当前位置: 仪器信息网 > 行业主题 > >

冷冻法

仪器信息网冷冻法专题为您整合冷冻法相关的最新文章,在冷冻法专题,您不仅可以免费浏览冷冻法的资讯, 同时您还可以浏览冷冻法的相关资料、解决方案,参与社区冷冻法话题讨论。

冷冻法相关的资讯

  • 新品发布丨新型冷冻等离子体聚焦离子束电镜推进细胞冷冻电子断层成像研究
    俄勒冈州希尔斯伯勒市,2022年8月1日讯。赛默飞世尔科技推出了Thermo Scientific Arctis冷冻等离子体聚焦离子束电镜(Cryo-PFIB),这是一款全新的自动化显微镜,经过设计可用于加快冷冻电子断层成像(Cryo-ET)研究的步伐。冷冻电子断层成像(Cryo-ET)技术使得细胞生理环境中的蛋白质研究和其他分子的运行机制研究成为可能,与其他显微镜技术相比,其分辨率达到了前所未有的水平,而且可以在细胞生物学研究方面发挥巨大的潜力,包括传染性疾病、神经退行性疾病和其他具有全球影响力的结构生物学应用。然而,为冷冻电子断层成像技术制备最佳样品的过程仍然耗时且复杂。Arctis Cryo-PFIB通过为用户提供先进的自动化和全新的连接解决方案能力,可以解决工作流程中的多种挑战,与其他的解决方案相比,Arctis Cryo-PFIB极大地提高了通量,可以快速、持续制备适用于冷冻电子断层成像技术的样品。该系统旨在提供厚度均一的高质量样品,同时最大限度地降低样品污染风险。用户可以享受到内置一体化光电联用显微技术、专用等离子体FIB技术、先进的自动化和全新的连接功能,包括简化上样和样品转移功能。亮点包括:1、一体化光电联用显微镜技术(CLEM):用于快速定位感兴趣的区域。2、等离子体FIB技术:用于快速减薄大块样品并快速定位到感兴趣的区域。3、自动化功能:可简化样品制备并实现远程操作,与当前基于镓的冷冻FIB解决方案相比,可实现长时间的自动化运行、可重复的结果和更高的通量。4、工作流程中的连通性:可简化将样品转移到Thermo Scientific Krios或Glacios冷冻透射电子显微镜(Cryo-TEM)的过程。Arctis Cryo-PFIB 配备了赛默飞世尔科技推出的行业领先的自动上样系统(Autoloader),可自动装载多达12个载网。全新的专用TomoGrid可以确保减薄后的样品与透射电子显微镜倾斜轴实现最佳对齐。如要报名参加9月21日的全球新品发布网络研讨会,请扫描下方二维码注册研讨会。
  • 徕卡课堂——冷冻断裂与冷冻蚀刻基础介绍
    揭示生物学样本和材料样本原本无法观察到的内部结构冷冻断裂是一种将冰冻样本劈裂以露出其内部结构的技术。冷冻蚀刻是指让样本表面的冰在真空中升华,以便露出原本无法观察到的断裂面细节。金属/碳复合镀膜能够实现样本在SEM(块面)或TEM(复型)中的成像,主要用于研究如细胞器、细胞膜,细胞层和乳胶。这项技术传统上用于生物学应用,但现在逐渐在物理学和材料科学中展现出重要意义。近年来,研究人员通过冷冻断裂电子显微镜,尤其是冷冻复型免疫标记(FRIL),对膜蛋白在动态细胞过程中所发挥的作用有了新的见解。作者:Gisela Höflinger图1:麦叶上的蚜虫适合于电子显微镜的环境电子显微镜的样品室通过抽真空处理降至极低压力。置于这种环境下的活细胞无法有效保全结构,因为细胞构成中的大部分水分会快速蒸发。生物样本的制备方法有很多种。样品材料被(固定)保存,这样后续脱水对原位结构的破坏最小,同时可以使用环境扫描电镜(SEM)或者将水冷冻。高压冷冻是观察自然状态下含水结构的唯一方法。高压冷冻所形成的冰不是六边形冰(从水变为六边形冰时体积会增加)而是无定形冰,因此体积保持不变。所以,对渗透和温度变化敏感的结构得以保留(见文章“高压冷冻基础介绍”)。要观察诸如细胞器、细胞膜、乳胶或液体的表面界面等结构,冷冻断裂是唯一的方法。通过刀片(或类似物)或释放弹簧负载的外力来破开冷冻样本,并沿着最小阻力线断裂样本。图2:冷冻断裂(来源:http://en.wikibooks.org/wiki/Structural_Biochemistry/Lipids/Membrane_Fluidity) 水的升华与凝结 – 冷冻蚀刻与污染要暴露冷冻断裂面,需要把冰去除。这就需要通过把断裂面的冰升华去除以保存样品的结构。升华的过程是冰不经过液态过程直接转化为气态。而液态过程会导致样品体积和结构的破坏。图3:ES,细胞外表面;PF,细胞膜冷冻断裂面;EF,细胞膜外层冷冻断裂面;FS,细胞膜内表面;Cyt,细胞质水的升华/冷凝过程取决于特定温度下的饱和压力,以及水或冰在室内的有效水分压。注意:良好的真空度会降低水分压。例如:温度为-120℃的冰或冰冻样本饱和压力约为10-7 mbar。如果样品室内达到这个压力,则冷凝和蒸发处于平衡状态。蒸发的分子数量等于冷凝的分子数量。在更高压力下,冷凝速度要快于升华速度 – 因此冰晶会在样本表面上生长。必须采取一切手段来避免这种情况。样本上方一个较冷(比样本更冷)的冷阱会降低局部压力,从而起到了冷凝阱的作用。从样本中带出的水分子优先附着在较冷的表面上。在低于饱和压力的压力下,更多的分子升华而不是冷凝,同时会发生冷冻蚀刻。执行冷冻蚀刻直到样本完全无冰,这一过程称为冷冻干燥。仅适用于合理时间内执行的小样本。该过程分为几个步骤,需要从大约-120℃加热到-60℃,同时在每个步骤上使温度保持一定时间。该过程需要几天的时间来完成。图4:饱和蒸汽压力(感谢Umrath 1982提供的图片)样本温度低于-120℃时,蚀刻速度非常慢,蚀刻持续时间会增加到不切实际的程度。如果真空室的压力固定,则可以通过提高样本温度来提高蚀刻速度。对于生物样本,要特别小心温度高于-90℃。蚀刻速度会大幅提高。另外,要注意玻璃态冰中形成六边形冰晶从而导致脱水伪像。纯水的理论升华速度会降低,因为:• 样本深处的水升华速度比表面的水更慢。• 盐和大分子溶剂会降低升华速度。• 生物样本中大量存在的结合水会降低升华速度。通过冷冻断裂生成图像冷冻断裂和冷冻蚀刻技术往往采用高真空精细镀膜技术,将超细腻重金属和碳薄膜沉积于断裂表面。冷冻断裂样本在一定角度下用金属覆盖,然后在碳背衬膜(徕卡EM ACE600冷冻断裂或徕卡EM ACE900与徕卡EM VCT500)上生成复型进行TEM成像或在SEM的试块面上进行成像。对于这两种方法,冷冻断裂表面经过一定的蚀刻时间后以相同的方式进行镀膜。首先在一定角度下进行一层薄的(2-7nm)重金属镀膜,以形成地形对比度(阴影)。其次再针对重金属薄膜,在90°下进行一层厚的碳层(15-20nm)镀膜,以稳定超薄电子束蒸发。此时的蚀刻处理会停止。要对极小的结构进行成像,需要在极低的角度(2–8°)镀膜重金属并在镀膜期间旋转样本。这样可增加细丝状及其它细小结构的对比度。此项技术又称为小角度旋转投影。蒸镀重金属薄膜需要采用电子束蒸发镀膜技术。这种镀膜技术可实现精细定向沉积。碳的支撑层稳定了未被金属覆盖的结构。随着温度的升高,这些结构会改变它们的轮廓,样本不会完全导电,复型也不会粘在一起。冷冻断裂酵母的单向投影图5:低温SEM,BSE(背散射电子)图像。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图6:复型,TEM图像(感谢Electronmicroscopy ETH Zürich提供图片)。Walther P, Wehrli E, Hermann R, Müller M.(1995)双层镀膜获取高分辨率低温SEM。J Microsc. 179, 229-237。图7:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。油/水基样品,–100℃(升华)3分钟暴露油脂结构。图8:徕卡高压冷冻,真空冷冻传输至冷冻断裂系统中,利用电子束发射枪和旋转样本底座来进行冷冻蚀刻和低温镀膜。徕卡真空冷冻传输至低温SEM。原生生物游仆虫混合培养的羽纹硅藻。感谢英国波特斯巴NIBSC的Roland Fleck博士提供图片图9:徕卡冷冻断裂系统及徕卡真空冷冻传输至低温SEM的HPF、冷冻断裂、冷冻蚀刻和低温镀膜。油/水基乳液破裂,露出洋葱状薄片结构,形成液滴。感谢汉堡拜尔斯多夫Stefan Wiesner博士提供的图片。图10:TEM中的酵母细胞复型。经徕卡高压冷冻和徕卡冷冻断裂复型制备。感谢Elektronenmikroskopie ETH Zürich提供的图片。图11:大麦叶上的真菌。安装于徕卡冷冻断裂仪样本台上,并通过冷却样本台在液氮下进行冷冻。徕卡冷冻断裂仪对样品进行部分冷冻干燥(在更高的样本温度下冷冻干燥)。使用钨镀膜。徕卡真空冷冻传输至低温FESEM 5keV。相关产品徕卡EM ACE900 高端EM样本制备冷冻断裂系统徕卡EM VCT500了解更多:徕卡官网
  • Cell综述:冷冻电镜时代的新药研发
    基于结构的药物发现(Structure-based drug discovery, SBDD)是设计和优化创新药的必要方法。本篇综述将深入探讨冷冻电镜(cryo-EM)在SBDD领域中的快速崛起及它的主要作用,以及阐释它如何为高价值药理学靶点提供丰富的全新结构信息。冷冻电镜技术相比X射线晶体学的主要优势在于,它可以跳过繁琐的结晶步骤,从而直接对玻璃化的生物大分子进行成像;冷冻电镜也可以提供更多维度的信息,包括异质性和动态性。此外,本综述还将讨论冷冻电镜近期和未来的发展,并探讨该技术将在SBDD的管线中产生何种广泛的影响。冷冻电镜时代的SBDDSBDD是一种基于靶点的原子级结构基础信息,针对该靶点进行理性药物设计的研发方法。20世纪80年代,随着Captopril卡托普利和多佐胺Dorzolamide等酶靶向药物获批上市,SBDD方法初露锋芒。这一批由FDA批准的药物结合了晶体结构模型与计算机辅助分子建模这两大新兴技术,并成功解决了传统湿实验室的高通量筛选方法(HTS)所面临的昂贵、耗时及低回报率等问题。此后,随着计算技术的不断革新,大量药物靶点的晶体结构得以解析,SBDD方法进入了飞速发展阶段。从1999年到2013年,在113个获批的first-in-class药物中,有78个是基于SBDD方法发现的。尽管SBDD的发展足够迅速,但学界及制药行业内对它的期望显然更高。SBDD方法往往能另辟蹊径,对过往认为不可成药的靶点进行验证,并进一步开发新药。如K-Ras(G12C)靶点,它利用晶体学结构确定了一个以前未知的结合口袋,以避免与皮摩尔亲和力的GDP/GTP竞争。由于靶点验证是发现和开发工作中的主要难题之一,first-in-class药物分子可以为靶点的有效性和疾病应用提供新的见解,例如bromodomain溴结构域抑制剂(+)-JQ-1和I-BET762,这些化合物被成功用于表征和验证溴结构域在各种疾病中的重要性,并催生了大量的临床候选药物。即使是FDA批准的已知药物靶点,临床上也常常需要进一步的SBDD,比如有些药物需要进行更好的选择性的优化设计。厄菲替尼(erdafitinib)在经过针对性的设计改造后,表现出了相对于原先药物对成纤维生长因子受体更高的选择。此外,有一些药物可能需要优化效力或疗效,或提供特定受体亚型的选择性,如改善鞘氨醇-1-磷酸(S1P)抑制剂西波尼莫德(siponimod)对S1P1而非对S1P3的选择性,是提高其在疗效和安全性上优于非选择性S1P抑制剂的关键。该药物靶向S1P1,而非S1P3,此外,许多抗病毒、抗菌和抗癌药物正面临着抗药性问题,SBDD方法能够基于产生耐药性的靶点结构,对药物进行持续改进。SBDD工作的瓶颈在于获取高分辨率的生物靶点结构信息。虽然一些小而有序的生物分子满足X射线晶体学的研究范畴,但大部分已知靶点中的蛋白质,例如跨膜受体或动态复合物,都难以结晶,导致这些靶点蛋白无法利用晶体手段进行高分辨率结构解析。此外,X射线晶体学往往会对靶点蛋白进行改造,如进行截短体设计、引入热稳定性突变或插入一段外源的结构域,从而影响后续的SBDD结构信息分析。还需要考虑的一个关键因素是,大量的靶点蛋白性质上达不到结晶的条件要求。不过,上述的这些难点正被冷冻电镜技术逐一攻克。冷冻电镜技术的分辨率已足够高,其产生的大量数据也可用于计算辅助药物设计(CADD)方法,这也是本综述的核心议题。与X射线晶体学不同的是,冷冻电镜无需对目标靶点进行结晶:纯化过的靶点生物大分子会被瞬间冻结在一层薄薄的非结晶玻璃体冰中,再经由透射电镜成像以记录下几十万到几百万个冷冻电镜颗粒数据,用于重构三维静电势图并对大分子进行精确建模。因此,这种技术很适合于蛋白质复合物、热稳定性较低和动态运动较高的蛋白质以及脂质胶束中的跨膜蛋白质的结构测定。随着分辨率的不断提高,冷冻电镜已经成为药物设计的强大工具。冷冻电镜与药物发现在2014年之前,冷冻电镜几乎无法解析出优于4.0Å分辨率的结构,这直接导致它无法对SBDD工作提供有效的数据支持。然而,在过去的几年里,冷冻电镜方法的爆炸性突破产出了大量高分辨率的结构数据,这在以前是无法实现的。这一质的飞跃要归功于许多技术革新,如用于记录图像的直接电子探测器、改进的计算方法和处理大型数据集的硬件集群,这些技术的飞跃在其他文献内有详细回顾。此外,作为一种直接可视化的技术,冷冻电镜能够快速判断样品的聚集性和稳定性等问题,从而通过遗传和生物化学手段,用互作因子稳定蛋白、或通过优化去垢剂从细胞膜环境中提取膜蛋白等方法来快速改善样品质量。综合以上,在PDB中的分辨率为4.0Å或更高的冷冻电镜结构的数量已经从2014年之前的合计16个增长到仅2020年一年提交1753个新结构的规模(图1, A)。在新上传的结构中,分辨率高于4.0和3.5 Å的比例分别从2015年的36%和12%增加到2020年的75%和50%。更振奋人心的是,截止2020年,分辨率高于3.0Å和2.5Å的冷冻电镜结构比例,分别达到了18%和3%,实现了冷冻电镜结构解析前所未来的突破(图1, B)。为了系统评估冷冻电镜对SBDD领域的影响,我们(作者)调查了2018年美国200种最常用处方药的靶点相关结构数据。72%的靶点在PDB数据库中含有结构信息。细分而言,这些结构信息是通过X射线晶体学技术(42%)、冷冻电镜技术(15%)或两者结合(15%)而确定的(图1, C)。通过冷冻电镜技术解析的靶点涵盖了许多跨膜蛋白,如离子通道(GABAA、CaV、NaV和KATP)、激活态的G蛋白偶联受体(GPCRs)和转运体蛋白(5-羟色胺转运体、NaCl转运体)。图1.冷冻电镜分辨率的提高及其对蛋白质药物结构表征的贡献。(A) PDB中上传的低于特定分辨率的冷冻电镜结构的绝对数量;(B) PDB中上传的低于特定分辨率的冷冻电镜结构的百分比的。(C)2018年200个热门处方药的靶点图,按靶点的结构特征分类;(D)44个热门GPCRs处方药的靶点图,按结构特征分类;(E)2018年200个销量最高的药物的靶点图(作为新药的代表),按靶点的结构特征分类。2020年的数据是由Njardarson实验室公示的2018年200种最受欢迎的处方药和200种销量最高的药物的蛋白质靶点(如果适用),然后在PDB中确定相关结构,进行人工筛选。在200多种最常见的处方药中,GPCRs占据了44种,这些药物包括靶向GPCRs的激动剂、拮抗剂和反向激动剂(图1, D;注意,拮抗剂和反激动剂在药理学上不同,但在这里我们(作者)把它们统一归为拮抗剂)。这些GPCRs中的32个(73%)已经进行了某种形式的结构解析,包括与拮抗剂(44%)或激动剂(7%)结合的晶体结构,与激动剂(9%)结合的冷冻电镜结构,或由X射线晶体学和冷冻电镜手段共同进行的结构解析(20%)。值得注意的是,GPCR的高度动态结构使其难以获得高质量的晶体,因此大多数的GPCR晶体结构都是与拮抗剂结合后才得以进行结构解析的。综上所述,冷冻电镜技术在针对市场上已经存在多年的处方药中中具有深刻影响。为了更加深入了解冷冻电镜技术在未来药物发现中的作用,我们(作者)还调查了2018年取得最高利润的200种药物,以代表那些市面上新进发现的药物(图1, E),我们简称新药。这批新药和之前提到的那些最常用的药物之间存在明显的差异。相当一部分新药已经用晶体学进行了表征,反映了结构数据在当今药物研发工作中的重要性:即便不是由结构驱动的,也很少有不追求结构的情况,因为结构信息可以为先导化合物的优化和进一步发现提供关键数据。此外,考虑到漫长的药物开发时间,冷冻电镜这一最近几年才崛起的新技术在这份名单中的占比虽小,但贡献仍相当可观。这些药物和靶点包括生物制药、离子通道和GPCRs,以及其他不适合结晶的高活性大分子。冷冻电镜对SBDD的贡献解析新型结构虽然有许多FDA批准的药物靶点结构可被X射线晶体学解析,冷冻电镜正在为越来越多的难结晶、甚至不可结晶的靶点打开大门,如分子量更大、更动态的蛋白质和蛋白质复合物。冷冻电镜也显著降低了对细胞内复合体的研究难度,如病原体的核糖体、染色质修饰复合体和转录机器。例如冷冻电镜技术近期解析了一种与线粒体体RNA聚合酶复合体相关的first-in-class 抑制剂的结构。值得注意的是,在膜蛋白领域,冷冻电镜的贡献无可比拟。不管是传统的药物,还是新型处方药,很多药物靶向针对GPCRs、离子通道和转运体蛋白。然而,利用X射线晶体学手段来解析膜蛋白的结构非常困难。尽管脂质立方结晶在GPCR领域取得了一些进展,但在结晶过程中,GPCR蛋白通常需要进行热稳定突变,或融合其他蛋白进行改造,以促进晶体的形成。并且,为了获取某种改造后的稳定的构象,还需要对克隆构建、实验方法及条件进行大量繁琐复杂的筛选。相比之下,冷冻电镜结构可以直接用来解析经过去污剂或纳米盘处理后的在生化上性质稳定的膜蛋白,并获得处于或者接近生理状态的蛋白的结构。冷冻电镜的在解析庞杂的膜蛋白的结构中能力势不可挡,并且已有大量的高分辨率结构被成功解析。长久以来膜蛋白一直都是获批药物的热门靶点,它们的结构也只是近期才被冷冻电镜揭示(图2)。图2. G蛋白偶联受体、转运体(上排)和离子通道(下排),每个受体有相应的FDA批准的配体分子(蓝框)。利用冷冻电镜解析膜蛋白结构的突出进展,部分原因受益于新试剂的设计和使用。这些试剂可以在体外纯化过程中维持跨膜蛋白的结构,在冷冻制样过程中保护蛋白,并为高分辨率的结构解析提供均质样品。去垢剂如正十二烷基β-D-麦芽糖苷(DDM)和月桂基麦芽糖新戊二醇(LMNG),可以有效地从细胞膜上溶解跨膜蛋白,并维持蛋白质的生理状态构象。去垢剂的使用也会产生一些问题,如去垢剂形成的空胶束和与包裹蛋白质的去垢剂同时存在存在会引起样品的不均一,对后期的数据处理处理产生影响;也可能会导致冷冻样品制备时的气液界面收到破坏,产生一些不好的结果。脂质纳米盘是去垢剂的一种替代品,原则上可以为结构和生物物理研究提供接近胜利状态的脂质双分子层。脂质纳米盘在膜蛋白药物靶点上的应用已经非常关键和广泛。举例而言,将纳米盘与冷冻电镜技术相结合,成功阐明了TRPV1和TRPV5离子通道(在TRPV1的情况下,脂质对抑制剂的结合至关重要)、GABAA配体门控离子通道、人类P-糖蛋白以及GPCR-β-arrestin复合物的高分辨率结构和机制。关于纳米盘的进一步介绍可查阅。冷冻电镜还可以用来解析嵌入脂质体中的蛋白质的结构,允许在更接近生理状态的的电化学梯度中对离子通道以及孔蛋白进行可视化研究。在过去的几年中,冷冻电镜也在生物制药领域产生了巨大影响。在较新的药物中,生物制药的占比正越来越高。如果仅将目光聚焦于药物靶点识别这一领域,生物制药的结晶技术确实称得上有所改善。然而,冷冻电镜已经为一些关键的生药物研发提供了基于全长蛋白的结构信细节息胰岛素受体一种二聚化的酪氨酸激酶受体蛋白,在调节人体的葡萄糖平衡方面起着关键作用。胰岛素受体信号通路的失调会引起一些疾病,如II型糖尿病,全球约有9.3%(4.63亿人)受到影响两个独立的研究小组利用冷冻电镜在胰岛素受体结构解析方面取得了突破进展;第一个小组以4.3Å和7.2Å的分辨率分别解析了与一个或两个胰岛素分子结合的胰岛素受体胞外结构域结构,第二个小组以3.1Å的分辨率获得了与四个胰岛素分子结合的胰岛素受体胞外结构域结构(图3, A)。这些结构解释了胰岛素受体结合胰岛素的不同结合位点,以及激活这一关键药物靶点所进行的构象变化。类似的例子比比皆是:从HER2-trastuzamab-pertuzumab复合物到SARS-CoV-2和中和抗体的结构解析,冷冻电镜为生物治疗的新老靶点提供了新的视点,为进一步发现和开发仿制药和first-in-class药物铺平了道路。另一个值得注意的例子是B淋巴细胞抗原CD20,它是治疗白血病和自身免疫性疾病的一个重要的治疗靶点,尽管其功能作用仍不清楚。尽管CD20的分子量较小,只要35kDa左右,但分别与单克隆抗体利妥昔单抗(rituximab)、奥法图单抗(ofatumumab)和奥比努单抗(obinutuzumab)的Fab结合形成复合物后,都解析获得分辨率较高的CD20复合物结构(图3, B)。负染结果显示,利妥昔单抗与CD20结合后,可诱导形成高度有序的高级结构,这一发现对激活先天免疫的补体系统提供了全新见解。由于复合物中的高度动态和跨膜结构域的存在,利用结晶手段结构解析几乎不可能实现,冷冻电镜技术的应用实现了这一可能。图3.冷冻电镜(cryo-EM)在小分子和生物制药发现方面的效用。(A)与胰岛素结合的胰岛素受体(PDB ID 6PXV)和(B)CD20与利妥昔单抗复合物(PDB ID 6VJA)冷冻电镜密度图。(C)使用GemSpot(PDB ID 6CVM)将小分子PETG精确地建模到β-半乳糖苷酶的冷冻电镜图像中。(D)基于片段的PKM2的发现,冷冻电镜密度允许正确识别和放置发现片段(PDB ID:6TTF)尽管冷冻电镜在膜蛋白结构测定领域已经迈出了一大步,但短板仍然存在。其中一个短板是解析小于50-70kDa的没有明显的胞内或胞外结构域的单体膜蛋白,由于几乎没有胞外结构域特征,因此难以对去垢剂胶束或脂质纳米盘进行降噪处理,以这种方式收集到的数据难以产出高分辨率结构,比如解析没有上下游偶联蛋白的处于非活性状态的的GPCR结构。然而,大量的蛋白质属于这一类型,解析这一类型的的膜蛋白因此也成为了一个重要的研究领域。目前,有一些解决方案正处于研究阶段,且已经取得了一定程度的成功,如前文所述的CD20。随着利用增加融合蛋白、抗体片段、纳米抗体、纳米抗体衍生物或其他支架蛋白以增加靶点蛋白的分子量等方法的应用,预计冷冻电镜在膜蛋白结构测定方面会有更多进展。计算赋能冷冻电镜冷冻电镜单颗粒技术利用数百万个颗粒的可视化投影来重建静电势图,这通常涉及数十万亿字节的原始数据。因此,该方法从计算方法的快速发展中获益匪浅,这些计算方法同时满足了对更高的分辨率的需求并加深了对粒子动力学的理解。然而,与X射线晶体学相比,冷冻电镜在获取配体-靶点复合物的高可信度模型时仍然面临着一些难题。其中一个难题是冷冻电镜难以解析得到高于2.5Å的蛋白结构,而这通常是建模人员能够精确放置配体并解析出结合位点处水分子的最低分辨率。