当前位置: 仪器信息网 > 行业主题 > >

核聚变

仪器信息网核聚变专题为您整合核聚变相关的最新文章,在核聚变专题,您不仅可以免费浏览核聚变的资讯, 同时您还可以浏览核聚变的相关资料、解决方案,参与社区核聚变话题讨论。

核聚变相关的论坛

  • 浅谈核聚变发电

    一、核聚变的原理  核聚变,又称核融合,是指由质量小的原子,比方说氘和氚,在一定条件下(如超高温和高压),发生原子弹互相聚合作用,生成中子和氦,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量。由较轻的原子核变化为较重的原子核,称为核聚变,就像我们每天见到的发光发热的太阳。二、核聚变发电的优势  我们目前所使用的常规能源都存在着种种缺陷,如环境的污染、资源不可再生而面临的枯竭,而风能和太阳能所能提供的电力也是有限的,利用核裂变原理而建成的核电站所产生的核废料都要严格监测,不然就会贻害千年。  核聚变发电的优势则相当明显了,就海洋中的氘资源几乎是取之不尽用之不竭,核聚变最理想的氦3虽然在地球上找不到,但在月球上却是应有尽有,所以不用担心面临能源枯竭的问题。  相比核裂变,核聚变所释放出来的能量就要强得多,而且不会产生放射性的核废料,所产生的核辐射也要小得多,因此,核聚变是一种清洁高效的能源。可以这样认为:核聚变电站可以一劳永逸地解决全球变暖问题。  核能是一种令人生畏的能量,原子核虽然小,但微小的质量亏损在乘以光速的平方后将会获得巨大的能量(质能方程E=mc2),只要我们能够控制住它,将这股能量缓缓放出,将会获得比核裂变更加巨大的能量。三、核聚变发电的难点  核聚变有着我们现有能源没有的优点,但是直到目前为止,人类还没有完全掌握到控制它的技术,要想获得核聚变装置必须突破非常多的瓶颈。  核聚变的反应需要近亿摄氏度的高温才能进行,原子弹爆炸可以达到这个温度,所以第一颗氢弹爆炸的时候是首先利用原子弹爆炸的高温来触发核聚变的起燃器。不过到目前,激光技术的发展使得核聚变“点火”的问题得到了解决的可能,除此以外,超高额的微波加热也可以达到这个温度。  其次,核聚变进行的高温下具有很高的内能,也就意味着将会出现各种各样的能量丧失机制。聚变的方式也存在着各种各样的不稳定性。这些基本科学问题没有解决,核聚变发电就实现不了。  而且,装置材料问题是核聚变发电必须要解决的问题,聚变产生的中子撞击、核聚变原料的沉积也会对装置材料产生破坏,如果解决不了,即使建成了核聚变反应堆也不知道能够运行多久。  还有就是它的辐射问题,即使相对核裂变的辐射要小,也还是存在着,这也给核聚变制造了一个大障碍。四、未来核聚变发电的走向  当我们的常规能源枯竭,风能、太阳能不能满足我们的需要,核聚变发电就是我们的明日之星。如今不少国家都在研究受控热核反应的理论和技术,美国、俄罗斯、日本和西欧国家都取得了进展。中国也在积极发展核聚变技术,并且称为世界上第一个建成并正真运行的全超导非圆截面的核聚变试验装置,已经处于世界领先水平。  也许在未来的二十年内,我们可以看到核聚变发电的曙光。在更远一点的时间,我们会获得可以真正有价值的核聚变电站。

  • 【分享】核聚变伸手可及?

    最近在美国加州所作的实验使得研究人员距离惯性聚变点火(这是加温并压缩一种燃料的策略,它可使科学家们在未来掌控核聚变的强大能量)的成功又近了一步。这种强有力的聚变在恒星中会自然地发生,但科学家们在实验室环境中还没有掌控这种强有力的能量。如今,SiegfriedGlenzer及其同事已经证明,这种聚变点火所需要的条件实际上可在他们的实验室中实现。研究人员将192条高能激光束对准一个小容器(其中装有氘与氚的混合物)。据专家披露,其在内爆的时候可激发燃烧的聚变等离子体以及可利用能量的外泄。Glenzer及其同事将该容器加温到330万开氏度,这样,他们为迈出下一大步铺平了道路:对一个充满燃料的容器进行点火和内爆。

  • 受控自持续核聚变或现新曙光——美科学家推导出核聚变“热密度界限”方程

    科技日报 2012年05月03日 星期四 本报驻美国记者 毛黎http://bbs.myboyan.com/attachment/Fid_78/78_235857_3fb134cbe8e3d91.jpg托卡马克核聚变环装置 长期以来,有一神奇的现象导致研究人员无法实现可控自持续核聚变反应。然而,最近美国物理学家表示,他们可能找到了解决该谜团的途径。研究人员认为,如果新提出的解决方式被实验验证是正确的话,那么将帮助人们消除核聚变发展的一个主要障碍,使核聚变成为清洁且丰富的电力来源。 核聚变遭难题 美国能源部普林斯顿等离子体物理实验室的科学家在一项深入分析中,将目标锁定于核聚变实验中高温带电气体——等离子体内那些微小的、如同气泡的、被称为岛屿的区域。这些岛屿含有能让等离子体降温的杂质。科学家认为,正是这些岛屿构成了人们熟悉的“热密度界限”问题的基础,它阻碍了核聚变反应堆最高效运行。 当等离子体的温度和密度足够高时,包含在其中的原子核结合并释放出能量,形成了人们所说的核聚变。然而,在托卡马克环实验反应堆中的等离子体达到神秘的“热密度界限”时,等离子体能旋转形成闪光,温度下降。 科学家认为,等离子体中出现众多岛屿带来了双重破坏。除了导致等离子体温度下降外,这些岛屿还如同防护罩那样阻止更多的能量来加热岛屿内的等离子体。当从岛屿中溢出的能量超过人们能够通过欧姆加热过程为等离子体添加的能量时,平衡被打破。当岛屿生长到足够大时,用于帮助加热和束缚等离子体加热的电流出现崩溃,等离子体四散开来。 大卫·盖茨是美国能源部普林斯顿等离子体物理实验室的物理学家,他和实验室博士后研究员、来自麻省理工学院等离子体科学核聚变中心的访问学者路易斯·德尔嘎多-阿帕瑞奇欧共同提出了解决核聚变“热密度界限”问题的方案。盖茨表示,令人不解的是为何给等离子体增加更多的热能却仍然无法让其达到更高的热密度,这点十分关键,因为热密度是实现核聚变的重要参数。 归纳出新知 盖茨称他们偶然发现的理论为“10分钟‘啊哈’时刻”。通过将注意力放在等离子体中的岛屿和带走能量的杂质,他们在办公室白板上推算出了对应的方程式。杂质源于等离子体冲击托卡马克环壁时产生的粒子。德尔嘎多-阿帕瑞奇欧表示,当等离子体的密度达到神秘的“热密度界限”时,等离子体中便出现了众多含有杂质的岛屿并发生瓦解。 麻省理工学院物理学家马丁·格林沃德推导出描述“热密度界限”的方程,因而“热密度界限”也称“格林沃德界限”。对出现“热密度界限”的原因,格林沃德有着自己的解释,他认为,当湍流出现能引起等离子体边缘冷却并将过多离子挤压进等离子体核心狭小空间的起伏时,就会出现“热密度界限”,导致电流不稳定和崩溃。他表示,有相当多的证据能够验证他的观点,但同时他承认其观点也有不足之处,并欢迎新的思想。盖茨和德尔嘎多-阿帕瑞奇欧提出的理论代表着试图解决“热密度界限”的新途径。 盖茨和德尔嘎多-阿帕瑞奇欧将过去数十年中人们掌握的线索整合起来建立了他们的研究模型。盖茨本人是1993年在位于英国阿宾顿的卡尔汉姆核聚变能源中心做博士后研究时首次听说“热密度界限”的。早期,“热密度界限”曾以卡尔汉姆核聚变能源中心科学家简·胡吉尔命名,胡吉尔向盖茨详细地介绍了“热密度界限”。 对于等离子体岛屿问题,科学家曾单独地发表了论文。上世纪80年代中期,法国物理学家保罗-亨利·芮布特在一次会议上介绍了辐射形成的岛屿,但是没有刊登在杂志上。大约10年后,德国物理学家沃尔夫冈·苏特偌普推测岛屿与“热密度界限”相关。盖茨表示,苏特偌普虽然没有将等离子体岛屿直接与“热密度界限”联系起来,但是他的研究文章事实上启发了自己的研究。1996年,盖茨与苏特偌普同在德国马普等离子体物理研究所从事过托卡马克实验,转年才进入普林斯顿等离子体物理实验室工作。 2011年初,关于等离子体岛屿问题几乎从盖茨脑海中消失。然而,与德尔嘎多-阿帕瑞奇欧进行的一次涉及Alcator C-Mod托卡马克中等离子体发生岛屿的交谈,重新点燃了他对该问题的兴趣。德尔嘎多-阿帕瑞奇欧提到普林斯顿等离子体物理实验室的科学家在上世纪80年代首次观察到等离子体中出现螺丝锥形状气团的现象,德国物理学家亚瑟·韦勒为报告此现象的第一人。 在交谈后,盖茨让德尔嘎多-阿帕瑞奇欧查阅芮布特和苏特偌普的文章。8个月后,德尔嘎多-阿帕瑞奇欧给盖茨发送了一份电子邮件,阐述了螺丝锥形状气团的行为。最让盖茨感到激动的是暗示着“热密度界限”的岛屿生长方程,它是对英国物理学家保罗·卢瑟福基于上世纪80年代相关研究推导出的方程式进行修改而来。盖茨认为,如果苏特偌普对岛屿的认识是准确的,那么这个方程应该描述的是“热密度界限”。 盖茨和德尔嘎多-阿帕瑞奇欧在办公室中进行演算时发现,他们并不需要整个方程式,仅仅将重点集中在等离子体电子密度和岛屿热辐射,便推导出描述热损耗超过电子密度的方程式。这转而帮助他们寻找到了有望是隐藏在“热密度界限”背后的机理。 在谈及科学家过去为何没能获得类似的热密度界限理论时,盖茨认为,答案在于相关的研究思想渗透或传播至科学界的过程。热辐射形成岛屿的观点从没有公开得到大量的报道,人们仅仅视其为有趣的观点。人们通常通过出版物传播信息,然而“热密度界限”的理念最初没有传播开来。 盖茨和德尔嘎多-阿帕瑞奇欧希望能够在麻省理工学院名为Alcator C-Mod的托卡马克核聚变环装置以及圣地亚哥通用原子公司的DⅢ-D托卡马克环上,通过实验验证他们的理论。其中的目标之一是他们打算了解能否通过直接向等离子体的岛屿注入能量让其具有更高的密度。如果能够提高密度,那么未来的托卡马克环就能达到极高的热密度,实现核聚变所需的1亿摄氏度的温度。 征服“热密度界限”难题将为未来托卡马克环装置实现自持续核聚变反应发电提供改进的途径,这其中包括取代国际热核实验反应堆(ITER)的核聚变装置。国际热核实验反应堆由欧共体、美国及其他5个国家共同支持建造,其造价达200亿美元。 (本报华盛顿5月1日电)

