当前位置: 仪器信息网 > 行业主题 > >

量子化

仪器信息网量子化专题为您整合量子化相关的最新文章,在量子化专题,您不仅可以免费浏览量子化的资讯, 同时您还可以浏览量子化的相关资料、解决方案,参与社区量子化话题讨论。

量子化相关的资讯

  • 计量单位将迎来量子化时代
    p   人们日常所用的“米”“秒”“千克”等计量单位,将被重新定义。记者日前从中国计量院主办的“展望2025——国际计量发展重大挑战”国际研讨会上了解到,当前国际计量体系正在经历历史性变革,国际单位制将以量子等自然界基本常数为基础重新定义。国际计量委员会正在起草关于重新修订国际单位制的草案,且有望于2018年被国际计量大会采纳。计量将向先进制造、医学、新能源等新兴产业和领域发展,带来广泛而深刻的影响。 /p p   strong  量子基准将取代实物基准 /strong /p p   据了解,国际单位制是全球统一的计量单位制,是构成国际计量体系的基石。其核心是7个基本单位,即时间单位“秒”、长度单位“米”、质量单位“千克”、热力学温度“开尔文”、电流单位“安培”、发光强度单位“坎德拉”和物质的量单位“摩尔”。国际单位制最早形成于19世纪,伴随着科技发展,发生了多次重大变革。 /p p   中国计量院院长方向介绍,20世纪80年代开始,量子力学的发展催生了国际单位制又一次重大变革。国际计量界决定对国际单位制的7个基本单位重新定义,将其与宇宙中恒定不变的量或基本物理常数联系起来,以量子物理为基础的自然基准取代实物基准,这样就不会受到空间和时间改变的影响,测量准确度等技术指标得以大幅度提高。 /p p   “此次变革的核心是‘计量单位量子化’和‘量值传递扁平化’。”方向解释,所谓“计量单位量子化”,是指通过全面采用量子计量基准,大幅提高测量精度和稳定性 而“量值传递扁平化”则是指通过量子计量基准与信息技术的结合,使量值传递链条更短、速度更快、测量结果更准更稳。 /p p   “单位‘米’的基准是实物米尺,各个国家都有一把作为基准的米尺,而且需要溯源到国际计量局的国际米原器进行校准,以确定其准确量值。然后通过实物传递到省一级、市一级、县一级等一级级地进行校准。传递的过程越长,其精度的损失就越大。”方向说,现在通过激光的波长来定义“米”,因为激光的频率和速度非常稳定,只要准确地测定某一种激光的频率或速度,然后以此来计算一定时间里它走过的距离,就可以定义“米”了。 /p p   重新定义后的“米”为激光在真空中1/299792458秒(接近三亿分之一秒)所走的距离,其准确度比国际米原器大幅提高,而且其复现和传递可以不受时间和环境的影响,更能满足我们不断增长的测量需求。“现在的先进制造、精密制造、精准医疗等,对长度的测量需要精确到几何级,直接用激光器来校准,肯定比传统方式要更精确。”方向说。 /p p   strong  精准计量催生新技术 /strong /p p   近年来,国际单位制重新定义的相关工作已取得了重要进展,目前仅剩一个基本单位——千克,定义仍沿用实物基准。为实现用基本物理常数和量子技术重新定义“千克”,包括中国计量院在内的许多国家计量院已经开展了多年实验研究。 /p p   作为国际单位制的基础、核心和关键,时间频率基准已率先完成量子化变革,其定义从“天文时”转变为基于原子能级跃迁的“原子时”,测量精度立刻提升了1000万倍以上。正是基于时间定义的量子化变革,实现了卫星导航定位,其精度达到了厘米级别。时间定义的变革还快速催生长度、电学、温度、质量等单位的重新定义。如“米”就是建立在“秒”的量子化变革基础上,定义为激光在真空中三亿分之一秒所走距离,使长度测量进入原子级别。 /p p   “伴随测量精度大幅提升,一大批革命性的新技术由此诞生,带来产业的跨越式发展。如精准测量支撑了纳米技术和石墨烯的应用、提升了先进制造中航空发动机的精度、推动了精准医疗产业的发展、决定了核潜艇侦测和隐身技术的竞争成败等。”方向介绍。 /p p   据国际计量委员会主席白瑞· 英格利斯在研讨会上介绍,国际计量委员会正在起草关于重新修订国际单位制的草案,该草案有望于2018年被国际计量大会采纳。当天的研讨会上,国际计量委员会以及美国、德国、中国等国家计量院的专家们还就国际单位制重新定义以及计量支撑“工业4.0”、智能电网和新能源等重要内容进行了探讨。 /p p   不过,对于单位制重新定义后对日常生活带来的影响,方向表示,“米”虽然还是那个“米”,内涵却有根本的改变,更加精准和持续改进成了其新的特质,但其细微的变化我们在日常生活中可能很难感受得到。这些变化对新兴产业的发展,对人类认识和改造自然有着不可估量的作用。 /p
  • 全国量子化学会议在太原召开
    大会会场   6月13日,第十二届全国量子化学会议在山西太原召开,来自海内外200余所高校和科研院所的1500余名专家、学者参加了会议。中国科学院黎乐民、吴云东、方维海三位院士出席会议并分别担任大会学术委员会主席和副主席。国家自然科学基金委员会化学部副主任梁文平等人参加了会议。山西省政协副主席、山西省化学会理事长刘滇生教授出席开幕式并讲话,   本次会议由中国化学会主办、山西师范大学承办。据悉,自1977年在上海召开第一届全国量子化学会议以来,每三年举办一届,已成为我国量子化学研究领域进行学术交流、研讨的一个重要平台。据大会组委会主任、山西师范大学校长武海顺教授介绍,本次会议是历届全国量子化学会议参会人数最多、规模最大、影响最广的一次全国性学术会议,必将对山西乃至全国的化学学科建设与发展产生积极的推动作用。   本次大会为期三天,将全面展示我国在量子化学领域取得的最新成果。主题内容涵盖量子化学理论和计算方法,分子、团簇、固体等的电子结构和谱学计算,催化反应机理、分子激发态和光化学反应机理的理论研究,各种材料的结构与性能关系及理论设计,反应动力学理论和应用,量子化学和分子模拟在生物、环境和能源等领域的应用和其它理论与计算化学研究等七个方面。   会议开幕当天,吴云东院士作了首场学术报告。期间还将举行15场大会报告、51场邀请报告、43场口头报告。同时有600多篇论文进行会议墙报交流,800余篇论文被收录会议论文集。   此外,受国家自然科学基金委员会化学部的委托,会议还将邀请部分专家学者举行&ldquo 理论与计算化学发展战略研讨会&rdquo 。
  • 国际单位制迈入量子化时代 计量仪器准备好了吗
    p   国际单位制迈入量子化时代:全部由常数定义突破时空局限 /p p   新华网北京12月11日电(王忻)12月11日,市场监管总局在京召开国际单位制重大变革新闻发布会。总局计量司司长谢军在发布会上透露,自明年5月20日起,中国将开始使用新修订后的国际单位制。为抓住此次变革带来的历史性机遇,我国将强化计量量子化战略研究,并制定量子化时代的中国计量发展新规划(2020年-2035年)。 /p p   11月16日,第26届国际计量大会(CGPM)在法国巴黎召开,经包括中国在内的53个成员国集体表决,全票通过了关于“修订国际单位制(SI)”的1号决议。根据决议,质量单位“千克”、电流单位“安培”、温度单位“开尔文”、物质的量单位“摩尔”等4个SI基本单位的定义将由常数定义,于明年的“世界计量日”——5月20日正式生效。 /p p   据了解,加之此前对时间单位“秒”、长度单位“米”和发光强度单位“坎德拉”的重新定义,至此,国际计量单位制的7个基本单位全部实现由常数定义,是改变国际单位制采用实物计量的历史性变革。 /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/ea274f73-eea6-4bf7-ab07-f6b1cb476361.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p br/ /p p   国际单位制大家并不陌生,在生活中我们经常会接触到“米”、“千克”、“秒”等计量单位。国际单位制与每个人的生活都息息相关,是世界上普遍采用的计量单位制,是构成国际计量体系的基石,也是促进人类不断进步的基础性工具。这次国际单位制的成功变革,实现了国际测量体系有史以来第一次全部建立在定义常数之上,将保证SI长期稳定性和环宇通用性,也将开启任意时刻、任意地点、任意主体根据定义复现单位量值的大门。 /p p   那么,国际单位制的变革会给普通百姓的生活带来哪些变化和影响? /p p   “此次变革从表面来看,大家可能感觉不到发生的变化,就如同我们给房子换了一个更加坚固的地基,并不太会直接影响我们生活起居,但它实际上已经发生了‘脱胎换骨’的变化。”谢军表示,这次SI重新定义生效后,对于大多数科研人员以及产业发展、人们日常生产生活来说,不会直接造成大的改变,原有的测量结果仍将是连续的、稳定的。但从专业角度观察,SI的重新定义,将改变国际计量体系和现有计量格局。 /p p   他指出,SI重新定义将实现量值传递溯源链路扁平化,使量值溯源链条更短、速度更快、测量结果更准更稳 将催生新的测量原理、测量方法和测量仪器,不受环境干扰无需校准的实时测量,众多物理量、化学量和生物量的极限测量等将成为可能 重新定义和量子测量技术发展将使得计量基准可随时随地复现,精准测量,将直接促进市场公平交易、实现精准医疗、改善环保节能等,将惠及人类生产生活的方方面面。 /p p   中国计量科学研究院院长方向表示,这次国际单位制的“基石”完全建立在“常数”上,新定义用自然界恒定不变的“常数”替代了实物原器,保障了国际单位制的长期稳定性 “定义常数”不受时空和人为因素的限制,保障了国际单位制的客观通用性 新定义可在任意范围复现,保障了国际单位制的全范围准确性 新定义不受复现方法限制,保障了国际单位制的未来适用性。 /p p   “我国目前获得国际互认的校准和测量能力已跃居全球第三、亚洲第一。我国自主可控的国家时间基准、长度量子基准都跻身世界先进行列。”谢军介绍,在这次国际计量单位制重大变革中,作为国家计量院的中国计量科学研究院为SI温度基本单位开尔文的修订作出了重要贡献。我国已独立建立了基于新定义的千克复现装置,并成功研制了真空质量测量和质量标准传递装置,可以保障未来我国质量量值与国际等效一致。 /p p br/ /p
  • 理论物理所等在超导量子芯片上模拟黑洞的量子效应研究中获进展
    黑洞是爱因斯坦广义相对论预言的一类特殊天体。20世纪70年代初霍金、贝肯斯坦等的研究表明黑洞具有热力学性质:黑洞具有正比于其视界面积的熵;黑洞会以热辐射的形式向外辐射粒子,其辐射温度正比于其表面引力;黑洞的质量、熵和温度等满足热力学第一定律。黑洞的热力学揭示了引力的量子效应。因而普遍认为,黑洞是通向量子引力理论的窗口。   实验检验黑洞的量子效应是颇具挑战性的任务,这是由于这些效应非常微弱,且极难观测。比如一个太阳质量大小的黑洞,其对应的霍金温度只有10-8K ,远低于宇宙微波背景辐射的温度(≈3K)。缺少直接的实验检验也是”引力量子化“理论研究迟滞不前的原因之一。在这样的情形下,人们试图在实验室系统中创造出一个等效的“弯曲时空”并研究相关的效应。这一研究被称作“类比引力”(analogue gravity)。它是由Unruh效应(一个在平坦时空中作加速运动的观测者将看到他处于一个热浴中)的提出者William Unruh于1981年首先提出。近日,中国科学院理论物理研究所研究员蔡荣根和理论物理所博士毕业生、现天津大学理学院量子交叉中心副教授杨润秋,与物理所研究员范桁、副研究员许凯及博士研究生时运豪等合作,在”类比引力“的研究中取得重要进展。该工作在超导量子芯片上观察到“模拟黑洞”的霍金辐射并研究了弯曲时空对量子纠缠的影响。相关研究成果发表在《自然-通讯》【Nature Communications 14, 3263 (2023)】上。这一工作的理论基础是基于蔡荣根和杨润秋等在前期研究提出的模型,即在爱丁顿-芬克尔斯坦坐标下对空间坐标离散化,1+1维的无质量标量场和狄拉克场可以被量子化,并等价于耦合强度随格点位置变化的XY晶格模型;弯曲时空的度规信息则被编码在耦合强度的分布函数中。然而,如何在实验中实现这样一个耦合强度具有特定分布的XY晶格模型是颇有挑战性的问题。本研究利用一个具有10个量子比特与9个耦合器构成的一维阵列超导量子芯片,通过精确控制耦合器使比特之间的等效耦合强度按照从负到正分布实现了1+1维的弯曲时空背景,并观测了准粒子在弯曲时空背景下的传播行为。结果表明,在模拟黑洞的内部准粒子总是有一定概率通过视界辐射出去,其辐射概率满足霍金辐射谱。该团队利用量子态层析技术重构出黑洞外部所有比特的密度矩阵,计算了相应的辐射概率,证实了存在类比的霍金辐射。此外,该团队还在黑洞内部制备了一个Bell纠缠态并对比了平直和弯曲时空背景下的纠缠动力学。这一实验研究为在超导量子芯片中模拟弯曲时空和黑洞的量子效应开辟了新路径。该工作所使用的可调耦合器件由超导国家重点实验室SC5组研究员郑东宁和副主任工程师相忠诚提供。研究工作得到国家自然科学基金、科学技术部、北京市自然科学基金和中国科学院战略性先导科技专项等的支持。日本理化学研究所和北京量子信息科学研究院的科研人员参与研究。超导芯片上的黑洞、弯曲时空耦合强度分布以及部分实验脉冲序列
  • 上海微系统所等制备出石墨烯基量子电阻标准芯片
    电阻标准是电学计量的基石之一。为了适应国际单位制量子化变革和量值传递扁平化趋势,推动我国构建电子信息产业先进测量体系,补充国家量子化标准,开展电学计量体系中电阻的轻量级量子化复现与溯源关键技术研究至关重要。与传统砷化镓基二维电子气(2DEG)相比,石墨烯中的2DEG在相同磁场下量子霍尔效应低指数朗道能级间隔更宽,以其制作的量子霍尔电阻可以在更小磁场、更高温度和更大电流下工作,易于计量装备小型化。此外,量子电阻标准的性能通常与石墨烯的材料质量、衬底种类和掺杂工艺相关。如何通过克服绝缘衬底表面石墨烯成核密度与生长调控的瓶颈,获得高质量石墨烯单晶,并以此为基础,优化器件结构和工艺,开发出工作稳定且具有高比对精度的量子电阻标准芯片至关重要。近日,中国科学院上海微系统与信息技术研究所报道了采用在绝缘衬底表面气相催化辅助生长石墨烯,成功制备高计量准确度的量子霍尔电阻标准芯片的研究工作。相关研究成果以“Gaseous Catalyst Assisted Growth of Graphene on Silicon Carbide for Quantum Hall Resistance Standard Device)”为题,发表于期刊《Advanced Materials Technologies》上。研究人员首先采用氢气退火处理得到具有表面台阶高度约为0.5nm的碳化硅衬底,然后以硅烷为气体催化剂,乙炔作为碳源,在1300°C条件下,生长出高质量单层石墨烯。该温度条件下衬底表面台阶依然可以保持在0.5nm以下。采用这种方法制备的石墨烯可以制成量子电阻标准器件,研究团队直接将该量子电阻标准器件集成于桌面式量子电阻标准器,在温度为4.5K、磁场大于4.5T时,量子电阻标准比对准确度达到 1.15×10-8,长期复现性达到3.6×10-9。该工作提出了适用于电学计量的石墨烯基工程化、实用化的轻量级量子电阻标准实现方案,通过基于其量值的传递方法,可以满足不同应用场景下的电阻量值准确溯源的需求,补充国家计量基准向各个行业计量系统的量传链路。中科院上海微系统与信息技术研究所是该研究工作第一完成单位,陈令修、王慧山和孔自强为共同第一作者,通讯作者为上海微系统所的王浩敏研究员和中国计量科学研究院的鲁云峰研究员。该研究工作得到了国家重点研发计划、国家自然科学基金项目、中科院先导B类计划和上海市科委基金的资助。论文链接:https://doi.org/10.1002/admt.202201127
