当前位置: 仪器信息网 > 行业主题 > >

晶体硅

仪器信息网晶体硅专题为您整合晶体硅相关的最新文章,在晶体硅专题,您不仅可以免费浏览晶体硅的资讯, 同时您还可以浏览晶体硅的相关资料、解决方案,参与社区晶体硅话题讨论。

晶体硅相关的资讯

  • 美终裁中国产晶体硅光伏电池存在倾销和补贴
    华盛顿10月10日电 美国商务部10日作出终裁,认定中国向美国出口的晶体硅光伏电池及组件存在倾销和补贴行为,这基本为美国针对此类产品征收反倾销和反补贴关税(“双反”)扫清了道路。   美国商务部当天最终裁定,中国晶体硅光伏电池及组件的生产商或出口商在美国销售此类产品时存在倾销行为,倾销幅度为18.32%至249.96%。同时,还裁定中国输美的此类产品接受了14.78%至15.97%不等的补贴。   根据这一终裁结果,倾销幅度从今年5月份初裁的最低31.14%下调至18.32%,最高幅度不变 补贴幅度则大大高于初裁的2.9%至4.73%。   按照美方贸易救济程序,除美国商务部外,此案还需美国国际贸易委员会作出终裁。根据目前日程,美国国际贸易委员会定于今年11月23日左右作出终裁。如果美国国际贸易委员会也作出肯定性终裁,即认定从中国进口的此类产品给美国相关产业造成实质性损害或威胁,美国商务部将要求海关对相关产品征收“双反”关税。   根据美国商务部公布的数据,2011年美国从中国进口了价值约为31亿美元的晶体硅光伏电池及组件。   美国智库人士与相关行业协会多次警告,美国通过征收“双反”关税来保护本土企业,将付出沉重代价。美国廉价太阳能联合会估算,若美方对来自中国的光伏电池及组件征收100%的惩罚性关税,将在未来3年内损失5万个工作岗位。   这是今年以来美国对中国发起的又一项贸易救济行动,此前美国方面连续对中国产品发起“双反”和“337调查”。中国商务部多次表示,希望美国政府恪守反对贸易保护主义承诺,共同维护自由、开放、公正的国际贸易环境,以更加理性的方法妥善处理贸易摩擦。   美终裁对华光伏产品征34%-47%关税   《纽约时报》报道,美国商务部发布最终裁决,决定对大多数从中国进口的太阳能板和太阳能电池产品征收大约34%到接近47%的关税。   对大多数中国太阳能企业而言,这一惩罚比奥巴马政府今年早些时候的判决更为严苛。
  • 美国商务部发起针对中国晶体硅光伏电池的情势变更复审
    当地时间2022年3月23日,应SOURCE Global, PBC (SOURCE Global)的申请,美国商务部发起针对中国晶体硅光伏电池产品的情势变更复审(CCRs),以考虑是否撤销部分涉案产品现有的反倾销税令和反补贴税令。当地时间2012年12月7日,美国商务部发布公告,对进口自中国的晶体硅光伏电池发布反倾销和反补贴令。当地时间2020年12月4日,美国进口商SOURCE Global提交情势变更复审申请,要求撤销对某些离网小型便携式太阳能光伏电池的反倾销令和反补贴令。相关英文表述见下:SOURCE Global proposes that the Solar Cells Orders be revoked, in part, with respect to certain off-grid small portable CSPV panels as described below:(1). Off-grid CSPV panels in rigid form with a glass cover, with each of the following physical characteristics, whether or not assembled into a fully completed off-grid hydropanel whose function is conversion of water vapor into liquid water:(A) A total power output of no more than 80 watts per panel (B) A surface area of less than 5,000 square centimeters (cm^2) per panel (C) Do not include a built-in inverter (D) Do not have a frame around the edges of the panel (E) Include a clear glass back panel and(F) Must include a permanently connected wire that terminates in a two-port rectangular connector.
  • 狂发Nature等顶刊!Lake Shore低温探针台,助力超越硅极限的二维晶体管革新
    当今科技迅猛发展,电子器件的小型化和性能提升是科研人员的极致追逐。其中,晶体管是当代电子设备中不可或缺的核心组件,其尺寸微缩和性能提升直接关系到整个电子行业的进步。与此同时,硅基场效应晶体管(FET)的性能逐渐逼近本征物理极限,国际半导体器件与系统路线图(IRDS)预测硅基晶体管的栅长最小可缩短至12 nm,工作电压不低于0.6 V,这决定了未来硅基芯片缩放过程结束时的极限集成密度和功耗。因此,迫切需要发展新型沟道材料来延续摩尔定律。 二维(2D)半导体具备可拓展性、可转移性、原子级层厚和相对较高的载流子迁移率,被视为超越硅基器件的下一代电子器件的理想选择。近年来,先进的半导体制造公司和研究机构,都在对二维材料进行研究。Lake Shore的低温探针台系列产品可容纳最大1英寸(25.4mm)甚至8英寸的样品,可以为二维半导体材料研究提供精准的温度磁场控制及精确可重复的测量,是全球科研工作者的值得信赖的工具。本文我们将结合近期Nature、Nature electronics期刊中的前沿成果,一起领略Lake Shore低温探针台系列产品在二维晶体管革新中的应用吧! 图1. Lake Shore低温探针台1. 探针台电学测量揭秘最快二维晶体管——弹道InSe晶体管 对于二维半导体晶体管的速度和功耗方面的探索,北京大学电子学院彭练矛院士,邱晨光研究员课题组报道了一种以2D硒化铟InSe为沟道材料的高热速度场效应晶体管,首次使得二维晶体管实际性能超过Intel商用10纳米节点的硅基FinFET(鳍式场效应晶体管),并将工作电压下降到0.5V,称为迄今速度最快、能耗最低的二维半导体晶体管。相关研究成功以“Ballistic two-dimensional InSe transistors”为题发表于《Nature》上。 基于Lake Shore 低温探针台完成的电学测试表明,在0.5 V工作电压下,InSe FET具有6 mSμm-1的高跨导和饱和区83%的室温弹道比,超过了任何已报道的硅基晶体管。实现低亚阈值摆幅(SS)为每75 mVdec-1,漏极诱导的势垒降低(DIBL)为22 mVV-1。此外,10nm弹道InSe FET中可靠地提取了62 Ωμm的低接触电阻,可实现更小的固有延迟和更低的能量延迟积(EDP),远低于预测的硅极限。 这项工作首次证实了2D FET可以提供接近理论预测的实际性能,率先在实验上证明了二维器件性能和功效上由于先进硅基技术,为2D FET发展注入信心和活力。2. 探针台光电测量揭示光活性高介电常数栅极电介质——2D钙钛矿氧化物SNO 与2D半导体兼容的高介电常数的栅极电介质,对缩小光电器件尺寸至关重要。然而传统三维电介质由于悬挂键的存在很难与2D材料兼容。为解决以上问题,复旦大学方晓生教授等人进行了大量研究实验,发现通过自上而下方式制备的2D钙钛矿氧化物Sr10Nb3O10(SNO)具有高介电常数(24.6)、适中带隙、分层结构等特点,可通过温和转移的方法,与各种2D沟道材料(包括石墨烯、MoS2,WS2和WSe2)等构建高效能的光电晶体管。文章以“Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric”为题发表在Nature electronics上。图3. 具有SNO顶栅介电层的双栅WS2光电晶体管的电特性和光响应 基于Lake Shore探针台的光电测试表明,SNO作为顶栅介电材料,与多种通道材料兼容, 集成光电晶体管具有卓越的光电性能。MoS2晶体管的开/关比为106,电源电压为2V,亚阈值摆幅为88&thinsp mVdec-1。在可见光或紫外光照射下,WS2光电晶体管的光电流与暗电流比为~106,紫外(UV)响应度为5.5&thinsp ×&thinsp 103&thinsp AW-1,这是由于栅极控制和光活性栅极电介质电荷转移的共同作用。本研究展示了2D钙钛矿氧化物Sr2Nb3O10(SNO)作为光活性高介电常数介质在光电晶体管中的广泛应用潜力。 3. 探针台电学测量探索200毫米晶圆级集成——多晶MoS2晶体管 二维半导体,例如过渡金属硫族化合物(TMDs),是一类很有潜力的沟道材料,然而单器件演示采用的单晶二维薄膜,均匀大规模生长仍具挑战,无法应用于大尺度工业级器件制备。与单晶相比,多晶TMD的较大规模生长就容易很多,具备工业化应用集成的潜力。 有鉴于此,三星电子有限公司Jeehwan Kim和Kyung-Eun Byun 团队提出一种使用金属-有机化学气相沉积(MOCVD)制造大规模多晶硫化钼(MoS2)场效应晶体管阵列的工艺,与工业兼容,在商用200毫米制造设备中进行加工,成品率超过99.9%。文章以“200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors”为题发表在Nature electronics上。 图4. 三种不同接触类型(a常规顶部接触,b多晶MoS2的底部接触,c单层MoS2底部接触)的电学特性和肖特基势垒高度 基于Lake Shore低温探针台CPX-VF的电学测试表明,相比于顶部接触,底部接触可以更好的消除2D FETs阵列中多晶2D/金属界面的肖特基势垒。没有肖特基势垒的多晶MoS2场效应晶体管表现良好,迁移率可达21 cm2V-1s-1,接触电阻可达3.8 kΩµ m,导通电流密度可达120µ Aµ m-1,可比拟单晶晶体管。4. Lake Shore低温探针台系列 美国Lake Shore公司的低温探针台根据制冷方式不同,主要分为无液氦低温探针台和消耗制冷剂低温探针台,其下又因为磁场方向、尺寸大小差别,有更多型号的细分,适用于不同应用场景(电学、磁学、微波、THz、光学等),客户可根据需要,选择不同的温度和磁场配置。客户可以选择自己搭配测试仪表集成各类测试,也可以选择我们的整体测试解决方案,如电输运测试、半导体分析测试、霍尔效应测试、铁电分析测试,集成光学测试等。图5. 低温探针台选型和适用的应用场景Lake Shore低温探针台主要特征☛ 最大±2.5 T磁场☛ 低温至1.6 K,高温至675 K☛ fA级低漏电测量☛ 最高67 GHz高频探针☛ 3 kV 高电压探针(定制) ☛ 大温区低温漂探针☛ 真空腔联用传送样品(定制)☛ <30 nm低振动适用于显微光学测量☛ 无需翻转磁场快速霍尔效应测试☛ 多通道高精度低噪声综合电学测量☛ 光电、CV、铁电、半导体分析测试参考文献:1. J. Jiang, L. Xu, C. Qiu, L.-M. Peng, Ballistic two-dimensional InSe transistors. Nature 616, 470-475 (2023).2. S. Li, X. Liu, H. Yang, H. Zhu, X. Fang, Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric. Nature Electronics 7, 216-224 (2024).3. J. Kwon et al., 200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors. Nature Electronics 7, 356-364 (2024).相关产品1、Lake Shore低温探针台系列
  • 半导体晶体生长设备供应商南京晶升装备29号上会