  • 科学家克服核聚变障碍 “人造太阳”或将升起

    http://photocdn.sohu.com/20120430/Img342035187.jpg这是利用磁场对等离子进行约束的“托克马克”(Tokamak)装置http://photocdn.sohu.com/20120430/Img342035188.jpg世界上最大的核聚变实验装置(ITER)与人大小比较http://photocdn.sohu.com/20120430/Img342035189.jpg正在法国卡达拉什建设一个世界上最大的核聚变实验装置(ITER)的工地。该装置预计耗资达200亿美元。  【搜狐科学消息】据国外媒体报道,“核聚变”是驱动宇宙运行的能源,在每一颗燃烧的恒星的核心都发生着剧烈的核聚变反应。如果想要在地球上人工创造一颗“人造小太阳”,那么将是非常困难的。因为使相互排斥的带同种电荷的原子核靠近并发生融合需要很大的能量。更麻烦的是,如果进一步给核聚变等离子体增加能量,那么就会导致整个核反应过程崩溃而停止。现在,来自能源部“普林斯顿等离子体物理实验室”(Princeton Plasma Physics Laboratory)的研究人员或已经为该问题找到了一个合理的解释和解决方案。  人工可控核聚变有多种方式,但最常用的方式是利用磁场进行约束的“托克马克”(Tokamak)装置,这种装置是把炽热的等离子体用磁场约束在反应器内部。不幸的是,有一种叫做“密度极限”(Density limit)的内在机制制约着等离子体密度的进一步升高,如果等离子体在临近达到这个极限的时候,再继续为其输入能量,那么就会导致等离子体的崩溃。现在,等离子物理实验室的科学家们相信他们已经发现了是什么原因导致等离子体的这种行为。他们的研究论文已经发表在了著名的《物理评论快报》(Physics Review Letters)上。  在等离子体内部可形成一种“岛”(islands)状结构,由于其中含有杂质,导致在聚变反应中它能带走等离子体的一些热量。虽然科学家在很多年前就已经知道了这些岛状结构的存在,但是一直没有人深入的分析它是如何对等离子体的稳定性产生影响,从而导致产生存在密度极限的。普林斯顿等离子体物理实验室的科学家在还没有完全能够对这些岛状结构进行完整数学描述之前,就已经发现了导致出现密度极限的数学方程。  基于这个认识,科学家正准备在麻省理工学院(MIT)的Alcator C-Mod托克马克装置和通用原子公司的DIII-D托克马克装置上进行检验他们的理论。如果该理论最终通过了实验验证,那么就会指导科学家们进一步提高等离子体密度极限,实现自持的可控核聚变反应,并最终实现核聚变发电。现在欧盟、美国以及其他的5个国家正在法国卡达拉什建设一个世界上最大的核聚变实验装置——ITER(International Thermonuclear Experimental Reactor)。该装置预计耗资达200亿美元。(编译:双螺旋)

  • 激光核聚变接近临界点 世界能源结构将改写

    2012年08月28日 来源: 环球科学杂志http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20120828/000ffed6147811a64f5b38.jpg美国国家点火装置的工程师正在检查核聚变反应炉。  国家点火装置(NIF)接近能量临界点,一旦成功,世界能源结构将被改写。但目前,NIF仍然面临一系列不确定性。  撰文 埃里克•汉德(Eric Hand)  翻译 刘荣  或许在今年,美国国家点火装置(National Ignition Facility,NIF)将变得名副其实。这个耗资35亿美元的装置坐落在美国加利福尼亚州的劳伦斯利弗莫尔国家实验室内,能产生世界上最大的激光束,用来爆聚(implode,从内部引爆)一个氢同位素标靶,触发核聚变,产生的能量将比输入的多得多。NIF的管理人员认为,为了达至临界点或者说“点燃反应堆”, 他们进行了两年的工作,现在可以说是胜利在望。项目主管艾德•摩西(Ed Moses)表示:“我们完全有能力在2012财政年度内取得成功。”  然而,这种方式仍然属于惯性约束核聚变(inertial confinement fusion),就算整个项目取得成功,也面临着不确定的未来。实验成功是否就意味着,美国能源部会把它开发成一种经济可行的能源呢?如果是的话,那么NIF激光触发核聚变的方法是否是最佳方案呢?3月7日,美国国家科学院专家小组提交的一份中期报告总结道,现在下结论还言之过早。报告还建议核聚变科学家继续寻找引燃核燃料的替代性技术。  美国新墨西哥州洛斯阿拉莫斯国家实验室的等离子物理学家格伦•乌尔登(Glen Wurden)同意报告的观点,并认为研究惯性约束核聚变的科学家不应该把宝全压在激光触发法上。他认为:“可控核聚变技术完全不成熟。”他指出,另一种核聚变方式——磁约束核聚变(magnetic confinement fusion)以及这种方式的标志性项目、耗资210亿美元的国际热核聚变实验堆(ITER)也遇到了很多困难,以至于研究停滞不前。ITER进展迟缓,研究费用不断膨胀,都归咎于一项不成熟的技术,即托卡马克装置(tokamak,受控热核反应装置),这是一个面包圈状的笼子,里面的强力电磁铁禁闭着一个核聚变等离子体。  尽管科学家最初信心百倍,计算机模型模拟也非常有利,NIF项目同样没能按预期进度前行。乌尔登表示:“科学家以为‘点燃’反应堆犹如探囊取物。”然而,NIF对氢同位素进行加温加压的过程麻烦不断。在一个叫做间接传动(indirect drive)的过程中,多束激光束会从橡皮擦大小的“辐射空腔”(hohlraum,一个金质圆筒)的两个开口射入,使其内部产生X射线。之后,由X射线来加热并挤压辐射空腔内的核燃料(氢同位素标靶),触发核聚变。然而,在辐射空腔内部,激光与等离子体之间发生了意料之外的涡流交互作用,吸收了来自激光束的能量。这会抵消很多能量,使NIF的激光能量输出达不到点燃反应堆所必须的极限阈值。  不管怎样,NIF的研究团队已经进入了稳定的实验阶段。18个月前,当科学家开始向点火目标推进时,该设施仅完成了预想中点火必要条件的1%。现在,完成度已经到达10%,而且进程正在加快:仅今年1月就有创纪录的57次轰击。研究团队同时也在探索一系列调整方案,包括用铍或金刚石替代塑料来包裹核燃料,以及改变辐射空腔的材质或形状。摩西表示,他们还可能把NIF的极限能量从1.8兆焦(只有达到这个能量级别,才能做到“收支平衡”)提升到2.2兆焦。  但如同美国国家科学院的报告所指出的,其他方法可能会提供一个更简单的途径来点燃反应堆,最终成为一个有实用价值的电厂。那么谁在为这些研发付钱呢?美国及世界范围内大多数惯性约束反应堆的研究,都是由涉及国家安全和武器研发的联合企业所资助的,它们研究核聚变是为了武器开发,而不是用于民用电厂。现在,激光惯性约束核聚变研究受美国能源部下属的国家核安全局(NNSA)监管,NNSA的主要职责是负责管理核储备。  而在能源部的科学办公室,几乎没有资金划拨给惯性约束核聚变的研究。大多数资金都用在支持磁约束核聚变上,而且越来越多的资金给了ITER项目。马里兰州盖瑟斯堡的美国聚变能协会(Fusion Power Associates)是一个核能倡导团体,负责人斯蒂芬•迪恩(Stephen Dean)认为,就算专家小组的最终报告认为,惯性约束核聚变能源项目可行,这项研究还是很难在科学办公室找到一席之地。迪恩表示:“我想,能源部会直接无视它,明显他们只对ITER情有独钟,而且正疯狂地想要拯救这个项目。”  如果NIF的科学家能在2013拿到他们所需的4.6亿美元经费,他们就能探索其他方案。比如,美国罗切斯特大学的等离子物理学家团队打算调整NIF的激光,这样他们就能不使用辐射空腔,而直接爆聚一个氢同位素标靶。  但NIF的科学家并没有坐等替代方法的出现。早在点火装置之前,他们就积极准备着下一个项目,一个叫做激光惯性聚变能(Laser Inertial Fusion Energy,LIFE)的示范电站。民用电厂要经济实用,生产的能量必须比每次轰击标靶所输入的能量多50倍以上,而且必须提高重复使用效率,从一天数次轰击变为每秒15次,但这绝非易事。  事实上,这个多孔状的NIF设施就是LIFE的反应室的放大模型,而LIFE的反应室是模块化的,这种模块小到足以装进卡车。NIF的设计使用的是上千只巨大的频闪灯管来为玻璃激光器充能,LIFE则将使用小巧的、晶体管充能发光体。摩西反驳了激光作为未来的核聚变电厂的驱动力还言之尚早的说法。他认为,通过对用于民用电子产品上的激光和晶体管的投资,市场和公众已经做出了选择。如果回顾一下过去,那么“人们会发现,晶体管和激光是具有划时代意义的发明”。  LIFE的项目主管麦克•杜恩(Mike Dunne)认为,他们的电厂单个造价大概40亿美元,可在本世纪20年代初为电网提供数亿瓦特的电能,要比科学家预计的、第一座磁约束核聚变电厂的出现时间至少早10年。回忆起几年前在一个学术会议上,向磁约束核聚变的研究者介绍LIFE项目的理念时,摩斯说道:“他们反应相当激烈地说,‘这不可能’。他们当时就被这个项目的雄心壮志所震撼,如今他们仍会感到震撼。”  本文由《科学美国人》中文版《环球科学》授权转载