  • 两个量子光源首次实现量子纠缠
    丹麦和德国科学家在最新一期《科学》杂志上发表论文指出,他们携手解决了一个困扰量子科学家多年的问题——在两块纳米芯片上,首次同时控制两个量子光源,并让其实现量子力学纠缠。最新进展对量子硬件的突破性应用至关重要,将促进量子技术发展到更高水平,是计算机、加密和互联网加速“量子化”的关键一步,将为量子技术的商业利用打开大门。多年来,研究人员一直致力于开发稳定的量子光源,并实现量子力学纠缠,也就是两个量子光源可远距离地立刻相互影响。纠缠是量子网络的基础,也是开发高效量子计算机的核心。哥本哈根大学尼尔斯玻尔研究所彼得洛达尔教授表示,其团队一直在研究使用光子作为微传送器传输量子信息。一个量子光源发射的100个光子所包含的信息将超过世界上最大的超级计算机所能处理的信息。使用20—30个纠缠的量子光源,科学家们就有可能构建出一台通用的纠错量子计算机。但实现上述目标面临的最大挑战是,从控制一个量子光源到控制两个量子光源。因为光源对外界的“噪音”非常敏感,因此很难复制。历经20年努力,在最新研究中,洛达尔团队成功创造出两个相同的量子光源,并开发出先进的纳米芯片,对每个光源进行精确控制,实现了量子力学纠缠。最新研究主要作者、博士后阿列克谢蒂拉诺夫解释道:“纠缠意味着控制一个光源,就可立即影响另一个光源,使我们可创建出一个量子光源组成网络,其中的所有光源相互作用,能以与普通计算机中的比特相同的方式来执行量子运算,从而获得当今计算机技术无法实现的处理能力。”
  • 可控生长InSb纳米低维结构及其高质量量子器件研究获进展
    窄带InSb半导体材料以高电子迁移率、大朗德g因子和强大的Rashba自旋轨道耦合特征而著称,成为自旋电子学、红外探测、热电以及复合半导体-超导器件中的新型量子比特和拓扑量子比特的材料候选者。   由InSb制成的低维纳米结构如纳米线或2D InSb纳米结构(或量子阱),也因丰富的量子现象、优异的可调控性而颇具潜力。然而,InSb量子阱由于大晶格常数,较难在绝缘基板上外延生长。解决这些问题的方法之一是自下而上独立生长出无缺陷的纳米结构。通过气-液-固(VLS)生长出的2D InSb纳米片结构具有非常高的晶体质量,显示出单晶或接近单晶的优异特性,而在以往研究中其生长过程几乎均是起源于单个催化剂种子颗粒,因而位置、产量和方向几乎没有控制。   荷兰埃因霍温理工大学与中国科学院物理研究所/北京凝聚态物理国家研究中心HX-Q02组特聘研究员沈洁等合作,开发出通过金属有机气相外延(MOVPE)在预定位置以预设数量(频率)和固定取向/排列生长2D InSb纳米结构的新方法(可控生长),并利用低温电输运测量其制备而成的量子器件,观察到不同晶体结构对应的特征结构。   在这一方法中,通过在基底上制备V型槽切口,并精确控制成对从倾斜且相对的{111}B面生长的纳米线进行合并来形成纳米片。纳米片状形态和晶体结构由两根纳米线的相对取向决定。TEM等分析表明,存在与不同晶界排列相关的三种不同的纳米片形态——无晶界(I型)、Σ3-晶界(II型)、Σ9-晶界(III型)。后续的器件制备和输运测量表明,I型、II型在输运上表现出良好的性质,有较好的量子霍尔效应,出现了量子化平台,也有较高的场效应迁移率。   与之相对,III型纳米线因特殊晶界的存在,出现了明显的迁移率降低和较差的量子霍尔行为,且在偏压谱中被观察到象征势垒的零偏压电导谷。这归因于Σ9晶界带来的势垒对输运性质的影响。   研究表明,通过这种方法制备的I型和II型纳米片表现出有潜力的输运特性,适用于各种量子器件。尤其是这种生长方案使得InSb纳米线与InSb纳米片一起生长,具有预定的位置和方向,并可创建复杂的阴影几何形状与纳米线网络形状。   这一旦与超导体的定向沉积相结合,便可用最少的制备步骤产生高质量InSb超导体复合量子器件,为拓扑量子比特和新型复合量子比特提供器件平台。此外,与通过分子束外延(MBE)生长的InSb纳米片相比,采用这一方法生长的InSb纳米片更薄,更有助于量子化现象的出现和增加可调控性。   2月8日,相关研究成果以Merging Nanowires and Formation Dynamics of Bottom-Up Grown InSb Nanoflakes为题,在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金、中科院战略性先导科技专项、北京市科技新星计划和综合极端条件实验装置的支持。图1.(a)InSb纳米线和纳米片基底的示意图。在InP(100)晶圆上制作v型槽切口(“沟槽”),暴露出(111)B面。金颗粒在InP(111)B切面预先确定的位置上进行曝光制备,InSb纳米线在其上生长。通过在相反的InP(111)B切面上沉积Au颗粒,InSb纳米线将合并,形成(e)纳米桥和(f)纳米片。图2.三种类型的InSb纳米片的晶体取向与最终形貌的关系图4.三种纳米片的低温电输运测量。(a-c)显示了两端电导作为背门电压Vbg和磁场B的函数,即朗道扇形图。插图中显示的是假彩色SEM图像。纳米薄片被Al电极(蓝色)接触,Σ3和Σ9晶界分别用黄色和红色虚线标记。(d-f)为(a-c)在4T、8T和11T处扇图的截线,显示量子化平台存在与否。(g-i)为三种类型纳米片低磁场下微分电导dI/dV与Vbias和Vbg的函数关系,可以看出(i)中存在与晶界对应的零偏压电导谷。(j)由三种不同类型的纳米片制成的8个器件的场效应迁移率,显示三类纳米线不同的迁移率。
  • “电学、辐射和光频量子计量器件研制”项目实施方案通过论证
    日前,由中国计量科学研究院(以下简称“中国计量院”)牵头承担的国家重点研发计划“国家质量基础设施体系”重点专项(以下简称“NQI专项”)“电学、辐射和光频量子计量器件研制”项目实施方案论证会在中国计量院和平里院区召开。   中国21世纪议程管理中心、市场监管总局科财司相关领导,中国计量院副院长戴新华及相关部门负责人,项目和课题负责人、各参与单位代表共30余人参会。中国科学院微电子研究所研究员周维虎、哈尔滨工业大学仪器科学与工程学院院长刘俭、南京大学电子科学与工程学院教授陈健、北京大学电子学院教授陈景标等10位项目咨询专家参加论证。会议以线上线下结合的方式进行。 实施论证会现场合影   中国计量院副院长戴新华对参会的领导和专家表示欢迎,并从加强项目执行管理、重视成果实际应用等方面对项目提出要求。中国21世纪议程管理中心和市场监管总局科财司相关领导对项目实施管理提出要求。中国计量院相关部门负责人介绍了项目管理和经费管理的制度办法。   项目负责人、中国计量院研究员钟青汇报了项目的总体情况、技术路线及预期成果等。来自中国计量院、四川大学的课题负责人分别介绍了各课题的具体任务及实施方案。   咨询专家组认真听取了汇报,重点针对项目研发的多种量子计量领域核心器件指标考核方法和完成进度安排等提出了质询。经讨论,与会专家一致同意通过实施方案。   据项目负责人钟青介绍,计量量子器件是计量基标准的量子化以及量值传递的零链条扁平化的关键。项目面向电学、辐射和光频参考量子计量领域,拟研究脉冲驱动交流量子电压、量子电流、单光子/单能X射线量子计量和芯片级光学频率参考所需核心器件及关键技术,解决该领域量子器件瓶颈问题,实现量子计量核心器件自主可控。项目实施后,将有助于填补该领域核心器件空白,维护相关基标准的自主知识产权,支撑计量基标准的量子化及量值传递的扁平化。
  • 微软“量子计算重大进展”被撤稿,自曝删改不利数据
    微软赞助的研究被Nature撤稿了,而且还是2021年“第一撤”。原本被物理学界视为颠覆量子计算技术的成果,不过是论文作者删改数据得来的结论,根本靠不住。而被发现的原因,竟是作者团队内部人员的“秘密举报”。原来,这篇论文于2018年登上Nature,不久后,团队中某人就做出一个“大胆之举”:将实验原始数据透露给已经离开团队的“师兄”。“师兄”很快发现,真实的实验结果,不但不能支持结论,而且完全相悖!于是他们毫不犹豫地选择向Nature捅出真相。论文被举报始末2018年3月28日,受雇于微软的荷兰代尔夫特理工大学教授Leo Kouwenhoven,领导他的研究团队在Nature上发表了名为Quantized Majorana conductance(量化的马约拉纳电导)的论文。论文声称,在纳米线发现了被称为“天使粒子”的马约拉纳费米子(Majorana Fermion)存在的有力证据。而如果这种粒子存在,那么就通过操控这种有诸多优点的粒子,实现一种全新的量子计算机。可以说,这篇论文的结论直接关乎微软量子计算路线的未来。微软量子计算部门的官网至今还写着对这项技术的憧憬。但是,2019年11月24日,论文其中一位作者将整个研究的完整数据,打包发给了团队之外的两个人:匹兹堡大学的物理学教授谢尔盖弗罗洛夫(Sergey Frolov)和澳大利亚新南威尔士大学的文森特穆里克(Vincent Mourik)。经过比对,他们发现,关键实验数据与论文中完全对不上,本文的结论,根本不能成立。于是他们开始怀疑论文公布的数据是经过修改剪切的(cut)。2020年4月29日,Nature对这篇论文表达了“编辑关注”。“编辑关注”说明中指出,论文作者提醒编辑,数据处理方式有潜在问题,可能对结论有影响,提醒读者不要使用论文相关结果。之后,论文启动撤回程序。2021年1月,论文作者团队又发表了名为Large zero-bias peaks in InSb-Al hybrid semiconductor-superconductor nanowire devices的文章。这是结合了实验完整数据的论文,并讨论了真实结果的意义。但并未解释为何之前修改数据。2021年2月,弗罗洛夫等人在推特贴出了论文数据存在人为剪辑的证据:对比图中,上方是实验原始数据,下方是论文中的数据。在论文图2量子化马约拉纳电导峰中,原数据右侧量子化零偏峰值和峰分裂部分直接被删掉了。而这一部分数据恰与论文结论相悖。同时,论文中还“选择性”剪掉了不支持核心结论的电荷跳跃,只保留了7个看上去能形成明显零偏峰的电荷跳跃。对于质疑,作者曾回复弗罗洛夫等人说,剪切实验数据图片,是为了美观(for aesthetics)。后来,在2021年3月8日发布的撤稿声明中,团队承认了之前对原论文中的电荷跳跃相关数据进行了“不必要的修正”。△原文中被修正过的电荷跳跃相关数据而重复实验后得到的真实结果表明,重新绘制的实验数据,包括之前没有减掉的,各点都在2-sigma(95%)误差外。所以不能宣称观察到量化的马约拉纳电导。撤稿声明的最后,团队为科学严谨性不足表达了歉意。2018年的文章研究了什么?早在2005年微软就开始研究量子计算技术,当时还悄悄成立了“Station Q”实验室。但之后,却眼看着IBM、Google和Intel等竞争对手纷纷建造了具有多个量子比特的量子计算机,说微软不急,不太可能。一般来说,量子计算的量子比特信息是存储在局域,局域的噪音会对信息产生影响,使量子叠加态迅速坍缩。在拓扑量子计算中,人们定义了一种特殊的粒子,几个粒子在时间空间上进行交换,它们的轨迹就相当于在绳子上打不同的结,从而代表着不同的信息。信息的存储只依赖于交换顺序而不依赖于交换的具体路径,所以拓扑量子计算对局部的微扰是免疫的,从根本上解决退相干难题。马约拉纳费米子就是这样一种粒子,它的反粒子就是它本身(马约拉纳对称性),这种性质能够保证量子化不受隧道耦合中无序、相互作用和变化的影响。微软相中了这么一条“一步到位”的量子计算机路线。但是,要产生并观测马约拉纳费米子是非常困难的。微软决定押注荷兰代尔夫特理工大学的物理学家Leo Kouwenhoven,之前他在这个方向上的研究十分有名。2016年,公司聘请了Kouwenhoven,责成他在代尔夫特校园内创建微软实验室。2018年,论文发表时,团队声称,发现了被称为“天使粒子”的马约拉纳费米子(Majorana Fermion)存在的证据。具体到实验中,电传输的隧道谱,例如差分电导中的零偏峰(ZBP),就是识别马约拉纳费米子的主要工具。通过测量,论文最终中给出的实验结果完美支持了理论预期,并且在改变磁场、隧道耦合等参数的情况下,ZBP仍然保持恒定。由此,团队认为他们成功证明了马约拉纳费粒子的存在。△原文中量化的马约拉纳电导平台这项研究成果发布后,引起了众多物理学家的关注,被视为量子计算机的关键突破,为今后实现拓扑量子计算奠定了基础。谷歌学术显示,3年来,这篇论文已经被引用400多次。微软,实现“迎头赶上IBM、谷歌等老对手,五年内拥有一台商用量子计算机”的计划,似乎更有把握了 。但发表不久,团队改动实验数据的行为就被揭发了,内部“吹哨人”举报,同门前辈“发难”还记得前面说过,“有人”透露了实验原始数据吗?据最早拿到证据的谢尔盖弗罗洛夫和文森特穆里克两人说,文件是由论文的一个作者发给他们的,但“吹哨人”具体是谁,没有透露。而弗罗洛夫和穆里克两人,其实与代尔夫特理工大学、研究团队所在实验室,以及团队领导渊源已久。谢尔盖弗罗洛夫在2008~2012年间,就在代尔夫特理工大学的Kouwenhoven组做博士后。另一位文森特穆里克,2010~2015年间也在代尔夫特理工读博士,研究方向正是马约拉纳-费米子。所以这一次的撤稿事件,是团队内部“吹哨人”,向同实验室的前辈透露真实数据情况,再由这两位前辈向师门“发难”。研究被质疑后,代尔夫特理工大学委托了四位外部专家,开始对这一事件调查。就在周一,官方公布了调查结果。结论是,研究人员不是有意误导,只是“过于沉浸在兴奋中”(caught up in the excitement of the moment),因而选择了符合自己期望的数据。但是原论文的问题到底是如何发生的,报告中没有给出完整明确的解释。另一边,微软负责量子计算的副总裁在一份声明中称,撤稿是研究中的一个挫折,公司对开发量子计算机的方法仍然充满信心。而论文作者就问题主动提醒Nature编辑的做法非常好,值得学术界学习.论文的共同一作,分别是来自中国的学者张浩、Liu Chun Xiao,以及荷兰学者Saša Gazibegović。荷兰学者Saša Gazibegović,量子物理硬件工程师,埃因霍芬理工大学博士,现在已经进入光刻机巨头ASML工作。Liu Chun Xiao,本科毕业于复旦大学物理系,在马里兰大学获得博士学位。目前仍然在代尔夫特理工大学做博士后。张浩,本科毕业于北京大学物理系,在杜克大学取得博士学位。目前在清华大学物理系做副教授。被撤稿的论文,是他在代尔夫特理工大学做博士后时的研究。张浩除了是本文一作,还是共同通讯作者。Nature在3月10日发表的官方文章中提到,他们曾经询问过张浩和Kouwenhoven教授,如何评价其他科学家列出的质疑证据,但没有得到回复。目前,无论是学校、Nature、还是微软方面,没使用诸如“造假”、“学术不端”等措辞。但在正式撤稿声明发布后,谢尔盖弗罗洛夫表达了自己的声音:这是科学! 要认真研究,不清楚的,要问什么。如果从这次事件中不吸取教训,我们就没有未来。论文原址:https://www.nature.com/articles/nature26142学者质疑举证:https://twitter.com/spinespresso/status/1357111565242220545撤稿声明:https://www.nature.com/articles/s41586-021-03373-xNature回顾评论:https://www.nature.com/articles/d41586-021-00612-z2019年论文作者介绍本研究的相关演讲(中文):https://www.msra.cn/zh-cn/news/features/ai-talk-hao-zhang本文来自微信公众号:量子位(ID:QbitAI) ,作者:关注前沿科技