    南京晶升装备股份有限公司(以下简称“晶升装备”)9月21日正式发布上会稿,9月29号上会。晶升装备聚焦于半导体领域,向半导体材料厂商及其他材料客户提供半导体级单晶硅炉、碳化硅单晶炉等定制化的晶体生长设备。其产品半导体级单晶硅炉下游行业为硅片厂商,下游应用行业具有技术壁垒高、研发周期长、资金投入大、下游验证周期长等特点,市场集中度较高。根据 Omdia 统计1,全球硅片市场份额主要被日本信越化学、日本胜高、中国台湾环球晶圆、 德国世创和韩国 SK 五大企业占据,五大企业占全球硅片市场份额约为 90%,由于国内半导体硅片行业起步较晚,国内硅片市场份额不足 10%,相对较低,增速及进口替代空间巨大。中国大陆半导体硅片厂商技术发展相对落后,国内主要硅片厂商以生产 200mm(8英寸)及以下抛光片、外延片为主,300mm(12英寸)产能规模占比相对较低,仅有沪硅产业(上海新昇)、TCL 中环(中环股份)、立昂微(金瑞泓)、奕斯伟等少数厂商可实现12 英寸半导体级硅片批量供应。目前国内自产12英寸产能仅为54万片/月,总需求为150万片/月至200 万片/月,自产供给和需求之间存在较大差距,主要依赖进口。从全球趋势来看,由于成本和制程等原因,国内12 英寸需求也将越来越大。因此,12英寸半导体级硅片成为未来国内硅片市场主要增长点,带动上游晶体生长设备行业实现规模化增长。晶升装备在三轮问询回复中表示,公司已于2018年率先实现了12英寸半导体级单晶硅炉国产化。虽然产品设备规格指标参数、晶体生长控制指标参数与国外厂商基本处于同一技术水平,但因产业应用时间较短,验证经验相对不足,目前与国外厂商的竞争中还处于相对劣势。以国内12英寸硅片龙头企业沪硅产业(上海新昇)为例,其采购国外厂商S-TECH Co., Ltd半导体级单晶硅炉产品占采购同类产品比例超过85%,采购晶升装备12英寸半导体级单晶硅炉产品占采购同类产品比例约为10%-15%。然而,相比国内厂商,晶升装备具有先发及领先优势。其12英寸半导体级单晶硅炉产品技术水平、市场地位及市场占有率国内领先,随着产业应用时间及下游认证的逐步推进,晶升装备将在半导体级单晶硅炉国产化替代进程中具备较强的竞争优势。根据三轮问询回复,目前晶升装备在半导体级单晶硅炉的国内竞争对手主要为晶盛机电及连城数控。晶盛机电及连城数控的的晶体生长设备下游应用领域主要为光伏级硅片领域,晶升装备产品聚焦于半导体级单晶硅炉领域。晶升装备的12英寸半导体级单晶硅炉已实现为国内领先半导体硅片企业沪硅产业(上海新昇)、立昂微(金瑞泓)的批量化销售。其产品的定制化能力、可应用制程工艺、下游量产进度较国内竞争对手具有领先性。晶升装备根据国内硅片行业整体预计新增产能对公司半导体级单晶硅炉市场空间进行测算,预计未来2-3年,公司半导体级单晶硅炉市场空间可达约9-29亿元。
  • 最小耐高温的等离子体晶体管问世(图)
    美国犹他大学的研究人员研制了迄今为止最小的等离子体晶体管,其可承受核反应堆的高温和离子辐射环境条件,有助于研制在战场上收集医用X射线的智能手机、实时监测空气质量的设备、无需笨重的镜头和X射线光束整形装置的X射线光刻技术。   这种晶体管有潜力开辟适用于核环境工作的新一类电子器件,能用于控制、指引机器人在核反应堆中执行任务,也能在出现问题时控制核反应堆,在核攻击事件中继续工作。   作为当代电子设备的关键组成元件,硅基晶体管通过利用电场控制电荷的流动来实现晶体管的打开或关闭,当温度高于550华氏度时失效,这是核反应堆通常工作的温度。而此次美研究人员将利用传导离子和电子的等离子体空气间隙作为导电沟道,研制了可在极高温度下工作的等离子体晶体管。它的长度为1-6微米,为当前最先进的微型等离子体器件的1/500,工作电压是其六分之一,工作温度高达华氏1450度。核辐射可将气体电离成等离子体,因此这种极端的环境更易于等离子体器件工作。
  • 世界最小晶体管问世 仅由7个原子构成
    5月26日,据物理学家组织网报道,美国与澳大利亚科学家成功制造出世界上最小的晶体管——由7个原子在单晶硅表面构成的一个“量子点”,标志着我们向计算能力的新时代迈出了重要一步。   量子点(quantum dot)是纳米大小的发光晶体,有时也被称为“人造原子”。虽然这个量子点非常小,长度只有十亿分之四米,但却是一台功能健全的电子设备,也是世界上第一台用原子故意造出来的电子设备。它不仅能用于调节和控制像商业晶体管这样的设备的电流,而且标志着我们向原子刻度小型化和超高速、超强大电脑新时代迈出的重要一步。   澳大利亚新南威尔士大学量子电脑技术中心(CQCT)和美国威斯康星大学麦迪逊分校研究人员组成的一个联合小组在最新一期的《自然—纳米技术》(Nature Nanotechnology)杂志上详细描述了这一发现。参与这项研究的量子电脑技术中心主任米歇尔西蒙斯(Michelle Simmons)教授说:“这项成就的重要性在于,我们不是令原子活动或是在显微镜下观测原子,而是操纵单个原子,以原子精度将其置于表面,以制造能工作的电子设备。”   “澳大利亚研究小组已可以完全利用晶体硅制造电子设备,我们在晶体硅上面用磷原子替换了7个硅原子,并达到了惊人的精确度。这是重大的科技成就,是表明制造‘终极电脑’(用硅原子制造的量子电脑)可行性的关键一步。”将原子置于某个物体表面的技术——扫描隧穿显微镜——已问世二十年之久。在此之前,没人能利用该技术去制造原子精度的电子设备,然后令其处理来自微观世界的电子输入。   西蒙斯教授说:“电子设备究竟能有多小?我们正在验证它的极限。澳大利亚的第一台电脑在1949年上市,它占据了整个房间,你只能用手拿着零部件。今天,你可以将电脑放在手掌上,许多零部件的直径甚至只是一根头发直径的千分之一。”   “现在我们已经展示了世界上第一台用硅材料在原子刻度下系统性制造的电子设备。这不仅对电脑用户具有特别的意义,对所有澳大利亚人来说都极为重要。过去50年来,电子设备小型化一直是驱动全球经济生产率快速增长的关键因素。我们的研究表明,这个进程仍可以继续。”   美澳联合研究小组的主要目标是用硅原子制造量子电脑,澳大利亚人在该领域拥有独一无二的人力资源,同时处于世界领先地位。这台新电子装置表明,实现设备在原子刻度下制造和测量的技术已经开始来临。   目前,商业晶体管闸极(transistor gate,该装置可令晶体管充当电流的放大器或开关)的长度约为40纳米(1纳米相当于十亿分之一米),量子电脑技术中心的研究团队正在开发长度仅为 0.4纳米的设备。   西蒙斯教授指出,20年前,唐艾格勒(Don Eigler)和埃哈德施魏策尔(Erhard Schweizer)在IBM公司的阿尔马登研究中心,用氙原子造出了IBM公司的标识,这也是当时世界上最小的标识。二人利用一台扫描隧穿显微镜,将35个氙原子置于镍表面,拼出了“IBM”三个字母。   艾格勒和施魏策尔的研究论文发表于《自然》杂志上,他们写道:“设备小型化的基本原理是显而易见的。”二人还在论文中多次提出警告,并在最后总结说:“原子刻度的逻辑电路和其他设备的前景距离我们有些遥远。”西蒙斯教授说:“当时看似遥远的事情如今变成了现实。我们利用这种显微镜不仅可以观测或熟练操作原子,还能用7个原子制造原子精度的设备,令其在真实的环境中工作。”
  • 芯片上“长”出原子级薄晶体管
    美国麻省理工学院一个跨学科团队开发出一种低温生长工艺,可直接在硅芯片上有效且高效地“生长”二维(2D)过渡金属二硫化物(TMD)材料层,以实现更密集的集成。这项技术可能会让芯片密度更高、功能更强大。相关论文发表在最新一期《自然纳米技术》杂志上。这项技术绕过了之前与高温和材料传输缺陷相关的问题,缩短了生长时间,并允许在较大的8英寸晶圆上形成均匀的层,这使其成为商业应用的理想选择。新兴的人工智能应用,如产生人类语言的聊天机器人,需要更密集、更强大的计算机芯片。但半导体芯片传统上是用块状材料制造的,这种材料是方形的三维(3D)结构,因此堆叠多层晶体管以实现更密集的集成非常困难。然而,由超薄2D材料制成的晶体管,每个只有大约三个原子的厚度,堆叠起来可制造更强大的芯片。让2D材料直接在硅片上生长是一个重大挑战,因为这一过程通常需要大约600℃的高温,而硅晶体管和电路在加热到400℃以上时可能会损坏。新开发的低温生长过程则不会损坏芯片。过去,研究人员在其他地方培育2D材料后,再将它们转移到芯片或晶片上。这往往会导致缺陷,影响最终器件和电路的性能。此外,在晶片规模上顺利转移材料也极其困难。相比之下,这种新工艺可在8英寸晶片上生长出一层光滑、高度均匀的层。这项新技术还能显著减少“种植”这些材料所需的时间。以前的方法需要一天多的时间才能生长出一层2D材料,而新方法可在不到一小时内在8英寸晶片上生长出均匀的TMD材料层。研究人员表示,他们所做的就像建造一座多层建筑。传统情况下,只有一层楼无法容纳很多人。但有了更多楼层,这座建筑将容纳更多的人。得益于他们正在研究的异质集成,有了硅作为第一层,他们就可在顶部直接集成许多层的2D材料。
  • 可在P型与N型间转换的新式晶体管问世
    据美国物理学家组织网12月21日(北京时间)报道,德国科学家研制出一种新式的通用晶体管,其既可当p型晶体管又可当n型晶体管使用,最新晶体管有望让电子设备更紧凑 科学家们也可用其设计出新式电路。相关研究发表在最新一期的《纳米快报》杂志上。   目前,大部分电子设备都包含两类不同的场效应晶体管:使用电子作为载荷子的n型和使用空穴作为载荷子的p型。这两种晶体管一般不会相互转化。而德累斯顿工业大学和德奇梦达公司携手研制的新式晶体管可通过电信号对其编程,让其自我重新装配,游走于n型晶体管和p型晶体管之间。   新晶体管由单条金属—半导体—金属结构组成的纳米线嵌于一个二氧化硅外壳中构成。从纳米线一端流出的电子或空穴通过两个门到达纳米线的另一端。这两个门采用不同方式控制电子或空穴的流动:一个门通过选择使用电子或空穴来控制晶体管的类型 另一个门则通过调谐纳米线的导电性来控制电子或空穴。   传统晶体管通过在制造过程中掺杂不同元素来确定其是p型还是n型,而新式晶体管不需要在制造过程中掺杂任何元素,通过在一个门上施加外部电压即可重新配置晶体管的类型。施加的电压会使门附近的肖特基结阻止电子或空穴流过设备,如果电子被阻止,空穴能流动,那么,晶体管就是p型,反之则是n型。   研究人员解释道,使这种再配置能起作用的关键是调谐分别通过肖特基结(每个门一个)的电子流动情况,模拟显示,纳米线的几何形状在这方面起关键作用。   尽管该研究还处于初期阶段,但新式晶体管展示出了极佳的电学特性。比如,与传统纳米线场效应晶体管相比,其开/闭比更高,且漏电更少。该研究的领导者沃尔特韦伯表示:“除采用人造纳米线外,采用目前先进的硅半导体制造技术也可以制造出这种晶体管,还可以用到自对准技术,大大提高工作频率和速度。”   接下来,科学家们计划通过改变材料的组成来改进新式晶体管的性能,并制造出由其运行的电路。他们表示,最大的挑战是,在将其与其他晶体管结合在一起时,如何将额外的门信号整合进来。
  • 首个10纳米以下碳纳米管晶体管问世
    据美国物理学家组织网2月2日(北京时间)报道,来自IBM、苏黎世理工学院和美国普渡大学的工程师近日表示,他们构建出了首个10纳米以下的碳纳米管(CNT)晶体管,而这种尺寸正是未来十年计算技术所需的。这种微型晶体管能有效控制电流,在极低的工作电压下,仍能保持出众的电流密度,甚至可超过同尺寸性能最好的硅晶体管的表现。相关研究报告发表在最新一期的《纳米快报》杂志上。   很多科研小组都致力研发小尺寸的晶体管,以切合未来计算技术对于更小、更密集的集成电路的需要。但现有的硅基晶体管一旦尺寸缩小,就会失去有效控制电流的能力,即产生所谓的“短沟道效应”。   在新研究中,科研人员舍弃硅改用单壁碳纳米管进行实验。碳纳米管具有出色的电气性能和仅为直径1纳米至2纳米的超薄“身躯”,这使其在极短的通道长度内也能保持对电流的闸门控制,避免“短沟道效应”的生成。而IBM团队研制的10纳米以下碳纳米管晶体管首次证明了这些优势。   科学家表示,理论曾预测超薄的碳纳米管将失去对于电流的闸门控制,或减少输出时的漏极电流饱和,而这都会导致性能的降低。此次研究的最大意义在于,证明了10纳米以下的碳纳米管晶体管也能表现良好,且优于同等长度性能最佳的硅基晶体管,这标志着碳纳米管可成为规模化生产晶体管的可行备选。   工程师在同一个纳米管上制造出若干个独立的晶体管,其中最小一个的通道长度仅为9纳米,而这个晶体管也表现出了极好的转换行为和漏极电流饱和,打破了理论的预言。当与性能最佳,但设计和直径不同的10纳米以下硅基晶体管进行对比时,9纳米的碳纳米管晶体管具有的直径归一化(漏)电流密度,可达到硅晶体管的4倍以上。而且其所处的工作电压仅为0.5伏,这对于降低能耗十分重要。此外,超薄碳纳米管晶体管的极高效能也显示出了其在未来计算技术中大规模使用的潜力。   总编辑圈点   没人不爱便携。所以电子元件抗拒不了“越缩越小”的命运。但对于碳纳米管晶体管,性能和尺寸却在“闹矛盾”:既往理论认为,如果缩到了15纳米以下的长度,那载体有效质量相对于其它半导体来说,就太小了,从而非常容易就隧穿和渗入设备——不受控制,这是身为电子元件所最不被看好的。不过,现在工程师们搞定了它,据其论文讲,问题发生在碳纳米管金属触点的物理模型有所不足,而此前的研究均忽视了这一点,没人仔细观察电子在通过那小小交界处时发生了什么。
