当前位置: 仪器信息网 > 行业主题 > >

刘三堂

仪器信息网刘三堂专题为您整合刘三堂相关的最新文章,在刘三堂专题,您不仅可以免费浏览刘三堂的资讯, 同时您还可以浏览刘三堂的相关资料、解决方案,参与社区刘三堂话题讨论。

刘三堂相关的资讯

  • 刘三堂:确保食品安全,增加的监测装备经费
    导语:全国人大代表、内蒙古蒙清农业科技开发有限责任公司董事长刘三堂建议,增加内蒙古质检院的监测装备经费。   近年来,劣质食品引发的恶性事件频频出现,食品安全已经被列为国家重大战略性问题。对此,全国人大代表、内蒙古蒙清农业科技开发有限责任公司董事长刘三堂建议,增加内蒙古质检院的监测装备经费。   内蒙古自治区是中国重要的畜牧业生产基地,全区牛奶产量占全国的25%以上,羊肉生产加工能力在全国居于首位。刘三堂认为,由于内蒙古乳制品及肉类产品生产企业自身的食品安全检测能力建设速度滞后,大部分乳肉制品企业不具备食品添加剂、生物毒素、农兽药残留、微生物等项目检测能力。因此内蒙古质检院监测能力的提升是一项十分紧迫的任务。   在刘三堂看来,内蒙古质检院由于缺少配套仪器和设备,存在检不了、检不快、检不准的情况。不能满足食品安全的全部项目检验。如果不能对社会关注的重点问题和乳肉风险监测项目开展检验,自治区食品安全监管将会出现漏洞,政府及部门监管将缺乏准备可靠依据。   刘三堂表示,根据工作需要,内蒙古质检院需要食品检测能力提升装备经费4515万元。   面对日趋发展的食品工业和日益严重的食品安全问题,国务院办公厅提出“强化检验检测和监测评估、严格落实质量安全各方责任”。从2011年起,国家质检总局加大了对各地食品安全检测能力提升的投资力度,已投入500万元,要求各地方政府解决配套经费。
  • 三诺生物晋级全球第六大血糖仪企业
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 近日,三诺生物传感器股份有限公司在长沙成功完成对美国Trividia& nbsp Health& nbsp Inc公司的收购交割仪式。此为我国医疗器械行业近年来海外收购最大案例之一,收购金额达27250万美元。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 三诺生物董事长兼总经理李少波介绍,并购完成后,公司将成为全球第六大血糖仪企业,向“全球血糖仪专家”的战略目标更近一步。此外,中美两地两家发展最快的血糖监测产品公司的结合,有望为糖尿病患者提供更创新、经济的解决方案。 /p p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 据了解,三诺生物主要产品为微量血快速血糖测试仪及配套血糖检测试条,截至目前,公司已自主开发出成熟的酶生物传感器测试系统技术,获得了植入式生物传感器、动态血糖监测系统等近50件专利授权。近年来,公司还研发出黄金电极血糖监测产品、手机血糖仪等多款创新性检测产品。未来,公司拟进一步专注生物传感相关技术研发,打造生物传感器技术开发平台、构建以慢病管理为基础的血糖管理平台和以传感网为支撑的数字医疗服务体系等。 /p p br/ /p
  • 回春堂等三款港产中药重金属超标
    重金属超标三款港产中药别买   可能导致重大用药安全隐患 今晨记者发现问题药网上还有卖   存在重金属超标,可能会带来重大用药安全隐患,三款港产中药您别买了。   近日,香港卫生署向内地卫生部门通报了这三种港产问题中药产品,分别为“德国(汉堡)强力活肝宝”、“回春堂五宝丸”及“香港民济堂六神丸”。   香港卫生署称,“德国(汉堡)强力活肝宝”微生物含量超出标准限度,系由香港康溢医药有限公司生产 “回春堂五宝丸”的汞含量及“香港民济堂六神丸”的铅含量超出标准,此两种产品系由香港回春堂中药厂生产。   香港卫生署发言人表示,长期摄入汞可导致麻痹及触觉、视觉、听觉或味觉逐渐减退,也可导致神经系统和肾功能受损 长期摄入铅则可导致贫血、关节及肌肉痛、脑部及肾脏受损等。   因此,香港卫生署于近日巡查“回春堂五宝丸”及“香港民济堂六神丸”的制造商后,已责令其从市场上回收这两款产品,并及时对“德国 (汉堡)强力活肝宝”叫停。      马上就访   问题中药还在热卖   今天上午,记者核查国内药监部门,发现上述三种药品均未获准在大陆销售。   但记者在各大购物网及药品代购网站上看到,“德国(汉堡)强力活肝宝”和“回春堂五宝丸”这两款药品均有销售。康溢医药有限公司甚至还特别针对大陆用户设立了销售热线。   记者注意到,不少网友都在这些代购网站留言,表示将再次购买,实际上这些订购网人气颇高,记者致电了解情况时常遇到工作人员一人接几个电话并要求等待的情况。   香港药业公司的一位工作人员上午在接受记者采访时表示,香港回春堂中药厂仍在出售“回春堂五宝丸”,每盒价格为48元,只要汇款即可购买。
  • 电镜学堂丨电镜使用中,如何选择合适的束斑束流?
    “TESCAN电镜学堂”又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性以及其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。今天主要谈一谈电镜使用中如何选择合适的束斑束流? 这里是TESCAN电镜学堂第10期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能! 第三节 常规拍摄需要注意的问题 平时电镜使用者都进行常规样品的观察,常规样品不像分辨率标准样品那么理想,样品比较复杂,而且有时候关注点并不相同。因此我们要根据样品类型以及所关注的问题选择合适的电镜条件。 关注分辨率、衬度、景深、形貌的真实性、其它分析的需要等等,不同的关注点之间需要不同的电镜条件,有时甚至相互矛盾。因此我们必须明确拍摄目的,寻找最适合的电镜条件,而不是贸然的追求大倍数。 电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。本期将为大家介绍束流束斑的选择。 §2. 束流束斑的选择 除了加速电压外,束流和束斑也是电镜工作中非常重要的参数。一般来说,束流和束斑并不完全独立,增加束流的同时,由于Boersch效应,必然导致束斑的扩大。所以束流越大,分辨率反而越低,但是信噪比越好。 束流的选择要视具体情况,在拍摄高分辨时,需要较小的束流来获得小束斑;常规倍数可以增加束流来满足信噪比的需要;而对于分析附件,往往需要比图像拍摄大很多的束流。 对于束斑的调节,通常都认为束斑扩大会降低分辨率,如图5-22,但是反之,束斑越小真的就能获得更好的图像吗? 图5-22束斑太大会引起分辨率的下降 看如下一组图,图5-23,左边一组图是5万倍下的图像,左边是小束斑,右边是大束斑,显然小束斑有更好的分辨率,大束斑的图像已经有些模糊。右边一组图是维持束斑大小不变拍摄的1万倍下的图像。本应有着更好的分辨率的小束斑图像却出现了失真,虽然依然有更好的分辨率。但是对于真实性和分辨率之间要根据需要来判断,此时,样品的真实性受到严重影响。 图5-23 相同束斑在不同倍数的对比 为什么会出现这样奇怪的现象?为什么更好的分辨率却没有得到更真实的图像?前面我们已经说到,电子束是由扫描线圈的脉冲信号控制,电子束在试样表面并不是连续扫描,而是逐点跳跃式的扫描。一般扫描电镜的采集像素比较大,我们会误以为是连续扫描。既然扫描电镜是束斑间断跳跃式的轨迹,那么电子束就有一定的覆盖面积。 束斑中心的距离取决于放大倍数和采集像素大小。当束斑较大时,束斑覆盖比较全面;但是当束斑减小时,束斑的覆盖区域也越来越小,所以有的特征形貌会从束斑两个跳跃中心穿过而没有被覆盖到,所以相应的形貌特征也不会反映在图像上,这就造成了信息的丢失。像上述例子,在大倍数小,束斑之间跳跃间距小,足够覆盖特征形貌,但是缩小倍数后,跳跃距离变大,束斑不足以覆盖所有的特征形貌,有的线条就反映不出来,如图5-24。 图5-24 束斑大小与电子束的扫描 电子束的扫描是根据放大倍数和采集像素大小而进行了马赛克的像素化,只要束斑缩小到和单点像素匹配就可以,束斑与束斑之间不会出现太多的重叠而导致分辨率下降。只有束斑与单点像素匹配后,再缩小束斑已经没有意义,不会带来分辨率的提升,相反会引起信息的缺失。由此我们可以得到新的结论,虽然束斑越小理论分辨率越高,但是对于实际拍摄来说,像素和束斑越匹配才是效果越好。 图5-25 束斑和像素的匹配度 图5-25中四张图片对应的束斑和单点像素(绿框)之间的关系,我们可以看出其匹配度和图像质量的关系。像素和束斑的匹配并非指束斑完全小于像素框,束斑可以看成是一个衍射波,中间呈类似高斯分布,只要半高宽和像素大致相等则视为最匹配。而此时束斑的大小是大于像素的。 而且扫描电镜是靠电子束的扫描运动,只要不同像素点覆盖区域的电子产额能够被探测器最有效处理和区分,那电镜图片也就能区分。所以扫描电镜是完全可分辨比束斑更小的细节的,而有点地方说扫描电镜不能区分比束斑更小的说法是不够严密的。束斑是单点像素1.3~2倍左右,都是最佳匹配的条件。 现在我们发现束流的设置应该是随着放大倍数而变换的,对于TESCAN用户来说,比较方便,可以直接从软件中读取当前电镜调节对应的束流,结合视野宽度很容易知道单点像素的大小,从而快速找到束斑与像素匹配的工作条件。既保证了没有信息丢失,又保证了最大的束流强度和信噪比。TESCAN的钨灯丝电镜可以直接右键进行自动束斑大小的设置,如图5-26左,场发射电镜则可以直接在信息栏中输入想要的束斑大小,如图5-26右。如果在束斑设置中输入0,则电子束缩到可能达到的最小值,这主要用于极限分辨率的观察。 图5-26 TESCAN电镜的束斑设置 此外对于EBSD分析也一样,EBSD分析为了追求速度,需要较大束流,而束流增大会增大束斑,导致花样重叠无法标定。而TESCAN用户则可以轻易的根据EBSD的步长来设置束斑大小,确保在不会出现花样重叠的情况下束斑达到最大,采集速度最快。 福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。【本期问题】如何根据像素选择最合适的束斑?(快去微信留言区回答问题领取奖品吧→)奖品公布上期获奖的童鞋,请关注“TESCAN公司”微信公众号在3个工作日内后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。 TESCAN电镜学堂“有奖问答”奖品 (印刷版书籍1本)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请戳以下文字或点击阅读原文:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备统电镜学堂丨扫描电子显微镜样品要求及制备 (二) - 特殊试样处理&试样放置 电镜学堂丨扫描电镜的基本操作 & 分辨率指标详解电镜学堂丨电镜操作之如何巧妙选择加速电压?电镜学堂丨电镜使用中,如何选择合适的束斑束流? 更多详情内容请关注“TESCAN公司”微信公众号查看
  • 司小令大讲堂丨第六期 脱气的方法(三)
    《流动相脱气》特辑 本期为大家介绍在线脱气的氦脱气方法及非脱气的方法。 01在线脱气的氦脱气方法 与多种其它气体比较,氦在各种溶剂中的溶解度最小,且溶解度随温度的变化也最小。当在一定压力下,使氦在溶剂中冒泡时,即可将其它溶解气体驱走,本法脱气能力很强,适用于对氧的浓度很敏感的高灵敏紫外,荧光和示差检测,可得到相当平稳的基线。 但是,氦脱气时容器要尽可能加上盖子,避免溶剂与空气随意接触,一方面是因为氦冒泡脱气时不可能把溶解的其它气体全部驱尽,另一方面,当氦的压力变化,导致气体分压变化后,使脱气程度波动,基线也随之波动。 图1 分压1大气压,25℃,1mL溶剂中气体的溶解量 图2 气体分压1大气压,各种气体在1mL水中溶解量与温度的关系 图3 氦脱气的示意图 步骤 氦脱气装置如图4所示,是一种密封耐压系统。注意,流动相容器用一种特殊的盖子密封。先通氦气10~30分钟,压力0.2~0.5Kgcm2以驱走流动相中溶解的空气。此后关闭排气阀即可使用。此时调节氦气压力稍大于大气压,再进入的氦气只置换被用去的流动相的体积。 图4 氦脱气(密封加压系统) 当分析完毕以后,先打开排气阀,再调节压力至零,如果有进口阀的话,关掉。此时氦可能通过出口管逐渐逃逸(管中有压力可防止空气进入),流动相可能会通过氦出口过滤倒流。如果装置中有阻尼管,则能通过空气倒流,防止流动相倒流,如果无阻尼管则干脆松开氦出口管,让空气流入。 如果压力调节阀失灵,装置内的安全阀启动压力又设置过高,则流动相容器内的压力太大,引起危险。因此,除适当设置安全阀启动压力等,为确保安全,加压容器最好如图6所示加以屏护,以防万一。氦脱气装置中,作为标准装备,包括上述屏护材料。 溶剂气体阱用以收集驱气过程中挥发的溶剂气体,避免其逸入室中。如果氦脱气采用开口系统,则达到相应的气液平衡,不会有大量流动相蒸气逸出。 图5 开口容器对驱气不利 图6 密封加压空容器的安全措施 优点 ?脱气能力最强。?脱气能力与流动相流量无关。 缺点 ?需氦气钢瓶,气体压力表等装置。?如果非密封加压系统,不一定能确保脱气的效果,因此对流动相容器的瓶口直径和形状有特殊要求。?如果流动相是混合溶剂的话,溶剂的组成有可能变化。?如果是密封加压系统,达到平衡后,溶剂组成不易变化。 应用 ?用于各种高灵敏检测,紫外高灵敏检测需采用密封加压系统;开口系统可用于荧光,电导及电化学等高灵敏检测。 ?适用于高压或低压梯度洗脱。高精度分析时,脱气的溶剂最好不是混合溶剂,操作成本很大程度上取决于所采用装置的结构,如封闭加压系统或开口系统。以岛津DGU-10B密封加压系统为例(可四流路脱气); ?如采用二流路,流动相容器2个11瓶;每天脱气8小时,氦的压力 0.3Kg/cm2,初始驱气20min,99.995%He,7m3每瓶2000元计则:○初始驱气300mL/min×2min×2=12L○正常操作10mL/min(漏气)×480 min=5L○置换流动相体积约2L故:每天的操作成本为:19L×2000/7000=5.5元 02 非脱气的方法 除了脱气以外,还有一些其他方法可降低气泡的危害:(1)抬高流动相容器。(2)使用气泡捕获器。 抬高流动相容器 如图7所示,把流动相容器置于比泵高的地方,使泵的入口处稍有压力,可防止逆阀的误动作(正常情况下逆阀作用不大)。在压力下,即使有气泡进入泵,也占体积较小;此外,气泡体积小,容易凭借吸液管中的浮力上浮,不易进入泵中。 因此,抬高流动相容器是一种简单易行且有效的措施,无论采取脱气与否,这样做都有益无害。 图7 抬高流动相容器 气泡捕获器在泵与流动相容器之间设置如图8所示的气泡捕获器可防止吸液过滤器形成的气泡进入泵体。 图8 气泡捕获器示意图 图9 气泡捕获器安装图 气泡捕获器也有缺点,首先流动相清洗捕获器既需时间也需流动相,其次在低压梯度或有在线脱气装置时无法应用。 这三期讨论了各种脱气方法及各方法的优缺点及应用范围。在实际工作中,请视具体情况采用最适宜的方法。
  • 肿瘤细胞中不同的糖代谢途径|附相关会议