  • 了解核聚变有了新工具[图] X射线激光实验研究温稠密物质获得重要进展

    http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20121007/021349623688218_change_chd2a0_b.jpg 温稠密物质(warm dense matter)是在宇宙星体、地幔内部、实验室核聚变内爆过程中广泛存在的一类物质。因此,在实验室生成温稠密物质,研究它们的特性对模拟惯性约束核聚变、超新星爆炸和某些行星内部结构、地幔的物质演化和成矿机理等具有重要指导意义。 温稠密物质范围很宽,可以定义为热能小于或稍超过费米能状态的物质,是通常凝聚态物质和高温完全电离等离子体之间的一类物质,其电子处于部分电离、部分束缚的状态,成分包括自由和束缚电子、离子、原子、分子以及它们组成的束团,一般处于高压状态。通常这类物质具有高的能量密度特征。 极端X射线探测极端物质 内布拉斯加-林肯大学物理与天文学教授唐纳德·乌姆斯塔德说,要在实验室造出稠密等离子体,一般方法是迅速加热一个固体密度物质,如一薄层金属箔。如果加热速度足够快,就能达到使密度保持相对恒定,接近于通常固体密度值。超短脉冲激光是能将固体快速加热到稠密等离子体的首选。 最近,一个由牛津大学奥兰多·希瑞克斯塔和英、美、德、澳等国科学家组成的国际研究小组利用目前世界最强的X射线激光源——斯坦福大学的直线加速相干光源(LCLS)将铝箔在约80飞秒(1飞秒=10-15秒)内加热到70到180eV(约80到200万开氏度)。由于这么短时间内加热,压力达到几千万大气压,铝箔来不及膨胀,还几乎保持着原来固体密度,生成了温稠密等离子体,研究小组对其内部的电离情况进行了直接检测,并将相关结果以论文形式发表在《物理评论快报》上。 在以往实验中,所用激光只有近红外到紫外波长的激光,新实验用了完全不同的激光:X射线自由电子激光(XFEL)。相干X射线能量很高,达到千电子伏特以上,能将铝核K壳层电子直接击出原子,而红外光基本上只能激发外壳层电子。X射线还能更深地穿透材料,均匀照射整个目标,将其加热到100eV(百万开氏度以上),生成固体密度等离子体。 正如研究小组领导、牛津大学的贾斯廷·瓦克所说:“X射线激光非常关键,我们无法在别的地方进行这种实验。”LCLS为实验提供了特需条件:用于检测极端现象的严格受控的环境,相干X射线能量极高而且能精确调整,精确检测特殊固体密度等离子体属性的方法。 希瑞克斯塔等人检测了铝箔系统内高电荷离子的K壳层电离电子的荧光,反推内部压力电离下有效电离势连续降低的变化,发现实验结果和广泛使用的Stewart-Pyatt模型(1965年提出,简称SP模型)所预测的结果不符,却和更早的Ecker-Krll模型(1963年提出,简称EK模型)吻合的较好。研究人员指出,从研究核聚变能源到理解恒星内部的运行机制,这一结果将对许多领域产生重要影响。 两种模型的含义 推翻沿用半个世纪的模型意味着什么?理论的改换将会对哪些研究产生影响?为此科技日报记者还专门采访了中国科学院院士、北京大学应用物理与技术研究中心主任贺贤土。 贺贤土解释说,温稠密物质中存在复杂的电离效应,精确了解不同粒子的电离程度,可以很好了解强耦合下温稠密物质内各种粒子和束团的状态和成分,这对研究温稠密物质特性,如局部热动力学下状态方程和输运系数十分重要。 目前还没有一种满意的理论能很好描述温稠密物质性质。虽有好几种压力电离模型,但很难判断它们准确性,如何实验诊断难度很大。目前国际上很多数值模拟程序中都采用SP模型,它是用离子间距作为考虑有效屏蔽的平均离子模型的参量;而EK模型是用离子和自由电子密度之和表示粒子间距,作为考虑有效屏蔽的平均离子模型的参量。 希瑞克斯塔等人用两种模型预言温稠密物质的有效电离势发生连续下降的特性,表明了EK模型给出更大的下降,这对精确研究温稠密物质状态方程、电导系数和热导率、离子辐射等性质都有重要意义。 实验的重要性还在于他们筛选出了更好的模型。实验数据与EK模型吻合的更好,表明在计算等离子体密度时不能忽略电子的影响,考虑电子数量的模拟效果更好。但EK模型仍有不符合实验的地方,还需要更多实验和细节上的修正。这也体现了等离子体内部电离的复杂性。 贺贤土说,我国目前还没有像可调谐的千电子伏特以上能量相干的X射线自由电子激光器,上述实验由于条件的限制还无法开展。我们主要利用我国神光Ⅱ和神光Ⅲ原型激光器从整体上进行温稠密物质的状态方程等研究;理论上研究温稠密物质主要从量子统计出发研究它们的电离度、等离子体相变(PPT)、化学势、自能等物理量,并在密度泛函和Green函数等框架下理论研究它们的粒子数密度,进而获得了状态方程和输运系数,精确了解通常要从第一性原理出发进行数值模拟研究。 温稠密物质研究有广泛应用 热核聚变能源是人类理想的清洁能源。目前,实现可控核聚变主要有两种技术途径。一种是用托卡马克装置开展“磁约束聚变”的研究,另一种是激光驱动的惯性约束聚变(ICF)。ICF研究除了应用于聚变能源之外,还可用于国防和高能量密度物理基础科学研究。ICF靶丸在内爆过程中受压缩的燃料就是温稠密物质,因此,更好的模型对于指导我国的实验也是重要的参考。同时ICF研究使用的高功率、大能量纳秒脉冲激光器,以及能产生相对论等离子体的超短、超强皮秒和飞秒激光器,可以提供高能量密度物理研究的重要实验条件。它们不仅对ICF研究,而且对建立地球上天体物理模拟实验室、推动超高能精致台式加速器研究、地幔特性和成矿机理研究、超高能核物理研究等都具有十分重要意义。 贺贤土还指出,高能量密度物理是目前国际上快速发展的新兴学科。在我国,北京大学应用物理与计算研究中心在这一领域中重点开展了以下五个方面的研究:一是高能量密度状态下物质的特性,尤其是温稠密物质的研究;二是强场作用下原子的电离;三是强场下带电粒子加速研究;四是可压缩流体湍流与流体力学不稳定性研究;五是相关数学模型研究和计算机程序开发,目前已获得了大量有国际影响的成果。今年10月北京大学应用物理与计算研究中心还将主持召开高能量密度物理国际会议,国际上很多这一领域的著名科学家将来华参加这一盛会,进行学术交流和讨论合作研究。(记者 常丽君) 《科技日报》(2012-10-08 二版)

  • 【转帖】国产散射系统问世 聚变实验堆有了新型"体温计"

    记者9日从中科院合肥物质研究院等离子体所了解到,国际公认的最为准确的电子温度和密度诊断系统——汤姆逊散射诊断系统在我国新一代“人造太阳”实验装置EAST成功建成并调试运行。  中科院合肥物质研究院等离子体所汤姆逊散射研究小组专家介绍,目前这套25道汤姆逊散射诊断系统,为国内最先进水平,已基本可以提供等离子体电子温度和密度分布结果。  汤姆逊散射诊断系统可以在热核聚变实验中给出等离子体电子温度和密度的空间分布,是国际公认的最为准确的测量电子温度的方法,也是技术难度最高的几个热核聚变装置诊断之一。由于其重要性,几乎所有热核聚变装置都大力发展汤姆逊散射诊断系统。  EAST芯部25道汤姆逊散射诊断系统将为EAST物理研究、运行及其他诊断的标定提供可靠的手段。从事核能聚变实验研究长达35年,专门从事物理实验工作与诊断技术发展的美国通用原子公司等离子体物理实验学家谢中立教授说,这些进展来之不易。  等离子体所专家介绍,EAST芯部25道汤姆逊诊断系统的研制是等离子体所几代科技人员经过十多年的努力取得的阶段性成果。目前该系统离世界最先进水平尚有距离,项目组成员还将继续努力进一步对该系统进行改进和完善。  中国是国际热核聚变实验反应堆(ITER)的参与国之一。2006年9月,中国科学家耗时8年、耗资2亿元人民币的EAST建成并投入运行。在第一轮实验中,科学家们获得了电流超过500千安、时间近5秒的圆形截面高温等离子体。EAST成为世界上第一个同时具有全超导磁体和主动冷却结构的核聚变实验装置。它的建成使中国迈入磁约束核聚变领域先进国家行列。

