当前位置: 仪器信息网 > 行业主题 > >

金属铀

仪器信息网金属铀专题为您整合金属铀相关的最新文章,在金属铀专题,您不仅可以免费浏览金属铀的资讯, 同时您还可以浏览金属铀的相关资料、解决方案,参与社区金属铀话题讨论。

金属铀相关的资讯

  • 仪器技术助力我国科学家首次在自然界发现金属铀
    最新一期的地质学报(英文版)刊载封面文章介绍,核工业北京地质研究院院长李子颖带领的研究团队首次在自然界发现金属铀。这一发现不仅为揭示热液型铀成矿作用本质提供了关键性依据,而且对研究铀的来源、地球热的形成和演化均具有重大意义。  核地研院研究团队采用光电能谱方法,对产于我国典型热液型铀矿床中沥青铀矿的成分和价态进行了系统研究,发现沥青铀矿中铀不仅有四价和六价形式,还以金属铀(零价)形式存在。  铀是核军工的基石,也是重要的核能原料。长期以来,人们认为在自然界没有金属铀。最新的一项研究打破了这一惯常认识。  铀广泛分布于地球中,但由于它的不稳定性和变价性,总是以化合物状态存在着,之前人们在自然界中还未发现有金属铀。  热液型铀矿床中铀来自地球深部,由于地球内部的强还原环境,铀在地球内部以金属态或低价态形式存在。当成矿流体将铀带至近地表时,由于氧逸度不断提高,其中大部分铀与氧结合成四价或六价化合物,只有部分铀仍然保持金属态。李子颖认为,通过零价、四价或六价铀在热液铀矿床矿石中所占的比例,可以反映矿石形成的深度。这一重大发现为揭示热液铀成矿作用本质机理和控矿要素提供了关键性依据,且具有重要实际价值。  此次研究的沥青铀矿样品采自我国著名贵东330铀矿床和诸广302铀矿床。两矿床均产于广东省北部,属于重要的南岭铀成矿带。光电能谱方法是重要的表面分析技术,不仅能探测物质表面的化学组成,而且可以确定元素的化学价态。
  • 铀的替代方案!生物电镜染色新方法
    醋酸铀酰(UA)通常用作生物电子显微镜超薄切片的染色溶液。醋酸铀酰作为一种放射性核材料,受严格的国际法规约束。日本科研人员为了开发一种替代的、易于使用的超薄切片染色方法,研究了各种商用光学显微镜染料。研究人员发现,Mayer' s苏木精(MH)-Reynold’s柠檬酸铅溶液的染色结果与醋酸铀酰-Reynold’s柠檬酸铅溶液的染色结果相当,因此,该方法被认为是可靠且有希望的替代醋酸铀酰染色的新方法。1958年,Watson报道了用醋酸铀酰对生物标本进行电镜染色的方法。此后,醋酸铀酰和铅溶液的双重染色法因其简单和最佳的染色结果,已在世界各地的电子显微镜设备中使用。此外,电子显微镜(EM)中的阵列层析成像(如有连续截面透射电子显微镜(TEM)或扫描电子显微镜(SEM)、连续块面成像SEM)和聚焦离子束SEM)最近在很多生物科学学科中得到了越来越广泛的应用。阵列层析成像比串行块面部成像SEM和聚焦离子束SEM更具灵活性,因为它保留了所有部分。最近的技术进步使我们能够制备300–5000个连续超薄切片标本,用醋酸铀酰染色,并通过TEM获取图像,从而产生万亿字节的数据。在此过程中,需要大量醋酸铀酰。然而,由于严格的国际法规,获得铀酰化合物最近变得很困难。此外,由于它们被用作武器的核材料,预计在世界范围内对其使用以及可用性、储存和处置的限制也将更加严格。虽然已经提出了几种醋酸铀酰替代品用于染色,但没有一种能够有效地替代醋酸铀酰。因此,醋酸铀酰仍是生物研究领域电镜研究的最佳染色液。日本科研人员建立了一种新的染色方法,使用易于处理的预染色剂,作为醋酸铀酰和其他重金属双重染色的替代方法。科研人员检查了光镜方法中常规使用的各种基本染色溶液,以确定替代试剂,该试剂可以染色嵌入环氧树脂中的常规制备的薄片和半薄片。(a–h)小鼠肝脏的EM图像用各种染料染色,然后用RPb染色。用醋酸铀酰、MH、Gill No.3和Kernechtrot以及RPb染色的小鼠肝细胞的定量分析用MH和RPb染色的各种细胞和组织的EM图像铀酰铅染色流程可追溯到1958年。目前(2022年),透射电子显微镜已经发展成为一种对比度极大提高的仪器。现代电子光学、可变加速电压、可变孔径、高对比度和高分辨率图像传感器(CCD)或互补金属氧化物半导体(CMOS)相机图像记录以及高性能图像处理软件无疑将改善图像质量,即使是低对比度试样。然而,醋酸铀和铅的双重染色可能仍将在世界各地的许多电子显微镜设备中广泛使用。MH具有以下优势:稳定供应商业和经济可用的染料溶液,无需担心液体废物(因为它广泛用于对临床样本的石蜡切片进行染色以进行诊断)。染色时间为5-20分钟,与醋酸铀酰相同。然而,MH的一个缺点是,它染色为深蓝紫色,这使得在浸泡过程中很难看到网格。这可以通过污染MH溶液液滴上的网格来克服。国际原子能机构的“电离辐射防护和辐射源安全国际基本安全标准”(BSS)规定了具体的豁免水平,国际上正在通过立法制定放射性材料的新法规。如上所述,与使用醋酸铀酰(放射性物质)的染色方法相比,MH RPb染色方法在试剂购买、搬运、储存和废液处理方面是一种简单而有用的方法。参考资料:https://www.nature.com/articles/s41598-022-11523-y
  • 东华理工罗明标教授国际首创铀分析新方法
    记者从江西省国防科工办获悉,东华理工大学罗明标教授团队成功开发出铀分析新方法,新技术用于天然水样中放射性无机物铀形态的快速直接分析,在国际上尚属首次。   据了解,东华理工大学罗明标教授团队成功地将电喷雾萃取电离质谱(EESI-MS)新技术用于天然水样中放射性无机物铀形态的快速直接检测。该研究成果近日已被国际著名杂志美国《分析化学》(Anal. Chem.)发表,美国《分析化学》杂志影响因子高达5.7,是国际分析化学领域的权威杂志,标志该方法得到国际分析化学界的高度认可。   “该研究的成功,不仅拓展了EESI-MS的应用范围,而且在放射性核素分析技术领域具有重要意义。”东华理工大学副校长孙占学介绍。电喷雾萃取电离质谱(EESI-MS)是一种新型快速质谱分析技术,广泛用于液体样品的直接、实时和在线分析。   “开展放射性核素,尤其是铀的化学研究,无论对国防、能源, 还是对环境、生物、医学等学科的相关研究均有重要意义。”化生材学院陈焕文教授分析。该新方法对每个样品的分析只需10秒,可对铀的形态进行快速直接分析,也能用来检测铀的同位素比,有望成为痕量核素的实时、在线监测的有效方法。   据介绍,罗明标教授现任东华理工大学化学生物与材料科学学院院长,兼学校分析测试研究中心主任,主要从事环境与生物体系中痕量金属元素形态分析和铀钍及放射性元素污染控制与资源化研究。他已发表专业论文80余篇(其中SCI、EI录40余篇),取得国家发明专利3项 主持和参加科研项目32项,其中,主持973子项1项、国防基础科研项目1项。
  • 国产铀浓缩离心机将实现换代
    p   全国政协委员、核工业理化工程研究院院长王黎明11日透露,中核集团研发的具有完全自主知识产权的新一代铀浓缩离心机大型商用示范工程3月20日将全面建成。这标志着国产铀浓缩离心机实现升级换代,具备大规模商用条件,技术水平、经济性进一步提升,达到国际先进水平。 /p p   天然铀中铀—235的含量只有0.7%,但大部分核电站需使用低浓铀燃料,其中铀—235的含量约为2%—5%。因此必须设法提高铀—235的含量。当前,气体离心法已成为国际提高铀—235含量的主要方法。但离心机每分钟运行转速高达几万乃至十几万转,且需在接近材料极限强度下连续运行十年以上,中间不停机无检修。工业化过程还须经过不同装机规模、长时间的试验考核。正因如此,作为核燃料生产关键技术,铀浓缩离心机技术也被认为是衡量国家核技术水平的重要标志。 /p p   王黎明说,新一代铀浓缩离心机的研制和工业化将进一步提高我国在国际铀浓缩领域的地位和竞争力,提升核燃料生产自主化能力,是我国核能发展燃料供应的重要保障,对提升核电国际竞争力至关重要,也是核燃料产业铀浓缩领域由核大国走向核强国的重要一步。 /p p   2013年6月,我国铀浓缩技术完全实现自主化,成为继俄罗斯等少数国家之后,自主掌握铀浓缩技术并成功实现工业化应用的国家。 /p p   铀产品加工服务,是指对天然铀进行纯化、转化、浓缩,加工制造出核电站使用的核燃料组件的全过程,因为技术难度大,全世界仅有少数几个国家掌握该技术。王黎明同时建议国家鼓励铀产品加工服务,通过来料加工和进料加工方式“走出去”,在行政许可、降低税负方面给予政策支持。 /p
  • 科技引领,核创未来——首都科技条件平台检测与认证领域中心参加天然铀产业科技创新大会
    p   8月25日,由中国铀业有限公司主办,中核矿业科技集团有限公司承办的“天然铀产业科技创新大会”在北京通州成功举办。 /p p   中核集团党组成员、副总经理曹述栋出席大会并讲话。国防科工局、生态环境部、通州区政府,高校与科研院所领导共计200余人参加大会,首都科技条件平台检测与认证领域中心也受邀参加。 /p p   中核矿业科技集团有限公司的前身之一核工业北京化工冶金研究院(简称核化冶院)创建于1958年,是一所以研究铀矿选冶和湿法冶金技术为主,集科研、教学、产品开发和生产经营为一体的综合性高科技研究院。核化冶院是核燃料循环前端唯一从事天然铀化学、化工研究的多学科综合性开发研究机构,其研究领域涉及铀矿开采(含原地爆破浸出和常规开采)、铀矿水冶(含地浸、堆浸)、铀纯化、铀转化、相关材料研究、相关仪器设备开发、矿物加工工程、化学工艺、辐射防护、工程设计、检测技术、在线监测与自动控制等,并从事相关的学历教育。 /p p   核化冶院拥有铀提取冶金部级重点实验室和核工业化学计量站(国防科技工业1113二级计量站) 在金、镍、钒、钼等有色金属的湿法冶金方面具有较强的技术优势 拥有工程设计、工程咨询、工程监理、建设项目环境影响评价、安全评价等方面的国家资质。2002年12月16日,核化冶院通过ISO9001质量管理体系认证。 /p p   核化冶院是最早加入首都科技条件平台检测与认证领域中心的成员单位之一。长期以来参与首都科技条件平台信息系统开放、共享,开展京内外供需对接活动,面向社会提供测试检测、联合研发和技术转移等服务。首都科技条件平台为核化冶院打开宣传、展示与服务的窗口,以及科技条件资源开放共享搭建跳板。 /p p   会上发布了天然铀产业科技发展战略纲要(2021-2035),就中核矿业科技改革进行创新成果介绍。并颁发了中国铀业成员单位获得的2019年度国防和集团公司科技进步奖、中国铀业勘察采冶奖、杨承宗科技奖、科技成果转化奖励。 /p p   下午院士、专家和与会人员就天然铀采冶、纯化转化、海水提铀等采冶技术进行了交流研讨。有关领导、中国铀业及成员单位代表以及中赫矿业科技有关人员参加了会议。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/d32b2720-c5be-439b-901f-899b7dfe90a4.jpg" title=" 1_副本1.jpg" alt=" 1_副本1.jpg" / /p p br/ /p
  • 铀系放射性核素激光质谱分析技术取得突破
    铀系放射性核素(230Th-231Pa-232Th-238U)是海洋碎屑沉积物定年、评估沉积颗粒侧向迁移程度、以及重建粉尘通量、表层海洋输出生产力、深海洋流流速、深海氧化还原状态所依赖的重要指标。对于晚第四纪深海沉积物中超痕量的230Th和231Pa而言,其浓度范围一般在几到几百pg/g,是自然界中丰度最低的一类核素。传统分析230Th和231Pa含量的溶液方法化学处理流程复杂、耗时久,溶样和化学分离时Pa的回收率难以保证稳定。开展沉积物230Th和231Pa含量的可靠分析,还需精确标定人工放射性核素(229Th、233Pa)的混合稀释剂溶液,但233Pa的半衰期大约只有一个月,每批次的实验分析均需重新配制和标定稀释剂溶液。因此,常规开展沉积物230Th和231Pa的分析受到了极大限制,目前国内外仅有少数单位可以进行此类分析。为了深入开展海洋沉积物铀系核素的地球化学研究,充分发挥铀系核素的古海洋应用潜力,显然需要更高效、便捷的分析方法。本研究另辟蹊径,利用激光剥蚀-多接收质谱技术来突破上述分析难题。海洋沉积物基质复杂,结构松散,无法直接进行激光剥蚀。为此我们首先开发了海洋沉积物高温熔融玻璃化的方法。在中国科大黄方教授课题组建立的火山岩粉末小样品玻璃化方法的基础上,本研究针对海洋沉积物富高温挥发组分(如碳酸钙、硫酸盐等)的特点进行了改进。在得到均一硅酸盐玻璃样品后,我们进一步建设了激光剥蚀质谱分析方法。由于质谱中232Th拖尾对丰度极低的230Th、特别是231Pa的信号存在显著干扰,为了可靠获取U-Th-Pa在质谱仪中的分馏,需制备富集230Th和231Pa但不受232Th拖尾影响的玻璃标样。我们利用处于铀系衰变平衡的钙铀云母矿物,制备了不含232Th(低于检测限)、且富集231Pa的玻璃标样。利用太平洋深海表层沉积物,制备了富230Th而232Th拖尾可以忽略的玻璃标样。同时,基质效应、拖尾干扰稳定性、多原子干扰、离子计数器在超低计数时的性能等,均可能对230Th和231Pa的信号存在不确定的影响。事实上,以往的激光剥蚀质谱分析典型的浓度测量范围在ng/g及以上,对于自然界中极低含量的231Pa,此前从未报道过激光剥蚀质谱分析。本研究对这些不确定性进行了系统验证,将激光剥蚀硅酸盐典型分析的元素/同位素含量测试范围向下拓展了2-3个数量级。我们对一系列已知230Th和231Pa含量的海洋沉积物样品(利用溶液稀释剂法进行测试)进行了分析对比,进一步验证了极低丰度下海洋沉积物230Th和231Pa激光质谱分析测试的可靠性。本研究建立的方法(图1)可以实现多种类型的海洋沉积物中230Th、231Pa、232Th、238U的快速准确测量,极大提高了样品处理与测试效率。对存在230Th过剩的海洋沉积物样品的230Th/232Th分析的准确度在±2%以内,而对230Th衰变平衡的样品(230Th含量低至数十pg/g),230Th/232Th的准确度在±5%以内。231Pa/232Th比值的分析的准确度在±12%以内(231Pa含量低至几pg/g, 溶液稀释剂分析准确度一般在百分之几的水平)。因此,海洋沉积物万亿分之一浓度水平的铀系核素激光质谱分析技术完全满足实际需求,具有广泛的应用前景。图1.本研究分析方法的主要流程上述研究成果近期以“Determination of picogram-per-gram concentrations of 231Pa and 230Th in sediments by melt-quenching and laser ablation mass spectrometry”为题,发表于分析化学领域Nature Index期刊《Analytical Chemistry》。南京大学博士研究生郑健帆为论文的第一作者,陈天宇教授为论文的通讯作者。南京大学内生金属矿床成矿机制研究国家重点实验室及关键地球物质循环前沿科学中心为论文的第一和通讯单位,合作单位包括青岛海洋科学与技术试点国家实验室、布里斯托尔大学、明尼苏达大学、自然资源部海洋一所。该论文得到了西太平洋地球系统多圈层相互作用重大研究计划等基金项目的联合资助。
  • 铀系放射性核素激光质谱分析技术取得突破
    铀系放射性核素(230Th-231Pa-232Th-238U)是海洋碎屑沉积物定年、评估沉积颗粒侧向迁移程度、以及重建粉尘通量、表层海洋输出生产力、深海洋流流速、深海氧化还原状态所依赖的重要指标。对于晚第四纪深海沉积物中超痕量的230Th和231Pa而言,其浓度范围一般在几到几百pg/g,是自然界中丰度最低的一类核素。传统分析230Th和231Pa含量的溶液方法化学处理流程复杂、耗时久,溶样和化学分离时Pa的回收率难以保证稳定。开展沉积物230Th和231Pa含量的可靠分析,还需精确标定人工放射性核素(229Th、233Pa)的混合稀释剂溶液,但233Pa的半衰期大约只有一个月,每批次的实验分析均需重新配制和标定稀释剂溶液。因此,常规开展沉积物230Th和231Pa的分析受到了极大限制,目前国内外仅有少数单位可以进行此类分析。为了深入开展海洋沉积物铀系核素的地球化学研究,充分发挥铀系核素的古海洋应用潜力,显然需要更高效、便捷的分析方法。本研究另辟蹊径,利用激光剥蚀-多接收质谱技术来突破上述分析难题。海洋沉积物基质复杂,结构松散,无法直接进行激光剥蚀。为此我们首先开发了海洋沉积物高温熔融玻璃化的方法。在中国科大黄方教授课题组建立的火山岩粉末小样品玻璃化方法的基础上,本研究针对海洋沉积物富高温挥发组分(如碳酸钙、硫酸盐等)的特点进行了改进。在得到均一硅酸盐玻璃样品后,我们进一步建设了激光剥蚀质谱分析方法。由于质谱中232Th拖尾对丰度极低的230Th、特别是231Pa的信号存在显著干扰,为了可靠获取U-Th-Pa在质谱仪中的分馏,需制备富集230Th和231Pa但不受232Th拖尾影响的玻璃标样。我们利用处于铀系衰变平衡的钙铀云母矿物,制备了不含232Th(低于检测限)、且富集231Pa的玻璃标样。利用太平洋深海表层沉积物,制备了富230Th而232Th拖尾可以忽略的玻璃标样。同时,基质效应、拖尾干扰稳定性、多原子干扰、离子计数器在超低计数时的性能等,均可能对230Th和231Pa的信号存在不确定的影响。事实上,以往的激光剥蚀质谱分析典型的浓度测量范围在ng/g及以上,对于自然界中极低含量的231Pa,此前从未报道过激光剥蚀质谱分析。本研究对这些不确定性进行了系统验证,将激光剥蚀硅酸盐典型分析的元素/同位素含量测试范围向下拓展了2-3个数量级。研究者对一系列已知230Th和231Pa含量的海洋沉积物样品(利用溶液稀释剂法进行测试)进行了分析对比,进一步验证了极低丰度下海洋沉积物230Th和231Pa激光质谱分析测试的可靠性。本研究建立的方法(图1)可以实现多种类型的海洋沉积物中230Th、231Pa、232Th、238U的快速准确测量,极大提高了样品处理与测试效率。对存在230Th过剩的海洋沉积物样品的230Th/232Th分析的准确度在±2%以内,而对230Th衰变平衡的样品(230Th含量低至数十pg/g),230Th/232Th的准确度在±5%以内。231Pa/232Th比值的分析的准确度在±12%以内(231Pa含量低至几pg/g, 溶液稀释剂分析准确度一般在百分之几的水平)。因此,海洋沉积物万亿分之一浓度水平的铀系核素激光质谱分析技术完全满足实际需求,具有广泛的应用前景。图1.本研究分析方法的主要流程上述研究成果近期以“Determination of picogram-per-gram concentrations of 231Pa and 230Th in sediments by melt-quenching and laser ablation mass spectrometry”为题,发表于分析化学领域Nature Index期刊《Analytical Chemistry》。南京大学博士研究生郑健帆为论文的第一作者,陈天宇教授为论文的通讯作者。南京大学内生金属矿床成矿机制研究国家重点实验室及关键地球物质循环前沿科学中心为论文的第一和通讯单位,合作单位包括青岛海洋科学与技术试点国家实验室、布里斯托尔大学、明尼苏达大学、自然资源部海洋一所。该论文得到了西太平洋地球系统多圈层相互作用重大研究计划等基金项目的联合资助。
  • 新型电化学方法让海水提铀能力提升8倍
    美国斯坦福大学教授崔屹22日接受科技日报记者采访时透露,该团队日前开发出一种基于半波整流交流电的电化学方法,可从海水中高效提取铀,较之传统的物理化学吸附法,提取能力提升了8倍,速度则提升了3倍。相关成果发表在最新的英国《自然能源》杂志上。  目前,海水中铀的蕴藏量约45亿吨,是陆地上已探明铀矿储量的2000倍,如果能将海水中的铀全部提取出用于核电站,发电量将足够全世界用上一万年。  崔屹告诉记者,目前海水提铀普遍采用的是物理化学吸附法。由于吸附材料的表面积有限,而海水中铀浓度偏低,且盐度很高,用于吸附铀离子的材料吸附能力很快饱和,无法有效地提取足够的铀,提铀成本也比陆地铀矿提炼成本高很多。  论文第一作者、斯坦福大学材料科学与工程学院博士后刘翀介绍,该团队开发的这种基于半波整流交流电的电化学方法(HW-ACE),将对铀有着很强选择性和吸附性的偕胺肟材料负载到导电基底上,导电后,电场使铀离子迁移到电极并诱导铀化合物的电沉积,形成电中性铀化合物。和传统方法不同,电沉积不受限于吸附表面积的大小,为此铀提取容量可以大大提升。而交替变化的脉冲电压防止了其他阳离子阻碍活性位点,并避免了水裂解的发生。  崔屹表示,由于该方法提取铀的容量超大,理论上提取能力非常强。随着未来提取过程中耗电量的减少,提取成本有望低于现有海水提铀技术,与陆地铀矿提取成本持平,甚至更低。
  • 《铀矿化学分析方法第1部分:铀、钍含量测定敞口酸溶—电感耦合等离子体原子发射光谱法》等10项行业标准发布
    自然资源部关于发布《铀矿化学分析方法 第1部分:铀、钍含量测定 敞口酸溶—电感耦合等离子体 原子发射光谱法》等10项行业标准的公告2022年第23号《铀矿化学分析方法 第1部分:铀、钍含量测定 敞口酸溶—电感耦合等离子体 原子发射光谱法》等10项推荐性行业标准已通过全国自然资源与国土空间规划标准化技术委员会审查,现予批准、发布,自2022年7月1日起实施。标准编号及名称如下:2022年3月25日
  • 中科院地化所建立基于生物传感器的土壤重金属检测系列新方法
    传统重金属检测方法依赖大型仪器,需要复杂繁琐的前处理过程、高昂的检测成本和较长的检测周期。同时,传统检测方法面临着灵敏度不高和智能化程度低的问题。因此,亟需建立高灵敏度及智能化重金属检测方法,以弥补传统方法的不足。生物传感器是快速检测方法,具有响应迅速、成本低、灵敏度高及便于携带等优点,可以较好地克服传统检测方法的局限,在重金属简单、快速、高灵敏检测方面颇具应用前景。中国科学院地球化学研究所环境地球化学国家重点实验室研究员刘承帅团队与广东省科学院生态环境与土壤研究所研究员陈俊华等,建立了以功能核酸为分子识别元件的重金属生物传感器,实现了对重金属的超灵敏、智能化快速检测,并构建了土壤有效态重金属检测新方法。 该团队建立了DNA网状纳米结构生物传感器,实现了对土壤重金属的超灵敏检测。科研人员创新性地以双茎环DNA探针为自组装元件。当反应体系存在待检重金属(以铀离子为例),释放的核酸片段可激活DNA组装,经过多重循环的核酸杂交及链置换反应,形成DNA网状纳米结构的荧光生物传感器。该荧光生物传感器对铀离子的检测线性范围为10 pM到1 mM,检测限为2 pM,可实现对土壤样品中痕量铀污染的超灵敏检测。该荧光生物传感器操作简单、响应迅速、信号扩增效率高效,为土壤重金属的超灵敏检测提供了新方法。该研究建立了分子逻辑门生物传感器,在分子水平上实现了重金属的智能化检测。研究以有效态铅和有效态镉两种重金属为目标物,基于二进制原理,以0和1对重金属进行编码,以功能核酸为重金属分子识别元件,通过核酸并行运算和杂交反应,构建了多种分子逻辑门生物传感器,包括OR、AND、XOR、INHIBIT、半加器、半减器等。在生物传感逻辑运算中,0表示检测体系中不存在有效态铅或镉;1表示检测体系中存在有效态铅或镉。以FAM和Cy5进行双通道荧光标记,根据真值表排布,不同的重金属组合会产生不同的荧光输出信号,从而在分子水平上为重金属的智能化检测提供了一套新的传感体系。该工作建立了DNA荧光生物传感器,实现了对土壤有效态重金属的免萃取、简单、快速检测。目前,土壤有效态重金属检测方法较多,如BCR法、Maiz三步连续提取方法、Tessier五步连续提取法、DTPA-CaCl2法等,但适用条件等存在争议。例如,强酸强碱等化学试剂介导的重金属萃取难以反映土壤中有效态重金属的真实含量。同时,这些方法需要连续多步的萃取分离过程,步骤繁琐且耗时较长。因此,探索构建无需消解萃取且可真实反应土壤中有效态重金属含量的快速检测方法具有重要意义。该团队以生命体基元DNA为有效态重金属识别探针,通过DNA识别、切割以及信号转换,构建了DNA荧光生物传感器,实现了对土壤有效态重金属(铅、镉、铜等)的快速检测。该方法操作简单、无需复杂的连续萃取过程,同时,DNA探针混合即可检测,响应迅速,方便现场快速分析。该荧光生物传感器对有效态铅的检测灵敏度可达0.2 pM,用于土壤样品有效态重金属检测时,与传统DTPA-CaCl2法相比,误差小于10%,具有高灵敏度和高特异性,可满足复杂样品中有效态重金属检测需求。相关研究成果分别发表在Analytical Chemistry、Talanta和Science of The Total Environment上。相关技术已申请发明专利。研究工作得到国家重点研发划、国家自然科学基金和贵州省高水平人才项目等的支持。 (A)DNA网状纳米结构生物传感器检测重金属原理;(B)原子力显微镜表征组装的DNA纳米结构;(C)检测限和检测灵敏度分析(A)分子逻辑门生物传感器用于有效态重金属的智能化检测;(B)半加器分子逻辑门生物传感器结果;(C)半减器分子逻辑门生物传感器结果;(D)半加器分子逻辑运算真值表;(E)半减器分子逻辑运算真值表(A)DNA荧光生物传感器用于有效态重金属检测原理;(B)有效态重金属检测灵敏度分析结果
  • 在美华人涉嫌出口浓缩铀生产仪器被美方逮捕
    北京时间5月24日上午消息,美国司法部周四宣布,一名美国公司的中国籍雇员被逮捕起诉,涉嫌将可用于武器级铀生产的美制仪器非法出口到中国。   美国万机仪器(MKS Instruments)在华子公司销售经理胡强在麻省North Andover所住宾馆被逮捕,被控合谋违反美国出口法律,从美国向中国未授权用户出口数千件压力传感器。   司法部在声明中表示:“压力传感器的出口受到管制,因为它们可用于离心机生产浓缩铀。”检方指控称,胡强利用发放给万机仪器客户的出口许可证或以挂牌公司的名义获得出口许可证,从2007年起与他人串通从美国出口压力传感器给未授权中国终端用户。   万机仪器表示,波士顿检察机构已通知公司一名雇员被捕,公司正在配合美国当局的调查。如果罪名成立,胡强将面临最高20年监禁的刑罚。司法部在声明中表示,万机仪器公司不是政府的调查对象。
  • 环保部发布标准《环境样品中微量铀的分析方法》
    p & nbsp & nbsp & nbsp & nbsp 为贯彻《中华人民共和国环境保护法》和《中华人民共和国放射性污染防治法》,加强环境质量管理,规范环境监测方法,近日,环保部制定的标准《环境样品中微量铀的分析方法》发布。本标准规定了环境水样、空气、生物和土壤样品中微量铀的分析方法。该标准自8月1日起开始实施。 /p p & nbsp & nbsp & nbsp & nbsp 具体内容如下: /p hr style=" FONT-SIZE: 14px BORDER-TOP: rgb(37,103,178) 2px solid FONT-FAMILY: " text-decoration-color:=" " text-decoration-style:=" " -webkit-text-stroke-width:=" " font-variant-caps:=" " font-variant-ligatures:=" " text-indent:=" " letter-spacing:=" " margin-top:=" " widows:=" " orphans:=" " font-style:=" " color:=" " font-weight:=" " text-transform:=" " word-spacing:=" " white-space:=" " microsoft=" " / p style=" FONT-SIZE: 16px HEIGHT: 70px WIDTH: 647px FONT-WEIGHT: normal PADDING-BOTTOM: 0px TEXT-ALIGN: center PADDING-TOP: 0px PADDING-LEFT: 0px MARGIN: 0px LINE-HEIGHT: 35px PADDING-RIGHT: 0px" a style=" TEXT-DECORATION: none COLOR: rgb(85,26,139)" href=" http://kjs.mep.gov.cn/hjbhbz/bzwb/hxxhj/xgjcffbz/201707/W020170712570161319944.pdf" oldsrc=" W020170712570161319944.pdf" 环境样品中微量铀的分析方法(HJ 840-2017代替GB6768-86,GB11220.1-89,GB11223.2-89,GB11223.1-89,GB12378-90,GB12377-90) /a /p p & nbsp /p
  • 生态环境部发布《铀矿冶辐射环境保护规定(征求意见稿)》
    p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201809/uepic/def4e491-834c-4576-bf34-6aaaa96d3cc1.jpg" title=" 生态环境部文件.jpg" alt=" 生态环境部文件.jpg" / /p p   近日,生态环境部发布了关于征求《铀矿冶辐射环境保护规定(征求意见稿)》意见的函。通知中指出,生态环境部对《铀矿冶辐射防护和环境保护规定》(GB23727-2009)进行了修订。目前,标准修订项目承担单位已编制完成《铀矿冶辐射环境保护规定(征求意见稿)》,现将标准征求意见稿及其编制说明印送给相关单位,反馈意见可于2018年10月22日前反馈至生态环境部(电子文档请同时发送至联系人邮箱)。 /p p   以下为具体内容: /p p   联系人:核工业北京化工冶金研究院牛洁 /p p   电话:(010)51674980 /p p   传真:(010)51674888 /p p   通信地址:北京市通州区九棵树145号 /p p   邮政编码:101149 /p p   邮箱:nj1108@126.com /p p   联系人:生态环境部辐射源安全监管司王彦 /p p   电话:(010)66556838 /p p   附件:1.征求意见单位名单 /p p & nbsp & nbsp & nbsp img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" width=" 16" height=" 16" style=" vertical-align: middle margin-right: 2px width: 16px height: 16px " / a href=" https://img1.17img.cn/17img/files/201809/attachment/7ced62f1-552c-497a-a98e-fefdceece4f4.pdf" target=" _self" title=" 11.pdf" textvalue=" 2.铀矿冶辐射环境保护规定(征求意见稿).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 2.铀矿冶辐射环境保护规定(征求意见稿).pdf /span /a span style=" color: rgb(0, 112, 192) "   /span /p p style=" line-height: 16px " span style=" color: rgb(0, 112, 192) " & nbsp & nbsp & nbsp /span img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" https://img1.17img.cn/17img/files/201809/attachment/73b6ced8-a3fc-454c-acd9-a14a58f87088.pdf" target=" _self" title=" 12.pdf" textvalue=" 3.《铀矿冶辐射环境保护规定(征求意见稿)》编制说明.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 3.《铀矿冶辐射环境保护规定(征求意见稿)》编制说明.pdf /span /a /p p style=" text-align: right "   生态环境部办公厅 /p p style=" text-align: right "   2018年9月13日 /p p   附件1 /p p   征求意见单位名单 /p p   自然资源部办公厅 /p p   国防科工局综合司 /p p   环境保护部各地区核与辐射安全监督站 /p p   各省、自治区、直辖市环境保护厅(局) /p p   环境保护部核与辐射安全中心 /p p   环境保护部辐射环境监测技术中心 /p p   中国铀业有限公司 /p p   中广核铀业发展有限公司 /p p   中国原子能科学研究院 /p p   中国辐射防护研究院 /p p   中核第四研究设计工程有限公司 /p p   核工业北京地质研究院 /p p   核工业二三0研究所 /p p   (部内征求办公厅、政法司、科技司、水司、大气司、土壤司、生态司、核一司意见) /p
  • 科普丨金属之最,你知道几个?一文带你了解金属分类
    -金属定义-金属是一种具有光泽(即对可见光强烈反射)、富有延展性、容易导电、导热等性质的物质。地球上的绝大多数金属元素是以化合态存在于自然界中的。这是因为多数金属的化学性质比较活泼,只有极少数的金属如金、银等以游离态存在。-金属分类-黑色金属铁、铬、锰三种。有色金属铝、镁、钾、钠、钙、锶、钡、铜、铅、锌、锡、钴、镍、锑、汞、镉、铋、金、银、铂、钌、铑、钯、锇、铱、铍、锂、铷、铯、钛、锆、钒、铌、钽、钨、钼、镓、铟、铊、锗、铼、镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钪、钇、钍。常见金属如铁、铝、铜、锌等。轻金属密度小于4500千克/立方米,如钛、铝、镁、钾、钠、钙、锶、钡等。重金属密度大于4500千克/立方米,如铜、镍、钴、铅、锌、锡、锑、铋、镉、汞等。贵金属价格比一般常用金属昂贵,地壳丰度低(又称克拉克值(CLARKE value),一种表示地壳中化学元素平均含量的数值),提纯困难,如金、银及铂族金属。准金属元素性质价于金属和非金属之间,如硅、硒、碲、砷、硼等。稀有金属包括稀有轻金属,如锂、铷、铯等;稀有难熔金属:如锆、钼、钨等;稀有分散金属:如镓、铟、锗、铊等;稀土金属:如钪、钇、镧系金属;放射性金属:如镭、钫、钋及锕系元素中的铀、钍等。-金属之最-地壳中含量最高的金属元素:铝(含量为7.73%)人体中含量最高的金属元素:钙(含量为1.5%)目前世界年产量最高的金属:铁密度最大的金属:锇(22.48×10³㎏/m³)最硬的金属:铬(莫氏硬度约为9)最软的金属:铯(莫氏硬度约0.5)导电性最强的金属:银最轻的金属:锂最难熔的金属:钨,熔点为3410℃,沸点为5700℃。熔点最低的金属:汞,其凝固点为–38.7℃最能吸收气体的金属元素:钯(1体积胶状钯能吸收氢气1200体积)世界上最贵的金属:锎(每克1千万美元,比金贵50多万倍)产量最高的金属:铁硬度最小的金属:钠,其莫氏硬度为0.4,室温下可用小刀切割 液态范围最大的金属:镓,其熔点为29.78℃,沸点2205℃。 光照下最易产生电流的金属:铯,其主要用途是生产各种光电管地壳中含量最少的金属:钫(即使是在含量最高的矿石中,每吨也只有37×10-13g;地壳中的含量约为1×10-21 %)延性最好的金属:铂,最细的铂丝直径只有1/5000mm碱土金属中是最活泼的元素:钡,钡的化学活性很大,在碱土金属中是最为活泼,1808年才被归纳为金属元素展性最强的金属:金(最薄的金厚度只有1/10000mm)最怕冷的金属:锡,在温度低于-13.2℃时,锡便开始崩碎;当温度低于-30~-40℃时,会立即变成粉末,这种现象常称“锡疫”
  • 水质重金属的检测项目包含哪些?