    人们早在20世纪初就观察到肿瘤细胞群体的一个有趣且独特的性质:大多数肿瘤细胞的能量代谢与正常细胞相比呈现出巨大的差异性。1924年Otto Warburg首先报道了这一现象,后来他由于发现呼吸酶(即细胞色素c氧化酶)而获得了诺贝尔奖。相关会议推荐点击可免费报名大多数不增殖的正常细胞通过获取氧分子,将葡萄糖通过葡萄糖转运蛋白(GLUT)运输入胞内,在胞质中有氧条件下能通过糖酵解途径将葡萄糖分解成丙酮酸。在糖酵解的最后一步,丙酮酸激酶的M1亚型的存在,可以确保产物丙酮酸被运送到线粒体,再在丙酮酸脱氢酶(PDH)的作用下进行氧化,生成乙酰辅酶A,进入三羧酸循环。通过这种方式,线粒体每分解一个葡萄糖分子就能产生36个ATP分子。而在肿瘤细胞中,即使在有充足氧供应的肿瘤细胞中,GLUT1将大量葡萄糖运输至胞质中进行糖酵解。它依赖丙酮酸激酶的M2亚型,将丙酮酸盐转化为乳酸脱氢酶(LDH-A)的底物,生成大量乳酸,分泌到胞外。由于只有极少量的葡萄糖被运输至线粒体进行分解,故每个葡萄糖分子只分解得到2个ATP分子。此外,糖酵解途径中的大量中间产物被用于其他生化合成途径中。被Warburg称为肿瘤细胞“有氧糖酵解”的这种代谢方式,由于其每分解一个葡萄糖分子只能得到两个ATP分子,在能量学上显得很不经济。因为在三羧酸循环中有氧分子参与的情况下,一个葡萄糖分子的有氧糖酵解途径能提供36个ATP分子。机体中的大多数正常细胞正是通过这种由血液系统带来氧分子、进而进行有氧糖酵解的途径获得高效供能的。而即使子提供充足氧气的情况下,肿瘤细胞也不使用常规糖酵解方式,这实在是一种非常与众不同的生物学行为。由于肿瘤细胞使用的是一种很不经济的糖代谢方式,因此它们需要大量的葡萄糖进入胞内进行分解。在多种肿瘤中,如上皮来源的癌和血液系统肿瘤,都能观察到这种行为。它们高表达葡萄糖转运蛋白,如GLUT1等,以便能跨膜转运大量葡萄糖。那么为什么80%的肿瘤细胞要采取这种糖酵解的方式,而不采用到线粒体中进行三羧酸循环的方式对葡萄糖进行分解呢,并且明显后者能提供更多的ATP以供肿瘤细胞的生长和增殖?有氧糖酵解是否是肿瘤细胞维持其表型必需的?又或它只是细胞转化后的一个无意义的副效应,对细胞转化和生长并没有因果作用。有关有氧糖酵解的一个解释是肿瘤块内部的肿瘤细胞通常都呈现缺氧的状态,这种缺氧状态导致细胞不能进行充分的糖酵解进而提供充足的ATP,就像正常细胞在缺氧状态时的反应一样。由于具备Warburg效应,肿瘤细胞很好地适应了这种缺氧环境,但这依然不能解释为什么在提供充足氧气的条件下,肿瘤细胞依然不加以利用以合成更多的ATP。关于有氧糖酵解另一个合理的解释是,除了产生ATP,糖酵解还有第二个作用:糖酵解途径的中间产物可以作为很多涉及细胞生长(如核酸和脂类的合成)的分子的前体。肿瘤细胞通过糖酵解途径的负反馈机制,阻断糖酵解途径的最后一步,使细胞内积累了大量早期中间代谢物。这些糖酵解途径的中间产物能参与许多重要的生化合成反应。较肿瘤细胞而言,正常细胞没有那么强的增殖活性,也不需要大规模的生化合成反应,葡萄糖主要用来产生ATP以维持其正常代谢。正是这种肿瘤细胞异常的葡萄糖代谢为其创造了生长和增殖的生理学环境。参考文献: 1. 《The biology of CANCER》second edition. Robert.A Weinberg 2. 《癌生物学》詹启敏 刘芝华 主译
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 艾威科技今年成功举办六场“GE产品技术大讲堂”
    今年4月1日起,艾威仪器科技有限公司在湖南、广东、广西、海南、福建五省,除GE公司指定的生物制药、生命科学研究机构以外的科研及应用市场客户,作为GE生命科学类产品的授权分销商。 21世纪是生命科学研究的世纪,是功能生物学的时代。通过各种创新的技术来纯化蛋白质、研究蛋白质的结构和功能, 这个思路大大提高了生命科学研究能力,能更好地揭示疾病发生和治疗机理,加快新药开发,并最终达到预测疾病、预防疾病、战胜疾病的目的。 艾威科技携手通用电气(中国)医疗集团生命科学,邀请到几位GE生命科学领域的专家,2013年分别在湖南长沙、广东广州、广西南宁、海南海口这几个区域举办了总共六场的&ldquo GE产品技术大讲堂&rdquo 。这一系列的技术讲堂,总共吸引到数百位客户参加,他们对我们这一系列的技术讲座纷纷给予了高度评价。 GE Healthcare生命科学部业务主要包括基因科学、蛋白质科学、细胞和分子成像,药物开发和工业生产等。GE Healthcare生命科学部旗下享誉全球的Ä KTA纯化平台、Biacore & Microcal非标记分子功能分析平台、以及高分辨率、高内涵活细胞IN CELL分析平台均处于全球领先地位,我们始终如一致力于提供最先进的产品和技术用于基础科研、药物开发、医学研究和诊断等应用研究,以及生物医药产业化过程,为我们的客户提供全面、高效和经济的解决方案,帮助我们的客户在各个领域取得出色的研究成果。 以下,是我们这一系列&ldquo GE产品技术大讲堂&rdquo 的现场照片: 湖南长沙 广西南宁 海南海口 广州中医药大学 艾威仪器科技有限公司 400-880-3840 www.evertechcn.com
  • 关于阿拉伯木聚糖等8种“三新食品”的公告与解读
    根据《中华人民共和国食品安全法》规定,审评机构组织专家对阿拉伯木聚糖等3种物质申请作为新食品原料,羟基酪醇等4种物质申请作为食品添加剂新品种,“2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物”申请作为食品相关产品新品种的安全性评估材料进行审查并通过。特此公告。国家卫生健康委2024年7月25日阿拉伯木聚糖是以甘蔗渣为原料,经清洗、压榨、氢氧化钠提取、沉淀、纯化、干燥等工艺制成。该原料主要作为膳食纤维来源之一。美国食品药品监督管理局将阿拉伯木聚糖作为一种膳食纤维,欧盟、加拿大等国家和地区已允许该物质添加在食品或膳食补充剂中。本产品推荐食用量为≤15克/天。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对阿拉伯木聚糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于阿拉伯木聚糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。长双歧杆菌婴儿亚种(原名称为“婴儿双歧杆菌”)已被列入我国《可用于食品的菌种名单》,也已列入欧洲食品安全局资格认定(QPS)名单的推荐微生物列表。长双歧杆菌婴儿亚种M-63(Bifidobacterium&ensp longum&ensp subsp.infantis&ensp M-63)从健康婴儿肠道中分离得到,该菌株在美国被作为“一般认为安全的物质(GRAS)”管理,可用于婴幼儿食品。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对长双歧杆菌婴儿亚种M-63的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性,批准列入《可用于婴幼儿食品的菌种名单》。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该原料的食品安全指标应符合《食品安全国家标准&ensp 食品加工用菌种制剂》(GB&ensp 31639)的规定,同时克罗诺杆菌属不得检出(/100g)。N-乙酰氨基葡萄糖是以葡萄糖、玉米浆干粉、硫酸铵、磷酸二氢钾、硫酸镁为原料,经谷氨酸棒杆菌RDG-2110(Corynebacterium&ensp glutamicum&ensp RDG-2110)发酵、过滤、浓缩、结晶、离心、醇洗、干燥等工艺制成。韩国允许N-乙酰氨基葡萄糖作为食品原料使用;加拿大批准其作为天然健康食品使用;我国台湾地区已将其作为食品原料使用。本产品推荐食用量≤500毫克/天(以干基计)。根据《中华人民共和国食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对N-乙酰氨基葡萄糖的安全性评估材料审查并通过,认可其食用安全性和具有食品原料的属性。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于N-乙酰氨基葡萄糖在婴幼儿、孕妇和哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群和食用限量。该原料的食品安全指标按照公告规定执行。1.背景资料。羟基酪醇申请作为食品添加剂新品种。本次申请用于植物油脂(食品类别02.01.01)。美国食品药品管理局、欧盟委员会等允许其用于植物油中。2.工艺必要性。该物质作为抗氧化剂用于植物油脂(食品类别02.01.01),延缓油脂氧化。其质量规格按照公告的相关要求执行。1.背景资料。二氯甲烷申请作为食品工业用加工助剂新品种。本次申请用于茶叶脱咖啡因工艺。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许其作为提取溶剂脱咖啡因。2.工艺必要性。该物质作为食品工业用加工助剂用于茶叶脱咖啡因工艺,在茶叶提取加工中发挥作用。其质量规格按照公告的相关要求执行。1.背景资料。2’-岩藻糖基乳糖申请作为食品营养强化剂新品种。美国食品药品管理局、欧盟委员会、澳大利亚和新西兰食品标准局等允许2’-岩藻糖基乳糖用于婴幼儿配方食品等食品类别。2.工艺必要性。该物质作为食品营养强化剂,是母乳中一种主要的母乳低聚糖。其质量规格按照公告的相关要求执行。1.背景资料。聚甘油蓖麻醇酸酯作为乳化剂、稳定剂已列入《食品安全国家标准&ensp 食品添加剂使用标准》(GB&ensp 2760),允许用于水油状脂肪乳化制品、半固体复合调味料等食品类别,本次申请扩大使用范围用于调制稀奶油(食品类别01.05.03)。美国食品药品管理局、日本厚生劳动省等允许其用于人造黄油等食品类别。根据联合国粮农组织/世界卫生组织食品添加剂联合专家委员会评估结果,该物质的每日允许摄入量为0-7.5&ensp mg/kgbw。2.工艺必要性。该物质作为乳化剂用于调制稀奶油(食品类别01.05.03),改善产品品质。其质量规格执行《食品安全国家标准&ensp 食品添加剂&ensp 聚甘油蓖麻醇酸酯(PGPR)》(GB&ensp 1886.95)。&ensp 2,2-二甲基-1,3-丙二醇与对苯二甲酸、乙二醇、间苯二甲酸、1,2-丙二醇、氢化二聚(C18)不饱和脂肪酸、1,6-己二醇和三羟甲基丙烷的聚合物1.背景资料。该物质常温下为淡黄色液体,不溶于水、微溶于丁酮等有机溶剂。欧洲委员会和日本厚生劳动省均允许该物质用于食品接触用涂料及涂层。2.工艺必要性。该物质为涂料基础树脂,具有较好的交联性和耐化学性。以该物质为原料生产的涂层具有较好的附着力和耐腐蚀性能。食品相关产品新品种.pdf阿拉伯木聚糖等 3 种新食品原料.pdf羟基酪醇等 4 种食品添加剂新品种.pdf
  • 数亿元D轮融资|海普洛斯专注肿瘤液体活检技术 软银中国/同仁堂养老投资
    仪器信息网讯海普洛斯集团近日完成D轮融资,本轮融资金额合计达数亿元。本轮由软银中国资本、同仁堂养老投资联合领投,信银资本等知名投资机构跟投。资金将用于进一步推动公司肿瘤液体活检技术和生信分析技术的研发,IVD产品的申报注册储备的布局,以及产品市场营销推广及渠道拓宽。普华永道企业融资与并购部担任本次交易的独家财务顾问。此前海普洛斯集团已获磐谷创投、软银中国资本、深创投、优选资本、山蓝资本、倚锋资本等专业投资机构的青睐。本轮,知名投资机构软银中国资本追加资金支持,“中药老字号”同仁堂旗下同仁堂养老投资及境外投资银行平台信银资本等参与投资,充分证明社会各界对海普洛斯的成长及发展前景的认可,为研发创新产品与拓展市场版图提供资金保障,助力海普洛斯深耕肿瘤精准医疗与基因大数据行业,在高质量发展的道路上行稳致远。海普洛斯创始人兼董事长许明炎:“非常感谢新一轮的投资机构对海普洛斯的认可和支持,也特别感谢软银中国资本以及之前的投资人一直以来的支持!八年来,海普洛斯深耕肿瘤全病程管理、遗传性疾病筛查和重大感染性疾病三大领域,我们将始终以患者为先、以客户为中心、以持续奋斗者为本,不断追求技术、产品和服务创新,始终坚持质量第一,为客户带来更多的创新医疗价值,努力成为全球领先的生命科技公司。在此,也特别感谢一直关心和支持我们的各地政府、合作伙伴和各界朋友,我们全体“海军”定不忘初心、砥砺前行。”软银中国资本合伙人刘缨:“我们坚定持续看好海普洛斯,一方面是因为我们对基因科技和大健康领域的长远发展抱有坚定的信心,另一方面,也是完全认同公司团队科技向善的初心,并对团队在过去几年中展现出的坚韧不拔之“海军精神”表示认可。海普洛斯团队始终坚持以科技为帜,多元发展,通过优质产品和可靠服务,持续为患者提供优质检测。我也相信,在后疫情时代发展中,海普洛斯将持续为用户和社会输出可靠创新的产品,为股东带来价值,继续成长为优秀的生命科学领军企业。”同仁堂养老投资总经理胡仁华:“海普洛斯先后布局肿瘤全病程管理、遗传病筛查、病原微生物检测三大业务板块,凭借稳健的经营理念,扎实的科研实力和优秀的市场开拓能力,在激烈的竞争中脱颖而出!我们相信,随着内部研发管线加速推进、外部市场进一步认可以及资本有效助力,公司在技术、商业等方面将会取得更大突破,为股东、为社会创造更大价值,成长为行业龙头企业!”磐谷创投生命科学事业部执行合伙人李丽宁:“海普洛斯一直深耕肿瘤全病程管理,已服务数十万名患者。公司不断优化液体活检、生信分析及AI等技术,开发了多个NGS及PCR产品,以及多个生物信息分析系统及医检服务流程管理系统,获得了医院、同行使用及好评。近年围绕病原微生物、个人基因组检测领域也陆续有多个产品上市,展现了公司积极创新、快速反应、团队高效协作的企业文化。”海普洛斯联合创始人兼首席技术官陈实富:“创立近八年来,海普洛斯深度融合先进的生物技术和信息技术,为用户提供了优质的检测产品,向行业开源了大量优秀生物信息软件,并在屡次抗疫中提供了技术支撑和检测保障。在新的征程中,海普洛斯将以AI技术为轴,融合基因、病理和影像等多层次数据,探索多尺度组学在临床中的应用。我们将继续加强超微量肿瘤液体活检技术优势,深耕肿瘤全病程管理中的分子检测技术,探寻最贴合临床需求的肿瘤早筛和监测解决方案。同时,我们将持续夯实在“BT+IT”领域的优势,为检验机构输出久经锻造打磨的系统化解决方案,打造智慧检验体系,为真正NGS临床落地提供一揽子解决方案。我们将以科技抗疫为出发点,坚持科技为民,勇于担当,继续提升“海普铁军”在公共卫生服务领域的成色。同仁堂养老投资股权投资部总经理陆健:“海普洛斯为科学家团队创业,“顶天立地”的同时创造了强大的技术和社会效益头部效应。凭借产品优异的灵敏度和特异性,在用药指导和科研指导方面具有领先性;同时在早筛领域谋篇布局,“治未病”理念符合全民利益;海普洛斯产品及服务不仅利于治疗“肠胃”“骨髓”之症,亦可防患于“腠理”。”普华永道企业融资与并购部中国南部主管合伙人陈春及大湾区合伙人张平平:“首先祝贺海普洛斯成功完成此轮融资,我们非常荣幸能够参与并贡献自己的力量。海普洛斯在肿瘤、遗传疾病及病原微生物检测方面有着深厚的技术积累,为广大居民的疾病防治、医疗机构的科学研究提供了高质量的服务和强有力的支持。同时,海普洛斯也具有强烈的社会责任感,在新冠检测方面做出了巨大的贡献。海普洛斯重研发、重技术,不断引入先进的管理运营经验,财务表现高速增长,在多方面建立了自身的资本市场吸引力。在本次财务顾问服务中,普华永道配置了最专业的医疗行业团队,与公司建立了长期战略合作关系。普华永道也期待未来与公司进一步合作,继续协助公司的资本市场发展。”关于软银中国资本软银中国资本(SBCVC)成立于2000年,是一家风险投资和私募股权基金管理公司,致力于在大中华地区投资优秀的高成长、高科技企业。曾成功投资了阿里巴巴、淘宝网、华大基因、迪安诊断等一系列优秀企业。目前软银中国资本同时管理着多支美元和人民币基金,投资领域包括信息技术、清洁技术、医疗健康、消费零售和高端制造等行业,投资阶段涵盖早期、成长期和中后期各个阶段。关于北京同仁堂养老投资北京同仁堂养老投资管理有限责任公司是北京同仁堂集团联合社会资本共同成立的专业基金管理及股权投资机构,是北京同仁堂集团拓展健康养老领域的核心运营平台。公司专注于前景广阔的大健康与养老产业投资,拥有一批优秀的投资及产业运营人才,立志成为国内一流的健康养老投资机构。关于信银资本信银资本为信银(香港)投资有限公司的全资附属公司,主要从事金融及投资银行服务,包括私募股权融资、基金投资及资产管理。在中信银行广泛的投资网络及资源支持下,信银资本为广泛的客户群提供服务,是中信银行综合金融服务的海外延伸。信银资本管理多只股权基金及固定收益基金,涵盖电子商务、医疗保健、物流及生物科技行业。凭藉卓越的服务,信银资本获得了多项行业奖项及荣誉,包括《投中网》颁发的2020年“粤港澳大湾区最佳私募股权投资机构TOP30”及2021年度“中国最佳私募股权投资机构TOP100”。关于磐谷创投磐谷创投资成立于2007年,是一家专注于投资新兴产业的早期创投机构,有着完善的投资理念和投资模式,自成立以来始终奉行以企业核心竞争力为基础的投资理念,秉承高效配置社会资源及伴随具有创造力和创新精神的企业和企业家共同成长、共经风雨的核心价值观,投资主要集中在信息技术、生命科学、人工智能等领域。生命科学领域聚焦新药发现技术平台、创新药物形式和创新疗法、组学分子诊断等多种创新技术平台。关于普华永道企业融资与并购部普华永道企业融资与并购部为2021年全球并购市场按交易量排名第一的财务顾问,普华永道中国企业融资与并购团队分布于北京、青岛、上海、深圳和香港,为客户提供一站式的全球财务顾问服务。我们与普华永道全球网络中企业融资与并购团队的2500余名专业顾问时刻保持紧密合作。我们80%的交易是由跨国团队共同合作完成,交易板块涉及金融保险、高端制造业、零售业、医疗制药业、科技、基础建设在内的各类行业。