  • “人造太阳”背后的技术挑战——欧盟发布聚变示范电站设计开发路线图

    2013年01月23日 来源: 中国科技网 作者: 郑焕斌 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130122/021358868035328_change_chd31233_b.jpg 今日视点 据《科学》杂志网站近日报道,欧盟负责聚变研发工作的机构——欧洲聚变发展协会(EFDA)发布了欧盟聚变示范电站(DEMO)设计与开发路线图,计划于2050年建成一座未来可供工业界使用的原型聚变电站。该路线图列出了一份令人生畏的技术清单,其中包括全球聚变科学家和工程师未来数十年需要努力应对的若干技术挑战。 ITER将是聚变发电的主要突破 2006年,由中国、欧盟、印度、日本、俄罗斯、韩国和美国等7个成员国参加的“国际热核聚变实验堆(ITER)计划”正式启动。聚变反应堆利用的是氢同位素(氘和氚)的核聚变反应所释放的能量,这也是太阳和其他恒星的能量来源。利用可控聚变能是解决全球能源和环境问题的一个重要途径,而实现聚变反应堆商业化运行需要三个阶段:即建造ITER装置并据此进行科学和工程研究;设计、建造与运行聚变示范电站;建造商业化聚变反应堆。ITER装置是一个能产生大规模核聚变反应的超导托克马克,俗称“人造太阳”。其中心是高温氘氚等离子体环,等离子体环在屏蔽包层的环型包套中,屏蔽包层将吸收核聚变反应产生的所有中子。根据该计划目前的进展,建造于法国的聚变反应堆将于6年后投入运行,它被认为是人类发展聚变能的主要突破。 在聚变反应堆中,需要利用强磁体、无线电波和粒子束等将聚变燃料等离子体压缩并加热到至少1.5亿摄氏度,使等离子体发生聚变反应。这需要消耗巨大能量,但迄今为止尚没有一座反应堆能够产生净能量增益(即产出能量大于输入能量)。科学家期望ITER能够突破上述障碍,输入50兆瓦(1兆相当于100万)的能量可以产生500兆瓦的聚变功率,其持续时间可保持数分钟。但这仅是一种科学验证,ITER本身将不能被用来发电,发电重任将交给其后继者——聚变示范电站。 然而,目前研究人员才刚开始考虑聚变示范电站的设计工作。从目前的各种迹象来看,聚变示范电站的设计和建造工作将不会被纳入全球性的合作计划。最近韩国宣布它正在从事聚变示范电站(K-DEMO)的初步设计工作;中国也已开始设计“中国聚变工程测试反应堆”,这是介于ITER和聚变示范电站之间的中间步骤。欧洲聚变发展协会制定的路线图虽并未排除国际合作,但将所有研究工作限定在欧盟2014年到2020年聚变预算范围之内。 欧盟聚变示范电站研发路线图 该路线图认为,人类在利用聚变发电方面取得进展的关键在于ITER,因此需要倾力确保其成功,其中包括研究现有小型反应堆的各种运营方案。路线图指出,最大的技术挑战是如何从未来的聚变反应堆中排除核反应后的废气。 ITER和其他类似的现代反应堆底部都有一个偏滤器,其作用之一就是从等离子体容器中卸去乏燃料。当等离子体接触到偏滤器固态表面时,它将吸收大量热量。ITER偏滤器是由不锈钢制成,外表用钨层覆盖。在研究用反应堆中,由于其正常运行时的能量较低,且每次运行时间最多为数分钟,这种偏滤器可以正常工作。但聚变示范电站在正常运行时将会持续产生吉瓦级(1吉瓦等于1000兆瓦)的能量,常规的偏滤器无法承受如此高的热载。因此,路线图指出,研究人员必须开发其他备用设计方案。替代方案可能会设法扩大等离子体与偏滤器的接触面积以减少热载,或允许等离子体在接触偏滤器前辐射出更多热量。欧洲聚变发展协会指出,未来需要利用现有合适的托克马克装置或专门新建的测试设施对替代方案进行测试。 另一个技术挑战是,利用何种材料制造 反应堆内等离子体容器的结构、表面覆层和面向等离子体部件。聚变堆中等离子体发射的高能中子、电磁辐射对上述材料具有强烈作用,因而需要开发出能够在数十年内承受中子不间断轰击的材料,但现有中子源的强度都不能满足这种测试的需求。科学家正在研发一种以基于加速器的中子源(ITER计划的一部分),但欧洲聚变发展协会认为不久就需要研发其他中子源。 欧洲聚变发展协会还需要对“产氚包层(也称实验包层)”进行深入研究。产氚包层是等离子体容器壁的一部分,反应堆产生的中子在此将锂转变为核燃料氚。需要开发替代方案的包层设计,以应对拟在ITER进行测试的包层设计可能出现的失败。该路线图要求工业界更多地参与聚变示范电站的各项设计和建造工作,因为一旦这些工作完成之后,工业界就必须承担发展聚变能的重任。此外,还需要加强等离子体理论和建模等各项工作。 作为最主要的备用计划,路线图倡导继续坚持仿星器的设计和开发工作。仿星器是一种替代性聚变反应堆,其最大优点是能够连续稳定地运行。上世纪60年代当托克马克受到人们青睐时,对其重视程度有所降低。德国的温特尔斯坦仿星器7-X(即W7-X)将于2014年建成,科学家在W7-X反应堆安装了一种叫“仿星器”的设备,旨在模仿恒星内部持续不断的核聚变反应。(记者 郑焕斌 综合外电) 《科技日报》(2013-1-23 二版)

  • 美国家点火装置释出能量超过燃料吸收能量

    美国家点火装置释出能量超过燃料吸收能量标志着核聚变能源研究步入新阶段 科技日报讯 (记者张梦然)核物理学的一项新进展使核聚变能源正在“升温”。2月13日发表在英国《自然》杂志上的论文称,美国国家点火装置的科学家现已通过实验证明,核聚变反应释出的能量比燃料(用于引发核聚变反应)吸收的能量多。这项发现标志着核聚变能源将步入新时代,研究的下一个目标将会是实现“总增益”,即系统产生的能量必须超过进入系统的能量。 惯性约束核聚变是一种产生核聚变能量的方法,其操作原理是把燃料芯块的温度提高,从而引发内爆和燃料压缩。实现受控核聚变条件比较苛刻,输出能量大于输入能量要求密度和约束时间的乘积达到一定要求。 而美国劳伦斯·利弗莫尔国家实验室拥有的世界最大激光器——被称为“人造太阳”的美国国家点火装置(NIF),其有能力产生类似恒星内核的热与力。尽管设计初衷是用来模拟核爆,属于美国“无爆炸核试验”不可或缺的部分,但该装置自落成起就让世人广泛注意到它更具魅力的一点——实现核能发电。人类能于实验室中获得“取之不尽用之不竭”核聚变能源,这在以前是想都不敢想的事。 相比世界范围其他类似计划,NIF主打的卖点在于其计划成为“第一个突破平衡点”的设施。这个突破平衡点,即指产生的能量大于启动它所需要的能量,也是所谓“能量增益”。这是半个多世纪以来核聚变工作者梦寐以求的目标。 此次通过国家点火装置,劳伦斯·利弗莫尔国家实验室的奥马尔·哈瑞肯教授及其科研团队在惯性约束聚变中成功克服障碍,实现了“燃料增益”。在实验中,他们使用192支激光,替一颗燃料芯块进行加热和压缩直至核聚变反应发生。研究结果表明,核聚变反应产生的能量,大约是以前纪录的10倍。 但论文作者提醒,这次观察到的“燃料增益”,是指核聚变能量高于燃料中能量,而不是用于压缩燃料芯块的总能量。 据英国BBC网站此前报道,他们已了解到去年9月下旬该装置通过核聚变反应释出的能量超过了燃料吸收的能量。这是世界第一台能将其得以实现的装置,被认为是最终目标达成前的一个重要里程碑。但当时实验过程中遇到了一些障碍。 总编辑圈点 “能量增益”和“燃料增益”都像是经济学名词,企业经营讲究产出大于投入,实现盈利才能可持续发展,而核聚变研究的核心是能量的投入和产出,实现能量盈利,可控核聚变才能真正成为永久的清洁能源。本试验就像全面亏损的企业实现了个别部门的盈利,虽离总体扭亏为盈还有几十年时间,但的确给我们带来了信心。当然,如同企业实现盈利有多种模式一样,我们除期待NIF的更多好消息,还可对我国参与的国际热核聚变实验堆报以期待。来源:中国科技网-科技日报 2014年02月13日

  • 人造太阳

    国际热核聚变实验反应堆计划于2006年11月21日正式启动,该计划被称为人类最终解决能源危机的最大希望。EAST比国际热核聚变实验反应堆在规模上小很多,但两者都是全超导非圆截面托卡马克装置。EAST的成功运行,将为国际热核聚变实验反应堆计划作出重要贡献。我国是国际热核聚变实验反应堆计划的参与国家之一,将承担10%的责任。中科院等离子体研究所将承担起一批部件的研发任务,涉及超导技术、大功率电源技术、遥控技术等。EAST是由中国独立设计制造的世界首个全超导核聚变实验装置,2007年3月通过国家验收,并在近年来取得了一系列实验成果。其科学目标是为ITER计划和我国未来独立设计建设运行核聚变堆奠定坚实的科学和技术基础。