  • 五部委:加快量子测量标准和先进测量仪器设备研制
    近日,市场监管总局、科技部、工业和信息化部、国务院国资委、国家知识产权局联合印发《关于加强国家现代先进测量体系建设的指导意见》(以下简称《指导意见》),提出一个出发点、十一项重点任务和六项保障措施。 《指导意见》指出,测量是人类认识世界和改造世界的重要手段,是突破科学前沿、解决经济社会发展重大问题的技术基础。国家测量体系是国家战略科技力量的重要支撑,是国家核心竞争力的重要标志。国际单位制量子化变革以来,开启了以测量单位数字化、测量标准量子化、测量技术先进化、测量管理现代化为主要特征的“先进测量”时代。据介绍,《指导意见》提出一个出发点,鼓励和引导社会各方资源和力量,构建国家现代先进测量体系,提升国家整体测量能力和水平,服务经济社会高质量发展。十一项重点任务主要包括建立先进量传溯源体系;优化计量基准标准和标准物质建设;加快先进测量技术研究;推动先进测量仪器设备的研发和应用;建设国家先进测量实验室;提升企业测量能力和水平;推进测量数据积累和应用;完善先进测量技术规范;优化先进测量技术服务;发挥质量基础设施协同推动作用;培养先进测量人才队伍等内容。六项保障措施包括加强组织领导、完善制度保障、加大财政支持、强化知识产权战略、普及先进测量理念、加强国际测量合作等六项具体措施。近年来,我国计量事业得到快速发展,国家整体测量能力和水平不断提升,获得国际互认的国家校准与测量能力达1779项,位居世界前列。《指导意见》作为国家现代先进测量体系建设的纲领性文件,对未来一段时间我国测量事业的发展具有重要的战略指导意义。作为以量子精密测量为核心技术、高端科学仪器为主营产品的高新技术企业,国仪量子将面向世界科技前沿和国家重大需求,加大关键核心技术攻关力度,为提高国家科技创新能力、促进经济社会高质量发展贡献力量。
  • 首届量子科仪节成功举行!国仪量子与计量“国家队”开启战略合作
    5月18日,在第23个世界计量日来临之际,深圳中国计量科学研究院技术创新研究院(以下简称“中国计量院深圳创新院”)与国仪量子(合肥)技术有限公司(以下简称“国仪量子”)联合成功举办 “2022世界计量日——量子科仪节”活动,双方签署战略合作协议,共建量子计量科学仪器产业化联合实验室,携手推进量子精密测量产业化落地。本次“量子科仪节”以“量子赋能 数智计量”为主题,合肥、深圳、北京三地会场线上联动。中国计量科学研究院院长兼中国计量院深圳创新院院长方向、中国计量院前沿计量科学中心主任屈继峰、中国计量院深圳创新院副院长宋振飞、国仪量子董事长贺羽、中科院资本高级投资经理石佳丽等出席活动。抢抓政策机遇,打造量子计量+科学仪器行业盛会计量是测量的科学及其应用,是国家科技创新体系的重要组成部分,其发展水平是国家核心竞争力的重要标志,是构建一体化国家战略体系和能力的重要支撑,在党和国家工作大局中具有基础性、战略性地位。国务院最新发布了《计量发展规划(2021—2035年)》,提出在2035年建成以量子计量为核心、科技水平一流、符合时代发展需求和国际化发展潮流的国家现代先进测量体系。作为计量科学发展的基础性工具,科学仪器必将在这一规划下朝着国产化、高端化、自主可控的方向迈进。本次科仪节主要面向“量子+科学仪器”行业及相关生态链,围绕量子精密测量技术在高端科学仪器领域的前沿进展与行业应用,共创“量子+科学仪器”这一创新赛道的行业性盛会。作为中国计量院深圳创新院和国仪量子共同打造的量子计量和科学仪器领域的开放交流、合作共享的交流平台,以后定期在每年的世界计量日举办。汇聚产学权威,共话量子+科学仪器前沿进展国仪量子董事长贺羽在开幕致辞中表示,国仪量子将充分发挥量子精密测量技术与产品化方面的优势,主动和计量“国家队”密切合作,积极参与国家“量子度量衡计划”,共同开展量子计量技术及计量基准、标准装置小型化开展应用基础研究、产品推广和应用示范;加强高端仪器设备核心器件、核心算法和关键部件等技术研究,在关键计量测试设备国产化上取得更多突破。中国计量院前沿计量科学中心主任屈继峰在报告中介绍了量子计量的发展概况及趋势,他表示量子计量是指用基本物理常数定义计量单位,基于量子物理原理和技术实现复现单位量值或实现直接测量。未来,量子精密测量新原理、新方法和新技术将不断推进量子基准突破极限,芯片级计量标准和零链条溯源是当前研究前沿热点,有望颠覆传统计量量值溯源体系,推进仪器仪表产业跨越式发展。中国计量院深圳创新院副院长宋振飞在报告中指出,中国计量院深圳创新院作为计量“国家队”落户在大湾区的重要分支机构,致力于打造量子时代精密测量技术、标准和装备的创新中心,建设成为国际融合开放的计量前沿科技研发平台,国际领先的先进测量技术协同创新平台,国家计量基础技术和共性技术扩散应用及产业孵化平台。他结合今年世界计量日的主题“数字时代的计量”,介绍新一轮科技革命和数字化变革背景下计量面临的新挑战,解读国际计量发展新动态和国家有关规划。最后他还重点向与会代表发布了中国计量院深圳创新院与国仪量子共同开发合作共赢的发展计划。中科院资本高级投资经理石佳丽在《量子测量技术为科学仪器行业带来变革式机遇》报告中指出,全球科学仪器市场规模大,尤其是高端科学仪器竞争壁垒高,而当前量子精密测量技术为国内科学仪器行业带来了变革式的发展机遇,且科学仪器企业平台化的发展模式具有良好的、可持续的成长空间。国仪量子副总裁万传奇在会上发布了《量子测量产业链赋能高端计量设备创新发展》报告,在第二次量子革命来临之际,我国的科技强国之路迎来了重大的机遇和挑战,量子精密测量技术为我国高端科学仪器产业带来了弯道超车的机遇。为此,国仪量子基于在量子精密测量核心技术上的深厚积累,制定了量子测量技术产业链发展路线图,并利用量子精密测量技术赋能高端科学仪器、计量设备等领域。开启战略合作,计量“国家队”联合量子科技“独角兽”本次“量子科仪节”上,中国计量院深圳创新院与国仪量子签署战略合作协议,共建量子计量科学仪器产业化联合实验室,重点布局新一代微波量子精密测量科学仪器研发与应用,未来将推动多款首台套微波量子传感与探测工程化产品落地。量子计量科学仪器产业化联合实验室是国内首个面向市场与企业的高端计量发展需求,以量子精密测量技术为核心,旨在帮助企业攻关技术难题、激发创新活力、研制先进量子计量仪器的创新型研发实验室。实验室将面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,用开放的理念、创新的机制全力创建世界一流的量子计量研究机构,产出一流的量子计量科研成果,助推量子计量产业高质量高水平创新发展。以量子化和数字化为代表技术的新一轮科技革命将对未来全球的宏观经济、产业机构和国际格局产生深刻影响。世界各国都在积极布局,以期在这场变革种占领先机。中国计量院深圳创新院和国仪量子将抢抓科技革命和产业变革的历史性战略机遇,围绕创新驱动发展战略,落实《计量发展规划(2021-2035)》和《关于加强国家现代化先进测量体系建设的指导意见》,充分发挥各自在量子精密测量领域的技术优势、资源优势、产业优势,产学研深度融合,共同推进高端量子计量科学仪器的国产化和自主可控,助力我国成为世界多极计量格局中的重要一极。
  • 科学家首次在超冷原子分子混合气中实现三原子分子的量子相干合成
    中国科学技术大学潘建伟、赵博等与中国科学院化学研究所白春礼小组合作,在超冷原子双原子分子混合气中首次实现三原子分子的相干合成。该研究中,科研人员在钾原子和钠钾基态分子的Feshbach共振附近利用射频场将原子和双原子分子相干地合成了超冷三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出了重要一步。2月9日,相关研究成果发表在《自然》(Nature)上。   量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。量子计算研究的终极目标是构建通用型量子计算机,但实现该目标需要制备大规模的量子纠缠并进行容错计算。当前量子计算的短期目标是发展专用型量子计算机,即专用量子模拟机,其能够某些特定问题上解决现有经典计算机无法解决的问题。例如,超冷原子分子量子模拟,利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位的研究,因而在化学反应和新型材料设计中具有广泛应用前景。   超冷分子将为实现量子计算打开了新思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级复杂,通过直接冷却的方法来制备超冷分子十分困难。超冷原子技术的发展为制备超冷分子提供了新途径,可绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。利用光从原子气中合成分子的研究可以追溯到20世纪80年代。激光冷却原子技术的出现使得光合成双原子分子得以快速发展,并在高精度光谱测量中取得了广泛应用。在光合成双原子分子成功后,科研人员开始思考能否利用量子调控技术从原子和双原子分子的混合气中合成三原子分子。在2006年发表的综述文章[Rev. Mod. Phys. 78,483, (2006)]中,美国国家标准局教授Paul Julienne等人回顾了光合成双原子分子过去二十年的发展历史,并指出从原子和双原子分子的混合气中合成三原子分子是未来合成分子领域的重要研究方向。由于光合成的双原子分子气存在密度低、温度高等缺点,无法用来研究三原子分子的合成。随着超冷原子气中Feshbach共振技术的发展,利用磁场或射频场合成分子成为制备超冷双原子分子的主要技术手段。从超冷原子中制备的双原子分子具有相空间密度高、温度低等优点,并且可以用激光将其相干地转移到振动转动的基态。自2008年美国科学院院士Deborah Jin和叶军的联合实验小组制备了铷钾超冷基态分子以来,多种碱金属原子的双原子分子先后在其他实验室中被制备出来,并被广泛应用于超冷化学和量子模拟研究中。   2015年,法国国家科学研究中心教授Olivier Dulieu等在理论上分析了从原子双原子分子混合气中合成三原子分子的可行性 [Phys. Rev. Lett. 115, 073201 (2015)]。 但由于三原子分子的相互作用复杂,无法精确计算,因而理论上无法预测三原子分子的束缚态的能量以及散射态和束缚态的耦合强度。中国科学技术大学研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振[Science 363, 261 (2019)]。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的观测为合成三原子分子提供了新机遇。但由于原子和分子的Feshbach共振十分复杂,理论上难以理解,能否和如何利用Feshbach共振来合成三原子分子成为具有挑战性的问题。   该研究中,合作研究小组首次实现了利用射频场相干合成三原子分子。在实验中,科研人员从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。在钠钾分子的射频损失谱上观测到射频合成三原子分子的信号,并测量了Feshbach共振附近三原子分子的束缚能。该工作为量子模拟和超冷化学的研究开辟了新道路。超冷三原子分子是模拟量子力学下三体问题的理想研究平台。三体问题十分复杂,即使经典的三体问题由于存在混沌效应也无法精确求解。在量子力学的约束下,三体问题变得更加难以捉摸。如何理解和描述量子力学下的三体问题是少体物理中的重要难题。此外,超冷三原子分子可以用来实现超高精度的光谱测量,为刻画复杂的三体相互作用势能面提供了重要基准。由于计算势能面需要高精度地求解多电子薛定谔方程,超冷三原子分子的势能面也为量子化学中的电子结构问题提供了重要信息。   研究工作得到科技部、国家自然科学基金委、中科院、安徽省、上海市等的支持。   论文链接
  • 中国科大成功实现超导体系“量子计算优越性”
