对于存在安全隐患决定召回的干细胞制剂,或者未使用和使用后剩余的干细胞制剂,应就地封存,由制备机构进行合法和符合伦理要求的处置并记录存档。  第七十条制备机构如委托第三方机构运输干细胞制剂,应评估承运机构的资质。承运人应接受制备机构相应的培训确保其可按照细胞制剂运输要求完成运输过程。  第三节 干细胞制剂的标识  第七十一条制备机构应建立并执行完整的干细胞制剂编码标识系统,确保干细胞制剂的唯一性和可追溯性。  第七十二条干细胞制剂编码与标识应由采集物的唯一捐献码和制剂识别码及状态标识信息等组成。干细胞制剂标识内容至少应包含以下信息:干细胞制剂唯一性字母或数字识别码、干细胞制剂名称、属性(自体使用或异体使用)、规格、细胞数量、使用方式、制备机构及联系方式、制备日期及时间、失效日期及时间、贮存温度等环境要求、生物危害  标识以及其他特殊描述说明(如适用)等。  第七十三条 应建立完善的标识的制版、批准、印制、发放、使用、回收销毁的管理规程,确保标识的准确性和唯一性。  第七十四条 应明确规定不同标识的使用用途和使用节点,确保在采集物的采集和接收,干细胞制剂的制备、冻存、贮存和发运时正确使用相应的标识,使用时应确保至少双人或由经验证的机器识别系统进行审核确认。  第四节 记录与档案管理  第七十五条记录系统应涵盖从采集物采集至输入(或植入)到受者体内的全过程。  第七十六条每批次干细胞制剂应有批记录,包括批接受记录、批制备记录、批包装记录、批检验记录和批干细胞制剂放行审核记录等与本批次干细胞制剂有关的记录。  第七十七条每批干细胞制剂的质量检验记录应包括采集物、中间制剂(种子细胞、主细胞库、工作细胞库等)和干细胞制剂的检验记录,可追溯该批次干细胞制剂所有相关的质量检验结果。  第七十八条制备记录的要素应至少包括:细胞制剂编码、关键制备参数、制备工序实施日期和时间、制备操作人员、关键试剂耗材的名称、货号、生产商/供应商、批号和有效期、数量、使用仪器设备的信息、审核人员等。  第七十九条应确保相关记录内容的受控管理,保证纸质记录和电子版备份记录的真实性、保密性和可追溯性。  第八十条干细胞制剂的批记录纸质记录和电子版备份记录应保存至这批干细胞制剂提取使用后的三十年,电子影像记录应至少保存三年。  第七章 附 则  第八十一条本规范为制备机构开展干细胞制剂制备质量管理的基本要求。机构应当根据各自的实际情况确定是否还需要遵照其他的规范。  第八十二条本规范下列术语含义是:  原代培养:从一个或多个器官或组织直接分离细胞开始培养,到通过亚培养获得细胞系之前的阶段。  细胞系:从组织或原始培养物中通过亚培养或者系列传代培养产生的具备指定特性的细胞群,可用于细胞储存。  群体倍增水平:一个细胞系自开始体外培养至一段时间后的群体倍增数。群体倍增数 = log10(N/N0)× 3.33,其中 N0 是该细胞系起始培养时的细胞数 N 是该细胞系生长一段时间后的细胞数。  胚胎干细胞:一类来源于胚胎,处于未分化状态,可以长期自我分化和自我更新,具有在一定条件下分化形成各种组织细胞潜能的细胞。  诱导的多能性干细胞:一类通过基因转染等细胞重编程技术人工诱导获得的,具有类似于胚胎干细胞多能性分化潜力的干细胞。  成体干细胞:位于各种分化组织中未分化的干细胞,这类干细胞具有有限的自我更新和分化潜力。  批:在同一生产周期中,用同一来源、同一方法制备出来的一定数量的一批制品,在规定限度内,批具有同一性质(均一性)和同一数量。  采集:使用经批准的方法从供者获得细胞或其来源组织或器官的行为,包括但不限于,捐赠者的血浆分离置换、骨髓、 脐带血收集、器官或组织获得。  采集物:从供者身上采集的或从相关提供机构获得的未经过操作、加工或制备的细胞、组织或器官。  异体供者:所提供的采集物或者细胞制备的制剂有可能用于另一个体的供者。异体供者可以与接受者有遗传关系,也可以没有遗传关系。  自体供者:所提供的采集物或者细胞制备的制剂将只限于用于自身的供者。  洁净区:洁净区在洁净厂房设计规范 GB50073-2001 的定义为:空气悬浮粒子浓度受控的限定空间。它的建造和使用应减少空间内诱入、产生及滞留粒子。空间内其他有关参数如温度、湿度、压力等按要求进行控制。洁净区可以是开放式或封闭式。洁净度标准与现行版 GMP 一致。  污染:从周围环境或其他细胞治疗产品引入的有害化学或生物物质。  隔离:为了防止污染和(或)交叉感染,将细胞、采集物或物料存放在规定的物理分隔区域内,或者用其他标准程序加以鉴别的操作。  第八十三条 本规范自发布之日实行,由中国医药生物技术协会负责解释。 中国医药生物技术协会 2016年10月25日
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制