  • 我国聚变激光驱动器世界先进 5纳秒内输出16千焦耳激光能量

    最新发现与创新 中国科技网 四川绵阳7月20日电(记者盛利)记者从中国工程物理研究院激光聚变研究中心获悉,该中心19日进行的大口径高通量激光驱动器实验平台出光试验中,单束出光能量第三次超过16千焦,达到16.523千焦,这标志着我国走独立技术路线、自主设计研制的激光驱动器达到世界先进水平,成为继美国、法国之后第三个迈入“单束万焦耳出光”俱乐部的国家。 在空气洁净度为一万级的中心实验室,记者看到由放大系统、空间滤波器、光束反转器、光传输管道等组成的实验平台,约2米高、近100米长,与神光Ⅲ-原型装置等大型激光装置相比略显紧凑,如同一辆小型货运机车。“别看它麻雀虽小,但五脏俱全,能力很大,单束出光能量是神光Ⅲ原型装置的5倍。”中心三部副主任郑奎兴说,达到世界先进水平的该设备,放大器的小信号增益达到世界领先的每厘米5.28%,瞬间输出功率超出全国发电站发电功率的总和。运行中能量仅为百毫焦耳的“种子”光进入放大器后,将在管道、放大系统、反转器中往返数次,能量放大近8万倍,最终在5纳秒内输出16千焦耳的激光能量。 郑奎兴说,该实验平台研制的一项突出成就在于,通过自主研制的仿真模拟软件设计等,成功实现设备总体构型创新,有效克服了我国单元器件工艺不足的难题,走出了一条以“U型反转器”等系列创新工艺技术为代表的“中国大口径高通量激光驱动器之路”,出光能量、光束质量均达到国际先进水平。 记者了解到,参与该项目的一线科研人员平均年龄在30岁以下。80后科研人员赵普军说,能够投身这项与世界“比肩”的重大项目,感觉“很自豪”“很提气”。 郑奎兴表示,成功实现万焦耳输出,展现了我国高功率固体激光装置建设的设计研制能力,及其关键单元技术发展水平。 《科技日报》(2012-7-21 一版)

  • 【讨论】人造太阳,你见过没?

    【讨论】人造太阳,你见过没?

    人造太阳”美国国家点火装置日前完成了首次综合点火实验。  信息时报综合报道 位于美国加州利弗莫尔的劳伦斯利弗莫尔国家实验室(LLNL)称,被称为“人造太阳”的美国国家点火装置(NIF)日前完成了其首次综合点火实验——192束激光系统向首个低温靶室发射了1兆焦激光能量,使中心最高温度达到华氏600万度,相当于恒星或大行星核心的温度。而太阳中心的温度为华氏2700万度。英国媒体14日报道,虽然说,NIF这一实验没有达到预期目标,但科学家依然对NIF的未来充满信心。  NIF是全球最大的激光核聚变装置,研究人员致力于尝试如何“驾驭太阳的能量”,从1997年开始建造NIF,但直到2009年5月29日,NIF才最终落成。整个计划花了22亿英镑(约合人民币235亿元)。启动时,激光束会聚焦到一个很小的点上,从而产生上亿摄氏度高温,模拟出像恒星内核或核爆炸那么强烈的温度与压力。阿景  三大任务  1 让科学家用它模拟核爆炸,研究核武器的性能情况,保证美国在无需核试验的情况下保持核威慑力。  2 模拟超新星、黑洞边界、恒星和巨大行星内核的环境,进行科学试验将为科学界提供大量此前无法获取的数据。  3 保证美国的能源安全。科学家希望从2010年开始借助国家点火装置来制造类似太阳内部的可控氢核聚变反应,最终用来生产可持续的清洁能源。  NIF承载人类清洁能源之梦  NIF承载了人类的清洁能源之梦。最简单的描述核聚变,就是两个轻的原子核相碰,形成一个原子核并释放出能量的反应。在自然界,太阳的内部连续不断地进行着氢聚变成氦过程,因而太阳产生的光和热就是由核聚变带来的。  这是人类无法不觊觎的巨大能量。但“人造太阳”要能为我们所用,就必须使核聚变在人为控制下进行,掌握核聚变的速度和规模,实现持续、平稳的能量输出。  受控核聚变前景之诱人,还不仅仅因为能量的产生,而且由于核聚变所需的原料——氢的同位素氘可以从海水中提取。据估测,1升海水中提取出的氘完全聚变反应,放出的能量能达到100倍数量级的汽油燃烧释放的能量,因此受控核聚变的研究成功几乎能使人类摆脱能源危机的困扰。http://ng1.17img.cn/bbsfiles/images/2010/12/201012141006_266816_1611705_3.jpg

  • 中美“人造太阳”实验装置首次联合实验获成功

    据新华社合肥9月11日电(记者蔡敏)记者从中科院合肥物质科学研究院了解到,我国新一代“人造太阳”实验装置EAST与美国通用原子能公司托卡马克实验装置DIII-D近日首次联合实验并获得成功,实验验证了完全依靠自举电流和非感应驱动电流的托卡马克高性能稳态运行的可行性。 据介绍,此次实验的主要目的是利用DIII-D的离轴加热与电流驱动能力模拟EAST的实验条件,实现高比压、高自举电流份额的完全非感应电流高约束等离子体,并利用DIII-D全面先进的物理诊断和分析工具进一步加深对相关物理问题的理解,为EAST实现具有高参数的完全稳态等离子体探索出一种先进的运行模式。 实现托卡马克实验装置高性能稳态运行是国际热核聚变实验堆(ITER)的目标之一。EAST作为一个超导托卡马克装置,为ITER预演稳态运行是其重要使命。EAST下轮实验加热功率将升级到超过20兆瓦,如何使用这些功率实现具有高参数的稳态等离子体,是目前面临的一个关键课题。 通过与美国通用原子能公司此次合作,中科院等离子体所科研人员在DIII-D上模拟了EAST的实验条件,成功实现了与EAST等效旋转扭矩注入,及相同电流爬升率条件下,具有内部输运垒、高自举电流份额、超宽电流分布等条件的完全非感应电流高性能等离子体,从而验证了完全依靠自举电流和非感应驱动电流的托卡马克高性能稳态运行的可行性。 中国是国际热核聚变实验堆(ITER计划)的参与国之一。EAST是由中国独立设计制造的世界首个全超导核聚变实验装置,2007年3月通过国家验收,并在近年来取得了一系列实验成果。其科学目标是为ITER计划和中国未来独立设计建设运行核聚变堆奠定坚实的科学和技术基础。

  • 美国的“人造太阳”正在地平线升起

    来源:科技日报 作者:张梦然 2013年09月26日http://www.wokeji.com/qyts/1_qykj/201309/W020130926251522191132.jpg美国国家点火装置的前置放大器。 科技日报讯 (记者张梦然)据物理学家组织网9月25日(北京时间)消息,劳伦斯·利弗莫尔国家实验室报告称,世界最大激光器、被称为“人造太阳”的美国国家点火装置(NIF)正距离其目标越来越近,显示了一个可持续核聚变反应装置正在由梦想逐步成为现实。不过在设施达到高度稳定前,目前仍有一个显著障碍有待克服。相关论文发表在《等离子体物理学》杂志上。 备受全球关注的NIF于2009年5月在加州落成,融合了美国多家实验室的心血,迄今仍无人能挑战其世界上最大的激光聚变机器的身份。NIF有能力产生类似恒星内核的热与力,设计初衷本是用来模拟核爆,与罗切斯特大学激光器一样都属美国“无爆炸核试验”不可或缺之部分。但该装置也有较高的可用增益,让人们广泛注意到它更具魅力的一点——实现核能发电。人类能于实验室中获得“取之不尽用之不竭”核聚变能源,这在以前是想都不敢想的事。 此次据NIF研究小组的报告,在“点火”中,工程师们已直接将NIF的激光对准了燃料球,燃料球中含有氘和氚原子,激光器随后以接近太阳中心的温度对原子进行加热。NIF惯性约束聚变副主任约翰·爱德华兹表示,他们需要在一个非常可控的方式下利用激光束快速加热(点火要求在十亿分之一秒内),使目标物的最外层发生爆炸,目标物的剩余部分在强烈内爆的驱使下,内部燃料瞬间压缩,形成冲击波,进一步加热中心区域的燃料,导致可持续性燃烧,产生巨大能量。实验“几乎已经成功”,但舱室却在极端的温度和压力下屡次过早破裂。 约翰·爱德华兹称,为实现“点火”,他们已面对了相当多的挑战——足够的X射线强度、精确的能量传递等,但现在仍有一个关键障碍横亘于此。研究人员或将再做出一个在引燃点下能保持稳定的舱室。 而据稍早时间劳伦斯·利弗莫尔实验室发布的消息称,NIF的重量级激光向核聚变能源迈出了“第一步”,192束激光束成功融合成一个单一脉冲,并爆发出难以置信的能量——1.8兆焦耳的能量和500万亿瓦的峰值功率,已比美国在任何特定时刻内消耗的总电量还要高1000多倍。 NIF项目并非一帆风顺。2012年末,其曾被披露迫于种种压力扭转研究方向,焦点由“能源”正转回到“核武器”上。据当时《自然》在线版报道,主要原因是部分政府人士“发现”激光核聚变与产生电能尚有距离,同时还夺走了其他领域本来就不宽裕的资金。不过多数科学家非常难以接受这个伟大的清洁能源之梦就此夭折,他们对NIF的研究进展进行辩护,也对政府这一决议大加抨击。 总编辑圈点 物理学家们梦想使用高功率激光器瞬间加热并压缩氢使之点火,已有三十余年,但尝试结果只能说惨淡二字。搞得人们嘲笑说:核聚变是能源的未来,而且永远都是在“未来”。可谁说拯救当今能源困局,或是改变世界能源格局,它是个容易事呢?类似“人造太阳”的实验项目,国际上不只NIF一家,但NIF树大招风,每走一步要么接受鲜花要么被砸鸡蛋。如今它的成就,从能源的角度来看可能只是“一小步”,但对一个激光器装置来说,其实是迈出了无比巨大的一步。