    中国科学技术大学中科院量子信息与量子科技创新研究院潘建伟、朱晓波、彭承志等组成的研究团队与中科院上海技术物理研究所合作,构建了66比特可编程超导量子计算原型机“祖冲之二号”,实现了对“量子随机线路取样”任务的快速求解。根据现有理论,“祖冲之二号”处理的量子随机线路取样问题的速度比目前最快的超级计算机快7个数量级,计算复杂度比谷歌公开报道的53比特超导量子计算原型机“悬铃木”提高了6个数量级(“悬铃木”处理“量子随机线路取样”问题比经典超算快2个数量级),这一成果是我国继光量子计算原型机“九章”后在超导量子比特体系首次达到“量子计算优越性”里程碑,使得我国成为目前唯一同时在两种物理体系都达到这一里程碑的国家。相关论文发表在《物理评论快报》和《科学通报》上。图一:祖冲之二号量子处理器图量子计算机对特定问题的求解超越超级计算机,即量子计算优越性,是量子计算发展的第一个里程碑,达到该里程碑需要相干操纵50个以上量子比特。超导量子比特是国际公认的有望实现可扩展量子计算的物理体系之一。潘建伟、朱晓波、彭承志等长期瞄准超导量子计算领域,于2021年5月构建了当时国际上量子比特数目最多的62比特超导量子计算原型机“祖冲之号”,并实现了可编程的二维量子行走 [Science 372, 948 (2021)]。团队在“祖冲之号”的基础上,采用全新的倒装焊3D封装工艺,解决了大规模比特集成的问题,研制成功“祖冲之二号”,实现了66个数据比特、110个耦合比特、11路读取的高密度集成,最大态空间维度达到了1019。“祖冲之二号”采用可调耦合架构,实现了比特间耦合强度的快速、精确可调,显著提高了并行量子门操作的保真度。通过量子编程的方式,研究人员实现了对量子随机线路取样,演示了“祖冲之二号”可用于执行任意量子算法的编程能力。根据目前已公开的最优化经典算法,“祖冲之二号”处理量子随机线路取样问题的速度比目前最快的超级计算机快7个数量级,计算复杂度较谷歌“悬铃木”提高了6个数量级。量子计算优越性的成功演示标志着量子计算研究进入到发展的第二阶段,开始量子纠错和近期应用的探索。“祖冲之二号”采用二维网格比特排布芯片架构,直接兼容表面码量子纠错算法,为量子纠错并进一步实现通用量子计算奠定了基础。同时,“祖冲之二号”的并行高保真度量子门操控能力和完全可编程能力,有望在特定领域找到有实用价值的应用,预期应用包括量子机器学习、量子化学、量子近似优化等。图二:量子随机线路取样保真度随线路深度的变化及目前最快的超级计算机“富岳”完成相同任务需要的时间。上述项目受到了安徽省、上海市、科技部和中科院的支持。论文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.180501https://www.sciencedirect.com/science/article/abs/pii/S2095927321006733
  • 中国科大在超冷化学量子模拟领域取得突破
    p   日前,中国科学技术大学潘建伟教授及其同事赵博、陈宇翱等在超冷分子和超冷化学量子模拟研究领域取得重要进展,他们首次在实验上直接观测到超低温度下弱束缚分子与自由原子间发生的态态的化学反应,实现了可控态态反应动力学的探测,从而向基于超冷分子的超冷量子化学的研究迈进了重要一步。7月4日,这一重要研究成果以研究长文的形式发表在国际权威学术期刊《自然· 物理学》上[Nature Physics 13, 699–703 (2017)]。 /p p   据了解,量子计算和模拟具有强大的并行计算和模拟能力,不仅为经典计算机无法解决的大规模计算难题提供有效解决方案,也可有效揭示复杂物理系统的规律,为新能源开发、新材料设计等提供指导。对化学反应和材料进行建模是量子计算最先可能的应用之一。借助量子模拟,研究者可以在人工可控的环境中研究数百万计的候选,大幅减少在真实材料中开展试验而投入的时间和资金。如同诺贝尔物理学奖获得者、麻省理工学院的Frank Wilczek教授在《今日物理》(Physics Today)发表的专题报道“未来百年的物理学”中所指出的,量子模拟“将成为化学和材料科学的核心工具。” /p p   在该项研究成果中,中国科学技术大学的研究团队首次成功观测到了超低温下弱束缚的分子和原子发生的可控态态的化学反应。在实验中,他们巧妙的利用弱束缚分子的束缚能可以调节的特性,精确控制反应中释放的能量,实现了对反应产物的囚禁。在此基础上,他们利用精密的射频场操作技术,成功探测了反应的分子产物和原子产物,并进一步研究了态态反应动力学。实验结果证实了弱束缚分子之间化学反应通道的选择性,验证了W. Stwalley约40年前的预言。 /p p   该实验的重要意义在于,这是第一次在超冷化学反应中观测到态态的化学反应,从而将化学反应动力学的实验研究推进到量子水平。这一工作得到了《自然· 物理》审稿人的高度评价:“探测超冷化学反应的产物是目前该领域的重大研究目标,本工作向这个目标迈出了第一步” “该工作是超冷化学领域的一个重要的里程碑,将引起化学和物理研究者的广泛兴趣”。 /p p   该研究工作得到了自然科学基金委、科技部、中科院等单位的支持。 /p p   相关知识: /p p   可控化学反应动力学的一个重要方向是对弱束缚分子化学反应的研究,这一问题可以追溯到约40年前。早在1978年,化学家W. Stwalley就曾指出弱束缚分子具有非同寻常的反应性质,它的反应会选择性通过一个反应通道进行。但由于弱束缚分子常温下不能存在,长期以来这一预言一直无法得到实验检验。近年来,随着超冷原子分子技术的发展,超低温的弱束缚分子可以从接近绝对零度的原子气中被制备出来,从而使得对其化学反应性质的实验研究成为可能。 /p p   在接近绝对零度的温度下,分子的德布罗意波长远大于相互作用的尺寸,因此化学反应完全由量子力学所主导,诸如量子散射、量子统计等量子效应将显著的改变化学反应的行为。超冷化学的研究为探索化学反应的机理和动力学提供了前所未有的量子态分辨率、能量分辨率和可调控性。近年来,超冷化学反应的研究取得了系列重要实验进展,例如,2010年,美国科学院院士D. Jin和叶军的联合实验小组观测到了超低温下铷钾基态分子之间的化学反应 奥地利因斯布鲁克大学的R.Grimm小组报道了弱束缚铯分子发生的化学反应等。然而,这些实验都只能测量反应物的损失,而无法对反应的产物的进行观测。迄今为止,超低温下态态化学反应尚未被实验实现。 /p
  • 中国科学家首次发现量子反常霍尔效应 影响重大
    图一,量子反常霍尔效应的示意图,拓扑非平庸的能带结构产生具有手征性的边缘态,从而导致量子反常霍尔效应      图二,理论计算得到的磁性拓扑绝缘体多层膜的能带结构和相应的霍尔电导      图三,在Cr掺杂的(Bi,Sb)2Te3拓扑绝缘体磁性薄膜中测量到的霍尔电阻   中新社北京3月15日电 (记者 马海燕)北京时间3月15日凌晨,《科学》杂志在线发文,宣布中国科学家领衔的团队首次在实验上发现量子反常霍尔效应。这一发现或将对信息技术进步产生重大影响。   这一发现由清华大学教授、中国科学院院士薛其坤领衔,清华大学、中国科学院物理所和斯坦福大学的研究人员联合组成的团队历时4年完成。在美国物理学家霍尔1880年发现反常霍尔效应133年后,终于实现了反常霍尔效应的量子化,这一发现是相关领域的重大突破,也是世界基础研究领域的一项重要科学发现。   由于人们有可能利用量子霍尔效应发展新一代低能耗晶体管和电子学器件,这将克服电脑的发热和能量耗散问题,从而有可能推动信息技术的进步。然而,普通量子霍尔效应的产生需要用到非常强的磁场,因此应用起来将非常昂贵和困难。但量子反常霍尔效应的好处在于不需要任何外加磁场,这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。   美国科学家霍尔分别于1879年和1880年发现霍尔效应和反常霍尔效应。1980年,德国科学家冯克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果分别于1985年和1998年获得诺贝尔物理学奖。   相关链接   “量子反常霍尔效应”研究获突破   中国科学网   由中国科学院物理研究所和清华大学物理系的科研人员组成的联合攻关团队,经过数年不懈探索和艰苦攻关,最近成功实现了“量子反常霍尔效应”。这是国际上该领域的一项重要科学突破,该物理效应从理论研究到实验观测的全过程,都是由我国科学家独立完成。   量子霍尔效应是整个凝聚态物理领域最重要、最基本的量子效应之一。它是一种典型的宏观量子效应,是微观电子世界的量子行为在宏观尺度上的一个完美体现。1980年,德国科学家冯克利青(Klaus von Klitzing)发现了“整数量子霍尔效应”,于1985年获得诺贝尔物理学奖。1982年,美籍华裔物理学家崔琦(Daniel CheeTsui)、美国物理学家施特默(Horst L. Stormer)等发现“分数量子霍尔效应”,不久由美国物理学家劳弗林(Rober B. Laughlin)给出理论解释,三人共同获得1998年诺贝尔物理学奖。在量子霍尔效应家族里,至此仍未被发现的效应是“量子反常霍尔效应”——不需要外加磁场的量子霍尔效应。   “量子反常霍尔效应”是多年来该领域的一个非常困难的重大挑战,它与已知的量子霍尔效应具有完全不同的物理本质,是一种全新的量子效应 同时它的实现也更加困难,需要精准的材料设计、制备与调控。1988年,美国物理学家霍尔丹(F. Duncan M. Haldane)提出可能存在不需要外磁场的量子霍尔效应,但是多年来一直未能找到能实现这一特殊量子效应的材料体系和具体物理途径。2010年,中科院物理所方忠、戴希带领的团队与张首晟教授等合作,从理论与材料设计上取得了突破,他们提出Cr或Fe磁性离子掺杂的Bi2Te3、Bi2Se3、Sb2Te3族拓扑绝缘体中存在着特殊的V.Vleck铁磁交换机制,能形成稳定的铁磁绝缘体,是实现量子反常霍尔效应的最佳体系[Science,329, 61(2010)]。他们的计算表明,这种磁性拓扑绝缘体多层膜在一定的厚度和磁交换强度下,即处在“量子反常霍尔效应”态。该理论与材料设计的突破引起了国际上的广泛兴趣,许多世界顶级实验室都争相投入到这场竞争中来,沿着这个思路寻找量子反常霍尔效应。   在磁性掺杂的拓扑绝缘体材料中实现“量子反常霍尔效应”,对材料生长和输运测量都提出了极高的要求:材料必须具有铁磁长程有序 铁磁交换作用必须足够强以引起能带反转,从而导致拓扑非平庸的带结构 同时体内的载流子浓度必须尽可能地低。最近,中科院物理所何珂、吕力、马旭村、王立莉、方忠、戴希等组成的团队和清华大学物理系薛其坤、张首晟、王亚愚、陈曦、贾金锋等组成的团队合作攻关,在这场国际竞争中显示了雄厚的实力。他们克服了薄膜生长、磁性掺杂、门电压控制、低温输运测量等多道难关,一步一步实现了对拓扑绝缘体的电子结构、长程铁磁序以及能带拓扑结构的精密调控,利用分子束外延方法生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功地观测到了“量子反常霍尔效应”。该结果于2013年3月14日在Science上在线发表,清华大学和中科院物理所为共同第一作者单位。   该成果的获得是我国科学家长期积累、协同创新、集体攻关的一个成功典范。前期,团队成员已在拓扑绝缘体研究中取得过一系列的进展,研究成果曾入选2010年中国科学十大进展和中国高校十大科技进展,团队成员还获得了2011年“求是杰出科学家奖”、“求是杰出科技成就集体奖”和“中国科学院杰出科技成就奖”,以及2012年“全球华人物理学会亚洲成就奖”、“陈嘉庚科学奖”等荣誉。该工作得到了中国科学院、科技部、国家自然科学基金委员会和教育部等部门的资助。(中科院物理研究所 作者:薛其坤等)
  • 仪器新应用,科学家首次揭示双层石墨烯中的分数量子霍尔效应!
    【科学背景】分数量子霍尔效应是一种在强磁场下发生的量子相变,其中电子在二维材料中以特殊的方式组织,表现出量子化的电导特性。此效应下的准粒子称为任何子,它们具有分数量子电荷,并在交换位置时显示出分数统计,这为研究量子物理的基本问题提供了独特的视角。阿贝尔任何子表现出简单的分数统计,而非阿贝尔任何子则具有更复杂的交换行为,这些特性可以通过量子干涉实验进行探测。然而,尽管已有大量研究探索了量子霍尔状态下的电子干涉,实际操作中仍存在一些问题。例如,传统的GaAs/AlGaAs基干涉仪在调节干涉状态和处理库伦相互作用方面存在局限,这限制了对分数量子霍尔态的深入研究。为了解决这些问题,研究者们将目光转向了具有更高调节能力的石墨烯基干涉仪。双层石墨烯的高迁移率和电气调节特性使得其在分数量子霍尔效应研究中表现出色。近期,以色列魏茨曼研究所Yuval Ronen教授团队在双层石墨烯平台上成功构建了Fabry-Pérot干涉仪(FPI),该装置能够在单一Landau能级内通过精确的电静态调节动态地切换干涉状态,从库伦主导状态到Aharonov-Bohm干涉状态。本研究解决了在分数量子霍尔态下量子干涉的具体实现问题。通过在双层石墨烯基FPI中进行实验,作者能够在填充因子ν=1/3的分数量子霍尔态下观察到纯净的Aharonov-Bohm干涉模式。当电荷密度和磁场变化时,作者不仅观察到常数填充条件下的干涉现象,还在常数密度条件下发现了相位跳跃。这些跳跃表现出准粒子在干涉回路中积累的相位与回路内电子数的关系,验证了e/3准粒子的分数统计特性。【科学亮点】(1)实验首次构建并测量了基于范德华力的双层石墨烯Fabry-Pérot干涉仪(FPI),在分数量子霍尔效应(FQHE)中实现了从库伦主导到Aharonov-Bohm(AB)干涉的动态调节。该装置利用高迁移率双层石墨烯导电层,通过精确的电静态调节,允许在单一Landau能级内实现这一调节。(2)实验通过调节磁场和电子密度,探测了填充因子ν=1/3的分数量子霍尔态下的AB干涉现象。在保持常数填充因子的情况下,作者观察到纯净的AB干涉模式,确认了准粒子电荷为e/3。(3)当实验从常数填充的条件转向常数密度的条件时,干涉模式中出现了相位跳跃的演变。这些相位跳跃对应于准粒子在干涉回路中添加或去除的离散事件。(4)作者还发现,干涉准粒子所积累的相位可以表示为2π〈N〉,其中〈N〉为回路内的电子数。这个观察验证了准粒子遵循分数统计的预期,并为研究阿贝尔任何子提供了新的平台。【科学图文】图1: 基于双层石墨烯的法布里-珀罗干涉仪Fabry–Pérot interferometer,FPI。图2:可调谐整数量子霍尔效应 integer quantum Hall effect,IQHE干涉态,从库仑作用主导Coulomb-dominated,CD到阿哈勒诺夫-玻姆Aharonov–Bohm,AB态。图3:在1/3分数填充处的AB干涉。图4:恒定填充和恒定密度之间可调性。【科学结论】本文的研究通过在高迁移率双层石墨烯的基础上构建并测量范德华力Fabry-Pérot干涉仪(FPI),作者成功地在一个Landau能级内动态调节了从库伦主导到Aharonov-Bohm(AB)干涉的状态。这一实验不仅验证了在填充因子ν=1/3下的Aharonov-Bohm干涉模式,还揭示了在常数填充条件下的纯净干涉图样和在常数密度条件下的相位跳跃现象。这些发现表明,干涉准粒子所积累的相位可以被理解为2π〈N〉,其中〈N〉为回路内电子数,这为理解准粒子的分数统计特性提供了新的视角。通过这种精确的调节能力和测量手段,作者为研究阿贝尔任何子和探索更复杂的非阿贝尔统计奠定了坚实的基础。双层石墨烯所展示的偶数分母分数量子霍尔态的潜力,预示着未来在这一领域的广泛应用前景,为进一步的研究和技术发展提供了有力的支持。参考文献:Kim, J., Dev, H., Kumar, R. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01751-w
  • 仪器新应用,科学家首次揭示双层石墨烯中的分数量子霍尔效应!