    水质重金属的检测项目涵盖了多种对人体健康和环境具有潜在危害的重金属元素。这些检测项目通常包括但不限于以下几个方面:铅(Pb):铅是一种有毒重金属,长期摄入可能对人体健康造成严重影响,包括神经系统和肾脏损伤。世界卫生组织(WHO)和美国环保局(EPA)都设定了饮用水中铅的限量标准。镉(Cd):镉也是一种有毒重金属,长期暴露可能导致肾脏和骨骼问题,甚至增加癌症风险。WHO对饮用水中镉的含量也有明确的限制。汞(Hg):汞是一种高度毒性的重金属,对中枢神经系统、肾脏和免疫系统都有不良影响。WHO规定了饮用水中汞的最大允许含量。铬(Cr):铬的化合物具有不同的毒性,其中六价铬(Cr6+)是对人类健康有害的。因此,饮用水中六价铬的含量也是检测的重点之一。砷(As):砷是一种致癌物质,长期暴露可能导致癌症和其他健康问题。WHO对饮用水中砷的含量有严格的限制。除了上述几种重金属外,水质重金属检测还可能包括以下几种元素:铜(Cu):虽然铜是人体必需的微量元素之一,但过量摄入也可能对健康造成不利影响。锌(Zn):锌同样是人体必需的微量元素,但过量摄入同样需要关注。铝(Al):铝在水中的存在可能对神经系统造成长期影响。镍(Ni):镍是一种潜在的致癌物质,其在水中的含量也需要监测。锰(Mn):锰的过量摄入可能导致神经系统问题。此外,根据具体需求和检测标准的不同,水质重金属检测项目还可能包括其他金属元素,如锑、铍、硒、银、锂、钡、钛、锡、硼、锶、钴、钼、钍、铀、钒、铋、镓、锗、碲、铊等。需要注意的是,水质重金属检测项目的选择应基于当地水源状况、水质标准以及公众健康需求等因素综合考虑。同时,随着科技的发展和检测技术的进步,水质重金属检测项目也可能会有所调整和更新。为了确保水质安全,环境监测机构会定期或不定期地对饮用水源进行重金属检测,并根据检测结果采取相应的措施来保护水源和保障公众健康。此外,公众也可以通过了解相关知识和采取适当的措施来减少重金属摄入的风险。
  • 国内首家!等离子体质谱法测定铀钍元素通过国家实验室资质认定
    内蒙古自治区核与辐射监测中心一直以“跑起来、抢时间、争一流”的工作要求和“争当排头兵、勇走最前列”的工作标准,聚焦主责主业。牛年岁末,在全国辐射监测机构中第一家通过了电感耦合等离子体质谱法测空气和废气颗粒物中铀、钍,电感耦合等离子体质谱法测水中铀、钍四个监测项目的资质认定评审,辐射环境监测能力国家实验室资质认定由49项增至52项。高分辨率等离子质谱仪在伴生矿辐射监测领域的实际应用,进一步提高了伴生矿监测的时效性和全面性,为核与辐射应急响应提供了高效有力的技术保障。这次扩项远程评审,是一次聚焦党史学习教育成果,展现辐射安全铁军新格局的实操演练。在党史学习教育过程中,全体监测人员倍感振奋、倍增干劲,更加坚定、更加自觉地践行初心使命。面对第一次远程线上评审,中心负责人亲自督办,推行“每项远程评审规范逐项分解”工作模式,实施“每个远程视频链接环节提前演练”工作举措,形成各科室大力配合、积极联动的强大合力,保障了远程视频会议、远程现场检查、线上文件审核等评审过程的流畅和顺利,也得到了评审组的大力肯定。内蒙古自治区核与辐射监测中心立足辐射监测工作实际需求,紧扣提升监测能力的任务目标,围绕新颁布实施的辐射监测技术方法规范,强化先进仪器设备的科研应用,全体监测人员齐动员,责任担当、全力以赴推动综合辐射监测实力新跨越,在虎年的新征程上奋发有为再出发。
  • 祝贺我司参加2012年中国(佛山)国际金属工业博览会取得圆满成功
    瑞信科技(香港)股份有限公司于2012年3月21日~23日参加2012年第六届中国(佛山)国际金属工业博览会,热烈庆祝&ldquo (2012年佛山金属展)牛津仪器便携式X荧光光谱仪XRF展览&rdquo 取得圆满成功。 展会期间,牛津仪器公司新产品X-MET7000便携式X荧光光谱仪吸引了到场嘉宾的浓厚兴趣。包括太钢、首钢、酒钢、珠钢、宏旺集团等国内知名企业在内的展商和来宾对X-MET7000进行了技术咨询/交流、仪器现场演示、样品检测数据对比等,X-MET7000优异的性能赢得了广泛的关注和肯定。 牛津仪器公司的最新款X-MET7000手持式能量色散型X射线荧光(EDXRF)分析仪,操作简单,分析结果精确可靠。它无与伦比的检测能力可以满足最高的应用要求。材料可靠性鉴定PMI、质量控制保证QC/QA、可追溯元素分析,都只需几秒种就可以完成。 X-MET7000分析元素范围从氯到铀,主要有:钛Ti、钒V、铬Cr、锰Mn、铁Fe、钴Co、镍Ni、铜Cu、锌Zn、镓Ga、锗Ge、As砷、锶Sr、钇Y、锆Zr、铌Nb、钼Mo、钌Ru、铑Rh、钯Pd、银Ag、镉Cd、铟In、锡Sn、锑Sb、钡Ba、铪Hf、钽Ta、钨W、锇Os、铱Ir、铂Pt、金Au、铊Tl、铅Pb、铋Bi。 在此,瑞信科技(香港)股份有限公司、佛山金属展主办方、各金属行业企业来宾表示衷心感谢! 瑞信科技(香港)股份有限公司 2012年3月23日 图1:牛津仪器产品经理与来宾作技术交流1 图2:牛津仪器产品经理与来宾作技术交流2 图3:参展工作人员
  • 样品砷含量超母乳2~3倍 婴幼儿米糊陷重金属污染疑云
    婴幼儿米糊陷重金属污染疑云 雀巢(中国)公司昨发表声明强调其产品安全   据英国《星期日电讯报》的最新报道称,瑞典研究人员发表论文称,包括雀巢在内的9种欧洲知名品牌的婴儿食品含有毒重金属砷、铅与镉,其含量虽未达世界卫生组织(WHO)规范的上限,但婴儿长期食用,仍会导致智力受损,甚至出现行为异常。据悉,欧盟委员会官员已决定召开紧急会议,商讨重新制定新的婴儿食品安全标准。   这份研究的检验样本包括雀巢、喜宝(Hipp)、活乐(Holle)、欧格妮(Organix)等9种知名品牌生产的供4个月以上婴儿食用的辅食,以及9种婴儿配方奶粉。   据了解,发表研究论文的这所瑞典研究机构是世界顶级的医学院瑞典卡罗琳学院Miljomedicin研究所(卡罗琳学院有一个委员会专门负责颁发诺贝尔生理学或医学奖)。而论文是发表在今年1月的国际权威学术期刊《食品化学》中。   针对瑞典研究机构发布关于婴幼儿食品中含有微量锰、镉和砷研究报告的报道,昨日雀巢(中国)有限公司发表声明,强调"所涉及的雀巢产品未在中国生产和销售",并称这些产品是完全安全的,并符合所有北欧和欧洲的相关标准。   国内食品安全专家指出,国际和国内的食品安全标准都有对婴儿配方食品中砷含量作出限量规定,在限量范围内食用可以说是安全的。记者了解到,国内婴幼儿谷类辅助食品标准只对砷、铅两类重金属元素提出限量要求。至于镉等元素限量,则在农业部的标准《粮食(含谷物、豆类、薯类)及制品中铅、镉、铬、汞、硒、砷、铜、锌等八种元素限量》有要求。   研究:样品砷含量超母乳2~3倍   本报记者昨日从中山大学一位医学专家处拿到这份备受关注的论文英文原文(《婴儿配方食品和幼儿食品中高含量的必需元素和有毒元素--一个值得关注的问题》)。细读后发现,该论文重点研究评估的是6个月龄婴儿食品中有毒与必需元素的含量和摄入。在大部分的配方食品,必须元素钙、铁、锌、锰、钼的含量都明显高于母乳。和母乳喂养比,婴儿食品日常摄入的锰含量高出十倍到几百倍,这一摄入水平可能损害健康。   据本报记者了解,论文的研究人员从瑞典市面购买了9种婴儿配方食品(从出生起可以食用)和9种幼儿食品(4岁龄以上食用)作为样本,并指出这些食品均为大型食品商生产,能在全球范围都能买到。检验样本包括雀巢、喜宝(Hipp)、活乐(Holle)、欧格妮(Organix)等。   从实验结果看,在婴儿配方食品一组,除了一款样品外都含有比母乳高的镉(1.3~20倍)、铅(1.6~3倍)和铀(1.7~46倍),其中3款样本的砷含量超过母乳2~3倍。   对比:谷物食品砷含量高于牛奶食品   至于幼儿食品的一组,基于谷物生产的儿童食品样本镁、锰、钼、砷、镉、锑的含量都高于基于牛奶生产的食品。基于大米的样本砷的含量更是特别高,达到17~33微克/千克,而其他食品只有0.2~3微克/千克。两款基于大米的食品还含有其他有毒元素。   记者注意到在分析砷危害一节,论文指,在实验样本中3个纯粹基于大米的样本的砷含量大约是30微克/千克,2个在大米外还添加进水果成分的样本其砷含量就轻微下降到18微克/千克。其中,一个样本的含量相当于人体每公斤摄入1微克的水平,如果每天喂食2次就已经接近欧洲标准的上限(2.1微克/千克),这个含量已经超过了健康安全水平。   论文称,多个研究已经发现大米和基于大米生产的婴幼儿食品时常含有较高含量的砷,当中大部分是以毒性最大的无机砷的形态而存在。砷除了能致癌外还能引发多种毒性反应,儿童对此尤其敏感。如果儿童在成长早期就从饮用水中摄入低剂量的砷,将会致病和致死,或者损害早期发育。   论文最后指,随着给婴幼儿辅食的流行,日常摄入的必需元素特别是锰、铁和钼在增加。值得警惕的是,这些食品同时也可能带来高剂量的有毒元素如砷、镉、铅、铀,它们主要来自于食品的原料。   调查:未找到论文提及的产品   有关报道引起了广泛关注,特别是诸如"婴儿食品混入砷"等字眼,令不少妈妈恐慌。妈妈网上出现长达8页的讨论,不少妈妈表示迷茫,网友"wanghaomm"说,"如果水稻也有毒,那么,自己打豆浆米糊吃也是有害身体的呀!抓狂!还能吃什么?"   针对有关报道,昨日雀巢(中国)有限公司特意发表声明,强调报道中所涉及的雀巢产品是完全安全的,并符合所有北欧和欧洲的相关标准,报道中所及雀巢产品未在中国生产和销售。雀巢在中国生产和销售的婴幼儿食品完全符合中国法规及标准的要求,消费者可放心食用。   雀巢在华联系人对本报记者表示,实验用的产品根本不是中国生产,所以马上就排除中国产品不受事件影响。但被问到外国米糊产品大米来源是哪里时,该联系人表示"不清楚".   记者随后走访人民路上多家婴幼儿用品店,均没有找到论文提及的雀巢、喜宝(Hipp)、活乐(Holle)、欧格妮(Organix)品牌的米糊。米糊品牌都是亨氏、味奇、贝因美。后来记者在中山路上一家超市找到雀巢品牌的牛肉蔬菜配方米糊、胡萝卜配方米糊、鸡肉蔬菜配方米糊等11种婴幼儿食品,产地均为黑龙江。   不过记者在大型购物网站上,就找到论文提及的其他品牌米糊产品,而且都是宣称欧洲生产,诸如"HIPP喜宝香蕉晚餐有机燕麦米粉米糊"(43.5元)、"(瑞士品牌)德国产HOLLE天然有机大米米粉米糊250克4个月"(55元)、"Organix有机全麦米糊米粉"(62元)等等。   专家:大米对砷的吸收能力较强   到底为何米糊等大米配方食品会有砷?论文指出,婴儿配方食品中可能含有的毒元素是来自天然存在的原材料,或者来自遭食品加工过程中的污染。例如,基于大米生产的婴幼儿食品在2008年时就曾报告含有高于安全标准的砷。   业内人士告诉本报记者,由于自然的因素或人为污染,重金属在土壤中微量存在。当谷物生长时,就会从土壤中吸收这些重金属,其中又以大米对砷的吸收能力较强。国际研究已经表明,就算是微量的砷都有可能导致婴儿脑部损伤。欧洲食品安全管理局对食品中砷的规定是每公斤体重摄入约2微克,不过最近该局已经表示需重新进行风险评估。世界卫生组织也暂时停止了对砷摄入量的建议,因为近期的研究显示就算微量的砷都可能致癌。   专家:标准限量以下食用安全   中山大学毒理学教授、广东省食品安全专家委员会专家杨杏芬表示,国际上和国家都有对婴幼儿配方食品中的砷含量作出限量规定,只要含量在标准限量之下可以说是安全的。   对于婴幼儿米糊等谷类食品,国家有强制标准,质监部门监督抽查时也会按照强制标准检测。不过,国内婴幼儿谷类辅助食品标准只对砷、铅两类重金属元素提出限量要求。根据国家标准《婴幼儿谷类辅助食品》,铅、砷等污染物有限量控制,其中添加鱼类、肝类、蔬菜类的谷类辅助食品限量为0.3毫克/千克,其他产品铅限量0.2毫克/千克。添加藻类的产品无机砷限量0.3毫克/千克,其他产品限量0.2毫克/千克。   有NY 861-2004《粮食及制品中铅、镉、铬、汞、硒、砷、铜、锌等八种元素限量》的标准要求,其中大米制品镉(以Cd计)限量在0.2毫克/千克。   砷 (arsenic)是一个知名的化学元素,元素符号As,原子序 33.砷的硫化物矿自古以来被用作颜料和杀虫剂、灭鼠药。硫化合物具有强烈毒性,今天砷的拉丁名称 arsenium和元素符号As正是由这一词演变而来。三氧化二砷在我国古代文献中称为砒石或砒霜。小剂量砒霜作为药用在我国医药书籍中最早出现在公元973年宋朝人编辑的《开宝本草》中。   每天吃两次问题米糊   砷可能破坏神经系统   研究发现,如果每天向婴儿喂食两次上述品牌的米糊等辅食,婴儿接触到致癌物"砷"的数量,比母乳喂养高出50倍 接触可破坏神经系统和肾脏功能的重金属"镉",数量比母乳喂养增150倍 接触可致永久性的智力受损伤或行为异常的重金属"铅",数量也要增8倍。
  • “食品重金属检测方法与技术”研讨会召开
    仪器信息网讯 2011年4月21日,2011第四届中国北京国际食品安全高峰论坛在北京九华国际会展中心开幕。本次高峰论坛持续两天,主题为“产业链的全过程控制”,旨在打造一次高层次、高水平、高质量的学术盛会。参展本次高峰论坛吸引了800余名业内人士参加、60余家企业参展,仪器信息网作为特邀媒体亦参加了本次会议。   本次会议专门设立了“食品安全的检测方法和技术”系列专题研讨会,共包括食品中非法添加物检测技术、食品中致病菌及毒素检测技术、农兽药残留检测方法与技术、食品重金属检测方法与技术、食品安全快速检测方法与技术、食品安全检测新产品与新技术六个系列专题。 “食品重金属检测方法与技术”专题研讨会现场   4月21日下午,“食品重金属检测方法与技术”专题研讨会召开,共有50余名专家学者及分析技术人员参加了此次研讨会。   “食品重金属检测方法与技术”专题研讨会 国家质检总局《检验检疫科学》责任副主编 周锦帆教授 食品中有害重金属/非金属的疑难光谱/离子电极分析的核心展望   周锦帆教授指出食品中有害重金属分析,其难点在于消除基体干扰和降低分析方法检测下限。所以如何选择性地从复杂的样品,例如高盐样品中可靠、有效、实用地将微量重金属分离/富集,从而提高分析方法的灵敏度和准确度并得到可信的结果,对我国分析化学工作者来说是很实际的问题。   周锦帆教授在报告中主要介绍了食品中铅、镉、汞、硼、铀、钍、碘、氟和六价铬的不同离子交换树脂及活性氧化铝分离/富集的方法及实施要点,以及解决疑难的光谱/离子选择电极分析问题,即消除基体(如,大量钠)干扰并降低分析方法检测下限。周锦帆教授介绍说小型离子交换柱法可用于绝大多数金属离子的离子交换分离/富集。采用树脂量为1.0mL的小型离子交换柱,可以解决95%以上的有害金属分离富集问题。例如,测定铅、铅+镉、汞,可用Chelex-100螯合树脂 单独测定镉,首选用Dowex 1-X8离子交换树脂 测定硼可选择用Amberlite743树脂 分离富集Cr(Ⅵ)以活性氧化铝为首选等。 国家食品质量安全监督检验中心无机室主任 林立女士 食品中无机元素检测的关键技术分析   林立女士首先从食品中无机砷的测定(LC-ICPMS联用)、面包饮料中溴酸盐的测定、酱油等氯化钠含量很高的样品中铅的测定、植物样品中稀土氧化物的测定、鸡蛋中总硒的测定、食品中铝的测定等实际案例向与会者介绍了食品中无机元素的检测技术。此外,对于常规无机元素在原子吸收光谱仪、原子荧光光谱仪、ICP以及ICP-MS等仪器上检测时的优缺点,林立女士做了系统的说明。最后,林立女士介绍了以ICP-MS做为检测器,与GC、LC/IC、Laser Ablation、CE等仪器的联用,以及在一些复杂基质样品中的分析应用。 国产科学仪器应用示范中心主任 陈舜琮研究员 国产光谱仪器在食品安全检测中的应用   陈舜琮研究员介绍了国产原子吸收光谱仪、原子荧光光谱仪以及微波消解仪的发展现状、以及在食品安全检测中的应用。   陈舜琮研究员表示国产原子吸收光谱仪凭借其日益提升的分析性能、优质的售后服务以及价格等方面的优势,在食品安全检测领域正在发挥越来越大的作用。原子荧光光谱仪是我国自主研发,具有完全知识产权的分析仪器。原子荧光光谱法具有谱线简单、灵敏度高、检出限低、基体干扰少,在砷、汞等挥发性元素的测定中表现出极大的优越性。微波制样具有速度快、效率高、回收完全、试剂耗用少、环保清洁的显著优点,正越来越成为替代传统方法的新技术。   同期召开的“食品安全的形势、管理和应对措施”主论坛
  • NEWS|朗铎科技出席2020第五届全国有色金属采选冶实用技术与装备大会
    2020年7月17日,第五届全国有色金属采选冶实用技术与装备大会在云南昆明花之城豪生国际大酒店隆重召开。朗铎科技携Thermo Scientific Niton手持式矿石分析仪出席此次会议,与全国矿业工作者共同探讨采选冶实用技术装备的融合发展和技术应用。 本次会议主要围绕绿色矿山建设交流-采选冶实用技术交流为中心,结合我国有色金属矿山全产业链与供应链融合等主题展开,全力推进我国有色金属行业绿色发展。旨在加强高效智能采选冶实用技术装备的融合发展和技术应用,提升矿业采选冶全产业链与供应链的核心竞争力,促进我国有色金属工业产品质量技术进步,优化制造流程与产品的过程控制,推动关键技术、核心装备和重大产品创新,促进在相关领域的产业化应用,搭建产、学、研、用技术对接与交流平台。Niton手持式矿石分析仪具有操作简单、分析迅速、报告精准、无损检测、携带方便等优势,在地质勘查、矿山价值挖掘、岩芯检测、矿石品位控制中发挥的重要作用。Niton手持式矿石分析仪可以现场完成从磷到铀的元素分析,被广泛应用于野外找矿、开采、地质勘探、精矿及尾矿的分选等方面,同时也应用于研究院的研究工作,仅仅几十秒钟就可以得出仪器检测元素范围内所有元素的PPM或%为单位的元素含量,大大节约了分析时间和勘探成本,从而有效提高生产力和利润。面对新一轮科技革命和产业变革机遇,我们要加快推动矿业理论、制度、技术和装备创新,为矿业发展注入新动能;面对矿业发展呈现出新趋势、新特点,我们更要依靠创新驱动发展,积极探寻矿业振兴的新途径、新模式,创新矿业发展道路。朗铎科技愿意与国内各大矿山企业一道攻坚克难、面对考验,用国际上最尖端的设备助力我国矿产行业的发展,与国内矿业的精英们共同迎接我国矿产行业崭新的明天。
  • 环境监测仪器展,隆力德展出加拿大AVVOR重金属检测仪
    第三届中国国际环境监测仪器展览会 主办方:中国环境保护产业协会和中国环境监测总站 展会时间:2010年11月24-26日 展会举办地点:北京市朝阳区北三环东路6号 中国国际展览中心 1号馆一层B馆 隆力德展位号:B073-B074和B095-B097 展出面识:54平方米 11月24-26日环境监测仪器展会,厦门隆力德环境技术开发有限公司将着重展出两部分产品,一是加拿大AVVOR重金属检测仪,二是德国WTW水质监测仪器。 加拿大AVVOR是一家致力于环保水质分析仪器的生产商。产品技术先进,品质卓越,广泛应用于环保领域的各个行业,并且获得良好声誉和广泛认可。AVVOR 8000和AVVOR 9000重金属检测仪在中国很多领域有着出色的应用,可测参数有:铜(Cu),铅(Pb),锌(Zn),镉(Cd),锰(Mn),锑(Sb),铊(Tl),铁(Fe),镍(Ni),砷(As),汞(Hg),硒(Se),钴(Co),钼(Mo),金(Au),银(Ag),铬(Cr),六价铬,锡(Sn),钯(Pd),铀(U)。 德国WTW 是世界上著名的水质分析仪器制造商,产品技术处于世界领先水平,广泛应用于科研、质量控制、水质分析、污水治理等行业。此次展会,我司将展出德国WTW最新款多参数水质分析仪Multi 3430,实验室多参数水质检测仪,紫外光光光度计,BOD分析仪,总磷分析仪,IQ Sensor Net在线多参数监测系统等等。 隆力德致力于环境科技领域的开拓创新,现仪器销售、维修服务、技术支持、系统集成、运营维护为我司主营业务,我司可向用户: 1、长期提供世界著名品牌的各种环保设备; 2、提供仪器设备安装调试、维护保养等售前售后技术支持; 3、软件及环境信息系统、环境监测自动站系统集成; 4、承接各地水质自动监测系统、污染源监测系统的建设和运营服务; 5、对高校、科研机构、污水处理厂等提供各种水质监测解决方案。 展会现场照片:
  • 申贝发布手持式土壤重金属元素快速检测仪新品
    手持式土壤重金属元素快速检测仪EDX P3600S可以对快速土壤中重金属进行现场分析。用于对各种不同类型的环境进行现场分析,做出快速而全面的污染类型研究。主要应用包括对“原地土”进行检测以便快速进行环境调查和应用于水土保持工程。EDX P3600S采用人机工程学设计,轻便小巧,可提供现场对样品的快速无损分析,采用高清高亮大尺寸电容触控显示屏,操作方便,野外和复杂作业环境适应性强;功能高度集成,仅1台仪器便可满足土壤检测、选矿分析、环保等领域应用;手持式土壤重金属元素快速检测仪内置GPS、WIFI、蓝牙等功能,可记录检测区位地理信息,可联机进行数据传输,具有独创的远程协助技术支持功能技术参数EDX P3600S分析元素范围:从钠(Na)到铀(U)土壤重金属快速检测仪EDX P3600S土壤模式可同时测试Pb、As、Cr、Cu、Ni、Zn、Mn、Hg、Cd等重金属元素,检出限可达mg/Kg级别(以SiO2基体:Pb准直和滤光系统: 6种滤光片同准直器达可达18种组合自动切换;软件分析模式:土壤分析模式可自动存储测试结果,包含元素的种类、含量结果、及超标与否。储存数据及图谱超过10000组,可通过存储卡扩充容量,测试报告有EXCEL、BMP、PDF等格式,并可导出;数据传输与处理:仪器可通过USB、WIFI、蓝牙联机传输数据或打印,同时可实现仪器与电脑屏幕同步使用等;开机密码保护,设置操作员和管理员两级操作权限,且仪器前部设置有样品感应装置,具空测时自动切断X射线源功能,确保使用人员的安全;防辐射安全性:微型X光管整体化封装,仪器工作时X射线辐射剂量1μSV/h(提供CNAS认证第三方检测报告),可配置铅橡胶保护罩确保松散样品和小样品测试时的安全;分析数据自动统计功能:对多次测试可自动统计***值、***小值,及标准偏差等;现场打印:可以在野外作业现场通过蓝牙打印机打印报告,报告含有至少以下几类信息:检测时间、地块类型(农用地、建设用地)、GPS地理信息、限定值、检测结果、检测结果判定、谱图;测试时间控制方式:具备扳机控制和软件控制模式操作仪器,也可实现USB与电脑连接操作等多种方式;电池:可充电锂电池,容量6700mAh,充满电正常测试可使用6小时以上,仪器有电量显示功能;内置GPS功能,可实时采集和记录测试区位的地理信息;校准:随机配有标准校准片,进行能量校准后测试;软件功能,可实现谱图的比对放大缩小及导出功能,对各元素的特征能量总和进行独立计算,同时可依据客户要求设定固定测试报告模板,直接输出标准格式的测试报告,传输到打印机可实现现场数据的及时打印;仪器质量1.5Kg(含电池);工作环境适应性:湿度-20℃~+50℃, 相对湿度<90%;应用领域标样配置土壤重金属快速检测仪根据客户测量样品配备一款标样。(合金标样、RoHS标样、土壤标样等)标准附件AC220V充电器一个、EDX-P3600S能量色散X荧光光谱仪一台创新点:1.探测器头部具有固定的保护装置,在仪器开机前和测样过程中(仪器和被检测对象接触,开始测试样品的过程中),都能防止尖锐物损害探测器. 2.探测器:进口fast-SDD硅漂移探测器,能量分辨率≤ 125eV,探测器窗口面积25mm2,探测器使用电致冷技术,无需长时间及频繁等待制冷. 3.可以在野外作业现场通过蓝牙打印机打印报告,报告含有至少以下几类信息:检测时间、地块类型(农用地、建设用地)、GPS地理信息、限定值、检测结果、检测结果判定、谱图; 手持式土壤重金属元素快速检测仪
  • 从重金属到有机物,天瑞仪器推出“土十条”应对方案
    p   在“气十条”和“水十条”相继出台后,经过三年的等待,“土十条”终于落地,近年来,由于我国经济发展方式总体粗放,产业结构和布局仍不尽合理,污染物排放总量较高,土壤作为大部分污染物的最终受体,其环境质量受到显著影响。当前,我国土壤环境总体状况堪忧,部分地区污染较为严重,通知提出,到2020年,全国土壤污染加重趋势得到初步遏制,土壤环境质量总体保持稳定,农用地和建设用地土壤环境安全得到基本保障,土壤环境风险得到基本管控。到2030年,全国土壤环境质量稳中向好,农用地和建设用地土壤环境安全得到有效保障,土壤环境风险得到全面管控。 /p p   面对“土十条”天瑞仪器人觉得这是一个机遇,也是一个挑战,同时也是一个重担。天瑞仪器作为一家专业从事光谱、色谱、质谱等分析测试仪器及其软件的研发、生产和销售的公司,有着多年的土壤有害成分测试经验,如EXPLORER 9000等仪器已被广泛用于土壤有害元素检测,同时有多款优秀仪器可适用于土壤测试。“土十条”的发行大大提高了对现有仪器的需求量,同时也为新仪器的研发提供了动力。天瑞仪器已经做好了准备,全身心的投入到仪器研发及制造中,解决科学技术问题,提高科技保障能力,为“土十条”顺利实施保驾护航。 /p p   针对“土十条”实施细则,即检测、控制、修复,天瑞结合自身的光谱、色谱、质谱仪器设备, 根据现行有效的土壤检测标准,制定了完善的检测应对方案。 /p p   strong  应用分析 /strong /p p   一、开展土壤污染调查,掌握土壤环境质量状况:深入开展土壤环境质量调查,建设土壤环境质量监测网络,2017年底前,完成土壤环境质量国控监测点位设置,建成国家土壤环境质量监测网络,充分发挥行业监测网作用,基本形成土壤环境监测能力。2020年底前,实现土壤环境质量监测点位所有县(市、区)全覆盖。 /p p   天瑞仪器是国内领先的环境监测上市公司之一,具有多种手段和多款仪器可对环境土壤的污染情况进行调查,包括光谱,质谱仪器等。 /p p   二、推进土壤污染防治立法,建立健全法规标准体系:重点监测土壤中镉、汞、砷、铅、铬等重金属和多环芳烃、石油烃等有机污染物,重点监管有色金属矿采选、有色金属冶炼、石油开采、石油加工、化工、焦化、电镀、制革等行业,以及产粮(油)大县、地级以上城市建成区等区域。 /p p   土壤中镉、汞、砷、铅、铬等重金属污染危害非常严重。天瑞仪器针对土壤中重金属检测已经进行了多年的研究。为满足土壤测试需求,针对HJ 780-2015 《土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法》标准研发的最新仪器WDX4000仪器已投入使用,该仪器弥补了国内大功率顺序式波长色散X射线荧光光谱仪的空缺。 /p p   三、实施农用地分类管理,保障农业生产环境安全:划定农用地土壤环境质量类别。2017年底前,发布农用地土壤环境质量类别划分技术指南。以土壤污染状况详查结果为依据,开展耕地土壤和农产品协同监测与评价,在试点基础上有序推进耕地土壤环境质量类别划定,逐步建立分类清单,2020年底前完成。 /p p   土地分类管理离不开土壤测试与监管。天瑞仪器不仅可以提供优越的检测仪器同时还可以制定多项土壤测试与监管的解决方案,提供技术支持以完成用地分类管理任务。 /p p   九、发挥政府主导作用,构建土壤环境治理体系:中央财政整合重金属污染防治专项资金等,设立土壤污染防治专项资金,用于土壤环境调查与监测评估、监督管理、治理与修复等工作。 /p p   天瑞仪器多年来和环保相关部门合作,已经累积了很多的土壤测试经验以及部分地域的土壤详情。针对第九条的的要求,天瑞仪器可以提供对应的解决方案满足土壤监管的各种需求。 /p p   针对“土十条”的要求,天瑞仪器已经做好了充分的准备,下面就几款能应用于土壤测试的优秀仪器进行简单介绍。 /p p    strong 重金属快速筛查解决方案 /strong /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201606/insimg/343b563b-0ec9-4d39-a989-99288fd91878.jpg" title=" EDX.jpg" / img style=" width: 211px height: 180px " src=" http://img1.17img.cn/17img/images/201606/insimg/578c6feb-2cc1-4894-92ed-3dac45f5eefb.jpg" title=" ER.jpg" border=" 0" height=" 180" hspace=" 0" vspace=" 0" width=" 211" / img src=" http://img1.17img.cn/17img/images/201606/insimg/645972b5-c370-4aee-ab8e-0902af9cc871.jpg" title=" 重金属.jpg" / /p p style=" text-align: center " 自左至右依次为:EDX 3200S PLUS、WDX4000、EXPLORER 9000 手持式土壤重金属分析仪 /p p style=" text-align: center " 重金属快速筛查汇总表 /p table border=" 1" cellpadding=" 0" cellspacing=" 0" width=" 100%" tbody tr td width=" 6%" p style=" text-align:center " & nbsp /p /td td width=" 36%" p style=" text-align:center " EDX 3200S PLUS /p /td td width=" 28%" p style=" text-align:center " EXPLORER & nbsp & nbsp 9000 /p /td td width=" 28%" p style=" text-align:center " WDX4000 /p /td /tr tr td width=" 6%" p style=" text-align:center " 分析方法 /p /td td colspan=" 2" width=" 64%" p style=" text-align:center " 能量色散X射线荧光分析方法 /p /td td width=" 28%" p style=" text-align:center " 波长色散X射线荧光分析方法 /p /td /tr tr td width=" 6%" p style=" text-align:center " 使用参考标准 /p /td td rowspan=" 1" colspan=" 2" —— br/ /td td rowspan=" 1" align=" null" valign=" null" width=" 185" HJ& nbsp 780-2015& nbsp 《土壤和沉积物 无机元素的测定 波长色散X射线荧光光谱法》 /td /tr tr td width=" 6%" p style=" text-align:center " 测试范围 /p /td td width=" 36%" p style=" text-align:center " 原子序数为16~92【硫(S)到铀(U)】之间的元素均可测量 /p /td td width=" 28%" p style=" text-align:center " 原子序数为12~92【镁(Mg)到铀(U)】之间的元素均可测量 /p /td td width=" 28%" p style=" text-align:center " 原子序数为6~92【碳(C)到铀(U)】之间的元素均可测量 /p /td /tr tr td width=" 6%" p style=" text-align:center " 土壤中可测试成分 /p /td td width=" 36%" p style=" text-align:center " Pb、As、K、Ca、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Rb、Y、Ba、Sr、Br、Th、Zr等元素 /p /td td width=" 28%" p style=" text-align:center " 可对污染土壤中的汞、镉、铅、砷、铜、锌、镍、钴、钒、铬、锰等重金属元素进行有效检测 /p /td td width=" 28%" p style=" text-align:center " 该仪器可满足HJ& nbsp 780-2015& nbsp 中各项元素测试要求。 