此外,冷冻电镜的结构建模流程与晶体学完全不同:在晶体学中,模型和密度图之间有一套严格而完善的统计测量方法,该方法能够提供和模型精度相关的关键信息。而在冷冻电镜方法中,基于密度图的建模是一个完全独立的过程,仅适用收集的电镜投影来进行密度图重构,然后基于密度图进行结构建模和实空间下的微调。该过程的独立性使得模型的精度被降低了。这一问题在最近已得到改善。此外,两种方法之间还存在一些物理上的差异,如晶体学依赖电子密度图,而冷冻电镜依赖静电势图。这些差异加在一起,使得晶体学的模型验证工具无法应用于冷冻电镜模型。因此,我们可能需要为精确性开发一些新的指标。一种解决方案是使用强大的计算技术和精确的分子力场对大分子及其配体在冷冻电镜结构中的相互作用进行模拟。比如PHENIX软件包结合实空间和傅里叶空间微调和OPLS3e力场的分子动力学模型,从而生成生物分子和小分子的几何统计精修模型。OPLS3e微调工具已经被整合进到我们(作者)的自研软件GemSpot,它将各种计算方法整合为一个工作流程,从而提高冷冻电镜密度图中配体位置的准确性(图3C)。新的计算工具也推动冷冻电镜在基于片段的药物发现(Fragment-based drug discovery)中发挥作用,其中高溶解度的小片段化合物被浸泡在由多个不同结构的化合物组成的生物分子靶点中。解析复合体的结构可以解释配体与结合口袋之间关键位点的相互作用,然后可以将其组合成一个先导化合物。然而,这种方法要求配体密度质量高、分辨率高,才能正确区分配体的姿态和原子类型,目前对于冷冻电镜来说还是一个难题。最近,Saur等人在高度棘手的β-半乳糖苷酶和颇具治疗意义和挑战性的激酶PKM2的场景中成功地将冷冻电镜用于FBDD。尽管他们为了将配体置放于密度图中,而不得不将干法和湿法实验结合,但他们成功地建立了一个与β-半乳糖苷酶结合的大约150kDa的精准片段模型。更令人印象深刻的是,他们能够从四种化合物的鸡尾酒中确定哪些片段与PKM2结合(图3, D)。因此,不断发展的计算方法为冷冻电镜密度图的构建提供了一个强大的平台,可以在高分辨率下对大分子复合物进行建模。冷冻电镜的快速发展可及性与通量的提升冷冻电镜是极为精密且昂贵的仪器,需要大量的费用和人力成本来搭建、维护与操作。这一特性在很大程度上限制了冷冻电镜的发展,并将冷冻电镜的机时资源集中在了那些受政府资金扶持的大型机构上。因此,在科研界中,冷冻电镜资源的获取门槛极高。然而,这一门槛正在被逐渐降低:许多国家级设施都启动了冷冻电镜人才培养计划,以降低冷冻电镜运维的人力成本。一些大型制药公司也开始进行内部投资,设立最先进的冷冻电镜设施。此外,冷冻电镜设施的可复制性远超晶体学极其昂贵的同步加速器和线性加速器,使得该技术更有发展前景。随着100kV电子束技术的发展,未来可能会出现性价比极高的冷冻电镜,增加其在药物发现领域中的应用场景。鉴于2018年FDA批准的药物中有49%来源于中小型公司,降低冷冻电镜的成本将使冷冻电镜技术得到更广泛的应用。最近对SARS-CoV-2相关蛋白的结构表征证明了冷冻电镜的无限潜力。在病毒爆发后的几个月内,科学家们利用冷冻电镜,以极快的速度解析了新冠病毒刺突蛋白的几种构象,以及它与人源血管紧张素转换酶或许多中和人源抗体片段的复合物的结构。最近获得FDA批准的用于治疗COVID-19的再利用药物瑞德西韦(Remdesivir)与SARS-CoV-2 RNA聚合酶结合的结构也已被冷冻电镜解析。鉴于X射线晶体学一直是病毒RNA聚合酶结构测定的传统方法,对新冠病毒的冷冻电镜结构解析是一个颠覆性的创新,凸显了冷冻电镜的高时效性特点在快速反应研究中的应用。此外,冷冻电镜的分辨率仍在大幅提高,最近的一份报告指出,作为冷冻电镜的代表性复合物结构,去铁蛋白apoferritin的分辨率达到了1.25Å,该分辨率足以对单个原子进行精准定位,在某些情况下甚至可以解析氢原子和质子化态。毋庸置疑,在样品制备良好的情况下,冷冻电镜的不断改进将持续打破结构解析的分辨率记录。冷冻电镜在药物发现和开发方面的应用将进一步受益于该技术的全面自动化。在载网准备方面,一些自动化工具正在出现,以解决不可重复性和样品浪费的难题。这些技术的改进不仅会提高自动化的程度和可及性,还可能解决冷冻电镜载网制备中的其他难题,如减少颗粒在空气及水中的暴露程度。此外,机器学习方法和深度神经网络也是提高颗粒筛选速度和准确性的关键。这些自动化方法甚至有望在未来成为冷冻电镜的核心技术,从而推动冷冻电镜在药物发现领域的发展。主流硬件和软件的改进也有望提高冷冻电镜在SBDD领域的可及性。例如,更高效的检测设备能显著提高冷冻电镜的产能。在一个标准的数据收集过程中,老式的检测器相机可以每次收集1个影像,每小时产生50个影像,而较新的检测器可以每次收集9-16个影像,每小时可以产生超过200个影像,进而转化为每24小时收集的数百万颗粒投影数据。此外,虽然今天许多最高分辨率的结构是用300kV冷冻电镜获得的,但这些机器非常庞大,且前期和维护成本昂贵。在许多情况下,对于单颗粒分析中使用的薄样品,200kV的显微镜可能就足够了,甚至100kV的显微镜也可以用来获得分辨率高达3.4 Å的结构。分子动力学的新窗口结合硬件和数据处理方面的改进,冷冻电镜的潜力将进一步被释放。当X射线晶体学受限于结晶条件而无法解析时,冷冻电镜的低样品需求大幅降低了数据收集的门槛,使我们得以看到样品的构象连续体或一系列不同的能量最低状态,为大分子动力学提供了新的窗口。图4.单一的冷冻电镜数据集,投影的三维分类显示了两种不同的构象,代表了两种不同的G蛋白偶联受体-G蛋白相互作用的状态,代表了两种热力学上可比较的构象。在典型状态下(左边,PDB ID 6OS9),受体以典型的方式与G蛋白结合,其中核苷酸结合口袋为GTP结合做准备。在非经典状态下(右图,PDB ID 6OSA),G蛋白异源三聚体与经典状态相比旋转了45°,代表了沿G蛋白偶联途径的中间配体结合受体状态。缩写:α-N=G蛋白的N端α螺旋;cryo-EM=冷冻电镜;TM=跨膜螺旋。一些计算工具,例如二维和三维分类以及子区域的重点细化,能够利用数据集内颗粒的异质性来模拟大分子活性成分的运动。在我们(作者)小组最近的一个例子中,对神经紧张素1受体的冷冻电镜单颗粒分析结果揭示了先前识别的G蛋白、激动剂结合状态和G蛋白偶联通路上的一个新的中间状态(图4)。最近,我们(作者)还将AI深度学习网络应用于冷冻电镜数据集,揭示了26S蛋白酶体的构象动态,使解析出的结构细节达到了前所未有的原子级水平。随着分辨率和分类工具的不断改进,我们将获得更精细的构象变化。有了以上这些技术,再加上分子动力学模拟和机器学习方法等计算技术,我们将得以对配体结合的复杂过程进行更精确的建模,从而揭示全新的、可成药的中间状态。结语尽管冷冻电镜已经在SBDD领域取得了飞跃性的进展,但它的潜力远不止于此。在三维分析重构及深度学习算法等领域,若能将计算工具与更大、更高质量的数据集结合并进行训练,我们将能够描述蛋白质甚至其配体的更小幅度、更高分辨率的动态运动。我们还期望冷冻电镜在时间维度上的结构解析方法将使人们对大分子复合物的结合和解离过程有更深了解,为靶向药物的研发提供更多思路和机会。目前晶体学和大多数冷冻电镜结构所提供的只是能量最小值的瞬间结构,但对于开发新的药物作用模式而言,对机制和中间状态的理解至关重要,所以我们若能获取构象的动态信息,则对理性药物设计具有突破性意义。在综合了冷冻电镜的软硬件及方法的快速发展之后,我们可以得出结论:冷冻电镜有望为药物发现和人类健康做出巨大贡献。词表:1. 激动剂一种通过增加受体活性以产生生物反应的物质。2. 拮抗剂(也称中性拮抗剂)一种能阻断激动剂或反向激动剂的物质,在不存在激动剂或反向激动剂的情况下便没有活性
  • 我国冷冻电子显微学发展:守得云开见月明
    p style=" text-align: center " strong 第四届全国冷冻电子显微学与结构生物学专题研讨会在京举行 /strong /p p   strong  仪器信息网讯 /strong 2015年6月8日-11日,第四届全国冷冻 a href=" http://www.instrument.com.cn/zc/1139.html" 电子显微 /a 学与结构生物学专题研讨会在北京举行,本次会议的主题为“中国冷冻电子显微学的新阶段”。这是冷冻电镜研究领域第一次独立举行的全国性会议,相比于2009年在中国电子显微学年会期间二三十人的一个分会场,此次会议的参加人数达到了近200人。来自海内外的华人学者共聚一堂,交流冷冻电子显微学的最新研究成果。 /p p span style=" color:#0000ff "   strong  三十年的坚持与守望 /strong /span /p p   据了解,我国在该领域的研究起始于上个世纪八十年代,当时国内的条件非常艰苦,电镜都没有几台,更不用说计算机、软件系统。然而就是在当时那样艰苦的条件下,以清华大学隋森芳院士为代表的老一辈科学家因为看好这一技术的发展前景,依然坚持推进我国在这一领域的研究工作。同时,一直以来许多海外学者对于国内冷冻电子显微学的发展给予了极大的支持和帮助。 /p p   隋森芳在此次会议中多次提到海外学者对于我国冷冻电子显微学发展的贡献。他说:“我们所有这个领域的人都不能忘记他们的贡献。在上个世纪90年代,国内的条件非常困难,我们还处在起步阶段。王大能、周正洪他们这些在国外都已经很有名的学者,每次回来都会来我们的实验室,不分日夜的帮我们安装软件、调试程序,手把手的教学生制样,培养学生。一直到现在,程亦凡、隋海心、章佩君、徐晨等许多海外学者还经常到国内来交流和培训学生。” /p p span style=" color:#0000ff "    strong 迎来新的发展阶段 /strong /span /p p   近几年来,随着国家科研投入的加大以及一批优秀的海外学者回到国内。我国在该研究领域与国际先进水平的差距逐渐缩小。在本次会议上就有不少优秀的研究成果展示,如清华大学施一公教授研究组在世界上首次揭示了人源& amp #947 分泌酶复合物(& amp #947 -secretase)的精细三维结构 清华大学王宏伟、生物物理所刘迎芳课题组合作揭示了A型流感病毒RNA聚合酶复合体的三维冷冻电镜结构等。 /p p   另外,还有一些学者已经开始从事方法学的研究,尽力去发展完善这一技术。如:中科院生物物理所孙飞与中国科学院计算技术研究所张法合作开发了针对断层扫描成像三维重构算法ICON。 /p p   北京大学尹长城介绍说:“在2009年第一届会议上,只要是相关的研究,都可以在会议上作报告。但是现在只有高水平的研究成果才有机会展示。”美国匹兹堡大学教授章佩君也表示:“本次会议报告的水平非常高,我们看到了许多一流的研究成果。” /p p   同时为了推进人才培养,近年来国内组织开展了一系列的培训班。如自2008年起每隔一年举行的郭可信电子显微学和晶体学暑期培训班,以及自2013年起每隔一年举行的国际冷冻电镜图像处理技术培训班和今年开始举行的冷冻电镜成像技术培训班。 /p p   当前,我国已经有许多年轻的学者成长起来,他们在国际顶尖的实验室做着非常出色的工作,如:英国MRC的白晓辰、畅磊福,还有美国加州大学洛杉矶分校的江健森等。 /p p span style=" color:#0000ff "   strong  百尺竿头 更进一步 /strong /span /p p   虽然目前我国在该领域的研究取得了一定的成绩,隋森芳仍然提出:“国内冷冻电子显微学研究这5年的发展非常快,也有一些重要的成绩,但总的来说都还是点,整个领域还需要进一步发展。” /p p   另外,国内科研的软环境与国外相比还是有一定的差距。中科院生物物理所黄小俊介绍说,“目前国内研究所需的一些耗材试剂,需要从国外采购,这样不仅耗时、遇到问题沟通交流也不是很方便。”据了解,有时遇到试剂质量问题,甚至会给科研人员的研究带来不必要的困扰,耽误研究进程。 /p p   还有伴随着国内冷冻电子显微学的快速发展,技术人才短缺的问题逐渐显现出来。在本次会议上,国家蛋白质科学研究中心(上海)研究员丛尧,还有浙江大学教授洪健都发出了求贤令,希望能有合适的人才加入工作。洪健在会议中表示:“由于待遇体制等方面的原因,引进课题负责人相对容易,要招到合适的冷冻电镜技术人员却很难。” /p p span style=" color:#0000ff "   strong  科研文化的坚守与传承 /strong /span /p p   近年来,随着冷冻电镜仪器、直接电子探测相机、图像处理算法的发展,冷冻电镜的分辨率取得了革命性的突破,吸引了越来越多研究人员的关注,许多以X射线晶体学、NMR为技术手段的研究人员也开始进入这一领域。 /p p   在隋森芳院士看来,我国冷冻电镜领域的研究人员就像一个大家庭,海内外的研究人员关系一直非常融洽。长期以来,大家相互帮助、相互支持,有很多的交流和合作。他殷切的期望这种文化氛围随着该领域人员队伍的壮大,依然能够得到很好的坚守和传承。 /p p   同时,隋森芳指出冷冻电镜的工作需要积累,要做好这一工作,需要从样品制备、电镜技术、结构解析,到问题的解决都要去学习,这是一个系列的完整的工作,切忌急功近利,要耐得住性子,仔细的做好这项工作。 /p p   据了解,到目前为止我国已经在清华大学、生物物理所、国家蛋白质科学中心(上海)采购并安装了最先进的Titan Krios透射电子显微镜,浙江大学的第一台Titan Krios即将落户,而电镜三维重构技术的发源地英国目前也只有一台类似的冷冻电子显微镜。王宏伟表示:“和老一辈科学家的艰苦条件相比,我们现在的科研环境好了很多,我们应该抓住机遇,做出更好的成绩。” /p p style=" text-align: right " strong   撰稿:秦丽娟 /strong /p p style=" text-align: center " a href=" http://www.instrument.com.cn/webinar/icem2015/" img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/201565105926.gif" style=" width: 600px height: 151px " / /a /p
  • 冷冻电镜助力施一公发表诺奖级别研究成果
    p style=" TEXT-ALIGN: center" img title=" 201508210836068535.png" src=" http://img1.17img.cn/17img/images/201508/noimg/a35de701-612c-4691-87ab-8ffa6b744c6b.jpg" / /p p   8月21日,清华大学生命科学学院施一公教授研究组在《科学》周刊(Science)同时在线发表了两篇背靠背研究长文,题目分别为“3.6埃的酵母剪接体结构”(Structure of a Yeast Spliceosome at 3.6 Angstrom Resolution)和“前体信使RNA剪接的结构基础”(Structural Basis of Pre-mRNA Splicing)。 /p p   第一篇文章报道了通过单颗粒冷冻 a href=" http://www.instrument.com.cn/zc/1139.html" target=" _self" title=" " 电子显微 /a 技术(冷冻电镜)解析的酵母剪接体近原子分辨率的三维结构,第二篇文章在此结构的基础上进行了详细分析,阐述了剪接体对前体信使RNA执行剪接的基本工作机理。清华大学生命学院闫创业博士、医学院博士研究生杭婧和万蕊雪为两篇文章的共同第一作者。 /p p style=" TEXT-ALIGN: center" img title=" 201508210834276549.jpg" src=" http://img1.17img.cn/17img/images/201508/noimg/76442051-b081-40d5-81cc-c4b20324e1c0.jpg" / /p p   这一研究成果具有极为重大的意义。自1993年RNA剪接的发现以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。施一公院士研究组对剪接体近原子分辨率结构的解析,不仅初步解答了这一基础生命科学领域长期以来备受关注的核心问题,又为进一步揭示与剪接体相关疾病的发病机理提供了结构基础和理论指导。 /p p   清华大学将于近期召开新闻发布会,介绍这项重大的科研成果。 /p p   另据《赛先生》对施一公的一篇专访介绍,“这项研究成果的意义很可能超过了我过去25年科研生涯中所有研究成果的总和!”施一公振奋地表示:“我此前以通讯作者身份在《科学》、《自然》和《细胞》上发表的文章总共接近50篇,但我觉得这次的意义特别重大!” /p p   6月24日,Nagai研究组的一篇论文于《自然》网站在线发表,其工作将剪接体所涉及的一个中心复合物tri-snRNP的分辨率提高到了5.9个埃米,一度引起轰动。而此前人类对基因剪接体的认识精度只有29个埃米。1埃米为10 sup -10 /sup 米,即把1米分成十亿份,其之微小可以想见,因此Nagai的最新工作被称为近原子尺度的结构研究。 /p p   而施一公团队此次得到的结果不仅将精度由5.9个埃米提高到了3.6个埃米,而且其解析对象是真正的剪接体,而不是Nagai团队所取得的参与剪接体组装过程的复合物,从而第一次在近原子分辨率上看到了剪接体的细节。 /p p   对于施一公团队的最新成果,很多同行给出了非常高的评价:将受诺奖考虑。 /p p   一直以来,研究蛋白质结构有三种主要方法:X射线晶体衍射、核磁共振以及单颗粒冷冻电子显微镜(冷冻电镜)。而施一公所采用的冷冻电镜技术在过去两年里取得了革命性的进展,一方面是它的照相机技术,一方面是其软件分析的图像处理技术,尤其是前者的进步大幅提高了冷冻电镜的解析能力。 /p p   施一公说:“如果没有冷冻电镜技术,就完全不可能得到剪接体近原子水平的分辨率。” /p p   尤为幸运的是,早在冷冻电镜技术还远未成势的2007年,清华大学就在上述三种方法中选择了重点发展冷冻电镜技术,如今清华拥有世界最大的冷冻电镜系统。施一公把他和同事们当年卓有远见的选择归于“幸运”,他说“如果没有冷冻电镜肯定做不到今天的结果,而当年确实没想到冷冻电镜会出现飞跃性的进展。” /p p   “幸运”远不止是当年选对了技术。除了仪器的进步,在施一公看来,他们能领先竞争对手的主要原因是拥有极为成熟的样品处理方法。“也就是说如何让蛋白质服服帖帖、性质稳定,成为适合结构解析的样品”,他半开玩笑地说“这是我们的独门绝招,这个绝招即便写出来,别人不在我的实验室做上一两年也很难理解或吃透,因为这是师傅带徒弟一点点积累起来的。” /p p   除了靠谱的仪器、技术和学生,施一公说,“胆量”给了他们最大的惊喜。“本来我们的样品不是最理想的状态,学生有点不敢试,我说不妨上一下试试,最多就是不成功,只要有15埃的分辨率就很好了,结果算出来竟然有3.6埃。我们在今年整个4月份里做计算,那一个月突破连连、都跟做梦似的!” /p p /p
  • 冷冻电镜单颗粒技术的发展、现状与未来
    p   作者:黄岚青,刘海广(北京计算科学研究中心 复杂系统研究部) /p p    span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 1 引言 /strong /span /p p   在低温下使用透射电子显微镜观察样品的显微技术,就叫做冷冻电子显微镜技术,简称冷冻电镜(cryo-electron microscopy, cryo-EM)。冷冻电镜是重要的结构生物学研究方法,它与另外两种技术:X射线晶体学(X-ray crystallography)和核磁共振(nuclear magnetic resonance,NMR)一起构成了高分辨率结构生物学研究的基础,在获得生物大分子的结构并揭示其功能方面极为重要。 /p p   电子显微三维重构技术起源于1968 年,D.J. De Rosier 和Aaron Klug 在Nature 上发表了一篇关于利用电子显微镜照片重构T4 噬菌体尾部三维结构的著名论文,提出并建立了电子显微三维重构的一般概念和方法。Aaron Klug 本人也因为这个开创性的工作获得了1982 年的诺贝尔化学奖。 /p p   为了降低高能电子对分子结构的损伤,Kenneth A. Taylor 和Robert M. Glaeser 于1974 年提出了冷冻电镜技术,并且用于实验研究。经过三十多年的发展,冷冻电镜技术已经成为研究生物大分子结构与功能的强有力手段。冷冻电镜本质上是电子散射机制,基本原理就是把样品冻起来然后保持低温放进显微镜里面,利用相干的电子作为光源对分子样品进行测量,透过样品和附近的冰层,透镜系统把散射信号转换为放大的图像在探测器上记录下来,最后进行信号处理,得到样品的三维结构。 /p p   在超低温的条件下,电子带来的辐射损伤被有效控制。即便如此,分子样品所能承受的辐射剂量也是非常低的,导致信噪比非常低。另外,随着观测的进行,额外的电子会累积而造成分子的移动,导致获得的图像变得模糊。这就好比用一个简单的傻瓜相机拍摄在雨中飞驰的子弹,得到的影像必然是模糊的并且充满噪音。因此,冷冻电镜的方法技术在很长时间内只能确定个头比较大的样品的结构,比如病毒颗粒的结构,而且通常分辨率都不高。然而随着工程技术和算法的不断发展,能够确定的分辨率也越来越高(图1(a)),2016 年发布的谷氨酸脱氢酶结构的分辨率甚至已经达到了1.8 Å 。与此同时,也有越来越多的通过冷冻电镜技术得到的研究成果发表在高水平的期刊上(图1(b)),冷冻电镜正备受科学界的关注。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/5b2ef847-cad0-4d88-b1ad-ebf14bd21e9c.jpg" title=" 1.jpg" / /p p   图1 冷冻电镜技术和单颗粒重构技术越来越备受关注(统计数据来源于EMDataBank )(a)不同年份中利用冷冻电镜单颗粒重构技术能够达到的最高分辨率 (b)通过冷冻电镜技术进行的研究成果在不同杂志上发表的论文数 /p p   在最近几年,冷冻电镜技术有了革命性的进步,主要得益于三个方面的突破。首先是样品制备,通过利用薄膜碳层甚至石墨烯可以用更薄的冰层包裹分子样品来提高信噪比。第二个突破是电子的探测技术,也就是电子探测器的发明。在300 keV 电子的轰击下,传统的器件都会被高能量打坏,因此在电子探测器出现之前,冷冻电镜中使用的CCD相机需要将电子打在探测器上变成光信号,再通过CCD 把光信号转成电信号后得到图像,“电光—光电”转换的过程降低了信噪比。