    【科学背景】分数量子霍尔效应是一种在强磁场下发生的量子相变,其中电子在二维材料中以特殊的方式组织,表现出量子化的电导特性。此效应下的准粒子称为任何子,它们具有分数量子电荷,并在交换位置时显示出分数统计,这为研究量子物理的基本问题提供了独特的视角。阿贝尔任何子表现出简单的分数统计,而非阿贝尔任何子则具有更复杂的交换行为,这些特性可以通过量子干涉实验进行探测。然而,尽管已有大量研究探索了量子霍尔状态下的电子干涉,实际操作中仍存在一些问题。例如,传统的GaAs/AlGaAs基干涉仪在调节干涉状态和处理库伦相互作用方面存在局限,这限制了对分数量子霍尔态的深入研究。为了解决这些问题,研究者们将目光转向了具有更高调节能力的石墨烯基干涉仪。双层石墨烯的高迁移率和电气调节特性使得其在分数量子霍尔效应研究中表现出色。近期,以色列魏茨曼研究所Yuval Ronen教授团队在双层石墨烯平台上成功构建了Fabry-Pérot干涉仪(FPI),该装置能够在单一Landau能级内通过精确的电静态调节动态地切换干涉状态,从库伦主导状态到Aharonov-Bohm干涉状态。本研究解决了在分数量子霍尔态下量子干涉的具体实现问题。通过在双层石墨烯基FPI中进行实验,作者能够在填充因子ν=1/3的分数量子霍尔态下观察到纯净的Aharonov-Bohm干涉模式。当电荷密度和磁场变化时,作者不仅观察到常数填充条件下的干涉现象,还在常数密度条件下发现了相位跳跃。这些跳跃表现出准粒子在干涉回路中积累的相位与回路内电子数的关系,验证了e/3准粒子的分数统计特性。【科学亮点】(1)实验首次构建并测量了基于范德华力的双层石墨烯Fabry-Pérot干涉仪(FPI),在分数量子霍尔效应(FQHE)中实现了从库伦主导到Aharonov-Bohm(AB)干涉的动态调节。该装置利用高迁移率双层石墨烯导电层,通过精确的电静态调节,允许在单一Landau能级内实现这一调节。(2)实验通过调节磁场和电子密度,探测了填充因子ν=1/3的分数量子霍尔态下的AB干涉现象。在保持常数填充因子的情况下,作者观察到纯净的AB干涉模式,确认了准粒子电荷为e/3。(3)当实验从常数填充的条件转向常数密度的条件时,干涉模式中出现了相位跳跃的演变。这些相位跳跃对应于准粒子在干涉回路中添加或去除的离散事件。(4)作者还发现,干涉准粒子所积累的相位可以表示为2π〈N〉,其中〈N〉为回路内的电子数。这个观察验证了准粒子遵循分数统计的预期,并为研究阿贝尔任何子提供了新的平台。【科学图文】图1: 基于双层石墨烯的法布里-珀罗干涉仪Fabry–Pérot interferometer,FPI。图2:可调谐整数量子霍尔效应 integer quantum Hall effect,IQHE干涉态,从库仑作用主导Coulomb-dominated,CD到阿哈勒诺夫-玻姆Aharonov–Bohm,AB态。图3:在1/3分数填充处的AB干涉。图4:恒定填充和恒定密度之间可调性。【科学结论】本文的研究通过在高迁移率双层石墨烯的基础上构建并测量范德华力Fabry-Pérot干涉仪(FPI),作者成功地在一个Landau能级内动态调节了从库伦主导到Aharonov-Bohm(AB)干涉的状态。这一实验不仅验证了在填充因子ν=1/3下的Aharonov-Bohm干涉模式,还揭示了在常数填充条件下的纯净干涉图样和在常数密度条件下的相位跳跃现象。这些发现表明,干涉准粒子所积累的相位可以被理解为2π〈N〉,其中〈N〉为回路内电子数,这为理解准粒子的分数统计特性提供了新的视角。通过这种精确的调节能力和测量手段,作者为研究阿贝尔任何子和探索更复杂的非阿贝尔统计奠定了坚实的基础。双层石墨烯所展示的偶数分母分数量子霍尔态的潜力,预示着未来在这一领域的广泛应用前景,为进一步的研究和技术发展提供了有力的支持。参考文献:Kim, J., Dev, H., Kumar, R. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-024-01751-w
  • 首次实现单个量子光源的超分辨选择性激发和成像
    p   光的衍射极限限制了常规光学成像的分辨率和介质光子器件的尺寸,将对光的操控和利用制约在波长水平,而金属纳米结构的表面等离激元可以将光场束缚在纳米结构表面,使突破衍射极限的纳米尺度光操控成为可能。金属纳米线不仅具有显著的局域电磁场增强效应,可以在纳米尺度上增强光与原子、分子、量子点、色心等纳米量子光源的相互作用,而且支持传输的表面等离激元模式,可作为等离激元纳米波导实现亚波长束缚的光信号传输,是构建片上纳米光子回路的基本元件。金属纳米线与单个纳米量子光源的耦合可以实现单个量子化的表面等离激元的产生和传输,对该体系的研究对于深入认识单光子水平上光与物质相互作用的基本物理和设计纳米量子光子器件都具有重要意义。集成在金属纳米线上的多个纳米量子光源可以通过表面等离激元发生相互作用,产生新的光学现象,如协同辐射和量子纠缠。当纳米光源之间的距离达到亚波长尺度时,光学显微镜的分辨率限制了对金属纳米线上的多个纳米光源进行超分辨成像和超分辨可控激发,阻碍了相关实验的进展。 /p p   针对上述问题,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室魏红副研究员和合作者设计了一种利用金属纳米线上的表面等离激元干涉场作为激发源的超分辨激发和成像方法。由于表面等离激元干涉条纹的周期远小于激发光波长,这种方法具有突破衍射极限的光学分辨率。银纳米线上的传输表面等离激元与局域表面等离激元的干涉形成之字形分布的电场,反向传输的两束表面等离激元干涉形成周期性对称分布的电场。通过调控两束激发光之间的相位差,上述两种等离激元干涉场的分布都沿着纳米线移动,使纳米线上的量子点处的电场强度发生变化,从而可以调控量子点的激发。利用该方法可以实现对相距几十纳米的两个量子点的选择性激发,实验中通过对相距100 nm的两个量子点的选择性激发演示了该技术的可行性。通过将结构照明显微成像技术与金属纳米线上的表面等离激元干涉场相结合,利用模拟计算实现了对多个量子点的超分辨光学成像,分辨率约为96 nm。该工作为研究和表征等离激元纳米波导与多个纳米量子光源耦合体系的光学特性提供了一种实验方法,对于深入认识纳米尺度上表面等离激元增强的光与物质相互作用的机理和规律、设计基于表面等离激元的纳米/量子光子器件和回路等具有重要意义。相关研究结果发表在Nano Letters 18, 2009-2015 (2018)。 /p p   魏红副研究员对金属纳米线表面等离激元的物理特性及其调控进行了长期的系统的研究,取得了一系列原创性的成果。最近她和合作者受邀在国际著名综述期刊Chemical Reviews(影响因子47.9)上发表邀请综述Plasmon Waveguiding in Nanowires [Chemical Reviews 118, 2882-2926 (2018)]。该论文得到了审稿人一致的高度评价,被认为是一篇非常及时、全面和权威的综述(“a very timely and comprehensive review”, “a comprehensive and authoritative review”),是纳米等离激元光子学领域最好的综述论文之一(“one of the best reviews in nanoplasmonics field”)。 /p p   上述工作得到了中国科学院、国家自然科学基金委和科技部的资助。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/4a2fb2c3-f2db-44d4-9c56-367bfaca07e6.jpg" title=" 1.png" / /p p   图1. 利用银纳米线表面等离激元实现对量子点的可控激发(Nano Lett. 18, 2009-2015 (2018))。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/0f754c10-d33c-4c70-a4cc-9aabce79ba2c.jpg" title=" 2.png" / /p p   图2. 利用银纳米线表面等离激元选择性激发两个相距100 nm的量子点中的任意一个(Nano Lett. 18, 2009-2015 (2018))。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/1074f43b-c0b0-4cd4-99b6-6f18fcfa4c79.jpg" title=" 3.png" / /p p   图3. 将表面等离激元干涉场用于结构照明显微成像技术实现对多个量子点的超分辨光学成像(Nano Lett. 18, 2009-2015 (2018))。 /p p    img src=" http://img1.17img.cn/17img/images/201805/insimg/04354f19-0558-4348-9b78-f63646341f13.jpg" title=" 4.jpg" / /p p   图4. 金属纳米线中表面等离激元传输的示意图、表面等离激元模式色散关系的示意图以及三个研究方向(Chem. Rev. 118, 2882-2926 (2018))。 /p p br/ /p
  • 世界首例!西湖大学实验室发现首个“光阴极”量子材料
    近期,西湖大学理学院何睿华课题组连同研究合作者一起,发现了世界首例具有本征相干性的光阴极量子材料,其性能远超传统的光阴极材料,且无法为现有理论所解释,为光阴极研发、应用与基础理论发展打开了新的天地。3月8日,相关论文“Anomalous intense coherent secondary photoemission from a perovskite oxide”,已提前线上发表于Nature期刊。西湖大学博士研究生洪彩云、邹文俊和冉鹏旭为共同第一作者,西湖大学理学院长聘副教授何睿华为通讯作者。全部实验和理论工作都在西湖大学完成。摄影师镜头下,首例具有本征相干性的光阴极量子材料:钛酸锶。光阴极:辉煌的出身,沉寂的领域,现代科技的基石之一1887年,德国物理学家赫兹在实验中意外发现,紫外线照射到金属表面电极上会产生火花。1905年,爱因斯坦基于光的量子化猜想,提出了对该现象的理论解释。这标志着量子力学大门的正式开启,因为这个贡献,爱因斯坦于1921年被授予诺贝尔物理学奖。由此,将“光”转化为“电”的“光电效应”,以及能够产生这个效应的“光阴极”材料,正式进入了人类的视野。伴随着对光电效应理解的加深,人们后来发展出了更完善的理论,能够解释所有光阴极材料的基本性能,并成功预言了当时未知的光阴极材料。这些光阴极材料基本上都是传统金属和半导体材料,大多数在60年前被发现。它们已经成为当代粒子加速器、自由电子激光、超快电镜、高分辨电子谱仪等尖端科技装置的核心元件。这类高精尖设备除了常见于实验室,还被应用在大众生活中,如粒子加速器已被用于治疗癌症、杀灭细菌、开发包装材料、改进车辆的燃料注入等。简单说来,光阴极材料是否“好用”,直接关系着这类设备的性能。然而,这些传统的光阴极材料存在固有的性能缺陷——它们所发射的电子束“相干性”太差,也就是电子束的发射角太大,其中的电子运动速度不均一。这样的“初始“电子束要想满足尖端科技应用的要求,必须依赖一系列材料工艺和电气工程技术来增强它的相干性,而这些特殊工艺和辅助技术的引入极大地增加了“电子枪”系统的复杂度,提高了建造要求和成本。钛酸锶:量子材料之光,光阴极领域的潜在重启者尽管基于光阴极的电子枪技术最近几十年来有了长足的发展,但它已渐渐无法跟上相关科技应用发展的步伐。许多前述尖端科技的升级换代呼唤初始电子束相干性在数量级上的提升,而这已经不是一般的光阴极性能优化所能实现的了,只能寄望于在材料和理论层面上的源头创新。长期深耕材料物理性质研究的西湖大学理学院何睿华团队,意外在一个同类物理实验室中“常见”的身影——钛酸锶上实现了突破。近年来兴起的一大类新的材料——量子材料,以其复杂多变的性质和丰富多样的功能而著称。具有钙钛矿结构的钛酸锶(SrTiO3)是这类材料的重要代表之一。被誉为“钛酸锶之父”、高温超导发现人、诺贝尔物理学奖获得者K. A. Muller教授称钛酸锶为“固体物理中的果蝇”,因为很多重要的固体物理现象都是首先从该材料上发现的,其中还包括许多尚未被理解的现象。然而,以钛酸锶为首的氧化物量子材料研究,其主流是将这些材料当作硅基半导体的潜在替代材料来研究,主要关注的是它们独特的电子学相关性质。但何睿华团队却在实验中发现,这些熟悉的材料竟然同样承载着触发新奇光电效应的能力——它有着远超于现有光阴极材料的光阴极关键性能:相干性(见图1说明),从而极大地弥补了现有光阴极材料的缺憾。图1. 钛酸锶和其他材料的初始电子束能谱分析对比。前者具有更高的初始电子束相干性,具体体现为:电子发射动能能量发散度小于0.01 eV(a),发散角小于2°(b),相比普通材料的约0.5 eV和20°有了数量级上的提升。Nature论文匿名审稿人指出:“与类似实验条件下的其他现有光阴极相比,钛酸锶光阴极最重要的性质是它所发射的初始电子束所具有的相干性有了数量级上的提升。这种性能上的巨大飞跃允许(人们)完整获得具有本征相干性的电子束,而无需为了提高相干性而牺牲电子束流强度。这一发现可能会导致光阴极技术发生范式转变,该技术长期以来一直受困于(电子枪)电子束不能同时具有高相干性和高束流强度的矛盾,(这个矛盾的)根源就在于初始电子束的本征非相干性。”超快电镜专家、论文合作者、西湖大学理学院研究员郑昌喜认为,合作团队发现的重要性“不在于往钛酸锶的神奇性质列表增添了一个新的性质,而在于这个性质本身,它可能重启一个极其重要、被普遍认为已发展成熟的光阴极技术领域,改变许多早已根深蒂固的游戏规则”。角分辨光电子能谱:以子之矛,攻子之盾图片设计师:林晨科学探索常常在意外中触碰出新的火花。为什么何睿华团队能在“常见”的材料上获得新的发现?这得归功于一种强大的、但很少被应用于光阴极研究的实验手段:角分辨光电子能谱技术。以往,由于大部分具有较高性能的传统光阴极材料其表面具有多晶或非晶结构,光阴极领域的主流研究方法依赖的主要是光电流探测,这个135年前已开始使用的实验手段。这也使得一大类新近发展出来的研究单晶量子材料的实验利器无用武之地,其中包括角分辨光电子能谱技术。究其本质,角分辨光电子能谱技术这个技术的工作原理,就是光电效应。它被用于探测材料的电子结构,即了解电子如何在材料里运动。在过去的几十年里,角分辨光电子能谱技术主要用于研究跟材料的光学、电学和热学性质相关的那部分电子结构。受这种强烈的科学关注的驱使,现有大多数实验设施针对相关能量区域内的电子结构测量进行了相应的配置和优化。谁能想到,这个运用了光电效应原理的技术,竟然能“以子之矛,攻子之盾”,挖掘出光电效应中新的物理——在实验中,西湖大学何睿华团队使用了这个源自光电效应的量子材料研究利器,出乎意料地捕捉到了单晶量子材料的独特光电发射特性。通过对角分辨光电子能谱仪进行“非常规”配置,以实现对非常规能量区域内、与光电效应相关的电子结构测量,他们发现钛酸锶优越的光阴极性能来自于其独特的光电发射性质(图2),而这些性质明显不同于所有已知的光阴极材料。可以说,它们几乎在每个主要方面都超出了已有光电发射理论的预期。图2. 普通光阴极材料(a)和光阴极量子材料钛酸锶(b)所发射的初始电子束的区别。关于西湖大学团队的以上结论,角分辨光电子能谱理论权威、论文合作者、美国东北大学教授Arun Bansil进行了理论确认,他指出:“(这个发现)表明我们对光电效应相关物理过程的完整理解缺少一些很基本的东西,而这个缺失的元素可能成为开启整个光阴极量子材料家族之门的钥匙,(这些材料)具有独特的、不为现有材料所具有的光阴极性能。”展望:从理论到应用的待解之谜而发现,往往只是驶向未知浩瀚海洋的第一步。在激动人心的发现过后,何睿华实验室立刻投身于下一步的探索之中。据本成果的第一作者、西湖大学理学院2019级博士生洪彩云介绍,接下来,他们将进一步在理论和应用方面展开对钛酸锶材料的研究工作。在理论方面,既然现有理论失灵了,那就意味着需要建立新的理论,来解释观察到的钛酸锶光阴极性能。何睿华对此给出了一个非常大胆的猜想,跟Bansil组合作提出了一个全新的光电发射机制。按照这个新的理论,他们预测了一大类由此新机制主导的候选光阴极量子材料,实验团队正计划对这些材料预测进行一一验证。在应用方面,既然钛酸锶材料比已有的光阴极材料表现都要更理想,团队也计划与相关领域的团队合作,挖掘这种材料的实际应用价值。何睿华在西湖大学的个人介绍页面上,写着对这所学校的心愿:“希望西湖大学能成为一个具有独特定位,鼓励学科交叉和大胆创新的冒险家乐园”。事实上,首个光阴极量子材料钛酸锶的发现,也正开花于他带领团队进行的长达数年的沉浸式“冒险”探索之中。原本,实验室所进行的一个“小”研究项目是研究量子材料的逸出功(注:在光电效应中,电子跃出材料表面需要付出一定的能量“代价”,即逸出功)。依托物质科学平台的超高真空互联系统,以“高通量”手法批量测量各材料的逸出功时,他们偶然发现钛酸锶有些“与众不同”,并且抓住了这个“意外”,这才得以有了后面的发现。有趣的是,何睿华实验室“无心插柳柳成荫”的发现,似乎在冥冥中,也呼应了人类与光电效应意外“相遇”的起始点——1887 年,赫兹为了证明麦克斯韦的电磁波预言,进行了火花放电实验,而偶然发现了这种神奇的现象。探索前人未达之境。热爱“冒险”的西湖科学家们,将进一步挖掘光阴极材料的更多奥秘。