  • 我国新一代“人造太阳”实验装置首获兆瓦级强流离子束

    新华社合肥1月14日电 记者14日从中科院合肥物质研究院了解到,我国新一代“人造太阳”实验装置EAST中性束注入系统(NBI)测试台近日在进行大功率离子束引出实验过程中,首次成功获得兆瓦级强流离子束。 负责这项研究工作的胡纯栋研究员介绍说,EAST中性束注入系统(NBI)测试台在实验过程中,成功获得束能量50千伏,束流22安培,束脉宽106毫秒的引出束流,离子束功率达到1.1兆瓦。测试结果圆满达到了EAST-NBI兆瓦级强流离子源研制的阶段性计划目标。这表明我国自主研制的第一台兆瓦级强流离子源以及大功率中性束注入器实验装置,完成了具有里程碑意义的阶段性实验成果。 据介绍,“EAST装置辅助加热系统”是国家“十二五”大科学工程,2010年7月正式立项,它是使EAST具有运行高参数等离子体的能力,从而可以开展与国际热核聚变反应堆密切相关的最前沿性研究的重要系统。其主要包括低杂波电流驱动系统、中性束注入系统这两大系统。 中性束注入系统广泛涉及等离子体物理、强流离子束、精密机械制造、高真空、低温制冷以及辐射防护等多学科技术领域。中科院合肥物质研究院NBI工程团队的科研人员2011年下半年,夜以继日地对基于NBI综合测试平台的强流离子源装置进行放电测试、老化锻炼、子系统联调等逐项实验,在首先获得离子源100秒长脉冲等离子体放电的基础上,终于首次达到了兆瓦级强流离子束研制的阶段性计划目标。 胡纯栋介绍,此次实验结果将为下一阶段长脉冲高能量的离子束调试打下坚实基础,并为EAST辅助加热系统最终目标——2至4兆瓦中性束注入系统的研制提供强有力的可靠支持。 中国是国际热核聚变实验堆(ITER计划)的参与国之一。EAST是由中国独立设计制造的世界首个全超导核聚变实验装置,2007年3月通过国家验收,并在近年来取得了一系列处于国际领先地位的实验成果。其科学目标是为ITER计划和中国未来独立设计建设运行核聚变堆奠定坚实的科学和技术基础。(记者 蔡敏)

  • 全国政协委员严建文: 以“智造”赋能新质生产力

    深耕高端装备制造产业数十载,全国政协委员、合锻智能董事长严建文对中国制造业高质量发展有着自己的认识和理解。今年两会期间,严建文继续围绕高端制造带来多项提案,为聚变产业、智能制造、加快发展新质生产力建言献策。“目前,中国在核聚变科研方向处于全球领先地位。然而,随着发达国家更为先进的聚变装置陆续建设,如日本聚变反应堆(日JT-60SA)的建成,美国正在建设高温超导托卡马克SPARC等,中国聚变能技术领先的优势将面临巨大挑战。”严建文告诉证券时报记者,当前聚变堆建造仍需克服材料、加工、装备、建安、运维等尖端制造技术难题,而国内尚未成立解决聚变制造产业共性问题、服务制造产业发展的制造业创新中心,限制了聚变产业的发展。鉴于此,严建文建议由中国科协牵头,支持国际化的聚变产业联盟注册,促进国际间聚变技术的交流;由发改委牵头,加大聚变产业经费投入,成立1—2家由国家主导的聚变能开发应用的市场主体;同时由工信部牵头,支持创建聚变尖端制造创新中心并将其建成国家级制造业创新中心,打造聚变尖端制造万亿产业集群。近年来,合锻智能也在以实际行动助力聚变产业发展。据悉,公司正积极参与聚变堆的关键部件的相关制造,投入了专门团队对聚变堆真空室构件进行预研,并已承接核聚变真空室构件的研制工作。“中国制造正在成为世界制造不可或缺的重要组成部分,但也应清楚地认识到我国制造业底蕴不足的事实,人才技术能力与基础制造能力均有待提升。”严建文表示,除关键零部件及高端装备与国外发达工业强国还存在差距外,我国在高端机器操作系统、智能装备管理运维系统等软件能力上也亟待完善。对此,严建文建议工信部在全国范围内做调研普查,重点对标全球行业龙头企业,尽快制定中国工业发展路线图,落实短缺技术能力建设的路线和方向,安排科学的赶超时间表,并根据各行业、领域的特点,注重并务实推进中国工程师队伍建设,着力打造隐形领军企业。近年来,我国制造业在人工智能赋能下,进入全新发展阶段,成为激发新质生产力的“倍增器”。 截至2023年12月底,我国已培育421家国家级示范工厂、万余家省级数字化车间和智能工厂。大飞机、新能源汽车、高速动车组等领域示范工厂研制周期平均缩短近30%,生产效率提升约30%;钢铁、建材、民爆等领域示范工厂本质安全水平大幅提升,碳排放减少约12%。不过,在严建文看来,目前我国智能制造的供给支撑能力、应用推广水平仍待提升,关键标准仍存在缺失或适应性不强等情况,标准体系亟待完善。“建议相关部门抓紧推动智能制造系统和机器人重大专项(2030)立项实施,同时加快智能制造普及应用,支持工业大省建设智能制造先行区,推动行业龙头企业建设全球领先的‘未来工厂’,在中小企业层面构建一批企业数智化转型样板并加强复制推广。”严建文表示,除此之外,加快形成我国自己的智能制造标准和评价体系也是当务之急。[size=14px][color=#707d8a][ 来源:证券时报网 ][/color][/size][size=14px][color=#707d8a][i]编辑:张圣斌[/i][/color][/size]

  • 美制造迄今最大激光脉冲:500万亿瓦特功率

    2012年07月18日 08:08 新浪科技微博http://i1.sinaimg.cn/IT/2012/0718/U2727P2DT20120718075512.jpg  未来能源?美国国家点火装置负责人摩西表示:“它正全面运作。科学家在清洁聚变能源的探索上迈出重要一步。”http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718075533.jpg  这个脉冲只持续230亿分之一秒。这个激光阵列不是朝着一个目标发射的。但2年内,科学家将朝着一个1毫米氢球发射这192束激光。http://i2.sinaimg.cn/IT/2012/0718/U2727P2DT20120718075553.jpg  一位艺术家的构想图展示了美国国家点火装置“点燃”192束激光阵列时产生的反应。本月制造的这个脉冲并非针对一个目标,但科学家最后会在一个1毫米氢球中用这些激光引发一个聚变反应。http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080555.jpg  一名工作人员正在检查加利福尼亚州的美国国家点火装置的设备。美国国家点火装置的目标是成为首个用聚变反应实现“得失相当”目标的设施,从而产生比这些激光所消耗的还要多的能量。http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080614.jpg这个巨大高能设施将在接下来2年内尝试激光聚变。这项技术被看作清洁能源的“圣杯”。http://i1.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080633.jpg美国国家点火装置的设备:3月15日的结果表明,科学家距“聚变点火”的目标又近了一步。http://i0.sinaimg.cn/IT/2012/0718/U2727P2DT20120718080654.jpg这些激光只持续230亿分之一秒,产生的能量却比整个美国在任何特定时间所用的电量多1000多倍。  新浪科技讯 北京时间7月18日消息,据国外媒体报道,位于加利福尼亚州、体育场大小的美国国家点火装置本月制造出人类历史上能量最大的激光脉冲。7月5日,192束激光融合成一个紫外线激光脉冲,产生500万亿瓦特峰值功率,这比美国在任何特定时刻内使用的总电量还要高1000多倍。  对旨在用类似于发生在氢弹中的核聚变反应产生巨大能量的“聚变”设备来说,这个脉冲的产生具有重大历史意义。美国国家点火装置负责人爱德华-摩西表示:“它正全面运作。科学家在清洁聚变能源的探索上迈出了重要一步。”  麻省理工学院高级研究科学家理查德-帕特拉索表示:“这个500万亿瓦功率的激光脉冲是美国国家点火装置研究小组的非凡成就----在实验中创造出迄今为止只出现于恒星内部深处的史无前例的聚变反应。对美国和世界各地像我们一样在极端条件下不懈追求基础科学和实验室聚变点火目标的科学家来说,这是一个非同寻常、令人兴奋的成就。”  加利福尼亚大学伯克利分校天文学、地球与行星学教授雷蒙德-简罗茨表示:“美国国家点火装置成功制造出500万亿瓦功率、具有里程碑意义的激光脉冲,这是世界上经过最严格的控制产生的能量最大的激光。”  这个脉冲只持续了230亿分之一秒。这个激光阵列并未朝着目标物发射,但2年内,科学家将朝着一个1毫米氢球发射这192束激光。美国国家点火装置的科学家希望它将来点燃聚变反应堆的聚变,从而释放出比这些激光所输入的能量还要多的能量。  受控的核聚变可以生成一种从50年代以来科学家一种试图制造出来的清洁能源,但在氢弹中核聚变是不受控制的。由于激光脉冲的持续时间极其短暂,所以所需总能量并不像听起来的那么多,它们被储存在美国国家点火装置电池一样的巨大容器中。 美国国家点火装置负责人摩西表示:“该事件在国家点火计划对聚变点火的探索中是个重要里程碑。国家点火装置用单个激光束进行过许多次类似的能量生成示范,但用192束激光在这个音障上进行操作还是头一次。”点火将成为一种释放出远超过“得失相当点”的巨大能量的自持反应。  美国国家点火装置试用了超重氢和在“重水”中发现的氢同位素重氢的小球,通过激光器把这些小球压缩到起初尺寸的数百分之一大。这个反应把这些原子融合成氮原子,释放出移动迅速、名为中子的亚原子粒子,这可能用于给水加热和为蒸汽轮机提供动力。  但聚变并非没有争议。美国国家点火装置还参与了美国的武器研发计划。这个聚变过程还被用于氢弹中。美国国家点火装置在这个国家的“库存维护与管理计划”中扮演着重要角色,以确保核军火库发挥它应有的作用。绿色和平组织等环境机构认为应把聚变研究的经费转移到研发风力和波浪发电等技术上来。(孝文)

  • 【讨论】【有奖问答】你知道的新能源有哪些?