br/ /p /td /tr /tbody /table p    strong 重金属化学检测方案 /strong br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201606/insimg/317b2ed4-5a1b-4732-91ac-f027a9561766.jpg" title=" 未标题-1.jpg" / img src=" http://img1.17img.cn/17img/images/201606/insimg/92574e28-3ea7-4671-bde7-5407c73d924d.jpg" title=" 未标题-2.jpg" / img src=" http://img1.17img.cn/17img/images/201606/insimg/f11db1c4-d1ba-4030-9fb9-d8ce088300ee.jpg" title=" 33.jpg" / /p p style=" text-align: center " 从左至右依次为:AAS9000、AFS200T、ICP3000 /p p style=" text-align: center " 无机元素检测汇总表 /p table border=" 1" cellpadding=" 0" cellspacing=" 0" width=" 575" tbody tr td width=" 142" p style=" text-align:center " 仪器名称 /p /td td width=" 313" p style=" text-align:center " 检测标准 /p /td td width=" 120" p style=" text-align:center " 检测元素 /p /td /tr tr td width=" 142" p style=" text-align:left " AAS9000火焰石墨炉一体式原子吸收分光光度计 /p /td td width=" 313" p style=" text-align:left " 土壤和沉积物 铍的测定 石墨炉原子吸收分光光度法(HJ 737-2015) br/ 土壤 总铬的测定 火焰原子吸收分光光度法(HJ 491—2009 & nbsp & nbsp ) br/ 土壤质量 铅、镉的测定 KI-MIBK萃取火焰原子吸收分光光度法(GB/T 17140-1997) br/ 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法(GB/T17141-1997) br/ 土壤质量 镍的测定 火焰原子吸收分光光度法(GB/T17139-1997) br/ & nbsp 土壤质量 铜、锌的测定 火焰原子吸收分光光度法(GB/T17138-1997) br/ 土壤质量 总汞的测定 冷原子吸收分光光度法(GB/T17136-1997) /p /td td width=" 120" p style=" text-align:left " 铍、铬、铅、镉、镍、铜、锌、汞 /p /td /tr tr td width=" 142" p AFS200T双道原子荧光光谱仪 /p /td td width=" 313" p style=" text-align:left " 土壤和沉积物 汞、砷、硒、铋、锑的测定 & nbsp & nbsp 微波消解/原子荧光法(HJ 680-2013) /p /td td width=" 120" p style=" text-align:left " 汞、砷、硒、铋、锑 /p /td /tr tr td width=" 142" p ICP3000电感耦合等离子体发射光谱仪 /p /td td width=" 313" p style=" text-align:left " 展览会用地土壤环境质量评价标准/(HJ 350—2007 附录A /p /td td width=" 120" p style=" text-align:left " 锑、砷、铍、镉、铬、铜、铅、镍、硒、银、铊、锌 /p /td /tr /tbody /table p    strong 有机污染物检测方案 /strong br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201606/insimg/0748547e-5b0b-4b89-be53-cae12feef5a8.jpg" title=" 1.jpg" style=" width: 247px height: 180px " border=" 0" height=" 180" hspace=" 0" vspace=" 0" width=" 247" / img src=" http://img1.17img.cn/17img/images/201606/insimg/2978c779-89be-4ebf-a6ac-25704add0bc5.jpg" title=" 2.png" / img src=" http://img1.17img.cn/17img/images/201606/insimg/a58bf91b-d148-427b-8a88-db4a92eca468.jpg" title=" 3.jpg" style=" width: 389px height: 180px " border=" 0" height=" 180" hspace=" 0" vspace=" 0" width=" 389" / /p p style=" text-align: center " 从左至右依次为:气相色谱仪、LC-310、GC-MS6800 /p p style=" text-align: center " 有机污染物检测汇总表 /p table style=" width: 646px " border=" 1" cellpadding=" 0" cellspacing=" 0" width=" 548" tbody tr td nowrap=" nowrap" width=" 85" p 仪器名称 /p /td td valign=" top" width=" 158" p 检测标准 /p /td td nowrap=" nowrap" width=" 113" p 仪器配置 /p /td td nowrap=" nowrap" width=" 191" p 检测项目 /p /td /tr tr td rowspan=" 5" nowrap=" nowrap" width=" 85" p GCMS6800气相色谱质谱联用仪 /p /td td valign=" top" width=" 158" p HJ 743-2015土壤和沉积物 & nbsp & nbsp 多氯联苯的测定 气相色谱-质谱法 /p /td td nowrap=" nowrap" valign=" top" width=" 113" p GCMS /p /td td nowrap=" nowrap" width=" 191" p 多氯联苯 /p /td /tr tr td valign=" top" width=" 158" p HJ 736-2015土壤和沉积物 挥发性卤代烃的测定 顶空/气相色谱-质谱法 /p /td td nowrap=" nowrap" valign=" top" width=" 113" p GCMS+顶空 /p /td td nowrap=" nowrap" width=" 191" p 挥发性卤代烃 /p /td /tr tr td valign=" top" width=" 158" p HJ 735-2015土壤和沉积物 挥发性卤代烃的测定 吹扫捕集/气相色谱-质谱法 /p /td td nowrap=" nowrap" valign=" top" width=" 113" p GCMS+吹扫 /p /td td nowrap=" nowrap" width=" 191" p 挥发性卤代烃 /p /td /tr tr td width=" 158" p HJ 642-2013土壤和沉积物 & nbsp & nbsp 挥发性有机物的测定 顶空/气相色谱-质谱法 /p /td td nowrap=" nowrap" valign=" top" width=" 113" p GCMS+顶空 /p /td td nowrap=" nowrap" width=" 191" p 挥发性有机物 /p /td /tr tr td style=" word-break: break-all " valign=" top" width=" 158" p HJ 605-2013土壤和沉积物 & nbsp & nbsp 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法 /p /td td nowrap=" nowrap" valign=" top" width=" 113" p GCMS+吹扫 /p /td td nowrap=" nowrap" width=" 191" p 挥发性有机物 /p /td /tr tr td nowrap=" nowrap" width=" 85" p LC310液相色谱 /p /td td valign=" top" width=" 158" p HJ 784-2016土壤和沉积物 & nbsp & nbsp 多环芳烃的测定 高效液相色谱法 /p /td td nowrap=" nowrap" width=" 113" p LC+紫外 /p /td td nowrap=" nowrap" width=" 191" p 多环芳烃 /p /td /tr tr td rowspan=" 4" nowrap=" nowrap" width=" 85" p GC5400 气相色谱 /p /td td valign=" top" width=" 158" p style=" text-align:center " HJ 742-2015土壤和沉积物 挥发性芳香烃的测定 顶空/气相色谱法 /p /td td nowrap=" nowrap" valign=" top" width=" 113" p style=" text-align:center " GC+FID +顶空 /p /td td nowrap=" nowrap" width=" 191" p 多环芳烃 /p /td /tr tr td valign=" top" width=" 158" p style=" text-align:center " HJ 741-2015土壤和沉积物 挥发性有机物的测定 顶空/气相色谱法 /p /td td nowrap=" nowrap" valign=" top" width=" 113" p style=" text-align:center " GC+FID +顶空 /p /td td nowrap=" nowrap" width=" 191" p 挥发性有机物 /p /td /tr tr td valign=" top" width=" 158" p style=" text-align:center " HJ679-2013土壤和沉积物 丙烯醛、丙烯腈、乙腈的测定 顶空/气相色谱法 /p /td td nowrap=" nowrap" valign=" top" width=" 113" p style=" text-align:center " GC+FID +顶空 /p /td td nowrap=" nowrap" width=" 191" p 丙烯醛、丙烯腈、乙腈 /p /td /tr tr td valign=" top" width=" 158" p style=" text-align:center " HJ 703-2014土壤和沉积物 酚类化合物的测定气相色谱法 /p /td td nowrap=" nowrap" valign=" top" width=" 113" p style=" text-align:center " GC+FID /p /td td nowrap=" nowrap" width=" 191" p 酚类化合物 /p /td /tr /tbody /table p br/ /p
  • 701项有色金属、化工石化等行业标准将制修订
    工信部下达2010年第二批行业标准制修订计划(以下简称计划)。计划共701项,其中制定405项,修订296项 产品类标准700项,节能与综合利用标准1项 涉及通信、电子、机械、轻工等4个行业,其中通信行业标准项目111项、电子行业标准项目173项、机械行业标准项目21项、轻工行业标准项目396项。   计划是根据工信部《2010年标准化工作要点》和行业标准制修订工作的总体安排,继下达2010年第一批2620项行业标准制修订计划后,编制完成的第二批行业标准制修订计划,提出了标准项目的编制原则、重点和具体要求。   计划按照产业发展需求、市场需要、协调配套的三大原则,优先编制有利于实施产业政策,推动行业技术进步,引导产业结构调整和优化,规范市场经济秩序的标准项目 突出做好高新技术推广应用和科研成果产业化,推动产业升级、自主创新、促进新型工业化的标准项目 产业发展规划中确定的重点领域、重点产品、重大装备及先进设计、工艺等方面的标准项目 经复审急需修订的标准项目。   计划要求:标准起草单位要注意做好标准制定与技术创新、试验验证、知识产权处置、产业化推进、应用推广的统筹协调 标准化技术归口单位、技术组织等要做好意见征求和技术审查等工作,把好技术审查关。 附件:2010年第二批行业标准制修订计划中部分行业标准,详细请参见“2010年第二批行业标准制修订计划.doc” 序号 申报号 项目名称 性质 制修订 代替标准 完成年限 申报司局 技术委员会或技术归口单位 主要起草单位 备注 9 YSFFZT3933-2010 冰晶石-元素分析 波长色散X射线荧光光谱法 压片法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 多氟多化工股份有限公司 10 YSFFZT3934-2010 采用ICP-MS分析精制三氯氢硅中杂质含量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料研究所 11 YSFFZT3935-2010 采用高质量分辨率辉光放电质谱仪测定高纯铋中杂质含量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料研究所 23 YSJCZT3947-2010 电子薄膜用高纯金属溅射靶材的纯度等级及杂质含量分析 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 有研亿金新材料股份有限公司 30 YSFFZT3955-2010 氟化铝-元素分析 波长色散X射线荧光光谱法 压片法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 多氟多化工股份有限公司 33 YSFFZT3958-2010 高纯铋化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 34 YSFFZT3959-2010 高纯铋化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 36 YSFFZT3961-2010 高纯铼化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 37 YSFFZT3962-2010 高纯铝化学分析方法 钴、钼、镉、铟、锡、锑、铂、砷量的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 38 YSFFZT3963-2010 高纯铝化学分析方法 辉光质谱法测定高纯铝中钾、锂、钠、钍、铀、镁、钙、铬、铁、镍、锌、硅、锡、磷等痕量杂质 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 39 YSFFZT3964-2010 高纯铌化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 40 YSFFZT3965-2010 高纯铌化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 41 YSFFXT3966-2010 高纯铅化学分析方法 砷量的测定 砷钼蓝吸光光度法 推荐 修订YS/T 229.2-1994 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料厂 42 YSFFXT3967-2010 高纯铅化学分析方法 锑量的测定 孔雀绿吸光光度法 推荐 修订 YS/T 229.3-1994 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料厂 43 YSFFZT3968-2010 高纯铅化学分析方法 锌、银、铜、铝、镁、镍、锡、铁、镉、锑、砷含量的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料厂 44 YSFFXT3969-2010 高纯铅化学分析方法 银、铜、铋、铝、镍、锡、镁、铁量的测定 化学光谱法 推荐 修订 YS/T 229.1-1994 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料厂 46YSFFZT3971-2010 高纯三氧化二镓化学分析方法 化学光谱法测定杂质含量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 峨嵋半导体材料研究所 47 YSFFZT3972-2010 高纯钛化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 48 YSFFZT3973-2010 高纯钛化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 49 YSFFZT3974-2010 高纯钽化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 50 YSFFZT3975-2010 高纯钽化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 51 YSFFZT3976-2010 高纯铜化学分析方法 痕量杂质元素的测定 辉光放电质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 52 YSFFZT3977-2010 高纯钨化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 53 YSFFZT3978-2010 高纯钨化学分析方法 痕量杂质元素的测定 辉光放电质谱 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 56 YSFFZT3981-2010 高纯铟化学分析方法 苯芴酮-溴代十六烷基三甲胺吸光光度法测定锡量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 57 YSFFZT3982-2010 高纯铟化学分析方法 电感耦合等离子体质谱法测定高纯铟中 Cu、Pb、Zn、Sn、Cd、Mg、Al、Ni、Ag 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 58 YSFFZT3983-2010 高纯铟化学分析方法 电感耦合等离子体质谱法测定高纯铟中 Cu、Pb、Zn、Sn、Cd、Mg、Al、Ni、Ag、Fe 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 59 YSFFZT3984-2010 高纯铟化学分析方法 硅钼蓝吸光光度法测定硅量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 60 YSFFZT3985-2010 高纯铟化学分析方法 罗丹明B吸光光度法测定铊量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 北京有色金属研究总院 64 YSFFZT3992-2010 硅粉中磷、硼杂质的测定方法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 四川新光硅业科技有限责任公司 69 YSFFZT3997-2010 红土镍矿化学分析方法 多成分的测定 波长色散X射线荧光光谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 宁波出入境检验检疫局 70 YSFFZT3998-2010 红土镍矿化学分析方法 分析试样中湿存水量的测定-重量法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 天津出入境检验检疫局 71 YSFFZT3999-2010 红土镍矿化学分析方法 氟硅酸钾滴定法测定二氧化硅量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 河南纳士科技股份有限公司 72 YSFFZT4000-2010 红土镍矿化学分析方法 钼蓝分光光度法测定磷量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 河南纳士科技股份有限公司 73 YSFFZT4001-2010 红土镍矿化学分析方法 重铬酸钾滴定法测定铁量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 河南纳士科技股份有限公司 74 YSFFZT4002-2010 红土镍矿化学分析方法 灼烧减量的测定 重量法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 常熟出入境检验检疫局 75 YSFFZT4003-2010 红土镍矿石化学分析方法 化合水含量的测定 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 鲅鱼圈出入境检验检疫局综合技术服务中心 76 YSFFZT4004-2010 红土镍矿石化学分析方法 镍含量的测定 丁二酮肟光度法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 鲅鱼圈出入境检验检疫局综合技术服务中心 88 YSFFZT4016-2010 铝中间合金化学分析方法 第12部分 铜含量的测定 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中国铝业股份有限公司郑州研究院 89 YSFFZT4017-2010 铝中间合金化学分析方法 第13部分 钒含量的测定 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中国铝业股份有限公司郑州研究院 90 YSFFZT4018-2010 铝中间合金化学分析方法 第14部分 锶含量的测定 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中国铝业股份有限公司郑州研究院 91 YSCPZT4019-2010 慢走丝放电加工用黄铜线 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 宁波博威集团有限公司 92 YSFFZT4020-2010 铌钛合金化学分析方法 电感耦合等离子体发射光谱法测定铝、镍、硅、铁、铬、铜、钽量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 93 YSFFZT4021-2010 铌钛合金化学分析方法 惰气熔融红外/热导法同时测定氧、氮含量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 94 YSFFZT4022-2010 铌钛合金化学分析方法 惰性气氛熔融热导法测定氢量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 95 YSFFZT4023-2010 铌钛合金化学分析方法 高频燃烧红外吸收法测定碳量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 96 YSFFZT4024-2010 铌钛合金化学分析方法 硫酸铁铵滴定法测定钛量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 西部金属材料股份有限公司 97 YSFFZT4025-2010 镍、钴、锰三元素氢氧化物化学分析方法 氯离子量的测定 氯化银目视比浊法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 98 YSFFZT4026-2010 镍、钴、锰三元素氢氧化物化学分析方法 镍量的测定 丁二酮肟重量 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 99 YSFFZT4027-2010 镍、钴、锰三元素氢氧化物化学分析方法 铅量的测定 电感耦合等离子体质谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 101 YSFFZT4029-2010 镍钴锰三元素氢氧化物化学分析方法 硫酸根离子量的测定 电感耦合等离子体发射光谱法和硫酸钡重量法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 102 YSFFZT4030-2010 镍钴锰三元素氢氧化物化学分析方法 镍、钴、锰量的测定 电感耦合等离子体原子发射光谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 103 YSFFZT4031-2010 镍钴锰三元素氢氧化物化学分析方法 铁、钙、镁、铜、锌、硅、铝、钠量的测定 电感耦合等离子体发射光谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 金川集团有限公司 104 YSFFZT4062-2010 镍钴锰酸锂化学分析方法 第1部分:镍钴锰总量的测定-EDTA滴定法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中信国安盟固利电源技术有限公司 105 YSFFZT4063-2010 镍钴锰酸锂化学分析方法 第2部分:锂、镍、钴、锰、钠、镁、铝、钾、铜、钙和铁量的测定 电感耦合等离子体原子发射光谱法 推荐 制定 2011 原材料工业司 全国有色金属标准化技术委员会 中信国安盟固利电源技术有限公司
  • 周大生、中国黄金等贵金属纯度不足 是否足金问XRF