而现在电子探测器能够直接探测电子数量,同时,互补型金属氧化物半导体(CMOS)感光元件的应用使得探测器支持电影模式(movie mode),可以在一秒钟之内获得几十张投影图片。通过后期对样品进行漂移修正,再把这几十张图片叠加起来,从而大幅提高成像的信噪比。模糊的子弹一下子变得清晰,冷冻电镜的分辨率不断上升。第三个突破是计算能力的提高和软件算法的进步。冷冻电镜的模型重构通常需要对几万甚至几十万张投影图片进行分析、组装和优化。这需要先进的计算资源配合有效的算法才能实现。基于贝叶斯理论的模型重构框架解决了这个问题,我们在下文中详细介绍。综上所述,冷冻电镜技术不仅提高了空间分辨率,而且可以应用于很多以前不能解决的生物大分子的结构研究。 /p p   具有里程碑意义的成果是,2013 年加州大学旧金山分校(UCSF) 程亦凡和David Julius 的研究组首次得到膜蛋白TRPV1 的3.4 Å 近原子级别高分辨率三维结构,结果发表在Nature 上。我国在冷冻电镜的应用领域也有很大突破,代表性工作包括清华大学的施一公研究组和剑桥大学MRC 实验室Sjors H.W. Scheres 研究组合作在2015 年获得的γ 分泌酶复合物结构( 图2(c)), 以及2015 年清华大学高宁研究组和香港科技大学戴碧瓘研究组合作得到的3.8 Å 的真核生物MCM2-7 复合物结构 2015 年北京大学毛有东研究组、欧阳颀研究组与哈佛医学院吴皓研究组合作得到炎症复合体的高分辨率三维结构(图2(a)) 2014 年中国科学院生物物理研究所朱平研究组和李国红研究组合作得到的30 nm 染色质左手双螺旋高级结构(图2(b))以及2016 年中国科学院生物物理研究所柳振峰、李梅、章新政三个研究组合作得到3.2 Å 的捕光复合物II 型膜蛋白超级复合体结构。这些成果在结构生物领域得到巨大的反响,这也使得冷冻电镜高分辨率成像技术获得空前的关注。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/44d05be3-281b-4507-b0fc-9d200025422f.jpg" title=" 2.jpg" / /p p   图2 我国在冷冻电镜领域中获得高质量的研究成果(a)近原子分辨率的炎症复合体结构(图中NBD为核酸结合结构域,HD1 为螺旋结构域-1,WHD为翼螺旋结构域,HD2 为螺旋结构域-2,LRR为亮氨酸重复序列) (b)30 nm 染色质左手双螺旋高级结构 (c)3.4 Å 的人源γ 分泌酶复合物结构(图中NCT是一种I 型单次跨膜糖蛋白,APH-1 为前咽缺陷蛋白-1,PS1为早老素-1,PEN-2 为早老素增强子-2) /p p   strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "  2 图像处理技术 /span /strong /p p   经过多年的发展,目前冷冻电镜的数据处理部分主要包含了以下的流程(图3): /p p   (1) 衬度传递函数的修正(CTF correction) /p p   (2) 样品分子投影数据的筛选(particle selection) /p p   (3) 二维投影数据的分类和降噪(2D analysis) /p p   (4) 三维模型的重构和优化(3D reconstruction and refinement) /p p   (5) 多重构象的结构分析(heterogeneity analysis) /p p   (6) 对重建结构分辨率的分析(structure resolution assessment) /p p   (7) 结合生物化学原理和实验数据对三维结构的解读(model interpretation and validation) /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/ef81cf1e-580c-4eda-9e77-e2edc542f953.jpg" title=" 3.jpg" / /p p style=" text-align: center "   图3 冷冻电镜数据分析处理流程 /p p   图像处理软件的发展对冷冻电镜单颗粒重构技术极其重要,当前广泛使用的电镜分析软件系统主要包括SPIDER,EMAN2, FREALIGN,SPARX,RELION等。对于刚刚接触单颗粒重构技术的人来说,更偏好集成的软件套装来完成整个分析流程。我们在表1 中列出了大部分主流的综合冷冻电镜图像处理软件,以供参考。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/f4fafde5-da41-422a-acc4-bcd118be0c8e.jpg" title=" 4.jpg" / /p p style=" text-align: center "   表1 冷冻电镜中流行的图像处理软件 /p p    strong 2.1 衬度传递函数估计与修正 /strong /p p   衬度传递函数(contrast transfer function,CTF)是在数学上描述通过透射电子显微镜得到样品图像上的像差变化。准确地判断衬度传递函数对于确认显微图像的质量以及后续的三维结构重建极为重要。常用的估算衬度传递函数的参数软件是CTFFIND4。确定了CTF 的参数以后,就可以对采集到的冷冻电镜图像进行修正。这个修正过程其实就是图像处理中的图像复原技术。 /p p    strong 2.2 颗粒挑选 /strong /p p   接下来需要从原始数据中筛选出颗粒投影,也被称为“颗粒挑选”,颗粒挑选的好坏也将影响所有后续的分析和处理过程,是一个重要并且繁琐的步骤。颗粒挑选方式可以分为手动挑选、半自动挑选和完全自动挑选这几种。 /p p   在早期的分析中,对于结构的了解还非常少,优先考虑的都是人工挑选。但是自动的颗粒图像获取方法的出现使得在很短时间内可以收集数十万张颗粒图像,人工挑选大量的颗粒图像不太现实,并且人工的挑选通常会过于集中于某一类颗粒图像,导致遗漏和偏差。 /p p    strong 半自动和全自动的方法主要有以下三类: /strong /p p   (1)通过例如降噪、反衬增强、边缘算子等图像形态学方法搜索区域,基于数字图像处理学的原理,将颗粒图像与背景分离开来。 /p p   (2)基于模板的方法,通过扫描数据图像和已知的模板比较来挑选出潜在的颗粒图像,模板的来源通常为手动选出的数据图像中较为清晰的颗粒图像,或者是已知结构的投影。 /p p   (3)结合无模板和有模板的方法,通过一些有监督的机器学习算法进行颗粒挑选。 /p p   随着图像识别领域中深度学习方法的流行,各类基于深度学习的颗粒识别框架也被引入到颗粒挑选的过程中。随着深度学习方法的发展,相信如何把深度学习方法应用到单颗粒冷冻电镜图像分析领域的研究将会越来越多。 /p p    strong 2.3 二维图像分析——颗粒图像的匹配与分类 /strong /p p   二维颗粒图像的分类是获取三维结构过程的第一步。对二维图像的分析包括两部分:颗粒图像的匹配和颗粒图像的分类。 /p p   匹配的过程通常会对颗粒图像应用一些变换操作,通过关联函数去判断不同颗粒图像之间的相似程度。图像匹配的算法主要分为两种,即不依赖模型的方法和基于模型的方法,取决于是否存在利用样本先验信息得到的模板。 /p p   随着图像匹配的完成,颗粒图像需要进行分类。主要利用多元统计分析和主成分分析方法等算法,其他流行的二维颗粒分类技术还有神经网络分类,将图像在二维空间自组织映射(self-organising mapping,SOM)再进行分类和排序。 /p p   二维图像分析的目的是,首先通过图像匹配消除旋转和平移的误差,利用类内紧致、类间离散的原则进行图像分类,最终可以对类内颗粒图像进行平均,提高信噪比,从而实现对高分辨率三维结构的构建。 /p p    strong 2.4 模型重构和优化 /strong /p p   模型三维重构的基础是中心截面定理,重构过程中的关键问题是如何确定每个颗粒图像的空间角(orientation determination)。大多数模型重构和优化算法都是基于投影匹配(projection matching)的迭代方法。简单说就是,先利用粗糙的三维结构模型,进行投影得到参考的图像,和实验颗粒图像进行比对,根据结果来更新空间方位参数,继而构造新的三维结构,对实验图像的空间方位修正,形成迭代的过程,直至收敛就获得了最终的三维模型。 /p p    strong 2.5 分辨率的确定及二级结构的确定 /strong /p p   在模型优化的过程中,通常有很多指标给出结构的分辨率信息。目前一个较为广泛使用的分辨率信息参数是被称为傅里叶壳层关联函数(Fourier shell correlation,FSC)曲线,并通过在曲线上选取一个合适的阈值来判定分辨率。 /p p   在模型优化中经常伴随着过拟合的问题。过拟合的出现通常由于在优化过程时无法分辨“噪声”与“信号”。为了避免过拟合对分辨率的误判,最近一种被称为“黄金标准”(gold standard)的优化过程开始被广泛使用。 /p p   根据不同的分辨率,可以从结构中得到不同的信息量。按照分辨率数值大致分为三个范围: /p p   (1)结构分辨率大于10 Å 的生物大分子结构被视为低分辨率的结构,在低分辨率的结构范围内只观察得到一个大致的整体形状,以及有可能分辨出主要成分的相互位置关系。 /p p   (2)一个中等分辨率的生物大分子结构精度大约在4—10 Å 之间,在这个分辨率范围内的生物大分子结构已经可以得到一些二级结构的信息和分辨出大部分组成结构的相对位置关系。分子结构之间如果存在构象变化也可以分辨出来。 /p p   (3)高精度甚至是近原子级别的分子结构分辨率可以达到4 Å 以下。在高分辨率的三维结构中,可以准确地看见如α肽链等的二级蛋白质结构以及部分单独的残基,多肽链的结构变得清晰起来。同时高分辨率的分子结构可以描述精确的构象变化。 /p p   总之,FSC 曲线等标准提供的分辨率是一个有指导意义的数字,不可作为绝对参考来评价所获得的模型质量,需要批判地对待,尤其是要与生物分子系统的生物化学知识相结合。 /p p    strong 2.6 三维结构的多构象性和动态分析 /strong /p p   生物大分子通常具有内禀的柔性,所以生物分子的动态结构变化以及结构的不均一性一直是结构生物学的研究重点之一。在晶体状态下,生物分子的结构变化被晶格约束,一般只提供一个静态的结构和有限的动力学参数。冷冻电镜相比晶体学方法的优势在于可以捕捉生物分子在溶液中的形态,并记录下不同构象下的投影。因此针对冷冻电镜的数据可以进行多构象的重构,现有的一些算法是通过聚类分析、最大似然法分析等对多构象进行分析,得到的生物大分子结构形态和构象差异还需要结合分子功能来检验分子结构的合理性。 /p p    strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 3 最新进展和突破 /span /strong /p p    strong 3.1 最大似然估计理论 /strong /p p   近年来在单颗粒分析中取得重大突破的应当是最大似然估计(maximum likelihood)理论。最大似然估计的理论可以贯彻整个单颗粒技术图像分析的过程,在图像匹配,2D、3D分类 和模型优化上均可以应用,是一个强有力的理论工具。最大似然估计的算法已经在RELION、FREALIGN 等软件中实现,方便普通用户使用,这对于推动冷冻电镜成像技术的应用有重大意义,近三四年来有许多突破性的近原子级别分辨率的分子结构大多是由基于最大似然估计理论的分析软件得到。 /p p   3.1.1 减少计算需求 /p p   最大似然估计算法的计算量很大,如何降低计算量是一个重要问题。过多的计算资源消耗曾经阻碍这个方法在冷冻电镜单颗粒重构中的广泛应用。在减少最大似然算法在冷冻电镜应用中的计算需求方面,有两个重要的贡献是空间降维(domain reduction)算法和网格插值(grid interpolation)算法。 /p p   我们最近在研究一个新的方法来对旋转参数进行分步处理,初步的结果显示这种方法可以把计算复杂度降低一个维度,这个方法可很好地应用于高信噪比的数据处理,但对于低信噪比的数据分析还需要对该方法进行改进。 /p p   3.1.2 对最大似然方法的未来展望 /p p   在未来的研究中,关注点是减少计算的耗时和增加准确度。通用图形处理器(GPU)的应用和CUDA 编程框架已经显示出了在高性能计算领域的威力,研究表明GPU 技术可以显著减少计算时间,而RELION 也将发布支持GPU 计算的2.0 版本。 /p p   在加快计算速度的同时,提高模型的重构的准确性则更为重要。如何提高颗粒图像的准确性以及最大似然方法在这些方面的应用还有待深入探索。总而言之,最大似然方法独特的、可扩展的统计理论框架可以适用在冷冻电镜的各种问题上,如多构象、低噪声、信息缺失中均有很好的应用。 /p p    strong 3.2 流形嵌入方法(Manifold Embedding) /strong /p p   自然界的分子过程通常是连续的,比如三磷酸腺苷(ATP)合成酶等分子结构的状态变化通常都是连续的。现有的方法只能得到有限的、若干个离散的构象变化,限制了我们对于分子结构的进一步观察。而流形嵌入法则是通过将颗粒图像映射到具有特定拓扑结构的参数空间(manifold space),可以分辨出更为细致的动力学变化,进而实现对生物分子连续的结构变化过程的研究。Ali Dashti 等人已经利用这种方法成功刻画出核糖体的结构变化路径。 /p p    strong 3.3 揭开表面看实质 /strong /p p   冷冻电镜对更为复杂的结构并没有很好的处理方式,在一些分子量比较大,包含多层的病毒结构研究中,一直没有高分辨率的三维模型,这也是由于病毒普遍具有对称失配的特性,基因结构被壳体完全覆盖,无法通过二维图形处理的方式对内部结构直接进行重构。刘红荣教授通过改进衬度分离方法展示出了解决该类问题的途径,其发展的新方法已经成功应用在一个多面体衣壳NCPV的病毒颗粒(图4)上,通过该重构方法,使得外部的衣壳结构(图4(a))和内部的基因组结构(图4(b))分离,成功得到包含在内部的dsRNA 近原子级高分辨率结构和分布。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/7ab0c5f3-c403-4231-924f-9900a3758eb7.jpg" title=" 5.jpg" / /p p   图4 利用衬度分离方法得到对称失配情形下的病毒颗粒结构(a)外部的衣壳结构 (b)内部的基因组结构 /p p    strong 3.4 罗马不是一天建成的(Building Protein in One Day) /strong /p p   最近的研究成果显示,最大似然估计算法能够更好更快地完成三维重构,多伦多大学的Marcus A. Brubaker 教授针对最大似然估计算法提出了优化,有效地缩短了三维重构所需的时间。对传统迭代算法极度依赖于初始模型结构的缺点进行改进,同时通过采样优化的方式降低了计算量,减少计算时间,据称这些优化可以达到100000倍的加速,利用一台计算机工作站在一天内就能完成模型重构。 /p p   strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) "  4 展望与总结 /span /strong /p p   冷冻电子显微镜技术已经发展成为一个成熟的方法,应用于各种复杂的生物分子体系的高分辨结构研究。按照目前的发展势头,解决生物分子结构组(structural proteome)的问题已经不是遥不可及的了。在解决单一静态结构的基础上,冷冻电镜也展示了其研究多构象体系的潜力。下面对冷冻电镜在结构生物学研究领域的应用做一些大胆的展望,希望能抛砖引玉。 /p p    strong 4.1 解决膜蛋白的结构 /strong /p p   由于膜蛋白是镶嵌在磷脂分子构成的细胞膜内,目前在冷冻电镜领域的样品制备还没有很好的处理方法,因此还很少见到对膜蛋白的结构解析。随着技术的发展,新的试剂分子或者纳米尺度的容器可以用来制备单一性很高的稳定的细胞膜以及镶嵌在内的膜蛋白。这样就可以利用冷冻电镜的方法对膜蛋白进行结构研究。目前在纳米盘(nanodiscs)的研究领域已经取得了一定的进展,对 /p p   冷冻电镜解析高精度的膜蛋白结构,我们拭目以待。 /p p   strong  4.2 细胞内分子结构测定:从溶液内(in vitro)到细胞内(in situ) /strong /p p   当前的高分辨分子结构基本都是在溶液中提纯出来的分子样品,也就是通常所说的in vitro 实验。现在可以利用快速冷冻的方法把细胞固定,再用高能粒子枪对细胞进行高精度切片。在细胞的某些部位,常常有大量同类分子聚集,比如在内质网(endoplasmic reticulum,ER)部分有很多核糖体,在细胞骨架上会有大量的肌动蛋白(actin)分子。对这些切片进行成像研究可以获取这些分子在细胞环境的结构信息。 /p p   strong  4.3 细胞结构和分子在细胞内的分布:从部分到整体 /strong /p p   电镜可以用来做断层成像(cryogenic computed tomography,cryo-CT),应用于亚细胞层面的研究,比如细胞器的结构,蛋白质分子的分布,以及一些细胞骨架的构成。与超低温样品操作结合,cryo-CT 可以提供更高分辨率的信息,衔接分子层面和细胞层面的知识,对于了解细胞功能至关重要。在电镜成像研究领域,这将是一个有广阔前景的课题。 /p p   strong  4.4 多构象的识别和自由能景观确定 /strong /p p   人们开始不满足于近原子级别分辨率能够提供的信息,想要进一步刻画分子结构连续变化的状态。得益于冷冻电镜的成像特性,相对其他技术而言,冷冻电镜技术在时间尺度的系综上具有优势。在冷冻电镜下分子结构的动力学研究中,有两个值得关注的趋势,分别是能够获取分子结构“ 慢” 反应过程(10—1000 ms) 时间分辨(time-resolved)的冷冻电镜技术,以及能够分析出连续构象变化的分类算法。获取短期反应过程(10—1000 ms)分子结构的基础是在准备样本过程中分子反应的速度慢于冷冻样本的时间,目前混合喷雾(mixing-spraying)等快速冷冻技术的实现使得一些较慢的反应过程可以看到动力学变化。而流形嵌入算法在分类过程中取得突破,在更好地利用冷冻电镜观察分子的平衡态结构动力学变化和展现自由能景观上取得了令人鼓舞的成果。 /p p   strong  4.5 从静态结构到动态分子电影 /strong /p p   生物分子在室温下是活跃的,而且大多数的分子功能是通过结构的变化来实现的。基于X射线, 尤其是最近发展的X 射线自由电子激光(XFEL)的结构生物学的研究重点之一便是实现时间分辨的结构生物学研究(time-resolved structure determination)。到目前为止,基于X 射线的研究取得了很大的进展,但主要还是局限在对晶体的衍射方面,比如对光合作用过程中水分子分解的研究和光敏黄蛋白的光吸收过程的研究。三维冷冻电镜的单颗粒成像技术最有希望在单分子水平上实现对时间分辨的结构变化研究,同时,这对于样品制备和实验操作提出了非常高的要求。 /p p   strong  5 结束语 /strong /p p   冷冻电镜的技术突破及其在生物分子结构领域的应用把我们对分子生物学的研究推进了一大步,开始探索未知的区域。立足于解决单一构象的基础,对多构象以及动力学过程和热力学的研究也需要展开,这需要对现有技术进行提升并与其他方法进行结合,计算建模和模拟的方法也需要紧密结合起来,实现对生物分子系统的集成研究。 /p p   致谢 感谢北京大学欧阳颀教授对文章写作提出的宝贵意见。 /p
  • 大容量冷冻离心机发展趋势分析
    蜀科大容量冷冻离心机由变频电机驱动、微机控制,液晶、数字双屏显示,转头自动识别,在行业中质量领先。今天小编来分析一下大容量冷冻离心机未来的发展趋势。 在国内,如今大容量冷冻离心机产品面临着前所未有的发展时机。一些国外知名公司进入我国,也为交流和学习有关工作的先进技术和管理方法供应了便当条件。但是因为我国的离心机工作起步较晚,所以我国大容量冷冻离心机长期以来一直是种类规范少、出产规划小、流通不疏通,中低档产品多,中高级产品少。一些外资公司出产的高级离心机,因为价格昂贵而影响其推广应用。而对于我国的离心机公司来说,太没有集中性,厂点太多太散,产品质量跟不上;对于离心机的商场来说,无序的比赛是商场较为混乱。 大容量冷冻离心机在将来五年将坚持持续快速增长的商场才干,商场规划将不断扩大,商场前景的看好会吸引更多公司进入该工作进行博奕,但进入者需要站稳脚步就必须体现自身的技术优势,加强自动化、制造技术以及材料质料外观设计等方面的研讨,学习国外先进技术,要让公司直接与这些高校和科研单位以多种形式联合,让公司成为技术创新的主体。当前的大容量冷冻离心机市场还有很多缺乏的东西,这缺乏也意味着时机,就看行业里的企业能不能把握住时机了。
  • Science:冷冻电镜助力结构生物学发展