  • 赛默飞发布测定饮料中三氯蔗糖的特色解决方案
    2014年4月16日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布测定饮料中三氯蔗糖的特色解决方案。三氯蔗糖(4,1,6-三氯半乳蔗糖,结构式见图1)又名蔗糖素,英文名称为:sucralose,1976年由英国Tate&Lyle公司和美国Johnson公司的子公司开发。三氯蔗糖是一种白色粉末状产品,极易溶于水(溶解度28.2 g,20℃),甜度为蔗糖的600倍,且甜味纯正,甜味特性曲线几乎与蔗糖重叠。它是以蔗糖等为原料经脱氧、氯化衍生而得到的半天然半合成产品,属非营养型强力甜味剂,在人体内几乎不被吸收,热量值为零。80年代中期,国际上16位知名专家组成的专门小组对三氯蔗糖的安全性问题进行了权威评价,确认三氯蔗糖对于广泛用途来说是安全的。1990年联合国粮农组织和世界卫生组织(FAO/WHO)的食品添加剂专业委员(JECFA)会经过140多次安全和环境的研究来确定三氯蔗糖的安全性,于1990年确定其ADL值为15 mg/kg,即每天允许摄入量为0-15 mg/kg体重。图1. 三氯蔗糖分子结构式Corona Veo电雾式检测器 但也必须指出,三氯蔗糖毕竟不是天然成分,就目前的安全性评价来看,在规定的剂量范围内使用可能对人无害,但若超量使用,仍可能引起各种形式的毒性表现。因此必须加强对三氯蔗糖的含量控制,发挥其有利作用,防止不利影响。国内对于饮料中三氯蔗糖含量检测的文献资料较少,有GB/T 22255标准中采用蒸发光散射检测器[1]进行食品中三氯蔗糖含量检测的报道,也有采用示差检测器来进行测定[2],对更低含量的三氯蔗糖其定性分析有采用液相色谱串联质谱进行分析[3]。 赛默飞发布的方案主要研究了电雾式检测器测定饮料中三氯蔗糖含量的分析方法,考察该方法的定量重现性,检测限等能否达到标准要求。结果表明,采用C18色谱柱分离,柱后加有机相补偿,电雾式检测器检测,获得了较好的分离度与重现性,因此是一个较好的饮料中的三氯蔗糖的分离与检测方法。下载应用文章请点击:http://www.thermo.com.cn/Resources/201401/6154938953.pdf 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 汤定元:学成归来的三任实验室“掌门”
    p style=" text-indent: 2em " 身在异乡,心系中华。在红外物理国家重点实验室的历届主任身上,“学成归来”是一个独特的标签,也是一个非常有分量的标签。 /p p style=" text-indent: 2em " 曾担任中国科学院上海技术物理研究所所长、红外物理国家重点实验室学术委员会主任的汤定元,于1948年3月赴美国明尼苏达大学物理系学习,同年转入芝加哥大学物理系,并获得硕士学位。 /p p style=" text-indent: 2em " 但在大洋彼岸求学的汤定元,无时无刻不在关心着祖国的发展。朝鲜战争的爆发更让他回国心切。为了避免因战争原因而被扣留,1951年春天,汤定元婉拒了导师的挽留,决定放弃博士学位,提前回国。 /p p style=" text-indent: 2em " 摆脱美国移民局的无理刁难后,汤定元乘船经过20多天行程,终于回到了日思夜想的祖国。他也成了新中国成立后在美留学生第一批回国的11人之一。是年8月,美国政府下令禁止中国留学生回中国,已经乘船到檀香山的人也被送返。 /p p style=" text-indent: 2em " br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 475px height: 309px " src=" https://img1.17img.cn/17img/images/202011/uepic/e6d4cc6c-695c-4e84-979b-3ac9210c3af4.jpg" title=" 微信图片_20201113000902.jpg" alt=" 微信图片_20201113000902.jpg" width=" 475" height=" 309" / /p p br/ /p p style=" text-indent: 2em " 曾担任实验室第一、二届主任的沈学础,在1978年作为改革开放后首批出国留学人员,获得了去德国马普学会固体研究所留学的机会。 /p p style=" text-indent: 2em " 初到马普学会固体所,沈学础选择了难度非常大的“双光束傅里叶变换光谱”课题。他没日没夜地扑在实验室里,连值夜班的保安都认得了沈学础,并对这个长期加夜班的中国人照顾有加。 /p p style=" text-indent: 2em " 在德国期间,沈学础从图书馆借阅了许多资料,从中学习大量知识的同时,还发现了书中的一些谬误。德国同行惊讶地说,他们中没有一个人像沈学础这样细致看文献。 /p p style=" text-indent: 2em " 正是在德国,沈学础“赶上了国际上固体光谱研究热的末班车”。在实验中,沈学础对偶然发现的新光谱信号“穷追不舍”,并与另一位中国访问学者合作观察到了固体中的轻杂质低频振动新谱峰。 /p p style=" text-indent: 2em " 起初,沈学础的指导老师——固体光谱学大师卡多纳教授对实验结果不以为然,只说了句“除非你足够幸运”。但最终事实证明,沈学础的执着是正确的,他观察到的现象可以归结为一类新的杂质振动模式。 /p p style=" text-indent: 2em " 实验室第三、四届主任褚君浩,在硕士研究生毕业后,曾有机会去美国攻读博士学位。但导师汤定元建议褚君浩留在国内读博士,在国内也一样可以做出出色的成绩。 /p p style=" text-indent: 2em " 当时,到美国留学可以获得3万美元奖学金,而在国内读研究生只有人民币80多元的补贴,待遇差距很大。褚君浩考虑了很久,最后还是听从汤定元的建议,留所读博士。 /p p style=" text-indent: 2em " 1986年2月至1988年10月,褚君浩获得德国洪堡基金,赴德国慕尼黑技术大学物理系从事半导体二维电子器件、远红外激光器等领域的研究。那时,远红外激光器很难调节,实验室里的许多人都调不稳,而只要褚君浩出手,就能把激光器调得非常稳。 /p p style=" text-indent: 2em " 褚君浩说,导师汤定元先生的爱国精神一直在传承,实验室绝大多数出国求学的学子,都回国报效祖国。他们牢记出发时汤定元的殷殷嘱托:学习结束后,有机会还是要回国发展。 /p p br/ /p
  • 唐守正院士:科技评价应引入第三方
    “科技评价是现在科技界最关注的问题,也是制约我国科技界发展的最大瓶颈。”日前,中科院院士唐守正表示,要变单一评价体系为多元评价体系,要将以政府为主的科技评价体系转为有社会参与的科技评价体系。   国家对深化科技体制改革的讨论目前已提上议事日程,而科技评价体系是其中的重要一环。唐守正认为,正因为科技评价涉及到政府、教育和科研机构等各方面,因而受到了上上下下的高度关注。   “现在的局面是,评价出现问题,举起板子不知道该打谁。”唐守正直言,比如,政府委托研究机构承担一项研究课题,而研究成果需要开专家委员会进行评审,如果最后给出的“达到国内或是国际领先水平”的结论是错误的,没有人来承担责任。   与此相对应的是,九三学社近年组织的一项万人问卷调查显示,78.5%的科技人员认为当前的项目评审结果不公正,67%的科技人员认为成果鉴定不真实。   在我国,很多科研成果评审鉴定并不规范。曾有科技界内部人士将科研项目评审形象地比喻为“三字一包”,也就是专家在评审时签名三个字,然后领一个红包。   “很多项目是找一些自己熟悉的专家来评,成果不通过的实际上很少。”唐守正进一步解释说,要让政府部门来承担责任,政府部门会认为是专家们的意见,而专家委员会是临时性和松散的,项目结束就会解散,因此,往往出现“举起板子找不到屁股”的情况。   在唐守正看来,为促进科技评价体系的建立和健全,引入第三方评价是可行的。近些年来,科技界对此也有很多支持的呼声,但如何成立第三方,什么样的第三方评价能够更为客观?   唐守正认为,作为科技评价的第三方,首先,应该是具备法人资质的实体,能够承担民事责任,甚至能够承担刑事责任 其次,第三方应有学术权威性,得到领域内一定程度的认可 再次,第三方机构应有相应的人才,可以集中领域内最主要的专家。   “也就是说,这个实体将来要对自己作出的评价负责。”唐守正说,第三方评价发挥作用对科技评价体制改革很重要,可以改变目前决策、立项、组织和评价不分家的做法。   在今年两会上,有全国政协委员表示了相同的观点,认为重大科技项目要经过独立的专家委员会评估和论证,重大项目实施过程要有独立的专家评估和监督,项目成果要由独立的第三方评估机构验收。   唐守正表示,深化科技体制改革中是否会建立第三方评价机构,目前还在国家层面的探讨中,但“用好科学共同体和社会力量,将是很好的开始”。
  • 2018年伊始 成都三家顶空厂商将对簿公堂
    p    strong 仪器信息网讯 /strong 中国科学仪器行业快速发展,随着竞争加剧和企业意识觉醒,围绕仪器的知识产权纠纷开始不断浮出水面。 /p p   近日,仪器信息网论坛网友爆料,2018年刚过,成都两家顶空进样仪器厂商作为被告,收到了某仪器厂家的诉讼函,三家企业即将对簿公堂。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/a5345a02-d319-4f21-b8d0-8d6aa6c142b6.jpg" style=" " title=" 微信图片_20180121215446.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201801/insimg/3fdce6a0-19e3-465d-a6b4-a7ed3b1ff583.jpg" style=" " title=" 微信图片_20180121215451.jpg" / /p p   有网友爆料原告为成都科林分析技术有限公司。本网将持续关注事件发展,带来更多报道。 /p p    strong 论坛跟帖: a href=" http://bbs.instrument.com.cn/topic/6704389_1?order=threadid" target=" _blank" title=" http://bbs.instrument.com.cn/topic/6704389_1?order=threadid" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " http://bbs.instrument.com.cn/topic/6704389_1?order=threadid /span /a /strong /p
  • 天美讲堂丨提高中药荧光指纹图谱的专属性(三)有序介质和荧光络合作用
    应用背景以中国传统医药理论指导采集、炮制、制剂,说明作用机理,指导临床应用的药物,统称为中药。中药作为中华民族传统文化的瑰宝,主要来源于天然药及其加工品,包括植物药、动物药、矿物药及部分化学、生物制品类药物。 中药品种繁多,来源广泛,成分复杂,单味中药中即含有几十种乃至更多的化学成分,临床多使用复方制剂,且中药的特点是多成分整体作用于有机体,因此,中药的质量评价和质量控制十分重要。中药为天然有机化合物,其中的某些成分能够在紫外光或日光照射下产生不同颜色的荧光,因此,荧光检验法是中药鉴别中常用的一种理化鉴别方法。中药的三维荧光图谱可以给出被测中药全面的荧光信息,为复杂的中药体系的荧光分析提供了方便。专属性是指中药指纹图谱的测定方法对中药样品特征的分析鉴定能力。对于中药材的三维荧光图谱而言,可以从荧光峰的位置、峰强度、峰形状、各个峰的强度比等方面使一种药材区别于其他药材。在中性水溶液中进行实验的方法是最简便、应用最多的方法,大部分药材可以用这一方法获得图形美观、专属性好的三维荧光图谱。但某些药材使用这一方法获得的三维荧光图谱相似,或者荧光太弱甚至无荧光。对于这些药材,需要采取特殊的实验方法以提高三维荧光图谱的专属性。由于物质的荧光性质与环境因素密切相关,因此,提高三维荧光图谱的专属性可以通过优化实验条件得以实现。(三)a. 有序介质作用有序介质指能够与荧光体通过分子间作用力形成胶束包合物或主客体包合物的有机化合物(如表面活性剂、环糊精等)。在水溶液中,有序介质与荧光体形成包合物之后,会改变荧光分子周围的微环境,从而能够对荧光体的光谱特性产生影响,造成荧光波长的移动或荧光强度的增强。表面活性剂与荧光体的作用是有选择性的,这种选择性与荧光体和表面活性剂所带的电荷以及两者分子间的亲和力有关。如果荧光体是带电荷的,具有与荧光体相反电荷的表面活性剂常对该荧光体的结合能力较强。例如,SDS可以使小檗碱、巴马厅的荧光明显增强(SDS在水溶液中带负电荷,小檗碱、巴马厅等异喹啉类生物碱带正电荷,两者结合能力较强)。(在使用表面活性剂时,应该注意所用的试剂是否有荧光或着含荧光杂质。)环糊精类化合物的特点是分子结构中存在一个亲水的外缘和一个疏水的空腔,其疏水的空腔能与尺寸大小合适的有机物结合形成主客体包合物。如,小檗碱和蛇床子素都能与β-环糊精发生荧光增敏反应。 (三)b. 荧光络合作用某些具有特定结构单元的有机化合物可以与铝离子、硼砂等在适当的条件下结合形成荧光络合物,使荧光信号增强。如丹皮酚与铝离子反应生成形成络合物,使荧光信号增强(丹皮酚自身荧光很弱,生成的丹皮酚-铝(III)络合物具有强荧光信号)。有些中药成分可以与硼砂和表面活性剂形成三元络合物体系,比二元络合物体系的荧光更强或稳定性更好。如,绿原酸与硼砂反应后荧光增强但幅度不大,如果加入表面活性剂CTAB,会使荧光信号进一步增强。天美讲堂丨提高中药荧光指纹图谱的专属性(一)溶剂效应天美讲堂丨提高中药荧光指纹图谱的专属性(二)酸度效应*本文参考:魏永巨 《中药三维荧光检验法》(科学出版社)仪器推荐天美FL970系列荧光分光光度计具有可靠、快速的光路系统(150W高能量氙灯、一体化的光路底板、PMT值增益的光电倍增管、超快的扫描速度)和人性化、直观、易用的操作界面。 天美分析更多资讯