    [color=#0021b0][size=4]概念:新能源是和长期广泛使用,技术上较为成熟的常规能源(如煤,石油,天然气,水能,核裂变能等)相比,已经开发但尚未大规模使用,或正在研究试验,尚需进一步开发的能源。例如:水能 风能 太阳能 地热能 生物能 潮汐能,氢能 核聚变能各位版友,还有什么新能源啊,有的话说出来有奖励哦。[/size][/color]

  • 【已应助】求电子书1篇

    [color=#dc143c][size=4][b]【序号】:1【作者】:[/b][color=#000000]朱士尧 [/color][b]【题名】:[color=#000000]核聚变原理[/color]【期刊】:[/b][color=#000000] [/color][b]合肥--中国科学技术大学出版社【年、卷、期、起止页码】:[/b][color=#000000] [/color][b]1992年【全文链接】:[/b][/size][/color]

  • 【金秋计划】排气筒出口属于断面急剧变化的部位

    [font='Times New Roman'][font=宋体] 按照《[/font]HJ/T397-2007[font=宋体]固定源废气监测技术规范》[/font][font=Times New Roman]“5.[/font][font=宋体]采样位置与采样点,[/font][font=Times New Roman]5.1.2 [/font][font=宋体]采样位置应优先选择在垂直管段,应避开烟道弯头和端面急剧变化处的部位。采样位置应设置在距弯头、阀门、变径管下游方向不小于[/font][font=Times New Roman]6[/font][font=宋体]倍直径,和距上述部件上游方向不小于[/font][font=Times New Roman]3[/font][font=宋体]倍直径处[/font][font=Times New Roman]...”[/font][/font][font=宋体],排气筒出口属于断面急剧变化的部位,应考虑采样位置与其之间的距离。[/font]

  • 天鹅X-1黑洞再度现异常行为

    天鹅X-1黑洞再度现异常行为

    http://ng1.17img.cn/bbsfiles/images/2011/07/201107180823_305394_1641557_3.jpg天文学家现象中的天鹅X-1黑洞模拟图据国外媒体报道,天文学家使用位于国际空间站“希望”号实验舱外部平台的宇宙X射线监视装置(MAXI),经过将近10个月的研究,获得了宇宙空间中明亮X射线源的巡天图像。这块宇宙空间位于人马座方向以及部分沿着银河系中心平面附近,图像中主要体现了巨大数量的双星所发射的X射线情况,这些双星大多数由中子星和黑洞组成。通过对X射线谱线的研究,科学家了解到这些天体发出的X射线具有较强贯穿能力,也就是其“硬度”较大,而其中也包含将近200个较弱的X射线源得到了进一步的确认。本次研究主要使用安装于国际空间站上的日本实验舱外的全天X射线监测相机(MAXI),随着空间站的轨道旋转每92分钟扫描一遍宇宙空间,主要用于监控活跃的X射线源并记录。宇宙空间中的X射线源与我们平常见到的恒星不同,前者分布不均匀,并且能表现出一些极不寻常的行为,科学家也在研究是什么原因导致了这些不不寻常的行为。据东京科学技术研究所研究员Nobuyuki Kawai介绍:我们所看见的大多数恒星的光芒都是其通过自身核心的核聚变产生的能量。如果这些恒星所产生的能量远远大于自身使用的上限,那整个天体将向外扩张、膨胀,并最终降低核心的温度。这样一来,核心核聚变就变负反馈调节所控制,也正是这个原因,这些恒星在其一生的大部分时间内显得非常稳定。另一方面,多数强烈的X射线源的“动力”来源于“引力效应的能量释放”。也就是说,当宇宙空间中的气体围绕着一个巨大密度的天体,比如黑洞或者中子星,强大的引力可以“催生”强烈的X射线。由于正常的恒星具有自身核聚变的稳定机制,所以这个进程很难发生。也因此,X射线强度的波动可以反馈到围绕天体周围气体的总量。这就意味着MAXI必须对宇宙空间中已知的和天区中潜在的X射线源保持密切的关注。一旦捕获相关X射线源,这个信息就会拟成一份“警报”传到其他天文观测站,由后者进行进一步的监测和研究。而目前天文学家研究工作的重点一直放在已经连续观测18个月的一个黑洞双星系统,即著名的天鹅座X-1,距离地球大约6000光年。对于这个众所周知著名的强X射线源,可以确认其具有一个黑洞,然而,天文学家发现这个强X射线源发出的X射线存在“硬”和“软”之间的转换,前者表示能量强,贯穿能力强,反之亦然。之所以存在高能与低能X射线模式的切换,科学家认为这直接关系到这个双星系统周围气体的密度。

  • 全球高纯氘元素市场-氘气、氘代试剂

    全球高纯氘元素市场经历了显着增长,2023年价值达到2.0834亿美元。这一势头预计将持续下去,预计市场规模将超过到2032 年将达到 3.3576 亿美元。这意味着 2024 年至 2032 年复合年增长率将达到 5.44%,标志着行业内将迎来一段显着扩张和机遇的时期。 高纯度氘市场正在经历前所未有的增长。需求激增是由各行业内多种因素共同推动的。在医疗保健领域,氘在制药和医学成像中的应用正在迅速扩大。例如,与传统药物相比,氘化药物表现出改善的代谢稳定性和减少的副作用。此外,氘的独特性质使其对于尖端核磁共振(NMR) 光谱分析至关重要,这在药物发现和诊断中变得越来越重要。 与此相一致,高纯度氘的未来有望持续增长和多样化。它在核聚变研究中的作用有可能改变全球能源格局。氘是聚变反应堆的重要燃料之一,它可以提供几乎无限的清洁能源。政府和私营部门的大量投资,例如国际ITER 聚变项目,表明该领域取得了相当大的进步。 高纯度氘的独特性质使其在广泛的先进应用中不可或缺。它是半导体行业的基石,能够制造更小、更强大、更高效的微芯片。氧化氘(重水)广泛用作核动力反应堆中的慢化剂和冷却剂,CANDU反应堆就是一个典型的例子。其他重要用途包括光纤制造,其中氘可以提高传输效率并减少信号损失。此外,科学仪器的突破正在推动需求,例如对材料研究至关重要的中子散射实验。 从历史上看,北美在高纯度氘的生产和消费方面一直处于领先地位。其中一个重要因素是该地区在二战期间和战后核技术发展中发挥的关键作用。特别是加拿大,在其完善的CANDU 核反应堆计划的推动下,在重水生产方面表现出色。 Ontario Power Generation(OPG) 等领先供应商在重水处理方面拥有丰富的经验和技术能力。此外,美国拥有成熟的研发环境,半导体和先进科学仪器等行业需求巨大。因此,北美已将自己定位为氘行业的重要全球供应商和重要消费者。 然而,亚太地区正在迅速崛起,成为一股不可忽视的力量。有几个因素促成了这一趋势。特别是中国,在氘生产能力方面正在取得重大进展,以支持其不断扩大的核聚变研究计划,从而推动区域需求。此外,整个印度和东南亚的材料科学应用、药物研究和医学诊断越来越多地采用核磁共振波谱,为高纯度氘创造了新的市场。该地区对半导体制造的关注进一步支持了需求的上升趋势。 值得注意的是,尽管北美目前拥有最大的收入份额,但市场动态却不稳定。如果亚太地区在聚变技术进步和蓬勃发展的高科技工业生态系统的推动下保持强劲的增长速度,则有可能超越欧洲,挑战北美在全球氘市场的长期领导地位。虽然预测总是在变化,但未来几年可能会显着重新调整竞争环境。

  • 科学家首次对极热致密等离子体进行受控研究

    实验结果推翻了沿用半个世纪的理论模型 中国科技网讯 据物理学家组织网8月7日(北京时间)报道,一个由英、美、德等国家研究人员组成的国际研究小组利用美国斯坦福直线加速器中心(SLAC)的直线加速器连贯光源(LCLS),首次对极热、致密物质进行了受控研究,实验结果推翻了50年来人们广泛接受的模型,此模型用于解释致密等离子体内的离子行为及其相互影响。从研究核聚变作为能源到理解恒星内部的运行机制,这一结果将对许多领域产生重要影响。相关论文发表在本周出版的《物理评论快报》上。 研究人员利用LCLS的X射线检测了极热致密等离子体的详细属性,首次实现了等离子物理学中的基本实验。实验结果与目前科学家用了半个世纪的模型并不符合。“X射线激光非常关键,我们无法在别的地方进行这种实验。”研究小组领导、牛津大学的贾斯廷·瓦克说。 LCLS为实验提供了特需条件:用于检测极端现象的严格受控的环境,能量可精确调整的激光束和精确检测特殊固体密度的等离子体属性的方法。改变X射线的光子能量,能生成等离子体并对其进行探测。研究人员用X射线射击超薄铝箔,生成了固体密度的铝等离子体,并用复杂的算法和计算机代码来模拟超热物质行为,构建出聚变过程模型。论文作者、牛津大学奥兰多·希瑞克斯塔说,我们将这些代码用于1966年以来就一直在用的旧模型中,模拟等离子环境产生的效果,发现模型预测与我们的实验数据不符。但返回到更早的1963年的模型时,却符合得相当好。可这一模型并没有得到广泛接受。 在此过程中,他们还确定了将电子击出等离子体的高电荷原子需要多少能量。“这个问题以前没有人能准确地测出来。”希瑞克斯塔说。 研究人员指出,最新分析解释了在聚变实验和有着超浓聚联合原子内核的恒星释放能量过程中的一些重要问题,这一过程中,随着相关电子轨道的重叠,紧压在一起的原子会失去自主能力。随着深入研究获得更多细节,可能对聚变模型的某些方面带来改进。 瓦克说,希望这一发现能在等离子物理学界产生“重要影响”。在许多领域中,用1963年的模型更容易做出改进。“我们不能说,当前的每个模型在任何条件下对任何事物都管用。希望人们能回顾这一问题,看它们是否符合更精细的条件。”(记者 常丽君) 总编辑圈点 等离子态在宇宙中最为常见,因为恒星中的物质普遍处于等离子态——气体在极度高温下,电子脱离了原子核的束缚,等离子体就产生了。但对于遍布宇宙的这种物质状态,人们对之的理解还非常有限。等离子体太变幻莫测了,科学家几乎无法预知,稍长一点的时间段里,它会如何变化。正因为如此,研发实用的托卡马克核聚变装置,很大程度上就是对等离子体的研究和利用。此次新技术手段的应用,帮助科学家确定了几个关键的物理值,让人们对等离子体的运动规律更有把握。 《科技日报》(2012-8-8 一版)