    图中展示的就是构成酵母线粒体大核糖体亚单位(yeast mitochondrial large ribosomal subunit)的各个组成蛋白质。Amunts等人根据利用低温冷冻电镜技术获得的酵母线粒体大核糖体亚单位及完整核糖体的结构图谱,一个个地合成出了上述这些组分蛋白。这个经过不断完善的结果与根据X线晶体成像技术获得的原子模型非常吻合。   先进的低温冷冻电镜(cryo&ndash electron microscopy)技术让我们获得了大量高分辨率的蛋白质结构图。   结构生物学(structural biology)研究的主要目的就是获得用于构成活体细胞的各种各样大分子(macro-molecules)生物组件的高分辨率图像信息。该研究主要依赖的技术手段就是X线晶体照相术(x-ray crystallography)以及核磁共振光谱分析检测技术(nuclear magnetic resonance spectroscopy, NMR spectroscopy)。不过这两种技术都有各自的局限性,比如X线晶体照相术只能够对生长得极为有序的三维结晶进行观察,而核磁共振光谱分析检测技术则要求被检测样品的纯度非常高,不能够有重叠峰出现。有很多生物大分子相互结合、组装之后形成的都是非常大的,或者非常不稳定、比较罕见的结构,都不太适合用上述这两种技术进行分析和检测。单粒子电子显微镜技术(Single-particle electron microscopy, EM)则能够观察少量非结晶样品,获得高分辨率的结构图谱。   使用单粒子电子显微镜技术可以获得任意排列方向的分子复合体( molecular complexes)的结构图像。该技术会从每一幅图像中选出单个的复合体(粒子),然后借助计算机来判断它们的排列方向。最后将各个不同视角的图像组合在一起,得到该分子的三维立体图像。不过由于高能电子束会对生物大分子起到破坏作用,打断分子内的共价键(covalent bonds),并且诱发一系列级联式的有害化学反应,所以这种放射性损伤效应给单粒子电子显微镜技术带来了极大的局限性,在实验时用来记录影像的电子束的能量受到了非常大的约束。   20世纪80年代,Dubochet等人报道了一种单粒子电子显微镜技术革新成果,将该技术引向了高分辨率成像之路。他们在低温条件(cryogenic conditions)下将待检样品放在一层薄薄的、透明的冰上用单粒子电子显微镜进行成像观察。这种方法就是所谓的&ldquo 低温冷冻电镜技术(cryo&ndash electron microscopy, cryo-EM)&rdquo ,他能够对含水的粒子(hydrated particles)进行直接成像。低温除了具有这些优势之外,还能够减少电子束对样品产生的放射性损害。不过电子束的照射量还是不能够太大,只有这样才能够清晰地反映出分子结构的细节,获得高质量的、低信噪比(signal-to-noise ratio, SNR)的三维结构图像。由于将每个分子的多张图像信息组合在一起能够更进一步地降低图像的信噪比,所以,对数万、乃至数百万个蛋白质复合体进行分析就会产生数十万张图像。   不过依靠低温冷冻电镜图像来判断生物大分子的结构给计算机处理分析工作带来了一大挑战。在借助多图像组合平均手段来改善信噪比时,必须知道每一颗粒子的方向,但是由于信噪比太低,我们对这些粒子方向的判断又明显感觉准确性不够,这就形成了一个矛盾。要解决这个问题,最成功的方法就是&ldquo 重复(iterative)&rdquo ,质量高的图像能够给出更准确的方向信息,而这些方向信息又可以帮助我们获得更高质量的图像。   直到最近这一段时间,绝大部分单粒子低温冷冻电镜图片的分辨率都非常低,连10埃都达不到,所以很多人都将这种技术嘲笑为 &ldquo 一团浆糊学(blob-ology)&rdquo 。蛋白质二级结构中的&alpha 螺旋(&alpha helices)结构只有在分辨率达到9~10埃,甚至更高分辨率的情况下才能够看清 而另外一种二级结构,&beta 折叠(&beta strands)结构则只有在分辨率达到4.8埃以上时才能够看清。达到3.5埃的分辨率,就可以为蛋白质或核酸等生物大分子构建原子模型(atomic models),将各种目前已知的核酸结构或氨基酸结构填入其中了。如果要了解蛋白质复合体形成时发生的各种化学变化,就必须获得原子级别分辨率的细节信息。低分辨率的结构信息也不是一无是处,当在与高分辨率结晶图像相互配合、印证,用来判断组成复合体的各种不同组分时更加有意义。因此,即便分辨率较低,低温冷冻电镜技术也还是帮助科学家们解决了很多生物学难题,比如解析出了与其他辅因子共同结合的核糖体的结构问题,以及构象只能够维持片刻时间的核糖体瞬时结构等问题。   在过去的三十年,低温冷冻电镜设备取得了长足的进展,在样品制备、成像、计算机处理等实验技术方面有了一定的提升,这些使低温冷冻电镜成像技术的分辨率有了极大的提高。高度连贯的场发射电子枪(Highly coherent feld-emission electron guns)也使保留焦点以外的图像的高分辨率信息成为可能,这对于单粒子低温冷冻电镜非常有帮助。这种技术创新帮助科研人员获得了20面体病毒粒子(icosahedral virus particles)的图像,而且清楚地看到了其中的&alpha 螺旋结构。由于这种病毒是高度对称的,所以比较容易生成高质量的、最佳分辨率的低温冷冻电镜图像。   随着研究人员不断地开发出更稳定的载物台、更好的显微镜抽真空技术,以及自动化的数据采集系统,这一切的技术进步都让我们能够获得更多、质量更好的电镜图像,因此才能够得到高质量的、能够对其中的氨基酸侧链进行解析的二十面体病毒粒子三维结构图像,以及分辨率达到5埃的核糖体结构图像。不过在对更小一点的非对称粒子的解析工作中还是很难解析到&alpha 螺旋结构。   最近在低温冷冻电镜设备领域取得的最大进展就是引入了直接检测设备(direct detector device, DDD)照相机。这种DDD设备能够直接在传感器上记录图像,从而绕过了传统的、需要闪烁设备和光纤的电荷耦合装置(charge-coupled device, CCD)探测器,以及其他一些在用摄影胶片(photographic film)记录图像时必须要经过的繁杂的处理过程。因此,图像的信噪比也得到了极大的提升。在分辨率方面的提升也与之前的一些革新手段相当。在使用了DDD设备之后,还有可能在电镜图像中直接构建原子模型,甚至能够在最具挑战性的检测工作中进行&alpha 螺旋和&beta 折叠的解析工作。   DDD设备的引入还在另外一个方面对低温冷冻电镜的图像起到了改善作用,凭借的就是该设备极快的读出速度(readout rate),该读出速度能够发现被冰包裹的被观测粒子在电子束中的运动情况。使用DDD设备不仅能够发现这种问题,还能够解决这种问题,因为现在的电镜就好像是一台摄像机,可以拍摄一段录影,记录整个过程,而不再像以前那样,只是一台照相机,只能够拍摄出一张张固定的图像。   有了高质量的图像,又有可以借助计算机对因为电子束而移位的粒子进行矫正的工具,我们就可以获得大量高质量的低温冷冻电镜图像,比如本文开头展示的那张分辨率高达3.2埃的线粒体核糖体亚单位图像,以及下图那张分辨率达到3.3埃的20S蛋白酶体图像和哺乳动物感受器通道TRPV1的图像。 TRPV1的图像尤其值得一提,因为TRPV1蛋白是一种膜蛋白,只有四级对称性(four-fold symmetry),比核糖体要小一个数量级。所以之前大家一直都认为很难用低温冷冻电镜对该蛋白进行结构解析的研究工作。有了 DDD成像技术、更好的计算机辅助和生物化学技术之后,Liao等人终于在某些区域获得了分辨率高达3.4埃的图像,从而有机会开展原子建模工作,在整个结构生物学(structural biology)发展历史上写下了重重的一笔。   单粒子低温冷冻电镜结构解析图。左图展示的是随机排列的蛋白质粒子在电镜下的图像,这些图像经过计算机处理之后可以用来计算大分子复合物的三维立体结构图像。由于有了DDD技术,左边的这些图像信息就可以构建出右图中展示的原子模型。图中展示的就是20S蛋白酶体的结构图。   乍一看上去,这些成果都好像是特例。比如核糖体里由于含有大量的RNA,所以是一幅高度紧缩的图像,非常紧密,不太容易受到辐射的损失。而20S蛋白酶体拥有14级对称性,所以也非常适于进行低温冷冻电镜成像操作。即便是TRPV1通道蛋白也都拥有一定的内部对称性。但是最近刚刚成功获得的一幅电镜图像就完全不具备上述这些&ldquo 先天优势&rdquo ,这就是分辨率达到4.5埃的人&gamma 分泌酶复合物(&gamma -secretase)的结构图。人&gamma 分泌酶复合物是一种更小的膜蛋白复合体,完全没有对称性。该成果说明,只要待测样品能够准备得恰当,尽可能减少其在结构上的异质性,我们就完全有可能利用低温冷冻电镜技术获得各种蛋白质的三维立体结构图。   这些科研新进展恰好出现在低温冷冻电镜技术的低谷期。最近刚刚获得的HIV-1病毒糖蛋白三聚体结构模型就引起了极大的争议,因为多位电镜专家都坚持认为,这个结构模型不仅在结构上不准确,就连用来进行分析的原始图像也都没有真实地反映该三聚体的真实信息。这场争论也让我们意识到,我们目前的确没有太多的手段对低温冷冻电镜图像的质量进行验证,虽然有一些手段,但是都没有得到广泛的推广和应用,另外也缺乏一套规范,图像的信号非常差,所以也很难判断最终得出的结构图是否就是被测样品的结构。这是一个非常值得关注的问题,不仅仅是因为这次的HIV-1病毒糖蛋白三聚体结构模型具有重大的科研价值,比如在HIV疫苗的开发工作中会起到非常重要的指导作用等。   在结构解析方面还有大量的工作需要我们去完善:方便使用的显微镜相板(phase plates)有助于更好地聚焦,获得高对比度的图像,就好像相衬光学显微镜(phasecontrast light microscopy)那样,这能够让对图像进行信息采集的工作更加简便,而且质量更高。另外在探测器方面也可以进一步提高图像的质量。即便是最先进的探测器也达不到符合理论要求的表现。各种用来进行图像分析的计算机软件,比如用来矫正电子束相关移位的软件,或者对各种粒子进行分类、解读的软件也将会变得越来越强大。新型的样品承载系统会进一步减少电子束对样品的位移作用。更加可靠的、更加强大的验证工具可以让我们更有信心,保证不会纳入质量不高的原始图片素材。虽然现在还不知道低温冷冻电镜技术未来会走向何方,但是有一点是可以肯定的,那就是低温冷冻电镜图像绝对不再是一团浆糊了。   原文检索:   Martin T. J. Smith, John L. Rubinstein. Beyond blob-ology. Science 8 August 2014 DOI: 10.1126/science.1256358
  • 冷冻电镜再发威 清华颜宁研究组在《自然》发文
    p   9月1日,清华大学医学院颜宁教授研究组在《自然》(Nature)期刊发表题为《电压门控钙离子Cav1.1通道3.6埃分辨率结构》(Structure of the voltage-gated calcium channel Cav1.1 at 3.6 angstrom resolution)的研究长文(Research Article),报道了首个真核电压门控钙离子通道的近原子分辨率三维结构,为理解众多具有重要生理和病理功能的电压门控钙离子和钠离子通道的工作机理奠定了基础。 /p p   电压门控离子通道是一大类位于细胞膜上、通过感受电信号控制离子跨膜进出细胞的蛋白质。上世纪四五十年代,英国科学家霍奇金和赫胥黎发现了动作电位 之后发现电压门控钠离子通道(Nav通道)引发动作电位,而电压门控钾离子通道(Kv通道)则能使细胞去极化,恢复至静息电位。五十年代,科学家发现在没有钠离子的情况下,依赖钙离子也能产生动作电位,这是由电压门控钙离子通道(Cav通道)介导的生理过程。钙离子本身是细胞内信号传递的第二信使,通过Cav通道,将细胞膜两侧的电信号变化转变为细胞内部的化学信号,引起一系列反应,包括肌肉收缩、腺体分泌、基因转录、细胞凋亡、神经递质的传递等。80年代,首个Cav通道的基因被克隆,序列分析显示,它与Nav通道的序列高度相似。 /p p   电压门控离子通道的功能异常或紊乱与一系列疾病相关,比如Nav1.7直接与痛觉相关,其异常激活或失活会导致异常疼痛或者无法感知痛觉。目前已知,Nav1.7突变会导致红斑性肢痛症 Nav1.4或Cav1.1突变会导致低钾性周期瘫痪 Nav1.1或Cav2.1突变导致变异型家族偏瘫型偏头痛 Nav、Cav以及Kv功能异常则可能导致心率紊乱、癫痫等。电压门控离子通道目前是仅次于G蛋白偶联受体(GPCR)的第二大药物靶点。外科手术用到的麻醉剂通过抑制Nav通道起作用 Cav通道则是降压药物的靶点。因此,对于电压门控离子通道的研究,尤其是结构生物学上的研究具有重要的生理学和药理学意义。 /p p   与Kv通道近20年的结构生物学进展相比,Nav和Cav通道的结构姗姗来迟,主要是因为与由同源四聚体构成的Kv通道不同,真核生物Nav和Cav通道由一条具有1500-2000个氨基酸的肽链折叠成四个类似但不尽相同的结构域,每个结构域具有六次跨膜螺旋,相邻结构域之间由长度各异的序列连接。这一特点使得蛋白的重组表达和结晶难度相比Kv通道都大大增加。因此,一直以来仅有纳米分辨率的真核生物Nav和Cav通道冷冻电镜影像报道,无法揭示任何结构细节信息。近几年,随着冷冻电镜技术的革新,利用该技术获得近原子分辨率结构已经成为现实。颜宁研究组利用清华大学的冷冻电镜平台,首次揭示了真核生物Cav通道的结构。 /p p   Cav1.1是哺乳动物中10个电压门控钙离子通道中的第一个被鉴定的,主要分布在在骨骼肌,它的主要功能是在肌肉细胞接受运动神经元信号产生动作电位时感受膜电势的变化,进而激活与其直接作用的下游肌质网膜上的高通量钙离子通道RyR1,促使钙离子快速大量释放到细胞质中,从而引起肌肉的收缩,该过程称为兴奋-收缩偶联(excitation-contraction coupling,EC coupling),Cav1.1和RyR1是引发这个过程最为关键的两个膜蛋白。 2015年1月,颜宁研究组在《自然》报道了RyR1的3.8埃冷冻电镜结构 同年12月,她们在《科学》上报道了Cav1.1的4.2埃电镜结构。但是由于分别率所限,尽管该结构首次揭示了Cav1.1复合物中各个辅助亚基(包括& amp #945 2& amp #963 亚基、& amp #946 亚基和& amp #947 亚基)与离子通道亚基(& amp #945 1亚基)的相互作用区域,以及离子通道亚基内部同源结构域的排布,但是大部分区域无法精确到氨基酸侧链,因而不能对蛋白的状态进行深入的分析。在冷冻电镜结构中,4埃的分辨率往往是一个分水岭。要想清晰地分辨出蛋白质氨基酸的侧链,往往需要高于4埃的分辨率(数字越小分辨率越高),而其难度也相应增加。 /p p   在刚刚发表的《自然》论文中,颜宁研究组通过多次尝试,成功优化了蛋白的制样方法,从而获得了高质量的冷冻电镜成像。他们从近万张冷冻电镜照片中挑出超过一百万的蛋白单颗粒,利用单颗粒三维重构的方法最终获得了整体3.6埃的近原子分辨率结构,其中中心区域分辨率超过3.5埃(图1)。 /p p style=" text-align: center " img style=" width: 600px height: 556px " title=" " border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201609/noimg/61aee1e1-15c0-4a76-95a8-9892c0d15426.jpg" width=" 600" height=" 556" / /p p style=" text-align: center " 图1:Cav1.1冷冻电镜数据。 /p p   新报道的3.6埃电镜结构相比之前4.2埃尽管在数字上看似进步不大,却有着质的飞越。在该结构中,大部分氨基酸的侧链能够被清晰分辨,从而可以据此搭建出准确和完整的结构模型。新的结构揭示了大量新信息,更新了我们对电压门控钙离子通道的认识,比较具有代表性的特征包括:1)该结构展示了一个处于封闭构象的钙离子通道,而四个电压感受器(VSD)都处于去极化状态,因而判断该结构展示的是一个“去活化”的状态 2)辅助性亚基& amp #945 2& amp #963 的结构被基本完整构建,其与离子通道亚基& amp #945 1的相互作用也完全呈现 3)辅助性亚基& amp #945 2& amp #963 是一次跨膜的蛋白还是膜锚定蛋白在之前一直存有争议,通过新的结构并结合质谱分析,可以判断出& amp #945 2& amp #963 亚基为膜锚定蛋白 4)该结构解析了更为清晰的离子选择性过滤器,在离子选择性过滤器中甚至还可以看到两团相连的密度,很有可能是结合的钙离子 5)通过三维分类,可以得到两个构象不同的结构。对比两个结构可以发现胞内侧的& amp #946 亚基发生很大的构象变化,该构象变化可能是引起肌肉兴奋-收缩偶联的结构基础。 /p p style=" text-align: center " img style=" width: 600px height: 368px " title=" " border=" 0" hspace=" 0" vspace=" 0" src=" http://img1.17img.cn/17img/images/201609/noimg/cf1fecba-fd03-4b9a-ae4a-90462ed72e4d.jpg" width=" 600" height=" 368" / /p p style=" text-align: center " 图2:Cav1.1整体三维结构示意图。 /p p   至此,颜宁教授研究组已经成功解析了肌肉兴奋-收缩偶联通路上的两个关键膜蛋白Cav1.1以及RyR1的结构,从而为理解这一基本生理过程的分子机理打下重要的结构基础。更重要的是,高分辨的Cav1.1结构不仅揭示了Cav通道的结构,也为理解目前仍未有高分辨率结构的真核Nav通道的结构与机理提供了重要的模板,可以利用现有Cav1.1的结构尝试解释此前半个多世纪积累起来的有关Cav和Nav通道的大量生物实验和临床数据,并且为利用结构进行新型药物设计、筛选和优化提供了重要基础。 /p p   生命学院CLS项目五年级博士生吴建平、结构生物学高精尖中心卓越学者闫浈以及生命学院CLS项目二年级博士生李张强为本文共同第一作者 生命学院二年级博士生钱兴洋在轮转期间参与该课题实验 医学院周强副教授为数据处理提供了建议和帮助。北京生命科学研究所董梦秋研究员和卢珊参与质谱鉴定的合作。电镜数据采集于清华大学冷冻电镜平台,计算工作得到清华大学高性能计算平台、国家蛋白质设施实验技术中心(北京)、联想高性能计算、以及荣之联董事长王东辉先生的支持。颜宁教授为本文通讯作者,她是清华-北大生命科学联合中心研究员、膜生物学国家重点实验室成员、拜耳讲席教授,本工作获得科技部重大科学研究计划专项和基金委创新群体支持。 /p p br/ /p p style=" text-align: center " a href=" http://www.instrument.com.cn/webinar/icem2016/index2016.html" target=" _self" title=" " img src=" http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width=" 600" height=" 152" / /a /p
  • 冷冻真空干燥技术的主要应用
    (1)生物制品的冷冻真空干燥我们做过生物制品冷冻真空干燥的品种有皮肤、角膜、海参、螺旋藻等;从文献中看到其他人做过的冻干产品有心瓣膜、活菌、活毒、骨骼、各种疫苗、血液制品等。生物制品的冻干要求保持产品的活性,活菌、活毒等微生物真空干燥后的存活率要求80%以上,以便于应用。因此,对冻干机工艺要求严格,预冻温度、速度、时间的控制很不容易,保护剂配方、剂量、加入时间和加入方法非常关键,不同的人可能采用不同的配方,达到的效果可能相同。一般各种保护剂的配方都是互相保密的。(2)药材和药品的冷冻真空干燥我们做过的品种有人参、山药、纳豆激酶、北冬虫夏草、林硅油、鹿茸等;从文献中看到其他人做过的品种有各种粉针制剂、中草药制剂、抗生素、布洛芬、脂质体和其他纳米颗粒等。药材和药品需要长期保存,真机需要速溶,放置氧化,避免污染杂菌,保持药效的长久稳定。这些要求都需要通过冷冻真空干燥技术来实现。药材和药品的冷冻真空干燥工艺要求也很严格,寻找合适的冻干保护剂、添加剂、赋形剂都很困难,生化干燥阶段的温度控制、加热速率控制都很关键,严格防止塌陷。(3)食品的冷冻真空干燥我们做的食品有菠菜、苹果、香蕉、库尔勒香梨等;从文献上查到其他人做过的品种有咖啡、茶叶、大蒜、鱼肉、调料等。食品种类繁多,形状、性质相差较大,冻干工艺需要在实验中确定。冻干食品时间较长、耗能较多、价格较高,应该合理选择冻干参数,优化冻干过程,降低冻干昂成本,根据市场需要,选择性价比较高的食品做冷冻真空干燥。(4)冷冻真空干燥在其它领域的应用冷冻真空干燥除了在生物制品、药品、食品和纳米材料制备方面的应用之外,还可以干燥超市的木质文物、古画等,冻干发出来的这些产品能恢复物品的原样;还可以干燥动植物标本,使标本长期保存,栩栩如生;医疗事业做实验用的、具有毒害物质的动物尸体采用冻干干燥法的处理,可以实现环保等。
  • JASIS 2018新品发布之日本电子:冷冻电镜
    p    strong 仪器信息网讯 /strong 2018年9月5日,日本最大规模的分析仪器展JASIS 2018在东京幕张国际展览中心盛大开幕,吸引来自全球各地的万余名观众参观出席。 /p p & nbsp   作为知名的科学仪器制造商,日本电子在展会期间带来其电镜新品——CRYO ARMTM300(JEM-Z300FSC)。 /p p style=" text-align: center " img title=" 日本电子冷冻电镜CRYO ARMTM300(JEM-Z300FSC).jpg" style=" width: 267px height: 400px " alt=" 日本电子冷冻电镜CRYO ARMTM300(JEM-Z300FSC).jpg" src=" https://img1.17img.cn/17img/images/201810/uepic/1c403c0a-a82b-4f1f-aa71-361257246cf1.jpg" height=" 400" border=" 0" vspace=" 0" width=" 267" / /p p style=" text-align: center " strong 日本电子冷冻电镜CRYO ARMTM300(JEM-Z300FSC) /strong /p p   2017年6月26日,日本电子全球同步发布终极冷冻电镜JEM-Z300FSC。该产品可谓冷冻电镜界的一款重磅产品,当前主要应用于生物分子如蛋白质解析等,但随着解决方案的不断开发,其应用领域已经向材料等领域开始拓展。据现场该产品全球销售负责人介绍,截至目前,该冷冻电镜已经售出3台,其中就包括武汉病毒所在6月份采购的1台。 /p p   JEM-Z300FSC主要特点如下:1)冷场发射电子枪 2)欧米伽能量过滤器 3)最高加速电压300kV 4) 自动进样装置 5)自动单颗粒数据采集软件 6)JEOL成熟的相位版技术 7)全自动操作软件等。 /p p & nbsp /p
  • 英都斯特发布磁场催化冷冻箱新品
    全球首家磁场催化类科研仪器生产商创新点:(1)以磁场催化为主要功能,比市面上常规冷冻箱保鲜冷藏冷冻效果更佳; (2)低温冷冻下磁场催化能够有效减少对细胞的损坏; 磁场催化冷冻箱