  • 网络小课堂 I 分散体的稳定性分析
    德国LUM是全球分散体系分析及颗粒表征的领先者,拥有多项专利技术,其下LUMi系列产品为分析颗粒表征提供了技术平台。广泛应用于食品、化妆品、家庭及个人护理、石油、化工、制药、复合材料等不同行业。可以帮助您以一种简单的方式了解析复杂产品,简化和加速您的配方研发和质量控制过程。l 液滴和颗粒的粒度分布l 密度分布和磁化l 颗粒分离速度分布l 直接加速和实时的稳定性动力学l 比较和预测货架期l 纳米和微米颗粒的计数/浓度l 拉伸和剪切强度l 产品特性 本次线上研讨会将给大家带来分散体基础性的理论知识以及ISO对分散体稳定性的表征原则角度探讨STEP技术在分散体行业的实际应用。后续我们会邀请LUM的技术专家给大家分享不同领域的实际应用解决方案,请大家定期关注我们的网络小课堂。 课题 – 分散体的稳定性分析主讲嘉宾:时间安排:2021年6月24日(周四)下午14:00-15:00 会议内容:课题 – 分散体的稳定性分析 ü 分散体状态变化机理ü 分散体稳定性的表征ü 分散体货架期预测ü STEP技术在分散体行业的应用 报名方法:扫描下方”二维码”或点击”阅读全文”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。会议平台:Cisco Webex 邮箱:info@lumchina.cn
  • 网络小课堂 I 分散体的稳定性分析
    德国LUM是全球分散体系分析及颗粒表征的领先者,拥有多项专利技术,其下LUMi系列产品为分析颗粒表征提供了技术平台。广泛应用于食品、化妆品、家庭及个人护理、石油、化工、制药、复合材料等不同行业。可以帮助您以一种简单的方式了解析复杂产品,简化和加速您的配方研发和质量控制过程。l 液滴和颗粒的粒度分布l 密度分布和磁化l 颗粒分离速度分布l 直接加速和实时的稳定性动力学l 比较和预测货架期l 纳米和微米颗粒的计数/浓度l 拉伸和剪切强度l 产品特性 本次线上研讨会将给大家带来分散体基础性的理论知识以及ISO对分散体稳定性的表征原则角度探讨STEP技术在分散体行业的实际应用。后续我们会邀请LUM的技术专家给大家分享不同领域的实际应用解决方案,请大家定期关注我们的网络小课堂。 课题 – 分散体的稳定性分析主讲嘉宾:时间安排:2021年6月24日(周四)下午14:00-15:00 会议内容:课题 – 分散体的稳定性分析 ü 分散体状态变化机理ü 分散体稳定性的表征ü 分散体货架期预测ü STEP技术在分散体行业的应用 报名方法:扫描下方”二维码”或点击”阅读全文”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。会议平台:Cisco Webex邮箱:info@lumchina.cn
  • 我国红外学科奠基者、中科院院士汤定元逝世:雁过留声不留痕
    p   我国红外学科奠基者、中国科学院院士、中国科学院上海技术物理研究所研究员汤定元先生于2019年6月3日10时40分在上海逝世,享年100岁。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/c56cd1dd-0e4f-42f4-8426-6a7bb7845b75.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   2013年3月1日《中国科学报》第6版曾经刊发余艾柯撰写的《汤定元:雁过留声不留痕》一文,全面介绍汤定元院士的科学人生,今天我们重发此文,缅怀这位杰出的科学家。 /p p   以下为全文: /p p style=" text-align: center " strong 汤定元:雁过留声不留痕 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/06d71453-37ac-4317-863b-2071d893c28b.jpg" title=" tang.jpg" alt=" tang.jpg" / /p p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 汤定元 红外物理学家,中国科学院院士。1920年出生,江苏金坛人。1942年毕业于重庆中央大学物理系。1950年获美国芝加哥大学物理系硕士学位,1951年克服重重困难回国。先后任中国科学院应用物理研究所助理研究员,中国科学院上海技术物理研究所研究员、所长。我国半导体学科和红外技术学科创始人之一。在把半导体红外器件成功应用于我国探测、空间遥感等方面有开拓性贡献。 /span /p p   提起红外技术,今天的人们并不感到陌生。它已渗入人类社会生活的方方面面,气象卫星、航天航空、遥感探测等诸多“上天入地”的高技术领域,均能看到红外的身影。 /p p   然而若是要问,谁是我国红外技术的开拓者和奠基人?也许很多人仍不能给出确定的答案。 /p p   红外技术发端于军事需求,因此在很长一段时间里,这一研究领域一直属于绝密任务。半个多世纪以后,那些为我国红外技术发展殚精竭虑、默默耕耘的前辈才逐渐浮现。 /p p   尘埃落定,历史不会忘记这样一位“无名英雄”——汤定元。正是他,自1958年冬天起,带领一个来自9所单位的18人小组,开始了我国红外探测器相关基础理论和应用前沿的研究工作。 /p p   汤定元抒写的一段并不平凡的历史,为我们揭开了红外技术发展之初的神秘面纱,更有人用“力挽狂澜”和“中流砥柱”这样的词汇,来形容他在我国红外领域的地位。 /p p style=" text-align: center " strong “三封信”奠基红外事业 /strong /p p   作为新中国成立后最早留学美国归来的11人之一,汤定元在金属物理学家葛庭燧先生的建议下北上京城,前往当时的中国科学院应用物理研究所工作。 /p p   在某天阅读文献时,汤定元和同事看到一篇英国人撰写、苏联人用俄文翻译的综合性文章,介绍红外探测器。文中说,第二次世界大战期间,两门重要的新技术学科得到了发展,即微波与红外技术。 /p p   “微波技术已经是大学课程,为何红外技术也是新兴技术学科?它有哪些内容?”汤定元与同事议论了半天,但仍找不到任何依据。 /p p   不久之后,苏联科学院一位副院长来到应用物理所参观。走进汤定元的实验室,此人大感兴趣,竟然坐定下来,大谈红外探测器的各种用途和重要性。遗憾的是,毕竟有语言障碍,汤定元只是感觉到:“听说红外技术很重要,但不知究竟重要在哪里。” /p p   即便是在1956年参与制定“十二年科学技术发展远景规划”时,汤定元也只是非常笼统地写入一条:开展硫化铅等红外探测器的研究。 /p p   受到“大跃进”之初“反保守”学习运动的冲击,汤定元的思想发生了一些变化。原本认为自己是研究光电现象的,搞清楚理论问题就行,做器件则是产业部门的事,此后他意识到:在国家当时的条件下,需要研究的不单单是物理机制,中国科学院也应当承担产品试制,甚至产品的生产任务。 /p p   平日里不善言辞的汤定元决心拿起笔,放大胆子直接写封信给解放军总参谋部,强调红外技术对于国防建设的重要性,建议在红外研究领域注重器件研究,并表明他所在研究机构愿意承担红外探测器的研究工作。 /p p   这一建议很快得到重视并马上付诸实施,国家正式下达了发展红外技术的科学研究任务。 /p p   不曾料想,随着“大跃进”的深入,红外技术急速成为热门课题。不下30家研究单位都在热火朝天地研制硫化铅探测器,而所用研究方法却与汤定元的几无差别。 /p p   然而在随后的三年困难时期,30多家研究单位的红外技术研究又因经费问题纷纷刮起“下马风”,科学界一时众说纷纭。 /p p   此时已深知红外技术重要性的汤定元,决定再次提笔。他写信给国防科委主任聂荣臻,指出红外技术研究不能中断,但也不能搞“一窝蜂”,要聚散为整,集中全国的科研力量进行攻关。 /p p   正是由于此建议,1962年,红外技术与应用光学并列成为国家的科研发展重点。1963年底,中科院召开红外工作会议,作出一项重要决定:将上海技术物理研究所与昆明物理研究所作为我国发展红外技术的专业研究所。 /p p   这一战略性的调整,成为我国红外发展史上的一个重要里程碑。翌年,他带领10多个研究人员抵达上海,工作重心全面转向红外技术,开始了“申城创业”。 /p p   正当各项课题逐步展开时,上海技术物理研究所的一次液氢爆炸事故,再次为红外技术研究蒙上阴影。 /p p   而就在实验室发生意外事故的同一天,一架美国“鬼怪”式战斗机在我国南海上空被击落。残骸中,发现了机载红外雷达等部件。 /p p   汤定元获悉此事后,猜想这是利用3~5微米红外波段的雷达装置,便再次致信聂荣臻,恳请由上海技术物理研究所承担红外雷达研制任务。他的信心和决心,再次得到支持。 /p p   随着汤定元的这三封信,我国红外技术从基础研究发展至空间应用等广阔领域。他先后组织领导了硅太阳能电池、温差制冷器、热敏电阻红外探测器等研制,被装备到军用、工业、科研等领域诸多设施之上。 /p p   “从目前国内情况来看,红外技术已经成为我国战略性高科技之一。现在有关红外的研究所、工程工业公司等,已经形成了规模达几十亿的产业。”半个世纪后,汤定元奠基的事业已结出丰硕果实。 /p p   在汤定元80岁大寿时,时任中科院院长路甬祥为他题词:“贡献毕生精力,创新红外科技。”这是对我国半导体光电器件开拓者和红外技术创建人汤定元一生的真实写照。 /p p style=" text-align: center " strong 笔耕不辍的写作者 /strong /p p   回首自己一生的工作,汤定元曾如此分析:一是科学研究,现代科学研究都是集体智慧的结晶;二是为我国的红外技术发展做了一些奠基性的工作,那是从国内外的大势出发而做 三是写了不少文章。 /p p   “别人往往依据前两项工作来评价我,但那只不过是机遇而已。”在汤定元看来,写作“才是个人的事业”。他总是跟人说,写作的成绩与前两者相比堪称最大,所得到的精神回报也是最高的。 /p p   汤定元回国工作后,接到的第一个重大任务,正是写就一篇科普文章。 /p p   新中国成立初期,中国科学院经常收到一些群众来信,提出一些生活中遇到的科学问题,要求专家予以解答。 /p p   “天坛里的回音壁、三音石和圜丘之上的天心石,它们的声学现象有何种科学解释?”一天,科学院接到了这样的来信提问。 /p p   领导把这个为群众答疑解惑的任务交给了汤定元。刚从海外归来半年多,自己也只是去天坛游览过一次而已,对这些建筑物的声学现象更谈不上有什么深入见解,汤定元一开始还是有些犯难。 /p p   不过,自己毕竟是职业科学家,十多岁时就痴迷于物理,并且因物理成绩奇高(英语交了白卷)而被大学录取的汤定元还是信心满满。实地踏勘、做实验、查资料,很快他就搞清楚了其中的科学奥秘。 /p p   “如何写出科普文章?”汤定元想起上学时,自己的作文总是得分很差,不敢轻易写就这么重要的文章。 /p p   他跑去图书馆,找来《怎样写文章》、《语法结构》、《修辞》之类的书籍,一丝不苟再三研读,心中有了把握才开始动笔。半年时间的反复推敲,终于完成任务。 /p p   汤定元的第一篇科普文章《天坛中几个建筑物的声学问题》随后发表在《科学通报》上,《物理通报》同时予以转载。 /p p   汤定元没有想到,文章竟产生了极大的轰动,同事、朋友纷纷称赞文章写得很好。 /p p   “大家当面称道,主要是出于礼貌与友好。”汤定元说,自己最高兴的是,原以为不会做文章的自己受到鼓励后信心大增。此后,来自读者不间断的鼓励,成为汤定元不断写作的动力。 /p p   后来,他又用极大的心血,一人翻译完成前苏联作家瓦维洛夫的科普著作《眼睛和太阳》,先后出版一万余册。 /p p   汤定元笔耕不辍,至今共编撰出版10本著作,300余万字。所谓“无心插柳柳成荫”,青年时代对写作并不感兴趣的汤定元也不曾料到,自己会热爱上科技写作和科普创作。 /p p   “我们国家的科普基础太薄弱,把科学成就告诉普通老百姓是科学家应尽的责任。”汤定元的这一席话,让我们对他倾心科普有了更深的理解。毕竟在他年幼时,正是一本深入浅出的《普通物理学》,让他开始痴迷于物理的缤纷世界。 /p p   年逾90的汤定元心中留有一个巨大的遗憾——未能完成的一部光电科普书。他原本打算将它写成一本经典科普著作,2007年时已完成12万字。“但不知为什么,我对自己的写作产生了怀疑。能写得好吗?会不会受读者欢迎呢?”汤定元说他越写越没有信心,最终决定放弃。 /p p   面对被汤定元尘封的书稿,相信人们会理解并尊重这位耄耋老人的选择,尽管这给深爱他的读者留下了最后的遗憾。 /p p   甘于寂寞,安于平凡,汤定元一生习惯于默默耕耘。更因为回国后的特殊事业,在很长一段时间里,与他熟识的外国学者曾一度认为他已经“从地平线上消失了”。 /p p   雁过留声不留痕。历史也并不会被永远尘封,总有人会忆起汤定元这般不平凡的人物和过往。 /p
  • 三德科技设备零故障服务第十七届中国大唐燃料采制化专业决赛
    8月7日至12日,第十七届中国大唐专业知识和技能竞赛——燃料采制化专业决赛在株洲燃料培训基地成功举办。来自大唐集团22家分子公司的142名选手参赛。此次竞赛是由大唐集团公司人力资源部、燃料事业部和工委办公室联合主办,湖南分公司承办,株洲发电公司和集团公司株洲燃料培训基地协办的一类竞赛,是历届燃料采制化技能竞赛中规模最大、参赛队伍最多的一次。竞赛首次采用采样、制样和化验全能的竞赛模式,技术含量高。三德科技作为国内一流的分析检测、样品制备、智能化等整体方案供应商,为赛事提供了量热仪、锤式破碎机、对辊破碎机、制样辅助设备等比赛设备及相关技术支持,所有设备在赛场上零故障表现、运行稳定,为参赛选手稳定发挥、赛出水平提供了可靠保障。 发热量比赛现场制样比赛现场参赛选手认真操作
  • 新品速递|山东云唐全新升级旋转式农药残留检测仪