  • 迄今速度最快能耗最低二维晶体管问世
    北京大学电子学院彭练矛教授-邱晨光研究员课题组日前制备出10纳米超短沟道弹道二维硒化铟晶体管,首次使得二维晶体管实际性能超过Intel商用10纳米节点的硅基鳍型晶体管,并将二维晶体管的工作电压降到0.5V,这也是世界上迄今速度最快能耗最低的二维半导体晶体管。该研究成果以《二维硒化铟弹道晶体管》为题日前在线发表于《自然》。芯片为大数据和人工智能的发展提供源源不断的动力,芯片速度的提升得益于晶体管的微缩,然而当前传统硅基场效应晶体管的性能逐渐接近其本征物理极限。受限于接触、栅介质和材料等方面的瓶颈,迄今为止,所有二维晶体管所实现的性能均不能媲美业界先进硅基晶体管,其实验结果远落后于理论预测。对此,团队在研发过程中实现了三方面技术革新:一是采用高载流子热速度(更小有效质量)的三层硒化铟作沟道,实现了室温弹道率高达83%,为目前场效应晶体管的最高值,远高于硅基晶体管的弹道率(小于60%);二是解决了二维材料表面生长超薄氧化层的难题,制备出2.6纳米超薄双栅氧化铪,将器件跨导提升到6毫西微米,超过所有二维器件一个数量级;三是开创了掺杂诱导二维相变技术,克服了二维器件领域金半接触的国际难题,将总电阻刷新至124欧姆微米。研究团队表示,这项工作突破了长期以来阻碍二维电子学发展的关键科学瓶颈,将n型二维半导体晶体管的性能首次推近理论极限,率先在实验上证明出二维器件性能和功耗上优于先进硅基技术,为推动二维半导体技术的发展注入了强有力的信心和活力。
  • 郭建刚:新时代“晶体人”
    晶体学,这个最初为窥探物质原子结构和排列方式而形成的一门学科——至今有100余年历史,且已获颁23项诺贝尔奖。然而,这门学科的基础研究犹如科学界的一门“古老手艺”,人才渐缺、关注渐少。  郭建刚是个“逆行者”。这个中国科学院物理研究所“80后”研究员执着地相信:百余年来沉淀下的晶体学知识在当今依然具有强大生命力,“认识全新物质体系,要回到最根本、最基础的结构。虽越基础、越困难,但也越重要。”  传统科学与新月的碰撞  正如月球研究,晶体科学就提供了新视角,而后获得了新发现。  2020年,我国嫦娥五号从月球背面带回1731克的月壤样品。经过激烈地竞争答辩,郭建刚所在的先进材料与结构分析实验室获得了1.5克的月壤样品。  拿到珍贵的最新月壤样品,郭建刚抑制不住内心地兴奋,这是他的研究课题第一次触及“太空”。  “月球土壤与我们在地面上看到的土壤类似,是一些矿石经过不断风化,逐渐变成细碎的土壤。”郭建刚介绍。  与大多形态形貌研究不同,他们想借助自身优势,在更深、更细处探索未知,剖析月壤内部结构与原子分布状态,试图“见微知著”,了解太阳风化和月球演变等。  装在白色透明小瓶里,月壤犹如碳粉一般,呈黑色粉末状。郭建刚首先要做的是“挑样”——在数十万个颗粒中挑出微米级大小的晶体,这是项考验耐心的技术活。  晶体的大小约等于一根头发丝直径,郭建刚站在手套箱前、紧盯着显微镜,寻找着在特殊灯光照射下反射亮光的晶体,然后屏住呼吸,利用一根纤细挑样针的静电效应,小心翼翼“粘”出。  他和学生两人一组,反复这一连串动作,每次需要持续3小时。为保证安静环境,他们常常在深夜工作,结束时身体僵直、眼睛酸胀、几近“崩溃”。  实验室窗台上的几盆被拔“秃头”的仙人球见证着他们的付出,他们需要使用仙人球的刺来“粘”住微米级晶体,放置在四圆衍射仪和高分辨透射电镜上测试晶体结构。  郭建刚知道,我国嫦娥五号采集的月壤样品属于最年轻的玄武岩,且取样点的纬度最高,为探究月壤在太空风化作用下的物质和结构演化提供了新机会。挑选样品的质量,在一定程度上或许决定了能否把握住这次机会,因此,必须仔细再仔细。  郭建刚和团队在月壤样品中找到了铁橄榄石、辉石和长石等晶体,经过测试,在铁橄榄石表面发现了非常薄的氧化硅非晶层,这其中包裹着大小为2到12纳米的晶体颗粒,通过系统的电子衍射及指标化、高分辨原子相和化学价态分析,确认它们是氧化亚铁,并非此前在其他月壤样品中发现的金属铁颗粒。  他们还在铁橄榄石中还观察到了分层的边缘结构,这种特殊的微结构首次在月球土壤中看到。  扎实的数据得到了美国行星之父、匹兹堡大学地质与行星科学系教授Bruce Hapke的肯定:“这种橄榄石晶体的边缘结构是独特的。”  “我们确认了铁橄榄石在太空风化作用下出现了分步分解现象。通过表面微结构和微区晶体结构分析,我们首次在铁橄榄石的边缘确认了氧化亚铁的存在,表明矿物在风化过程中,经历了一个中间态,而非一步到金属游离铁,这将有利于进一步理解月球矿物的演变历史。”郭建刚说。  越基础,越重要  2008年,从吉林大学硕士毕业,郭建刚来到物理所跟随陈小龙研究员攻读博士学位。在团队里,他感受到的第一个研究“逻辑”就是,要想得到或利用一个材料,首先要想办法弄清楚材料最基本的晶体结构,理解原子之间的排布与结合方式。  “是什么、为什么、能做些什么,这是我们要探索全新体系时要回答的三个基本问题。”他至今记得,博士期间,按照这条“底层逻辑”,做出了第一个让他惊奇的超导新材料。从此,他便更加热爱晶体科学。  “晶体,尤其是超导这类单晶,非常重要,在电力运输、磁悬浮等有着广泛应用,若原子微观结构不清楚,很难理解和优化其物性,离应用就更远了。”郭建刚说。  的确,对物质晶体结构的了解,有助于在物质内部微观结构、原子水平的基础上,阐明物质各种性能,并为改善材料的性能、探索新型材料和促进材料科学的发展提供重要科学依据。  10余年来,郭建刚一直牢记着这个“逻辑”。他以探索电磁功能材料和生长晶体为主要方向,以理解晶体结构为出发点,研究材料的物性和晶体结构之间的关系,取得了诸多重要成果。  2010年,还在读博期间,郭建刚在国际上最早制备出了碱金属钾插层铁硒超导体系,其最高超导转变温度为30 K,创造了当时常压下FeSe基化合物超导转变温度的最高纪录。  该成果开辟了国际铁基超导研究的新领域,所开创的研究方向‘Alkali-doped iron selenide superconductors’被汤森路透《2013研究前沿》和《2014研究前沿》列为物理学10个最活跃前沿领域之首和第7名,将其发展成了与铁砷基并列的第二类铁基高温超导体。  他成功地解决了较小尺寸碱金属钾插层铁硒的难点,制备出了纯相的钠插层铁硒超导体,进一步将超导转变温度提高至37 K。  弄清晶体结构,会大大缩短新型材料探索时间、加速解决实际问题。  郭建刚介绍,用传统方法合成一个新材料,需要不断地试,因为不知道哪些组分、温度等合适,试的足够多,可能会碰到一个新的,但试错法效率低、成本高。而弄清楚了晶体结构,就能了解某一类材料中物性的决定性单元(也称功能基元),再以此为基础,发展新的材料体系,“比如要制备一个新材料,有3个组分,通过晶体结构分析,我们能发现决定材料物性的功能基元,就能够以相应的物性为导向,高效地探索新材料和新效应。”  即以不同功能基元为基础,调控基元的排列方式,或通过调控功能基元里配位的原子种类和数目来改变其电子结构,制备新高温超导晶体体和诱导新效应。  基于这一思路,由陈小龙牵头,郭建刚作为第2完成人所承担的挑战性课题“基于结构基元的新电磁材料和新效应的发现”,荣获2020年度国家自然科学二等奖,这项成果解决了由功能基元出发、高效探索新材料和新效应的若干关键科学问题,推动了无机功能材料科学的研究与发展。  肩负重任的新生力量  在先进材料与结构分析实验室,作为青年科学家的郭建刚,肩负延续学科发展与服务国家需求新的重任。  “老一辈科学家的事迹和精神始终鼓舞着我。”郭建刚说。“陆学善院士和梁敬魁院士分别是中国著名的晶体物理学家和晶体物化学家,导师陈小龙除了在晶体结构分析和单晶生长具有深厚的学术功底,也是推动碳化硅晶体从基础研究到产业化的先行者之一。  让郭建刚感触最深的是,老师们总是以一丝不苟的态度,对待基础研究,即使看似很小的工作也做得非常扎实、严谨。  他一直记得陆学善先生和梁敬魁先生的一个科研故事,上世纪60年代,梁敬魁回国来到物理所,与陆学善合作开展了铜-金二元体系超结构研究,为了达到合金的平衡态,需要诸多工艺,单是退火处理这一个工艺过程,就需要六个月或者一年时间。他们耐住寂寞,几年之后,获得了一系列长周期的超结构相,其中有的是国外研究者已经研究多年,却始终没有观察到的现象。  “在很多人看来,这样的研究方法可能比较‘原始’,但恰是这种方法,为科研打下了扎实的基础,产出了诸多原创性成果。”郭建刚说,耐心、潜心是他从老先生那里学到的科学精神。  在郭建刚看来,今天,研究组在晶体生长领域产生了多项引领性的工作,尤其在碳化硅宽禁带半导体生长与新功能晶体材料探索方面,都是在多年的基础研究积累上取得的。  碳化硅是一种重要的宽禁带半导体,具有高热导率、高击穿场强等特性和优势,是制作高温、高频、大功率、高压以及抗辐射电子器件的理想材料,在军工、航天、电力电子和固态照明等领域具有重要的应用,是当前全球半导体材料产业的前沿之一和国内“十四五”规划重点攻关的半导体材料之一。  然而,一直以来,用于应用研究的大尺寸单晶存在较多难以突破的关键科学和技术问题,严重影响器件性能,诸多关键技术和设备面临着国外封锁。  近年来,针对相关难题,在陈小龙的带领下,郭建刚在扎根基础研究的同时,与团队共同推动研究成果产业转化,获得了2020年度中国科学院科技促进发展奖。  “最大的挑战是基础研究领域的突破,在晶体研究领域,我们还需要更细致、更系统和更‘原始’的研究。”郭建刚深知,基础科学问题的突破将会极大地提高晶体的质量和应用范围,给学术和产业界带来巨大变革,但攀登科学高峰这条路必定不轻松,还好,有热爱,可抵漫长岁月。
  • 微电子所太赫兹晶体管研究取得新进展
    InP基太赫兹晶体管的a直流与b高频特性   太赫兹波(T-ray,0.1–10 THz)在公共安全、无损检测、射电天文、环境监测、宽带通信、空间探测、生物医学等方面具有重要的应用前景,高性能太赫核心器件的研制是太赫兹技术在实用化进程中的关键环节。近日,中国科学院微电子研究所微波器件与集成电路研究室(四室)刘洪刚研究员带领的研究团队在太赫兹核心器件研究方面取得进展。   将集成电路的工作频率提升到太赫兹频段是国际上太赫兹技术领域研发的热点,而研制太赫兹晶体管则是关键所在。传统的硅基微电子技术通常采用“缩小尺寸”来提高晶体管的特征频率,当晶体管制造技术发展到纳米尺度后,器件性能的提高将受到一系列基本物理问题和工艺技术问题的限制,硅基晶体管的频率性能难以进一步提高。微电子所太赫兹核心器件研究团队采用高迁移率InP基材料体系设计了一种新型异质结双极晶体管,通过巧妙利用“II型”能带结构使电子以弹道输运的方式渡越晶体管,大幅度地提高了晶体管的工作频率,为突破太赫兹晶体管技术探索了一条新途径。   最新结果表明,InP基太赫兹晶体管的截止频率(FT)高于0.6 THz,最大振荡频率(FMAX)突破1 THz,其Johnson Limit(FT ′ BVCEO)比硅基晶体管提高了5倍以上。   该项研究成果将推动集成电路技术在太赫兹信号的发射、接收与运算处理方面的应用,并受到国际同行的高度评价。相关论文已经发表于国际期刊IEEE Transaction on Electron Devices, Vol. 58, No. 2, pp. 576 (2011)。
  • 我国科研人员为氧化镓晶体管找到新结构方案