  • 质谱、冷冻电镜助力施一公Science上再发新成果
    1月8日,国家蛋白质科学研究(上海)设施质谱分析系统用户清华大学施一公课题组在国际期刊《科学》(Science)上在线发表了题为The 3.8 A Structure of the U4/U6.U5 tri-snRNP: Insights into Spliceosome Assembly and Catalysis 的研究论文。报道了酿酒酵母剪接体组装过程中的一个关键复合物U4/U6.U5 tri-snRNP高达3.8埃分辨率的冷冻电镜结构,并在此基础上分析了剪接体的组装机制,为进一步理解剪接体的激活及前体信使RNA(pre-mRNA)剪接反应的催化机制提供了重要分子基础。上海设施质谱分析系统负责人黄超兰和她的团队成员黄敏参与了此项课题的研究,同时也是这篇论文的作者。  该研究通过单颗粒冷冻电子显微技术(冷冻电镜)进行蛋白复合物三维结构解析。该文章为清华大学教授、中科院院士施一公与上海设施质谱分析系统的第二篇有关剪接体的合作论文。利用高分辨质谱技术对剪接体复合物的成分进行了准确鉴定,并利用交联质谱技术对剪接体复合物组成蛋白的分子间相互作用进行分析。质谱数据为蛋白复合物的结构搭建提供分子基础,更为酿酒酵母剪接体结构搭建提供了除冷冻电镜之外的最直接有效的证据。  自上海设施试运行以来,质谱分析系统陆续为全国及其它国家超过100个用户的200余个课题提供技术服务,参与的用户合作课题已经在Science,Nature Immunology,Molecular cell,PNAS 等国际期刊上发表了 10 余篇文章,为多领域科学家的科学研究提供了有力的技术支持。质谱分析系统现在正全面运行开放。
  • 酶剂研发,探索真空冷冻干燥机的无限应用
    S系列真空冷冻干燥机,作为北京四环起航科技的匠心之作,专为生物医药、食品保鲜、多肽提取及酶制剂制备等领域的冻干需求量身打造。这款实验型设备以其独特优势,在行业内脱颖而出。其最显著的创新点在于物料干燥舱与冷阱的分舱设计,这一巧妙布局彻底打破了传统设计的局限,实现了两舱间温度与气流变化的完美隔离。这种设计不仅确保了干燥舱与冷阱各自温度调节的独立性与精准性,更为用户提供了前所未有的灵活性和控制精度,使得整个冻干过程更加细腻可控。S系列在性能上同样令人瞩目,其冷阱极限温度可达惊人的-83℃,而达标温度稳定在-78℃,配合极限真空度1Pa的卓越表现,为高效、高质量的冻干作业奠定了坚实基础。通过先进的中间介质循环技术,以高稳定性硅油作为热传导介质,实现对搁板温度的精确调控,确保板层温度均匀一致,进一步提升冻干效果。此外,双机复叠制冷技术的运用,使得压缩机不仅制冷迅速,且冷阱温度更低,捕水能力显著增强,有效缩短了冻干周期,提高了生产效率。同时,压缩机配备的二级启动延时保护及压力过载保护功能,为设备的安全运行提供了双重保障,也更好地保护了珍贵的实验物料不受损害。值得一提的是,S系列真空冷冻干燥机的物料干燥舱采用了耐高温、耐低压的航空级亚克力材质高透明有机玻璃罩,这一设计不仅确保了实验过程的可视化,让用户能够全程观察冻干细节,还大大提升了操作的便捷性和实验结果的直观性。在智能化控制方面,S系列搭载了先进的PLC可编程逻辑控制系统,系统运行稳定可靠,能够实时监测并记录真空度、冷阱温度、物料温度及搁板温度等关键参数,每分钟自动存储一次数据,形成详尽的冻干曲线,为科研工作者提供了宝贵的数据支持。同时,通过USB及TCP接口,用户可轻松导出数据,实现数据的快速共享与分析。最近,LGJ-S20型号真空冷冻干燥机已在丹彤(天津)医药有限公司顺利安装并投入使用。我公司的专业售后工程师不仅现场为操作人员详细讲解了设备的使用方法及注意事项,还亲自驻场完成了设备的3Q验证工作,确保了设备在最佳状态下运行。如今,这台高效能的冻干机已成为天津丹彤酶剂研发项目中的得力助手,助力其在科研道路上不断突破,迈向新的高度。
  • 二期4台冷冻电镜进驻 商业冷冻电镜服务商佰翱得坐拥8台
    日前,4台高端冷冻电镜顺利进驻无锡佰翱得生物科学有限公司。至此,江阴企业佰翱得坐拥8台冷冻电镜,其中包括3台国际最先进的第四代冷冻电镜Titan Krios,一举成为全球最大商业冷冻电镜服务供应商。图自佰翱得冷冻电镜国际创新中心(笔者注:佰翱得早在2012年,就拥有当时最完善的室内晶体衍射平台。为适应全球结构解析需求,2018年,采购了一台200kv的TF20冷冻电镜,大大提高了样品优化的效率。 在2020年,为进一步整合上下游能力加速研发,采购了最新一代的300kv的冷冻电子显微镜,此时,平台的冷冻电镜数量为4台。日前,二期佰翱得冷冻电镜平台的4台冷冻电镜(2台Krios G4、1台Glacios、1台120Kv冷冻透射电镜)顺利入驻,平台冷冻电镜数量达到8台)冷冻电镜技术于2017年摘得诺贝尔化学奖,是指不需要晶体就能在原子分辨率水平上解析药靶结构的新崛起技术。经过4年沉淀,佰翱得成功把冷冻电镜SPA和MicroED两大技术应用到新药研发过程中,可为国内外生物医药企业提供药靶蛋白制备、生物分析与化合物筛选、复合物晶体结构与冷冻电镜结构解析,以及结构模拟、三维结构计算、化合物虚拟筛选等计算结构生物学技术服务,大幅加速“源头创新”新药研发进程。据了解,由于拥有国际领先的蛋白制备平台,佰翱得冷冻电镜技术具备得天独厚的技术优势,促使该企业实现了多项行业领先:2017年在国内率先筹建商业化冷冻电镜平台;2018年引进国际顶尖的冷冻电镜专家,打造国际领先科学团队;2019年装备了中国生物医药工业界第一台冷冻电镜设备,成为全球首家推出从基因到冷冻电镜结构一体化服务的标杆企业。无锡佰翱得生物科学有限公司由双良集团与多名拥有国际药企工作经历的海归科学家联合创立,截至目前已为近200家国内外客户的超过3000个新药研发项目提供服务。
  • 规划300kV冷冻电镜20台!水木未来全球冷冻电镜与AI药物创新中心投用
    7月4日,清华大学-北京大学生命科学联合中心青山湖平台挂牌暨2022年暑期学校启动及水木未来冷冻电镜项目投用仪式在青山湖科技城举行。清华大学校长助理、清华大学-北京大学生命科学联合中心主任王宏伟,西湖大学校长助理王廷亮,北京大学生命科学学院副院长、教授高宁,清华大学生命科学学院副院长欧光朔,杭州城西科创大走廊党工委委员、管委会副主任施黄凯,临安区领导杨泽伟、陈立群、蔡萌、裘凯,以及临安区有关部门、清华大学、北京大学、浙江大学等高校师生参加活动。活动现场青山湖科技城是浙江建设科技强省和创新型省份的重大工程,也是杭州城西科创大走廊的重要一极。自成立之初起,青山湖科技城就高度重视科技创新,集聚了36家科研院所,拥有众多共享仪器设备和研发平台;近年来,更是聚焦高端装备制造、未来微电子、新材料等领域,打造成为城西科创大走廊“硬科技”创新策源地。水木未来冷冻电镜项目投用仪式在杭州市临安区政府推动下,水木未来“全球冷冻电镜与人工智能药物创新中心”设立于青山湖科技城,旨在建立全球最大的冷冻电镜平台和生物大分子高精度结构数据库,面向全球科研机构和创新药企提供服务和创新疗法共同开发;与清华大学和国内外顶级科研机构合作,提升基础科研水平,整合基础研究、技术开发和成果转化,打造全球化结构与AI药物创新发现基地。水木未来源自清华,是一家基于冷冻电镜和AI的精准创新药和疗法研发企业,拥有亚太区第一个商业化冷冻电镜服务平台,在小分子、抗体药、RNA药物、蛋白降解、基因治疗等领域,助力全球创新药企药物研发。经过一年的紧张筹备,水木未来“全球冷冻电镜与人工智能药物创新中心”在青山湖科技城投用。参观水木未来冷冻电镜实验室目前,6台300kV高配电镜已就位,结合自主研发的AI驱动的新一代电镜结构解析和建模软件平台、GraFuture™ 石墨烯载网冷冻制样技术,水木未来青山湖基地在推动冷冻电镜效率、分辨率和产业化方面,又向前迈出一大步。据青山湖科技城管委会相关负责人介绍,该项目的投用,将有力提升科技城乃至临安、城西科创大走廊的生物医药创新研发水平,并加快生物医疗领域产业集聚,助力城西科创大走廊打造生命健康产业创新策源地,以“结构+计算”助力加速全球创新药物发现。会议期间,与会人员参观了水木未来冷冻电镜项目实验室、青山湖科技城规划展览馆,并举行了政校深化合作座谈。笔者注:据了解,此次在青山湖科技城投用的水木未来冷冻电镜研发平台,规划了20台高规格300KV冷冻电镜,不久的未来还将引入用于原位高分辨解析的新型高端电镜。水木未来“全球冷冻电镜与人工智能药物创新中心”一期正在装机6台300KV新型高端冷冻电镜、2台200KV冷冻电镜,旨在建立全球最大的冷冻电镜平台和生物大分子高精度结构数据库,推动新一代AI精准化药物和疗法的源头创新。据悉,电镜平台综合实验室由上海音宁电子科技有限公司设计施工一体化建设。有关负责人透露,全球已有多家顶尖实验室表达合作意愿。
  • 南方科技大学冷冻电镜实验室将揭牌 拟安装10台冷冻电镜
    p   在深圳市的大力支持下,南方科技大学冷冻电镜实验室即将在南科大校园内落成,并投入使用。 /p center img alt=" " src=" http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/1.gif" height=" 282" width=" 500" / /center p /p p   2017年10月4日三位科学家因为开发并发展了冷冻电镜技术而获得诺贝尔化学奖。南科大在学校发展的战略布局上充分展现了前瞻性,早在2017年6月 10日,冷冻电镜项目就已正式立项,并邀请我国目前最优秀的青年结构生物学家之一杨茂君教授主持。“栽下一棵梧桐树,凤凰就来了”,南科大冷冻电镜实验室主任王培毅教授这样形容实验室对海内外人才强大的吸附力。自项目启动以来,实验室已吸引了来自海内外诸多青年才俊和重量级专家学者的加入。其中包括行业内唯一的中科院院士、我国最早使用冷冻电镜开展生物大分子研究工作的隋森芳院士。今年7月,2017年诺贝尔化学奖的三位得主之一、美国哥伦比亚大学 Joachim Frank教授将应我校陈十一校长邀请到访南科大,探讨开展进一步合作。 /p center img alt=" " src=" http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C2%201.gif" height=" 282" width=" 500" / /center p /p p   南方科技大学冷冻电镜实验室拟于今年年底正式挂牌成立,届时将同时举办国际研讨会,几乎所有在冷冻电镜方面的国际著名科学家都将出席,包括另一位2017年诺贝尔化学奖得主、剑桥大学MRC-LMB的Richard Henderson教授。 /p p   冷冻电镜技术改变了许多生物领域的研究方式,使得诸多研究能够快速取得重大突破。冷冻电镜技术已成为结构生物学研究的利器,这项技术克服了生物分子结构解析中的许多难点,被诺贝尔奖官方称为“使得生物化学进入一个新时代”。图像是我们理解一切事物的关键所在,将那些人眼不可见的物体成功地可视化,通常是科研产生突破的基础。 长久以来,人们认为电子显微镜只能用于非活性生物样品的成像,因为电子显微镜的高强度电子束会严重损伤生物样品,是冷冻电子显微技术改变了这一切。现在,研究人员可以将具有活性的生物大分子快速冷冻到液氮温度(-196度),并在此温度下保持和转移,使样品最大限度保持原来形态。并将那些以前无法看见的生物变化的动态过程实现可视化——这对我们从原子尺度了解生命过程,以及研发药物带来决定性的影响。 /p center img alt=" " src=" http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C3%201.gif" height=" 282" width=" 500" / /center p /p p   南方科技大学冷冻电镜实验室拟安装300千伏冷冻电镜6台,200千伏冷冻电镜2台,120千伏电镜2台,共计10台冷冻透射电子显微镜及其它71台/套相关辅助仪器和样品制备设备,全部建成后,将是我国配套最齐全、最先进的冷冻电镜实验室。目前,两台300千伏冷冻电镜已完成安装,进入电镜性能综合调试阶段,预计将于8月开始试运行。一台120千伏电镜将于7月上旬投入使用。据悉,有关冷冻电镜的配置,我校前期作了大量调研工作,包括与实验室科学顾问委员会成员Richard Henderson教授进行了深入探讨,以保证每台冷冻电镜除了拥有一般共性之外,在配置上同时各具不同特性,以适应与支持南科大冷冻电镜实验室在接下来即将开展的一系列世界前沿性基础及应用研究。此外,实验室将积极开展多学科交叉研究,力争在冷冻电镜的软、硬件技术,设备和应用方面取得新的突破,克服冷冻电镜目前操作复杂、控制程序繁琐及应用成本较高的缺陷,实现冷冻电镜的常规应用。并与学校已经建成的X射线晶体学平台、生物质谱蛋白质组学分析平台形成互补,开展国际上最前沿的蛋白质科学研究,为结构生物学、细胞生物学、神经科学,化学、材料科学等领域搭建交叉学科平台。 /p center img alt=" " src=" http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C4%201.gif" height=" 282" width=" 500" / /center p /p p   地处粤港澳大湾区核心的深圳是一座新兴科技产业云集的城市,也被人们誉为中国最具有硅谷气质的城市。今年5月26日在深圳举行的“未来论坛X深圳峰会” 上,我校校长陈十一曾指出:和硅谷相比,深圳欠缺的还是基础研究能力,也包括应用基础研究,产业和研究的对接。南方科技大学建设的世界一流冷冻电镜实验室,旨在通过利用这一国际最先进的科学技术之一,大力发展基础科学研究,聚焦重大疾病诊断、新药开发、精准医疗、功能材料研发和基础学科建设等领域,促进深圳新材料、医疗卫生、健康产业和高等教育的发展。同时积极服务于国家战略需求,造福14亿中国人。 /p center img alt=" " src=" http://www.sustc.edu.cn/upload/images/news/%E7%A7%91%E7%A0%94%E6%96%B0%E9%97%BB/%E5%86%B7%E5%86%BB%E7%94%B5%E9%95%9C5%201.gif" height=" 282" width=" 500" / /center p /p p   在新一轮科技革命和产业变革中,中国将创新作为引领发展的第一动力,把科技创新摆在国家发展全局的核心地位,大力实施创新驱动发展战略。在国家重大需求的牵引和顶层设计的指导下,利用冷冻电镜的技术优势,在核心技术和关键领域实现重大突破,对产业升级、经济转型发展产生巨大推力,正是南方科技大学冷冻电镜实验室建立的初衷和目标。 /p p style=" text-align: right "   文字:任亦 /p p style=" text-align: right "   视频制作:李艺松 /p p style=" text-align: right "   摄像:蔡秉伦 黄立斌 /p
  • 南科大冷冻电镜中心正式揭牌,将成为中国规模最大的冷冻电镜设施中心
    p style=" text-indent: 2em text-align: justify " 2018年11月19日,南方科技大学冷冻电镜中心揭牌仪式在南科大生物楼举行。2017年诺贝尔化学奖获得者、冷冻电镜技术开创者之一Richard& nbsp Hendersen,深圳市发改委副主任蔡羽,南方科技大学校长陈十一,中国科学院院士隋森芳等出席仪式。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201811/uepic/b83644de-356d-4e5f-9341-72a1a5e4725a.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-indent: 2em text-align: center " 揭牌仪式现场 /p p style=" text-indent: 2em text-align: justify " 南科大冷冻电镜中心是深圳市政府出资、我校牵头建设的重大基础科学设施平台,旨在支撑深圳市、粤港澳大湾区及中国南方在生物医药、精准医学、新能源新材料方面的科学研究及产业升级。南科大冷冻电镜实验室拟安装300千伏冷冻电镜6台,200千伏冷冻电镜2台,120千伏电镜2台,共计10台冷冻透射电子显微镜及其它71台/套相关辅助仪器和样品制备设备,全部建成后,将是我国配套最齐全、最先进的冷冻电镜实验室。经过一年多的前期准备工作,目前项目一期的2台300kv冷冻电子显微镜已经完成安装调试,投入使用。冷冻电镜技术改变了许多生物领域的研究方式,使得诸多研究能够快速取得重大突破。冷冻电镜技术已成为结构生物学研究的利器,这项技术克服了生物分子结构解析中的许多难点,被诺贝尔奖官方称为“使得生物化学进入一个新时代”。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201811/uepic/7a1b61e0-a88d-4542-9e00-fb3cdc96a122.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-indent: 2em text-align: center " 陈十一致辞 /p p style=" text-indent: 2em text-align: justify " 陈十一在仪式上致辞,他代表南科大对与会嘉宾的到来表示欢迎,对深圳市委市政府对南方科技大学冷冻电镜中心的支持表示感谢,同时也对冷冻电镜中心负责人王培毅和工作人员前期的辛勤工作表示肯定。他表示,未来几年,冷冻电镜中心将致力于把基础知识和药物开发结合起来,在深圳的工业发展中扮演重要角色。南科大将以此为契机,秉承和发扬“敢闯敢试、求真务实、改革创新、追求卓越”的创校精神,为深圳市社会和经济的发展继续贡献力量。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201811/uepic/17b55b90-20aa-4b77-85b2-0fddf9d79466.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-indent: 2em text-align: center " Richard& nbsp Henderson致辞 /p p style=" text-indent: 2em text-align: justify " Richard& nbsp Henderson在致辞中对南科大冷冻电镜中心的落成表示祝贺,并表示为这个优秀的冷冻电镜中心的建立感到由衷高兴。他指出,南科大冷冻电镜中心落成之后,将会成为全球最大的三个冷冻电镜中心之一,另外两个分别在美国和英国。目前,世界上大概有100个类似的研究机构,南科大冷冻电镜中心落成之后,其研究能力将会达到全球的前5%,对相关科研领域的研究产生更大的影响。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201811/uepic/524b4e7f-e049-43a5-8cb4-e08283ee6ed4.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-indent: 2em text-align: center " 蔡羽致辞 /p p style=" text-indent: 2em text-align: justify " 蔡羽表示,南科大冷冻电镜中心是生命科学、新材料、新能源领域基础性、关键性的重大科研设施,填补了深圳市、广东省、中国南方地区在该领域的空白,为我市及地区相关领域内的科学研究及产业升级转型提供了支撑平台,希望冷冻电镜中心为深圳市、粤港澳大湾区的产业升级及进一步经济社会全面发展提供新的动力源泉。 /p p style=" text-indent: 2em text-align: justify " 随后,冷冻电镜中心负责人王培毅、Richard Henderson、蔡羽、隋森芳共同为南方科技大学冷冻电镜中心揭牌。 /p p style=" text-indent: 2em text-align: justify " Thermofisher Scientific亚太区材料与科学事业部总经理Marc Peeters、Thermofisher Scientific公司代表Jonathan Jing、中国航天科工深圳航天工业技术研究院董事长崔玉平、中国国际金融集团董事总经理陈十游也在仪式上致辞。 /p p style=" text-indent: 2em text-align: justify " 南方科技大学第二附属医院、深圳市第三人民医院院长刘磊,加州大学洛杉矶分校教授周正洪,加州大学旧金山分校教授程亦凡,牛津大学教授章佩君等参加了揭牌仪式。 /p p style=" text-indent: 2em text-align: left " 冷冻电镜发展国际研讨会也于同日在南科大图书馆111报告厅举行。 /p
  • 冷冻干燥技术在土壤检测中可以发挥的作用
    全国第三次土壤普查的通知国务院印发《关于开展第三次全国土壤普查的通知》(以下简称《通知》),决定自2022年起开展第三次全国土壤普查,利用4年时间全面查清农用地土壤质量家底。《通知》明确了普查总体要求、对象与内容、时间安排、组织实施、经费保障和工作要求。普查时间为2022—2025年。2022年完成普查技术、规范、物资等准备,开展全国性试点;2023—2024年全面铺开普查,并形成阶段性成果;2025年开展普查数据审核、成果汇总、验收与总结,全面完成普查任务。普查的对象和内容普查对象为全国耕地、园地、林地、草地等农用地和部分未利用地的土壤。其中,林地、草地重点调查与食物生产相关的土地,未利用地重点调查与可开垦耕地资源相关的土地,如盐碱地等。普查内容为土壤性状、类型、立地条件、利用状况等。其中,性状普查包括野外土壤表层样品采集、理化和生物性状指标分析化验等;类型普查包括对主要土壤类型的剖面挖掘观测、采样化验等;立地条件普查包括地形地貌、水文地质等;利用状况普查包括基础设施条件、植被类型等。冻干技术成为土壤检测方法之一在对土壤检测分析的过程中,真空冷冻干燥技术可以发挥很大的优势。因为冷冻干燥是在低温,真空的环境中进行,不会改变土壤的结构,成分,性质,外形,微生物,沉积物等,只是移除土壤中的水分,可以长时间存储,易运输。在后续检测过程中,可以正确的检测出土壤理化和生物性状。富睿捷冻干机助力土壤检测富睿捷科技专注冻干机研发生产,SOIL系列专为土壤冻干设计。直立式的内置式冷阱盘管,有效捕捉溶剂;冷阱温度最低可达到-55℃,捕水能力强;更大、更多的样品隔板托盘,最多可到0.4㎡。