    山东云唐智能科技有限公司全新升级农药残留检测仪,产品广泛应用于主要用于蔬菜、水果、茶叶、粮食、农副产品等食品中农药残留的快速检测,依据国标GB/T5009.199-2003进行检测,适用于果蔬茶生产基地以及农贸批发销售市场现场检测,餐馆、学校、食堂、家庭果蔬加工前的安全速测等。 山东云唐专业提供农药残留检测仪以及食品安全检测仪等各项仪器的研发生产制造。山东云唐始终以技术作为驱动公司发展的核心动力,成立10年至今,坚持累计投入超千万建设自主研发中心。组建包括产品经理、结构、模具设计师、软硬件工程师等全链条技术人才团队30多人,深入行业应用场景,接收市场一线需求反馈,凭借强大的研究开发迭代能力以需求为导向充分利用研发成果并进行市场转化,提升核心能力及竞争力,驱动产业发展,为食品安全检测事业注入澎湃生命力,造福社会人民,实现可持续发展。山东云唐在多年的生产管理过程中积累了宝贵的经验,形成30多项品质管理/检测标准,同时还通过了3A级企业认证等10多项行业相关认证。山东云唐智能科技有限公司主营业务是研发、生产:农药残留检测仪、兽药残留检测仪、食品安全检测仪等快检设备,为食品药品监督委员会、第三方检测机构,以及农副产品检测等相关领域提供综合解决方案。多年来,公司研发生产了百余种食品检测专用仪器和相关集成系统方案,产品销往全国各地。公司拥有软件产品设计和开发团队,专注于具有自主核心技术和知识产权的软件产品。公司与全国各大高等院校和科研院所建立了良好的合作关系,大量引进高等科技成果,研发了众多质量上乘,价格优良的高科技产品,云唐科技已广泛应用于各个行业,得到了客户的认可和青睐,公司自成立之日起,秉持以人为本,以客户为本,引导客户需求,将客户的需求放在第一位,把客户的满意度当成我们工作成效的准绳,不断开拓进取。 一、新品主要技术参数: 1、机器采用全新安卓智能系统,主控芯片采用 ARM Cortex-A7,RK3288/4核处理器,主频1.88Ghz,运转速度更快速,稳定性更强。 2、创新检测模式:*仪器采用精密旋转比色池设计,使用光源一致,可以解决各通道间由于光源误差带来的检测结果误差问题,检测结果更加精准。*仪器具有自动识别比色皿检测功能,即:将样品比色皿放入仪器后,点击样品检测,仪器自动识别比色皿进行通道检测。3、供电方式:交直流两用,直流 12V 供电,可连接车载电源,可配 6ah 大容量充电锂电池,方便户外流动测试。4、显示方式:7英寸液晶触摸屏显示,人性化中文操作界面,读数直观、简单。5、检测通道:12个检测通道,可以同时测试多个样品,循环检测,即放即检,每个样品由程序控制分别独立工作,不会互相干扰。 6、高精光源系统:①仪器光源采用进口超高亮发光二极管,光源亮度可以自动调节与校准②智能恒流稳压,光强自动校准,长时间连续工作光源无温漂现象。 7、智能操作分析系统:①仪器具有100多种蔬菜名称菜单库,分类管理,并可按需添加或删除、编辑蔬菜名称;可在同一检测界面自动对应相关检测通道一次性选择1-24个样品名称,无需退出界面,节省操作时间。②内置新国家限量标准,与所测结果进行现场比对,并持续更新标准。 8、完善的配套硬件:①采用串口5v打印机,可选择手动打印或者自动打印,三分钟出打印结果,打印格式为检测人姓名、吸光度差值、检测时间、检测机构、样品名称及结果判定。②仪器具有无线上传模块,检测结果可批量打印,批量上传。 9、数据调用:①仪器可存储20万条检测结果,②检测结果为Excel表格,方便后期进行数据分析与汇总报告③仪器采用USB2.0接口设计,支持 U 盘存储,方便数据的存贮和移动,并可随时与计算机直接相连,实现数据查询、浏览、分析、统计、打印等。 10、后期产品固件可升级。11、安全证书,放心保障:仪器具有中国计量科学研究院校准证书,使用放心。12、机箱采用工业级ABS工程塑料箱,方便携带,稳固耐用,便于流动测试。二、升级后性能及特点:1、安卓智能操作系统,采用更加高效和人性化操作,仪器具有无线联网上传功能,快速上传数据,进行数据统计和分析。2、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复性功能;同时,检测完成可自动打印检测报告和二维码。手机扫码可显示出详细检测信息。 3、仪器带有监管平台,数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,检测区域食品安全长短期动态,达到食品安全问题预估、预警 。4、样品处理简单省力,整体操作快速、安全、便捷。 5、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。6、内置强大的数据库,可在仪器上直接选择样品名称、检测指标、送检单位等信息,也可在仪器上直接编辑录入样品名称、检测指标、送检单位等信息并保存进样品数据库,方便后期操作调取使用。 7、仪器具有重新校准、锁定、恢复出厂设置功能。 四、新品参数配置*波长配置:410nm; *抑制率显示范围:0%~100%; *抑制率测量范围:0%~100%; *透射比准确度:±1.5%; *透射比重复性:≤0.5%; *漂移:≤0.005Abs/3min; *抑制率示值误差:≤10% *抑制率重复性:≤5%*仪器尺寸:43×35×20cm, *主机净重:5.1kg
  • Nature:无糖也不健康,三氯蔗糖降低免疫细胞活性,抑制免疫反应
    三氯蔗糖,是一种常见的人造甜味剂,比糖甜约600倍,常用于饮料和食品中。与其他代糖一样,它的安全性仍然尚未完全了解。 2023年3月15日,英国弗朗西斯克里克研究所的研究人员在国际顶级期刊Nature上发表了一篇题为" The dietary sweetener sucralose is a negative modulator of T cell-mediated responses "的研究论文。该研究表明,高剂量的三氯蔗糖会限制小鼠T细胞增殖和分化,从而降低免疫细胞活性,喂食高剂量三氯蔗糖的小鼠,对癌症或感染反应时激活T细胞的能力较差。 重要的是,如果这一发现在人类身上得到证实,那么就可以利用三氯蔗糖抑制免疫反应的能力,治疗人类的自身免疫性疾病,例如,1型糖尿病和类风湿性关节炎等。图1 研究成果(图源:Nature) 在该研究中,研究人员测试了三氯蔗糖对小鼠免疫系统的影响,给小鼠服食高剂量的三氯蔗糖,这一剂量高于正常人类饮食中的量,接近欧洲和美国食品安全当局推荐的最大量,相当于人类每天喝10灌含三氯蔗糖的碳酸饮料。研究发现,高剂量的三氯蔗糖会限制小鼠T细胞增殖和分化,从而降低免疫细胞活性。 从机制上讲,三氯蔗糖会影响T细胞的膜顺序,同时降低T细胞受体信号传导和细胞内钙释放的效率。喂食高剂量三氯蔗糖的小鼠,对癌症或感染反应时激活T细胞的能力较差,对其他类型的免疫细胞没有影响。 研究人员表示,在日常饮食中,人们不必过于担心,因为在日常食物中很难摄取到实验中的三氯蔗糖水平。相反,如果这一发现在人类身上得到证实,那就有希望开发一种治疗人类自身免疫性疾病的方法,即在人类身上使用更高治疗剂量的三氯蔗糖,有助于减轻过度活跃的T细胞的有害影响。 研究人员还表示,我们观察到的对免疫系统的影响似乎是可逆的,我们认为三氯蔗糖是否可用于改善自身免疫等疾病,尤其是在联合疗法中,可能值得研究。 下一步,研究人员现计划进行试验,以测试三氯蔗糖是否对人类有类似的作用。不仅如此,三氯蔗糖可以通过影响肠道菌群来影响人类健康。 2022年8月19日,魏茨曼科学研究所的研究人员在Cell上发表了一篇题为" Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance "的研究论文。研究发现,人造甜味剂,尤其是三氯蔗糖,在人体内并不是惰性的,它们会影响人体肠道微生物,从而改变人体血糖水平。 此外,三氯蔗糖还增加心血管疾病风险。2022年9月7日,世卫组织、巴黎大学的研究人员在《英国医学杂志》(BMJ)上发表了一篇题为" Artificial sweeteners and risk of cardiovascular diseases:results from the prospective NutriNet-Santé cohort "的研究论文。研究表明,人造甜味剂总摄入量与心血管疾病风险增加9%相关,与脑血管疾病风险的增加更显著,高18%。 对人造甜味剂分类研究发现,阿斯巴甜的摄入与脑血管事件风险增加17%相关,乙酰磺胺酸钾和三氯蔗糖与冠心病风险增加40%和31%相关。其中,三氯蔗糖与冠心病风险显著相关。综上,研究表明,人造甜味剂不是糖的健康和安全替代品。
  • 解读《关于β-1,3/α-1,3-葡聚糖等6种“三新食品”的公告》
    一、新食品原料(一)β-1,3/α-1,3-葡聚糖β-1,3/α-1,3-葡聚糖是以蔗糖为主要原料,经普沙根瘤菌(Rhizobium pusense)发酵、醇沉、过滤、分离、干燥、粉碎等工艺制成。β-1,3/α-1,3-葡聚糖是由7个β-1,3-D-葡萄糖和2个α-1,3-葡萄糖相互连接而成的9个D-葡萄糖为重复单元构成的直链多糖。本产品中β-1,3/α-1,3-葡聚糖含量为≥90 g/100g。由酵母、燕麦、大麦等来源的β-葡聚糖目前作为食品原料或食品添加剂已在美国、澳大利亚、日本等多个国家被批准使用。我国于2006年批准以β-1,3-葡聚糖为主要成分的可得然胶作为食品添加剂,2010年和2014年分别批准酵母β-葡聚糖和燕麦β-葡聚糖为新食品原料。β-1,3/α-1,3-葡聚糖的推荐食用量为≤3克/天。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,审评机构依照法定程序,组织专家对β-1,3/α-1,3-葡聚糖的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于β-1,3/α-1,3-葡聚糖在婴幼儿、孕妇及哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(二)二氢槲皮素二氢槲皮素(Dihydroquercetin)是多种植物中存在的一种二氢黄酮醇类化合物。本产品是以人工种植的长白落叶松的根部为原料,经去皮、撕裂处理,进行提取、浓缩、醇沉、上清液浓缩、萃取、再浓缩、结晶、离心分离、冷冻真空干燥、粉碎过筛等工艺制成。欧盟已批准落叶松来源的二氢槲皮素为新食品原料,俄罗斯已批准二氢槲皮素作为食品原料和食品添加剂使用。本产品推荐食用量为≤100毫克/天(即含量为90%的二氢槲皮素推荐食用量为100毫克/天,超过该含量的按照实际含量折算)。使用范围和最大使用量:饮料(20mg/L),发酵乳和风味发酵乳(20mg/kg),可可制品、巧克力和巧克力制品(70mg/kg)。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对二氢槲皮素的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。二氢槲皮素在婴幼儿、儿童(14岁及以下)、孕妇、哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照公告规定执行。(三)鼠李糖乳杆菌MP108鼠李糖乳杆菌MP108(Lactobacillus rhamnosus MP108)从健康幼儿肠道分离得到,菌粉性状为白色至微棕色粉末。含有该菌株的产品已在澳大利亚生产并上市,可用于婴幼儿食品。国内外开展的多项婴幼儿临床研究证明,该菌株具有较好的食用安全性。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对鼠李糖乳杆菌MP108的安全性评估材料审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。该菌株原料的食品安全指标应符合我国相关标准。(四)拟微球藻(Nannochloropsis gaditana)拟微球藻(Nannochloropsis gaditana)属于单胞藻科拟微球藻属,藻体微小,通常为绿色或黄绿色。含有该藻的食品在美国、智利、加拿大等国家有销售。该藻含有蛋白质、二十碳五烯酸(EPA)等营养成分,其推荐食用量为≤2克/天(以干品计)。根据《食品安全法》和《新食品原料安全性审查管理办法》规定,国家卫生健康委员会委托审评机构依照法定程序,组织专家对拟微球藻(Nannochloropsis gaditana)的安全性评估材料进行审查并通过。新食品原料生产和使用应当符合公告内容以及食品安全相关法规要求。鉴于拟微球藻(Nannochloropsis gaditana)在婴幼儿、孕妇及哺乳期妇女人群中的食用安全性资料不足,从风险预防原则考虑,上述人群不宜食用,标签及说明书中应当标注不适宜人群。该原料的食品安全指标按照我国现行食品安全国家标准中食用藻类的规定执行。二、食品添加剂新品种(一)蛋白酶1.背景资料。枯草芽孢杆菌(Bacillus subtilis)来源的蛋白酶申请作为食品工业用酶制剂新品种。法国食品安全局、美国食品药品管理局、丹麦兽医和食品管理局等允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,水解蛋白。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB1886.174)。(二)磷酸肌醇磷脂酶C1.背景资料。荧光假单胞菌(Pseudomonas fluorescens)来源的磷酸肌醇磷脂酶C申请作为食品工业用酶制剂新品种。美国食品药品管理局和巴西国家卫生监督局允许其作为食品工业用酶制剂使用。2.工艺必要性。该物质作为食品工业用酶制剂,用于食用植物油脂的脱胶。其质量规格执行《食品安全国家标准食品添加剂食品工业用酶制剂》(GB1886.174)。
  • 岛津司小令大讲堂丨第三期 溶解的空气(氧)对检测的影响
    ?疫情防控战还在继续,岛津将一如既往地依照国家要求,做好防控工作。今天,司小令大讲堂继续在线上为大家带来液相色谱小知识,防控不停学!第三期溶解的空气(氧)对检测的影响 形成气泡产生的影响较容易被理解,它往往使压力波动,造成基线噪声。然而,有时溶于溶剂的空气并不形成气泡,但其造成的影响依然是严重的,且不易被发现。 1.大量溶解的氧气对检测的影响溶解于溶剂的气体中,氧气对检测的影响最大,而且是多方面的。即使在当时的温度、压力下,溶解于溶剂的量并不饱和,不足以形成气泡,其影响还是相当严重的。 (I)荧光检测:当使用荧光检测器来测定萘、芘等多核芳香烃或维生素E等生育酚时,溶解于流动相中的氧,由于荧光猝灭而影响化合物荧光强度,干扰测定。此时,尽管基线稍有降低,峰高的降低则更为明显。例如,当大量氧气溶于流动相对;测得萘的荧光强度(峰面积)只有完全脱气以后萘的峰面积的25%。氧气有可能吃掉荧光(II)电化学测定:特别是在还原电位下测定时,由于氧的浓度高,产生还原电流使信噪比变差。 2.大量或可变的溶解氧对紫外检测的影响在紫外区,氧本身就有吸收,使测得结果和基线都偏高,例如在210nm饱和有空气的甲醇(氧的分压 0.2大气压)在过氦脱气以后,基线可降低0.32吸收单位(图一)。图一:210nm测定时脱气与否对基线的影响 由引可见,经过脱气可大大降低紫外区的背景。另一方面,氧气的存在不仅使基线变高,而且当氧气的浓度随着压力、温度等诸因素变化而变化时,将使基线波动十分严重。由上例可知,如果在满标尺 0.01吸收单位测定时,氧的浓度变化1%,将引起基线相当于30%满标尺的变化。此外,当使用含氧的甲醇等作梯度洗脱时,随着流动相甲醇的含量增多而升高的基线,有可能影响进一步的数据处理(见图二) 图二:水-甲醇梯度洗脱时,脱气与否对210nm处测定基线的影响,甲醇在30分钟内由20-60%变化,然后维持5分钟 溶解氧的影响在短波区较为明显,但也与溶剂种类有关,例如溶解氧对四氢呋喃的影响一直延伸至254mm处,在254 mm处,溶解氧的影响由四氢呋喃,甲醇、乙腈、水逐渐降低。就乙腈而言,即使在较短长区影响也不明显。因此,同样的氧气浓度、对不同的溶剂其影响也不同,可见其吸收的增加并非完全由于自身的吸收,也许还与氧与溶剂杂质之间的某些反应有一定的关系。 进行紫外波外区高灵敏测定时,一般采用乙腈较好,如果为了提高分离效率,则一定要控制好溶解氧的量,换言之,必须采用适当的脱气手段。 3.溶解空气量的变化引起示差检测时的基线漂移 折射率不仅与液体中固体或液体溶质的浓度有关,也与气体溶质的浓度有关。因此,由于温度变化而引起气体溶解量的变化,将使折射率基线漂移波动。例如以四氢呋喃为溶剂,在满标尺为8×10-6折射率单位的情况下测定时,溶剂中空气的溶解量改变1%,则导致10%以上的基线变化。要抑制此种干扰,需使流动相处于恒温,或用氦置换溶解的其它气体,相对而言,氦的溶解度随温度的变化较小。图三:对示差检测器基线的影响 综上所述,即使未形成气泡,溶解的空气对测定还是有影响的。 下期预告流动相脱气方法敬请期待!