  • 超越海森伯极限的量子精密测量
    以下文章来源于中国物理学会期刊网 ,作者陈耕 李传锋中国物理学会期刊网.中国物理学会期刊网(www.cpsjournals.cn)是我国最权威的物理学综合信息网站,有物理期刊集群、精品报告视频、热点专题网页、海内外新闻、学术讲座,会议展览培训、人物访谈等栏目,是为物理学习和工作者提供一站式信息服务的公众平台。|作者:陈耕1,2,† 李传锋1,2,††(1 中国科学技术大学 中国科学院量子信息重点实验室)(2 中国科学技术大学 合肥国家实验室)本文选自《物理》2023年第6期01理论背景不断提升测量精度是科学研究发展的一个源动力。科学技术发展到今天,很多里程碑式的进步都得益于测量精度的提升。一个众所周知的例子是2016年引力波的成功探测[1],验证了爱因斯坦广义引对论的预言。然而从激光干涉引力波天文台(LIGO)建成到第一次探测到引力波整整花了17年时间,这是科学家们不断改进装置以提升探测精度的结果。最近科学家们在引力波探测中使用了量子压缩的光源,进一步提升了探测精度,使得现在几乎每周都可以观测到引力波。用新的原理方法、技术手段提高测量精度,本身就是自然科学研究的一个重要方向,我们称之为精密测量研究。科学界一般使用测量的不确定度Δ随所使用的测量资源N的下降速率来刻画一个测量系统的测量能力。经典方法能达到的极限是Δ随N的0.5次方成反比下降,也就是我们所称的标准量子极限(standard quantum limit)。需要注意的是,虽然名字中带有“量子”,但是这个下降速率是经典方法能达到的极限。如果能把测量中所有的技术噪声都压制到很低,从而使量子涨落成为主要噪声,就可以达到这个极限。但是在实际测量场景中,起主导作用的经常是各种技术噪声,这时放大信号提升信噪比是一个提升最终精度的有效途径。一个典型的方法是“弱测量”方法,它可以后选择(post-selection)出移动幅度最大的一小部分探针,从而将信号放大100倍甚至1000倍以上。中国科学技术大学研究团队使用了一种改进型的偏置弱测量方法,在放大信号的同时大幅降低了探测器的光电饱和效应,相比标准弱测量方法的探测精度又提升了一个数量级[2]。但是这种弱测量方法并不能超越标准量子极限,因为它本质上是经典光的干涉效应。02量子精密测量量子精密测量是最近十年来在量子信息研究中一个蓬勃发展的领域,旨在利用量子的方法和资源实现突破标准量子极限的测量精度。如前所述,引力波探测装置使用量子压缩光之后可以实现超过标准量子极限的测量精度,这充分证明了量子精密测量的可行性和重要性。那么一个对于量子力学本身的理解和实际测量精度都很重要的问题是:量子精密测量可以提供的精度极限在哪里?实际上对于这个问题,海森伯在1927年就给出了很好的答案,也就是海森伯不确定原理。它是量子力学的一个基本原理,根据这个原理给出的最高测量精度我们称之为海森伯极限:即测量的不确度Δ与N的1次方成反比下降。因此,量子精密测量的一个重要任务是发明新的方法和量子资源来逼近这个极限。光或原子的压缩态不可能达到这个极限,因为实际实验中压缩比总是有限的。一个原理上可以达到这个极限的方法是使用多体纠缠态,比如在量子信息中常使用的N00N态,它通常具有如下的形式:这个形式的物理理解为:N个粒子同时处于0状态,或者同时处于1状态,这两种可能性之间是量子相干叠加的。显然N个没有关联的个体不可能处于这样的状态,因为它们中每个都可能处于0或1态,造成总的状态有2N种可能。这样一种量子资源原则上可以实现海森伯极限的测量精度,但是一个现实的困难是,N很大的量子态很难确定性地产生。利用光子可以实现大约10个光子的纠缠,但是产生和探测效率都极低。即便可以确定性地产生和探测10光子纠缠,一个经典的激光脉冲可能含有1010以上的光子,即便取0.5次方的反比,不确定度也比10光子纠缠达到的1/10小4个数量级。因而现阶段使用N00N态进行精密测量只是原理上演示了一种潜在的优势,并不具有实际价值。2018年,来自于中国科学技术大学的研究团队发展了一种量子化的新型弱测量方法。这种方法用光子数的混态作为探针,以单光子的量子叠加性作为量子资源,实现了对单光子克尔效应反比于N的1次方的测量精度,反比系数约为6.2[3]。该工作的最好精度相当于使用N = 100000的N00N态可以达到的效果,并优于之前最好的经典方法[4]一个数量级。不久后,该团队又通过使用单光子投影测量代替混态探针,实现了逼近海森伯极限的测量精度,反比系数进一步降低到了1.2[5]。其最好精度相当于使用N = 1000000的N00N态可以达到的效果,并优于之前最好的经典方法[4]两个数量级。虽然是在一个特定的测量任务中进行的,但是这两个工作首次实现了在实际测量任务中达到海森伯极限并优于经典方法,充分展现了量子精密测量的优势。海森伯极限被学术界广泛认为是量子力学所允许的测量极限,是否有可能超越这个极限一直是学术上备受关注和存在争议的问题。2011年,Napolitano等人的一个工作声称超越了海森伯极限[6],对光非线性系数测量达到反比于N的1.5次方的超海森伯极限。但是这个工作后来受到了广泛的置疑甚至是批评[7—9],因为所使用的资源为光子通过原子团产生的经典非线性,其哈密顿量里已经含有了N的平方项。在以所使用的总能量作为规范化资源定义的前提下,这个工作甚至没有超过标准量子极限。03基于量子不定因果序的精密测量近些年来,一种新的量子结构,即量子不定因果序(indefinite causal order,ICO)引起了学术界极大的研究兴趣。量子力学显然允许一个粒子处于不同状态的量子叠加,比如光子可以处于不同偏振叠加态,原子可以处于不同能级的叠加态。事实上,量子力学还允许两个演化不同的时序之间的量子叠加,这点显然不同于经典世界的因果关系。在经典世界里,如果两个事情A和B之间存在关联,那么它们之间孰因孰果是确定的。如果A发生在B之前,那必然A是因B是果;反过来的话,就是B因A果。而在量子世界里,两个事件可以处于如图1所示的两个相反时序的量子叠加上,也就是说孰因孰果这个问题是不确定的。这样的系统状态可以表示为:图1 量子不定因果序的示意图。图中的薛定谔猫处在先过左边门后过右边门和先过右边门后过左边门这两种相反时序的量子叠加态这样一种新的量子结构已经被证明在各种量子信息过程中可以提供进一步的量子增强。比如降低量子计算问题中的复杂度,提升量子通信中通过信道的互信息量。尤其让大家感觉到意外的是,2020年香港大学的一个理论工作证明[10],量子不确定因果序可以在精密测量中突破海森伯极限,达到前所未极的反比于N的2次方的超海森伯极限。这样一个理论突破考虑了由两组连续变量进行N次独立演化产生的几何相位A的测量,比如一个变量是坐标空间的本征值x,另外一个变量是动量空间的本征值p。传统确定因果序的方法在这样一个测量问题中最好的精度极限是海森伯极限,可以由如图2(a)所示的串行测量装置达到。如果把这样两组演化制备到两个相反时序的叠加上,如图2(b)所示,就可以获得一个随着N2A增加的总体相位,也就是获得了指数加速的能力,从而对几何相位的估计可以达到反比于N2的精度,也就是超海森伯极限。图2 (a)确定性因果序方法通过分别测量x的N 步演化和p 的N步演化来估计两种演化产生的几何相位;(b)两组演化可以制备到两种相反时序的量子叠加上,两种时序如图中的蓝色和橙色线路所示;(c)实验结果(黑色方点)证明量子不定因果序方法可以达到超海森伯极限精度(红线),并优于确定因果序方法能达到的最好精度(蓝色虚线)这样一个结果在实验实现上遇到了很大的困难,因为它同时涉及到了离散变量和连续变量体系,并且需要将这两种体系纠缠起来,也就是利用离散的量子比特状态去控制两组连续变量的演化时序。量子信息方案中的离散变量体系无法实现连续变量的演化,而连续变量体系无法把两组演化制备到两个相反时序的量子叠加上。中国科学技术大学的团队通过构造一种全新的杂化(hybrid)装置实现了这样一个量子结构[11],用光子的偏振状态来控制光子横向模式的位置和动量的演化。他们用特制的光学元件精准实现了这两个连续变量的多步微小演化,在一个接近1 m长的马赫—曾德尔(MZ)干涉仪的两臂上分别实现了两个时序相反的演化过程。实验结果对几何相位的测量精度可以达到如图2(c)所示的超海森伯极限,并且优于任意确定因果序方案能达到的最高精度。这个实验中所使用的探针是单个光子,所以每次测量所需要的能量与N无关。在以能量为规范定义的前提下,这是目前唯一可以达到1/N2超海堡极限的实验工作。这一点和以经典非线性作为资源的工作形成了鲜明对比。同时在这样一个测量任务中,两种时序所能达到的精度已经是最优的结果,用更多的时序并不能获得更好的测量精度。这使得用光子的二维偏振就可以控制不定因果序,而不需要更高维度的离散变量。特别值得强调的是,这样一个实验在演示的范围内已经实现了相对于传统方法的绝对优势,而不仅仅是一种潜在的优势。因为这个实验中N代表的是独立演化的次数,而不是量子态的规模。如N00N态精密测量所具有的潜在优势无法变成现实优势,就是因为现阶段量子态的规模无法做大。04总结和展望一个无法避免的情况是,关于海森伯极限是否是量子力学的最终极限的争议会一直持续下去,这主要是由学术界对测量资源定义的不统一所导致的。用量子不定因果序可以实现超海森伯极限的测量精度也必然会引起学术界的广泛讨论和争议。但是如果我们搁置这些争议,从一个更加现实的角度去考量这种新方法,它确实达到了比之前任何确定因果方法都要更好的测量精度,这种优势独立于海森伯极限该如何定义这样一个深刻的问题。当然另外一个值得思考的问题是,不确定度反比于N的2次方是不是测量精度的极限?是否有方法可以达到更高的极限,比如反比关系是N的3次方,4次方……这仍然是一个未解之谜。参考文献[1] Abbott B P et al. Phys. Rev. Lett.,2016,116:061102[2] Yin P et al. Light Sci. Appl.,2021,10:103[3] Chen G et al. Nature Communications,2018,9:1[4] Matsuda N et al. Nature Photonics,2008,3:95[5] Chen G et al. Phys. Rev. Lett.,2018,121:060506[6] Napolitano M et al. Nature,2011,471:486[7] Zwierz M et al. Physical Review A,2012,85:042112[8] Berry D W et al. Phys. Rev. Lett.,2012,86:053813[9] Hall M J et al. Physical Review X,2012,2:041006[10] Zhao X et al. Phys. Rev. Lett.,2020,124:190503[11] Yin P et al. Nature Physics,2023,https://doi.org/10.1038/s41567-023-02046-y
  • Nature Nanotechnology:范德瓦尔斯量子阱子带跃迁的近场纳米成像研究
    几十年来,半导体异质结生长技术的不断进步驱动着电子和光电子科学研究和技术应用的不断发展。红外和太赫兹波段的许多应用利用了半导体量子阱中量子化状态间的跃迁(子带间跃迁)。然而,目前的传统量子阱器件在功能和应用上都受限于对散射界面以及晶格匹配生长条件的苛刻要求。可喜的是:近期西班牙巴塞罗那科学技术研究所Frank H. L. Koppens教授团队将量子阱子带间跃迁的概念引入到范德瓦尔斯层状材料中,提出了范德瓦尔斯量子阱子带跃迁。范德瓦尔斯量子阱天然形成于二维材料之中,得益于二维材料的原子清晰界面和异质结简易转移堆叠技术,范德瓦尔斯量子阱在克服散射界面限制和晶格匹配生长条件限制上拥有巨大潜力。作者利用德国neaspec公司的近场光学显微镜(neaSNOM, s-SNOM)以低于20 nm的空间分辨率实现了WSe2薄层量子阱子带吸收共振的近场光学纳米成像。并且,通过改变照明光子能量,作者实现了对不同厚度范德瓦尔斯量子阱的光谱方式分辨。此外,作者通过静电调控WSe2中的载流子浓度实现了对量子阱子带吸收强度的原位控制。后,作者在单个WSe2器件的价带和导带均实现了量子阱子带吸收,证明了二维材料子带吸收跃迁的普遍性。这项工作使得我们能够以单的电学或光学控制来实现二维材料量子阱子带跃迁,并且以全新的视角来设计新型的光电探测器、发光二管和激光光源等。该工作同时也证明了利用近场局域探针实现纳米尺度二维材料量子阱子带吸收共振光谱方式分辨的可行性。该工作近期发表在纳米领域杂志Nature Nanotechnology上,并作为封面刊出。图1:Nature Nanotechnology 2018年11月 13卷 11期封面艺术想象图为由层状TMD形成的光激发范德瓦尔斯层状结构 图2: 层状WSe2薄片红外吸收测量装置示意图和测量结果a) s-SNOM实验测量示意图; b) a图中虚线所示区域三阶谐振复合散射光信号值空间图,可以看到散射信号值随层数单调增加; c) 5层区域三阶谐振复合散射信号相位值(正比于样品的光学吸收强度)随背栅电压变化时域图,Eph=117meV;d) 不同层数区域散射信号相位值横截线,Eph=117meV;e) Eph=117meV入射光下,三阶谐振复合散射信号相位空间图,即空间吸收图;f)改变入射光能量为Eph=165meV,三阶谐振复合散射信号相位空间图。德国neaspec公司散射式近场光学显微镜(s-SNOM)具有的伪外差探测模块,可以利用参考镜对近场信号进行相位解调,从而实现强度(反射)和相位(吸收)的同时采集和成像。该研究小组通过德国neaspec公司的散射式近场光学显微镜neaSNOM配合可调谐中红外QCL激光器,对具有不同厚度的WSe2薄片进行了近场光学成像研究。从近场光学成像相位图(图2e和2f)中可以看出,对于117mV的光子能量,1层和5层区域表现出明显的吸收现象,而对于165 meV的光子能量,只有4层区域表现出明显的吸收现象。结合理论计算,作者发现,4层和5层WSe2量子阱空穴子带跃迁的能量分别靠近165meV和117meV的光子能量,所以它们的空间吸收图是观察到范德瓦尔斯量子阱子带跃迁的直接证据,而单层区域的显著吸收行为则来源于Drude吸收机制。通过改变背栅电压,作者发现吸收系数和载流子浓度呈正相关,并且在导带和价带均观察到了子带跃迁行为。该发现证明了设计基于范德瓦尔斯量子阱的红外探测器和激光光源的物理和技术可行性。同时,该研究也展示了德国neaspec公司的散射型近场光学显微镜在二维材料光学研究中的广阔应用前景。目前,Quantum Design中国北京实验室的德国neaspec超高分辨散射式近场光学显微镜neaSNOM设备,可提供8-11μm s-SNOM的成像功能以及650-2200cm?1 nanoFTIR近场光学光谱功能,为广大科研工作者提供更好的测试体验和技术支持。参考文献:Nano-imaging of intersubband transitions in van der Waals quantum wells, Nat. Nanotech. 13, 1035–1041(2018).In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal, Nature. 562, 557–562 (2018).