  • 冷冻电镜等两项国家重点研发计划专项在清华大学启动
    近日,国家重点研发计划蛋白质机器与生命过程调控重点专项“植物非编码RNA-蛋白质复合机器的功能和作用机制” 项目和“高分辨率冷冻电镜新技术新方法的发展及在结构生物学中的应用”项目的实施启动会在清华大学召开。教育部科技司、清华大学科研院、科技部高技术研究发展中心和项目参与单位相关人员参加了启动会。  项目负责人戚益军教授和王宏伟教授分别介绍了项目的总体情况,从研究背景、研究内容和课题设置、预期目标及技术路线、研究团队和前期工作基础、进度安排和预期成果、项目内部管理机制等方面进行了全面阐述。各课题负责人对课题进行了详细的汇报。与会专家就项目及课题的研究目标、技术路线、未来工作计划等进行了全面评价,并提出了许多宝贵的意见和建议。  戚益军教授负责的“植物非编码RNA-蛋白质复合机器的功能和作用机制”项目拟解决植物非编码RNA-蛋白质复合机器如何影响染色质结构并调控转录、植物非编码RNA-蛋白质复合机器如何在转录后水平调节基因表达、植物中新非编码RNA及其靶标的系统发现和生物学功能解析等关键科学问题,为非编码RNA作为新的基因资源在作物分子育种中的应用奠定理论基础。项目组整合了国内从事植物非编码RNA、表观遗传学、发育生物学和生物信息学等研究的优秀团队,预期达到以下目标:(1)发现2-3个参与转录调控的新型非编码RNA-蛋白质复合机器,揭示它们在DNA甲基化、去甲基化、组蛋白修饰、染色质结构和转录调控过程中的功能和作用机制。(2)发现3-5个参与转录后调控的新型非编码RNA-蛋白质复合机器,揭示它们在调节基因表达中的功能和作用机制。(3)建立高可信度地鉴定新非编码RNA及其靶标的方法和分析流程,揭示2-3个非编码RNA及其互作蛋白在植物重要生物学过程(如植物-昆虫互作)中的功能。  王宏伟教授负责的“高分辨率冷冻电镜新技术新方法的发展及在结构生物学中的应用”项目,针对冷冻电镜技术在应用过程中的关键技术瓶颈,包括样品制备、数据收集与处理及结构解析等方面,进行原创性的方法学研发与创新。项目的实施将依托国家蛋白质科学研究(北京)设施的冷冻电镜平台,目标是通过建立完整的高分辨率电镜研究技术流水线,大幅度提升高分辨率冷冻电镜方法学从样品制备到数据收集和数据处理的自动化程度、可重复性以及结构解析效率。项目的预期目标为:(1)建立具有普适性的冷冻电镜样品制备方法,将样品制备技术在自动化程度、可控性、可重复性等指标提高20%以上。(2)建立高度自动化的冷冻电镜平台,使数据采集成功率达到90%以上,实现采集与处理效率的成倍增长。(3)构建完整、开放、具有自主知识产权的冷冻电镜结构解析、原子模型构建与分析平台,将从数据采集到原子模型构建的时间缩短至当前的25%以内 (4)依托于大型设施建立具有完整技术链条的冷冻电镜技术平台,将冷冻电镜与X射线晶体学技术相结合,发展新一代结构生物学。  作为项目牵头单位,清华大学注重加强项目法人单位内部制度建设,按照《关于进一步完善中央财政科研项目资金管理等政策的若干意见》(中办发〔2016〕50号)文件要求,制定了差旅、会议等4个管理办法,正在研究制定重点专项项目管理、间接费用、预算调整等5个管理办法,确定了科研财务助理实行财务处、会计核算中心、项目/课题组三级管理模式。学校已将重点研发计划相关政策文件和校内相关制度汇编成册,发放项目研究团队遵照执行。  清华大学、北京大学、中国科学技术大学、中山大学、中国科学院生物物理研究所、中国科学院上海生命科学研究院、中国科学院上海生命科学研究院植物生理生态研究所、中国科学院计算技术研究所、中国科学院高能物理研究所、中国科学院发育与遗传研究所、中国科学院基因组研究所的专家以及项目的各课题负责人、课题骨干等参加了这2个项目启动会。
  • Cell | 从冷冻电镜到发现新致病基因
    纤毛(cilia),又称为鞭毛(flagella),是突起于真核细胞表面的一类重要细胞器,普遍存在于高等生物几乎所有细胞中,在细胞运动,胚胎发育,信号转导等过程中发挥重要作用。部分纤毛能通过水解ATP提供的能量自主运动,称为运动纤毛(motile cilia)。运动纤毛骨架的微管为“9+2”分布,包括周围九根双联微管(doublet microtubule)和中间两根单微管(singlet microtubule)。双联微管内部腔内有几十种蛋白质附着,外部周期性分布有轴丝动力蛋白(axonemal dynein)等复合物,共同维持微管的稳定,介导纤毛的运动。运动纤毛通过规律性的摆动,为细胞运动提供动力,如精子的游动;或者推动细胞表面液体流动,如气管上皮细胞通过纤毛摆动清除粘液和病原体。运动纤毛的生长和运动由几百种蛋白质精密协作来完成,相关的基因突变可引起原发性纤毛运动障碍症(primary ciliary dyskinesia, PCD)。PCD主要表现为先天性呼吸道纤毛粘液清除障碍和慢性呼吸道感染,并常伴随内脏异位和先天性心脏病(胚胎纤毛运动异常),男性不育(精子鞭毛运动异常),先天性脑积水(脑室纤毛运动异常)等。此类遗传病尚无诊断“金标准”,也缺乏有效的治疗手段。基因测序技术筛选已知致病基因的突变是辅助该疾病诊断的重要手段,但仍有近三分之一PCD病例的致病基因未被发现,因此鉴定新的PCD致病基因尤为重要【1】。2021年10月28日,哈佛医学院Alan Brown 实验室联合新加坡国立大学的Sudipto Roy和英国MRC Harwell研究所的Dominic P. Norris实验室(共同一作为桂淼和Hannah Farley, Priyanka Anujan, Jacob R. Anderson)在Cell杂志上发表了题为De novo identification of mammalian ciliary motility proteins using cryo-EM的论文。文章首次从牛气管组织中纯化出运动纤毛双联微管复合物,解析了近原子分辨率的冷冻电镜结构,结合多种不同建模手段,成功鉴定出36种蛋白质并构建了原子模型,进一步通过基因敲除动物实验阐明了两种新鉴定的蛋白Pierce1/Pierce2缺陷导致疾病的分子机理。在之前的研究中,Alan Brown 实验室联合圣路易斯华盛顿大学张锐实验室合作解析了单细胞生物莱茵衣藻的双联微管原子模型【2】。通过比较哺乳动物和衣藻的结构,作者发现其中22种微管腔内蛋白在不同物种中高度保守,但哺乳动物双联微管结构的显著特点在于:1)A微管内存在一种高度稳定的纤维(tektin bundle);2)微管外部轴丝动力蛋白锚定复合物(outer dynein arm-docking complex)由五种蛋白组成而衣藻是三种蛋白;3)两种蛋白Pierce1/Pierce2能穿透微管壁并连接微管内外的复合物。通过结构分析,作者发现Pierce1/Pierce2起到稳定外部轴丝动力蛋白的作用,推测两种蛋白的缺失会导致轴丝动力蛋白的丢失,进而引起纤毛运动障碍。在此基础上,作者构建了这两种基因敲除的斑马鱼和小鼠模型,并发现基因敲除动物存在内脏异位,纤毛运动障碍,轴丝动力蛋白丢失等表型,其中双基因敲除小鼠会导致胚胎早期死亡。基因敲除导致的类似PCD症状表明Pierce1/Pierce2是潜在的致病基因。本文对冷冻电镜技术的未来发展以及对遗传疾病的诊疗都有一定的启发意义。随着AlphaFold2时代的到来,不乏有人认为结构生物学或者冷冻电镜的发展将面临“末日”。诚然,AlphaFold2确实能相对准确地预测单个蛋白或者一些复合物的三维结构,但面对本文这种数百兆道尔顿分子量的、几十种不同蛋白组成的超大复合物结构,还远远无法准确预测。更重要的是,这些复合物直接来源于天然动物组织,在建模之前尚不清楚其蛋白组分,更无法预测其结构。因此这种超大的天然复合物是AlphaFold2的“软肋”,却正是冷冻电镜擅长的领域。事实上,AlphaFold2等结构预测方法的进步能提高超大复合物原子模型构建的效率,而不是取代。此外,蛋白质在细胞内发挥功能时往往会有多种不同构象,结合不同蛋白或者有各种修饰,这些动态结构信息都需要通过冷冻电镜等实验手段来解析。遗传疾病的诊疗方面,以本文涉及到的原发性纤毛运动障碍症PCD为例,它是一种涉及到呼吸道,多种内脏器官和生殖系统等方面的复杂遗传性疾病,传统诊断方法过程繁琐且准确性一般,因而建立该疾病的致病基因库并采用基因测序进行辅助性诊断越来越重要。过去,PCD致病基因的发现主要是基于正向遗传学,即对临床确诊病例进行基因测序,如“大海捞针”般鉴别致病突变,迄今为止,这种方法在过去几十年间共鉴定出约50种PCD致病基因,但其存在“低通量”这一显著问题。而本文通过结构生物学分析,一次性鉴定出几十种运动纤毛骨架蛋白质,并且大部分蛋白质没有详细的功能研究,都可能成为PCD等遗传病的候选基因。如本文一样,通过反向遗传学的方法有目标地建立基因敲除动物模型,研究这些蛋白的功能,能快速丰富PCD遗传病相关基因的数据库,为将来的疾病诊断和基因治疗提供指导。原文链接:https://doi.org/10.1016/j.cell.2021.10.007
  • 冷冻电镜:正在并将为中国提供广阔的研究“舞台”
    仪器信息网讯 2014年7月28日-30日,&ldquo 2014冷冻电镜三维分子成像国际研讨会&rdquo 在中国科学院上海生科院生化与细胞所/国家蛋白质科学中心&bull 上海(筹)召开。   冷冻电镜三维分子成像国际研讨会源起于2008年由郭可信先生的学生组织发起的&ldquo 郭可信电子显微学和晶体学暑期学校&rdquo 。当时我国在电子显微学领域的研究实力非常强,但主要体现在材料物理方面,在生物领域的研究应用还基本处于空白状态。会议的组织者希望能通过举办这样的会议将国内生物电镜的应用带动起来。第一届主要以培训的形式为主,到2010年第二届会议时,组织者提出了在培训同时举行冷冻电镜三维分子成像国际研讨会,以促进冷冻电镜前沿研究的交流。   本次大会主席由海外华人学者加州大学旧金山分校副教授程亦凡、美国纽约州立大学石溪分校教授李慧林,联合中科院上海生化细胞所/国家蛋白质科学中心&bull 上海(筹)的丛尧、何勇宁研究员四位专家构成主席团。   会议参会人员近300人,远远超过了原计划的150人的预期。主办方邀请了来自世界各地的30余位杰出的电子显微学家作大会报告及培训指导,如美国贝勒医学院教授、美国科学院院士Wah Chiu (赵华),美国加州大学旧金山分校教授、美国科学院院士David Agard,美国加州理工学院教授、霍华德休斯研究员Grant Jensen,美国加州大学洛杉矶分校教授、纳米机器电子成像中心主任Z. Hong Zhou (周正洪)、中国科学院院士隋森芳等。   冷冻电镜技术发展迎来新纪元   2014年年初,冷冻电镜曾被《Nature Methods》杂志评选为&ldquo 2014年最受关注的技术&rdquo 。从此次会议的盛况来看,这一称号冷冻电镜可以说&ldquo 当之无愧&rdquo ,会议甚至吸引了此前一直利用X射线晶体学进行结构生物学研究的清华大学教授施一公前来参加。   冷冻电镜突然之间如此备受关注,和去年年底华人学者程亦凡发表的一项成果有着莫大的关系。2013年12月5日,程亦凡与同事David Julius两个实验室合作,以近原子分辨率(3.4 埃),确定了在疼痛和热知觉中起中心作用的一种蛋白质TRPV1的结构。这项成果可以说是冷冻电镜应用研究的一个分水岭,因为在此之前结构生物学研究主要依赖X射线晶体学,也可用核磁共振(NMR)来研究部分小分子的结构。人们认为冷冻电镜的分辨率不够高,如果研究分子量较大的病毒、核糖体等还可以,而研究小分子量的蛋白质则无法实现。   另外,由于TRPV1属于膜蛋白,膜蛋白是重要的药物作用靶点及细胞信号传导通道,所以自1997年它被发现以来,许多研究者都希望能够解析它的结构。但这类蛋白嵌在细胞膜中,很难得到蛋白结晶,因而很难利用X射线晶体学方法对其进行解析。而如今,冷冻电镜以接近X射线晶体学的分辨率成功解析了TRPV1膜蛋白质的结构,可以说是结构生物学研究的一个里程碑事件。程亦凡认为将来会有不少从事X射线晶体学研究的结构生物学家将冷冻电镜作为自己的重要研究工具。   李慧林表示:&ldquo 亦凡的工作可以说为冷冻电镜的应用打开了一个新的局面。膜蛋白是重要的药物靶点,因此会有越来越多的制药公司关注这一技术。而现在的制药公司会做很多X射线晶体学的研究工作,以后他们可以有新的选择了。&rdquo   我国冷冻电镜技术研究渐入佳境   冷冻电镜技术最先由欧美国家在上世纪70、80年代开发并应用,我国科学家在90年代开始冷冻电镜技术的研究,起步比较晚,但近年来伴随海外华人学者的大力帮助,以及近十年来一批优秀的科学家学成回国,我国在这一领域的研究开始蓬勃发展。   今年是该会议第四次举办,程亦凡参加了每一届会议,在他看来这四届会议可以说很好的见证了国内冷冻电镜的发展历程。他说:&ldquo 2008年、2010年两届会议我们所有的报告人都来自海外,而到了2012年就有不少国内的学者带来精彩的报告,今年无论是报告人还是参会人数又达到了一个新的高度。&rdquo   李慧林则表示:&ldquo 2008年国内当时只有一两个课题组从事冷冻电镜应用研究,而到今年粗略估计已有近20个课题组。清华大学、生物物理所、国家蛋白质科学中心、中科大、中山大学、厦门大学、兰州大学等都有老师在做这方面的研究。&rdquo   此外,为了推动我国生物学的快速发展,政府对于这一领域的研究也投入了大量的财力。Wah Chiu在参观了本次大会举办地国家蛋白质科学中心&bull 上海(筹)后感叹地说:&ldquo 我在美国从来没有看到像这样完备的蛋白质研究平台,这为中国和世界上的科学家的提供了非常好研究条件。&rdquo   政府科研投入的增加也在一定程度上推动了我国冷冻电镜的技术研究。程亦凡说:&ldquo 2008年时国内还只有清华大学订购了一台300kV的Titan Krios冷冻电镜,到2010年生物物理所和清华大学各有一台,2012年国家蛋白质科学中心&bull 上海开始筹建,订购了3台冷冻电镜,包括一台Titan Krios,今年我们看到这些仪器都已到位,另外浙江大学也开始筹建冷冻电镜实验室,计划采购两台冷冻电镜。&rdquo   经过各方面的努力,当前我国的冷冻电镜研究已经取得了一定的成绩,与国际先进水平的差距逐渐缩小。就在今年,生物物理所李国红与朱平研究员合作在《Science》杂志上发表了冷冻电镜30纳米染色质高级结构解析 清华大学施一公院士与剑桥生物医学院Sjors H. W. Scheres教授合作在《Nature》杂志上发表了利用冷冻电镜技术解析人类&gamma -分泌酶(&gamma -secretase)的三维结构。   另外,据介绍生物物理所研究员孙飞已经在开始做冷冻电镜技术开发方面的工作。程亦凡说:&ldquo 我觉得他们的工作非常有意义,我们不能只是用别人的技术来做我们的研究,而是不仅要会用这一技术,还要尽力去发展完善这一技术,这样才能有更好的成就。&rdquo   冷冻电镜发展前景广阔 人才需求缺口大   随着冷冻电镜技术的发展,对于人才的需求也越来越大。我国在冷冻电镜人才培养方面,经过几年时间的积累,也有一些优秀的青年人才成长起来,这其中郭可信电子显微学和晶体学暑期学校发挥了重要作用。丛尧说:&ldquo 我们希望通过暑期学校能培训一批高技术冷冻电镜人才,为冷冻电镜技术在我国的后续发展打下坚实基础。&rdquo   程亦凡介绍说:&ldquo 我们现在培养的学生在海外很受欢迎。像隋森芳院士培养的学生很轻松就能拿到几个国际顶级科研机构的博士后offer。&rdquo   但是现在对于冷冻电镜人才的需求非常大,我们培养的学生数量还远远不够。程亦凡说:&ldquo 虽然目前冷冻电镜的研究很活跃,但是这一技术还非常不完善,所以有许多的工作要做,需要很多人力。同时,对于一个电镜实验室,往往需要从实验员、到中级管理人员、高级管理人员等各个层次的人才。另外,随着冷冻电镜技术的发展,如果从事X射线晶体学研究的课题组要进入这一领域,最快捷的方法就是招聘从电镜实验室毕业的学生。&rdquo   &ldquo 不过在中国,好在我们有一个优势,就是我们的材料电镜非常强,培养的人才已趋于饱和。材料电镜领域的学生他们虽然不懂生物学,但是有着非常强的电镜技术背景,如果他们当中有人愿意转向生物学应用方向,一定会有非常好的发展前景。可以说今后5-10年电镜实验室培养的学生都不愁找工作。我们希望能够吸纳更多的优秀人才从事冷冻电镜的研究,推动这一技术的快速发展。&rdquo 程亦凡说道。(撰稿:秦丽娟) 2014冷冻电镜三维分子成像国际研讨会与会人员合影   附录:   第七届郭可信电子显微学和晶体学暑期学校举办   http://www.instrument.com.cn/news/20140728/137553.shtml   国家蛋白质科学中心&bull 上海(筹)   http://www.sibcb-ncpss.org/ (原标题:2014冷冻电镜三维分子成像国际研讨会召开)
  • 生物物理所开发冷冻结构光照明与电镜关联成像新技术
    面向原位结构解析的冷冻电子断层成像(cryo-ET)是研究生物大分子复合物的原位高分辨率结构及其相互作用关系的关键技术。但受限于电子束穿透能力,需要先利用聚焦离子束(cryo-FIB)将细胞和组织样品减薄成200纳米左右的薄片后才能进行cryo-ET数据采集。冷冻光电关联成像技术可以为cryo-FIB精准制备包含特定目标结构的冷冻含水切片提供荧光定位指导,但是冷冻荧光显微镜的光学分辨能力以及光镜、电镜图像的对齐精度是制约冷冻光电关联实验成功率的关键因素。  为了解决上述技术瓶颈,中国科学院生物物理研究所蛋白质科学研究平台生物成像中心一直致力于开发新型冷冻光电关联成像技术,在前期自主研发的冷冻光电关联成像高真空光学冷台HOPE(Journal of Structural Biology,2017)基础上,通过引入结构光照明成像技术,成功研制了冷冻结构光照明成像系统HOPE-SIM,实现了横向优于200纳米的光学分辨率,以及优于150纳米的光镜-聚焦离子束三维关联对齐精度,相关研究成果于4月29日在线发表在《通讯-生物》(Communications Biology)上。   光镜-电镜关联成像技术(Correlative Light and Electron Microscopy,CLEM),是利用荧光特异标记对特定生物大分子或亚细胞结构进行荧光示踪,实现对整个细胞的三维荧光定位成像,之后通过荧光图像和电镜图像的配准,获得荧光标记信号和电镜超微结构的关联信息。冷冻光电关联成像技术的应用方向之一,是通过关联图像,指示出荧光标记的结构在电镜图像中的具体位置,实现对荧光示踪目标物的电镜高分辨率结构解析。而得益于光镜成像对生物样品的无损特性,可以在不损伤样品的前提下获得样品内部的三维荧光定位信息,再通过光电关联成像流程和关联对齐软件,将三维荧光图像与扫描电镜图像关联匹配,实现在荧光信号的指导下进行cryo-FIB对目标区域的减薄加工。如此,便可以避免“盲切”,实现对荧光指示目标物的指导切割,以期提高冷冻聚焦离子束技术用于电子断层成像切片样品制备的效率。   目前,光电关联成像指导cryo-FIB减薄技术流程的实现方式有多种类型,根据系统构成可以分为光镜电镜分体式光电关联成像系统和集成型光电关联成像系统。生物成像中心技术团队自2013年开始专注于冷冻光电关联成像技术方法学研究,在光镜电镜分体式光电关联成像系统研制方面, 于2017年自主研制了一款可搭载在倒置荧光显微镜上的高真空光学冷台HOPE(High-vacuum Optical Platform for cryo-CLEM),HOPE可与透射电镜冷冻样品杆适配连接,完成荧光定位后样品将随冷冻样品杆被转移进电镜当中进行高分辨率数据采集,同时结合光电关联定位软件,可以实现大视野光学定位成像与电镜成像的匹配。HOPE采用冷冻样品杆来实现冷冻光镜成像、冷冻传输以及冷冻透射电镜成像,有效避免了光电关联成像过程中对冷冻载网的反复夹取,保证了冷冻样品的完整性和同一性,有效提高了关联成功率和实验效率。  然而,基于宽场成像技术的HOPE系统受限于光学衍射极限和冷冻光学成像装置的空间限制等,仅能使用长工作距离、低数值孔径的冷冻荧光成像系统,所能达到的横向分辨率约为400-500纳米,纵向分辨率则达微米级,这对于精准捕获数微米厚度细胞内百纳米尺度的目标结构而言,是非常不利的。  结构光照明超分辨荧光成像技术在能提高宽场荧光显微镜一倍分辨率的前提下,还具备不需要特殊的荧光探针、成像速度快、辐照密度低等技术优势,是所有超分辨成像技术中最适合应用到冷冻环境中对冷冻样品进行高分辨率成像的技术。因此,研究团队选择了结构光照明成像技术作为提高冷冻荧光成像分辨率的手段,基于倒置荧光显微镜自主研制了大腔室高真空冷台,腔室内置0.9NA长工作距离光学物镜和防污染器系统(ACS和cryo-box)、外接真空传输系统(TPS)以及冷冻电镜样品杆(cryo-holder)适配器。同时,借助三维结构光照明(SIM)光路,实现了真空环境下对冷冻样品的三维结构光照明成像,在提高冷冻光镜分辨率的同时,有效增强了光电关联成像样品传输过程中对冷冻样品的保护。图1 冷冻结构光照明成像系统HOPE-SIM。a.HOPE-SIM硬件组成,b. HOPE-SIM设计原理图,c. HOPE-SIM光路原理图   借助HOPE-SIM高分辨率冷冻光电关联成像系统以及自主编写的三维关联对齐软件3D-View,团队成功制备了包含宿主细胞内鼠疱疹病毒(图2)和海拉细胞内荧光标记的中心体(图3)的细胞切片样品,通过冷冻电子断层原位结构分析图像处理流程和软件分析其在原位结构。实验结果表明,基于HOPE-SIM技术的高精度冷冻光电方法可以实现优于150nm的三维对齐精度,为尺寸较大、胞内丰度高的目标物的原位捕获提供了一种高效、精确的靶向冷冻聚焦离子束减薄技术方案。图2 基于 HOPE-SIM冷冻光电联技术捕获宿主细胞中的MHV-68病毒颗粒。a.冷冻明场透射光图像;b.HOPE-SIM荧光图像的z投影。绿色,荧光微球。红色,MHV-68病毒;c将b中的荧光图像与a中的明场图像合并,以显示目标信号的位置;d.冷冻SIM和冷冻FIB图像之间的三维关联匹配;e.对目标区域减薄后的冷冻FIB图像;f.减薄后冷冻扫描电镜图像,与b中冷冻SIM图像的融合;g.制备的冷冻含水切片的冷冻透射电镜显微照片(3600倍);h.冷冻断层扫描成像,放大倍率为64000倍,显示了被捕获的病毒颗粒。 图3 基于HOPE-SIM技术流程精准捕获海拉细胞内红色荧光标记的中心体。a.3D-View光-电关联软件获得的冷冻结构光-cryo-FIB关联配准图;b.cryo-FIB对红色荧光标记所在区域进行减薄;c.cryo-FIB减薄获得的200nm冷冻含水切片;d.冷冻含水切片在透射电镜下8700倍成像,黄色框线内为目标中心体;e.目标中心体的cryo-ET数据采集(53000倍)激光指向位置主动稳定系统示意图。   相关研究工作得到国家重点研发计划、国家自然科学基金、中科院战略性先导科技专项(B类)等项目的资助。  值得一提的是,在集成型光电关联成像系统研制方面, 2023年1月,《自然-方法》(Nature Methods)报道了中科院院士、生物物理所研究员徐涛和研究员纪伟团队研发的cryo-CLIEM系统和生物成像中心技术团队自主研发的三束共焦成像系统ELI-TriScope系统,在双束扫描电镜真空腔室内集成了光学成像系统,避免了样品传输过程,有效提高了冷冻光电关联成像的精度和成功率。其中生物成像中心技术团队自主研发ELI-TriScope系统集成了一个基于冷冻样品杆的传输系统(cryo-transfer system),并在冷冻样品下方嵌入了一个倒置荧光成像系统(cryo-STAR system),从而实现电子束(E)、光束(L)和离子束(I)被精确地聚焦到同一点上,可以在cryo-FIB减薄的同时实时监控目标分子的荧光信号,显著提高了cryo-FIB减薄技术对特定目标物的捕获精度,将制备冷冻含水切片的时间成本从每片2-2.5小时降低到约0.8小时。   生物成像中心技术团队研发的基于结构光照明技术的HOPE-SIM系统可以实现三维高分辨率冷冻荧光成像,同时还可以通过冷冻样品杆直接衔接三束共焦光电关联成像系统ELI-TriScope,实现高分辨三维冷冻荧光成像的同时,完成后续原位荧光实时监控聚焦离子束减薄全技术流程,有效提高了冷冻聚焦离子束减薄的效率、准确性、成功率和样品制备通量,为原位结构解析研究提供了成功的解决方案,在未来的原位结构生物学中有巨大应用潜力。