  • 理加联合三套产品入选中国生态大讲堂2022年春季专题研讨会“最受欢迎十台(套)生态系统观测仪器”
    2022年2月11日,中国生态大讲堂2022年春季专题研讨会在中国科学院地理资源所举行,来自中国科学院相关研究所、高等院校、国家部委相关机构、保护区等单位的科研技术人员和研究生,以及14家仪器设备公司的总经理、工程师等800余人参加了现场和线上会议。国内知名生态观测仪器公司的总经理和工程师以专题报告的形式,系统介绍了生态系统观测的“主打”仪器、国产品牌仪器的研发情况和进展,最后,通过不记名投票方式评选出“最受欢迎的十台(套)生态系统观测仪器”,其中我司三套产品入选北京理加联合科技有限公司孙宝宇总经理作《碳源/碳汇立体监测方案及实践报告》基于无人机的空基温室气体立体监测系统🍁功能与应用:可同时测量并报告二氧化碳、甲烷和水蒸气浓度,适用于实地监测、合规监测、空气质量研究,以及任何需要灵敏的温室气体测量的地方,适合进行大面积区域和/或难以进入区域的温室气体排放通量测量。🍁技术参数:🔸精度(1σ, 1sec/10 sec):CH4: 0.9ppb/0.3ppb CO2: 0.35ppm/0.12ppmH2O:200ppm/60ppm🔸量程:CH4: 0-100ppm CH4: 0-1%(扩展范围) CO2: 0-20000ppmH2O: 0-30000ppm 🔸采集频率:10HZ 🔸重量:3kg产品型号:GLA133-GGA 北京理加联合科技有限公司 塔基多参数温室气体(CO2/CH4/N2O/H2O)涡动相关监测系统 🍁功能与应用:大气中的温室气体主要包括CO2、CH4、N2O和水汽,以往的监测研究主要集中在CO2和水汽。甲烷、氧化亚氮是大气中含量仅次于二氧化碳的温室气体,但其造成的温室效应当量分别是二氧化碳的28倍和300倍。之前由于监测方法的限制,很难实现长期连续的观测。该系统由CO2/H2O涡动相关监测系统结合最新激光光谱技术,能够自动长时间连续观测CO2、N2O、CH4和水热通量,实现碳氮源区动态监测,为大尺度,长期和连续的碳氮循环过程的科学研究提供支撑🍁技术参数:🔸N2O精度:(1δ,1秒/100秒) 0.2 ppb / 0.05 ppb🔸CH4精度:(1δ,1秒/100秒)1 ppb / 0.25 ppb🔸H2O精度:(1δ,1秒/100秒)150 ppm/30 ppm🔸CO2准确度:1%🔸测量范围:N2O: 0-10 ppm;CH4: 0-100 ppm;CO2:0-1000ppm🔸测量频率:同步测量甲烷-氧化亚氮-水汽,三参数同时测量频率可达10Hz🔸二氧化碳测量频率可达10Hz,并可全自动的为二氧化碳做零点和跨度自动订正🔸数据采集模块:运算速度100MHz,内置通量数据计算和修正的软件,最高可校正频率最高20Hz的数据🔸三维超声测量变量:Ux,Uy,Uz,C(Ux,Uy,Uz是三维风速风向,C是声速)🔸三维超声数字信号输出:SDM,RS-232,USB🔸三维超声数字输出量程:±65.535m/s产品型号:GLA351-N2OM1北京理加联合科技有限公司地基土壤温室气体(CO2/CH4/N2O/H2O)通量监测系统 🍁功能与应用:用于长期测量土壤排放的N2O、CO2、CH4和H2O等温室气体的浓度,并实时自动计算不同种类温室气体的交换通量。🍁技术参数:🔸测定参数:同时测量CH4、N2O、CO2和H2O的浓度🔸精度:(1δ,100s)CH4:0.5 ppb;N2O:0.1ppb;CO2:读数的1%;H2O:60ppm🔸测量速率:最快可达1 Hz🔸保证精度量程:CH4:0-100ppm;N2O:0-10 ppm,CO2:0-6000 ppm产品型号:SF-3500北京理加联合科技有限公司历经十余年,北京理加联合科技公司始终致力于为用户提供全球先进的仪器及技术解决方案。我们通过自身经验的积累和对未来高精尖科技的不懈追求和完善,坚持以客户为中心、专业专注、持续改善的企业核心价值观,不断进行自我创新、科技创新,我们将勇往直前,不懈奋斗,为广大用户提供更领先的技术,更尖端的产品,更一流的服务。 感谢您一直以来的支持与信赖By scientists, for scientists
  • 从“双一流”名单看高校中的三对“欢喜冤家”
    p   & nbsp 近日,为媒体炒作很久的“双一流”名单终于尘埃落定,正式公布。这也意味着“双一流”建设进入实施操作阶段。 /p p   细读公布的名单,大多数人的目光可能会更多地投向北京、上海、江苏等知名高校云集的地区,不过笔者却是更加关注高等教育资源相对较弱的省份,尤其是河北、山西、河南三省。因为这三个省份可以说是均有一对“欢喜冤家”(每一对中均有一所以省份名称命名的大学),而且在过去相当长的一段时期内,这三所以省份命名的大学均各自面临着一所同省兄弟学校的有力挑战。 /p p    strong 河北省:河北大学—河北工业大学 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201709/insimg/4e27fb04-19d4-40d9-9ef9-778640ceb47b.jpg" title=" initpintu_副本.jpg" / /p p   在本次正式公布的“双一流”名单中,河北工业大学的电气工程进入一流学科的建设,而河北大学则未能入选。河北工业大学也是河北省唯一一所国家“211工程”重点建设高校,它的最前身是“北洋工艺学堂”,诞生于天津,此后就在该市发展壮大起来,这也是这所河北的大学坐落于天津的最初原因。河北工业大学的优势学科集中在电气工程、材料科学与工程、机械工程、化学工程等方面,而河北大学的优势学科则集中在历史、化学、生物学、光学工程等方面。 /p p    strong 山西省:山西大学—太原理工大学 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201709/insimg/5cf8ea66-6154-4d1f-9fe5-97fae20a2b0c.jpg" title=" 66899881.jpg" / /p p   山西省跟河北省的情况非常类似,也有两所实力非常接近的学校,山大和太原理工。作为山西省唯一的“211”学校——太原理工大学,它的化学工程与技术专业这次进入一流学科的建设。太原理工大学理工科优势明显,材料科学、工程学、化学三个学科2016年进入ESI全球排名前1%。而山西大学则较为遗憾未进入“双一流”名单。作为一所百年学府,山西大学有着比较深厚的文化底蕴,尤其以文史哲、数理化等基础学科见长。 /p p    strong 河南省:河南大学—郑州大学 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201709/insimg/73b5f0ca-9b01-4d88-a1fb-1e580886078c.jpg" title=" 未命名_meitu_0_meitu_1.jpg" / /p p   河南省的郑州大学和河南大学此次分别出现在“双一流”建设高校及建设学科名单中,对于河南省而言,应当是收获颇丰。郑州大学入选B类一流大学建设高校,河南大学入选一流学科建设高校。郑州大学是河南省唯一一所国家“211工程”重点建设高校,2016年该校的化学、临床医学、材料科学、工程科学4个学科(领域)ESI排名进入全球前1%。而以省份命名的河南大学(坐落在古都开封)可能大家更为熟悉,央视百家讲坛中的王立群教授即工作于该校。不过本次入选一流学科建设的是河南大学的生物学而非历史学。据了解,河南大学的生物学学科也确实不容小觑,早在上世纪20年代初期,河南大学生物学学科就已经起步,且在当时取得了很大成就。 /p
  • 干货学堂 | 动物源性食品中激素多残留测定的前处理方法!
    素类药物主要包括雄激素、雌激素、孕激素、皮质醇激素等。激素类药物的应用,能够较为有效地提高养殖业的经济效益,但同时激素的滥用对人体健康的危害也是不容忽视的。一些养殖户片面追求经济利益,从而过度使用激素类药物,导致饲养动物体内的激素严重超标,所生产的肉类食品中也有大量的激素残留。如果食用这样的肉类食品,也会造成人体自身激素紊乱,给人体健康造成很大威胁。实验部分应用范围:动物源性食品/猪肉/猪肝/鸡蛋/牛奶/牛肉/鸡肉/虾检测方法:液相色谱-质谱/质谱法方法原理:试样中的目标化合物经均质,酶解,用甲醇-水溶液提取,经固相萃取富集净化,液相色谱-质谱/质谱仪测定,内标法定量前处理仪器:电子天平(感量0.0001 g和0.01 g);组织匀浆机;涡旋混合器;恒温振荡器;超声清洗仪;离心机(10000 r/min);固相萃取装置;氮吹仪;pH计;移液器。检测仪器:LC-MS/MS+ESI源实验制备1.动物肌肉、肝脏、虾从所取全部样品中取出有代表性样品约500g,剔除筋膜,虾去除头和壳。用组织捣碎机充分捣碎均匀,均分成两份,分别装入洁净容器中,密封,并标明标记,于-18 ℃以下冷冻存放。2.牛奶从所取全部样品中取出有代表性样品约500 g,充分摇匀,均分成两份,分别装入洁净容器中,密封,并标明标记,于0 ℃~4 ℃ 以下冷藏存放。3.鸡蛋从所取全部样品中取出有代表性样品约500 g,去壳后用组织捣碎机充分搅拌均匀,均分成两份,分别装入洁净容器中,密封,并标明标记,于0 ℃~4 ℃ 以下冷藏存放。前处理方法1.提取称取5g试样(精确至0.01 g)于50mL具塞塑料离心管中,准确加入混合内标溶液(100μg/L)100μL和10mL乙酸-乙酸钠缓冲溶液,涡旋混匀,再加入β-葡萄糖醛酸酶/芳香基硫酸酯酶溶液100μL,于37℃±1 ℃振荡酶解12h。取出冷却至室温,加入25mL甲醇超声提取30min,0℃~4℃下10000r/min离心10min。将上清液转入洁净烧杯,加水100mL,混匀后待净化。2.净化分别用6mL二氯甲烷-甲醇(7+3),6mL甲醇,6mL水活化ENVI-Carb固相萃取柱(500mg,6 mL),将提取液以2mL/min~3mL/min的速度上样。将小柱减压抽干。再将用6mL二氯甲烷-甲醇(7+3)活化好的氨基固相萃取柱(500mg,6mL)串接在ENVI-Carb小柱下方。用6 mL二氯甲烷-甲醇(7+3)洗脱并收集洗脱液,取下ENVI-Carb小柱,再用2mL二氯甲烷-甲醇(7+3)洗氨基柱,合并洗脱液后在微弱的氮气流下吹干,用1 mL甲醇-水(1+1)溶解残渣,供仪器测定。注意事项1.激素类标准物质及内标用甲醇配成1.0 mg/mL标准储备液,在-18 ℃以下避光保存,可稳定使用12个月。2.如果有条件,建议每种标准物质使用其对应的同位素内标进行校正。实在没有对应的同位素内标,选择与其化学性质最近似的同位素内标进行校正(参考国标方法)。3.β-葡萄糖醛酸酶只能冷藏,不能冷冻保存,否则会失活。4.由于上样液比较多,可以自制一种可控流速的大针筒,固定在ENVI-Carb小柱上面,一次加上全部提取液,提高净化富集效率。5.由于检测项目比较多,在浓缩过程中需要微弱氮气缓缓吹至近干,控制温度不高于35 ℃。6.国标方法中激素类标准物质比较多,需要根据检测的项目,制定不同的色谱方法。如果检测项目比较多,建议使用一根150 mm长的色谱柱进行分离。根据出峰时间,使用正负离子切换模式进行扫描,提高检测效率。参考文献:GB/T 21981-2008 动物源食品中激素多残留检测方法 液相色谱-质谱/质谱法猪肉、猪肝、鸡蛋、牛奶、牛肉、鸡肉和虾中激素类药物残留量测定的前处理流程图激素类药物信息表
  • 北京大学汤富酬、黄岩谊开发创新性三重组学测序技术
    p style=" text-align: center " img title=" 7f8a4f4f-f82a-48ec-a654-8d30d7a61f08.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/bc60d022-c89b-43ed-9a9e-708848ccfe09.jpg" / /p p style=" text-align: center " 单细胞三重组学测序技术(scTrio-seq) /p p style=" text-align: center " img width=" 450" height=" 175" title=" b7aa9cc4-7c4a-429e-b318-9898a59abd07.jpg" style=" width: 450px height: 175px " src=" http://img1.17img.cn/17img/images/201603/noimg/5a6cb621-9367-4d28-b3c1-c0e5b6835079.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " 癌症中两个细胞亚群的DNA拷贝数差异 /p p style=" text-align: center " img title=" ddda86f6-ae5b-4b09-9285-190c35edb923.jpg" src=" http://img1.17img.cn/17img/images/201603/noimg/a17c6fa5-fde8-4496-b255-3f2b2d3b36dd.jpg" / /p p style=" text-align: center " 单细胞中三种组学之间的对应关系 /p p   来自北京大学、首都医科大学的研究人员报告称,他们开发出了一种创新性的单细胞三重组学测序(triple omics sequencing)技术:scTrio-seq,并利用它揭示出了肝细胞癌中的遗传、表观遗传及转录组异质性。这一重要的研究发布在2月23日的《Cell Research》杂志上。 /p p   北京大学生命科学学院的汤富酬(Fuchou Tang)研究员、黄岩谊(Yanyi Huang)研究员以及首都医科大学彭吉润(Jirun Peng)教授是这篇论文的共同通讯作者。 /p p   近年来开发出的单细胞基因组、DNA甲基化组和转录组测序技术大大地帮助解析了细胞群中的异质性。来自国内外的研究组报道称开发出了一些单细胞的RNA测序方法,诸如scRNA-seq, Smart-seq/Smart-seq2, CEL-seq, MARS-seq, STRT-seq, and Quartz-seq,并应用这些技术分析了哺乳动物胚胎发育过程中的基因表达动态或肿瘤异质性。 /p p   一些单细胞基因组测序技术也被用于揭示人类单个生殖细胞中的重组模式和非整倍性,以及肿瘤和循环肿瘤细胞中的基因组异质性。近期研究人员还开发出了一些单细胞DNA甲基化组测序技术,如ScRRBS和scBS-Seq,对单个细胞中的所有DNA甲基化进行分析。基于微阵列或新一代测序结合分析单细胞的基因组和转录组也被成功用于解析肿瘤异质性。 /p p   然而,要直接分析单个细胞中遗传和表观遗传因子调控基因表达的机制,需要开发出能够在单细胞中同时分析基因组、表观基因组合转录组的方法。这种方法尤其适宜于三个组学显示强异质性的癌症。 /p p   在这篇新文章中研究人员报告称开发出了一种单细胞三重组学测序技术scTrio-seq,可用来同时分析单个哺乳动物细胞的基因组拷贝数变异(CNVs)、DNA甲基化组和转录组。他们证实在获得或丧失的基因组区域内大规模地CNVs导致了一些基因的RNA表达成比例的改变,而这些CNVs通常没有影响这些区域中的DNA甲基化。此外,研究人员应用scTrio-seq分析了源自一个人类肝细胞癌组织样本的25个癌细胞。基于单个细胞的CNVs、DNA甲基化组或转录组鉴别出了这些细胞内的两个亚群。 /p p   新研究为剖析基因组和表观基因组异质性对细胞群内转录组异质性的复杂贡献提供了一条途径。 /p
  • 汤超:第三次生命科学革命为何是现在?