    p style=" margin: 0px 0px 10px padding: 0px text-align: left background: rgb(255, 255, 255) text-indent: 2em line-height: 1.5em " 黄金作为硬通货,不仅可以作为金融市场的投资理财产品,同时在首饰、工业制造中有着广泛的应用,我国是全球黄金大国,黄金产量连续十二年领跑全球。近一年的金价走势非常喜人,可真实的黄金却让人生忧。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 316px height: 245px " src=" https://img1.17img.cn/17img/images/201908/uepic/1de7f49f-3fc6-4d7c-8fd8-7033ca0e8a0c.jpg" title=" 微信截图_20190814115619.png" alt=" 微信截图_20190814115619.png" width=" 316" height=" 245" / /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 近日,甘肃省市场监督管理局发布《甘肃省市场监督管理局关于甘肃省2019年第2批工业产品质量省级监督抽查结果通报》,抽查了45家经销企业的50 批& nbsp 次贵金属首饰及制品。 /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 结果表明,抽查样品中合格27批次,14批次产品名称或标识不规范,不合格9批次,产品质量抽查合格率82%。不合格9批次产品中,主要是质量偏差、贵金属纯度项目不符合标准要求。 strong 值得注意的是,周大生、中国黄金、中国珠宝、中国金店等知名品牌上榜。 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/8d9f9a5d-86f4-4957-9844-b59b15dedce3.jpg" title=" 图片1.png" alt=" 图片1.png" / /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 甘肃省市场监督管理局按照《2019年甘肃省贵金属首饰及制品产品质量监督抽查实施细则》(第二批工业产品)及相关产品标准要求,主要对产品名称、质量偏差、贵金属纯度、颜色、透明度、光泽、放大检查、折射率、双折射率、光性特征、多色性、荧光观察、密度、红外光谱分析、紫外光谱分析、摩氏硬度、标识等项目指标进行了检验。 strong 抽查结果显示,多个产品名称带“足金”二字的金饰并不“足金”。 /strong /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 科普时间:黄金的国家质量标准是什么 /span /strong /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 国家标准“GB11887-8P”规定:含金量不小于990‰为足金,含金量不小于999‰为千足金。同时对K金的纯度也作了规定,其中8K的含金量不小于333‰,18K的含金量不小于750‰,24K的含金量不小于999‰。 /span /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 目前市场上销售的黄金饰品,分为足金和K金饰品,根据国家标准GB11887中的规定,常见的几种黄金首饰含量为: br/   24K——目前国际黄金价格市场偶见标有24K黄金饰品,根据国家标准,24K金含量理论值应为百分之百,金无赤足,因此严格的讲,24K是不存在的,销售中标有24K金是不正确的,不符合国家标准。 br/   千足金——含量为99.9%,俗称三个9。 br/   足金——含量为99.0%,以上,俗称二个9。 br/   18K——含量为75.0%,K金的颜色有多种,通常有黄、红、白色之分。其中白色K金,实际上是黄金与镍、锌、铜等元素的合金。它不是通常所说的白金饰品。白金是指贵金属铂(Pt)。 /span /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(255, 0, 0) " strong 黄金检测仪器:能散型XRF是担当 /strong /span /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 怎么知道足不足金?看色泽?听声音?掂重量?还是把刚买的金项链放在火上烤一烤观察颜色变化?这些大概都是19世纪的做法了。专业的验金方法还是需要依据行业标准,利用科学的仪器和技术手段进行。 /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 百度百科中对对黄金检测仪的解释: strong 黄金检测仪是一种利用能量散射型X射线荧光分析技术(XRF)的智能化无损检测仪器,能准确的检测出黄金、铂金、钯金、K金、K白金等饰品中各种元素含量。 /strong /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " X射线荧光(XRF),顾名思义,利用了X射线和荧光技术,当原级X射线照射在待测样品上,产生的次级X射线叫X射线荧光,通过分析荧光的波长和能量对物质进行成分和化学形态的分析。XRF理论上可以测定元素周期表中所有的元素,但是在实际应用中,一般有效的元素测量范围为从铍(Be)到铀(U)的90余种元素。XRF详解见 a href=" https://www.instrument.com.cn/news/20190619/487247.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 《XRF知多少》 /span /a /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " strong 事实上,除了XRF外,黄金的检测用仪器其他仪器。 /strong 目前黄金检测标准多为推荐标准。在GB/T& nbsp 17363.2-2009& nbsp 黄金制品金含量无损测定方法中,规定使用的仪器为电子探针(或X射线荧光仪、二次离子质谱), GB/T& nbsp 17362-2008& nbsp 黄金制品的扫描电镜X射线能谱分析方法中规定的配置为扫描电镜上的X射线能谱仪(XPS),对黄金制品化学成分进行无损定量分析。此外,也有公司利用黄金密度属性测定黄金的含量,相关仪器有黄金纯度测试仪。 /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " span style=" color: rgb(255, 0, 0) " strong 黄金检测仪器一览 /strong /span /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " strong 能散型XRF /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/eff86828-4586-45c4-b8e4-324a40e544bb.jpg" title=" 微信截图_20190814171513.png" alt=" 微信截图_20190814171513.png" / /p p style=" margin: 0px 0px 10px padding: 0px background: rgb(255, 255, 255) line-height: 1.5em text-indent: 2em " strong 其他仪器 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/1ab8b034-756c-4ade-96b5-6f49894c83e5.jpg" title=" 啊啊啊.png" alt=" 啊啊啊.png" / /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " 金融市场上,黄金是传说中的“保值神器”,现实生活中,则是我国广大群众尤其是“中国大妈”们喜爱的饰品和收藏品,今曝出中国黄金市场的不合格,值得黄金制品生产企业对质量控制的认真考量。 span style=" text-indent: 2em " & nbsp /span /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 附:部分黄金检测相关标准 /span /p p style=" text-indent: 2em margin-bottom: 10px line-height: 1.5em " span style=" font-family: 楷体, 楷体_GB2312, SimKai " GB/T& nbsp 9288& nbsp 金合金首饰& nbsp 金含量的测定& nbsp 灰吹法 br/   GB/T& nbsp 34167-2017& nbsp 黄金矿业术语 br/   GB/T& nbsp 25933-2010& nbsp 高纯金 br/   GB/T& nbsp 17363.2-2009& nbsp 黄金制品金含量无损测定方法& nbsp 第2部分:综合测定方法 br/   GB/T& nbsp 17363.1-2009& nbsp 黄金制品金含量无损测定方法& nbsp 第1部分:电子探针微分析法 br/   GB/T& nbsp 17362-2008& nbsp 黄金制品的扫描电镜X射线能谱分析方法 br/   GB/T& nbsp 17723-1999& nbsp 黄金制品镀层成分的X射线能谱测量方法 br/   GB/T& nbsp 17362-1998& nbsp 黄金饰品的扫描电镜X射线& nbsp 能谱分析方法 br/   GB/T& nbsp 17364-1998& nbsp 黄金制品中金含量的无损定量分析方法 /span /p
  • 光学浮区法单晶生长技术在氧化物和金属间化合物材料领域应用进展
    化学性质活泼、高熔点、高压、高质量单晶生长法宝! 新一代高性能激光浮区法单晶炉-LFZ助您实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。高精度光学浮区法单晶炉-IRF助您实现高温超导体、介电材料、磁性材料、热电材料、金属间化合物、半导体、激光晶体等材料的生长工作。高温高压光学浮区炉助您实现各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等材料的生长。四电弧高温单晶生长炉助您实现化学性质活跃但熔点高的金属间化合物,包括含有稀土元素(或者金属铀)的二元及四元金属间化合物、合金单晶等材料的生长。高质量单晶生长设备——单晶炉系列1. 高精度光学浮区法单晶炉在休斯勒型镍-锰基合金磁致冷材料领域的应用 休斯勒(Heusler)型的镍-锰基材料自从发现其巨磁热效应以来,在过去的几十年中已成为被广泛研究的热点新型磁致冷材料之一。研究发现,休斯勒型铁磁性材料镍-锰-锡在从高温至低温的变温过程中会发生高温相(铁磁奥氏体相)到低温相(顺磁马氏体相)的转变,且该转变受磁场调制。高对称性的奥氏体相经一结构相变成低对称性的马氏体相,会造成磁有序降低,磁熵增加,这一过程为吸热过程,亦即形成反磁热效应,这也是磁致冷的基本原理。而休斯勒型镍-锰-锡合金材料也因为其成本廉价、无毒、无污染、易于获取、磁热效应显著、相变温度可调等一系列的特点成为一种具应用潜力的室温磁致冷材料。 研究表明,休斯勒型镍-锰-锡合金的单晶材料具有更大的磁效应导致的应变或磁热效应,且具有强烈的各向异性特点,因此研究者希望其单晶或单向织构晶体具有更加优异的磁性能。目前,已有学者采用布里奇曼技术和Czochralski方法制备出了镍-锰-镓和镍-锰-铟材料的单晶材料,但镍-锰-锡合金由于在晶体生长过程中易形成氧化锰,因此其高质量的单晶样品制备具挑战性。上海大学的余金科等人克服了镍-锰-锡合金单晶生长中的氧化锰形成及挥发的难题,采用光学浮区技术成功合成了高质量的镍-锰-锡合金单晶样品。晶体生长过程及样品腔实物图片晶体实物及解理面图片 余金科等人所用的光学浮区法单晶炉为Quantum Design日本公司推出的新一代高精度光学浮区炉单晶炉,文献中报道的相关晶体生长工艺参数为:生长速度6 mm/小时;转速(正、反)15转/分钟,氩气压力7bar。 Quantum Design 日本公司推出的高温光学浮区法单晶炉,采用镀金双面镜、高反射曲面设计,高温度可达2100℃-2200℃,系统采用高效冷却节能设计(不需要额外冷却系统),稳定的电源输出保证了灯丝的恒定加热功率,这对于获得高质量单晶至关重要。浮区炉技术特色:■ 占地空间小,操作简单,易于上手,立支撑设计■ 镀金双面高效反射镜,加热效率更高■ 可实现高温度2150°C■ 稳定的电源■ 内置闭循环冷却系统,无需外部水冷装置■ 采用商业化标准卤素灯 参考信息来源:[1]. Optical Floating-Zone Crystal Growth of Heusler Ni-Mn-Sn Alloy. Yu, Jinke & Ren, Jian & Li, Hongwei & Zheng, Hongxing. (2015). TMS Annual Meeting. 2015. 49-54.[2]. Ni-Mn-Sn(Co)磁制冷薄带材料结构相变及磁性能表征,王戊 硕士论文,上海大学 2. 高精度光学浮区法单晶炉在磁电领域取得重要进展在人类漫长的历史发展长河中,“材料学”贯穿了其整个历程。从人类活动早期开始使用木制工具,到随后的石器、金石并用(此时的金属主要指铜器)、青铜、铁器等各个时代,再到后来的蒸汽、电气、原子、信息时代,每个发展阶段无不伴随着人类对材料的认识和利用。在诸多材料中,铁是人类早认识和使用到的材料之一,早在西周以前我国就已开始将铁用于生产生活中[1];人们在长期的实践中也逐渐认识到相关材料的磁性并将其运用于实践中,司南就是具代表性的发明。这些在不少历史典籍中都有记载,比如:《鬼谷子谋篇十》记载:“故郑人取玉也,载司南之车,为其不惑也。夫度材量能揣情者,亦事之司南也”;《梦溪笔谈》提到:“方家以磁石磨针缝,则能指南”;《论衡》书曰:“司南之杓,投之于地,其柢指南”等等[2]。由此可见,人们对磁性材料的兴趣也算由来已久。 当时代来到21世纪,化学、物理、生物、医学、计算机等各个领域的技术都有了前所未有的突破,先进的生产力也将人类的文明推进智能工业化、信息化时代,随之而来的是人们对材料的更高要求。在诸多材料当中,多铁材料兼具铁磁、铁电特性,二者之间有着特的磁电耦合特性;与此同时,磁场作用下的电化和电场作用下的磁化等性质为未来功能材料探索和发展提供了更为宽广的选择和可能,在存储、传感器、自旋电子、微波器件、器件小型化等领域拥有巨大的潜在价值。2007年的《科学》杂志对未来的热点发展问题进行了报道,其中,多铁材料作为的物理类问题入选[3]。因此,研究并深刻理解磁电耦合和多铁材料背后的机理,有着非常重要的理论价值和实践意义。 近期,哈尔滨工业大学的W.Q.Liu等人对磁电材料Mn4Nb2O9单晶样品进行了深入的研究。研究表明:零磁场测试介电常数时,没有发现介电常数的反常,此时Mn4Nb2O9基态表现为顺电特性;而在磁场条件下,介电常数在Neel温度处发生突变的峰,且随着磁场的增加介电峰也增强,且峰位向低温端偏移,这意味着磁场有抑制反铁磁转变的趋势;高场(H≥4T)下的介电常数-温度依赖关系也跟H2正比关系,由此也表明Mn4Nb2O9是线性磁电材料。更多研究结果可参考文献[4]。以上图片引自文献[4].在该项研究工作中,作者合成Mn4Nb2O9单晶样品所用设备为Quantum Design Japan公司的高精度光学浮区法单晶炉,文章中所用单晶生长参数为:Ar气氛流速4 L/min,生长速度6 mm/h,转速25 rpm。参考信息来源:[1]. https://baijiahao.baidu.com/s?id=1713600818043231130&wfr=spider&for=pc[2]. https://baike.baidu.com/item/%E5%8F%B8%E5%8D%97/3671419?fr=aladdin[3]. https://www.science.org/doi/10.1126/science.318.5858.1848[4]. Wenqiang Liu, Long Li, Lei Tao, Ziyi Liu, Xianjie Wang, Yu Sui, Yang Wang, Evidence of linear magnetoelectric effect in Mn4Nb2O9 single crystal, Journal of Alloys and Compounds,Volume 886,2021,161272,ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2021.161272.3. 高温高压光学浮区法单晶炉在外尔半金属材料领域应用案例 1929年,德国科学家外尔(Weyl)解出了无质量粒子的狄拉克方程,相应的无质量粒子被称为外尔费米子。然而直到2015年科研人员才在实验中观察到外尔费米子,被中国科学院物理研究所的研究人员报道,距离外尔费米子概念的提出,足足过去了近90年。2018年科研人员通过性原理计算预言RAlGe(R=Pr,Ce)体系有望成为新的磁性外尔半金属。目前人们对RAlGe(R=Pr,Ce)材料的物理性质研究还比较少,更进一步深入的实验研究需要大尺寸的单晶样品去支持。 H. Hodovanets等人曾用助熔剂方法生长CeAlGe单晶,但由于实验中需要用到SiO2容器,导致用该方法获取的单晶样品中会存在Si杂质,同时伴有CeAlSi相;另外,轻微的Al富集会导致形成不同的晶体结构。这些都大限制了拓扑外尔点的形成。因此,获取化学计量比的单晶样品对于研究材料的物理性质非常重要。Pascal Puphal等人近期的研究工作报道了其分别用助熔剂方法和高温高压浮区法两种晶体生长技术获得的RAlGe(R=Pr,Ce)单晶样品及研究成果。尽管作者为了避免Si的污染,采用了Al2O3坩埚,但终样品中Al的含量偏高问题依然存在,单晶样品表面成分:Ce1.0(2)Al1.3(5)Ge0.7(3)/ Pr1.0(1)Al1.2(2)Ge0.8(2),剥离面成分为:Ce1.0(1)Al1.12(1)Ge0.88(1)/Pr1.0(1)Al1.14(1)Ge0.86(1)。而采用浮区法则生长出了近乎理想化学计量比(1:1:1)的单晶样品,成分分别为:Ce1.02(7)Al1.01(16)Ge0.97(9)和Pr1.08(24)Al0.97(7)Ge0.95(17)。 浮区法得到的晶体的劳厄图片 Pascal Puphal等人所采用的浮区法单晶炉为德国ScIDre公司的HKZ高温高压光学浮区炉,文献中提到的相关实验参数为:5 KW功率的氙灯,晶体生长速度为1 mm/小时,CeAlGe采用30 bar的Ar保护气氛,PrAlGe采用5 bar的Ar保护气氛。德国ScIDre公司推出的高温高压光学浮区法单晶炉高能够提供3000℃的生长温度,晶体生长腔大压力可达300 bar,甚至10-5 mbar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。ScIDre单晶炉技术特色:► 采用垂直式光路设计► 采用高照度短弧氙灯,多种功率规格可选► 熔区温度:高达3000℃► 熔区压力:10bar/50bar/100bar/150bar/300bar等多种规格可选► 氧气/氩气/氮气/空气/混合气等多种气路可选► 采用光栅控制技术,加热功率从0-100% 连续可调► 样品腔可实现低10-5 mbar真空环境► 丰富的可升选件 参考信息来源:[1]. http://www.iop.cas.cn/xwzx/kydt/201507/t20150720_4395729.html[2]. Single-crystal investigation of the proposed type-II Weyl semimetal CeAlGe, H. Hodovanets, C. J. Eckberg, P. Y. Zavalij, H. Kim, W.-C. Lin, M. Zic, D. J. Campbell, J. S. Higgins, and J. PaglionePhys.Rev. B 98, 245132 (2018).[3]. Bulk single-crystal growth of the theoretically predicted magnetic Weyl semimetals RAlGe (R = Pr, Ce), Pascal Puphal, Charles Mielke, Neeraj Kumar, Y. Soh, Tian Shang, Marisa Medarde,Jonathan S. White, and Ekaterina Pomjakushina, Phys. Rev. Materials 3, 0242044. 高温高压光学浮区法单晶炉在准一维伊辛自旋链材料领域应用进展 低维磁性材料具有非常丰富和奇特的物理性质,且与多铁性和高温超导电性等材料密切相关。对低维磁性材料的物理性质进行研究有助于探索相关奇异现象的根本机制,从而对寻求新的功能材料提供帮助。因此,近年来关于低维磁性材料的研究吸引了科学家们的广泛关注。近日,德国马普固体化学物理研究所的学者A. C. Komarek等人[1,2]在准一维伊辛自旋链材料CoGeO3中发现了非常明显的1/3磁化平台,并通过中子衍射手段详细探究了其微观自旋结构。研究表明,初的零场反铁磁自旋结构的变化,类似于反铁磁“畴壁边界”的形成,从而产生一种具有1/3整数传播矢量的调制磁结构。净磁矩出现在这些“畴壁”上,而所有反铁磁链排列的三分之二仍然可以保留。同时A. C. Komarek等人也提出了一个基于各向异性受挫方形晶格的微观模型来解释其实验结果。更为详细的报道可参考文献相关文献[1,2]。A. C. Komarek等人所用的CoGeO3单晶样品由高压光学浮区法单晶炉(型号:HKZ, 制造商:德国ScIDre公司)制备获得[2],文章中报道的CoGeO3单晶生长参数为:Ar/O2混合气(比例98:2),压力80 bar,生长速度3.6 mm/hour。CoGeO3单晶实物图片 引自[2] 参考信息来源:[1]. Emergent 1/3 magnetization plateaus in pyroxeneCoGeO3, H. Guo, L. Zhao, M. Baenitz, X. Fabrèges, A. Gukasov, A. Melendez Sans, D. I. Khomskii, L. H. Tjeng, and A. C. Komarek, Phys. Rev. Research 3, L032037[2]. Single Crystal Growthand Physical Properties of Pyroxene CoGeO3,Zhao, L. Hu, Z. Guo, H. Geibel, C. Lin, H.-J. Chen, C.-T. Khomskii, D. Tjeng, L.H. Komarek, A.C. Crystals 2021, 11, 378.5. 高温高压光学浮区法单晶炉在锂离子电池领域新应用进展 锂离子电池由于具有能量密度高、寿命长、充电快、安全可靠、绿色环保等诸多优异性能,其与当今人民的日常生活已密不可分,在手机、电脑、电动车、电动汽车、航空航天等领域均有广泛的应用。 其中,Li2FeSiO4作为新一代锂离子电池阴材料,由于具有价格低廉、环境友好、安全性好等技术优势,因此在大型动力锂离子电池应用方面具有良好的前景。然而,Li2FeSiO4材料在不同温度具有不同的结构相(∼ 400 °C :Pmn21, , ∼ 700 °C :P121/n1, and ∼ 900 °C :Pmnb),研究其不同结构的电化学性质对于进一步对其进行改性研究尤为重要。 Waldemar Hergetta等人[1]采用高压光学浮区法获得了高温相(Pmnb)Li2FeSiO4单晶,并研究了晶体生长工艺参数对杂相的影响,相关结果已发表在Journal ofCrystal Growth。作者所采用的高压光学浮区炉为德国ScIDre公司的HKZ高压光学浮区法单晶炉,文章报道的晶体生长参数为:生长速度10 mm/h,保护气氛Ar(30 bar)。温度梯度分布 引自[1]XRD图谱及晶体实物图片 引自[1]参考信息来源: [1]Waldemar Hergett, Christoph Neef, Hans-Peter Meyer, Rüdiger Klingeler, Challenges in the crystal growth of Li2FeSiO4, Journal of Crystal Growth, Volume 556,2021,125995,ISSN 0022-0248, https://doi.org/10.1016/j.jcrysgro.2020.125995.
  • 2010年有色金属分析测试标准编制计划发布
    各会员单位及有关单位:   根据国家标准化管理委员会相关精神及工业和信息化部《关于开展2010年第一批原材料工业标准计划编制工作的通知》(原材料司函[2009] 210号)要求,以及标委会章程的规定,现决定编制2010年有色金属国家、行业标准项目计划。为有效做好以上工作,将有关事项通知如下:   一、项目编制重点   (一)行业发展急需的标准项目,特别是有色金属产业调整和振兴规划中所确定的产业发展重点   (二)与节能减排(减碳)相关的标准项目   (三)标龄超过10年,经复审需及时修订的标准项目。   二、报送项目计划的要求   (一)本次编制的项目为2010-2011年度需要安排的国家、行业标准计划项目。请各起草单位按照北京年会确定的项目填写相关表格。具体项目见附件一   (二)国家、行业标准项目都要求填写“国家、行业标准项目建议书”, 见附件二、附件三,“建议书”中的每个项次都要认真填写,尤其是立项的必要性、目的和理由、主要技术内容、国内外情况要重点论证,分析方法标准如有多个分方法,应按每个分标准分别填写“建议书”。同时要求字迹工整,纸质材料应加盖公章,纸张幅面一律为A4型纸 本次项目征集国家标准要求一同报送标准草案 请于2010年2月25日前将填好的项目建议书的书面文本(一式两份)寄至有色金属标委会秘书处,同时将项目建议书以及标准草案的电子版本发至有色金属标委会秘书处。   三、联系方式   全国有色金属标准化技术委员会秘书处   北京市海淀区苏州街31号8层 邮编:100080   全国有色金属标准化技术委员会轻金属分标委会秘书处:   联系人:葛立新 电话:010-62228793 Email:light-metal@263.net   全国有色金属标准化技术委员会重金属分标委会秘书处:   联系人:杨丽娟 电话:010-62228795 Email:yanglijuan889@163.com   全国有色金属标准化技术委员会稀有金属分标委会秘书处:   联系人:张江峰 电话:010-62574192 Email:zhjiangfeng@126.com   全国有色金属标准化技术委员会粉末冶金分标委会秘书处:   联系人:张宪铭 电话:010-62225125 Email:hnzjf@126.com   全国有色金属标准化技术委员会贵金属分标委会秘书处:   联系人:向 磊 电话:010-62623848 Email:xianglei2008@126.com   附件一:北京年会确定项目.xls(相关部分)   附件二:推荐性国家标准项目建议书.doc   附件三:行业标准项目建议书.doc   相关新闻:09年第二批有色金属标准制(修)订计划公布   附件一:确定制修订的有色金属标准(标红色字体为与分析测试直接相关的方法标准) 全国有色轻金属标准化分技术委员会年会确定的2010年项目(国家标准部分) 序号 标准项目名称 标准类别 制订或修订 完成年限 负责起草单位 代替标准 1 变形铝及铝合金制品显微组织检验方法 方法 修订 2011 东轻 GB/T 3246.1-2000 2 变形铝及铝合金制品低倍组织检验方法 方法 修订 2011 东轻 GB/T 3246. 