  • 祝建:关于原位冷冻电镜技术的一点想法
    仪器信息网讯 2015年5月29日-6月2日,&ldquo 2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班&rdquo 在浙江大学举行。本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。   上海同济大学生命科学学院祝建教授作了题为&ldquo 关于原位冷冻电镜技术的一点想法&rdquo 的报告。 祝建教授   祝建介绍说:&ldquo 冷冻电镜技术可以分为单颗粒冷冻电镜技术和原位冷冻电镜技术。其中单颗粒冷冻电镜技术目前国际上做了许多工作,近来也比较火。近年来,我国为了开展这方面工作,购置了许多相关的高端仪器设备。该技术需要将细胞内的活性蛋白分子提纯后在体外分析,但是在体外做的不错的结构最终还需要到体内去验证,如在体内蛋白质是否也是按照相应的结构来执行功能。所以这方面的工作还需要进一步深入。&rdquo   祝建表示,原位冷冻电镜的最终目的是研究大分子的结构、功能和机制统一的问题,从而解释生命现象。原位冷冻电镜技术包括冷冻固定、超薄切片,再加上电镜分析、数据采集、三维重构等。冷冻固定可以分为快速冷冻和高压冷冻。高压冷冻技术就是为了使组织的冷冻成为可能而问世,可以冷冻200&mu m厚的样品。而快速冷冻技术只能冷冻30&mu m厚的单细胞层。从冷冻速度来看,快速冷冻的速度稍快一些。   祝建说:&ldquo 目前,国内购买了多台高压冷冻仪。其实并不是所有的样品都适合高压冷冻,大组织块、一定厚度的样品用高压冷冻最好,其他的单细胞样品用快速冷冻一样能达到很好的效果,而且快速冷冻技术更简便。&rdquo   &ldquo 冷冻固定之后,如果在冷冻电镜下分析需要与冷冻超薄切片技术相结合。如果在常温电镜下分析,则还需要冷冻置换、包埋、切片等步骤,现在买高压冷冻仪的单位基本都是要和冷冻置换结合起来。冷冻置换是冷冻固定之后非常必要的低温脱水技术,脱水过程中脱水剂中所含有的固定成分还将在合适的低温温度下对样品进行二次固定。如果要减少样品收缩,则需要快速冷冻固定,慢慢脱水。&rdquo 祝建说道。   另外,祝建还谈道:&ldquo 原位分析的另外一种途径是标记,通过标记实现定位、定性、定量分析。因为我们无法看到一些结构细节和大分子,所以用抗体来标记连接我们能看到的荧光分子或金颗粒来实现间接原位分析。&rdquo   最后,祝建总结说,在实际应用中,要根据样品的特点,从快速冷冻、高压冷冻、冷冻置换、超薄切片、冷冻超薄切片、离子束切片等制样技术中选择合适的组合方法来制样。还有我们要考虑将原位冷冻电镜与单颗粒冷冻电镜结合起来获取有效的分析结果。 撰稿:秦丽娟
  • 冷冻电镜:2015年最受关注的新技术
    细胞里面的生命活动井然有序,每一个部分都有其特定的结构,承担不同的功能。生物大分子则是一切生命活动的最终执行者,它们主要是核酸和蛋白。核酸携带了生命体的遗传信息,而蛋白是生命活动的主要执行者。自现代分子生物学诞生以来的半个世纪里,解析和分析生物大分子的结构、进而阐释其功能机制一直都是现代生命科学的核心问题之一。  事实上,一切自然科学都涉及物质结构及结构间的相互作用为核心的研究方向,天文学研究宇宙、星体等的结构及其相互作用,粒子物理研究物质世界的基本粒子的结构和相互作用,甚至包括应用性很强的材料科学都是以研究新型材料的结构和性质等为核心。结构生物学研究的直接目的是弄清楚生命大分子结构,从而更好地理解生命,理解这个自然界中“逆热力学第二定律”而诞生的奇迹 最终目标是公众通常关心的实用价值。  像数学物理公式不会直接造出飞机、导弹、计算机一样,蛋白质结构这样的基础研究不会直接转化为人们生产生活的必须物品。比较具体的应用,如药物设计、疫苗开发、医疗诊断和蛋白质分子性能改造(如科学实验或工业生产中酶活性稳定性优化)等是蛋白质结构研究比较容易被大众所理解的一个方向,但却只是其研究价值的一个侧面而已。  蛋白质结构如同生命科学里的数学公式和物理定律,甚至在以后会充当生命科学里面的“化学元素周期表”,除了帮助发现或设计新药等,它更重要的价值是作为最基础最上游的研究之一,通过影响一切与其密切相关的下游科学和技术,从而改变我们的世界。  结构生物学最早诞生于上个世纪中叶,它是一门通过研究生物大分子的结构与运动来阐明生命现象的学科,在其发展史上有两个里程碑式的事件,一个是 DNA双螺旋结构的发现,另一个肌红蛋白(Myglobin)晶体结构的解析,这两个事件都是上个世纪最重要的革命性科学进展,均在剑桥MRC分子生物学实验室完成,并且都于1962年获得了诺贝尔奖(一个生理学或医学奖,一个化学奖)。同时它们都是最早使用X射线的方法来解析生物大分子结构,而这个方法在过去半个世纪里,一直占据结构生物学的统治地位。  在当今结构生物学研究中普遍使用的冷冻电镜,是上个世纪七八十年代开始出现、近两年飞速发展的革命性技术,它可以快速、简易、高效、高分辨率解析高度复杂的超大生物分子结构(主要是蛋白质和核酸),在很大程度上取代并且大大超越了传统的X射线晶体学方法。  革命性的冷冻电镜技术  冷冻电镜并不是这两年才建立的。在蛋白质X射线晶体学诞生大约10多年以后的1968年, 作为里程碑式的电镜三维重构方法,同样在剑桥MRC 分子生物学实验室诞生,Aron Klug教授因此获得了1982年的诺贝尔化学奖。另一些突破性的技术在上世纪70年代和80年代中叶诞生,主要是冷冻成像和蛋白快速冷冻技术。这里面的代表科学家有Ken Taylor, Robert Glaeser和Jacques Dubochet等。  快速冷冻可以使蛋白质和所在的水溶液环境迅速从溶液态转变为玻璃态,玻璃态能使蛋白质结构保持其天然结构状态,如果以缓慢温和的方式冷冻,这个过程会形成晶体冰,生物分子的结构将被晶格力彻底损坏。低剂量冷冻成像能够保存样品的高分辨率结构信息,确保了从电镜图形中解析蛋白质结构的可能性。与此同时Joachim Frank等则在电镜图像处理算法方面奠定和发展了这项技术的理论基础。由此冷冻电镜的雏形基本建立,总的思路为:  1)样品冷冻(保持蛋白溶液态结构)   2)冷冻成像(获取二维投影图像)   3)三维重构(从二维图像通过计算得到三维密度图)。  该方法为生物大分子结构研究提供了一个和X射线晶体学完全不一样的、全新的思路。但是由于技术方法的瓶颈,在此后30多年的时间里只能做一些相对低分辨率的结构解析工作,在分辨率上一直不能和X射线晶体学比较,甚至一度被嘲笑为”blob-ology“(英文讽刺语,“一坨轮廓的技术”)。冷冻电镜三维重构得到的电子云密度图和原子模型(局部)。张凯供图  但对于冷冻电镜来说,技术难点远非单纯冷冻。冷冻成像和图像处理算法一直都是瓶颈。从冷冻电镜技术诞生以来的近30年时间里,其一直都有进展,只是相对比较缓慢。  最重要的革命性事件大约发生在两三年前:一个是直接电子探测器的发明,另一个是高分辨率图像处理算法的改进。MRC分子生物学实验室的两位科学家Richard Henderson和Sjors Scheres在这次革命中起了关键作用(作者注:现代科技革命往往是诸多研究机构若干团队共同参与,此处仅列举关键代表,并且仅从技术角度讨论,不涉及生物学应用)。  Richard Henderson是探测器方面的先驱,而Sjors Scheres则因他设计的Relion程序而名声大噪,他们由此当选为《自然》杂志2014年“十大科学进展年度人物”。两位科学家一个从硬件,一个从软件将冷冻电镜技术推向了巅峰,将冷冻电镜技术的分辨率推向了新高度。(作者注: Henderson教授的贡献远非探测器一个方面,包括冷冻电镜理论基础、算法、软件,重要生物大分子应用,如曾首次解析视紫红质跨膜螺旋等等方面 早在20多年前,他就通过一系列理论分析,预言了冷冻电镜研究的尺度、分辨率极限、技术瓶颈等等,并且断言:冷冻电镜将超越其它一切技术方法,成为蛋白质结构研究的主导工具,如今这些预言全部应验。)  和此前使用的CCD相比,新发展的直接电子探测器不仅在电镜图形质量上有了质的飞跃,同时在速度上大幅提高,还可以以电影的形式快速记录电镜图像。这些特性同时也伴随着电镜图像处理方面的重大变革,电镜技术此前在分辨率上的一个主要瓶颈是电子束击打生物样品造成的图像漂移和辐射损伤。有了快速电影记录,我们就可以追踪图像漂移轨迹而对图像做运动矫正和辐射损伤矫正,大大提高数据质量。  尽管如此,电镜图像处理一直都是一项极具挑战性的任务,主要的问题是冷冻电镜的图像噪音极高、信号极低,而我们的目标是从中提取近原子分辨率的结构信息,这就像在一个机器轰鸣的工厂里监测一只蚂蚁爬行的声音。冷冻电镜科学家就是要完成这项艰巨的任务,并且真的做到了。有了硬件和软件方面的双重提高,冷冻电镜的分辨率目前已得到了极大的提高,可以和晶体学相媲美 并且在其它方面已经大大超越了晶体学。  主要体现在下面几个方面:  第一,不需要结晶,研究对象范围大大扩展,研究速度大大提高。对于小分子,比方说无机盐矿物质等自发就能长出晶体,小而且稳定的蛋白质目前来说结晶并不困难,但是这类意义重大的蛋白几乎都已经解析完了,在科学上没有任何重大意义 当今时代,小蛋白已经完全不能满足科学家们强烈的探索欲望,结构生物学研究的对象越来越大,体系越来越复杂,结晶几乎成为不可能的事情,即使能结晶,也不一定衍射,有衍射也不一定能得到原子分辨率结构。  很多年前,许多蛋白质晶体科学家为了完成一项艰巨的任务,一个课题少则5到10年,多则20年,核糖体从上世纪80年代初首次长出晶体到 2000年左右最终拿到原子分辨率结构整整经历了20年 线粒体呼吸链复合物I从上世纪90年代初研究,第一次报道完整晶体结构大约是20年以后。  而冷冻电镜方法跳过超大分子复合物结晶难的这层技术屏障,以直接解析复合物的溶液状态的结构为目标。  现在利用这项技术,在MRC-LMB一周时间就可以解析一个新的核糖体结构 英国皇家学会主席、MRC-LMB结构中心主任 Venki Ramakrishnan 教授,因为核糖体的晶体结构研究而获得2009年诺贝尔化学奖。他的实验室在2014年发表了最后一篇晶体结构文章,此后的文章全部以冷冻电镜为主。哥伦比亚大学有一个非常执着的博士后,研究兰尼碱受体(Ryanodine Receptor)晶体结构长达十年之久,最后放弃了晶体,转向了冷冻电镜技术,同时与清华大学教授颜宁和LMB的Scheres研究组合作,几个月就解决了这个难题,并且达到近原子分辨率。  第二,样品需求量小,样品制备快,可重复性高。重要生物样品都是非常珍贵的,总体来说是以微克或者最多以毫克来计量,即使得到这点样品,也要花费生物学家几周、几个月甚至更长的时间(大多数时候都需要摸索各种条件使样品处于相对稳定的状态,以便做进一步结构研究)。  蛋白质晶体一般要求高浓度大体积,没有量变就没有质变。而同样量的蛋白可以稀释以后制备若干冷冻电镜样品,每个样品有成百上千的区域,每个区域有几百个小孔,每一个小孔甚至可以收集多张照片。解析一般蛋白的原子结构需要几万个颗粒,而对于高对称性的样品几千个颗粒就足够。  第三,可以研究天然的、动态的结构。X射线晶体学研究生物大分子结构的一个主要弱点是无法拿到天然的动态的结构,这是因为研究人员无论如何也无法绕开结晶这个过程。冷冻电镜就是要做这件事情:直接解析天然的、溶液态的、动态的(dynamic),甚至原位(in situ)的结构,从而理解生命分子如何在空间和时间两个尺度上以活的动态的方式发挥功能。  晶体学只能尝试不同的条件获得生物大分子某个或者某些固定的状态,而且容易出现晶体堆积引起的不真实相互作用方式。形象地说,冷冻电镜可以制作完整的高清电影,晶体学只能从电影里截屏。  第四,技术革命还将开启巨大的潜在医疗价值。冷冻电镜技术方法在时间和精度方面的大幅度提高有时会导致不可预测的重大科学和应用价值。比如,活体病毒结构分析如果可以在分钟级别完成,这将有可能转化为潜在的医疗检测手段:从病人体内抽取血样或感染组织细胞,几分钟以后,非常清晰明了地展现病人在细胞内部结构层面的异常状况,甚至给出局部的原子结构图,从而给出精准的治疗方案。这个想法现在可能听起来有点像笑话,或许再过若干年人们就不这样认为了。  当然冷冻电镜的革命性不仅仅体现在上述四方面,在此就不一一列举。有关冷冻电镜更加详细的介绍,可参见笔者等2010年的中文综述(《生物物理学报》,2010年7月,第26卷,第7期: 533-559)。文章中对未来几年的发展趋势所做的展望,如直接电子探测器的普及、非对称性蛋白复合物近原子分辨率结构解析、冷冻电镜相关计算性能的大规模提升等等,目前绝大多数都在过去的两三年内得以实现并飞速发展。  华人学者在冷冻电镜领域的贡献  在冷冻电镜的这场技术革命中,华人科学家功不可没,在某些方面甚至独领风骚,做出了诸多重大成果。  加州大学旧金山分校(UCSF)的华人科学家程亦凡教授在2013年底,首次利用冷冻电镜技术解析近原子分辨率膜蛋白结构,这项成果在业界引起了巨大轰动。原因在于当所有电镜结构生物学家还在讨论膜蛋白到底能不能利用冷冻电镜技术看到二级结构,也是通常我们认为的中等分辨率水平的时候,程亦凡教授研究组直接解析了TRPV1 这个膜蛋白3.3埃近原子分辨率的结构(Nature,504:107–112)。  笔者曾在该文章发表的半年前在一次国际会议上和冷冻电镜领域顶级学者深入讨论过如何获得清晰的膜蛋白α -螺旋结构,对方给出了悲观的结论:“恐怕不太可能,至少最近两年不可能”。  事实上,此前蛋白质晶体学家已经有所耳闻“冷冻电镜可能在未来几年会超越并且取代晶体学”,但是谁也没想到会是以这样快速和震撼的方式登场,这在某种程度上引发了不少蛋白质晶体学家的“职业恐慌感”。这项成果的两个共同第一作者廖茂福、曹尔虎也都是非常杰出的青年华人科学家。  加州大学洛杉矶分校的周正洪教授早在2008年到2010年左右,在这场电镜技术革命来临之前,在各项技术条件尚未成熟的情况下解析了一系列近原子分辨率病毒结构。当时采用的是传统胶片来成像,任务非常艰巨,连他还在上学的儿子也都帮忙一起洗胶片。张兴博士在这一系列稍早的重要成果中充当了先锋。早在2008年,第一个近原子分辨率的冷冻结构,也即3.8埃轮状病毒就是张兴博士作为第一作者完成的(PNAS, 105(6): 1867-1872)。从1968年Aaron Klug创立电镜三维重构理论,到2008年人们首次看到通过冷冻电镜获得近原子分辨率结构,整整用了40年。  在国内,清华大学的隋森芳院士是我国冷冻电镜领域的先驱,不仅德高望重,还培养了一大批优秀的青年科学家,包括清华大学的王宏伟教授以及 MRC-LMB的白晓晨和畅磊福博士等等。王宏伟早年在隋老师实验室做研究生的时候,在我国研究设备和条件全面落后于国外的情况下依旧做出了许多非常出色的工作。  MRC-LMB的多位青年华人研究人员对冷冻电镜发展都做出了重要贡献。白晓晨博士在MRC-LMB首次使用直接电子探测设备Falcon I 和Sjors Scheres博士的新程序Relion,获得了第一个不对称样品核糖体的近原子分辨率冷冻电镜结构,打响了冷冻电镜革命的第一枪,随后解析了一系列核糖体和蛋白复合物结构。畅磊福博士在LMB首次获得非核糖体不对称蛋白样品APC复合物的近原子分辨率结构,阐明了蛋白质泛素化的重要机理。笔者主要在LMB的Andrew Carter博士实验室从事动力蛋白结构和功能研究,并成功解析动力蛋白激活因子Dynactin结构,提出了目前为止动力蛋白最详尽可靠的运动和激活机制(Science, 347(6229):1441-1446. 封面文章),同时独立发展冷冻电镜技术方法。  1953年4月25日,MRC沃森和克里克在《自然》杂志发表DNA双螺旋结构,61年后的同一天,我国科学家、中科院生物物理研究所的朱平和李国红研究员在《科学》杂志以长文形式发表了30nm染色质冷冻电镜结构(DNA双螺旋之双螺旋)(Science , 344(6182): 376-380)。这项工作是冷冻电镜在核心生命科学问题中的成功应用,冷冻电镜部分的工作主要是笔者在生物物理所的同学宋峰博士完成的。  生物物理所的程凌鹏博士(当前单位为清华大学)获得国内本土第一个原子分辨率的冷冻电镜结构,构建了蚕多角体病毒(CPV)的完整三维原子模型(PNAS,108(4):1373-1378)。笔者也参与了部分工作, 被其高质量、干净的电子密度图震撼。近期程凌鹏与刘红荣博士合作,在国际上首次发表了CPV完整基因组和RNA聚合酶“原位三维结构” (Science, 2015, 349(6254):1347-50), 引起了很大轰动,这项成果是我国本土冷冻电镜技术和生物学应用的双重突破,被多名同行科学家称赞为”里程牌式发现“。  我国著名科学家施一公最近发表了一系列重大蛋白复合物的冷冻电镜结构,包括γ -secretase、spliceosome等,被誉为过去几十年我国科学家对基础生物学领域的最大贡献。  另外,在欧美和中国本土还有一大批华人学者在冷冻电镜或密切相关领域(cryoET等)做出诸多突破性成果,例如匹兹堡大学的张佩君教授(艾滋病毒结构研究),德克萨斯大学的刘俊教授(细菌运动,噬菌体结构等研究)等,由于时间和篇幅问题,无法一一介绍。  冷冻电镜的未来展望  冷冻电镜技术目前仍然在快速发展中,未来冷冻电镜能做什么取决于这项技术能发展到什么程度。现代科学技术革命的一个最大特点是发展速度极其迅速,谁也不知道明天会发生什么,当然也不能十分准确的预知一个领域的发展方向。即便如此,笔者还是对这个领域有一些预测或期待(仅技术角度,不涉及具体生物学研究)。  1)超大规模、超快速度数据采集和处理。和晶体学相比,冷冻电镜的效率在某些方面已经异常惊人。比如笔者近期与牛津大学王祥喜博士合作,在几个小时以内就可以拿到完整甲肝病毒原子结构,而此前王祥喜博士花费近一年时间结晶才最终拿到原子结构。但是科学技术发展是永无止境的̷̷  但目前来说,结构生物学的巨大转型必须建立在速度和效率的双重前提下。这需要硬件、软件以及其它交叉学科等多方面的共同发展。  除了生物学研究应用,笔者一直致力于冷冻电镜技术的发展,最近在提高电镜数据处理结果可靠性和分辨率前提下,上千倍地提高了其中几个环节,过去几百到上千CPU小时的事情,现在几分钟到几十分钟就完成了。但是这只是部分环节,在其它方面依旧非常耗时,整个技术的各个环节如何全面高效高速地完成还需要更多的优秀人才参与。对硬件的发展方面笔者并不是很熟悉,预计在未来会出现超高速度的电子显微镜,大幅度提高电镜原始数据的数量和质量。  2)大尺度、高分辨率、高动态的生物大分子结构解析。理论上,冷冻电镜可像高清数码摄像机拍电影一样对生物大分子成像和重现其动态结构,研究深层机理。就目前而言,这一方面在技术上远未成熟。大尺度、高分辨率、高动态这几点拆解开来,每一个都不算太难,但是同时满足这几项需求几乎成为不可能的事情。但是这是未来结构生物学的方向,我们不仅仅要看简单的几张静态照片,我们还想看高清电影。  关于这一点,笔者需要强调一下结构生物学和动力学模拟的区别。结构生物学的动态结构目的是以实验手段完整复原自然状态的动态结构,理解其中机理,是从实验数据出发“重现大自然原貌”的过程,是完完全全可靠的实验结果。而动力学模拟是从已有的理论或经验性的物理学规律出发预测一个生物大分子的动态特性,存在巨大的不确定性,其结果可靠性较差。期待在未来的某个时刻,两者会像上个世纪的理论物理和实验物理一样完美地结合,相互促进。  大尺度复杂生物系统的高分辨率、动态机理研究涉及诸多学科,不是冷冻电镜一项技术就可以完成的,需要多学科科学家共同参与完成。  3)高分辨单分子及原位结构研究。目前的结构生物学,无论晶体学、冷冻电镜还是核磁共振主要还是在研究“群体”结构。冷冻电镜相对晶体学在这一方面已经有了大幅度提高,可以通过分类的方法研究群体结构中的每一类结构。但实际上每个分子在时间和空间上除了共性,也必然有特性,如果一种方法强大到可以测得单个分子的高分辨率结构,这必然导致巨大革命,使得人们发现许许多多在群体结构研究层次上无法发现也无法理解的大量规律。  注意这里强调的是单分子“高分辨率”结构,而不仅仅是单分子结构。单分子结构我们目前可以使用比如冷冻断层成像(cryoET)的手段获得,但是分辨率非常低,在如此低分辨率情况下,别说个体差异,很多群体结构差异都值得严重质疑。或许冷冻电镜技术若干年以后会实现这个目标,或许永远都不可能,或许这个目标被另外一个全新的技术彻底取代,冷冻电镜从此退出历史舞台。  冷冻电镜:一个高度交叉的学科  冷冻电镜领域一直是多学科高度交叉和相互促进才诞生的一个奇迹。数学、物理、化学、材料、计算机、软件、机械及自动化、精密仪器仪表等等缺一不可,当然最终的核心是生命科学(作者注:此处仅从结构生物学角度分析,并非泛指一般意义上生命科学是一切学科的核心)。生命科学提出问题,其它所有学科相互结合产生更好的解决方案。通过这些解决方案,发现更多神秘的生命现象,从而提出新的问题,诞生新的技术。  举个例子,冷冻电镜图像信噪比极低,没有科学家的雄心勃勃,没有大批信号分析、图像处理甚至数学家的参与是不可能完成这样艰巨的任务。同时冷冻电镜领域的一些发现或需求,也为其它领域的科学家提供灵感来源和新的研究思路。MRC-LMB作为现代分子生物学的发源地和近两年来飞速发展的冷冻电镜技术核心研究机构,其一大特点就是多学科“零距离交叉”。从半个世纪前的DNA双螺旋模型、肌红蛋白晶体结构等到近两年冷冻电镜技术革命,一直将这一理念体现得淋漓尽致。技术的发展和重大科学问题的解决几乎都是同时进行的,当然科学问题或应用价值始终是核心和最终驱动力,脱离科学和应用需求的技术发展是没有意义的。  另外一个比较具体的例子是笔者此前思考过的一个问题。在电镜领域出现直接电子探测设备之后,MRC-LMB的两台高端电镜,每天产生5到10T 的数据量,近期正在调试第三台,也许不久的将来,超大数据、超快速度电镜就会投入生产,这些将会导致全世界各个研究机构普遍出现一个严重的技术问题,就是如何高效、无损、快速地进行数据压缩存储和数据处理,当然这里的无损是相对特定生物样品和特定目标分辨率而言。这或许会引起一些信号处理和图像压缩方面的研究人员的兴趣。  随着冷冻电镜对生物大分子复合物高分辨率结构研究趋于成熟,更加复杂的动态机理研究是必然趋势,这是冷冻电镜技术发展的一个潜在可能性。但是复杂生物体系的深入研究需要解决一系列数学理论、物理、计算难题,有的可能甚至超出了这些学科目前的研究范畴。近些年比较现实可行的是通过冷冻电镜手段,对特定蛋白复合物非随机情况下的高分辨连续动态构象进行分析。笔者认为,专业数学家的参与会大大加速冷冻电镜技术在这些方面的发展。  生命体高度复杂,充满很多未知的和未被阐述清楚的规律,这里面有成千上万的生物大分子复合物,每一个复合物又与其它若干分子或复合物相互作用、相互影响,深入再深入地理解生命本质一直都会是冷冻电镜的重要方向。冷冻电镜是强大的基础研究手段,它通过解析高度复杂的生物大分子结构,帮助人们更好地理解生命规律,从而影响生命科学相关的一切下游学科和技术,当然也包括更好的发现和设计药物、医疗诊断等具体应用。我们期待在不久的将来,冷冻电镜技术会对科学研究和社会发展等方方面面都产生巨大影响。