    26日,记者从中国科学技术大学获悉,该校微电子学院龙世兵教授课题组联合中科院苏州纳米所加工平台,分别采用氧气氛围退火和氮离子注入技术,首次研制出了氧化镓垂直槽栅场效应晶体管。相关研究成果日前分别在线发表于《应用物理通信》《IEEE电子设备通信》上。作为新一代功率半导体材料,氧化镓的p型掺杂目前尚未解决,氧化镓场效应晶体管面临着增强型模式难以实现和功率品质因数难以提升等问题,因此急需设计新结构氧化镓垂直型晶体管。研究人员分别采用氧气氛围退火和氮离子注入工艺制备了器件的电流阻挡层,并配合栅槽刻蚀工艺研制出了不需P型掺杂技术的氧化镓垂直沟槽场效应晶体管结构。氧气氛围退火和氮离子注入所形成的电流阻挡层均能够有效隔绝晶体管源、漏极之间的电流路径,当施加正栅压后,会在栅槽侧壁形成电子积累的导电通道,实现对电流的调控。类似于硅经过氧气氛围退火处理可形成高阻表面层,氧化镓采用该手段制备电流阻挡层具有缺陷少、无扩散、成本低等特点,器件的击穿电压可达到534伏特,为目前电流阻挡层型氧化镓MOSFET(金属氧化物半导体场效应晶体管)器件最高值,功率品质因数超过了硅单极器件的理论极限。研究人员表示,这两项工作为氧化镓晶体管找到了新的技术路线和结构方案。
  • 我国科学家创制极化激元晶体管
    纳米尺度的光电融合是未来高性能信息器件的重要发展路线。如何在微纳甚至原子尺度对光进行精准操控是其中的关键的科学问题。中国科学院国家纳米科学中心研究员戴庆研究团队率先提出利用极化激元作为光电互联媒介的新思路,充分发挥它对光的高压缩和易调控优势,不仅有望实现高效光电互联,而且可以提供额外的信息处理能力,从而进一步提升光电融合系统的性能。   该团队通过十多年的努力,实现了极化激元的高效激发和长程传输。在此基础上,研究设计并构筑了微纳尺度的石墨烯/氧化钼范德华异质结,实现了用一种极化激元调控另一种极化激元开关的“光晶体管”功能。研究表明该晶体管可实现光正负折射的动态调控,类似电子晶体管能切换(1,0)两个高低电位,为构筑与非门等光逻辑单元奠定了重要基础。该研究充分发挥了不同材料的纳米光子学特性,从而突破了传统结构光学方案如使用人工结构(超材料和光子晶体等)在波段、损耗、压缩和调控等方面的性能瓶颈。   与电子相比,光子具有速度快、能耗低、容量高等优势,被寄予未来大幅提升信息处理能力的厚望。因此,光电融合系统被认为是构建下一代高效率、高集成度、低能耗信息器件的重要方向。光电互联(电-光-电转换)是光电融合主的基础,相当于光电两条高速公路交汇的收费站。而现有硅基光电集成方案存在效率低(依赖多次光电效应)、体积大(光模块无法突破衍射极限)等问题,制约光电器件之间的信息流转。然而,光子不携带电荷且光的传输受限于光学衍射极限,相比于能轻易通过电学调控的电子,对光子的纳米尺度局域和操控并不容易。   极化激元是一种由入射光与材料表界面相互作用形成的特殊电磁模式(表面波)。它具有优异的光场压缩能力,可轻易突破光学衍射极限从而实现纳米尺度上光信息的传输和处理。   戴庆团队以攻克高速光电互联这一世界技术难题为目标,提出以纳米材料的表面波(极化激元)为媒介,实现高效光电互联的新思路。构筑光-极化激元-电转换路径相当于将高速公路的收费站改造成立交桥,具有显著优势:一是效率高,光/电激发材料表面波的效率相比光电效应提升潜力巨大;二是集成度高,光波转化成材料表面波可将波长压缩百倍轻松突破衍射极限,从而显著提升光模块集成度;三是算力强,材料表面波具有光子性质可进行高效并行计算,从而将现有光电融合的“光传输、电计算”拓展成为“光传输、电计算+光计算”,实现“1+12”的效果。   戴庆提出,我们利用电学栅压对极化激元这种光波的折射行为实现了动态调控,使其从常规的正折射转变到奇异的负折射。这好比可以像操纵电子一样操纵光子,为将来高性能光电融合器件与系统的发展提供重要促进作用。这一研究在应用上面向光电融合器件大规模集成缺乏高效、紧凑光电互联方式的重大需求,在科学上为解决突破衍射极限下高效光电调制的难题提供了新思路。   2月10日,相关研究成果以Gate-tunable negative refraction of mid-infrared polaritons为题,发表在《科学》(Science)上。该论文审稿人评价道,这证实了一项非常规的物理现象,为研究纳米尺度的光操控提供了崭新的平台。图示极化激元晶体管的基本原理,通过在氧化钼上覆盖石墨烯构筑范德华异质结,天线激发极化激元传输穿过界面后形成负折射。极化激元晶体管的光学显微镜照片
  • 美国研发出可同时操控光线和振动的晶体
    光线传播和机械振动是两种不同的物理现象,而美国研究人员新研发出的晶体可以在一个小空间中同时操控这两者。这种光学机械晶体将有助于量子计算机等领域的科研工作。   英国《自然》杂志网站日前刊登研究报告说,美国加州理工学院的研究人员在一条只有10微米长的硅晶片上刻了许多凹槽,然后再利用具有特定共振频率的激光照射该晶体,光线在凹槽中多次反射并互相干涉,最后只有部分光线透出,这说明另一部分光线被截留在了晶体中间。与此同时,研究人员探测到晶体中间的小格子在进行前后的机械振动。   研究人员说,这种光学机械晶体可用于未来的计算机电路中,尤其是在当前的量子计算机研究中。量子计算处理器的基础各有不同,如原子、光子或超导体等,需要使用不同频率的光,难以结合到一起,而新晶体可以将一种量子处理器的光转化为振动,再将这种振动转化为另一种频率的光。这样,新晶体可以成为混合型量子计算机的理想“连接器”。   由于这种晶体对光频率的变化非常敏感,它还可以用作医疗探测器,检查DNA(脱氧核糖核酸)序列和病原体等。此外,它还可以帮助研发出能够检测单个气体分子的探测仪器,这将超出当前任何一种探测仪器的精度。
  • 中国科学家研制出首个半浮栅晶体管
    复旦大学微电子学院张卫课题组成功研制出第一个介于普通MOSFET晶体管和浮栅晶体管之间的半浮栅晶体管(SFGT)。8月9日,美国《科学》杂志刊发了该研究成果。这是我国科学家首次在该杂志上发表微电子器件领域的论文,标志着我国在全球尖端集成电路技术创新链中获得重大突破。   据介绍,金属&mdash 氧化物&mdash 半导体场效应晶体管(MOSFET)是目前集成电路中最基本的器件,而我们常用的U盘等闪存器件,多采用另一种被称为浮栅晶体管的器件。此次研究人员把一个隧穿场效应晶体管(TFET)和浮栅器件结合起来,构成了一种全新的&ldquo 半浮栅&rdquo 结构器件,称为半浮栅晶体管。它具有高密度和低功耗的明显优势,可取代一部分静态随机存储器(SRAM),并可应用于动态随机存储器(DRAM)领域以及主动式图像传感器芯片(APS)领域。   &ldquo 在这些领域,中国大陆具有自主知识产权且可应用的产品几乎没有。&rdquo 张卫介绍说,作为一种基础电子器件,半浮栅晶体管在存储和图像传感等领域的潜在应用市场规模超过300亿美元。它的成功研制将有助于我国掌握集成电路的核心技术,从而在国际芯片设计与制造领域内逐渐获得更多话语权。   不同于实验室研究的基于碳纳米管、石墨烯等新材料的晶体管,半浮栅晶体管是一种基于标准硅CMOS工艺的微电子器件。SFGT原型器件在复旦大学的实验室中研制成功,而与标准CMOS工艺兼容的SFGT器件也已在国内生产线上被成功制造出来。   &ldquo 半浮栅晶体管兼容现有主流集成电路制造工艺,具有很好的产业化基础。&rdquo 张卫表示,不过,拥有核心专利并不等于拥有未来的广阔市场。尽管半浮栅晶体管应用市场广阔,但前提是对核心专利进行优化布局。
  • Nanotechnology:采用热扫描探针光刻和激光直写相结合的方法快速制备点接触量子点硅基晶体管
    制造高品质的固态硅基量子器件要求高分辨率的图形书写技术,同时要避免对基底材料的损害。来自IBM实验室的Rawlings等人利用SwissLitho公司生产的3D纳米结构高速直写机NanoFrazor,结合其高分辨热探针扫描技术和高效率的激光直写功能,制备出一种室温下基于点接触隧道结的单电子晶体管(SET)。利用扫描探针可以确定佳焦距下的Z向位置,同时确定扫描探针和激光直写的位置补偿,研究人员在兼顾高分辨和高效率书写条件下得到小于100nm的度。利用CMOS工艺兼容几何图形氧化流程,研究人员在N型简并掺杂(>1020/cm3)的缘硅基底上制备出该SET器件。所研究的三种器件的特性主要由Si纳米晶和嵌入SiO2中的P原子所控制,进而形成量子点(QDs)。量子点上电子尺寸微小且局域性强,保证了SET在室温情况下的稳定运行。温度测量结果显示在100 – 300 K的范围内,电流主要由热激发产生,但在<100K时,主要以隧道电流为主。在硅基量子点器件的制备过程中,内部精细的功能器件区域一般要求高分辨率书写,但是在外部电相对粗糙的连接处仅需要高效的相对低分辨率刻蚀,这就是所谓的“混合搭配光刻”(mix-and-match lithography)。但是两种不同原理的书写技术结合应用会增加工作量,同时带来图形转移过程的位置偏差和对样品表面的污染。在本工作中,3D纳米结构高速直写机NanoFrazor系统将激光直写技术与高分辨热探针书写技术(XY: 10nm,Z: 1nm)相结合(如图1所示),这样可以利用热探针技术实现高分辨率区域的图形书写,而利用激光直写技术实现低分辨率区域的快速书写(如图2a所示, 蓝色区域为激光直写区域,深绿色区域为热探针书写区域),后实现一次性书写整体图形的高效性,同时避免了不必要流程所导致的表面污染和位置偏差。 图1:a) 热探针和激光透镜的结构示意图。b) 热探针连接在Z向压电传感器和位移台上,平行激光经透镜聚焦在样品表面。通过摄像头收集反射光实现样品成像,利用探针和激光的位置补偿进行表面书写。 图2:单电子器件(SET)的制作工艺流程示意。a) 器件图形示意,粉色区域为制备SET前的预图形书写区域。图形中央30μm×30μm区域中包含利用激光直写区域(蓝色)和利用热探针技术书写区域(深绿色);b) 位置校准示意;c) 对书写区域进行定位。d) 利用热探针技术进行高分辨率书写(图2a中深绿色区域);e) 利用激光直写技术进行低分辨率快速书写(图2a中蓝色区域);f) 利用RIE实现图形向硅层转移;g) 通过热氧化得到器件通道中的点接触通道。 IBM专门研发设计的NanoFrazor 3D纳米结构高速直写机所采用的针是具有两个电阻加热区域,针上方的加热区域可以加热到1000℃,二处加热区域作为热导率传感器位于侧臂处,其能感知针与样品距离的变化,精度高达0.1nm。因此,在每行直写进程结束后的回扫过程中,并不是通过针起伏反馈形貌信息,而是通过热导率传感器感应形貌变化,从而实现了比AFM快1000余倍的扫描速度,同避免了针的快速磨损消耗。NanoFrazor 3D纳米结构高速直写机与传统的微纳加工设备,如纳米醮印、激光直写、聚焦离子束刻蚀FIB、电子束诱导沉积、电子束光刻EBL等技术相比,具有高直写精度 (XY: 高可达10nm, Z: 1nm)以及高直写速度(20mm/s 与EBL媲美),具备实时形貌探测的闭环刻写技术以及无需标记拼接与套刻等特技术优势。加上其性价比高,使用和维护成本低,易操作等特点,成为广受关注的纳米加工设备。拓展阅读:Fast turnaround fabrication of silicon point-contact quantum-dot transistors using combined thermal scanning probe lithography and laser writingC. Rawlings, Y. K. Ryu, M. Rüegg, N. Lassaline, etc.DOI: 10.1088/1361-6528/aae3df
  • 逆境中长出的“中国牌”晶体