2-2000 3 一般工业用铝及铝合金板、带材 第1部分:一般要求 产品 修订 2011 西南铝 GB/T 3880.1-2006 4 一般工业用铝及铝合金板、带材 第2部分:力学性能 产品 修订 2011 西南铝 GB/T 3880.2-2006 5 一般工业用铝及铝合金板、带材 第3部分:尺寸偏差 产品 修订 2011 西南铝 GB/T 3880.3-2006 6 铝合金预拉伸板 产品 制定 2011 待定   7 变形铝合金产品超声波检验方法 方法 修订 2011 东轻 GB/T 6519-2000 8铝及铝合金冷拉薄壁管材涡流探伤方法 方法 修订 2011 东轻 GB/T 5126-2001 9 铝板带箔清洁度试验方法 方法 制定 2011 瑞闽铝板带   10 铝合金建筑用隔热型材生产工艺技术规范 基础 制定 2011 泰诺风• 保泰   11 铝合金建筑型材挤压工艺技术规范 基础 制定 2011 待定   12 电解铝生产二氧化碳排放量测算方法 方法 制定 2011 待定   13 电解铝生产全氟化碳排放量测定方法 方法 制定 2011 待定   14 铝中间合金化学分析方法 第1部分 铁含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   15 铝中间合金化学分析方法 第2部分 锰含量的测定 方法 制定2011 国家轻金属质量监督检验中心   16 铝中间合金化学分析方法 第3部分 镍含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   17 铝中间合金化学分析方法 第4部分 铬含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   18 铝中间合金化学分析方法 第5部分 锆含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   19 铝中间合金化学分析方法 第6部分 硼含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   20 铝中间合金化学分析方法 第7部分 铍含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   21 铝中间合金化学分析方法 第8部分 锑含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   22 铝中间合金化学分析方法 第9部分 铋含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   23 铝中间合金化学分析方法 第10部分 钾含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   24 铝中间合金化学分析方法 第11部分 钠含量的测定 方法 制定 2011 国家轻金属质量监督检验中心   全国有色轻金属标准化分技术委员会年会确定的2010年项目(行业标准部分) 序号 标准项目名称 标准类别 制订或修订 完成年限 负责起草单位 代替标准 1 铝及铝合金电阻熔炼炉、保温炉技术条件 基础 修订 2011 常铝股份 YS/T 11-1991 2 铝及铝合金火焰熔炼炉、保温炉技术条件 基础 修订 2011 广东坚美 YS/T 12-1991 3 变形铝及铝合金圆铸锭 产品 修订 2011 贵铝 YS/T 67-2005 4 变形铝及铝合金扁铸锭 产品 修订 2011 东轻、南山 YS/T 590-2006 5 钎焊式热交换器用铝合金箔 产品 修订 2011 东轻、银邦、常铝 YS/T 496-2005 6 凿岩机用铝合金管材 产品 修订 2011 西北铝 YS/T 97-1997 7 铝锡-20铜-钢双金属板 产品 修订 2011 银邦 YS/T 289-1994 8 铝及铝合金挤压扁棒 产品 修订 2011 西南铝 YS/T 439-2001 9 交通运输装备用铝合金焊接丝材 产品 修订 2011 杭州银宇焊接材料科技有限公司、中南大学 YS/T 458-2003 10 双零铝箔用冷轧带材 产品 修订 2011 瑞闽铝板带、华北铝 YS/T 457-2003 11 钎接用铝合金板材 产品 修订 2011 东轻 YS/T 69-2005 12 冰晶石化学分析方法和物理性能测定方法 第3部分 蒸馏—硝酸钍容量法测定氟含量 方法 修订 2011 霍煤鸿骏铝电有限责任公司 YS/T 273.3-2006 13 氟化铝化学分析方法和物理性能检测方法 第3部分 蒸馏-硝酸钍容量法测定氟含量 方法 修订 2011 霍煤鸿骏铝电有限责任公司 YS/T 581.3-2006 14 铝熔体在线除气净化工艺规范 基础 制定 2011 福州麦特新高温材料有限公司   15 铝及铝合金晶粒细化剂 第二部分:铝-钛合金线材 产品 制定 2011 新星化工   16 铝及铝合金晶粒细化剂 第三部分:铝-钛-碳合金线材 产品 制定 2011 新星化工   17 空调风管用涂层铝箔 产品 制定 2011 瑞闽铝材彩涂有限公司   18 铝及铝合金连铸连轧线材 产品 制定 2011 杭州飞翔、新疆众和   19 丙烯酸漆喷涂型材 产品 制定 2011 兴发   20 帐篷用高强度铝合金管 产品 制定 2011 上虞市东轻特种铝材厂   21 铝用炭素材料热膨胀系数测定装置 产品 制定 2011 北京英斯派克科技有限公司   22 轨道交通用铝合金板材 产品 制定 2011 东轻   23 铝合金抛光膜层规范 产品 制定 2011 新合铝业、凤铝  24 烟包装用铝箔 产品 制定 2011 云南新美铝箔、华北铝   25 铝合金管、棒、型材清洁生产水平评价技术要求 第2部分 阳极氧化与电泳涂漆 基础 制定 2011 待定   26 铝合金管、棒、型材清洁生产水平评价技术要求 第3部分 粉末喷涂 基础 制定 2011 待定   27 铝合金管、棒、型材清洁生产水平评价技术要求 第4部分 氟碳漆喷涂 基础 制定 2011 待定   28 原生镁锭清洁生产水平评价技术要求 基础 制定 2011 待定   29 氧化铝生产用絮凝剂 产品 制定 2011 青岛海纳特新材料能源发展有限公司、中国有色金属工业标准计量质量研究所   30 氧化铝生产工业废水中总碱度测定 方法 制定 2011 中铝河南分公司   全国有色重金属标准化分技术委员会年会确定的2010年项目(国家标准部分) 序号 标准项目名称 标准类别 制订或修订 完成年限 负责起草单位 代替标准 1 反射炉精炼安全生产规范 管理 制定 2011 大冶公司   2 锡冶炼安全生产规范 管理 制定 2011 云锡公司   3 有色金属冶炼危险源控制与应急救援 管理 制定 2011 待定   4 铜加工生产企业安全应急预案 管理 制定 2011 待定   5 铜矿山酸性废水综合处理规范 管理 制定 2011 待定   6 铜选矿厂废水回收利用规范 管理 制定 2011 云南铜业集团有限公司   7 铜矿山低品位矿石可采选效益计算方法 管理 制定 2011 待定   8 镍火法冶金安全技术规范 管理 制定 2011 金川集团有限公司   9 镍气化冶金安全技术规范 管理 制定 2011 金川集团有限公司   10 镍湿法冶金安全技术规范 管理 制定 2011 金川集团有限公司   11 铜及铜合金棒线涡流探伤方法 方法 制定 2011 中国有色金属工业无损检测中心、中铝上海铜业有限公司、佛山市华鸿铜管有限公司、洛阳铜加工集团有限公司   12 铜及铜合金化学分析方法 Al2O3的测定 方法 制定 2011 洛阳铜加工集团有限公司   13 直接法氧化锌 产品 修订 2011 水口山矿务局 GB/T 3494-1996 14 铸造锡铅焊料 产品 修订 2011 云南锡业公司 GB/T 8012-2000 15 三氧化二锑 产品 修订 2011 锡矿山矿务局 GB/T 4062-1998 16 导电铜板和条 产品 修订 2011 西北铜加工厂、洛阳铜加工集团有限公司、佛山市华鸿铜管有限公司、浙江宏磊铜业股份有限公司、金川集团有限公司 GB/T 2529-2005 17 铜及铜合金术语 第1部分 矿产品和精炼产品 基础 修订 2011 待定 GB/T 11086-1989 18 铜及铜合金术语 第2部分 加工产品和铸件 基础 修订 2011 洛阳铜加工集团有限公司 GB/T 11086-1989 全国有色重金属标准化分技术委员会年会确定的2010年项目(行业标准部分) 序号 标准项目名称 标准类别 制订或修订 完成年限 负责起草单位 代替标准 1 铜及铜合金性能试验试样制备方法 方法 制定 2011 中铝沈阳有色金属加工厂、浙江方圆检测集团股份有限公司   2 电真空器件用无氧铜棒线 产品 制定 2011 洛阳铜加工集团有限公司   3 高速铁路用青铜板带 产品 制定 2011 洛阳铜加工集团有限公司   4 高速铁路用青铜棒 产品 制定 2011 洛阳铜加工集团有限公司   5 高炉冷却壁用铜板 产品 制定 2011 洛阳铜加工集团有限公司   6 太阳能装置用铜带 产品 制定 2011 富威科技(吴江)有限公司、洛阳铜加工集团有限公司、菏泽广源铜带股份有限公司、绍兴力博集团   7 接插件用铜及铜合金异型带 产品 制定 2011 北京金鹰恒泰铜业有限公司、绍兴力博集团   8 导电用再生铜条 产品 制定 2011 巩义市新昌铜业有限公司   9 电工用再生铜线坯 产品 制定 2011 赣州江钨新型合金材料有限公司   10 高纯碲 产品 制定 2011 清远先导稀有材料有限公司、山东省阳谷祥光铜业有限公司   11 碲化镉 产品 制定 2011 清远先导稀有材料有限公司、山东省阳谷祥光铜业有限公司   12 铜靶材 产品 制定 2011 宁波江丰电子材料有限公司   13 红土镍矿化学分析方法—镍量的测定—火焰原子吸收光谱法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   14 红土镍矿化学分析方法—铁量的测定—重铬酸钾滴定法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   15 红土镍矿化学分析方法—磷量的测定—钼蓝分光光度法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   16 红土镍矿化学分析方法—钴量的测定—原子吸收光谱法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   17 红土镍矿化学分析方法—铜量的测定—原子吸收光谱法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   18 红土镍矿化学分析方法—氧化钙、氧化镁量的测定—原子吸收光谱法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   19 红土镍矿化学分析方法—二氧化硅量的测定—氟硅酸钾滴定法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   20 红土镍矿化学分析方法—钪量的测定—ICP-MS法 方法 制定 2011 北京矿冶研究总院、金川集团有限公司、鲅鱼圈出入境检验检疫局   21 红土镍矿化学分析方法—磷、铬、氧化钙、氧化镁、三氧化二铝量的测定—ICP-AES法 方法 制定 2011 北京矿冶研究总院;金川集团有限公司、鲅鱼圈出入境检验检疫局   22 钴化学分析方法 钠量的测定 原子吸收光谱法 方法 制定 2011 金川集团有限公司、深圳格林美高新技术股份有限公司   23 钴化学分析方法 氧量的测定 脉冲-红外吸收法 方法 制定 2011 金川集团有限公司、深圳格林美高新技术股份有限公司   24 钴化学分析方法 钙量的测定 电感耦合等离子体发射光谱法 方法 制定 2011 金川集团有限公司、深圳格林美高新技术股份有限公司   25 铍青铜板材和带材 产品 修订 2011 西北稀有金属材料研究院 YS/T 323-2002 26 航空散热管 产品 修订 2011 西北铜加工厂 YS/T 266-1994 27 塑覆铜管 产品 修订 2011 佛山市华鸿铜管有限公司、浙江海亮铜业有限公司、浙江宏磊铜业股份有限公司 YS/T 451-2002 28 有色金属精矿产品包装、标志、运输和贮存 基础 修订 2011 大冶有色金属公司、株洲冶炼集团公司、山东省阳谷祥光铜业有限公司、北方铜业有限公司等 YS/T 418 -1999 29 高纯铅 产品 修订 2011 峨眉半导体厂 YS/T 265-1994 30 重有色冶金炉窑热平衡测定与计算方法 闪速炉 基础 制定 2011 金川集团有限公司   31 重有色冶金炉窑热平衡测定与计算方法 铜合成炉 基础 制定 2011 金川集团有限公司   32 重有色冶金炉窑热平衡测定与计算方法 吹炼转炉 基础 修订 2011 金川集团有限公司 YS/T 118.15-1992 全国有色稀有金属、粉末冶金标准化分技术委员会年会确定的2010年项目(国家标准部分) 序号 标准项目名称 标准类别 制订或修订 完成年限 负责起草单位 代替标准 1 锆及锆合金化学分析方法 锡量测定 方法 修订 2011 待定 GB/T 13747.1-1992 2 锆及锆合金化学分析方法 1,10-二氮杂菲分光光度法测定铁量 方法修订 2011 待定 GB/T 13747.2-1992 3 锆及锆合金化学分析方法 丁二酮肟分光光度法测定镍量 方法 修订 2011 待定 GB/T 13747.3-1992 4 锆及锆合金化学分析方法 二苯卡巴肼分光光度法测定铬量 方法 修订 2011 待定 GB/T 13747.4-1992 5 锆及锆合金化学分析方法 铬天青S分光光度法测定铝量 方法 修订 2011 待定 GB/T 13747.5-1992 6 锆及锆合金化学分析方法 2,9-二甲基-1,10-二氮杂菲分光光度法测定铜量 方法 修订 2011 待定 GB/T 13747.6-1992 7 锆及锆合金化学分析方法 高碘酸盐分光光度法测定锰量 方法 修订 2011 待定 GB/T 13747.7-1992 8 锆及锆合金化学分析方法 亚硝基R盐分光光度法测定钴量 方法 修订 2011 待定 GB/T 13747.8-1992 9 锆及锆合金化学分析方法 火焰原子吸收光谱法测定镁量 方法 修订 2011 待定 GB/T 13747.9-1992 10 锆及锆合金化学分析方法 硫氰酸盐分光光度法测定钨量 方法 修订 2011 待定 GB/T 13747.10-1992 11 锆及锆合金化学分析方法 硫氰酸盐分光光度法测定钼量 方法 修订 2011 待定 GB/T 13747.11-1992 12 锆及锆合金化学分析方法 钼蓝分光光度法测定硅量 方法 修订 2011 待定 GB/T 13747.12-1992 13 锆及锆合金化学分析方法 示波极谱法测定铅量 方法 修订 2011 待定 GB/T 13747.13-1992 14 锆及锆合金化学分析方法 催化示波极谱法测定铀量 方法 修订 2011 待定 GB/T 13747.14-1992 15 锆及锆合金化学分析方法 姜黄素分光光度法测定硼量 方法 修订 2011 待定 GB/T 13747.15-1992 16 锆及锆合金化学分析方法 氯化银浊度法测定氯量 方法 修订 2011 待定 GB/T 13747.16-1992 17 锆及锆合金化学分析方法 示波极谱法测定镉量 方法 修订 2011 待定 GB/T 13747.17-1992 18 锆及锆合金化学分析方法 苯甲酰苯基羟胺分光光度法测定钒量 方法 修订 2011 待定 GB/T 13747.18-1992 19 锆及锆合金化学分析方法 二安替比林甲烷分光光度法测定钛量 方法 修订 2011 待定 GB/T 13747.19-1992 20 锆及锆合金化学分析方法 发射光谱法测定铪量 方法 修订 2011 待定 GB/T 13747.20-1992 21 锆及锆合金化学分析方法 真空加热气相色谱法测定氢量 方法 修订 2011 待定 GB/T 13747.21-1992 22 锆及锆合金化学分析方法 惰气熔融库仑法测定氧量 方法 修订 2011 待定 GB/T 13747.22-1992 23 锆及锆合金化学分析方法 蒸馏分离-奈斯勒试剂分光光度法测定氮量 方法 修订 2011 待定 GB/T 13747.23-1992 24 锆及锆合金化学分析方法 库仑法测定碳量 方法 修订 2011 待定 GB/T 13747.24-1992 25 钼及钼合金棒 产品 修订 2011 待定 GB/T 17792-1999 26 钽铌化学分析方法 铌中钽量的测定 方法 修订 2011 待定 GB/T 15076.1-1994 27 钽铌化学分析方法 钽中铌量的测定 方法 修订 2011 待定 GB/T 15076.2-1994 28 钽铌化学分析方法 铜量的测定 方法 修订 2011 待定 GB/T 15076.3-1994 29 钽铌化学分析方法 铁量的测定 方法 修订 2011 待定 GB/T 15076.4-1994 30 钽铌化学分析方法 钼量和钨量的测定 方法 修订 2011 待定 GB/T 15076.5-1994 31 钽铌化学分析方法 铌中磷量的测定 方法 修订 2011 待定 GB/T 15076.7-1994 32 钽铌化学分析方法 铌中铁、镍、铬、钛、锆、铝和锰量的测定 方法 修订 2011 待定 GB/T 15076.10-1994 33 钽铌化学分析方法 铌中砷、锑、铅、锡和铋量的测定 方法 修订 2011 待定 GB/T 15076.11-1994 34 钽铌化学分析方法 钽中氮量的测定 方法 修订 2011 待定 GB/T 15076.13-1994 35 钒 产品 修订 2011 待定 GB/T 4310-1984 36 钨钼合金条 产品 修订 2011 待定 GB/T 4185-1984 37 钨杆 产品 修订 2011 待定 GB/T 4187-1984 38 钼杆 产品 修订 2011 待定 GB/T 4188-1984 39 掺杂钨条 产品 修订 2011 待定 GB/T 4189-1984 40 掺杂钼条 产品 修订 2011 待定 GB/T 4190-1984 41 钼及钼合金棒 产品 修订 2011 待定 GB/T 17792-1999 42 粉末冶金制品 表面粗糙度 参数及其数值 方法 修订 2011 待定 GB/T 12767-1991 43 硬质合金化学分析方法 电位滴定法测定钴量 方法 修订 2011 待定 GB/T 5124.3-1985 44 硬质合金化学分析方法 过氧化物光度法测定钛量 方法 修订 2011 待定 GB/T 5124.4-1985 45 金属粉末粒度组成的测定 干筛分法 方法 修订 2011 待定 GB/T 1480-1995 46 金属粉末(不包括硬质合金粉末)在单轴压制中压缩性的测定 方法 修订 2011 待定 GB/T 1481-1998 47 硬质合金常温冲击韧性试验方法 方法 61 细粉末粒度分布的测定 声波筛分法 方法 修订 2011 待定 GB/T 13220-1991 62 硬质合金可转位刀片圆角半径 产品 修订 2011 待定 GB/T 2077-1987 63 无孔的硬质合金可转位刀片 产品 修订 2011 待定 GB/T 2079-1987 64 硬质合金可转位铣刀片 产品
  • 《核出口管制清单》已实施 质谱等仪器及部件受管制
    p   根据《中华人民共和国核出口管制条例》,国家原子能机构、中华人民共和国商务部、中华人民共和国外交部、中华人民共和国海关总署联合修订《核出口管制清单》,清单自2018年10月1日起实施。 /p p   说明指出,与本清单所列物项直接有关的“技术”将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。为“研制”、“生产”或“使用”本清单所列任何物项而专门设计或开发的“软件”转让将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。 /p p   清单中涵盖了溶剂萃取设备、气体离心机、UF6质谱仪/离子源、同位素电磁分离器、离子源、离子收集器、 高压电源、磁体电源等科学仪器及部件。详情如下: /p p style=" text-align: center " strong 核出口管制清单 /strong /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 说 明 /strong /span /p p    span style=" color: rgb(255, 0, 0) " strong 一、总说明 /strong /span /p p   下述各段适用于《核出口管制清单》: /p p   (一)本清单中所说明的各个物项既包括未使用过的物项,亦包括使用过的物项。 /p p   (二)如果对本清单中任何物项的说明不含限制条件或技术规格,这种说明是指该物项的全部品种。 /p p   (三)当设施的设计、建造或运行过程所依据的物理过程或化学过程与本清单中确定的相同或相似时,该设施应被视为与受管制设施“同种型号”。 /p p   (四)不应由于部件的转让而排除对这类物项的管制。 /p p    span style=" color: rgb(255, 0, 0) " strong 二、技术控制 /strong /span /p p   (一)“技术”转让根据《中华人民共和国核出口管制条例》的规定进行管制。与本清单所列物项直接有关的“技术”将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。 /p p   (二)对“技术”转让的管制不适用于“公开”资料或“基础科学研究”资料。 /p p    span style=" color: rgb(255, 0, 0) " strong 三、关于软件的说明 /strong /span /p p   (一)为“研制”、“生产”或“使用”本清单所列任何物项而专门设计或开发的“软件”转让将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。 /p p   (二)“软件”转让应与“技术”转让采用同样的管制原则。 /p p   span style=" color: rgb(255, 0, 0) " strong  四、定义 /strong /span /p p   1.“公共使用的”是指已经公开使用的“技术”或“软件”,而对其进一步传播可以不加限制(包括受版权限制的“技术”或“软件”)。 /p p   2.“基础科学研究”是指主要为获得关于现象和可观察到的事实的基本原理的新知识而从事的实验性或理论性工作,此类工作主要不是针对某一具体的实际目的或目标。 /p p   3.“技术”是指本清单所列物项的“研发”、“生产”或“使用”所要求的特定资料。这些资料可以采用“技术数据”或“技术援助”的形式。其中,“研发”涉及“生产”前的各个阶段:设计、设计研究、设计分析、设计概念、样机的装配和试验、小规模试生产计划、设计数据、把设计转换成产品的过程、结构设计、总体设计、布置等 “生产”是指建造、生产工程、制造、合成、组装(装配)、检查、试验、质保等各个阶段 “使用”是指运行、安装(包括现场安装)、维护(校核)、修理、大修和翻修等 “技术数据”可以采用蓝图、平面图、图表、模型、公式、工程设计和技术规格、手册与规程等形式,被写入或记录在诸如磁盘、磁带、只读存储器等器件或其他载体 “技术援助”可以采用规程、技能、培训、操作知识和咨询服务等形式,可以包括“技术数据”的转让。 /p p   4.“软件”是指载入于有形媒介中的一个或多个“程序”或“微程序”,其中“程序”是指电子计算机可执行的或可转换成可执行某一过程的指令序列 “微程序”是指保存在一个特殊的存储器里的基本指令序列,通过把其参考指令引入指令寄存器开始执行该基本指令序列。 /p p   5.“其他元素”是指氢、铀和钚以外的所有元素。 /p p    span style=" color: rgb(255, 0, 0) " strong 五、单位 /strong /span /p p   本清单使用国际单位制(SI)。在任何情况下,国际单位制规定的物理量应被认为是正式建议的管制值。本清单相关国际单位通常使用的缩写符号(及其表示量值的前缀)如下(按字母顺序): /p p   A - 安培 /p p   Å - 埃 /p p   ℃ - 摄氏度 /p p   cm - 厘米 /p p   cm2 - 平方厘米 /p p   cm3 - 立方厘米 /p p   ° - 度 /p p   g - 克 /p p   g0 - 重力加速度 (9.80665米/秒2) /p p   GHz - 千兆赫 /p p   GPa - 吉帕 /p p   h - 小时 /p p   H - 亨利 /p p   MPa - 兆帕 /p p   μm - 微米 /p p   N - 牛顿 /p p   nm - 纳米 /p p   Ω - 欧姆 Hz - 赫兹 /p p   J - 焦耳 /p p   K - 开[尔文] /p p   kg - 千克 /p p   kHz - 千赫兹 /p p   kJ - 千焦耳 /p p   kPa - 千帕 /p p   kW - 千瓦 /p p   m - 米 /p p   m2 - 平方米 /p p   m3 - 立方米 /p p   mA - 毫安 /p p   min - 分钟 /p p   mm - 毫米 /p p   Pa - 帕[斯卡] /p p   s - 秒 /p p   ″- 弧秒 /p p   V - 伏 /p p   VA - 伏安 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 第一部分 核材料 /span /strong /p p   核材料系指源材料和特种可裂变材料。其中: /p p   1. 源材料系指天然铀、贫化铀和钍,呈金属、合金、化合物或浓缩物形态的上述各种材料。但不包括: /p p   (1)政府确信仅用于非核活动的源材料 /p p   (2)在一个自然年(1月1日至12月31日)内向某一接受国出口: /p p   ①少于500kg的天然铀 /p p   ②少于1000kg的贫化铀 /p p   ③少于1000kg的钍。 /p p   2. 特种可裂变材料系指钚-239、铀-233、含同位素铀-235或铀-233或兼含铀-233和铀-235其同位素总丰度与铀-238的丰度比大于自然界中铀-235与铀-238的丰度比的铀,以及含有上述物质的任何材料,包括核燃料组件。但不包括: /p p   (1)钚-238同位素丰度超过80%的钚 /p p   (2)克量或克量以下用作仪器传感元件的特种可裂变材料 /p p   (3)在一个自然年(1月1日至12月31日)内向某一接受国出口少于50有效克的特种可裂变材料。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 第二部分 核设备和反应堆用非核材料 /span /strong /p p span style=" color: rgb(255, 0, 0) " strong   1.核反应堆和为其专门设计或制造的设备和部件 /strong /span /p p    strong 按语 /strong /p p   各种类型的核反应堆,无论其按所用慢化剂(如石墨、重水、轻水、无慢化剂)、核反应堆内中子谱(如热中子、快中子)、所用冷却剂类型(如水、液态金属、熔盐、气体)为特征,或以功能类型(如动力堆、研究堆、试验堆)为特征进行区分。上述所有类型的核反应堆都属于本条款范围并受本条款所有可适用分项管控。本条款的控制范围不包括聚变反应堆。 /p p   strong  1.1 整体核反应堆 /strong /p p   能够保持受控自持链式裂变反应的可运行核反应堆。 /p p    strong 注释 /strong /p p   一个“核反应堆”基本上包括反应堆容器内或直接安装在其上的物项、控制堆芯功率水平的设备和通常含有或直接接触或控制反应堆堆芯一次冷却剂的部件。 /p p    strong 1.2 核反应堆容器 /strong /p p   金属容器,或工厂预制的该装置的主要部件,被专门设计或制造来容纳上述1.1定义的核反应堆的堆芯以及下文1.8定义的相关堆内构件。 /p p    strong 注释 /strong /p p   物项1.2涵盖的核反应堆容器不分压力等级,包括反应堆压力容器和排管容器。物项1.2包括反应堆压力容器顶盖,它是工厂预制的反应堆容器的主要部件。 /p p    strong 1.3 核反应堆燃料装卸机 /strong /p p   专门设计或制造用于在上述1.1定义的核反应堆中插入或取出燃料的操作设备。 /p p    strong 注释 /strong /p p   上述物项能够进行有载操作或利用技术先进的定位或准直装置进行复杂的停堆装料操作,例如通常不可能直接观察或接近燃料的操作。 /p p    strong 1.4 核反应堆控制棒和设备 /strong /p p   专门设计或制造用于控制上述1.1定义的核反应堆裂变过程的棒、支承结构或悬吊结构、棒驱动机或棒导向管。 /p p    strong 1.5 核反应堆压力管 /strong /p p   专门设计或制造用于容纳上述1.1定义的核反应堆的燃料元件和一次冷却剂的压力管。 /p p    strong 注释 /strong /p p   压力管是燃料通道的一部分,按设计在高压下运行,压力有时超过5MPa。 /p p    strong 1.6 核燃料包壳 /strong /p p   专门设计或制造在上述1.1定义的核反应堆中作为燃料包壳使用的数量超过10kg的锆金属和合金的管或管组件。 /p p   注意:锆压力管的管制适用于1.5,锆排管的管制适用于1.8。 /p p    strong 注释 /strong /p p   在核反应堆中使用的锆金属管或锆合金管含铪与锆的重量之比通常低于1:500。 /p p    strong 1.7 一次冷却剂泵或循环泵 /strong /p p   专门设计或制造用于循环上述1.1定义的核反应堆的一次冷却剂的泵或循环泵。 /p p    strong 注释 /strong /p p   专门设计和制造的泵或循环泵包括水冷堆泵、气冷堆循环泵以及液态金属冷却堆用电磁泵和机械泵。这种设备可包括防止一次冷却剂渗漏的精密密封或多种密封的系统、全密封驱动泵,及有惯性质量系统的泵。这一定义包括鉴定为NC-1或相当标准的泵。 /p p    strong 1.8 核反应堆内部构件 /strong /p p   专门设计和制造用于上述1.1定义的核反应堆的“核反应堆内部构件”,包括堆芯支承柱、燃料通道、排管、热屏蔽层、堆芯缓冲层、堆芯栅格板和扩散板。 /p p    strong 注释 /strong /p p   “核反应堆内部构件”是反应堆容器内的主要结构,具有一种或多种功能,例如支承堆芯、保持燃料对准、引导一次冷却剂流向、为反应堆容器提供辐射屏蔽层、导向堆芯内仪表。 /p p    strong 1.9 热交换器 /strong /p p   (a)专门设计或制造用于上述1.1定义的核反应堆的一次冷却剂或中间冷却剂回路的热交换器(蒸汽发生器)。 /p p   (b)专门设计或制造用于上述1.1定义的核反应堆的一次冷却剂回路的其他热交换器。 /p p    strong 注释 /strong /p p   蒸汽发生器是专门设计或制造用于将反应堆内生成的热量(一回路侧)输送到进水(二回路侧)以产生蒸汽。对有一个中间回路的快堆的情况,除蒸汽发生器外,用于将一回路侧的热量输送到中间冷却回路的热交换器理所当然地属于控制范围以内。在气冷堆中,可利用热交换器向驱动燃气轮机的二次气体回路传热。本条款的控制范围不包括反应堆支持系统如应急冷却系统和衰变热冷却系统的热交换器。 /p p    strong 1.10 中子探测器 /strong /p p   专门设计或制造用于测定上述1.1定义的核反应堆堆芯内中子通量的中子探测器。 /p p    strong 注释 /strong /p p   本条款的范围包括用于测定大量程范围中子通量的堆芯内和堆芯外探测器,典型地从每平方厘米每秒104个中子或更高。堆芯外意指那些上述1.1定义的核反应堆堆芯外,但是位于生物屏蔽层内的仪器。 /p p    strong 1.11 外热屏蔽体 /strong /p p   专门设计或制造供上述1.1定义的核反应堆中用于减少热损失同时也用于安全壳保护的“外热屏蔽体”。 /p p    strong 注释 /strong /p p   “外热屏蔽体”是置于反应堆容器上方的主要结构,用于减少反应堆的热损失和降低安全壳内的温度。 /p p    span style=" color: rgb(255, 0, 0) " strong 2.反应堆用非核材料 /strong /span /p p    strong 2.1 氘和重水 /strong /p p   任一接受方在任何一个自然年(1月1日至12月31日)内收到的供上述1.1定义的核反应堆用的数量超过200kg氘原子的氘、重水(氧化氘)以及氘与氢原子之比超过1∶5000的任何其他氘化物。 /p p   strong  2.2 核级石墨 /strong /p p   数量超过1kg、纯度高于百万分之五硼当量、密度大于1.50g/cm3的石墨。 /p p    strong 注释 /strong /p p   为了出口控制的目的,政府将确定出口符合上述技术指标的石墨是否用于核反应堆。 /p p   硼当量(BE)可以实验测定或以包括硼在内的杂质BEZ之总量计算得出(由于碳不被考虑是一种杂质,因此不包括 /p p   BE碳),其中: /p p   BEZ(ppm)=CF× 元素Z的浓度(ppm为单位) /p p   CF为转化因子:(σZ× AB)除以(σB× AZ) /p p   σB和σZ分别为自然界形成的硼和元素Z的热中子俘获截面(巴为单位),AB和AZ分别为自然界形成的硼和元素Z的原子质量。 /p p    span style=" color: rgb(255, 0, 0) " strong 3. 辐照燃料元件后处理厂以及为其专门设计或制造的设备 /strong /span /p p    strong 按语 /strong /p p   辐照核燃料经后处理能从强放射性裂变产物以及其他超铀元素中分离钚和铀。有各种技术工艺流程能够实现这种分离。但是,多年来,“普雷克斯”已成为最普遍采用和接受的工艺流程。“普雷克斯”流程包括:将辐照核燃料溶解在硝酸中,然后利用磷酸三丁酯与一种有机稀释剂的混合剂通过溶剂萃取法分离铀、钚和裂变产物。 /p p   各种“普雷克斯”设施具有彼此相似的工艺功能,包括:辐照燃料元件的切割、燃料溶解、溶剂萃取和工艺液流的贮存。