  • 推进数字化转型,赋能产业发展——2022中国国际计量展成功举办
    金秋九月,丹桂飘香。2022年9月7日-9日,由中国计量科学研究院与上海高登商业展览服务有限公司联合主办的“2022第四届中国国际计量测试技术与设备博览会”(简称“CMTE CHINA”)在江苏.南京国际展览中心成功举办,会议受到国内计量专业研究单位、计量技术应用单位、政府计量主管部门以及国际法制计量组织、部分国家计量管理部门、国外计量技术机构以及全球知名计量测试仪器仪表生产企业等众多国内外组织、专家和学者的广泛关注。会议的成功举办将进一步发挥计量在国家科技、经济和社会发展中的引领作用,促进国家计量测试行业高质量发展。博览会期间,中国计量协会理事长吴方迪、中国计量测试学会副理事长兼秘书长马爱文、原国家质检总局计量司副司长钟新明、原国家质检总局计量司副司长刘新民、中国计量科学研究院战略中心副主任于连超、江苏省仪器仪表学会秘书长陈熙源、中国计量杂志常务副主编杨学功以及各地计量主管单位领导亲临现场,相关领导还出席国际计量测试论坛并做主题发言。博览会还得到中国计量科学研究院、中国计量协会、中国计量测试学会、江苏省仪器仪表学会、中国计量协会智能传感专委及相关计量机构的大力支持。吴方迪作《数字时代的计量》主题报告。当前,我们的政治、经济、科技、文化都面临着前所未有的新形势。尤其是随着新一轮科技革命的兴起,未来发展如履薄冰。21世纪以来,第四次科技革命以人工智能、数字技术、量子技术为典型代表性技术,正在快速发展迭代,并将加速推进产业数字化转型升级。报告详细介绍了在新一轮科技革命的推动下,计量所面对的前所未有的新形势和新挑战;以及国际组织、国家在顶层设计上所做的科学谋划和战略布局;并结合计量发展规划,分享数字时代计量发展的新应对策略。马爱文作《量子时代的计量测试技术发展趋势》主题报告。量子科技发展突飞猛进,成为新一轮科技革命和产业变革的前沿领域。报告详细介绍了国际计量单位变革的主要内容,即7个基本计量单位的新定义都与量子的基本特性相关联,这一变革为测量带来一系列有利影响与挑战。国际单位制的变革促使人类社会与科技进入量子时代,而量子测量是量子时代最基本的特征。报告系统介绍了量子测量基本情况、发展简史、物理实现方式、重要技术领域、各国技术战略、产业链、未来发展趋势等。参展企业满意度达92%以上,成交额超1.5亿第四届中国国际计量展阵容强大,博览会总展出面积为12000平米,共吸引来自国内外282家计量测试企业与16000余名专业观众亲临现场参会。展品范围涉及计量基准标准、质量检测、精密测量仪器、测量试验设备与装置、数字化测量控制系统、智能仪器仪表、传感器等测量器件、工业智能网联系统、测量控制软件、工业4.0计量测试解决方案、量子化计量技术与应用以及用于贸易结算、能源资源、环境保护、医疗健康、安全防护和行政监管的先进计量器具产品和数字化实验室系统其他众多类别。该博览会会为计量企业提供了形象展示和产品推介的平台,经调查,参展企业满意度达92%以上,成交额超1.5亿,意向订单多达1200余项,展现了国际计量博览会强大的号召力。同期活动精彩纷呈本届计量博览会以“数字时代的计量”为主题,以“展览+论坛+培训及系列活动”的形式展开。除展会活动外,博览会期间还举办了“智慧监管与计量信息化建设研讨会”、“国际计量测试发展论坛”、“智能传感产业技术交流会”、“产业计量专题培训(线上)”、“数字时代的计量——计量行业数字化转型”相关论坛。同时还评选出2022中国计量器具最新产品奖。参展与参会嘉宾一致认为,本届博览会引领了计量测试领域创新的未来之路。线下参展+线上直播融合为了丰富展会宣传方式,博览会主办方还开启了图片直播和视频直播。展会期间,图片直播浏览量超过57000人次,线上展览小程序浏览人数达36000余人次。博览会的组织方表示:中国国际计量测试技术与设备博览会的成功举办,反映了计量作为国之大器必定会受到业内外各方的广泛关注,同时也反映出计量测试行业的发展日新月异,有极大的行业探讨价值,从侧面也肯定了本次盛会能够给予这样一个专业的交流平台的必要性与重要性。
  • 央视关注!国仪量子持续助力量子精密测量产业化发展
    近日,央视《经济半小时》栏目聚焦报道合肥“场景创新”相关经验成绩,国仪量子发展的量子精密测量技术产业化成果受到关注。在采访中,国仪量子董事长贺羽表示,国仪量子源于中国科学技术大学,承接了实验室的科技成果转化。目前,我们(国仪量子)可以在一个比头发丝还要细一百倍、肉眼看不见的这样的一根针尖上,去人工制备一个量子传感器,这个传感器它的大小大概只有原子尺度,它有更高的分辨率和更高的灵敏度,可以测到过去我们测不到的信号。比如,人在想问题时大脑产生的磁场。这么精细灵敏的传感器,可以应用于对癫痫的病灶定位、测心脏产生的磁场,可以对心肌缺血和冠心病进行早期的筛查和诊断。震撼发布!引领磁传感领域进入量子时代作为量子信息技术产业化的引领者,国仪量子在今年世界制造业大会期间,面向全球发布了一款可用于心磁、脑磁、地磁等弱磁场精密测量的“量子自旋磁力仪”。该设备利用碱金属原子外层电子自旋性质,以泵浦激光作为操控手段,使碱金属原子产生自旋极化。在外界弱磁场的作用下,碱金属原子发生拉莫尔进动,改变对检测激光的吸收,从而实现高灵敏度的磁场测量。量子自旋磁力仪具有灵敏度高、体积小、能耗低、易于携带的特点,未来将引领人类在科学研究、生物医学等磁传感领域进入量子时代。量子精密测量,赋能产业焕新!国仪量子的核心技术是以量子精密测量为代表的先进测量技术,致力于为全球范围内企业、政府、研究机构提供以增强型量子传感器为代表的核心关键器件、用于分析测试的科学仪器装备、赋能行业应用的核心技术解决方案等优质的产品和服务。  测量是科学技术的基础,以量子精密测量为代表的先进测量技术成果不断涌现,必将进一步提高人类科技发展水平,变革生产制造模式,促进社会经济发展转型升级。今年5月,国仪量子联合权威专家团队,与新能源、半导体、生命科学、医疗健康、能源勘探、航空航天、 基础科研、计量学等领域的一线行业伙伴,联合编撰并发布了《量子精密测量行业赋能白皮书》。从用户维度出发,通过大量的案例切入行业痛点,针对性提出赋能解决方案。
  • 国仪量子产业化再获重大突破!量子计算进入中小学
    量子技术发达和普及,终将把人类社会带入量子时代,如果不让孩子从小接受量子理论的思维方式,他们将很可能在未来竞争中失利。12月22日,已试运行2个月的江苏省锡山高级中学“量子计算理论与实验”首次公开,这是量子计算首次进入中国中小学课堂,也是量子计算产业的又一次重大突破!陈明博士在给同学们讲解量子计算“第一通道是激光,第三通道是测量,需要注意各个通道的状态。”在中国科学技术大学核与粒子物理专业陈明博士指导下,同学们利用“金刚石量子计算教学机”进行了拉比振荡实验。高一学生黄愉峻颇熟练地打开量子教学仪器进行计算操作,对自己选择的这堂课,他觉得“对胃口、有意思”。高一8班的黄唯欣同学则表示,“和同学一起做量子计算实验非常有趣!这门课让我在中学时代就可以接触前沿科技,为将来专业选择打下了基础。”同学们在利用“金刚石量子计算教学机”做实验全国政协委员、江苏省锡山高级中学校长唐江澎表示,培养科学兴趣从娃娃抓起,利用惠山区“产学研一体化”量子感知研究团队的先进设备、教学方案和专业人才,学校从改进高中教学方案的新要求出发,引导学生“为爱而学”,培养国家需要的量子信息等领域创新人才。唐江澎校长在接受媒体采访国仪量子副总裁、无锡量子感知研究所所务办公室主任冯泽东介绍,该课程主要包括量子计算的基础理论、发展历史以及部分实验探究,如连续波实验、拉比振荡实验、回波实验、T2实验、DJ实验等,让同学们体验量子计算与普通计算的不同之处,探索量子计算在新药研究、大数据算法、密码破解等领域的应用。同学们在量子计算实验过程中十分投入与牛顿时代强调“确定”、“机械”、“唯一”的经典理论思维模式不同,量子理论则强调“测不准”、“不唯一”、“互动”。现实生活中人与人之间的互动、一人多面的社会状态,很明显更符合量子理论。将量子理论的思维方式传授给孩子,可以让他们迅速融入世界发展的最前沿。在美国,量子计算教育已经被写入全国K12教育法案,在欧洲,量子计算基础教育、量子科普夏令营等活动也普遍存在。此次量子计算进入中小学课堂,是中国教育界在基础教育领域对量子科技人才创新培养的尝试探索。量子计算课程激发同学们“为爱而学”科技创新的星辰大海令人心潮澎湃,量子科技的行业赋能重在扎实落地。中小学开设并推广量子计算实验课程,一定程度上既能够帮助我国扩大量子技术科普教育,提高国民科学素养,同时也是量子计算产业化的里程碑进展,将助力量子科技持续发展!