    2009年2月,国际期刊《自然》发表题为《中国晶体——藏匿的珍宝》的采访调研文章,认为中国禁运氟代硼铍酸钾晶体(KBBF),将对美国功能晶体相关领域的研究和发展产生严重影响,并断言“其他国家在晶体生长方面的研究,还无法缩小与中国的差距”。该文的缘起是中国2007年正式宣布停止对外提供KBBF,美国人不惜重金请求购买或邀请相关中国专家去美国工作,都被严词拒绝。中国科学家用国际领先的自主创新成果在高技术领域对美国说“不”。从20世纪60年代开启理论研究,到80年代研制出低温相偏硼酸钡晶体(BBO)、三硼酸锂晶体(LBO),再到90年代研制出KBBF,中国科学院福建物质结构研究所(以下简称福建物构所)等单位的科学家,打破了中国在晶体生长领域仿制、跟跑的局面,让“中国牌”晶体闪耀世界。几十年过去了,“中国牌”晶体这个“老字号”更显创新活力。很难想象,当年研发“中国牌”晶体的科学家们经历了怎样的奋斗历程。不跟在外国人后面走材料是人类社会进步的里程碑。作为一类重要材料,晶体指能自发生长成规则几何多面体形态的物体。随着科技进步和经济发展,人工功能晶体已成为激光设备等不可或缺的基础材料。激光技术是20世纪“四大科技发明”之一。作为激光设备的上游关键部件,非线性光学晶体可以将某一频率的激光转换成另一频率的激光。20世纪60年代初,国外已发现一些非线性光学晶体材料,而中国尚未研发出自己的晶体。整体看,国际上非线性光学晶体研发都相对滞后,导致激光器进一步应用乏力。功能晶体乃至所有功能材料的性能,都取决于其组成和结构,而这需要专业人才深入研究。在那个年代,我国缺乏这方面的人才,谁来研发“中国的晶体”?1945年,我国结构化学领域开拓者卢嘉锡留学归国,组织队伍开启晶体材料研究,并在国内首次招收以结构化学专业为主的研究生。卢嘉锡1955年当选中国科学院化学学部委员,1981年至1987年任中国科学院院长。在美国留学期间,卢嘉锡在美国国家科学院院士鲍林的指导下,利用X射线和电子衍射法技术分析研究晶体结构和分子结构;他所设计的卢氏图表载入《国际X射线晶体学用表(第二卷)》,被国际化学界应用了几十年。国外晶体研究已开展数十年,我国如何赶超?基于对国际国内晶体研究的分析,卢嘉锡认为探索新晶体材料,不应受国外学术思想束缚,跟在外国人的后面走,而应在分析、总结国外已有工作基础上走自主创新之路。“打造科研平台很关键。”福建物构所所长曹荣介绍,1959年,中国科学院福建分院设立并筹建技术物理所、化学所等6个研究所和生物物理研究室。卢嘉锡一直构想建立现代化物质结构研究室,福建分院的设立让他看到了希望。1960年,卢嘉锡经过深思熟虑,向中国科学院和福建省委提出将福建分院筹建的“六所一室”整合,最终形成福建物构所,卢嘉锡为首任所长。自此,卢嘉锡带领福建物构所的研究团队开始研制非线性光学晶体。卢嘉锡(左)指导福建物构所青年科技人员工作。让人匪夷所思的重大发现当时,我国缺乏技术、没有经验和专业人才,只能从仿制起步。由于没有理论指导,工作很快就遇到瓶颈。那时科研条件极为简陋。建所之初,主体建筑是一幢四方形平房,人员主要是复退军人和大中专毕业生,办公和仪器设备是从其他学校搬来的,吃饭就在临时搭建的竹棚里。 创办初期的福建物构所。即便如此,卢嘉锡还是凭借研究积累,部署了结构化学、非线性光学晶体等研究方向,希望从结构化学角度探讨晶体和分子结构、电子结构之间的关系。构想有了,关键是靠大团队联合开展大攻关。为此,卢嘉锡想方设法从高校调来理论物理等专业的毕业生,陈创天(2003年当选中国科学院院士)就是其中之一。那是1962年,陈创天25岁,刚从北京大学物理系毕业。到福建物构所没几天,卢嘉锡就找到他,语重心长地说:“研究所搞的是结构化学,你的研究重点要从理论物理向结构化学转移。”卢嘉锡给陈创天介绍了基本知识并列出参考书单,嘱咐他“可边工作边学习,不懂可来问我,相互切磋”。此后3年,陈创天系统学习了结构化学知识,最终选择非线性光学材料结构和性能之间关系为研究方向。1976年,苦心钻研10年后,陈创天提出阴离子基团理论,找到了非线性光学晶体材料宏观效应与微观结构间的关联。次年,他被任命为非线性光学材料探索组组长。据介绍,当时研究所几乎一穷二白,一群怀揣梦想的年轻人自己动手创造科研条件,如自行组装激光器、测试设备等。1979年,研究组发现BBO是一种非常有希望的新型材料。3年后,他们终于生长出大块BBO。 BBO晶体。中国科学家以翔实的数据和无懈可击的实验证明了BBO是非中心对称的晶体,在200纳米至350纳米波长范围内,其透过率可达80%以上。1986年,陈创天在美国参加一个国际激光与光电子会议,向全世界宣布成功研制出BBO,引起轰动。业界赞誉这是中国人按照自己的科学思想创造出的首块“中国牌”晶体。吴以成(2005年当选中国工程院院士)正是那一年在福建物构所获得博士学位。他回忆:“陈老师告诉我们,他发言结束后,参会的200多位科学家竟有一多半跟他出去向他进一步了解情况,导致会都没法开了。”福建物构所副所长、国家光电子晶体材料工程技术研究中心主任林文雄1988年被保送到福建物构所读研究生。“教材都把BBO写进去了。”林文雄说,BBO的面世让全世界的科学家感到匪夷所思,他们感受到严峻挑战,认为这样的重大发现不该在中国诞生,而应在美国、日本或欧洲国家。曹荣感慨,福建物构所取得这样的成就,离不开国家的一贯支持,也得益于中国科学院面向世界科技前沿、面向国家重大需求进行的前瞻布局和建制化研究。 福建物构所建所初期的结构化学研究队伍。在高技术领域对外国说“不”正当外国学者为横空出世的“中国牌”晶体感到震惊时,陈创天、吴以成等中国科学家又在1987年宣布一项新的重磅成果——他们发现并生长出第二块“中国牌”晶体LBO。 LBO晶体。与BBO相比,LBO紫外截止波长移到150纳米,是迄今为止实现高功率三倍频输出最好的非线性光学晶体。BBO、LBO分别被美国《激光电子学》杂志评为1987年、1989年“十大尖端产品”。“BBO和LBO的背后,光研究组就有多个,包括理论组、化学合成组、结构分析组、相图研究组、晶体生长组等。大家互相协作、劲往一块儿使,才有这样的结果。”吴以成说。山东大学教授王继扬介绍,当时国内晶体研究界有“三驾马车”,分别是福建物构所、山东大学和南京大学,它们在晶体生长、消除晶体畴等方面各有所长,非常团结又能创新,把晶体研究这个国际上本不受重视的领域变成各国争相研究的焦点。“我国科学家有股迎难而上的拼劲,敢走新路、勇于自主探索。”1988年,福建物构所成立成果转化公司——福建福晶科技股份有限公司(以下简称福晶科技),开启了BBO、LBO商业化之路。“商业化后,外国就眼红了。BBO面世时,中国的专利法还没出台,但LBO研发出来时已有专利法,团队有意识地申请专利将它保护起来。”吴以成说,美国最先坐不住,他们以专利无效为借口和中国打官司,希望能取消中国的LBO晶体专利权。“美国最终没有凭借蹩脚的理由得逞。”吴以成回忆,当时国际上关于LBO的研究成果都是中国科学家发表的,团队把整个研究的详细实验记录等收集起来应诉,最终打赢了官司。这个案例再次印证了团队协作的重要性。“那时候,团队里以林朝熙为代表的知识产权方面的专家就懂得申请专利,他们不是为了报奖,而是要把自主创新成果保护起来。”林文雄说,更关键的是,他们申请的不是晶体生长专利,而是器件专利,很好地避免了国外钻空子侵权。LBO面世前,美国等国家都在基于BBO等晶体开展多倍频研究,中国科学家也在寻求新突破。“我国虽已取得领先成果,但当时科研条件仍很落后。”吴以成举例,LBO晶体生长是在坩埚中进行的,耐温1000摄氏度以上的铂金是做坩埚的理想材料。当时铂金比黄金还贵,一小块就上千美元。“我们每次用完坩埚都要称重,如有损耗须说明。然而落后的科研条件没能阻止我们做出领先世界的重大成果。” 科研人员用提拉法培养晶体。外国对中国科学家的态度,也随着“中国牌”晶体的相继面世,从傲慢转向尊重。吴以成回忆,陈创天讲过这样一件事。 BBO面世前,有位中国学者在美国一家实验室工作,有人不小心打碎了一块杜邦公司生产的非线性光学晶体,中国学者想把碎片带回国研究,但被实验室负责人以保密为由拒绝。没想到数年后,中国就制备出领先世界的BBO。20世纪90年代,陈创天在日本访问期间,日方曾为他升起中国国旗表示尊敬和欢迎。研发出BBO、LBO后,陈创天团队意识到,由于微观结构条件限制,二者无法通过简单倍频技术产生深紫外光谱区的谐波光输出。经过反复计算和思考,陈创天等又踏上一条长达10多年的新型非线性光学晶体探索之路,研制出全球独一无二的KBBF。KBBF是目前唯一可直接倍频产生深紫外激光的非线性光学晶体。当时国际激光界普遍认为,用固体激光器产生波长小于200纳米的激光几乎不可能,KBBF则使激光最短波长达到184.7纳米,在深紫外激光领域大展身手。KBBF独特的薄片层状生长习性,使其难以获得实际应用。为此,陈创天联合中国科学院院士蒋民华团队、中国工程院院士许祖彦团队等开展联合攻关,攻克晶体生长难关,实现多种波长的深紫外激光有效输出,保障了中国在深紫外固体激光方面的国际领先地位。2007年,KBBF被禁止对外出口。中国科学家用国际领先的自主创新成果,在高技术领域对外国说“不”。“老字号”焕发新活力2000年,洪茂椿(2003年当选中国科学院院士)任福建物构所常务副所长,主持研究所工作。当时,中国科学院基于对知识创新与技术创新前沿的把握,批准福建物构所关于福晶科技改制的申请,做大做强“中国牌”晶体产业。洪茂椿面临的第一个难题,就是让“好酒”走出“深巷”。“首先要聚人才。”洪茂椿表示,当时福建物构所建所成立已有40多年,老一辈科学家年纪大了,科学家梯队出现了断层。“当时所里引进了一批人才,积极申请系列科研项目,包括多个上亿元的大项目。”洪茂椿强调,当时申请项目并非盲目扩充研究方向,而是更聚焦科技创新价值链,把知识创新、技术创新与产业创新链接起来,以国家重大需求推动福建物构所的科学研究。2008年,福晶科技正式上市。几年里,洪茂椿经常白天忙完,晚上回所里搞科研,企业管理经验是现学现用。好在经过几年努力,人才梯队建起来了,晶体产业发展脉络理顺了。这个团队人才济济。中国科学院光电材料化学与物理重点实验室主任吴少凡带领团队致力于激光与非线性光学晶体、闪烁晶体新型功能材料研究,成果已在国家重大工程中获得应用。“90后”研究员罗敏已成长为课题组长,聚焦非线性光学晶体材料的设计、合成和生长,以学术骨干身份参与国家重大项目和中国科学院战略性先导科技专项等。走进福晶科技的晶体熔盐车间,工作人员正在一排排晶体生长监控器前观察晶体生长炉的温度。“以前晶体生长都需要工作人员在坩埚旁守着,温度很高,夏天更受不了,现在定时观察显示器即可。”福晶科技董事长陈辉说。如今的福晶科技已成为全球知名的LBO、BBO、磁光晶体等龙头厂商,产品广泛应用于激光、半导体等领域,2023年实现营业收入7.82亿元。“需求端推动供应,目前公司生产的我国原创晶体占全球此类晶体生产总量的近五成,出口超过四成。”陈辉说,“国内晶体需求占全球总需求的比例,从20世纪90年代初的不足5%到如今超过五成,说明我们积极应对了产业链转移及国内需求增长等市场变化。” 晶体提拉生长车间。福建物构所供图今天,我国的晶体研究是否依然领先?曹荣表示,我国原创晶体在研制和应用上不断取得新成果,始终领先国际。近年来,福建物构所又取得一系列引领国际的研究成果,使我国成为激光晶体强国。“当前,我们正积极将人工智能技术应用到晶体设计和生长等环节。”曹荣表示,福建物构所将进一步面向世界科技前沿及国家重大需求,抢占科技制高点,助推我国科技创新事业迈上新台阶。“纵观我国晶体研究发展史,我感受最深的就是科研没有捷径,是靠一代又一代科学家一步步走出来的。”洪茂椿表示,跟在别人后面永远不是创新。正是有了国家和中国科学院对晶体研究的持续大力支持,有了几代科学家的团结互助、勠力创新,我国晶体研究才长盛不衰。
  • HEPS自主研制共振非弹性散射分析晶体完成在线实测