还可能有种种设备,用于:使硝酸铀酰热脱硝,把硝酸钚转化成氧化钚或金属钚,以及把裂变产物的废液处理成适合于长期贮存或处置的形式。但是,实现这些功能的设备的类型和结构在各种“普雷克斯”设施之间可能不同,原因有几个,其中包括需要后处理的辐照核燃料的类型和数量、打算对回收材料的处理和设施设计时所考虑的安全和维修原则。 /p p   一个“辐照燃料元件后处理厂”包括通常直接接触和直接控制辐照燃料和主要核材料以及裂变产物工艺液流的设备和部件。可以通过采取各种避免临界(例如通过几何形状)、辐射照射(例如通过屏蔽)和毒性危险(例如通过安全壳)的措施来确定这些过程,包括钚转换和钚金属生产的完整系统。 /p p   strong  3.1 辐照燃料元件切割机 /strong /p p   专门设计或制造供上述确定的后处理厂用来切割或剪切辐照燃料组件、燃料棒束或棒的遥控设备。 /p p    strong 注释 /strong /p p   这种设备能切开燃料包壳,使辐照核材料能够被溶解。专门设计的金属切割机是最常用的,当然也可能采用先进设备,例如激光器。 /p p    strong 3.2 溶解器 /strong /p p   专门设计或制造供上述确定的后处理厂用来溶解辐照核燃料,并能承受热、腐蚀性强的液体以及能远距离装料和维修的临界安全容器(例如小直径、环形或平板式的容器)。 /p p    strong 注释 /strong /p p   溶解器通常接受切碎了的乏燃料。在这种临界安全的容器内,辐照核材料被溶解在硝酸中,而剩余的壳片从工艺液流中被去掉。 /p p    strong 3.3 溶剂萃取器和溶剂萃取设备 /strong /p p   专门设计或制造用于辐照燃料后处理厂的溶剂萃取器,例如填料塔或脉冲塔、混合澄清器或离心接触器。溶剂萃取器必须能耐硝酸的腐蚀作用。溶剂萃取器通常由低碳不锈钢、钛、锆或其他优质材料,按极高标准(包括特种焊接和检查以及质量保证和质量控制技术)加工制造而成。 /p p    strong 注释 /strong /p p   溶剂萃取器既接受溶解器中出来的辐照燃料的溶液,又接受分离铀、钚和裂变产物的有机溶液。溶剂萃取设备通常设计得能满足严格的运行参数,例如很长的运行寿命,无需维修或易于更换,操作和控制简便以及可适应工艺条件的各种变化。 /p p    strong 3.4 化学溶液保存或贮存容器 /strong /p p   专门设计或制造为辐照燃料后处理厂用的保存或贮存容器。这种保存或贮存容器必须能耐硝酸的腐蚀作用。保存或贮存容器通常用低碳不锈钢、钛或锆或其他优质材料制造。保存或贮存容器可设计成能远距离操作和维修,而且它们可具有下述控制核临界的特点: /p p   (1)壁或内部结构至少有百分之二的硼当量,或 /p p   (2)对于圆柱状容器来说,最大直径175mm,或 /p p   (3)对于平板式或环形容器来说,最大宽度75mm。 /p p   注释 /p p   溶剂萃取阶段产生三种主要的工艺液流。所有这三种液流在如下的进一步处理过程中要使用保存或贮存容器: /p p   (a)用蒸发法使纯硝酸铀酰溶液浓缩,然后使其进到脱硝过程,并在此过程中转变成氧化铀。这种氧化物再在核燃料循环中利用。 /p p   (b)通常用蒸发法浓缩强放射性裂变产物溶液,并以浓缩液形式贮存。随后可蒸发这种浓缩液并将其转换成适合于贮存或处置的形式。 /p p   (c)在将纯硝酸钚溶液转到下几个工艺步骤前先将其浓缩并贮存。尤其是,钚溶液的保存或贮存容器要设计得能避免由于这种液流浓度和形状的改变导致的临界问题。 /p p   3.5 流程控制用中子测量系统 /p p   专门设计或制造与辐照燃料元件后处理厂的自动化流程控制系统相结合和共同使用的中子测量系统。 /p p    strong 注释 /strong /p p   这些系统涉及能动和非能动中子测量和鉴别能力,目的是确定特种可裂变材料的数量和成分。整套系统由中子发生器、中子探头、放大器和信号处理电子元件组成。 /p p   本条款的范围不包括为核材料衡算和保障或与辐照燃料元件后处理厂自动化流程控制系统的结合和共同使用无关的任何其他应用设计的中子探测和测量仪器。 /p p    span style=" color: rgb(255, 0, 0) " strong 4.用于制造核反应堆燃料元件的工厂和为其专门设计或制造的设备 /strong /span /p p    strong 按语 /strong /p p   核燃料元件是由本清单第一部分所述的一种或多种源材料或特种可裂变材料制造的。对于氧化物燃料这一种最常用的燃料类型,常用芯块压制、烧结、研磨和分级的设备。直到密封于包壳内,混合氧化物燃料是在手套箱内操作的(或等效的箱体)。在所有情况下,燃料被密封于一个合适的包壳内,这种包壳是设计作为包装燃料的主要包壳,以便在反应堆运行时提供适当的性能和安全。此外,在所有情况下,为保证可预计的和安全的燃料性能,必须按照最高标准精确控制流程、程序和设备。 /p p    strong 注释 /strong /p p   考虑属于燃料元件制造的和“专门设计或制造的设备”这一 /p p   含义的设备项目包括: /p p   (a)通常直接接触或加工或控制核材料生产流程的设备 /p p   (b)将核材料封入包壳的设备 /p p   (c)检验包壳或密封完整性的设备 /p p   (d)检验密封燃料的最终处理的设备 /p p   (e)用于装配核燃料元件的设备。 /p p   这一设备或这些设备系统可能包括: /p p   (1)专门设计或制造用于检验燃料芯块的最终尺寸和表面缺陷的全自动芯块检查台 /p p   (2)专门设计或制造用于将端塞焊接于燃料细棒(或棒)的自动焊接机 /p p   (3)专门设计或制造用于检验燃料细棒(或棒)成品密封性的自动化测试和检查台 /p p   (4)专门设计或制造用于制造核燃料包壳的系统。 /p p   第(3)项典型的包括设备用于:(a)细棒(或棒)端塞焊缝X射线检测,(b)充压细棒(或棒)的氦检漏,(c)细棒(或棒)的γ射线扫描以检验内部燃料芯块的正确装载。 /p p    span style=" color: rgb(255, 0, 0) " strong 5. 天然铀、贫化铀或特种可裂变材料同位素分离厂以及为其专门设计或制造的(除分析仪器以外的)设备 /strong /span /p p    strong 按语 /strong /p p   在很多情况下,铀同位素分离厂、设备和技术与“其他元素”的同位素分离厂、设备和技术有着密切联系。在特定情况下,本条款所述控制也适用于拟进行“其他元素”的同位素分离的工厂和设备。对“其他元素”的同位素分离厂和设备进行的这些控制是对《核出口管制清单》所涵盖的特种可裂变材料的加工、使用或生产而专门设计或建造的工厂和制造的设备进行控制的补充。本条款关于涉及“其他元素”的使用的这些补充控制适用于气体离心法、气体扩散法、等离子体分离法和空气动力学过程,不适用于电磁同位素分离法。对一些过程而言,其与铀同位素分离的关系取决于将要分离的元素。这些过程是:基于激光的过程(如分子激光同位素分离和原子蒸气激光同位素分离)、化学交换和离子交换。因此,供应方必须对这些过程逐一进行评价,以便相应地适用本条款对涉及“其他元素”的使用的控制。 /p p   可以认为属于为铀同位素分离“专门设计或制造的(除分析仪器外的)设备”这一概念范围的设备物项包括: /p p    strong 5.1 气体离心机和专门设计或制造用于气体离心机的组件和构件 /strong /p p    strong 按语 /strong /p p   气体离心机通常由直径在75mm 和650mm之间的薄壁圆筒组成。圆筒处在真空环境中并且以大约300m/s或更高的线速度旋转,旋转时其中轴线保持垂直。为了达到高的转速,旋转构件的结构材料必须具有高的强度/密度比,而转筒组件及其单个构件必须按高精度公差来制造以便使不平衡减到最小。 /p p   与其他离心机不同,浓缩铀用的气体离心机的特点是:在转筒室中有一个(或几个)盘状挡板和一个固定的管列用来供应和提取UF6气体,其特点是至少有三个单独的通道,其中两个与从转筒轴向转筒室周边伸出的收集器相连。在真空环境中还有一些不转动的关键物项,它们虽然是专门设计的,但不难制造,也不是用独特材料制造的。不过,一个离心机设施需要大量的这种构件,因此其数量是能够反映最终用途的一个重要指标。 /p p    strong 5.1.1 转动部件 /strong /p p strong   (a)完整的转筒组件: /strong /p p   用本节注释中所述的一种或一种以上高强度/密度比材料制成的若干薄壁圆筒或一些相互连接的薄壁圆筒 如果是相互连接的,则圆筒通过以下5.1.1(c)所述的弹性波纹管或环连接。转筒(如果是最终形式的话)装有以下5.1.1(d)和(e)所述一个(或几个)内挡板和顶盖/底盖。但是完整的组件可能只以部分组装形式交货。 /p p   strong  (b)转筒: /strong /p p   专门设计或制造的厚度为12mm或更薄的直径在75mm和650mm之间、用本节注释中所述一种或一种以上高强度/密度比材料制成的薄壁圆筒。 /p p   strong  (c)环或波纹管: /strong /p p   专门设计或制造用于局部支承转筒或把数个转筒连接起来的构件。波纹管是壁厚3mm或更薄的直径在75mm和650mm之间、用本节注释中所述一种或一种以上高强度/密度比材料制成的有褶短圆筒。 /p p    strong (d)挡板: /strong /p p   专门设计或制造的直径在75mm和650mm之间、用本节注释中所述各种高强度/密度比材料之一制成的安装在离心机转筒内的盘状构件,其作用是将排气室与主分离室隔开,在某些情况下帮助UF6气体在转筒的主分离室中循环。 /p p    strong (e)顶盖/底盖: /strong /p p   专门设计或制造的直径在75mm和650mm之间、用本节注释中所述各种高强度/密度比材料之一制成的装在转筒端部的盘状构件,这样就把UF6包容在转筒内,在有些情况下还作为整体一部分支承、保持或容纳上轴承件(顶盖)或支持马达的旋转件和下轴承件(底盖)。 /p p   注释 /p p   离心机转动构件所用材料包括: /p p   (a)极限抗拉强度为1.95× 109N/m2或更高的马氏体钢 /p p   (b)极限抗拉强度为0.46× 109N/㎡或更高的铝合金 /p p   (c)适合于复合结构用的纤维材料,其比模量应为3.18× 106m或更高,比极限抗拉强度应为7.62× 104m或更高(“比模量”是用N/m2表示的杨氏模量除以用N/m3表示的比重 “比极限抗拉强度”是用N/m2表示的极限抗拉强度除以用N/m3表示的比重)。 /p p    strong 5.1.2 静态部件 /strong /p p strong   (a)磁悬浮轴承: /strong /p p   1)专门设计或制造的轴承组合件,由悬浮在充满阻尼介质箱中的一个环形磁铁组成。该箱要用耐UF6的材料(见5.2的注释)制造。该磁铁与装在5.1.1(e)所述顶盖上的一个磁极片或另一个磁铁耦合。 /p p   此磁铁可以是环形的,外径与内径的比小于或等于1.6:1。它的初始磁导率可以是0.15H/m(120000CGS制单位)或更高,或剩磁98.5%或更高,或产生的能量高于80kJ/m3。除了具有通常的材料性质外,先决条件是磁轴对几何轴的偏离应限制在很小的公差范围内(低于0.1mm)或特别要求磁铁材料有均匀性。 /p p   2)专门设计或制造供气体离心机使用的主动磁轴承。 /p p    strong 注释 /strong /p p   这些轴承通常具有下述特点: /p p   是为使以600Hz 或更高速度旋转的转子保持居中而设计的 /p p   与可靠的电源和(或)不间断电源单元相连,以便运行1小时以上。 /p p    strong (b)轴承/阻尼器: /strong /p p   专门设计或制造的架在阻尼器上的具有枢轴/盖的轴承。枢轴通常是一种淬硬钢轴,一端精加工成半球,而另一端能连在5.1.1(e)所述底盖上。但是这种轴可附有一个动压轴承。盖是球形的,一面有一个半球形陷穴。这些构件通常是单独为阻尼器提供的。 /p p    strong (c)分子泵: /strong /p p   专门设计或制造的内部有已加工或挤压的螺纹槽和已加工的腔的泵体。典型尺寸如下:内径75mm到650mm,壁厚10mm或更厚,长度等于或大于直径。刻槽的横截面是典型的矩形,槽深2mm或更深。 /p p    strong (d)电动机定子: /strong /p p   专门设计或制造的环形定子,用于在真空中频率范围为600Hz或更高、功率范围为40VA或更高条件下同步运行的高速多相交流磁滞(或磁阻)式电动机。定子由在典型厚度为2.0mm或更薄一些的薄层组成的低损耗叠片铁芯上的多相绕组组成。 /p p    strong (e)离心机壳/收集器: /strong /p p   专门设计或制造用来容纳气体离心机的转筒组件的部件。离心机壳由一个壁厚达30mm的刚性圆筒组成,它带有经过精密机械加工的两个端面以便固定轴承和一个或多个便于安装的法兰盘。这两个经过机械加工的端面相互平行,并以不大于0.05度的误差与圆筒轴垂直。离心机壳也可是一种格状结构以容纳几个转筒。 /p p    strong (f)收集器: /strong /p p   专门设计或制造的管件,它们用来借助皮托管作用(即利用一个例如扳弯径向配置的管的端部而形成的面迎转筒内环形气流的开口)从转筒内部提取UF6气体,并且能与中心气体提取系统相连。 /p p    strong 5.2 为气体离心浓缩工厂专门设计或制造的辅助系统、设备和部件 /strong /p p strong   按语 /strong /p p   气体离心浓缩工厂用的辅助系统、设备和部件是向离心机供应UF6,把单个离心机相互联接组成级联(多级)从而逐渐提高浓缩度并且从离心机中提取UF6“产品”和“尾料”所需的各种工厂系统,以及驱动离心机或控制该工厂所需要的设备。 /p p   通常利用经加热的高压釜将UF6从固体中蒸发出来,气态形式的UF6通过级联集管线路被分配到各个离心机。通过级联集管线路使从离心机流出的UF6“产品”和“尾料”气流通到冷阱(在约203K(-70℃)下工作),气流在冷阱先冷凝,然后再送入适当的容器以便运输或贮存。由于一个浓缩工厂由排成级联式的数千个离心机组成,所以级联的集管线路有数公里长,含有几千条焊缝而且管道布局大量重复。上述设备、部件和管道系统都是按非常高的真空和净度标准制造的。 /p p    strong 注释 /strong /p p   以上所列一些物项不是直接接触UF6工艺气体就是直接控制离心机和直接控制这种气体从离心机到离心机以及从级联到级联的通路。耐UF6腐蚀的材料包括铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或含镍60%以上的合金以及氟化的烃聚合物。 /p p    strong 5.2.1 供料系统/产品和尾料提取系统 /strong /p p   专门设计或制造的工艺系统或设备,由耐UF6腐蚀的材料制造或用这种材料进行保护,包括: /p p   (a)供料釜(或供料器)、加热炉或系统,用于将UF6送往离心机级联 /p p   (b)凝华器(或冷阱)或泵,用于从级联中取出UF6,以便随后加热转送 /p p   (c)固化站或液化站,用来通过压缩UF6和将其转化成液态或固态,使UF6离开浓缩工艺线 /p p   (d)“产品”和“尾料”器,用来把UF6收集到容器中。 /p p    strong 5.2.2 机械集管管路系统 /strong /p p   专门设计或制造用于在离心机级联中操作UF6的管路系统和集管系统。管路网络通常是“三头”集管系统,每个离心机连接一个集管头。这样,在形式上有大量重复。全都用耐UF6的材料(见本节注释)制成或用这种材料进行保护并且按很高的真空和净度标准制造。 /p p    strong 5.2.3 特种截流阀和控制阀 /strong /p p   (a)专门设计或制造的作用于单台气体离心机中的供料、产品或尾料UF6气流的截流阀。 /p p   (b)专门设计或制造用于气体离心浓缩厂主系统或辅助系统的手动或自动波纹管密封阀、截流阀或控制阀,用耐UF6腐蚀的材料制成或用这种材料进行保护,内径10-160mm。 /p p   注释 /p p   专门设计或制造的阀,典型的包括波纹管密封阀、速动封闭阀、速动阀和其他阀。 /p p    strong 5.2.4 UF6质谱仪/离子源 /strong /p p   专门设计或制造的质谱仪,这些质谱仪能从UF6气流中“在线”取得样品,并且具有以下所有特点: /p p   1. 能够测量320或更大原子质量单位的离子,且单位分辨率高于320 /p p   2. 离子源用镍、含镍60%或以上(按重量计)的镍铜合金或镍铬合金制成或保护 /p p   3. 电子轰击离子源 /p p   4. 有一个适合于同位素分析的收集系统。 /p p    strong 5.2.5 频率变换器 /strong /p p   为满足5.1.2(d)中定义的电动机定子的需要而专门设计或制造的频率变换器(又称变频器或变换器)或这类频率变换器的部件、构件和子配件。它们具有下述所有特点: /p p   1. 多相输出600Hz或更高 /p p   2. 高稳定性(频率控制优于0.2%)。 /p p    strong 5.3 专门设计或制造用于气体扩散浓缩的组件和部件 /strong /p p    strong 按语 /strong /p p   用气体扩散法分离铀同位素时,主要的技术组件是一个特制的多孔气体扩散膜、用于冷却(经压缩过程加热的)气体的热交换器、密封阀和控制阀以及管道。由于气体扩散技术使用的是六氟化铀(UF6),所有的设备、管道和仪器仪表(与气体接触的)表面都必须用同UF6接触时能保持稳定的材料制成。一个气体扩散设施需要许多这样的组件,因此其数量是能够反映最终用途的一个重要指标。 /p p   strong  5.3.1 气体扩散膜和扩散膜材料 /strong /p p   (a)专门设计或制造的由耐UF6腐蚀的金属、聚合物或陶瓷材料(见5.4款注释)制成的很薄的多孔过滤膜,孔的大小为100-1000Å ,膜厚5mm或以下,对于管状膜来说,直径为25mm或以下。 /p p   (b)为制造这种过滤膜而专门制备的化合物或粉末。这类化合物和粉末包括镍或含镍60%(或以上)的合金、氧化铝或纯度99.9%(或以上)的耐UF6的完全氟化的烃聚合物(见5.4款注释),粒度小于10μm,粒度高度均匀。这些都是专门为制造气体扩散膜制备的。 /p p    strong 5.3.2 扩散室 /strong /p p   专门设计或制造的密闭式容器,用于容纳气体扩散膜,由耐UF6的材料(见5.4款注释)制成或用这种材料进行保护。 /p p   strong  5.3.3 压缩机和鼓风机 /strong /p p   专门设计或制造的压缩机或鼓风机,吸气能力为1m3UF6/min或更大,出口压力高达500kPa,其被设计成在UF6环境中长期运行。这种压缩机和鼓风机的压力比10:1或更低,用耐UF6的材料(见5.4款注释)制成或用这种材料进行保护。 /p p   strong  5.3.4 转动轴封 /strong /p p   专门设计或制造的真空密封装置,有密封式进气口和出气口,用于密封把压缩机或鼓风机转子同传动马达连接起来的转动轴,以保证可靠的密封,防止空气渗入充满UF6的压缩机或鼓风机的内腔。这种密封装置通常设计成将缓冲气体泄漏率限制到小于1000cm3/min。 /p p    strong 5.3.5 冷却UF6的热交换器 /strong /p p   专门设计或制造的用耐UF6材料(见5.4款注释)制成或保护的热交换器,在压差为100kPa下渗透压力变化率小于10Pa/h。 /p p    strong 5.4 专门设计或制造的用于气体扩散浓缩的辅助系统、设备和部件 /strong /p p strong   按语 /strong /p p   气体扩散浓缩工厂用的辅助系统、设备和部件是向气体扩散组件供应UF6,把单个组件相互联接组成级联(或多级)以便使浓缩度逐步增高并且从各个扩散级联中提取UF6“产品”和“尾料”所需的工厂系统。由于扩散级联的惯性很大,级联运行的任何中断,特别是停车,会导致严重后果。因此,在所有工艺系统中严格持续地保持真空、自动防止事故、准确地自动调节气流对气体扩散工厂是很重要的。所有这一切,使该工厂需要装备大量专用的测量、调节和控制系统。 /p p   通常UF6从置于高压釜内的圆筒中蒸发,以气态形式经级联集管管路被分配到进口。从出口流出的UF6“产品”和“尾料”气流通过级联集管管路被分配到冷阱或压缩装置,UF6气体在那里液化,然后再进到适当的容器以便运输或贮存。由于一个气体扩散浓缩工厂由排成级联式的大量气体扩散组件组成,所以级联的集管管线有数公里长,含有几千条焊缝而且管道布局大量重复。上述设备、部件和管道系统都按非常高的真空和净度标准制造。 /p p    strong 注释 /strong /p p   耐UF6腐蚀的材料包括铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或含镍60%以上的合金以及氟化的烃聚合物。 /p p   以下所列物项直接接触UF6气体或直接控制级联中的气流: /p p   strong  5.4.1 供料系统/产品和尾料提取系统 /strong /p p   为浓缩厂专门设计或制造的工艺系统或设备,由耐UF6腐蚀的材料制造或用这种材料进行保护,包括: /p p   (a)供料釜、加热炉或系统,用于将UF6送入气体扩散级联 /p p   (b)凝华器、冷阱或泵,用于从扩散级联中取出UF6以便随后在加热时转送 /p p   (c)固化站或液化站,将来自级联的UF6气体压缩并冷凝成液态或固态,使其离开气体扩散级联 /p p   (d)“产品”器或“尾料”器,用来把UF6收集到容器中。 /p p    strong 5.4.2 集管管路系统 /strong /p p   专门设计或制造用于在气体扩散级联中操作UF6的管路系统 /p p   和集管系统。 /p p   注释 /p p   这种管路网络通常是“双头”集管系统,每个扩散单元连接一个集管头。 /p p    strong 5.4.3 真空系统 /strong /p p   (a)专门设计或制造的大型真空歧管、真空集管和抽气能力为5m3/min(或以上)的真空泵。 /p p   (b)专门设计的在含UF6气氛中使用的真空泵,用耐UF6腐蚀的材料制成或保护(见本条款注释)。这些泵可以是旋转式或正压式,可有排代式密封和碳氟化合物密封并且可以有特殊工作流体存在。 /p p    strong 5.4.4 特种截流阀和控制阀 /strong /p p   专门设计和制造的由耐UF6材料制成或保护、手动或自动的波纹管密封阀、截流阀和控制阀,用来安装在气体扩散浓缩工厂的主系统和辅助系统中。 /p p    strong 5.4.5 UF6质谱仪/离子源 /strong /p p   专门设计或制造的质谱仪,这些谱仪能从UF6气流中“在线”取得样品,并且具有以下所有特点: /p p   1. 能够测量320或更大原子质量单位的离子,且单位分辨率高于320 /p p   2. 离子源用镍、含镍60%或以上(按重量计)的镍铜合金或镍铬合金制成或保护 /p p   3. 电子轰击离子源 /p p   4. 有一个适合于同位素分析的收集系统。 /p p    strong 5.5 专门设计或制造用于气动浓缩厂的系统、设备和部件 /strong /p p    strong 按语 /strong /p p   在气体动力学浓缩过程中,要压缩气态UF6和轻气体(氢或氦)的混合气,然后使其通过分离元件。在这些元件中,通过在一个曲壁几何结构面上产生的高离心力,完成同位素分离。已经成功地开发了这种类型的两个过程:喷嘴分离过程和涡流管过程。就这两种过程而言,一个分离级的主要部件包括容纳专用分离元件(喷嘴或涡流管)的圆筒状容器、气体压缩机和用来排出压缩热的热交换器。一座气动浓缩工厂需要若干个这种分离级,因此其数量是能够反映最终用途的一个重要指标。由于气动过程使用UF6,所有设备、管线和仪器仪表中与这种气体接触的表面,都必须用同UF6接触时能保持稳定的材料制成或加以保护。 /p p    strong 注释 /strong /p p   本节所列物项不是直接接触UF6流程气体就是直接控制级联中的这种气流。所有接触流程气体的表面,均需用耐UF6材料制成或用耐UF6材料保护。就本节有关气动浓缩物项而言,耐UF6腐蚀的材料包括:铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或含镍60%或以上(按重量计)的合金以及氟化的烃聚合物。 /p p    strong 5.5.1 分离喷嘴 /strong /p p   专门设计或制造的分离喷嘴及其组件。分离喷嘴由一些狭缝状、曲率半径小于1mm的耐UF6腐蚀的弯曲通道组成,喷嘴中有一分离楔尖能将流过该喷嘴的气体分成两部分。 /p p    strong 5.5.2 涡流管 /strong /p p   专门设计或制造的涡流管及其组件。涡流管呈圆筒形或锥形,用耐UF6腐蚀材料制成或加以保护,并带有1个或多个切向进口。这些涡流管的一端或两端装有喷嘴型附件。 /p p    strong 注释 /strong /p p   供料气体在涡流管的一端切向进入涡流管,或通过一些旋流叶片,或从沿涡流管周边分布的若干个切向位置进入涡流管。 /p p    strong 5.5.3 压缩机和鼓风机 /strong /p p   专门设计或制造的用耐UF6/载气(氢或氦)混合气腐蚀材料制成或加以保护的压缩机或鼓风机。 /p p    strong 5.5.4 转动轴封 /strong /p p   专门设计或制造的带有密封式进气口和出气口的转动轴封,用于密封把压缩机或鼓风机转子同驱动马达连接起来的转动轴,以保证可靠的密封,防止过程气体外漏或空气或密封气体渗入充满UF6/载气混合气的压缩机或鼓风机内腔。 /p p    strong 5.5.5 冷却气体用热交换器 /strong /p p   专门设计或制造的用耐UF6腐蚀材料制成或加以保护的热交换器。 /p p    strong 5.5.6 分离元件外壳 /strong /p p   专门设计或制造的用耐UF6腐蚀的材料制成或加以保护的用作容纳涡流管或分离喷嘴的分离元件外壳。 /p p    strong 5.5.7 供料系统/产品和尾料提取系统 /strong /p p   专门为浓缩工厂设计或制造的用耐UF6腐蚀材料制成的或加以保护的流程系统或设备,包括: /p p   (a)供料釜、供料加热炉或供料系统,用于将UF6送入浓缩过程 /p p   (b)凝华器(或冷阱),用于从浓缩过程中移出UF6,供下一步加热转移 /p p   (c)固化器或液化器,用于通过压缩UF6并将其转换为液态形式或固态形式,从浓缩流程中移出UF6 /p p   (d)“产品”器或“尾料”器,用于把UF6收集到容器中。 /p p    strong 5.5.8 集管管路系统 /strong /p p   专门为操作气动级联中的UF6设计或制造的用耐UF6腐蚀材料制成或保护的集管管路系统。这种管路系统通常是“双头”集管系统,每级或每个级组连接一个集管头。 /p p    strong 5.5.9 真空系统和泵 /strong /p p   (a)为在含UF6气氛中工作而专门设计或制造的由真空歧管、真空集管和真空泵组成的真空系统 /p p   (b)为在含UF6气氛中工作而专门设计或制造的用耐UF6腐蚀的材料制成或保护的真空泵。这些泵也可用氟碳密封和特殊工作流体。 /p p    strong 5.5.10 特种截流阀和控制阀 /strong /p p   专门设计或制造的由耐UF6腐蚀材料制成或保护的直径为40mm或更大的可手动或自动的波纹管密封阀、截流阀和控制阀,用来安装在气动浓缩工厂的主系统和辅助系统中。 /p p    strong 5.5.11 UF6质谱仪/离子源 /strong /p p   专门设计或制造的质谱仪,这些谱仪能从UF6气流中“在线”取得样品,并且具有以下所有特点: /p p   1. 能够测量320或更大原子质量单位的离子,且单位分辨率高于320 /p p   2. 离子源用镍、含镍60%或以上(按重量计)的镍铜合金或镍铬合金制成或保护 /p p   3. 电子轰击离子源 /p p   4. 有一个适合于同位素分析的收集器系统。 /p p    strong 5.5.12 UF6/载气分离系统 /strong /p p   专门设计或制造的将UF6与载气(氢或氦)分离开来的过程系统。 /p p   注释 /p p   这些系统是为将载气中的UF6含量降至1ppm或更低而设计的,并可装有下述的设备: /p p   (a)低温热交换器和低温分离器,能承受153K(-120℃)或更低的温度 或 /p p   (b)低温制冷设备,能承受153K(-120℃)或更低的温度 或 /p p   (c)用于将UF6与载气分离开来的分离喷嘴或涡流管设备 或 /p p   (d)能冻结分离出UF6的冷阱。 /p p    strong 5.6 专门设计或制造用于化学交换或离子交换浓缩工厂的系统、设备和部件 /strong /p p strong   按语 /strong /p p   铀的几种同位素在质量上的微小差异,能引起化学反应平衡小的变化。这可用作同位素分离的基础。已经开发成功两种工艺过程:液-液化学交换过程和固-液离子交换过程。 /p p   在液-液化学交换过程中,两种不混溶的液相(水相和有机相)作逆流接触,结果给出数千分离级的级联效果。水相由含氯化铀的盐酸溶液组成 有机相由载氯化铀的萃取剂的有机溶剂组成。分离级联中使用的接触器可以是液-液交换柱(例如带有筛板的脉冲柱),或是液体离心接触器。在分离级联的两端要求实现化学转化(氧化和还原)以保证各端的回流要求。一个重要的设计问题是避免这些过程物流被某些金属离子沾污。所以,一般使用塑料的、衬塑料的(包括用氟碳聚合物)和(或)衬玻璃的柱和管线。 /p p   在固-液离子交换过程中,浓缩是由铀在一种特制的作用很快的离子交换树脂或吸附剂上的吸附/解吸完成的。使铀的盐酸溶液和其他化学试剂,从载有吸附剂填充床的圆筒形浓缩柱中通过。就一个连续过程而言,需要有一个回流系统,以便把从吸附剂上解吸下来的铀返回到液流中,这样便可收集“产品”和“尾料”。这是通过使用适宜的还原/氧化化学试剂来完成的。这些试剂可在单独的外部系统中完全再生,并可在同位素分离柱内部分地再生。由于在这种工艺过程中有热的浓盐酸溶液存在,使用的设备应该用专门的耐腐蚀材料制造或保护。 /p p    strong 5.6.1 液-液交换柱(化学交换) /strong /p p   为使用化学交换过程的铀浓缩工厂专门设计或制造的有机械动力输入的逆流液-液交换柱。为了耐浓盐酸溶液的腐蚀,这些交换柱及其内部构件一般用适宜的塑料(例如氟碳聚合物)或玻璃制作或保护。交换柱的级停留时间一般被设计得很短(30秒或更短)。 /p p    strong 5.6.2 液-液离心接触器(化学交换) /strong /p p   为使用化学交换过程的铀浓缩工厂而专门设计或制造的液-液离心接触器。此类接触器利用转动来达到有机相与水相的分散,然后借助离心力来分离开这两相。为了耐浓盐酸溶液的腐蚀,这些接触器一般用适当的塑料(例如碳氟聚合物)或玻璃来制造或保护。离心接触器的级停留时间被设计得很短(30秒或更短)。 /p p    strong 5.6.3 铀还原系统和设备(化学交换) /strong /p p   (a)为使用化学交换过程的铀浓缩工厂专门设计或制造的、用来将铀从一种价态还原为另一种价态的电化学还原槽。与过程溶液接触的这种槽的材料必须能耐浓盐酸溶液腐蚀。 /p p    strong 注释 /strong /p p   这种槽的阴极室必须设计成能防止铀被再氧化到较高的价态。为了把铀保持在阴极室中,这种槽可有一个由特种阳离子交换材料制成的抗渗的隔膜。阴极一般由石墨之类适宜的固态导体组成。 /p p   (b)装在级联的产品端,为将有机相流中的U+4移出、调节酸浓度和向电化学还原槽供料而专门设计或制造的系统。 /p p    strong 注释 /strong /p p   这些系统由以下设备组成:将有机相流中的U+4反萃取到水溶液中的溶剂萃取设备,完成溶液pH值调节和控制的蒸发设备和(或)其他设备,以及向电化学还原槽供料的泵或其他输送装置。一个重要的设计问题是要避免水相流被某些种类的金属离子沾污。因此,对该系统那些接触这种过程物流的部分,要用适当的材料(例如玻璃、碳氟聚合物、聚苯硫酸酯、聚醚砜和用树脂浸过的石墨)制成或保护的设备来构成。 /p p   strong  5.6.4 供料准备系统(化学交换) /strong /p p   专门设计或制造的用来为化学交换铀同位素分离工厂生产高纯氯化铀供料溶液的系统。 /p p    strong 注释 /strong /p p   这些系统由进行纯化所需的溶解设备、溶剂萃取设备和(或)离子交换设备,以及用来将U+6或U+4还原为U+3的电解槽组成。这些系统产生只含几个ppm的铬、铁、钒、钼和其他两价或价态更高的阳离子金属杂质的氯化铀溶液。处理高纯度U+3系统的若干部分的建造材料包括玻璃、碳氟聚合物、聚苯硫酸酯或聚醚砜塑料衬里的石墨和用树脂浸过的石墨。 /p p    strong 5.6.5 铀氧化系统(化学交换) /strong /p p   专门设计或制造用于将U+3氧化为U+4以便返回化学交换浓缩过程的铀同位素分离级联的系统。 /p p    strong 注释 /strong /p p   这些系统可装有如下设备: /p p   (a)使氯气和氧气与来自同位素分离设备的水相流相接触的设备以及将所得U+4萃入由级联的产品端返回、已被反萃取过的有机相的设备 /p p   (b)使水与盐酸分离开来,以便水和加浓了的盐酸可在适当位置被重新引入工艺过程的设备。 /p p   strong  5.6.6 快速反应离子交换树脂/吸附剂(离子交换) /strong /p p   为以离子交换过程进行铀浓缩而专门设计或制造的快速反应离子交换树脂或吸附剂包括:多孔大网络树脂,和(或)薄膜结构(在这些结构中,活性化学交换基团仅限于非活性多孔支持结构表面的一个涂层),以及处于包括颗粒或纤维在内的任何适宜形式的其他复合结构。这些离子交换树脂/吸附剂的直径有0.2mm或更小,而且在化学性质上必须能耐浓盐酸溶液腐蚀,在物理性质上必须有足够的强度因而在交换柱中不被降解。这些树脂/吸附剂是专门为实现很快的铀同位素交换动力学过程(低于10秒的交换速率减半期)而设计的,并且能在373-473K(100-200℃)的温度范围内操作。 /p p    strong 5.6.7 离子交换柱(离子交换) /strong /p p   为以离子交换过程进行铀浓缩而专门设计或制造的用于容纳和支撑离子交换树脂/吸附剂填充床层的直径大于1000mm的圆柱。这些柱一般用耐浓盐酸溶液腐蚀的材料(例如钛或碳氟塑料)制成或保护,并能在373-473K(100-200℃)的温度范围内和高于0.7MPa的压力下操作。 /p p   strong  5.6.8 离子交换回流系统(离子交换) /strong /p p   (a)专门设计或制造的用于使离子交换铀浓缩级联中所用化学还原剂再生的化学或电化学还原系统。 /p p   (b)专门设计或制造的用于使离子交换铀浓缩级联中所用化学氧化剂再生的化学或电化学氧化系统。 /p p    strong 注释 /strong /p p   离子交换浓缩过程可使用例如Ti+3作为还原阳离子,在这种情况下,所用还原系统将通过还原Ti+4使Ti+3再生。 /p p   离子交换浓缩过程可使用例如Fe+3作为氧化剂,在这种情况下,所用氧化系统将通过氧化Fe+2来使Fe+3再生。 /p p    strong 5.7 专门设计或制造用于以激光为基础的浓缩工厂的系统、设备和部件 /strong /p p strong   按语 /strong /p p   目前利用激光的浓缩过程的系统有两类:一类是过程介质为原子铀蒸气的系统,另一类是过程介质为铀化合物蒸气的系统。这些过程的通用名称包括:第一类——原子蒸气激光同位素分离(AVLIS或SILVA) 第二类——分子激光同位素分离(MLIS或MOLLS),包括同位素选择性激光活化化学反应(CRISLA)。 /p p   用于激光浓缩厂的系统、设备和部件包括:(a)铀金属蒸气供料装置(用于选择性光电离)或铀的化合物蒸气供料装置(用于选择性光离解或化学活化) (b)第一类中作为“产品”和“尾料”浓缩的铀金属和贫化的铀金属收集装置,和第二类中作为“产品”的浓缩的铀化合物和作为“尾料”的贫化的铀化合物的收集装置 (c)用于选择性地激发铀-235的激光过程系统 和(d)供料准备设备及产品转化设备。鉴于铀原子和铀化合物能谱的复杂性,可能需要与现有激光和激光光学技术中的任何一种联合使用。 /p p    strong 注释 /strong /p p   本节所列的许多物项将直接接触铀金属蒸气、液态金属铀,或由UF6或UF6和其他气体的混合物组成的过程气体。所有与铀或UF6接触的表面,都全部由耐腐蚀材料制造或保护。就有关基于激光的浓缩的物项而言,耐铀金属或铀合金蒸气或液体腐蚀的材料包括:氧化钇涂敷石墨和钽 耐UF6腐蚀的材料包括:铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或镍含量60%(按重量计)或以上的合金和氟化的烃聚合物。 /p p    strong 5.7.1 铀蒸发系统(AVLIS) /strong /p p   专门设计或制造的铀蒸发系统,供用于激光浓缩。 /p p    strong 注释 /strong /p p   这些系统可能含有电子束枪,设计供到靶上的功率(1kW或更大)足以按激光浓缩功能要求的速率产生铀金属蒸气。 /p p    strong 5.7.2 液态或蒸气铀金属处理系统(AVLIS)和部件 /strong /p p   专门设计或制造的用于激光浓缩的熔融铀、熔融铀合金或铀金属蒸气处理系统,或为这些系统专门设计或制造的部件。 /p p   strong  注释 /strong /p p   液态金属铀处理系统可包括坩埚及其冷却设备。这种系统的坩埚和其他接触熔融铀、熔融铀合金或铀金属蒸气的部分,要用有适当的耐腐蚀和耐高温性能的材料制成或保护。适当的材料可包括钽、氧化钇涂敷石墨、用其他稀土氧化物(见《核两用品及相关技术出口管制清单》)或其混合物涂敷的石墨。 /p p    strong 5.7.3 铀金属“产品”和“尾料”收集器组件(AVLIS) /strong /p p   专门设计或制造用于收集液态或固态铀金属的“产品”和“尾料”收集器组件。 /p p    strong 注释 /strong /p p   这些组件的部件由耐铀金属蒸气或液体的高温和腐蚀性的材料(例如氧化钇涂敷石墨或钽)制成或保护。这类部件可包括用于磁、静电或其他分离方法的管、阀、管接头、“出料槽”、进料管、热交换器和收集板。 /p p    strong 5.7.4 分离器组件外壳(AVLIS) /strong /p p   专门设计或制造的圆筒状或矩形容器,用于容纳铀金属蒸气源、电子束枪,及“产品”与“尾料”收集器。 /p p    strong 注释 /strong /p p   这些外壳有多种样式的开口,用于供电线路、供水管、激光束窗、真空泵接头及仪器仪表诊断和监测。这些开口均设有开闭装置,以便整修内部的部件。 /p p    strong 5.7.5 超声膨胀喷嘴(MLIS) /strong /p p   专门设计或制造的超声膨胀喷嘴,用于冷却UF6与载气的混合气至150K(-123℃)或更低的温度。这种喷嘴耐UF6腐蚀。 /p p    strong 5.7.6 “产品”或“尾料”收集器(MLIS) /strong /p p   专门设计或制造的用于在激光照射后收集铀产品材料或铀尾料材料的部件或设备。 /p p    strong 注释 /strong /p p   例如,产品收集器的作用是收集浓缩UF5固态材料。这种收集器可包括过滤式、冲击式或旋流式收集器,或其组合 并且耐UF5/UF6环境的腐蚀。 /p p    strong 5.7.7 UF6/载气压缩机(MLIS) /strong /p p   为在UF6环境中长期操作而专门设计或制造的UF6/载气混合气压缩机。这些压缩机中与过程气体接触的部件用耐UF6腐蚀的材料制成或保护。 /p p   strong  5.7.8 转动轴封(MLIS) /strong /p p   专门设计或制造的带密封进气口和出气口的转动轴封,用于密封把压缩机转子与驱动马达连接起来的转动轴,以保证可靠的密封,防止过程气体外漏,或空气或密封气体漏入充满UF6/载气混合气的压缩机内腔。 /p p    strong 5.7.9 氟化系统(MLIS) /strong /p p   专门设计或制造的用于将UF5(固体)氟化为UF6(气体)的系统。 /p p    strong 注释 /strong /p p   这些系统是为将所收集的UF5粉末氟化为UF6而设计的。其UF6随后将被收集于产品容器中,或作为进料被转送到为进行进一步浓缩而设置的MLIS单元中。在一种方案中,这种氟化反应可在同位素分离系统内部完成,以便一离开“产品”收集器便反应和回收。在另一种方案中,UF5粉末将被从“产品”收集器中移出/转送到一个适当的反应容器(例如流化床反应器、螺旋反应器或火焰塔式反应器)中进行氟化。在这两种方案中,都使用氟气(或其他适宜的氟化剂)贮存和转送设备,以及UF6收集和转送设备。 /p p    strong 5.7.10 UF6质谱仪/离子源(MLIS) /strong /p p   专门设计或制造的质谱仪,这些质谱仪能从UF6气流中“在线”取得样品,并且具有以下所有特点: /p p   1.能够测量320或更大原子质量单位的离子,且单位分辨率高于320 /p p   2. 离子源用镍、含镍60%或以上(按重量计)的镍铜合金或镍铬合金制成或保护 /p p   3. 电子轰击离子源 /p p   4. 有一个适合于同位素分析的收集器系统。 /p p    strong 5.7.11 进料系统/产品和尾料提取系统(MLIS) /strong /p p   为浓缩厂专门设计或制造的工艺系统或设备,用耐UF6腐蚀的材料制成或保护,包括: /p p   (a)供料釜、加热炉或系统,用于将UF6送入浓缩过程 /p p   (b)凝华器(或冷阱),用于从浓缩过程中移出UF6,供下一步加热转移 /p p   (c)固化或液化器,用于通过压缩UF6并将其转换为液态形式或固态形式,从浓缩过程中移出UF6 /p p   (d)“产品”器或“尾料”器,用于把UF6收集到容器中。 /p p    strong 5.7.12 UF6/载气分离系统(MLIS) /strong /p p   为将UF6从载气中分离出来专门设计或制造的工艺系统。 /p p    strong 注释 /strong /p p   这类系统可装有如下设备: /p p   (a)低温热交换器或低温分离器,能承受153K(-120℃)或更低的温度 或 /p p   (b)低温冷冻器,能承受153K(-120℃)或更低的温度 或 /p p   (c)能冻结分离出UF6的冷阱。 /p p   载气可为氮、氩或其他气体。 /p p    strong 5.7.13 激光系统(AVLIS,MLIS和CRISLA) /strong /p p   为铀同位素分离专门设计或制造的激光器或激光系统。 /p p    strong 注释 /strong /p p   在以激光为基础的浓缩过程中有重要意义的激光器和激光部件包括《核两用品及相关技术出口管制清单》中所列的那些激光器和激光部件。激光系统一般包含用于管理激光束(一个或多个)和向同位素分离室发射激光束的光学和电子部件。AVLIS过程使用的激光系统通常由两个激光器组成:一个铜蒸气激光器或某些固体激光器和一个可调染料激光器。MLIS使用的激光系统通常由一个CO2激光器或受激准分子激光器和一个多程光学池(两端有旋转镜)组成。这两种过程使用的激光器或激光系统都需要有一个谱频稳定器以便能够长时间地工作。 /p p    strong 5.8 专门设计或制造的用于等离子体分离浓缩厂的系统、设备和部件 /strong /p p strong   按语 /strong /p p   在等离子体分离过程中,铀离子等离子体通过一个调到铀-235 离子共振频率的电场,使铀-235离子优先吸收能量并增大它们螺旋状轨道的直径。具有大直径径迹的离子被捕集从而产生铀-235 被浓集的产品。由电离的铀蒸气组成的等离子体被约束在由超导磁体产生的高强度磁场的真空室内。这个过程的主要技术系统包括铀等离子体发生系统、带有超导磁体(见《核两用品及相关技术出口管制清单》)的分离器组件和用于收集“产品”和“尾料”的金属移出系统。 /p p   strong  5.8.1 微波动力源和天线 /strong /p p   为产生或加速离子专门设计或制造的微波动力源和天线,具有以下特性:频率高于30GHz,且用于产生离子的平均功率输出大于50kW。 /p p    strong 5.8.2 离子激发线圈 /strong /p p   专门设计或制造的射频离子激发线圈,用于高于100kHz的频率并能够输送的平均功率高于40kW。 /p p   strong  5.8.3 铀等离子体发生系统 /strong /p p   为产生铀等离子体专门设计或制造的系统,供等离子体分离浓缩厂使用。 /p p   strong  5.8.4 铀金属“产品”和“尾料”收集器组件 /strong /p p   专门设计或制造的用于固态铀金属的“产品”和“尾料”收集器组件。这类收集器组件由抗热和抗铀金属蒸气腐蚀的材料构成或由这类材料作防护层,例如有钇涂层的石墨或钽。 /p p    strong 5.8.5 分离器组件外壳 /strong /p p   专门设计或制造的圆筒形容器,供等离子体分离浓缩厂用来容纳铀等离子体源、射频驱动线圈及“产品”和“尾料”收集器。 /p p    strong 注释 /strong /p p   这种外壳有多种形式的开口,用于供电线路、扩散泵接头及仪器仪表诊断和监测。这些开口设有开闭装置,以便整修内部部件 它们由适当的非磁性材料例如不锈钢构成。 /p p    strong 5.9 专门设计或制造的用于电磁浓缩厂的系统、设备和部件 /strong /p p strong   按语 /strong /p p   在电磁过程中,由一种盐原料(典型的是四氯化铀)离子化产生的金属铀离子被加速并通过一个能使不同同位素离子沿不同轨迹运动的磁场。电磁同位素分离器的主要部件包括:同位素离子束分散/分离用的磁场、离子源及其加速系统和收集经分离的离子的系统。这个过程的辅助系统包括磁体供电系统、离子源高压供电系统、真空系统以及产品回收及部件的清洁/再循环用多种化学处理系统。 /p p    strong 5.9.1 同位素电磁分离器 /strong /p p   为分离铀同位素专门设计或制造的同位素电磁分离器及其设备和部件包括: /p p    strong (a)离子源 /strong /p p   专门设计或制造的单个或多个铀离子源由蒸气源、电离器和束流加速器组成,用石墨、不锈钢或铜等适当材料制造,能提供总强度为50mA或更高的离子束流。 /p p    strong (b)离子收集器 /strong /p p   收集器板极由专门为收集浓缩和贫化铀离子束而设计或制造的两个或多个槽和容器组成,用石墨或不锈钢一类的适当材料制造。 /p p   strong  (c)真空外壳 /strong /p p   为铀电磁分离器专门设计或制造的真空外壳,用不锈钢一类适当的非磁性材料制造,设计在0.1Pa或以下的压力下运行。 /p p    strong 注释 /strong /p p   外壳专门设计成装有离子源、收集器板极和水冷却管路,并有用于扩散泵连接结构和可用来移出和重新安装这些部件的开闭结构。 /p p    strong (d)磁极块 /strong /p p   专门设计或制造的磁极块,直径大于2m,用来在同位素电磁分离器内维持恒定磁场并在毗连分离器之间传输磁场。 /p p    strong 5.9.2 高压电源 /strong /p p   为离子源专门设计或制造的高压电源,具有以下所有特点:能连续工作,输出电压为20000V或更高,输出电流为1A或更大,电压稳定性在8小时内高于0.01%。 /p p   strong  5.9.3 磁体电源 /strong /p p   专门设计或制造的高功率直流磁体电源,具有以下所有特点:能在100V或更高的电压下持续产生500A或更大的电流输出,电流或电压稳定性在8小时内高于0.01%。 /p p    span style=" color: rgb(255, 0, 0) " strong 6. 生产和浓集重水、氘和氘化物的工厂和专门为其设计或制造的设备 /strong /span /p p    strong 按语 /strong /p p   重水可以通过多种方法生产。然而只有两种方法已证明具有商业意义:水-硫化氢交换法(GS法)和氨-氢交换法。 /p p   GS法是基于在一系列塔内(通过顶部冷和底部热的方式操作)水和硫化氢之间氢与氘交换的一种方法。在此过程中,水向塔底流动,而硫化氢气体从塔底向塔顶循环。使用一系列多孔塔板促进硫化氢气体和水之间的混合。在低温下氘向水中迁移,而在高温下氘向硫化氢中迁移。氘被浓缩了的硫化氢气体或水从第一级塔的热段和冷段的接合处排出,并且在下一级塔中重复这一过程。最后一级的产品(氘浓缩至30%的水)送入一个蒸馏单元以制备反应堆级的重水(即99.75%的氧化氘)。 /p p   氨-氢交换法可以在催化剂存在下通过同液态氨的接触从合成气中提取氘。合成气被送进交换塔,而后送至氨转换器。在交换塔内气体从塔底向塔顶流动,而液氨从塔顶向塔底流动。氘从合成气的氢中洗涤下来并在液氨中浓集。液氨然后流入塔底部的氨裂化器,而气体流入塔顶部的氨转换器。在以后的各级中进一步浓缩,最后通过蒸馏生产出反应堆级重水。合成气进料可由氨厂提供,而这个氨厂也可以结合氨-氢交换法重水厂一起建造。氨-氢交换法也可以用普通水作为氘的供料源。 /p p   利用GS法或氨-氢交换法生产重水的工厂所用的许多关键设备物项是与化学工业和石油工业的若干生产工序所用设备相同的。对于利用GS法的小厂来说尤其如此。然而,这种设备物项很少有“现货”供应。GS法和氨-氢交换法要求在高压下处理大量易燃、有腐蚀性和有毒的流体。因此,在制定使用这些方法的工厂和设备所用的设计和运行标准时,要求认真注意材料的选择和材料的规格,以保证在长期服务中有很高的安全性和可靠性。规模的选择主要取决于经济性和需要。因而,大多数设备物项将按照用户的要求制造。 /p p   最后,应该指出,对GS法和氨-氢交换法而言,那些单独地看并非专门设计或制造用于重水生产的设备物项可以组装成专门设计或制造用于生产重水的系统。氨-氢交换法所用的催化剂生产系统和在上述两种方法中将重水最终加浓至反应堆级所用的水蒸馏系统就是此类系统的实例。 /p p   专门设计或制造用于利用GS法或氨-氢交换法生产重水的设备物项包括如下: /p p    strong 6.1 水-硫化氢交换塔 /strong /p p   专门设计或制造用于利用GS法生产重水的交换塔。该塔直径1.5m或更大,能够在大于或等于2MPa压力下运行。 /p p    strong 6.2 鼓风机和压缩机 /strong /p p   专门为利用GS法生产重水而设计或制造的用于循环硫化氢气体(即含H2S70%以上的气体)的单级、低压头(即0.2MPa)离心式鼓风机或压缩机。这些鼓风机或压缩机的气体通过能力大于或等于56 m3/s,能在大于或等于1.8MPa的吸入压力下运行,并有对湿H2S介质的密封设计。 /p p    strong 6.3 氨-氢交换塔 /strong /p p   专门设计或制造用于利用氨-氢交换法生产重水的氨-氢交换塔。该塔高度大于或等于35m,直径1.5m至2.5m,能够在大于15MPa压力下运行。这些塔至少都有一个用法兰联接的轴向孔,其直径与交换塔筒体直径相等,通过此孔可装入或拆除塔内构件。 /p p   strong  6.4 塔内构件和多级泵 /strong /p p   专门为利用氨-氢交换法生产重水而设计或制造的塔内构件和多级泵。塔内构件包括专门设计的促进气/液充分接触的多级接触装置。多级泵包括专门设计的用来将一个接触级内的液氨向其他级塔循环的水下泵。 /p p    strong 6.5 氨裂化器 /strong /p p   专门设计或制造的用于利用氨-氢交换法生产重水的氨裂化器。该装置能在大于或等于3MPa的压力下运行。 /p p    strong 6.6 红外吸收分析器 /strong /p p   能在氘浓度等于或高于90%的情况下“在线”分析氢/氘比的红外吸收分析器。 /p p    strong 6.7 催化燃烧器 /strong /p p   专门设计或制造的用于利用氨-氢交换法生产重水时将浓缩氘气转化成重水的催化燃烧器。 /p p    strong 6.8 整体重水提浓系统,或其蒸馏塔 /strong /p p   专门设计或制造用于将重水提浓至反应堆级氘浓度的整体重水提浓系统,或其蒸馏塔。 /p p    strong 注释 /strong /p p   通常采用水蒸馏技术从轻水中分离重水的这些系统是专门设计或制造用于由浓度较低的重水原料生产反应堆级重水的(即典型地99.75%氧化氘)。 /p p    strong 6.9 氨合成转换器或合成器 /strong /p p   专门设计或制造的用于利用氨-氢交换法生产重水的氨合成转换器或合成器。 /p p   注释 /p p   这些转换器或合成器从氨/氢高压交换塔获得合成气体(氮和氢),而合成氨则返回到交换塔里。 /p p   strong   span style=" color: rgb(255, 0, 0) " 7. 分别如4.和5.所定义的用于燃料元件制造和铀同位素分离的铀和钚转换厂和专门为其设计或制造的设备 /span /strong /p p   出口 /p p   只有遵照《中华人民共和国核出口管制条例》所规定的程序才能出口本条款范围之内的成套主要设备。在本条款范围之内的所有工厂、系统和专门设计或制造的设备可用于处理、生产或使用特种可裂变材料。 /p p    strong 7.1 铀转化厂及专门为其设计或制造的设备 /strong /p p strong   按语 /strong /p p   铀转化厂和系统可以对铀进行一种或几种转化使其从一种化学状态转变为另一种化学状态,包括:从铀矿石浓缩物到UO3的转化 从UO3到UO2的转化 从铀的氧化物到UF4或UF6的转化 从UF4到UF6的转化 从UF6到UF4的转化 从UF4到金属铀的转化 以及从铀的氟化物到UO2的转化。铀转化工厂所用许多关键设备物项与化学加工工业的若干生产工序所用设备相同。例如,这些过程中使用的各类设备可以包括:加热炉、回转炉、流化床反应器、火焰塔式反应器、液体离心机、蒸馏塔和液-液萃取塔。不过,这些物项中很少有“现货”供应,大部分将须按用户要求和规格制造。在某些情况下,为了适应所处理的一些化学品(HF、F2、ClF3和各种铀的氟化物)的腐蚀性质,需要作专门的设计和建造考虑。最后应该指出,在所有铀转化过程中,那些单独地看不是为铀转化专门设计或制造的设备物项,可被组装成专门为铀转化而设计或制造的系统。 /p p    strong 7.1.1 将铀矿石浓缩物转化为UO3而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从铀矿石浓缩物到UO3的转化可通过以下步骤实现:首先,用硝酸溶解铀矿石浓缩物,用磷酸三丁酯之类溶剂萃取纯化的硝酸铀酰 然后,硝酸铀酰通过浓缩和脱硝转化为UO3,或用气态氨中和产生重铀酸铵,接着通过过滤、干燥和煅烧转化为UO3。 /p p   strong  7.1.2 为将UO3转化为UF6而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UO3到UF6的转化可以直接通过氟化实现。该过程需要一个氟气源或三氟化氯源。 /p p    strong 7.1.3 为将UO3转化为UO2而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UO3到UO2的转化,可以用裂解的氨气或氢气还原UO3来实现。 /p p    strong 7.1.4 为将UO2转化为UF4而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UO2到UF4的转化,可以用氟化氢气体(HF)在300—500℃与UO2反应来实现。 /p p    strong 7.1.5 为将UF4转化为UF6而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UF4到UF6的转化,可以用氟气在塔式反应器中与UF4发生放热反应来实现。使流出气体通过一个冷却到-10℃的冷阱把热的流出气体中的UF6冷凝下来。该过程需要一个氟气源。 /p p    strong 7.1.6 为将UF4转化为金属铀而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UF4到金属铀的转化,可用镁(大批量)或钙(小批量)还原UF4来实现。还原反应一般在高于铀熔点(1130℃)的温度下进行。 /p p    strong 7.1.7 为将UF6转化为UO2而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UF6到UO2的转化,可用三种方法来实现。在第一种方法中,用氢气和水蒸气将UF6还原并水解为UO2。在第二种方法中,通过溶解在水中而将UF6水解,然后加入氨沉淀出重铀酸铵,接着可在820℃用氢气将重铀酸铵还原为UO2。在第三种方法中,将气态UF6、CO2和NH3通入水中,结果沉淀出碳酸铀酰铵。在500-600℃,碳酸铀酰铵与水蒸气和氢气发生反应,生成UO2。 /p p   从UF6到UO2的转化,通常是燃料制造厂的第一个工序。 /p p    strong 7.1.8 为将UF6转化为UF4而专门设计或制造的系统 /strong /p p strong   注释 /strong /p p   从UF6到UF4的转化,是用氢还原实现的。 /p p    strong 7.1.9 为将UO2转化为UCl4而专门设计或制造的设备 /strong /p p strong   注释 /strong /p p   从UO2到UCl4转化可通过两个流程之一。在第一个流程中,在大约400℃的温度下,UO2与四氯化碳(CCl4)发生反应。在第二个流程中,在大约700℃的温度下,以及存在炭黑(CAS1333-86-4)、一氧化碳的条件下,UO2与氯发生反应产生UCl4。 /p p    strong 7.2 钚转化厂和专门为其设计或制造的设备 /strong /p p strong   按语 /strong /p p   钚转化厂和系统可以对钚进行一种或几种转化使其从一种化学状态转化为另一种化学状态。包括,从硝酸钚到PuO2的转化 从PuO2到PuF4的转化 以及从PuF4到钚金属的转化。通常钚转化厂与后处理设施相关,但是,也可能与钚燃料元件制造设施相关。许多钚转化厂的关键设备物项与化学加工工业的若干生产工序所用设备相同。例如,这些过程中使用的各类设备可以包括:加热炉、回转炉、流化床反应器、火焰塔式反应器、液体离心机、蒸馏塔和液-液萃取塔。也需要热室、手套箱和遥控机械手。但是,这些物项很少有“现货”供应,大部分须按用户的要求和规格制造。对与钚有关的特殊的放射性、毒性和临界危险特别仔细的设计是关键的。在某些情况下,为了适应所处理的一些化学品(例如HF)的腐蚀性质,需要作专门的设计和建造考虑。最后应该注意,在所有的钚转化流程中,那些单独地看不是为钚转化专门设计或制造的设备物项,可被组装成专门为钚转化而设计或制造的系统。 /p p   strong  7.2.1 为将硝酸钚转化到氧化钚而专门设计或制造的设备 /strong /p p strong   注释 /strong /p p   该流程包括的主要功能为:流程供料贮存和调料、沉淀和固-液分离,煅烧、产品处理、通风、废物管理,以及流程控制。流程系统经过特别的设计,以避免发生临界和辐射效应,以及使得毒性危险最小。在大多数后处理设施中,这一流程包括将硝酸钚转化到氧化钚。其它流程可能包括草酸钚或过氧化钚的沉淀。 /p p    strong 7.2.2 为生产钚金属而专门设计或制造的设备 /strong /p p strong   注释 /strong /p p   该流程通常包括氧化钚的氟化,通常以高腐蚀性的氢氟酸来生产氟化钚,而后用高纯钙金属还原生成金属钚和氟化钙残渣。该流程所包括的主要功能是氟化(例如,包括采用贵重金属制造的或作为内衬的设备)、金属还原(例如,使用陶瓷坩埚)、残渣回收、产品处理、通风、废物管理和流程控制。流程系统经过特别的设计,以避免发生临界和辐射效应,以及使得毒性危险最小。其它流程包括草酸钚或过氧化钚的氟化,然后还原至金属。 /p
  • 玉林市生态环境应急与技术服务中心180.00万元采购ICP-AES,水质重金属,ICP-MS