  • 真空冷冻干燥机制冷系统常见的故障及排除方法
    真空冷冻干燥机制冷系统常见的故障及排除方法 真空冷冻干燥机广泛用于医学、制药、生物研究、化工和食品等领域。经冷冻干燥处理的物品易于长期保存,加水后能恢复到冻干前状态并保持原有生化特性。LGJ-18N系列立式冷冻干燥机,适用于实验室使用或少量生产,可满足大多数实验室常规冻干的要求。   真空冷冻干燥机制冷系统常见的故障及排除方法:   1)高压报警。出现高压报警的主要原因有:   ①冷却水水温过高或冷却水量不足。   ②冷凝器内部结垢,导致换热效率降低。   ③压缩机工作时,低压管道发生泄漏,从而导致外界空气进入制冷系统。   ④制冷管道存在未开足阀门或因管道被堵而造成排气不畅的情况。   解决办法:   ①降低冷却水温度或增加水流量。   ②清洗冷凝器的冷却水管路。   ③对制冷管道进行检漏,如果在工作中无法实现该项操作,可将水冷凝器上方的截止阀打开,使存在于冷凝器中的空气排放出一部分。   ④将压缩机管道.上的阀门开启到最大。   2)水压报警。水压报警的主要原因有:   ①冷却水供水压力不足或供水泵不运转。   ②水压力控制器故障。   解决办法:   ①增大外部供水压力或检修供水泵。   ②检查压力控制器的触头是否能正常工作或检查在其线路.上是否存在其他问题。   3)压缩机吸气温度异常。吸气温度异常的主要原因是膨胀阀调节不当,开启度过小或过大,导致回气量过小或过大。其解决办法是对膨阀进行调节,如回气量过大,应关小开启度,如回气量过小,应开大开启度,调节过程中以微调为主,多观察压缩机的回霜情况。   4)膨胀阀堵塞。堵塞分泌物物堵塞(脏堵)和冰堵塞两种。   ①杂物堵塞。在堵塞不严重时,可用扳手轻轻敲打阀体,经振动使阀体疏通。若不奏效或膨胀阀很快又重新堵塞,则说明堵塞严重,应拆卸膨胀阀,对膨胀阀滤网进行清洗,清洗完后重新装上即可。   ②冰堵。出现冰堵,应更换冷凝器出液端过滤器。   5)载冷剂泄漏   可用肉眼观察,查找板层,软管上的泄漏点。若发现可疑漏点,应放空板层或软管内的载冷剂,对泄漏点进行充压确认,确认后放气补好泄漏点,重新加入载冷剂并排出板层和软管内气体。
  • 冷冻显微镜:制药研究中最酷的技术
    在过去的二十年中,冷冻显微镜方法已经成为生命科学家、制药研究人员等广泛使用的有效工具,用于检查接近其原生状态的生物结构1。冷冻显微镜能够可视化蛋白质和蛋白质复合物等物质的生物分子结构,是对现有的方法如x射线晶体学和核磁共振(NMR)等的有价值的补充。确定蛋白质和蛋白质复合物的结构是药物发现的一个重要部分,这对研究药物靶点非常有意义,也是深入了解疾病机制的重要课题。在这篇文章中,我们将阐述冷冻显微镜技术的使用,包括冷冻光学电子显微镜(cryo-CLEM),冷冻干燥显微镜(FDM),药物研究中的低温保存,以及温度控制显微镜如何使研究人员能够在低温下推进药物发现和开发研究。冷冻光学电子显微镜(Cryo-CLEM)电子显微镜(EM)使用微量材料,具备接近原子的分辨率,可以研究不同功能状态下的分子。冷冻电镜(Cryo-EM)使用极低温度,克服了真空条件下使用电子束测量高含水量生物标本的难题。在20世纪80年代冷冻电镜商业化之前,生物标本是通过化学固定或染色等方法制备的,但这些方法存在保存伪影,会影响图像分辨率。快速冷冻通常用于将样品保持在与自然生理环境相似的冷冻状态,在临床前阶段取得的结果必须在临床研究中可复制,这在药物研究中尤其重要。Cryo-CLEM结合低温荧光技术和冷冻电镜技术,提高了活检细胞内生物、化学和遗传过程的灵敏度。Cryo-CLEM能够对冷冻固定样品中的分子或分子组件(如细胞内膜、DNA或细胞结构元件)进行直接荧光标记和靶向,精确定位区域,以便后续使用EM进行高分辨率成像。为了使生物样品与EM中发现的真空条件兼容并保存结构细节,样品被嵌入玻璃状的冰中,需要保持在-140°C以下。必须避免与空气中水分接触,因为一旦接触会形成冰晶并污染样品。在低温条件下,荧光信号的结构细节被保留,光漂白显著减少。冷冻光学电子显微镜技术的进步体现在它包含了创新的冷冻荧光级,如Linkam CMS196,它能够自动获取整个电镜网格的高分辨率荧光图。这也用于样品导航,并将cryo-CLEM的案例情况与EM或与x射线显微镜等其他技术相关联。西班牙巴塞罗那的一组研究人员和临床医生使用荧光显微镜、透射电子显微镜(TEM)和低温软x射线断层扫描(cryo-SXT),可以观察到抗癌药物顺铂在极低浓度下的有效性,确定产生效果所需的最低剂量,以最大限度地降低毒性2。该小组在荧光显微镜上对低温冷冻的细胞样本进行成像,使用CMS196冷冻荧光台在液氮温度下将它们玻璃化,然后使用cryo-SXT对样本进行分析,这使得在纳米尺度上进行3D研究成为可能。得益于现有的低温成像技术,研究结果表明,三甲碱(研究的两种佐剂之一)促进了顺铂在较低剂量下的有效治疗,这可能为化疗治疗的发展铺平了道路,减少了对患者的副作用。冻干显微镜许多药物生产为冻干或冻干配方,以增加稳定性和延长保质期。药物开发人员必须为新的药物化合物创建一个优化的冷冻干燥过程,这可能是一项复杂而昂贵的工作。为了简化流程和开发更高效的冷冻干燥循环,了解三个主要冷冻干燥步骤的温度和压力要求是很重要的。使用冷冻干燥显微镜(FDM),研究人员可以直接可视化每个步骤,并确定药物产品在不同热条件下的行为。FDM包括一个专用的光学显微镜和一个专用的热工作台,它可以准确地控制样品的温度和压力,并允许实时进行热测量。冷冻干燥的一个关键参数是塌陷温度(Tc),即产品失去结构完整性并导致加工缺陷的温度。FDM使药物开发人员能够密切监测样品并快速有效地调整冷冻干燥方案。英国国家生物标准与控制研究所(NIBSC)的一个研究小组正在利用先进的FDM技术研究冷冻干燥药物的复杂性。该小组由Paul Matejtschuk博士领导,正专注于研究优化冻干脂质体药物的配方。由于冻干脂质体药物物理和化学性质不稳定,这对开发提出了挑战。Matejtschuk博士和他的团队使用安装在光学显微镜上的专用冷冻台(FDCS196, Linkam科学仪器)(图1),通过估计冻结、塌陷和融化温度,预测脂质体-冷冻保护剂混合物的理想的冷冻干燥条件3。图1:NIBSC实验室的仪器配置。Linkam FDCS196冷冻干燥冷冻台,T94控制器和液氮泵,真空泵,奥林巴斯BX51光学显微镜。图像显示FDM系统的旧版本图2: Linkam FDCS196冻干显微镜系统的最新版本这样的实验对于继续努力开发快速、可转移和可扩展的冷冻干燥方法来稳定脂质体等药物化合物至关重要。低温贮藏储存用于研究的生物标本有赖于有效的保存技术,以保持细胞的物理和生物完整性。冷冻或冷冻样品可能会导致冰晶的积聚,导致终端细胞损伤。冷冻保护剂是在冷冻过程中通过降低水的熔点来防止细胞损伤的重要物质。许多生物,如极地昆虫、鱼类和两栖动物,会产生自己的冷冻保护剂或防冻化合物。科学家们正在研究这些化合物,以开发新的冷冻保护剂来保存研究用的细胞。例如,由Matthew Gibson博士领导的英国华威大学的研究人员,正在研究防冻剂(糖)蛋白(AFP),目的是开发新的合成AFP模拟化合物。该实验室使用低温生物学工作台(BCS196,Linkam Scientific Instruments)来测量细胞中的冰晶生长,依靠该仪器的温度控制能力来观察AFP。Gibson博士研究了使用金纳米颗粒作为探针来测量冰再结晶抑制活性现象,使用低温生物学工作台来改变温度,并开发出一种高通量方法来筛选类似AFP具有结构特征的材料。4诸如此类的发现为开发新型冷冻保护剂提供了潜力,这种保护剂可以防止冷冻保存细胞中冰的生长,从而保持细胞的完整性,因此在生物医学和药学研究中具有潜在用途。未来药物研究本文中描述的技术强调了目前已有的各种冷冻显微镜方法的选择,这些方法有助于推进药物研究。Cryo-CLEM结合了cryo-EM和低温荧光的力量,作为一种相对较新的技术,它的成功依赖于专用冷冻工作台的发展,从而促进了Cryo-CLEM工作流程。这种工作台能够在液氮温度下保持玻璃化样品,使它们在从荧光显微镜移动到冷冻电镜成像时保持无污染。其他专用的冷冻台可与广泛的显微镜技术兼容,如FDM,可在成像过程中精确控制样品的温度,低至-196°C。这些创新为制药研究人员新疗法和生产工艺评估,以及生物样本保存以供未来研究等大量应用提供了工具。 作者:Linkam Scientific Instruments销售及市场部经理Clara Ko参考文献:1. Booy, F. and Orlova, E.V. Cryomicroscopy, in: Chemical Biology: Applications and Techniques (eds Larijani, B., Rosser, C.A., and Woscholski, R.) 2007.2. Gil, S., Solano, E., Martinez-Trucharte, F., et al. Multiparametric analysis of the3. effectiveness of cisplatin on cutaneous squamous carcinoma cells using two different types of adjuvants. PLoS ONE. 2020 15(3): e0230022.4. Hussain M.T., Forbes N., Perrie Y., Malik K.P., Duru C. and Matejtschuk P. Freeze-drying cycle optimization for the rapid preservation of protein-loaded liposomal formulations. International Journal of Pharmaceutics 573, 2020 118722.5. Mitchell, D. E., Congdon, T., Rodger, A., and Gibson, M. I. Gold Nanoparticle Aggregation as a Probe of Antifreeze (Glyco) Protein-Inspired Ice Recrystallization Inhibition and Identification of New IRI Active Macromolecules. Scientific Reports, 2015 5: 15716.
  • 生物电镜冷冻制样:做了才知道有多难
    p   strong  仪器信息网讯 /strong 2015年5月29日-6月2日,“2015全国生物医学农林 a href=" http://www.instrument.com.cn/zc/1139.html" 电镜 /a 技术研讨会暨生物电镜前沿技术培训班”在浙江大学举行。本次会议特别邀请了国内外知名专家教授和电镜工作者讲授生物电子显微镜技术的最新发展,交流生物样品制备和应用方面的技术经验,并安排部分学员参加实验操作及演示。 /p p   台湾中央研究院植物暨微生物学研究所简万能博士作了题为“Ultrastructure of plant cells using high pressure freezing and freeze substitution”的报告。 /p p style=" text-align: center" img alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/201565105212.jpg" style=" width: 500px height: 333px" / /p p style=" text-align: center" strong 简万能博士 /strong /p p   据介绍,由于早年看到所有的教科书都说想要获得更好的电镜观察结果,就要用冷冻制样技术,简万能便开始了这方面的研究,然而不做不知道,一做才知道有多难。冷冻制样对于动物来说比较简单,而对于植物来说由于细胞壁的影响却非常难。20年来,在研究当中,他碰到的失败的次数永远比成功多。“但是当你成功后,你会发现你的眼界比以前做化学固定大得多。”简万能这样说道。 /p p   “电镜是生物学研究非常有用的工具。由于生物细胞的含水量可以达到80%-90%,所以制样能否成功主要是解决水的问题。传统的透射电镜制样技术,对样品损伤最大的步骤是脱水,往往使得细胞结构发生很大的变化。而利用冷冻制样最大的优点就是可以保持细胞原来的结构,并保持一些可溶性的物质。如果要做溶在细胞质里的元素分析,一定要采用冷冻制样技术。” /p p   由于水在冷冻的过程中会形成冰晶影响观察,所以在如何避免形成冰晶是冷冻制样的一个关键点。简万能表示:“在制样中一定要注意一些关键的温度节点。如-137℃是水的重结晶点,如果能迅速降低到这一温度,样品中的水就会形成玻璃态的冰。如果超过-70℃,玻璃态的冰就会形成二次冰晶。” /p p   在报告中,简万能介绍了目前常用的冷冻方法,如投入式冷冻、冷金属块撞击式冷冻、丙烷喷射冷冻、高压冷冻等。并指出高压冷冻的优点是可以做活的生物样品,可以做超过200& amp #956 m厚的样品。 /p p   此外,简万能还介绍了在冷冻固定之后,如何更好的实现冷冻置换。他表示,如果要做超薄切片,高压冷冻和冷冻置换是最好的选择,可以获得非常好的样品形态,会有更多的信息被保留。 /p p   在研讨会之后,简万能博士亲自指导参加培训的学员,进行了投入冷冻、高压冷冻、冷冻置换等实验操作。 /p p style=" text-align: right " 撰稿:秦丽娟 /p p style=" text-align: left " & nbsp & nbsp & nbsp & nbsp 第一届电镜网络会议: a href=" http://www.instrument.com.cn/webinar/icem2015/" _src=" http://www.instrument.com.cn/webinar/icem2015/" http://www.instrument.com.cn/webinar/icem2015/ /a /p
  • 徕卡推出冷冻光镜电镜联用新品
    仪器信息网讯 &ldquo 2015全国生物医学农林电镜技术研讨会暨生物电镜前沿技术培训班&rdquo 日前在浙江大学举行。本次会议由中国电子显微镜学会生物医学电镜专业委员会和农林电镜专业委员会主办,浙江大学农生环测试中心与德国徕卡公司联合承办。   在本次会议上,徕卡正式发布了最新推出的冷冻光镜电镜联用系统(Leica EM Cryo CLEM System)。徕卡显微系统总部产品及市场经理Ruwin Pandithage博士、徕卡显微系统中国LNT产品经理童艳丽在会议中介绍了该产品的特点及应用情况。 Leica EM Cryo CLEM系统   Leica EM Cryo CLEM系统采用了徕卡特别设计的冷冻物镜,这也是世界上第一个商业化生产的冷冻CLEM物镜,因而能够获得比直接用普通物镜观察冷冻样品更高的分辨率,其最大冷冻图像分辨率可达364nm。而配套设计的冷冻传输系统、冷冻物镜接口的冷冻样品台则确保了样品能够从冷冻制样设备中快速、安全、无污染的装载进冷冻荧光显微镜。   由于细胞内的生理状态变化非常迅速,所以如何确保在光镜和电镜下观察的样品生理状态的一致性一直是光镜电镜联用的一个核心问题。而如何获取同一个位置的光镜电镜信息则是另外一个核心问题,一般来说,X-Y平面的样品定位是比较容易的,如何实现Z轴方向的精确定位却是一个问题。   而通过冷冻制样技术,可以很好的解决以上两个问题。首先冷冻固定是保持样品生理状态的最佳的技术手段,而冷冻超薄切片技术则能实现Z轴方向的精确定位。 Leica EM Cryo CLEM系统工作流程图   因此,徕卡推出的这款冷冻光镜电镜联用系统不仅能通过荧光显微成像对样品的大面积区域进行快速定位,为电镜观察快速确定目标观察区域。还可以通过冷冻固定和冷冻切片技术保持在荧光显微镜和电镜下观察的样品处于同样的生理状态,以及同样的位点,保证高度的重复性。并可将在光镜下观察到的信息和电镜的超显微结构信息进行叠加,使得用户可以对样品有更加深入的认识。   另外,利用该产品能够在低温下,更好的实现样品荧光显微成像 还可以检查高压冷冻或投入冷冻后的质量好坏,及时淘汰冷冻质量不高的样品,降低操作冷冻电镜所花费的时间,从而降低实验成本并节约时间。 徕卡显微系统总部产品及市场经理Ruwin Pandithage博士
  • iCEM 2017特邀报告:清华大学冷冻电镜平台的技术研发、服务、管理与运行
    p style=" text-align: center " strong 第三届电镜网络会议(iCEM 2017)特邀报告 /strong /p p style=" text-align: center " strong 清华大学冷冻电镜平台的技术研发、服务、管理与运行 /strong /p p style=" text-align: center " img style=" width: 249px height: 300px " alt=" " src=" http://img1.17img.cn/17img/old/NewsImags/images/201764221030.jpg" / /p p style=" text-align: center " strong 雷建林 研究员 /strong /p p style=" text-align: center " strong 清华大学生命科学学院 /strong /p p & nbsp /p p strong   报告摘要: /strong /p p   冷冻电镜三维重构技术越来越扮演更重要的角色。近年国内外重要科研机构纷纷斥巨资购买相关设备。冷冻电镜平台的高效管理与运行的重要性日益凸显。正因如此,今年2月在纽约结构生物学中心召开了一次大型冷冻电镜平台管理与运行的研讨会并在网上现场实时直播。邀请报告人来自美国顶尖的几个冷冻电镜平台,美国之外仅邀请了中国、英国、德国、荷兰各一个平台。本人本应代表清华大学冷冻电镜平台在会上分别就不同的主题给两个邀请报告,但因签证未及时下发遗憾错过。5月下旬,本人借赴美国开会之机顺道造访了美国4个冷冻电镜平台,进行了充分的交流稍为弥补了这一缺憾。本报告将介绍清华大学冷冻电镜平台的发展与现状、技术研发和相关服务、管理和运行机制等。 /p p   strong  报告人简介: /strong /p p   雷建林,凝聚态物理专业博士,清华大学生命科学学院研究员,国家蛋白质科学研究(北京)设施清华大学冷冻电镜平台总管。从90年代中期开始以电镜为主要手段开展工作,先后师从王仁卉先生和郭可信先生从事准晶热漫散射的定量电子显微学研究。1999年末和2000年初在德国慕尼黑大学做短期访问学者。2000年转向冷冻电镜领域,先后在美国纽约州卫生部沃兹沃斯中心及美国哥伦比亚大学跟随冷冻电镜的先驱、单颗粒算法的首创和实现者Joachim Frank教授进行冷冻电镜的技术研发工作。2008年中开始协助清华大学购置亚洲第一台Titan Krios冷冻电镜(2009年3月9日到货),同年11月回国任筹建的清华大学冷冻电镜平台主管,历经了清华大学冷冻电镜平台逐步壮大的全过程。目前平台有8台透射电镜包括3台Titan Krios电镜,还有双束显微镜、关联显微镜及和全套相关的辅助设备等。 /p p   当前,一方面从事冷冻电镜技术的研发工作,先后作为课题负责人和项目骨干获得国家重点基础研究发展计划和国家重点研发计划的资助。所开发的自动化电镜数据采集技术和各种电镜优化技术广泛应用于冷冻电镜平台,极大地提高了设备的使用效率。另一方面作为总管全面负责平台的管理与运行。短短几年,清华大学冷冻电镜平台便发展成全世界最顶尖的冷冻电镜平台之一。截至2017年6月,依托清华大学冷冻电镜平台,已有25篇以冷冻电镜为主要手段的研究论文发表于Nature、Science、Cell三大国际顶级期刊上。清华大学冷冻电镜平台已成为国内外众多已有或待建的冷冻电镜平台的标杆。 /p p   strong  报告时间:2017年6月23日下午 /strong /p p   strong  立即免费报名:http://www.instrument.com.cn/webinar/meetings/iCEM2017/ /strong /p p & nbsp /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制