    2023年5月,国家重大科技基础设施高能同步辐射光源(HEPS)自主研制的共振非弹性散射(RIXS)分析晶体完成在线实测,实测能量分辨率37.7meV@8.9keV,标志着HEPS自主研制光学部件又进一步。   HEPS是亚洲首台第四代同步辐射光源,有利于开展高能量分辨谱学实验。为满足高分辨谱学需求,HEPS光源部署自主研制高分辨RIXS谱学分析晶体,100毫米直径的球面衬底上,布满近1万块1.5毫米见方、2毫米厚的小晶块,小晶块之间排列取向精度误差小于400μrad。该类分析晶体制备工艺极为复杂,国际上仅有少数光源具备此类分析晶体研制能力。HEPS高能量分辨谱学线站负责人徐伟研究员带领团队与光学设计、光学机械、光束线控制系统相关人员,联合多学科中心晶体实验室积极攻关,完成RIXS分析晶体自主加工。   RIXS分析晶体的在线表征是检验分析晶体品质的关键步骤。2023年5月,高分辨谱学线站团队包括徐伟研究员、郭志英副研究员、张玉骏副研究员、靳硕学副研究员等通过与日本超级环光源-日本量子科学技术研究开发机构线站(SPring-8-QST-BL11XU)的Kenji Ishii(石井贤司)教授合作,顺利完成了RIXS分析晶体的在线表征。曲率半径2米的单晶硅(553) RIXS分析晶体,实测分辨达到37.7meV (FWHM)@8985eV。这一结果表明,HEPS团队已具备RIXS分析晶体自主研制能力。   值得一提的是,2022年10月,依托北京同步辐射装置,HEPS首批自主研制X射线拉曼散射(XRS)谱仪分析晶体完成在线表征,实测1eV(FWHM)@9.7 keV;2023年3月,依托上海光源BL13SSW稀有元素线站,HEPS相关人员与上海光源边风刚研究员、何上明研究员、曾建荣副研究员、洪春霞高级工程师等团队合作,完成了一批(15组)条带型高分辨XRS分析晶体的在线表征,实测0.53 eV@9.7 keV。   高分辨分析晶体再一次取得突破性进展,离不开团队合作、国内外同行协助。下一步,团队成员将齐心协力,进一步开发定制指数面硅基、非硅基高能量分辨分析晶体。在满足HEPS高分辨分析晶体需求基础上,也可为国内外同行提供先进光学部件。   高分辨分析晶体在线表征得到上海光源稀有元素线站BL13SSW、测试线站BL09B,日本SPring-8 BL11XU等线站的大力支持。
  • 北方华创“碳化硅晶体生长装置”专利公布
    天眼查显示,北京北方华创微电子装备有限公司“碳化硅晶体生长装置”专利公布,申请日期为2023年2月8日,公开日为2024年8月9日,申请公布号为CN118461121A。背景技术随着第三代半导体材料使用领域的扩大,碳化硅单晶材料作为第三代半导体的代表材料,因其特性具有禁带宽度大、热导率高、饱和电子漂移速率高和击穿场强高等性质。在多个领域具有广阔的应用前景,尤其电动汽车、轨道交通和电机驱动(Motor driving)领域增长迅速,占比逐年增大。碳化硅单晶材料普遍采用物理气相传输(Physical Vapor Transport,PVT)法生长,在PVT法中,采用碳化硅粉料作为生长单晶的原料,将碳化硅籽晶粘接在石墨坩埚顶部(石墨盖)作为籽晶,通过电磁感应线圈加热石墨坩埚,石墨坩埚通过热传导将碳化硅原料加热至升华,气相碳化硅在轴向温度梯度作用下输送到籽晶位置开始生长,在特定温度下可生长单晶碳化硅。碳化硅晶体生长中,坩埚是主要的发热源,粉料通过吸收坩埚壁的热量实现升华。由于热量通过粉料间热传导的方式从石墨壁向粉料中心传递,这导致粉料中心的温度始终低于边缘温度。发明内容本发明提供了一种碳化硅晶体生长装置,涉及碳化硅单晶材料的制造技术领域,为解决坩埚内的粉体温度均匀性差的问题而设计。碳化硅晶体生长装置包括坩埚、感应线圈组件和盖设于坩埚上方的盖板,盖板用于在盖板的中心设置籽晶,坩埚内设置有至少一个的感应加热件;感应加热件具有封闭连续的外周面,且能够在感应线圈组件的作用下产生感应涡电流。本发明提供的碳化硅晶体生长装置可以改善坩埚内的粉体温度均匀性。
  • XRT 在半导体材料晶体缺陷表征中的应用介绍
    XRT 在半导体材料晶体缺陷表征中的应用介绍‍半导体(semiconductor)指常温下导电性能介于导体与绝缘体之间的材料。半导体在集成电路、消费电子、通信系统、光伏发电、照明、大功率电源转换等领域都有应用,如二极管就是采用半导体制作的器件。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关联。按照半导体材料发展历程和材料本征禁带宽度,习惯上按照如下方法进行分类:第一代半导体材料主要是指硅(Si)、锗(Ge)这类半导体材料,主要兴起于二十世纪五十年代,其兴起也带动了以集成电路为核心的微电子产业的快速发展,并被广泛的应用于消费电子、通信、光伏、军事以及航空航天等多个领域。就应用和市场需求量而言,半导体Si材料仍是半导体行业中体量最大的,产品规格以8-12英寸为主。第二代半导体材料是以砷化镓(GaAs)、磷化铟(InP)为主的化合物半导体,其主要被用于制作高频、高速以及大功率电子器件,在卫星通讯、移动通讯以及光通讯等领域有较为广泛的应用。相比于第一代半导体而言,化合物半导体长晶和加工工艺复杂,产品附加值要高一些,产品规格以3-6英寸为主,国内部分厂家可以提供8英寸晶圆。第三代半导体材料包括了以碳化硅(SiC)、氮化镓(GaN)为代表的宽禁带化合物半导体。相比于第一代及第二代半导体材料,第三代半导体材料在耐高温、耐高压、高频工作,以及承受大电流等多个方面具备明显的优势,因而更适合于制作高温、高频、抗辐射及大功率器件,在电力电子器件、微波射频等领域的应用优势更为明显。产品规格以2-6英寸为主。图1不同半导体材料禁带宽度及应用[1]在半导体材料制备和应用过程中,对于晶体缺陷的要求与控制是十分重要的。因为晶体缺陷的类型、大小和多少直接决定了半导体器件性能的优劣和使用稳定性等性能指标。所以,无论是在晶体长晶环节还是晶片加工及晶圆外延等环节,都要进行晶体/晶圆缺陷检查,确保使用在器件上芯片是满足设计要求的。晶圆中常见的缺陷主要有如下几类,参见图2[2]。点缺陷:在三维空间各方向上尺寸都很小的缺陷。空位、间隙原子、替位原子等;线缺陷:在两个方向上尺寸很小,而另一个方向上尺寸较大的缺陷。如位错,刃型位错和螺型位错;面缺陷:在一个方向上尺寸很小,在另外两个方向上尺寸较大的缺陷。如晶界、相界、表面等。体缺陷:杂质沉积、孔洞及析出相等。图2 半导体材料中常见晶体缺陷对于上述提到的四类半导体材料缺陷中,第一类缺陷属于原子层面的缺陷,通常是从掺杂及长晶工艺优化等角度去进行改进。通常不作为生产过程控制的主要参数,一般选择用其他方法进行测量,如采用FTIR方法可以测量Si晶体中代位C原子和间隙氧原子的浓度。第二到四类缺陷,则需要在加工环节进行100%直接或间接检测,确保所生产晶圆/芯片缺陷指标满足订单要求。对于这类缺陷传统方法就是采用腐蚀性化学药液(如熔融的KOH)对晶、体/圆进行腐蚀。在腐蚀过程中由于晶体有缺陷的区域会优先腐蚀,无缺陷区域则腐蚀速度相对较慢,所以在规定腐蚀时间后在晶圆表面会有腐蚀坑(Etch Pit)出现,这是一种破坏性的检测方法。腐蚀好的晶圆在显微镜下对这些腐蚀坑识别和计数,就可以得到该晶体的缺陷信息, 图3 为SiC 晶圆通过KOH腐蚀得到缺陷照片,缺陷主要有刃型位错、螺型位错和微管等[2]。图3 SiC 晶片腐蚀后缺陷形貌[3]对于半导体晶圆,上述传统缺陷表征方法最大的问题就是破坏性的,检测后的晶圆无法继续使用只能做报废处理。对于像第二代和第三代半导体材料而言,晶体生长技术要求水平较高,成品和晶圆数量受晶棒长度及其他加工方式限制而良率相对不高。像国内部分企业SiC 晶棒成品长度一般在20mm左右。如果按照单片晶圆成品厚度约在0.5mm,除去切割和研磨、抛光损耗,基本上0.8mm才能出一片合格晶圆。如果在晶棒头、尾各取一片晶圆去做缺陷检测,则有约8%的成本损耗。所以很多半导体厂家都希望有一种可以用于半导体晶体材料缺陷的表征的无损检测技术。日本理学株式会社(www.rigaku.com)作为全球著名的X-Ray 仪器制造商,自1923年以来,理学公司一直专注于X射线仪器领域的研发和生产。该公司生产制造的XRT (X-ray Topography)检测系统则是利用X射线的布拉格衍射原理和晶格畸变(缺陷)造成特征峰宽化和强度变化等特性,再结合理学公司开发的X射线形貌技术,可以对晶体内缺陷进行成像。这种XRT检测技术最大的优点就是无损检测,在不破坏晶圆的情况下实现2-12英寸半导体晶体中线缺陷、面缺陷和体缺陷的检测和表征。图4 XRT设备实物图图5 XRT 缺陷表征原理示意图[3]工作模式:XRT主要有反射成像和透射成像两种模式,反射模式是Cu靶,透射模式则是Mo靶,参见图6。透射模式成像后可以进行3D重构和成像,参见图7 SiC晶圆缺陷图片。图6 XRT 反射模式和透射模式[3]图7 SiC 晶圆缺陷表征[3]系统软件介绍:该仪器标配的图像分析软件可以对检测样品内的缺陷进行统计,给出缺陷数量和分布信息,参见图8。图 8 XRT 标配软件数据结果界面[3]后续我们会针对XRT在不同半导体材料检测和应用案例刊发几期相关介绍,敬请期待。附:[1] 第三代半导体-氮化镓(GaN) 技术洞察报告,P3 [2] 理学XRT 内部资料;[3] 理学XRT公开彩页.
  • 打破空白局面,KRS-5红外晶体实现国产
    红外光谱作为“分子的指纹”,可用于分子结构和物质化学组成的研究,被广泛应用在药品质量监测、油品鉴别、工业大气空间特性测定等领域,而绘出红外光谱的红外光谱仪也就成了科学家们的重点青睐对象。其中,红外光学窗片则是该仪器中必不可少的器件,其品质的好坏直接影响红外光谱仪的性能。现有的红外光学材料能同时应用于中红外、远红外两个波段的材料较少。目前应用最为广泛的红外窗片是溴化钾和氯化钠,但这两种材料均存在潮解问题,大大限制了其应用。表1所示为几种常用的傅立叶红外光谱仪窗片,与其他材料对比,KRS-5窗片因有相当宽的红外透射范围和不易潮解的特点脱颖而出。窗片名称性能透射波长KRS-5窗片不易潮解,耐高气压,强度高0.5~40μm氯化钠窗片容易潮解,适合测试无水样品0.2~15μm溴化钾窗片容易潮解,适合测试无水样品0.2~15μm氟化钙窗片不易潮解,耐一定温度200℃1~11μm石英窗片不易潮解,耐高压,耐高温190nm~4.5μm硫化锌窗片不易潮解,耐高压1~14μm表1 常见傅立叶红外光谱仪窗片材料对比KRS-5,又名溴碘化铊,是溴化铊和碘化铊的混合结晶体,呈橘红色,如图1所示,不易潮解,对红外线有较好的透过性,尤其在空气中能透过相当宽的红外线波段,在波长为0.6~40μm的区域内,其透过率可达70%以上,是一种性能优良的红外材料,可用于制作红外光学零件,窗片、透镜、组合物镜、棱镜等。图1 KRS-5晶体由于KRS-5晶体的生产工艺技术难度较高,该晶体的生产和应用主要集中在海外,且价格比较昂贵,此前国内一直处于空白状态。不过现在,这个空白已经被北京滨松光子技术股份有限公司(简称北京滨松)所填补。北京滨松一直致力于晶体的开发生产,并已完成多种闪烁晶体的研发并实现稳定生产。凭借多年的经验,近期成功研制出KRS-5晶体,性能与国外同类产品相当,且价格方面相比国外晶体具有很大的优势。图2 北京滨松公司KRS-5与国外同类产品透过率对比除可供应常规规格产品外,北京滨松还可根据用户具体需求提供定制服务,如加工各种薄片、方形棱镜、纽扣状晶体、锥形晶体等,同时也可以提供KRS-5窗片的研磨、抛光等处理。图3 北京滨松公司KRS-5样品北京滨松是滨松光子学株式会社(简称滨松公司)与北京核仪器厂于1988年共同投资兴建的,是国内著名的以光电探测为核心的高新技术企业。滨松公司在华的全资子公司——滨松光子学(商贸)中国有限公司(简称滨松中国)负责北京滨松产品在国内的商务活动。如希望对KRS-5有进一步了解,敬请联系我们。
  • 无锡吴越半导体展出GaN晶体 全球首次厚度突破1厘米
    据无锡高新区消息,12月15日,吴越半导体GaN晶体出片仪式在无锡高新区举行。仪式上,吴越半导体展出了全球范围内首次厚度突破1厘米的氮化镓晶体,并与君联资本、新投集团签署A轮融资战略框架协议。公开资料显示,第三代半导体GaN是由氮和镓组成的一种半导体材料,相比于硅材料,GaN具备决定性的优势。由于其禁带宽度大于2.2eV, 因此又被称为宽禁带半导体材料。有着禁带宽度大、高击穿电场、高电子饱和漂移速率、良好的耐温特性等特点。据悉,无锡吴越半导体有限公司成立于2019年,是无锡先导集成电路装备材料产业园首个落户的项目,公司专注于氮化镓自支撑衬底的开发、生产和销售。2020年2月,吴越半导体、先导集团与高新区管委会签订合作协议,在无锡高新区实施2-6英寸氮化镓自支撑单晶衬底产业化项目,项目建成投产后,可填补无锡市在第三代化合物半导体氮化镓原材料领域的空白。
  • Advanced Materials | 新型二维原子晶体材料Si9C15的构筑