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 广西科文招标有限公司九洲江流域应急监测仪器采购项目(项目编号YLZC2024-J1-990476-KWZB)竞争性谈判公告 广西壮族自治区-玉林市-玉州区 状态:公告 更新时间: 2024-08-23 广西科文招标有限公司九洲江流域应急监测仪器采购项目(项目编号:YLZC2024-J1-990476-KWZB)竞争性谈判公告 2024-08-23 18:00 项目概况 九洲江流域应急监测仪器采购项目采购项目的潜在供应商应在广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)获取(下载)竞争性谈判文件,并于2024年8月29日15时30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:YLZC2024-J1-990476-KWZB 项目名称:九洲江流域应急监测仪器采购项目 采购方式:竞争性谈判 预算金额:180万元 最高限价:与预算金额一致 采购需求: 序号 标的的名称 数量/单位 简要技术需求或者货物要求 1 电感耦合等离子体质谱仪(ICP-MS) 1台 用途:适用于包括锌、铊、铜、铁、铬、镉、铅、铋、锑、硒、砷、汞、镍、铀、铂等在内不少于65种金属元素的检测分析。 一、技术参数: 1.仪器应用要求 1.1 仪器需适用于地表水、饮用水源地水、地下水等相对洁净样品分析及污染源废水、废气、土壤、固废等高本底样品分析以及海水等高盐样品分析。 1.2 至少且不限于符合《水质65种元素的测定 电感耦合等离子体质谱法》(HJ 700-2014)、《海洋监测技术规程 第1部分:海水》(HY/T 147.1-2013 )、《土壤和沉积物19种金属元素总量的测定 电感耦合等离子体质谱法》(HJ 1315—2023)等标准的相关要求。 ...... 具体详见竞争性谈判文件 2 便携式X荧光土壤重金属分析仪 1台 ▲1、测试范围:环境土壤测试模式可测试:Mg、Al、Si、S、Cl、P、Pb、Cr、Cu、Zn、As、Ni、Cd、Hg、Mn、Mo、Zr、Sr、U、Rb、Th、Se、Au、W、Co、Fe、V、Ti、Sc、Ca、K、Ba、Cs、Te、Sb、Sn、Pd、Ag等38种元素以上,检出限达到ppm级别。 2、 可以存储和显示重金属的种类、含量等。储存数据及图谱超过100000组。 3、数据传输与处理:蓝牙、USB数据线,可外接平板电脑等进行操作。 4、设备前端设置有样品感应装置。 ...... 具体详见竞争性谈判文件 合同履约期限:自签订合同之日起,在30天内交货安装调试完毕并验收合格。 本项目不接受联合体。 二、申请人的资格条件: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策需满足的资格要求:专门面向中小微企业采购的项目(货物制造商应为中小微企业或监狱企业或残疾人福利性单位); 3、本项目的特定资格要求:无。 三、获取竞争性谈判文件 时间:公告发布之日起至2024年8月28日,每天上午08:00-12:00;下午15:00-18:00(北京时间,法定节假日除外)。 地点:广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)。 方式:网上下载。本项目不发放纸质文件,供应商应自行在广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)下载竞争性谈判文件(操作路径:登录广西政府采购云平台-项目采购-获取采购文件-找到本项目-点击“申请获取采购文件”),电子响应文件制作需要基于广西政府采购云平台获取的竞争性谈判文件编制。 售价:0元。 四、响应文件提交 1、首次响应文件提交截止时间:2024年8月29日15时30分(北京时间) 2、地点:通过广西政府采购云平台在线提交。 五、响应文件开启 1、首次响应文件开启时间:2024年8月29日15时30分(北京时间) 2、地点:本项目将在广西政府采购云平台电子开标大厅解密、开启。 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1、竞标保证金(人民币):18000.00 元。 2、单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本项目上述服务以外的其他采购活动。 3、根据财政部《关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的规定,对在“信用中国”网站(www.creditchina.gov.cn) 、中国政府采购网(www.ccgp.gov.cn)被列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的供应商,不得参与政府采购活动。 4、网上查询地址:中国政府采购网(www.ccgp.gov.cn)、广西壮族自治区政府采购网(zfcg.gxzf.gov.cn)、广西玉林市人民政府门户网(www.yulin.gov.cn)。 5、本项目需要落实的政府采购政策:(1)政府采购促进中小企业发展。 (2)政府采购支持采用本国产品的政策。 (3)强制采购节能产品;优先采购节能产品、环境标志产品。 (4)政府采购促进残疾人就业政策。 (5)政府采购支持监狱企业发展。 6、谈判注意事项: (1)响应文件提交方式:本项目为全流程电子化政府采购项目,通过广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)实行在线电子竞标,供应商应先安装“广西政府采购云平台电子交易客户端”(请自行前往广西政府采购云平台进行下载),并按照本项目竞争性谈判文件和广西政府采购云平台的要求编制、加密后在首次响应文件提交截止时间前通过网络上传至广西政府采购云平台,供应商在广西政府采购云平台提交电子版响应文件时,请填写参加远程开标活动经办人联系方式。 (2)供应商应及时熟悉掌握电子标系统操作指南(见广西政府采购云平台电子卖场首页右上角—服务中心—帮助文档—项目采购):https://service.zcygov.cn/#/knowledges/tree?tag=AG1DtGwBFdiHxlNdhY0r;及时完成CA申领和绑定(见广西壮族自治区政府采购网—办事服务—下载专区-广西政府采购云平台CA证书办理操作指南)。 (3)未进行网上注册并办理数字证书(CA认证)的供应商将无法参与本项目政府采购活动,潜在供应商应当在首次响应文件提交截止时间前,完成电子交易平台上的CA数字证书办理及响应文件的提交。完成CA数字证书办理预计7日左右,供应商只需办理其中一家CA数字证书及签章,建议各供应商抓紧时间办理。 (4)为确保网上操作合法、有效和安全,请供应商确保在电子竞标过程中能够对相关数据电文进行加密和使用电子签章,妥善保管CA数字证书并使用有效的CA数字证书参与整个采购活动。 注:供应商应当在首次响应文件提交截止时间前完成电子响应文件的上传、递交,首次响应文件提交截止时间前可以补充、修改或者撤回响应文件。补充或者修改响应文件的,应当先行撤回原文件,补充、修改后重新上传、递交。首次响应文件提交截止时间前未完成上传、递交的,视为撤回响应文件。首次响应文件提交截止时间以后上传递交的响应文件,广西政府采购云平台将予以拒收。 7、CA证书在线解密:首次响应文件开启时,须要供应商携带制作响应文件时用来加密的有效数字证书(CA认证)登录广西政府采购云平台电子开标大厅现场按规定时间对加密的响应文件进行解密,否则后果自负。 8、供应商需要在具备有摄像头及语音功能且互联网网络状况良好的电脑登录广西政府采购云平台远程开标大厅参与本次谈判,否则后果自负。 9、若对项目采购电子交易系统操作有疑问,可登录广西政府采购云平台(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打广西政府采购云平台服务热线95763获取热线服务帮助。 10、评审方式:本项目采用远程异地评审。评标主会场地址:广西科文招标有限公司玉林分公司(广西玉林市玉州区人民东路东222号)进行评审;评标副会场地址:广西科文招标有限公司(广西南宁市青秀区民族大道141号中鼎万象东方D区五层广西科文招标有限公司评标室)进行评审。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:玉林市生态环境应急与技术服务中心 地址:玉林市玉东新区金榜路与阳光路交叉口西北侧 联系人:吕晓明 联系方式:0775-2680181 2.采购代理机构信息 名 称:广西科文招标有限公司 地 址:玉林市玉州区人民东路东222号 联系方式:0775-2685358 项目联系人: 陈文献 3.监督部门 名 称:玉林市财政局 电 话:0775-2697961 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:ICP-AES,水质重金属,ICP-MS 开标时间:2024-08-29 15:30 预算金额:180.00万元 采购单位:玉林市生态环境应急与技术服务中心 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:广西科文招标有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 广西科文招标有限公司九洲江流域应急监测仪器采购项目(项目编号YLZC2024-J1-990476-KWZB)竞争性谈判公告 广西壮族自治区-玉林市-玉州区 状态:公告 更新时间: 2024-08-23 广西科文招标有限公司九洲江流域应急监测仪器采购项目(项目编号:YLZC2024-J1-990476-KWZB)竞争性谈判公告 2024-08-23 18:00 项目概况 九洲江流域应急监测仪器采购项目采购项目的潜在供应商应在广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)获取(下载)竞争性谈判文件,并于2024年8月29日15时30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:YLZC2024-J1-990476-KWZB 项目名称:九洲江流域应急监测仪器采购项目 采购方式:竞争性谈判 预算金额:180万元 最高限价:与预算金额一致 采购需求: 序号 标的的名称 数量/单位简要技术需求或者货物要求 1 电感耦合等离子体质谱仪(ICP-MS) 1台 用途:适用于包括锌、铊、铜、铁、铬、镉、铅、铋、锑、硒、砷、汞、镍、铀、铂等在内不少于65种金属元素的检测分析。 一、技术参数: 1.仪器应用要求 1.1 仪器需适用于地表水、饮用水源地水、地下水等相对洁净样品分析及污染源废水、废气、土壤、固废等高本底样品分析以及海水等高盐样品分析。 1.2 至少且不限于符合《水质65种元素的测定 电感耦合等离子体质谱法》(HJ 700-2014)、《海洋监测技术规程 第1部分:海水》(HY/T 147.1-2013 )、《土壤和沉积物19种金属元素总量的测定 电感耦合等离子体质谱法》(HJ 1315—2023)等标准的相关要求。 ...... 具体详见竞争性谈判文件 2 便携式X荧光土壤重金属分析仪 1台 ▲1、测试范围:环境土壤测试模式可测试:Mg、Al、Si、S、Cl、P、Pb、Cr、Cu、Zn、As、Ni、Cd、Hg、Mn、Mo、Zr、Sr、U、Rb、Th、Se、Au、W、Co、Fe、V、Ti、Sc、Ca、K、Ba、Cs、Te、Sb、Sn、Pd、Ag等38种元素以上,检出限达到ppm级别。 2、 可以存储和显示重金属的种类、含量等。储存数据及图谱超过100000组。 3、数据传输与处理:蓝牙、USB数据线,可外接平板电脑等进行操作。 4、设备前端设置有样品感应装置。 ...... 具体详见竞争性谈判文件 合同履约期限:自签订合同之日起,在30天内交货安装调试完毕并验收合格。 本项目不接受联合体。 二、申请人的资格条件: 1、满足《中华人民共和国政府采购法》第二十二条规定; 2、落实政府采购政策需满足的资格要求:专门面向中小微企业采购的项目(货物制造商应为中小微企业或监狱企业或残疾人福利性单位); 3、本项目的特定资格要求:无。 三、获取竞争性谈判文件 时间:公告发布之日起至2024年8月28日,每天上午08:00-12:00;下午15:00-18:00(北京时间,法定节假日除外)。 地点:广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)。 方式:网上下载。本项目不发放纸质文件,供应商应自行在广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)下载竞争性谈判文件(操作路径:登录广西政府采购云平台-项目采购-获取采购文件-找到本项目-点击“申请获取采购文件”),电子响应文件制作需要基于广西政府采购云平台获取的竞争性谈判文件编制。 售价:0元。 四、响应文件提交 1、首次响应文件提交截止时间:2024年8月29日15时30分(北京时间) 2、地点:通过广西政府采购云平台在线提交。 五、响应文件开启 1、首次响应文件开启时间:2024年8月29日15时30分(北京时间) 2、地点:本项目将在广西政府采购云平台电子开标大厅解密、开启。 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1、竞标保证金(人民币):18000.00 元。 2、单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。为本项目提供过整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本项目上述服务以外的其他采购活动。 3、根据财政部《关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库〔2016〕125号)的规定,对在“信用中国”网站(www.creditchina.gov.cn) 、中国政府采购网(www.ccgp.gov.cn)被列入失信被执行人、重大税收违法失信主体、政府采购严重违法失信行为记录名单及其他不符合《中华人民共和国政府采购法》第二十二条规定条件的供应商,不得参与政府采购活动。 4、网上查询地址:中国政府采购网(www.ccgp.gov.cn)、广西壮族自治区政府采购网(zfcg.gxzf.gov.cn)、广西玉林市人民政府门户网(www.yulin.gov.cn)。 5、本项目需要落实的政府采购政策: (1)政府采购促进中小企业发展。 (2)政府采购支持采用本国产品的政策。 (3)强制采购节能产品;优先采购节能产品、环境标志产品。 (4)政府采购促进残疾人就业政策。 (5)政府采购支持监狱企业发展。 6、谈判注意事项: (1)响应文件提交方式:本项目为全流程电子化政府采购项目,通过广西政府采购云平台(https://www.gcy.zfcg.gxzf.gov.cn/)实行在线电子竞标,供应商应先安装“广西政府采购云平台电子交易客户端”(请自行前往广西政府采购云平台进行下载),并按照本项目竞争性谈判文件和广西政府采购云平台的要求编制、加密后在首次响应文件提交截止时间前通过网络上传至广西政府采购云平台,供应商在广西政府采购云平台提交电子版响应文件时,请填写参加远程开标活动经办人联系方式。 (2)供应商应及时熟悉掌握电子标系统操作指南(见广西政府采购云平台电子卖场首页右上角—服务中心—帮助文档—项目采购):https://service.zcygov.cn/#/knowledges/tree?tag=AG1DtGwBFdiHxlNdhY0r;及时完成CA申领和绑定(见广西壮族自治区政府采购网—办事服务—下载专区-广西政府采购云平台CA证书办理操作指南)。 (3)未进行网上注册并办理数字证书(CA认证)的供应商将无法参与本项目政府采购活动,潜在供应商应当在首次响应文件提交截止时间前,完成电子交易平台上的CA数字证书办理及响应文件的提交。完成CA数字证书办理预计7日左右,供应商只需办理其中一家CA数字证书及签章,建议各供应商抓紧时间办理。 (4)为确保网上操作合法、有效和安全,请供应商确保在电子竞标过程中能够对相关数据电文进行加密和使用电子签章,妥善保管CA数字证书并使用有效的CA数字证书参与整个采购活动。 注:供应商应当在首次响应文件提交截止时间前完成电子响应文件的上传、递交,首次响应文件提交截止时间前可以补充、修改或者撤回响应文件。补充或者修改响应文件的,应当先行撤回原文件,补充、修改后重新上传、递交。首次响应文件提交截止时间前未完成上传、递交的,视为撤回响应文件。首次响应文件提交截止时间以后上传递交的响应文件,广西政府采购云平台将予以拒收。 7、CA证书在线解密:首次响应文件开启时,须要供应商携带制作响应文件时用来加密的有效数字证书(CA认证)登录广西政府采购云平台电子开标大厅现场按规定时间对加密的响应文件进行解密,否则后果自负。 8、供应商需要在具备有摄像头及语音功能且互联网网络状况良好的电脑登录广西政府采购云平台远程开标大厅参与本次谈判,否则后果自负。 9、若对项目采购电子交易系统操作有疑问,可登录广西政府采购云平台(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打广西政府采购云平台服务热线95763获取热线服务帮助。 10、评审方式:本项目采用远程异地评审。评标主会场地址:广西科文招标有限公司玉林分公司(广西玉林市玉州区人民东路东222号)进行评审;评标副会场地址:广西科文招标有限公司(广西南宁市青秀区民族大道141号中鼎万象东方D区五层广西科文招标有限公司评标室)进行评审。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:玉林市生态环境应急与技术服务中心 地址:玉林市玉东新区金榜路与阳光路交叉口西北侧 联系人:吕晓明 联系方式:0775-2680181 2.采购代理机构信息 名 称:广西科文招标有限公司 地 址:玉林市玉州区人民东路东222号 联系方式:0775-2685358 项目联系人: 陈文献 3.监督部门 名 称:玉林市财政局 电 话:0775-2697961
  • 中国科学报:放射性废物处置遇技术难关
    日益增加的放射性废物令人担忧,然而很多专家都无法清楚说出目前中国究竟有多少放射性废物。公众的担忧不仅来自不断发生的核泄漏事故,更与放射性废物的管理息息相关。将于3月1日实施的《放射性废物安全管理条例》或将推动我国放射性污染物的防治工作,但仍需要接受公众的审视与检验。   2月13日,离大学正式开学还有一星期,《中国科学报》记者来到位于北京师范大学南门外的放射性药物化学实验室。   实验室管理员李娜一早便开始忙碌起来。“过几天,我就更忙了!”她一边在放置放射性废物的冰柜前作记录,一边说,“等学生放假回来之后,实验产生的放射性废物又会多起来。”   在烦琐的处理流程和冗长的半衰期中,李娜必须每天记录下放射性废物的情况,等待专门机构将这些特殊的“垃圾”集中收走。   如同李娜所在的这间实验室一样,许多实验室也产生放射性废物。不仅如此,广泛使用的核电站、铀矿、辐照设备等工业设施则产生了数量更多、放射性剂量更大的废物。   2003年正式实施的《放射性污染防治法》,标志着我国依法防治放射性污染工作迈出了重要的一步。法律明确规定了放射性污染管理的五个方面,放射性废物管理则是其中之一。在此基础上制定的《放射性废物安全管理条例》将于今年3月1日起实施。   中国辐射防护研究院三废治理研究所副所长孙庆红告诉《中国科学报》记者,目前最大的难题在于高放射性水平废物的永久处置。   越来越多的“垃圾”   核技术在医药、能源、军事等领域的应用已经让人们尝到了它的甜头。同时,日益增加的放射性废物也让专家们头疼不已。但当《中国科学报》记者采访相关领域专家时,却没有一位专家能说得清目前究竟有多少放射性废物。   李娜所在的放射性药物化学实验室主要研究放射性药物在动物体内的情况,每天都会产生大量包含放射性的溶液和动物尸体。   李娜介绍,他们所用的药物半衰期都不长,而10个半衰期后,放射性剂量则被认为已经减少到不足以造成伤害的程度,便可以进一步处置。“这个时候,我们就可以向环保局提出申请,请专门人员来收走这些废物了。”   最近这些年,李娜感到收“垃圾”的人来得越来越频繁,实验室的放射性废物也越来越多了。   同样地,据中国原子能科学研究院统计,2009年,该院共收贮放射性固体废物22.2立方米,主要有污土、金属、工作服、塑料、玻璃、棉纱等,均为“低水平放射性废物”。在1996年发布的《放射性废物分类标准》中,这是一种“在正常操作和运输过程中通常不需要屏蔽”的放射性废物。   中国科学技术大学国家同步辐射实验室教授李珏忻也对《中国科学报》记者称:“随着技术的发展,核仪器使用越来越多,留下的废物肯定越来越多。”例如,在找矿时地质工作者使用的探伤仪,其中带有小型放射源。   不仅在科学研究上,放射源也快速进入了民用领域。在常见的烟雾报警器中,便含有少量的放射性金属镭。“单个报警器放射性强度很低,但广泛使用后数量激增,放射性镭的处理便成了大问题。”孙庆红指出。   辐照技术的推广也带来不少放射性废物。据不完全统计,截至2011年,全国已建成运行的辐照装置超过200座。   早在1975年,湖南彬州市农业科学研究所获取钴源38支,放射总强度为5500克镭当量。当时,彬州市农科所利用钴源先后开展了辐射诱变育种、食品灭菌消毒、刺激作物增产、辐射产品加工等综合性应用。   30多年后,这批钴源早已废弃。其间产生了大量放射性废物,针对这些废物的处置则花费了330多万元的经费。   此外,自1956年以来,全国几十座铀矿山、铀水冶厂、铀采冶联合企业已遍布云南、西藏、内蒙古等地区,完整的铀矿冶工业体系同样留下了危险的放射性废物。   孙庆红透露,我国现有核电站中,每一个百万千瓦级的机组将产生50到100立方米的放射性固体废物。   而根据2007年国务院批准的核电中长期规划,到2020年前,中国将新建27个百万千瓦级核电机组,届时将有超过30台的百万千瓦核电机组投入运行。据此估算,到2020年,由这些核电机组运行产生的放射性固体废物将在1500到3000立方米之间。   值得注意的是,尽管这些来自核电站的废物体积看上去并没有达到惊人的地步,但它们都属于“高放射性废物”,其放射性水平高、释热量大、毒性大,处理和处置难度非常大,且费用非常高。   日益严格的管理   近年来,不断发生的核事故让人们谈“核”色变,也与放射性废物的管理无不相关。西安交通大学能源与动力工程学院教授胡华四向《中国科学报》记者强调:“放射性废物安全管理事关人体健康和环境安全,也直接关系到核能和非动力核技术及应用事业的健康发展。”   其实,早在1987年,当时的国家环保总局下发文件《城市放射性废物管理办法》。该《办法》对放射性废物的分类、产生放射性废物单位的责任、废物的收运及废物库的管理都作了详尽的规定。   对此,胡华四解释:“放射性废物处理、贮存、处置活动是放射性废物管理的三个核心环节。”而放射性废物管理还应以安全为目的,具体应遵循“减少生产、分类收集、净化浓缩、减容固化、严格包装、安全运输、就地暂存、集中处置、控制排放、加强监测”的原则。   但是,由于管理不善带来放射源丢失、违规使用的事故仍然时常发生。   2004年7月12日凌晨,唐山市某建筑工地技术人员因操作不慎,将一个用于工业探伤的硒-75放射源失落在施工现场。10余名工人误将放射源当做机器配件,最终发现主要受照者受到全身非均匀照射。   无独有偶,2008年4月11日,山西省农科院旱农辐照中心发生了一起严重的钴源意外照射事故。由于违规使用已经退役的钴源室照射药剂,数名工人受到不同程度的辐照。   另外,在铀(钍)矿和伴生放射性矿开发利用过程中,由于对放射性污染防治重视不够,缺乏对放射性污染防治的专项管理制度,乱堆、乱放放射性废矿渣的情况也时有发生,由此造成的放射性污染威胁着环境安全和公众健康。   中广核中科华核电技术研究院反应堆工程设计与燃料管理研究中心主任肖岷向《中国科学报》记者介绍:“针对这些情况,政府部门对放射性废物进行了日趋严格的管理。”   国务院法制办公室负责人解释,《放射性污染防治法》规定了“要尽量减少放射性废物的产生量”、“排放废物要经国家许可”、“对高放废物要进行分类处理”等原则性问题,而将于今年3月1日起实施的《条例》则将法律的原则规定具体化了。   那么,对具体单位而言,新《条例》的实施将带来什么变化?北京市环保局宣传教育处工作人员称,目前仍在等环保部的进一步通知。截至发稿时,记者仍未得到回应。   肖岷认为,国家对放射性废物的管理力度加大,不仅相关文件得到了细化,管理体系也在进行调整。   有报道称,我国在核安全监管机构上将进行大幅度调整,国家能源局将新增设核电司,国家核安全局在原来一个司的基础上调整到三个司,核安全监管人员增加近千人。国防科工局新增设核应急司。   永久保存难题   孙庆红长期与放射性“三废”打交道,中低放射性水平的废物主要以暂存后处置为主。公开资料显示,目前中国已建有两座中低放射核废料处置库,分别位于甘肃玉门和广东大亚湾附近的北龙,还将在华东和西南建设两座区域性低放废物处置库。   1944年,美国田纳西州橡树岭进行了世界上首次放射性废物的处置。在今天看来,第一个用于处置“放射性污染的破碎玻璃器皿”的处置场,只不过是橡树岭处置场中的一条简易地沟,填满了未经处理的废物。   在核动力发展的初期阶段,世界上其他国家也都采取了与此类似的方法进行放射性废物处置。如今,国际原子能研究机构成员国中已经有100多座专业的设施运行。   在普通人眼中,放射性废物暂存库恐怕是一个非常神秘的地方。据统计,截至2011年,我国已建成31个放射性废物库。孙庆红向记者透露,我国几乎每个省都有自己的放射性废物暂存库。   1998年建成的湖北省城市放射性废物库深藏在大别山脉的崇山峻岭中。戒备森严的仓库配备厚实的铁门,地面上有一个个标有字母的水泥盖板,放射性废物就封存在盖板下面。   运送废物的卡车,必须加装防护铅板,每次将放射源搬入库中后,经办人员、车辆必须进行彻底清洗。这些“洗澡水”被排入专门的蒸发池,防止其混入地表及地下水体。   去年6月,该库结束了为期8年的改造工程。改造后的废物库实现了物联网远程在线监控,这在全国放射性废物库建设中走在了前列。  与此相比,高放射性水平废物处置的技术要求则高很多。高放射性核废料含有多种对人体危害极大的高放射性元素,10毫克钚就能令人毙命。   所以,在孙庆红看来,目前最大的难题在于高放射性水平废物的永久处置。   核工业北京地质研究院环境工程研究所所长苏锐曾撰文称,高放废物的最终去向是深地质处置。这需要把高放废物埋藏在距离地表深约500米到1000米的地质体中,使之永久与人类的生存环境隔离。   首先要将高放废液变成玻璃固化体,再将玻璃固化体装入金属罐中,并在地下1000米的深部找一块2平方公里到10平方公里不等的坚硬岩石,将装有高放玻璃固化体的废物罐埋藏其中,最后用一种特殊的回填材料将所有深部空间封填。   孙庆红形容:“看上去有点像一座巨大的坟墓。”   因此,地质条件是首要的考虑因素。南京大学地球科学与工程学院水科学系教授周启友向《中国科学报》记者介绍,选择高放废物的处置地点最重要的则是要地下水的条件。   “我们要寻找一个不含地下水或者地下水移动非常缓慢的地方。”周启友说,“除了自然条件,还需要加固工程屏障,对岩石圈进行保护。”据此,一些专家认为甘肃敦煌北山可能是将来最为理想的高放废物处置库。   不仅是中国,高放废物的处置也是一个全球性的难题。从建造核电站的那天起,德国政府有关机构和地质、核电专家就在为核废料的最终去处而发愁。   目前已知的看法是,核废料在相当长的时间内不得流入自然界。那么,什么样的建筑构造和地点能经得住自然界的沧海桑田?   “别放在我家后院”   在美国的报刊上,经常会见到这样的缩写——NIMBY,即Not in my backyard.意思是:别将垃圾放在我家后院。   纽约市的许多垃圾填埋场因为不符合美国环境署的环保标准而被迫关闭,一些城市索性将垃圾直接运到别的城市或其他州。被动接受垃圾的城市的居民就非常愤怒,他们组织了“NIMBY”运动,抵制垃圾运进自家后院。   在令人恐慌的放射性废物处置上,我国也面临类似问题。2008年,在一家地方网站的论坛中出现一个“湖北省的放射性废物库在广水市”的帖子。帖子中陈述了“广水市癌症发病率全省最高与省放射性废物仓库具有很大关联”,并抗议废物库继续在当地运行。   而2010年11月,中国核工业集团与法国阿海珐公司签署的协议则引发了更大的波澜。协议规定,在甘肃嘉峪关以北的金塔县内建设一座年处理规模达到800吨的乏燃料后处理基地。   这意味着,今后运往甘肃的核废料不仅来自国内的核电站,还有可能来自周边国家。“回收技术是否成熟”已经成了专家担忧的问题。   不过,这已不是阿海珐公司第一次在运输核废料途中遭遇“拦路虎”。作为国际“核废料处理中心”,核废料在法国与这些国家之间往来运输,所到之处,无不遭到民众的强烈抗议。   普遍认为,核废物处置计划的成功离不开与公众良好的沟通。长久以来,一些国家已经采取若干种步骤,并取得相当的成效。   例如,在匈牙利,上世纪90年代的两次选址受阻后,匈牙利原子能委员会于1992年启动了国家低中放射性废物处置选址计划。委员会采用公众自愿参加的方式,确定了愿意成为这些场地“东道主”的社区,最终在这些社区内选定了6个处置场场址。   在澳大利亚、美国、加拿大等国家和地区,全面的公众磋商过程是专设低中放射性废物处置库选址的一个重要环节。   而在我国,在环境问题上与公众进行互动才刚刚兴起。胡华四向记者表示:“将来,公众对核的态度将影响核科学技术事业的发展。”如何使公众既不“对核安全报以无所谓的态度”,也不致“谈核色变”,还需要作长期的努力。   “必须要开展广泛深入细致的核科技知识的普及宣传工作。”他说,“要使公众能理解、配合和支持这项工作的开展,应当保障充足的经费开展核科学的普及工作。”   放射性废物的来源   地质勘探、铀矿开采、选矿和矿石   含有铀、镭和其他天然放射性核素的铀矿山废石、尾矿和水冶厂尾砂,放射性水平较低   铀的精制、转化、同位素分离和燃料元(组)件制造   含铀的坑道废水、选矿水等   核电厂和其反应堆的运行   含活化产物和裂变产物中、低放射性废物和固体废物及卸出的乏燃料   核燃料后处理厂的运行   含裂变产物和锕系元素高放射性废液和废物   核设施退役   堆芯活化材料、可回收的放射性污染废钢铁及其他废金属、大量放射性水平极低的固体废物   核能研究与开发、放射性同位素生产和应用   废辐射源,主要是钴-60和镭-226源
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制