    近期,北京大学前沿交叉学科研究院执行院长、定量生物学中心主任汤超院士在《当代科技史》系列课程上讲授《当代科技史——生命科学革命》,本文撷取精辟论断,纵览生命科学革命,窥看自然奥秘。 北京大学前沿交叉学科研究院执行院长、定量生物学中心主任汤超院士  生命科学革命已经发生了两次,目前是第三次,讲生命科学革命前,我们先谈谈科学革命。科学革命、学科交叉、技术进步,这三个方面互相有很深的关系和影响,它们互相联系、互相促进。  一、16-17世纪的科学革命  这是一次标准的科学革命,也是第一次科学革命,也是现代科学的诞生。这发生在16—17世纪,大概在这一两百年时间里井喷式地发生了很多事情,所以叫革命。  下面列出了这些具有代表性的革命事件:  • 尼古拉斯哥白尼,1543年出版了《天体运行论》,提出了日心说理论。  • 安德烈维赛留斯,1543年出版了《人体构造》,解释了血液在人体内循环的过程,还从解剖尸体组装了第一副人类骨架。  • 威廉吉尔伯特,1600年出版了《论磁石》是物理学史上第一部系统阐述磁学的科学专著。  • 第谷布拉赫,对16世纪末期所认知的星体进行了详细并且准确的观测,为开普勒的研究提供了基本数据。  • 弗兰西斯培根,企图通过分析和确定科学的一般方法和表明其应用方式,给予新科学运动以发展的动力和方向。  • 伽利略伽利莱,改进了望远镜,并对金星和木星的卫星进行了准确的观测,于1610年发表观测结果。通过理论分析与实验推翻了被奉为圭臬的亚里士多德的力学体系并建立了近代力学。  • 约翰内斯开普勒,1609年发表了关于行星运动的两条定律,1618年发现了第三条定律,就是后来被称为“开普勒定律”的行星三大定律,说明了行星围绕太阳旋转的理论。  • 威廉哈维,通过解剖等手段展示了血液的循环。  • 勒奈笛卡尔,是演绎推理的先驱,1637年出版了《方法论》。  • 安东范列文霍克,建造了高清晰度的单显微镜,研究了毛细管循环和肌肉纤维。他观察了血球、精子与细菌,并绘出了它们的形象。於1683年发现了细菌。  • 艾萨克牛顿,1687年7月5日发表的《自然哲学的数学原理》里提出的万有引力定律以及他的牛顿运动定律是经典力学的基石。牛顿还和莱布尼茨各自独立地发明了微积分。  以天文学为例,这些故事的背后发生了什么?它们为什么在这个时候发生?这可能是值得思考的问题。  1. “地心说”——一个“很有道理”的旧理论  以前可能我们每一个民族的各个国家的人都喜欢观测自然,观测自然的主要活动之一就是看星星,那时候也没有电,也没有手机,大家晚上只能看星星,看了星星就想解释它,所以这是最早科学的雏形,看到一个自然现象想来解释。当时最好的解释是托勒密的《地心说》,托勒密是一个大科学家,科学不是说是对还是错,科学是说我要去解释自然界的现象,然后一步步推进,他当时做的模型非常精密,可以解释他当时观测到的几乎所有行星运动的现象,但是因为确实行星运动不是以地球为中心,而是以太阳为中心,所以他的解释必须把他的模型做很多的修正微调,假如地球是中心的话,行星围着地球转,你就不能解释看到行星往后退的现象,他就说围绕地球转有两个轮,一个均轮一个本轮,一个大圆一个小圆,每一个行星都有一个大圆有一个小圆,大圆有一个半径,小圆也有一个半径,大圆有一个周期,小圆也有一个周期,所以每个行星都有自己的一套参数。但是如果地球真是中心的话,还是有问题,后来他又做了进一步修正,认为在地球对称的这个地方是中心。总之他是很严密的一个科学家,他花了很多时间把他的模型做得越来越精确,他的“地心说模型”统治了近两千年。    托勒密与他的“地心说模型”  2. 日心说——一个革命性的新观点  到了哥白尼,他提出革命性的观点,他说“地心说”太复杂了,他完全从美学的角度,一个对称的角度说太阳可能是中心。  哥白尼与他的“日心说模型”  但是他提出太阳是中心,其实并不能比“地心说”解释更多的当时的实验观测到的数据,为什么呢?第一,现在我们都知道所有这些行星轨道其实也不是圆的,而是椭圆 更重要的是,第二,当时的观测仪器还不能精确到证明哥白尼对还是托勒密对,很多时候我们只能看一个大概,所以当时的模型还不足以推翻“地心说”,但是他确实提出了革命性的观点。  3. 数据的积累——用更精密的仪器做更准确的测量  到了第谷,他是一个丹麦天文学家,一个大英雄,丹麦皇家给了他一座岛,大概是北大的四分之一那么大,专门用于观测天象,整个岛布满有各种各样的仪器,他的浑天仪做的很好,收集了很多很精确的数据,十几年二十几年一直在观测,收集了大量的数据,而且非常的精确。  第谷与他的天文观测岛(上),火星观测数据和浑天仪(下)  然后发现“地心说”不对,但是他摆脱不了“地心说”的观念,他提出一个模型,说地球还是中心,然后月亮围着地球转,太阳也围着地球转,但是所有其他的行星围着太阳转。把它这个结合一下,他这个比纯“地心说”可以多解释一些东西,但还是不能完全解释(Better observation itself does not automatically lead to better understanding)。  第谷的“新地心说模型”  但是他还是很了不起,他收集了大量的数据,为后面的开普勒定律、牛顿定律奠定了很好的基础,没有他的这些仪器观测,也就没有后面的革命,所以说技术的进步很重要,这时候的技术进步虽然很简单,你甚至可能觉得这些都不算什么高技术,但是当时是一个很先进的进步,所以技术进步往往是科学革命的前列。  4. 新工具发现新现象  来到伽利略,望远镜不是他发明的,但是他把望远镜改造了一下,然后来看行星的运动,他发现两个事情,和“地心说”不太符。一个是他看到木星也有卫星,那说明地球就不特殊了。他还看到金星有时候亮一点有时候暗一点,和月亮一样有阴晴圆缺。  伽利略改进望远镜观察到木星的卫星和金星的相位变化  5. 定量规律的发现  前面说第谷有两大功绩,第一个就是他造了很好的浑天仪,收集了大量的数据 第二个是他收了开普勒做助手,开普勒从小对天文非常感兴趣,他当时就知道第谷有很多数据就想跟他去做,据说两个人关系很不好,第谷让他去研究火星。火星数据非常多,但是火星我们知道椭圆性是最大的,假设火星轨道是一个圆而且围着地球转,大概是下面的轨迹:  以“地心说”为基础描述的火星轨道  第谷觉得不可能搞清楚,他和开普勒说你就研究火星吧,开普勒自己也收集了很多火星的数据。以前一直觉得每一个行星都有自己的运动规律,现在开普勒说不是,所有的行星满足同样的规律,所有的行星都在椭圆形轨道上围绕太阳转,太阳在一个焦点上,这个普适性就出来了,这是他的第一个定律。第二定律是定量,就是说行星运动的时候,单位时间走的面积相同,比如说走一天,离太阳近的时候就走的快,离太阳远的时候走的慢,所以面积是一样的。   开普勒第二定律  第三个定律是十五年以后找到的,就是这个行星运动周期的平方与长轴这个半径的立方成正比。这个三个定律看上去非常简单,但是他把行星运动全部统一起来了,其实没有那么多很复杂的,就是几个简单的规律就可以解释,开普勒是非常了不起的。所以从技术的进步到大量的精确数据,到总结一些现象的规律,最后到科学革命的完成。最后科学革命的完成,总是要有人集大成。  6. 普适性原理的发现  牛顿看到开普勒的三个定律觉得很有意思,为什么有开普勒三个定律,后面有没有更简单的更普适的解释,牛顿说其实是有的,受到的启发是不是被苹果砸的不知道,但是有一点是确定的,当时伦敦正在闹瘟疫,剑桥也关门了,他回家在他自己后院里边待了半年,可能还更长时间,学校关了,他没事可干,整天想这些东西,所以说英国不闹瘟疫,他可能也不会想这么快。他说其实那三个定律有原因的,为什么呢?是因为有万有引力,太阳拉着地球,或者拉着火星,互相拉,这是引力,这个引力和两个物体的质量成正比,和距离平方成反比,这是看不见的万有引力。另一个方面,力是质量乘加速度,把这两个连起来就可以推导出开普勒三个定律,开普勒三个定律是牛顿的更普适定律的一个表现,是在一个体系里的一个特殊结果。  牛顿与他的普适性原理  牛顿不光把开普勒三个定律做了解释,找到了更下一步的原因,还把这个推广到整个宇宙,所有的力学,不光行星运动满足牛顿的这些普适规律,所有宇宙里力学运动全都满足这个规律,这非常了不起,是非常大的进步。还有他为了把这些东西能够推出三个定律,行星轨道是一个椭圆,椭圆你看这个万有引力随着半径平方成反比,所以这个万有引力时小时大,一个加速度也是时小时大,所以不是匀速的,所以就要找到瞬时速度的概念,瞬时加速度的概念,在你瞬间那个速度多快,所以他发明了微积分。他不光找到了基本规律,还把基本规律的数学语言找到了,一个科学革命,最终要伴随数学语言,牛顿力学的数学语言就是微积分。  第一次科学革命的总结  我们总结一下天文学革命,也就是经典物理学的革命,第一次科学革命,最伟大的一次科学革命。    科学革命的一般过程  它大概是一个什么程序,首先是观测数据积累,这可能是很长很长的时间,上千年,至少从托勒密到科学革命有一千多年,然后不断有一些初步的、表面的、唯像的理论,比如托勒密的“地心说”,然后到技术进步,产生更大量更精确的数据,就发现原有模型不太对,就出现一些定量的规律开普勒三定律,解释了这些更大量更精确的数据,如果这一步做的对的话,就可能产生普适的原理,把这个进一步推广,就伴随着数学语言的一个发展。所有的科学革命,不管它是基础的还是需求推动的,最后基本上都会导致很大的应用,工程应用、设计制造、改造自然。有了牛顿力学可以发射卫星,飞机可以飞等等,整个革命改变了我们人类。  二、科学革命对人类文明的影响  科学革命之后,人类的思维彻底改变,把自然当成可以用科学来理解的东西,有定量规律的东西,一百年发生了工业革命(1750-1850),到后来产生蒸汽机、纺织机、火车… … 大家都觉得有规律可循,所以研制这些蒸汽机后又诞生了热力学。  下面显示的是世界人均GDP:  公元1年到公元2003年的世界人均GDP  从公元零年一直到差不多现在,这个中间有些年因为数据不全,所以没画,在工业革命之前世界人均GDP基本上是常数,人口有时候多有时候少,打仗、瘟疫就少一些,太平时就多一些,但人均GDP不变。科学革命和工业革命之后大概就是指数型的增长,到现在还是指数型的增长。所以可以看出科学革命的重要性,对整个工业革命是怎么推动的,而且科学革命之后就有很多革命,电气革命(第二次工业革命),以及我们比较熟悉的信息革命,你们就诞生在信息革命的时代。从第一台数字电脑,一直到我们现在iPhone、互联网,大家可能都觉得是应用性革命,确实有强大的应用的需求和市场推动,但也是多学科交叉在起作用,而且很重要的有物理学理论在做基础,没有物理学的基础理论这些信息革命是不可能的,还有其他的科学,我给大家说两个例子。  1.信息革命背后的科学——电动力学  第一是电动力学,电动力学的这个诞生也是很有意思,我们的古人很早就知道有电,闪电,干燥的时候手会打电,我们有时候冬天的时候不敢去碰门把手,会打电。磁的概念我们祖先两千多年前就发明了指南针。   古人很早就知道的电和磁的现象  这么早就知道有电有磁,为什么要等到一千多年以后,科学革命再后面一点,才有人总结出定量的东西,是不是科学革命忽然把大家脑袋打开了,然后集中发现了安培定律,法拉第定律,电生磁磁生电现象等。而且非常定量,通过导线的电流强度与其产生的磁场强度成正比,看上去很简单,但是它非常普适,中国是这样,法国是这样,月亮上也是这样。法拉第在1831年首次演示电磁感应,电和磁可以互相转换,一个电磁铁上的线圈通过电流,有线圈就有磁。   安培的“电生磁”和法拉利的“磁生电”现象  这就相当于我们前面讲的天文学革命里边的开普勒定律,很简单,但是它总结了一个非常定量的规律,然后没有多少年,麦克斯韦把安培和法拉第这些简单的定律统一起来,写了四个方程,非常天才的把它统一起来了,他说这些电磁现象都是这四个方程的解,有点像说你开普勒三定律都是我牛顿方程的解,都是我这个普适理论的一个表现。所以我这个方程不光可以解释你的现象,还可以解释一些新的现象,这个方程确实它的影响是巨大的,把这个方程一解就发现,电和磁可以有电磁波,电磁波可以在没有电线的情况下,真空里面什么都没有介质的情况下传播。    麦克斯韦方程组(Maxwell' s equations)  大家突然就觉得视野开阔了,一个东西在这边捣鼓电磁波就可以传过去,然后赫兹很快就首先证明了电磁波确实存在,他读博士的时候,他的导师是很有名的亥姆霍兹,就让他去证实电磁波的存在,但他没弄出来,他觉得太难了,但是他毕业以后继续弄,发现电磁波确实存在。    赫兹于1887年首次证实电磁波的存在  那电磁波意味着什么?我们所有的无线电通讯,手机、电视、无线通讯都是靠电磁波传的,整个改写了人类通讯历史,没有当时这些看起来没有用的东西打下的基础,现在的信息革命是不可能的,我们也不可能成天使用手机、互联网。  2.信息革命背后的科学——量子力学  第二个是量子力学,没有量子力学也不可能把芯片做出来,也没有半导体的概念,也没有集成电路… … 有了量子力学才知道这些东西可以来做电路的一些基本元件。量子力学的诞生也是因为大家在做一些非常“无用”的东西,所以很多时候一个突破性的概念的产生,都是因为好奇心,然后当时觉得没有什么用,就是好奇就去做。   量子力学发现的英雄们  量子力学有很多英雄,就不一一说了,开始也是不理解一些现象,比如光电效应,黑体辐射,太阳的光谱,与经典物理算起来结果不一样。当时一些物理学家非常失望,牛顿之后还有波尔兹曼统计物理、热力学,加上麦克斯韦的电磁理论,物理学家已经觉得物理把整个世界都搞清楚了。现在发现一些东西完全不可理解。在理解这些现象的过程中,诞生了量子力学。量子力学给我们今天的人类文明的很多东西都打下了基础,包括我们计算机芯片、半导体、激光、超导,到现在的量子通讯、量子计算等等,所以信息革命后面是非常基本的一些基础研究,而且这个基础研究不是由目的性带来的,它是由好奇心带来的。  三、交叉的产物——生命科学的前两次革命  这第一次生命科学革命不到100年,大约在70年前。当时有一批物理学家、化学家进入到生命科学领域,想搞清楚基因的物质基础,基因到底是什么。