    碳元素与硅元素同属第四主族,其原子最外层有四个未配对电子,可形成四根共价键。例如金刚石与单晶硅分别是碳原子和硅原子以sp3杂化方式与临近的四个原子成键形成的稳定结构。原则上,碳原子和硅原子可以以任意的比例互换,组成SixCy的一大类具有闪锌矿结构的晶体材料。理论预言表明,二维的SixCy晶体可以以蜂窝状结构稳定存在,随着碳硅比例的不同具有大范围可调节的带隙,从而产生丰富的物理化学性质,引起了研究人员广泛的关注。然而,自然界中的硅原子并不喜欢sp2杂化方式的平面二维结构,碳硅化合物晶体多数不存在像石墨一样的层状体材料。因此,常规的机械剥离方法并不适用于制备二维碳化硅材料。已有的实验报道包括利用液相剥离和扫描透射电子显微镜电子束诱导等手段获取准二维SiC和SiC2材料,然而这些材料存在着厚度不均一、尺寸太小以及无法集成等问题。因此,发展一种新的实验手段获取高质量、大尺寸的单晶二维碳化硅材料具有重要意义。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室高鸿钧研究团队利用组内自主设计研发的分子束外延-低温扫描隧道显微镜联合系统,对石墨烯硅插层技术进行了优化,并将其应用于二维碳化硅材料的构筑,成功在钌和铑两种单晶表面生长出大面积、高质量、单晶的单层Si9C15材料。他们首先在金属钌(铑)单晶表面生长获得高质量单层石墨烯,然后在石墨烯上沉积过量的硅,在1400 K高温下退火得到了厘米量级的单层碳化硅材料(图一)。他们进一步结合扫描隧道显微镜、扫描透射电子显微镜、X射线光电子能谱等表征手段和第一性原理计算,确定该二维材料是组分为Si9C15的翘曲蜂窝状结构(图二,图三)。蜂窝状结构由碳-碳六元环和碳-硅六元环组成,每个碳-碳六元环被十二个碳-硅六元环所包围。扫描隧道谱显示该二维材料表现出半导体特征,能隙为1.9eV(图四)。值得一提的是,单层Si9C15晶体具有较好的空气稳定性。制备的二维单晶样品在直接暴露空气72小时后重新传入超高真空腔体,在870 K退火1小时之后可以看到晶体结构几乎没有受到破坏(图五)。该项研究首次获得了大面积、高质量的单晶二维碳化硅材料。计算结果还显示在不同晶格常数的金属单晶衬底上有可能生长出不同碳硅比的二维材料,揭开了利用外延生长获取二维碳化硅材料的序幕。相关成果以“Experimental realization of atomic monolayer Si9C15”为题发表于Advanced Materials上。该工作与中国科学院大学的周武教授和国家纳米中心的张礼智研究员进行了合作。博士高兆艳、博士生徐文鹏、博士后高艺璇和博士后Roger Guzman为论文共同第一作者,李更、张礼智、周武和高鸿钧为共同通讯作者。该工作得到科技部(2019YFA0308500, 2018YFA0305700, 2018YFA0305800)、国家自然科学基金(61888102,51991340,52072401)、中国科学院(YSBR-003)和北京杰出青年科学家计划(BJJWZYJH01201914430039)等的支持。文章链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202204779 图一:单层Si9C15材料的获取。图二:二维Si9C15材料的原子构型图三:STEM图像证实二维Si9C15材料的存在。图四:二维Si9C15材料的电子结构。图五:二维Si9C15材料具有较好的空气稳定性。【近期会议推荐】仪器信息网将于2022年8月30-31日举办第五届纳米材料表征与检测技术网络会议,开设“能源与环境纳米材料”、“生物医用纳米材料”“纳米材料表征技术与设备研发(上)”、“纳米材料表征技术与设备研发(下)”4个专场,邀请20余位领域内专家,围绕纳米材料热点研究方向,从成分分析、形貌分析、粒度分析、结构分析以及表界面分析等主流分析和表征技术带来精彩报告。会议涉及热点研究方向:电极材料、医药材料、多铁/铁电材料、电子敏感材料、超宽禁带半导体材料......会议包含表征与检测技术:冷冻电镜、透射电镜、扫描电镜、扫描隧道能谱、X射线光电子能谱、纳米粒度及Zeta电位仪、超分辨荧光成像、表面等离子体耦合发射、荧光单分子单粒子光谱、磁纳米粒子成像、拉曼光谱、X射线三维成像......为纳米材料工作者及相关专业技术人员提供线上学术与技术交流的平台,帮助大家迅速掌握纳米材料主流分析和表征技术,共同提高纳米材料研究及应用水平。(点击此处进入会议官网,免费报名参会)
  • 新技术,美国成功制造了用于半导体纳米晶体的液池透射电镜仪器
    不同尺寸和形状的半导体纳米晶体可以控制材料的光学和电学性质。液池透射电子显微镜LCTEM是一种新兴的方法,用于观察纳米尺度的化学变化,并为具有预期结构特征的纳米结构的精确合成提供信息。科学家们正在研究半导体纳米晶体的反应,方法是研究过程中通过液体辐解产生的高反应环境。在最近发表的一份新论文中,科学家们利用了辐射分解过程,取代了典型半导体纳米材料的单粒子蚀刻轨迹。工作期间使用的硒化铅纳米管代表了各向同性结构,以通过逐层机制保持用于蚀刻的立方形状。各向异性箭头形硒化镉纳米棒保持了带有镉或硒原子的极性刻面,透射式液体细胞电子显微镜的轨迹揭示了液体环境中特定表面的反应性如何控制半导体的纳米级形状转变。半导体纳米晶体包含广泛可调的光学和电学特性,这些特性取决于其尺寸和形状,适用于多种应用。材料科学家已经描述了特定块体晶体小面对生长和蚀刻反应的反应性,开发出任意的图案纳米晶体的多面性及其反应机制使其成为直接研究的热点,胶体纳米晶体的热力学可以影响限定它们的有机或者无机界面。液体细胞透射电子显微镜提供了所需的时空分辨率,以观察纳米级动力学,如自组装过程。因此,科学家们在两个透射电子显微镜网格的超薄碳层之间夹了一个含有纳米晶体的水性袋,并使用三(羟甲基)氨基甲烷盐酸盐,这是一种有机分子来调节敏感半导体纳米晶体的蚀刻。LCTEM和纳米晶体的现有研究仅限于贵金属,因为它们在辐射分解过程中无法调节化学环境,导致活性材料降解。这项新的研究表明,有可能为LCTEM设计新的环境,以观察反应性纳米晶体的单粒子蚀刻轨迹。在实验过程中,三氨基甲烷盐酸盐添加剂调节了蚀刻过程的电化学电位,团队使用动力学建模来估计液体电池中胺自由基物种的浓度和电化学电位。为了证明这一概念,美国科学家们获得了真空中硒化铅纳米立方体的代表性透射电子显微镜图像,并在硒化铅奈米晶体的逐层蚀刻过程中收集了一系列图像。LCTEM成像结果显示,作为蚀刻反应的产物,在硒化铅纳米晶体周围形成了具有较高图像对比度的物质,似乎在蚀刻过程中,硒氧化并分散到液体中,以促进氯化铅的形成,铅袋中有氯离子。与硒化铅的立方晶格相比,纤锌矿硒化镉具有各向异性晶格,镉和硒原子交替层。在纤锌矿硒化镉纳米晶体的生长过程中,表面活性剂配体有利地结合到镉区域,以促进硒区域的快速生长。未来的研究将或者利用核/壳纳米晶体以及通过无机或者有机界面组装的纳米晶体,获得关于功能纳米结构阵列转化的实时信息。
  • 美韩科学家制成世界上首个分子晶体管
    美国耶鲁大学12月23日发表新闻公报称,该校及韩国光州科学技术研究院科学家最近合作制成世界上首个分子晶体管,制作分子晶体管的材料是单个苯分子。相关论文发表于12月24日的《自然》杂志。   研究人员说,苯分子在附着到黄金触点上后,就可以发挥硅晶体管一样的作用。研究人员能够利用通过触点施加在苯分子上的电压,操纵苯分子的不同能态,进而控制流经该分子的电流。   负责这项研究的耶鲁大学工程和应用科学系教授马克里德说:“这就像推一个球滚过山顶,球就代表电流,而山的高度则代表苯分子的不同能态。我们能够调整山的高度,山低时允许电流通过,而山高时则阻止电流通过。”   研究人员说,由于流经苯分子的电流能够控制,因此就可以像使用普通晶体管一样使用苯分子晶体管。   里德指出,这项研究只能算得上科学突破,而像“分子计算机”这样的实际应用即使真的可以实现,也需要几十年的时间。
  • 上海微系统所在300mm大硅片晶体生长的数值模拟研究方面取得重要进展
    300mm大硅片是集成电路制造不可或缺的基础材料,对整个集成电路产业的发展起着关键支撑作用。针对我国集成电路制造行业对低氧高阻、近零缺陷等硅片产品的迫切需求,亟需解决大直径、高质量硅单晶晶体生长技术中的氧杂质输运、晶体缺陷调控等基础科学问题,进而开发大直径单晶晶体生长技术,实现特定的晶体杂质、缺陷的人工调控,满足射频、存储等领域的应用需求。   近日,中科院微系统所魏星研究员团队,在300mm晶体生长的数值模拟研究领域取得重要进展。该团队自主开发了耦合横向磁场的三维晶体生长传热传质模型,并首次揭示了晶体感应电流对硅熔体内对流和传热传质的影响机制,相关成果于2023年05月以 “Effects of induced current in crystal on melt flow and melt-crystal interface during industrial 300 mm Czochralski silicon crystal growth with transverse magnetic field”为题,发表在美国化学会旗下晶体学领域的旗舰期刊《Crystal growth & design》上。   在本工作中,通过对比三组仿真结果,系统的分析了晶体电导率、磁场强度、晶转速率这三个关键参数对晶体内感应电流的影响,进而分析了其对熔体对流、温度分布和界面形状的影响。结合实验数据,模型准确性得以验证,并预测了建模所需的合理的晶体电导率。研究结果表明,当晶体中感应电流增加时,界面下强制对流的驱动力逐渐从离心力转变为洛伦兹力,并改变强制对流的旋转方向,从而影响固液界面形状。这项研究弥补了传统模型的忽略晶体感应电流的不足,首次系统地揭示了晶转引起的感应电流以及关键工艺参数对传热传质、固液界面等的影响,大大提高了仿真结果的准确性,为近零缺陷硅片产品晶体生长技术的优化提供了理论支撑。   中科院上海微系统所陈松松助理研究员为文章的第一作者,魏星研究员为通讯作者。 中国科学院上海微系统与信息技术研究所原名中国科学院上海冶金研究所,前身是成立于1928年的国立中央研究院工程研究所,是中国最早的工学研究机构之一。中国科学院上海微系统与信息技术研究所学科领域为:电子科学与技术、信息与通信工程;学科方向为微小卫星、无线传感网络、未来移动通信、微系统技术、信息功能材料与器件。图 1 模型示意图2 (a)晶体感应电流,(b)强制对流驱动力示意图和熔体自由液面温场、流场分布图
  • STEM-EDS分析化合物半导体晶体管元素分布
    自硅基半导体作为一个规模庞大的产业发展起来后,集成电路单位面积上晶体管的数量增加趋势始终遵循摩尔定律[1]。目前,硅基半导体中的关键尺寸(线宽或特征尺寸)已经降低到到10nm以下[2]。相比于硅基半导体,化合物半导体如SiC和GaN基半导体可以满足更苛刻的工作条件(高击穿电场、高热导率、高电子迁移率、高工作温度等),具有更大的输出功率和更好的频率特性,市场需求方兴未艾。化合物半导体的应用场景面向射频、高电压大功率、光电子等领域,不追求硅基半导体级别的先进制程工艺。如GaN制程的基本线宽在0.25~0.50µ m ,生产线以4英寸为主[3]。图1 电子束和样品的相互作用区域及逸出的信号半导体器件结构的微细化演进对电子显微镜视野下的微区元素分析带来了很大的挑战。在电子显微镜中,电子束照射在观察区域上,形成水滴形的相互作用区域,如图1 所示。从该区域中会逸出多种信号,如观察表面形貌的二次电子(SE)、区分成分衬度的背散射电子(BSE)和分析成分的X射线。电子显微镜会配置不同的探测器来接收这些信号进行成像。能谱仪(EDS, Energγ Dispersive Spectrometer)以X射线为信号源分析微区成分分布。图1也显示,这几种信号源的深度不同,SE最浅,BSE次之,X射线最深。不同信号源的逸出深度可以解释同样条件下SE、BSE和EDS成像的空间分辨率差异。
  • 【好书推荐】薄膜晶体管液晶显示(TFT LCD)技术原理与应用