  • 远不止用于量子研究的量子精密测量技术——ACCSI2021量子精密测量产业化发展论坛邀您参加
    量子力学是近代科学技术的支柱,可以追溯到1895年X射线的发现,之后普朗克于1900年提出量子论, 1905年,爱因斯坦提出光量子的概念。此后,量子力学迎来了蓬勃发展,广泛应用于诸如原子弹、晶体管、激光、核磁共振、高温超导、巨磁阻等领域的研究中,被称为“第一次量子革命”。近年来,“第二次量子革命”被提出,不同于“第一次量子革命”对量子现象的理解和直接利用,对微观量子世界进行被动观察和解释,“第二次量子革命”通过掌控量子效应、定制量子系统,扎根于纯粹量子效应的量子技术,以实现对量子状态进行人工制备和主动调控。量子科学很可能是21世纪促进人类文明进步的最重要基础科学。“第二次量子革命”的提出,引发了各国的关注,面临着激烈的国际竞争态势。2016年5月,欧盟发布《量子宣言》;同年12月,英国发布《量子时代》;2018年9月,美国公布《量子信息国家计划》;同年 11月,德国发布《量子技术-从科研到市场》。此外,中国、日本等均发布了国家支持计划,谷歌、华为、微软、IBM等也加入了量子产业竞争。2020年3月12日,在发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中更是将量子信息列到了科技前沿领域攻关的第二位,要求实现量子精密测量技术突破。而近日,德国提出了量子系统新的研究计划,德国联邦教研部随后将在该议程基础上推出2022年开始的量子系统研究计划。未来德国量子领域的研究重点主要是量子计算机、量子通信、量子测量技术、量子系统的基础技术。量子科学技术受到广泛关注主要是由于其可以突破信息和物质科学技术的经典极限。量子科学技术主要研究方向包括量子通信,量子计算和量子精密测量。量子精密测量的基本原理是利用磁、光与原子的相互作用,实现对各种物理量超高精度的测量,可大幅超越经典测量手段。目前量子精密测量已在生物与医疗、食品安全、化学与材料科学等领域显示出其独特的优势和广阔的应用前景。但我国量子精密测量在系统工程化和实用化仍有待探索,科研成果转化应用机制不成熟,产业合作和推动力量有限。为推动量子精密测量产业化进程,2021年4月23日,第十五届中国科学仪器发展年会(ACCSI2021)将召开量子精密测量产业化发展论坛,邀请领域内技术专家教授、研究院、技术公司、资本投资专家等,共同研讨如何推进并加快量子精密测量产业化。现诚邀各领域相关从业人员参加学习 ! (报名参会) ACCSI 2021“量子精密测量产业化发展论坛”邀请报告及报告嘉宾一、论坛时间:2021年4月23日 9:00-12:00  二、论坛地点:无锡融创万达文华酒店  三、参会嘉宾:领域内技术专家教授、研究院、技术公司、资本投资专家;相关仪器企业及上下游企业董事长、总经理、总工、市场总监、研发总监、销售总监等。  四、会议形式:现场会议 / 线上会议内容嘉宾国仪量子:引领量子精密测量技术产业化国仪量子 联合创始人、CEO贺羽皮秒高重频相干脉冲产生及量子光学应用复旦大学 教授吴赛骏量子测控系列新品在量子精密测量领域的应用国仪量子 测控事业部总经理吴亚量子精密测量在地球物理探测中的应用国仪石油技术(无锡)有限公司 系统工程师孙哲新型电子信息功能材料的原子构筑和性能调控中国科学技术大学 教授廖昭亮基于量子精密测量的科学仪器——从系综到单自旋国仪量子 高级应用工程师代映秋2021第十五届中国科学仪器发展年会(ACCSI2021)将于2021年4月21-23日在无锡市召开。ACCSI定位为科学仪器行业高级别产业峰会,经过14年的发展,单届参会人数已突破1000人,被业界誉为科学仪器行业的“达沃斯论坛”。ACCSI2021以“创新发展,产业共进”为主题,力求对过去一年中国科学仪器产业最新进展进行较为全面的总结,力争把最新的产业发展政策、最前沿的行业市场信息、最新的技术发展趋势、最新的科学仪器研发成果等在最短的时间内呈现给各位参会代表。会议期间将颁发 “年度优秀新品”、 “年度绿色仪器”、“年度行业领军企业”、“年度十大第三方检测机构”、“年度售后服务厂商”、“年度网络营销奖”“年度人物”等多项行业大奖,引领科学仪器产业方向。参会咨询报告及参会报名:010-51654077-8124 13671073756 杜老师 15611023645李老师 赞助及媒体合作:010-51654077-8015 13552834693魏老师微信添加accsi1或发邮件至accsi@instrument.com.cn (注明单位、姓名、手机)咨询报名。报名链接:https://insevent.instrument.com.cn/t/qK 报名二维码扫描二维码查看最新会议日程
  • 在合肥这条大道上,量子从实验室走向产业化
    在安徽合肥高新区,有一条并不宽敞的街道,叫云飞路。中国科学院院士潘建伟创办的科大国盾量子技术股份有限公司(以下简称国盾量子)、中国科学院院士郭光灿创办的合肥本源量子计算科技有限责任公司以及中国科学院院士杜江峰创办的国仪量子(合肥)技术有限公司(以下简称国仪量子)均坐落在云飞路。除了这3家公司外,这条仅有几百米的街道还密布了20多家量子科技企业,这便是赫赫有名的“量子大道”。 这条量子大道的形成并非偶然。2009年,潘建伟团队决定成立国内第一家量子通信产业化公司,时任合肥高新区领导当即拍板:“你来吧,这里没有质疑。” 2009年5月,潘建伟带领学生彭承志等人,在合肥高新区成立了安徽量子通信技术有限公司,也就是后来的国盾量子。公司创立之初,潘建伟带着彭承志、赵勇等学生,在合肥高新区留学人员创业园的一间小办公室里,开启了他们创业之路。 2020年7月,国盾量子终于登陆科创板,成为中国量子科技领域首家A股上市企业。 师徒传承下,中国科学技术大学的学子们也开始在量子领域崭露头角。就在潘建伟成立国盾量子的那一年,郭光灿和学生韩正甫,也在安徽芜湖创立了安徽问天量子科技股份有限公司,这是我国第一家从事量子信息技术产业化的企业。 2017年,郭光灿同其另一位学生——中国科学技术大学教授郭国平联合创立了合肥本源量子计算科技有限责任公司,这是中国第一支致力于量子计算机全栈式开发、开创中国量子计算工程化先河的创业团队。正如郭国平所言:“目前,我们只是万里长征走了一小步,还有很多问题有待突破和解决。我们能做的就是踏实耕耘、莫问前程。” 杜江峰是国内量子测量领域的开拓者之一。有一年,他在学校举行了一场学术报告,台下坐着一位名叫贺羽的18岁男生。当时还在中国科学技术大学念本科的贺羽,事后主动找到了杜江峰,申请加入量子实验室。 2010年,贺羽如愿进入杜江峰的中国科学院微观磁共振重点实验室工作,负责量子精密测量仪器设备的搭建。此外,杜江峰还借给贺羽一个14平方米的办公室,让他开始了创业之路。2016年底,博士在读的贺羽和恩师杜江峰在合肥创办了一家以量子精密测量为核心技术的创新企业——国仪量子。 成立至今,国仪量子已累计完成5轮融资。高瓴资本集团首次布局量子技术赛道,便选择了国仪量子。高瓴资本集团在不止一个场合点明这家公司成长的背后策略:从量子精密测量和量子计算出发,深入国产高端仪器这一关键环节。 2022年,量子赛道更火了,合肥成为投资人去得最多的城市。“你很难想象,国内几乎所有知名的量子赛道创业者,都与中国科学技术大学有着千丝万缕的关系。”一位来自北京的投资人说道,他刚刚参与了国盾量子的C轮融资。 “我们要把论文写在大地上,希望量子工程师们可以坚持做下去。”多年来,郭光灿一直致力于把量子技术转化为实实在在的应用。如今,风口终于来了。看似遥不可及的量子技术,开始从中国科学技术大学的实验室里走出来。 时至今日,合肥高新区直接从事量子领域的科研人员数达600人,合肥市量子信息产业相关专利占全国的12.1%。排名仅次于北京,位居全国第二。正因如此,合肥也被称为“中国量子之都”。 回首一路历程,郭光灿在一次采访中感叹:“我这一辈子做好了一件事,培养了一批人,承担了我这一代的国家责任。不过,还有一个愿望就是希望量子计算机走出实验室,开始工程化建设,最终走向产业化。” “如今量子信息已经成为国家战略,相关技术愈发成熟,我们都判断,量子信息已经几乎到了产业爆发的临界点。”一家北京风险投资机构的业内人士透露,去年初该机构就已经组建了一个量子小组,小组成员经常去合肥出差看项目。
  • 宁波材料所在二硫化钼电化学行为研究方面取得新进展
    二硫化钼(MoS2)在固体润滑、光电子器件、电化学催化等领域具有广泛的应用,而镧系元素(Ln)掺杂可以对其各类物理化学性质起到不同的调控作用。Ln-MoS2基功能材料、涂层和器件在实际使役环境中的性能和寿命在很多时候与其表面的氧还原反应(ORR)密切相关。比如,表面ORR会增加Ln-MoS2基纳米器件和涂层周围金属部件的电偶腐蚀风险,而与此同时,Ln-MoS2基催化剂在燃料电池领域的应用潜力极大依赖于其阴极反应(即ORR)的活性。系统预测Ln-MoS2表面ORR活性规律并清晰揭示其背后的微观量子化学机理,可以给各类Ln-MoS2体系的实际应用设计、精准性能调控和有效防护提供重要指导。   近期,中国科学院海洋新材料与应用技术重点实验室和中国科学院宁波材料技术与工程研究所前沿交叉科学研究中心的研究人员利用第一性原理计算方法,探索了所有15种Ln-MoS2(Ln = La~Lu)体系的ORR活性,不仅发现了Ln杂质对MoS2表面ORR活性的极大促进作用,还观察到ORR活性与Ln杂质原子序数存在一种双周期的依赖关系。本研究工作中,研究人员也通过热力学统计的方法精确模拟了疏松固/液界面上的水环境效应,然后通过构建动力学反应方程组,成功发展了一种电流-电势极化曲线的模拟方法,所得到的极化电流曲线不仅可定量揭示ORR活性,也可以直接对比/指导实验测量。深入的机理分析表明,Ln-MoS2表面ORR活性的增强来源于一种特殊的缺陷电子态配对机制,它会选择性地增强两种ORR中间产物吸附(OH和OOH吸附基团),从而显著减小ORR能垒;而双周期规律则来源于Ln元素中4f-5d6s轨道杂化程度和Ln—S原子成键能力上类似的双周期规律。在此分析基础上,研究人员也为Ln-MoS2体系提出了一种普适的轨道化学机理,对各类电子结构、杂质稳定性、吸附物稳定性和电化学活性中同时出现的双周期规律进行了统一阐述。   相关成果发表于《自然—通讯》(Nat. Commun. 2023, 14, 3256)。该研究得到国家自然科学基金、中国工程物理研究院表面物理与化学重点实验室学科发展基金和国家重点研发项目的资助。镧系元素掺杂二硫化钼对氧还原反应的增强效应(图中显示了模拟所得的电流电势极化曲线以及半波电势所表现出的双周期趋势)
  • 我国四项电学计量基准采纳国际单位制新定义值
    近日,市场监管总局发布2021年第5号公告,批准我国基于量子化效应建立的电学计量基准——直流电压基准装置、直流电压作证基准装置、直流电压副基准装置、直流电阻(量子化霍尔电阻)基准装置复现单位量值采纳国际单位制(SI)新定义值。市场监管总局关于批准部分国家计量基准单位量值复现采纳国际单位制新定义值的公告 2021年第5号 第26届国际计量大会表决通过关于“修订国际单位制(SI)”的1号决议,其中普朗克常数(h)的值修订为6.62607015×10-34J s,基本电荷(e)的值修订为1.602176634×10-19C。由此,约瑟夫森常数变为KJ=2e/h=483597.848416984 GHz/V,冯克里青常数变为RK=h/e2=25812.8074593045 Ω。为保持我国计量基准量值与国际等效一致,根据《中华人民共和国计量法》及其实施细则,以及《计量基准管理办法》的相关规定,现将我国直流电压基准、直流电阻基准采纳国际单位制新定义值的有关事项公告如下:一、批准采用量子化效应建立的直流电压基准单位量值复现采纳国际单位制新定义后的约瑟夫森常数(KJ),重新确定直流电压基准装置、直流电压副基准装置、直流电压作证基准装置技术指标(见附件1),并换发国家计量基准证书。二、批准采用量子化效应建立的直流电阻基准单位量值复现采纳国际单位制新定义后的冯克里青常数(RK),重新确定直流电阻(量子化霍尔电阻)基准装置技术指标(见附件2),并换发国家计量基准证书。三、本公告自2021年3月1日起实施,请各相关国家计量基准保存单位和计量技术委员会做好后续工作,保障国家计量单位制统一和量值准确可靠。附件:1.重新确定的直流电压基准技术指标.pdf2.重新确定的直流电阻基准技术指标.pdf
  • 量子计量科学仪器产业化联合实验室在安徽成立
    近日,深圳中国计量科学研究院技术创新研究院与国仪量子在安徽合肥签署战略合作协议,共建量子计量科学仪器产业化联合实验室,携手推进量子精密测量产业化落地。据悉,该量子计量科学仪器产业化联合实验室是国内首个面向市场与企业的高端计量发展需求,以量子精密测量技术为核心,旨在帮助企业攻关技术难题、激发创新活力、研制先进量子计量仪器的创新型研发实验室。实验室将面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,用开放的理念、创新的机制全力创建世界一流的量子计量研究机构,产出一流的量子计量科研成果,助推量子计量产业高质量高水平创新发展。“计量是测量的科学及其应用,是国家科技创新体系的重要组成部分,其发展水平是国家核心竞争力的重要标志,是构建一体化国家战略体系和能力的重要支撑。”国仪量子董事长贺羽表示,此次与深圳中国计量科学研究院技术创新研究院签署战略合作协议,共建量子计量科学仪器产业化联合实验室,将重点布局新一代微波量子精密测量科学仪器研发与应用,未来将推动多款首台套微波量子传感与探测工程化产品落地。据悉,安徽省人民政府近日发布《安徽省实施计量发展规划(2021—2035年)工作方案》,提出到2035年,全省计量科技创新水平大幅提升,以量子测量为核心的计量技术在全国领先。
  • 第九届国际分子模拟与信息技术应用学术会召开
    蒋华良院士作报告大会会场 为期3天的第九届国际分子模拟与信息技术应用学术会议,5月17日在太原理工大学召开,400多位国内外科学工作者进行了学术交流,中科院上海药物研究所所长蒋华良院士作了题为《原创药物研发新策略与新技术》的首场学术报告。开幕式由太原理工大学发展规划处处长王宝俊教授主持。开幕式上,北京大学徐筱杰教授致开幕词,太原理工大学副校长吕永康教授代表太原理工大学校长黄庆学院士致欢迎词。 据悉,本次大会由太原理工大学、中科院上海药物研究所、中国化学会计算(机)化学专业委员会和北京创腾科技有限公司联合举办,大会邀请了剑桥大学、北京大学、清华大学、复旦大学、法国达索公司、中科院上海药物所、中科院过程工程所、中科院山西煤化所等国内外50多所高校和研究机构的专家作专题报告,探讨如何利用分子模拟技术、量子化学计算技术和大数据技术推动化工、能源、材料、生命科学、生物制药等相关产业的创新发展。 据北京创腾科技有限公司总经理曹凌霄介绍,这次会议的目标,一是推动分子模拟和量子化学计算技术从广度和深度上得到应用;二是通过云平台和云计算提升科学实验数字化采集的应用体验,帮助研究人员加速研发,得到更多一流研究成果。 太原理工大学拥有教育部和山西省煤科学与技术重点实验室,在量子化学计算与分子模拟技术应用于煤科学和煤化工研究方面,实力较强,并取得多项研究成果。该校王宝俊教授告诉记者,这次会议也为省内相关高校和科研院所提供了难得的学习和交流机会,对山西相关研究领域的创新与发展有建设性积极作用。 本届会议六个分会,涵盖生命科学和材料科学两大领域,大会特设了企业分会,为产学研提供对接平台,来自中国石化、比亚迪、中船重工和罗氏制药的企业代表参与了交流。为解决煤化工产业中的关键科学问题,大会还特设煤科学与技术专场分会,就量子化学计算和分子模拟在煤科学和煤化工中的应用等问题进行了深入研究探讨。来源:科学网
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制