基因是分子?还是结构?还是什么东西?这是在思路上带给生命科学的,第二个是在方法上,把大量的工具带进生命科学,X射线、核磁共振、电子显微镜、离心机等等,这一革命的标志性的成果就是沃森和克里克发现了DNA双螺旋结构,就是用X射线照出来的,没有X射线他们也发现不了。  第一次生命科学革命以1953年沃森和克里克发现DNA双螺旋结构为标志  第二次生命科学革命大概是上世纪末九十年代开始的基因组学,也就是我们现在说的测序,基因组学是数学和计算机科学与生命科学的交叉。  这两次革命之后,生命科学是什么状态呢?为什么还要有第三次革命呢?  假如我们把生命体比作一辆汽车的话,分子生物学革命就把这个汽车零部件搞的越来越清楚了,有方向盘、刹车、油门,就是我们很多基因很多蛋白搞的越来越清楚,蛋白质结构都可以用X射线解出来,长的什么样子,我们都知道。基因组学革命就让我们得到了这个汽车的说明书,就是我们的基因组,所有的信息都在说明书里边,但是我们基本上看不懂。大概知道方向盘在第几页,这一段基因对应这个蛋白。至于这个汽车是怎么组装起来的,为什么能跑起来,能跑多快,能跑多久,我们不知道。坏了怎么修,里边有哪些原理性东西,哪些是普适的规律,哪些是特殊的,这些基本上都不知道,所以生命科学现在是处在一个大革命的前夜。  美国科学院在2009年出了一部纲领性文件,文件题目叫《二十一世纪的新生物学》。美国科学院认为在二十一世纪会产生全新的生物学,这个全新的生物学就标志着生命科学的第三次革命。   2009年美国科学院发布的《21世纪的新生物学》  上图右侧是他们总结的图,它有很多很多的根,生物学只是其中的一部分,物理、化学、计算机、工程、数学甚至包括科学教育。全部在一起交叉融合。新生物学和原生物学有什么不一样呢,它可以对生物系统有更深的了解,比如了解汽车它是怎么跑起来,怎么装起来,有什么控制原理,然后也许就可以预测。生命可以预测太不可思议了,而且可以定量的分析,就像工程一样。当然就需要把生命系统原理搞清楚,所以生命科学就从一个观察性定性的科学,到一个定量可预测的科学转变,这当然肯定会对世界产生很深远的影响,他们举了四个方面的例子:健康、环境、能源、食品。  生命科学是不是生命科学本身的事,不是,每个学科都忙活起来了,美国科学院凝聚态与材料物理委员会2010年出了一个报告——《下一个十年的六大挑战》。这个六个问题有三个和生命科学相关,第三个直接就是“什么是生命的物理?”。我们知道什么是行星的物理——牛顿力学 什么是蒸汽机的物理——热力学 什么是通讯的物理——电动力学 什么是计算机硬件的物理——量子力学 什么是生命的物理——我不知道。应该有,因为生命现象也是一个自然现象,有自然现象就应该有规律,也许你就可以把它总结出来,物理学家总结出来就叫生命的物理。  四、生物学和物理学如何交叉?  生物学和物理学好像根本连不上,怎么可能会交叉呢?更别说融合。  生物都是物种、细胞、基因、蛋白,都是很多事实在那,而且很不一样,都是描述性的观察性的,要记很多事实。物理是反过来的,就是几个公式,非常简单,然后那些事实都不管,都可以在公式里推出来,一个是极端的观察性的一个是极端的抽象性的,它们之间怎么会有关系。    生物学与物理学的两个极端  1.飞行中的流体力学  举一些例子,如果把地球上所有带翅膀的东西找出来,能飞的带翅膀的,小到蜻蜓大到波音747,然后你画横轴是它的质量或者是重量,纵轴是它的飞行速度。   飞行中的规律性  他们都在这条线上,万变不离其宗,不管是大自然进化出来的还是我们人造的,非常有规律,是不是有点像开普勒三定律中的一个。单独每个看它很特殊,但是我们用很简单的线全连起来。你要能飞的话要有升力,这个升力和翅膀面积成正比,和飞行的速度平方成正比,重量和你的体积成正比,然后面积和体积大概有这样一个关系,你把这些个方程一连立,你飞的速度必须和重量六分之一成正比,否则你飞不上去,就是非常简单的一个定律,把所有能飞的东西全部都给统一起来,所有能飞的都必须满足这规律,无论是人造的还是大自然演化出来的。  2.植物中的数学  植物有很多很漂亮的形状,不光是植物还有海螺贝壳等等。松子、菠萝、向日葵,是不是有很多一圈一圈的,一圈一圈可以往一边转,可以数这边转多少圈那边转有多少圈,你数以后发现,对这个向日葵来说往这边转的是21个,那边34个。  植物中的斐波那契数列  松子数一下,菠萝数一下,就发现几乎所有的,往两个方向转的圈数都是这个序列的相邻两个数,5、8、13、21、34等。这个序列是300年前,意大利的数学家斐波那契造出来的,这个序列非常简单,第一个是1,第二个是1,后边是前边两个的和,1+1=2,1+2=3,3+5=8,5+8=13… … 。这个序列还有一个神奇的性质,它相邻两个数的比值,13:8、21:13、34:21、… … ,它趋于黄金分割。黄金分割是最漂亮的比例是不是?为什么这些植物里边有这么漂亮的数学,有一些解释,我们知道一些,还有一些不知道。  3.细胞中的微分几何  你们看细胞中一片一片的,叫内质网,内质网是折叠某些特殊蛋白的。大概在2013年以前,大家都不知道它的结构具体是什么样子,到2013年生物学家和物理学家合作,用电子显微镜把这个结构解出来了(下图中)。   细胞中的内质网呈现螺旋面结构  像不像停车场?停车场为什么要设计成这个样子呢?因为它要停尽可能多的车,因为它要连通,要能开上去开下来,这个内质网的功能和停车场的功能几乎一模一样,要停尽量多的核糖体,把蛋白质折叠在里边,两层膜中间有一个内部的环境,内部要一样的环境,它必须连通,停尽量多的核糖体在上面,而且要在三维空间中尽量节省空间,如果你做一个模型优化这些功能上的要求,结果就是这个样子。数学家在几百年前就想象出这个东西,叫“螺旋面”(Meusnier, 1776),是微分几何的前身。这个数学家想这个螺旋面的时候可没想这么多,但是我们造停车场也是按“螺旋面”的设计,细胞进化也是螺旋面的设计。  4. 真菌的枪炮    可以发射孢子的克莱因水玉霉  生命体系非常神奇,进化出了很多东西,它们甚至进化出了枪炮,克莱因水玉霉只有一个毫米这么大,它可以用火箭一样的原理把上面的孢子发射到很远的地方,到2.5米开外,发射的时候加速度和手枪一样大。  5.鸟群运动的临界现象    鸟群里的“临界现象”  有一些特殊的鸟群,鱼群也是这样经常“跳舞”,它们怎么能够跳的这么好,没人指挥它们,其实有一个很有意思的统计物理在里边,周围伙伴怎么做,它也怎么做,于是就有了整体运动,这个整体运动有很特别的性质,叫作临界性,对外界来的威胁反映非常快,转变队形非常快,有一个老鹰来了鸟群前后都能马上作出反应,所以这是鸟群里边的物理。
  • 合成生物学前沿 | 代谢组结合代谢流研究高效解析糖基转移酶生物功能
    合成生物学正在引领第三次生物技术革新,其作为底层技术将驱动多个领域的创新发展,包括医药、食品、农业、材料、环境甚至信息存储等。合成生物学是生物学工程化高度交叉的前沿学科研究域,包含几个不同的研究层次:认识生命、改造生命和创造生命;要想实现其终极目标,还需要在生命本质探索及相关技术的不断创新与应用上持续深入。我们将紧跟合成生物学领域的前沿研究进展,为大家系列解读该领域的最新科研成果。本期分享植物酶功能研究新方法,酶功能的深入认识将为下一步异源设计细胞工厂提供重要依据。研究成果来自中国科学院深圳先进技术研究院合成基因组学研究中心的赵乔研究员课题组在 Molecular Plant 上发表的题为“Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases”的研究论文[1],为大家介绍一种特异针对糖基化合物的代谢组(glycosides-specific metabolomics,GSM)和同位素标记前体化合物示踪(precursor isotopic labeling,PIL)相结合的方法,可以高效、准确鉴定糖基转移酶(glycosyltransferases,GTs)在植物体内的产物,解析 GTs 在特定代谢通路中的作用。该方法极大缩小了目标化合物的范围,在糖基化合物定性、方法可靠性方面较传统生化手段或非靶向方法有较大提升,为植物糖基转移酶的功能解析提供了新手段。专家解读核心信息赵乔研究员中国科学院深圳先进技术研究院合成所合成基因组学研究中心主任。于美国俄亥俄州立大学植物系 Iris Meier 实验室取得博士学位后,在美国 Noble Foundation 美国科学院院士 Richard Dixon 实验室从事博士后研究。主要研究领域是植物天然产物的合成以及调控机制。已在该领域取得了一系列重要的成果,共发表 SCI 论文 30 余篇,累计他引 1500 次,其中第一或通讯作者的文章发表在包括 Molecular Plant、PNAS、Plant Cell 以及 Trends in Plant Science 等国际专业期刊上。“植物的次生代谢物种类繁多且修饰丰富,其中糖基化修饰在提供结构基础的同时也为其多样化的生物学功能发挥了重要作用。为了有效鉴定糖基化过程,需要使用高分辨质谱进行非靶向的特异性代谢组学研究,同时结合同位素标记来跟踪不同糖苷代谢物在突变体中的示踪结果以分析 UGTs 的功能,进而全面表征植物糖基化修饰的次级代谢物,为拓展天然化合物的高效生物合成提供依据。”酶功能研究及植物次级代谢产物鉴定的挑战植物中含有丰富的次级代谢产物,种类超过 40 万种。糖基化是一种常见的修饰方式,赋予化合物复杂且多样的结构,形成种类繁多的糖基化产物。糖基化修饰可以改变相应苷元的催化活性、溶解性、稳定性及其在细胞中的定位,在调节激素的稳态平衡,外源有害物质解毒,抵御生物和非生物胁迫中都发挥着重要的作用。同时,糖基化修饰可以改变天然产物的药理活性和生物利用率等性质,这些糖苷类化合物是天然药物的重要来源。植物 UGTs(UDP 糖基转移酶)以多基因家族的形式存在,它们能够利用不同的糖基供体,糖基化多种多样的植物小分子化合物。目前的研究多数集中在生化功能的确定上,UGTs 具有底物杂泛性和催化杂泛性,同一个 UGT 在体外可以催化结构不同的底物,且不同的 UGTs 可以识别同一种的底物。此外,由于植物体内的底物可得性和特殊且复杂多变的细胞环境,这些通过生化方法对 UGTs 活性、生理功能等的研究结果往往不能反映 UGTs 在植物体内的真实功能。GSM-PIL 方法实现对植物糖基化修饰次级代谢物的高效、准确鉴定非靶向特异性代谢组学(GSM):基于内源碰撞诱导解离(ISCID)的中性质量丢失模式建立非靶向特异性代谢组学方法,以对糖基化修饰的次级代谢物进行针对性分析。该 GSM 方法可将受到 UDP 糖基转移酶(以 UGT72Es 为例)影响的代谢物范围从 1000 种缩小至 100 个。同位素标记前体化合物示踪(PIL,代谢流):使用同位素标记的苯丙氨酸前体对 UGT72E 在特定的苯丙氨酸代谢通路中的作用进行示踪分析,可进一步将目标产物范围缩小到 22 个。图 1. GSM-PIL 方法解析 UGT72Es 在植物体内的功能GSM-PIL 方法的适用性及可靠性通过 GSM-PIL 方法,不但可以鉴定到已发表的两种木质素单体糖基化产物,还发现 UGT72E 家族参与植物苯丙烷通路中其他 15 种化合物的糖基修饰作用。进一步通过 UGT72Es 的体外酶活分析,植物内源基因过表达以及遗传互补等实验证实 UGT72Es 对这些化合物的糖基化作用,验证了 GSM-PIL 方法的可靠性。同时,该研究还发现了 UGT72Es 在植物体内对香豆素的糖基化作用,进而在植物碱性缺铁胁迫环境下发挥重要作用。最后,通过 UGT78D2 的功能解析,展示了 GSM-PIL 方法的普遍适用性。高分辨质谱结合数据高效提取软件协助 GSM-PIL 方法建立为了确保糖基化修饰的次级代谢物以及同位素示踪化合物的的高效检测,本研究采用安捷伦 6546 QTOF LCMS 系统进行数据采集;进一步结合 MassHunter、Profinder 数据处理软件对代谢组和同位素示踪数据进行有效提取和解析。图 2. 基于高分辨质谱的 GSM-PIL 方法建立 结 语 综上,基于液相-高分辨质谱的 GSM-PIL 方法可以高效解析 UGTs 在植物体内的功能。相对于传统一对一“钓鱼”式地探索 UGTs 功能,GSM-PIL 方法可以“捕鱼”式地一网打尽 UGTs 的产物,全面鉴定未知的底物或糖基化产物,解析 UGTs 在植物中未知的生理功能,揭示了植物中的糖基化网络比我们想象中更复杂。同时该方法可用于探索其他代谢途径,帮助人们进一步了解、进而利用植物合成途径,为拓展天然化合物的高效生物合成提供依据。参考文献:[1] Jie Wu, Wentao Zhu, Xiaotong Shan, Jinyue Liu, Lingling Zhao and Qiao Zhao. Glycosides-specific metabolomics combined with precursor isotopic labeling for characterizating plant glycosyltransferases. Molecular Plant 15, 1517-1532.
  • 会议邀请|第三期PHI TOF-SIMS/D-SIMS云端讲堂
    PHI CHINA将于2022年3月30日至4月1日开展“第三期PHI TOF-SIMS/D-SIMS云端讲堂”。本次会议将通过腾讯会议平台召开,届时将开SIMS理论、实验技术和应用等相关培训,并将介绍PHI TOF-SIMS技术最新进展。我们诚挚邀请您参加本期云端讲堂。我们恭候您的参加,并期盼与您共同推动表面分析技术的应用和发展,以及提升大型科学仪器的“创新服务产出”水平。日程安排参与方式腾讯会议:802-6026-7281请填写以下报名表格,并于3月28日前回复至noreen.wu@coretechint.com
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制