    内容简介  薄膜晶体管液晶显示产业在中国取得了迅猛的发展,每年吸引着大量的人才进入该产业。本书基于作者在薄膜晶体管液晶显示器领域的开发实践与理解,并结合液晶显示技术的最新发展动态,首先介绍了光的偏振性及液晶基本特点,然后依次介绍了主流的广视角液晶显示技术的光学特点与补偿技术、薄膜晶体管器件的SPICE模型、液晶取向技术、液晶面板与电路驱动的常见不良与解析,最后介绍了新兴的低蓝光显示技术、电竞显示技术、量子点显示技术、Mini LED和Micro LED技术及触控技术的原理与应用。作者简介  邵喜斌博士从20世纪90年代初即从事液晶显示技术的研究工作,先后承担多项国家863计划项目,研究领域涉及液晶显示技术、a-Si 及p-Si TFT技术、OLED技术和电子纸显示技术,在国内外发表学术论文100多篇,获得专利授权150余项,其中海外专利40余项。曾获中国科学院科技进步二等奖、吉林省科技进步一等奖、北京市科技进步一等奖。目录封面版权信息内容简介序前言第1章 偏振光学基础与应用1.1 光的偏振性1.1.1 自然光与部分偏振光1.1.2 偏振光1.2 光偏振态的表示方法1.2.1 三角函数表示法1.2.2 庞加莱球图示法1.3 各向异性介质中光传播的偏振性1.3.1 反射光与折射光的偏振性1.3.2 晶体的双折射1.3.3 单轴晶体中的折射率1.4 相位片1.4.1 相位片的定义1.4.2 相位片在偏光片系统中1.4.3 相位片的特点1.4.4 相位片的分类1.4.5 相位片的制备与应用1.5 波片1.5.1 快轴与慢轴1.5.2 λ/4波片1.5.3 λ/2波片1.5.4 λ波片1.5.5 光波在金属表面的反射1.5.6 波片的应用参考文献第2章 液晶基本特点与应用2.1 液晶发展简史2.1.1 液晶的发现2.1.2 理论研究2.1.3 应用研究2.2 液晶分类2.2.1 热致液晶2.2.2 溶致液晶2.3 液晶特性2.3.1 光学各向异性2.3.2 电学各向异性2.3.3 力学特性2.3.4 黏度2.3.5 电阻率2.4 液晶分子合成与性能2.4.1 单体的合成2.4.2 混合液晶2.4.3 单体液晶分子结构与性能关系2.5 混合液晶材料参数及对显示性能的影响2.5.1 工作温度范围的影响2.5.2 黏度的影响2.5.3 折射率各向异性的影响2.5.4 介电各向异性的影响2.5.5 弹性常数的影响2.5.6 电阻率的影响2.6 液晶的应用2.6.1 显示领域应用2.6.2 非显示领域应用参考文献第3章 广视角液晶显示技术3.1 显示模式概述3.2 TN模式3.2.1 显示原理3.2.2 视角特性3.2.3 视角改善3.2.4 响应时间影响因素与改善3.3 VA模式3.3.1 显示原理3.3.2 视角特性3.3.3 视角改善3.4 IPS与FFS模式3.4.1 显示原理3.4.2 视角特性3.5 偏光片视角补偿技术3.5.1 偏振矢量的庞加莱球表示方法3.5.2 VA模式的漏光补偿方法3.5.3 IPS模式的漏光补偿方法3.6 响应时间3.6.1 开态与关态响应时间特性3.6.2 灰阶之间的响应时间特性3.7 对比度参考文献第4章 薄膜晶体管器件SPICE模型4.1 MOSFET器件模型4.1.1 器件结构4.1.2 MOSFET器件电流特性4.1.3 MOSFET器件SPICE模型4.2 氢化非晶硅薄膜晶体管器件模型4.2.1 a-Si:H理论基础4.2.2 a-Si:H TFT器件电流特性4.2.3 a-Si:H TFT器件SPICE模型4.3 LTPS TFT器件模型4.3.1 LTPS理论基础4.3.2 LTPS TFT器件电流特性4.3.3 LTPS TFT器件SPICE模型4.4 IGZO TFT器件模型4.4.1 IGZO理论基础4.4.2 IGZO TFT器件电流特性4.4.3 IGZO TFT器件SPICE模型4.5 薄膜晶体管的应力老化效应参考文献第5章 液晶取向技术原理与应用5.1 聚酰亚胺5.1.1 分子特点5.1.2 聚酰亚胺的性能5.1.3 聚酰亚胺的合成5.1.4 聚酰亚胺的分类5.1.5 取向剂的特点5.2 取向层制作工艺5.2.1 涂布工艺5.2.2 热固化5.3 摩擦取向5.3.1 工艺特点5.3.2 摩擦强度定义5.3.3 摩擦取向机理5.3.4 预倾角机理5.3.5 PI结构对VHR和预倾角的影响5.3.6 摩擦取向的常见不良5.4 光控取向5.4.1 取向原理5.4.2 光控取向的光源特点与影响参考文献第6章 面板驱动原理与常见不良解析6.1 液晶面板驱动概述6.1.1 像素结构与等效电容6.1.2 像素阵列的电路驱动结构6.1.3极性反转驱动方式6.1.4 电容耦合效应6.1.5 驱动电压的均方根6.2 串扰6.2.1 定义与测试方法6.2.2 垂直串扰6.2.3 水平串扰6.3 闪烁6.3.1 定义与测试方法6.3.2 引起闪烁的因素6.4 残像6.4.1 定义与测试方法6.4.2 引起残像的因素参考文献第7章 电路驱动原理与常见不良解析7.1 液晶模组驱动电路概述7.1.1 行扫描驱动电路7.1.2 列扫描驱动电路7.1.3 电源管理电路7.2 眼图7.2.1 差分信号7.2.2 如何认识眼图7.2.3 眼图质量改善7.3 电磁兼容性7.3.1 EMI简介7.3.2 EMI测试7.3.3 模组中的EMI及改善措施7.4 ESD与EOS防护7.4.1 ESD与EOS产生机理7.4.2 防护措施7.4.3 ESD防护性能测试7.4.4 EOS防护性能测试7.5 开关机时序7.5.1 驱动模块的电源连接方式7.5.2 电路模块的时序7.5.3 电源开关机时序7.5.4 时序不匹配的显示不良举例7.6 驱动补偿技术7.6.1 过驱动技术7.6.2 行过驱动技术参考文献第8章 低蓝光显示技术8.1 视觉的生理基础8.1.1 人眼的生理结构8.1.2 感光原理说明8.1.3 光谱介绍8.2 蓝光对健康的影响8.2.1 光谱各波段光作用人眼部位8.2.2 蓝光对人体的影响8.3 LCD产品如何防护蓝光伤害8.3.1 LCD基本显示原理8.3.2 低蓝光方案介绍8.3.3 低蓝光显示器产品参考文献第9章 电竞显示技术9.1 电竞游戏应用瓶颈9.1.1 画面拖影9.1.2 画面卡顿和撕裂9.2 电竞显示器的性能优势9.2.1 高刷新率9.2.2 快速响应时间9.3 画面撕裂与卡顿的解决方案9.4 电竞显示器认证标准9.4.1 AMD Free-Sync标准9.4.2 NVIDA G-Sync标准参考文献第10章 量子点材料特点与显示应用10.1 引言10.2 量子点材料基本特点10.2.1 量子点材料独特效应10.2.2 量子点材料发光特性10.3 量子点材料分类与合成10.3.1 Ⅱ-Ⅵ族量子点材料10.3.2 Ⅲ-Ⅴ族量子点材料10.3.3 钙钛矿量子点材料10.3.4 其他量子点材料10.4 量子点显示技术10.4.1 光致发光量子点显示技术10.4.2 电致发光量子点显示技术参考文献第11章 Mini LED和Micro LED原理与显示应用11.1 概述11.2 LED发光原理11.2.1 器件特点11.2.2 器件电极的接触方式11.2.3 器件光谱特点11.3 LED直显应用特点11.3.1 尺寸效应11.3.2 外量子效应11.3.3 温度效应11.4 巨量转移技术11.4.1 PDMS弹性印章转移技术11.4.2 静电吸附转移技术参考文献第12章 触控技术原理与应用12.1 触控技术分类12.1.1 从技术原理上分类12.1.2 从显示集成方式上分类12.1.3 从电极材料上分类12.2 触控技术原理介绍12.2.1 电阻触控技术12.2.2光学触控技术12.2.3 表面声波触控技术12.2.4 电磁共振触控技术12.2.5 电容触控技术12.3 投射电容触控技术12.3.1 互容触控技术12.3.2 自容触控技术12.3.3 FIC触控技术12.4 FIC触控的驱动原理12.4.1 电路驱动系统架构12.4.2 FIC触控屏的两种驱动方式12.4.3 触控通信协议12.4.4 触控性能指标参考文献附录A MOSFET的Level 1模型参数附录B a-Si:H TFT的Level 35模型参数附录C LTPS TFT的Level 36模型参数附录D IGZO TFT的Level 301模型参数(完善中)反侵权盗版声明封底
  • ​ 加州大学Science,先进成像技术揭秘维格纳分子晶体的新视角
    【科学背景】随着纳米技术和量子材料科学的进展,二维(2D)过渡金属二硫属化合物(TMDC)莫尔超晶格引起了越来越多的关注。这种材料提供了一个强大的平台,用于模拟每个莫尔晶胞包含一个或几个人工原子的强关联量子固体。这种模拟不仅帮助科学家们理解了量子相变和电子关联效应,还揭示了许多新奇的量子现象和材料特性,例如莫特绝缘体、广义维格纳晶体和量子反常霍尔绝缘体。然而,在研究TMDC莫尔超晶格的过程中,科学家们面临着一些挑战。传统上,大多数研究集中在模拟费米-哈伯德模型,这种模型通过单一的在位排斥能U描述原子内相互作用,忽略了原子内部的自由度。这种简化虽然有助于理解基本的量子相互作用,但无法全面描述多电子系统中复杂的电荷分布和相互作用。最近的理论研究预测,在莫尔超晶格中的多电子人工原子中,由于单粒子能级间隔Δ和原子内部库仑排斥能U之间的竞争,可以产生显示出不寻常电荷密度分布的量子态。然而,这些理论预测缺乏实验验证,尤其是在直接成像和观察这些维格纳分子的长程有序排列方面。为了解决这些问题,科学家们进行了多方面的探索。最近,加州大学伯克利分校王枫、Hongyuan Li、Michael F. Crommie及麻省理工Liang Fu等人在“Science”期刊上发表了题为“Wigner molecular crystals from multielectron moiré artificial atoms”的最新论文。他们开发了一种先进的扫描隧道显微镜(STM)成像方案,以实验证明在扭曲的二硫化钨(tWS2)莫尔超晶格中多电子人工原子中维格纳分子晶体的存在。他们的研究不仅验证了理论预测,还展示了这些维格纳分子晶体如何通过机械应变、莫尔周期和载流子类型进行调节。这些发现为理解多电子系统中的复杂相互作用提供了新的视角,也为设计和控制新型量子材料提供了有力的工具。【科学亮点】(1)实验首次在扭曲双层二硫化钨(tWS2)莫尔超晶格中观察到了多电子人工原子中的维格纳分子晶体。通过扫描隧道显微镜(STM)成像,作者实验证明了在这些多电子人工原子中,维格纳分子晶体的形成。这些晶体结构代表了一种电子的晶体相,展示了电子在不同位置的强局部化现象,以最小化库仑能量。(2)实验通过以下几个方面得到了重要结果:&bull 使用扫描隧道显微镜(STM)观察到了多电子人工原子中维格纳分子的出现。当库仑相互作用占主导地位时,这些维格纳分子在多电子人工原子中形成。&bull 实验结果展示了维格纳分子晶体的高度可调性。通过调整机械应变、莫尔周期和载流子类型,可以调节这些维格纳分子的排列和特性。&bull 理论模拟进一步解释了电子-电子相互作用和莫尔势在导致维格纳分子晶体形成中的作用。这些模拟结果明确了单粒子能级间隔Δ和原子内部库仑排斥能U之间的竞争对电子态的影响,并展示了在不同维格纳参数RW下电子配置的变化。&bull 研究表明,在小RW值时,多电子莫尔原子的基态可以通过简单地填充非相互作用轨道来近似,形成中心峰值的电荷分布。然而,在足够大的RW值时,电子会强烈局部化,形成维格纳分子,展示了相互作用主导的电子结构和轨道重构。【科学图文】图1: 莫尔超晶格中的多电子人造原子。图2:Wigner分子的CBE和VBE隧道电流测量。图3: Wigner分子晶体结构工程。图4:Wigner分子晶体的数值模拟。【科学启迪】本研究揭示了在二维过渡金属二硫属化合物(TMDC)莫尔超晶格中,多电子人工原子可以形成维格纳分子晶体这一独特的电子晶体相。这种相对传统量子固体的革新在于其来源于人工设计的原子结构,而非自然存在的原子。通过扫描隧道显微镜(STM)的隧道电流测量方案,研究团队首次直接观察到了这一电子晶体相的形成过程,为理解和利用强关联电子系统提供了新的实验平台。此外,研究还展示了通过调节电荷载流子类型、莫尔周期和机械应变,可以有效地控制和调节维格纳分子晶体的性质。这种可控性不仅为量子材料的设计和制备提供了新的策略,还为探索在维格纳分子晶体内部产生的自旋、电荷和拓扑现象打开了全新的研究方向。因此,本文不仅在实验上验证了理论预测,还为开发新型量子材料及其应用奠定了坚实的基础,同时推动了强关联量子系统研究的前沿进展。文献详情:HONGYUAN LI. et al. Wigner molecular crystals from multielectron moiré artificial atoms. Science, 2024, 385(6704): 86-91;https://www.science.org/doi/10.1126/science.adk1348
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制