  • 【资料】数理科学和化学类期刊==物理学

    序号http://61.164.36.250:8001/CSTJ/IMAGES/kanwu.gif 刊名ISSNCN核心期刊1波谱学杂志1000-455642-1180/04★2低温物理学报1000-325834-1053/O4★3低温与超导1001-710034-1059/O4★4大学物理1000-071211-1910/O4★5发光学报1000-703222-1116/O4★6发光快报22-1117/O4★7光谱实验室1004-813811-3157/04★8光学学报0253-223931-1252/04★9高压物理学报1000-577351-1147/04★10光子学报1004-421361-1235/O4★11光谱学与光谱分析1000-059311-2200/O4★12光散射学报1004-592951-1395/O4★13核聚变与等离子体物理0254-608651-1151/TL★14核物理动态1003-998862-1047/O4★15计算物理1001-246X11-2011/O4★16[url=http://61.164

  • 97道物理难题

    以下是摘自《自然杂志》19卷4期的‘探索物理学难题的科学意义’的97个悬而未决的难题: 1.自然界是否存在五种以上的基本作用力? 2.基本物理常数的数值会随时间改变吗? 3.自然界的基本常数为什么具有现在的数值? 4.引力能否被屏蔽? 5.负引力存在吗? 6.宇宙中不断有物质创生吗? 7.引力子,你在何方? 8.新以太是否存在? 9.为什么时间具有方向性? 10.宇宙时是不均匀时间流吗? 11.为什么物理学的基本方程都具有时间反演不变性? 12.为什么绝对零度不可达到? 13.为什么热水比冷水冻结快些(Erasto Mpemba问题)? 14.运动物体的温度会改变吗? 15.开放系统的熵具有什么物理意义? 16.湍流形成的机理是什么? 17.地球磁场极性颠倒的原因是什么? 18.南极空洞是怎么形成的? 19.生物体内有核反应吗? 20.地球外有智慧生物吗? 21.地震前的地光是怎么形成的? 22.为什么闪电多‘之’字形少球形? 23.自然界是否存在七种对称性晶体? 24.能否解决强关联多电子系统的基态和元激发问题? 25.能否解决低维凝聚态物理新现象的理论问题? 26.何时能揭开狄拉克的大数之谜? 27.可观测宇宙的空间有多大? 28.宇宙中的暗物质是由什么粒子构成的? 29.为什么宇宙中反物质如此少? 30.反物质世界存在吗? 31.反物质能源能否实现? 32.可控轻核聚变能否实现? 33.激光热核反应的点火条件(劳森判据)能否达到? 34.常温核聚变能否实现? 35.冷核聚变能否实现? 36.薛定谔的猫是死还是活? 37.EPR之谜能否解决? 38.量子混沌确实存在吗? 39.高温超导的微观机理是什么? 40.可否发现室温超导体? 41.最后一个超重元素的质子数是多少? 42.热中子辐射俘获疑问的实质是什么? 43.原子核磁矩能否准确计算出来? 44.Gamow-Teller巨共振问题gA(核内核子)!=gA(自由核子)能否解决? 45.奇异电子峰是怎样形成的? 46.EMC效应能否解决? 47.质子自旋危机能否解决? 48.电子与核散射中,纵向响应形状因子问题能否解决? 49.有限核的结合能与能极能否一一准确算出来? 50.夸克-胶子等离子体( GP)物质态是否真的存在? 51.双生子佯谬能否解决? 52.穿洞佯谬能否解决? 53.滑落佯谬能否解决? 54.柔绳佯谬能否解决? 55.直角杠杆佯谬能否解决? 56.静止长度上限佯谬能否解决? 57.运动物体视在形象佯谬能否解决? 58.长度缩短的应力效应佯谬能否解决? 59.超光速佯谬能否解决? 60.快子佯谬能否解决? 61.奥本海默佯谬能否解决? 62.奥伯斯佯谬能否解决? 63.宇宙种子磁场的来历是什么? 64.太阳中微子之谜能否解决? 65.中微子有无静止质量? 66.有无中微子振荡? 67.类星体的能源是什么? 68.黑洞何时可以露真容? 69.磁单极是否存在? 70.Higgs粒子是否存在? 71.质量的起源是什么? 72.真正的对称自发破损的机理是什么? 73.自由夸克能否直接在实验中被发现? 74.有无胶子球存在? 75.轴子,畴壁能否找到? 76.存在第四代基本粒子吗? 77.CP不守恒难题只能在中性K介子衰变中见到吗? 78.引起CP对称性破坏的力是什么? 79.e-u-t之谜何时能解开? 80.亚夸克结构仅仅是推测吗? 81.质子的寿命有多长? 82.电子有无结构? 83.光子有无结构? 84.真空的本质是什么? 85.有无奇异物质存在? 86.C,Ψ物理中的ρπ疑难能否解决? 87.是否存在中性,稳性,质量至少大于40GeV的超对称粒子? 88.究竟有无超弦? 89.虫洞究竟有没有? 90.时间机器能造出来吗? 91.引力能否用量子理论加以描述? 92.能否将引力和其他几种基本力统一起来? 93.自然界手征不对称起源的关键是什么? 94.宇宙会一直膨胀下去吗? 95.宇宙大爆炸的量子起源是什么? 96.大爆炸之前可能存在什么? 97.我们的宇宙是否有兄弟姐妹?

  • 【基础研究十大新闻揭晓】2006年度中国基础研究十大新闻评选揭晓

    2006年度中国基础研究十大新闻评选结果在北京揭晓。经过专家多轮严格评选,10项具有原创性、新闻性和广泛社会影响的代表性成果入选。 2006年度中国基础研究十大新闻分别是:1)北京正负电子对撞机上发现一个新粒子X1835;2)找到前寒武纪两侧对称动物演化的有力证据;3)发现成熟森林土壤可持续积累有机碳;4)发现一种可有效通过皮肤传送大分子药物的透皮短肽;5)确定出果蝇识别和记忆图形重心高度和轮廓取向的脑区;6)在光纤通信中成功实现一种抗干扰的量子密码分配方案;7)研究证明人类干细胞可存活于山羊体内8)精确测量银河系英仙座旋臂距太阳系的距离;9)研究发现神经元-胶质细胞间的突触具有长时程可塑性;10)全超导托卡马克核聚变实验装置(EAST)成功实现物理放电实验

  • 【转帖】扭曲的物理学:七大新发现

    【转帖】扭曲的物理学:七大新发现

    [size=5][b][color=#6d5887][font=微软雅黑]扭曲的物理学:七大新发现(图)[/font][/color][/b][/size]从奇特的反物质,到给光打结的试验,物理学展现出我们所在的这个世界的令人不可思议的一面。下面是最近获得的最精彩的七大物理发现。[img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005111806_217576_1634653_3.jpg[/img] 1.奇异纠结 最奇怪的一个预测性量子力学理论,是粒子即使在太空中分开了,它们仍能“相互纠结”,当其中一个进行运动时,其他粒子就会立刻作出反应。2009年6月科学家宣布,他们已经测量出一个新系统的粒子纠结——两个分开的振荡粒子对。以前的试验涉及到粒子的内部特征,例如旋转状态,但这是科学家第一次涉及到粒子的运动模式,它跟更大的常规世界系统类似。[img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005111813_217578_1634653_3.jpg[/img]2.光结 光似乎是以直线方式运行,但有时它会拧成结。2010年1月研究人员在报告中说,他们利用电脑控制的一张全息图,把光束弯曲成8字形状。创作全息图的目的是以特定方向和形状发射光。物理学家表示,研究人员利用数学领域的纽结理论,研究生成的环状物。这些旋转的光又被称作光学旋涡,它可能已经为未来的激光装置提供了一些暗示。 [img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005111813_217579_1634653_3.jpg[/img]3.生成新的反物质粒子 科学家让粒子在核粒子加速器里以接近光速的速度相撞在一起,生成以前从没见过的物质——反超氚(anti-hypertriton)。这种粒子在很多方面都很奇特。首先,它不是正常物质,而是反物质。它与常规物质接触,就会立刻消失。其次,反超氚是一种所谓的“奇异”粒子,这意味着它包含一种罕见的构造物,即一种奇异夸克,一般形成原子的质子和中子里并不存在这种物质。这项试验是在纽约布克海文国家实验室的相对论重离子对撞机(RHIC)里进行的。[img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005111813_217580_1634653_3.jpg[/img] 4.指向核聚变的磁悬浮 核聚变(恒星内部发生的原子核聚合现象)是科学家一直希望实现的目标。如果科学家获得成功,它将为我们提供一个对环境影响很小的强大能量源。2010年科学家宣布他们已经制成一个悬浮磁铁,这被认为是核聚变的一个必要条件,距离取得最终成功更近了一步。通过让一个巨大的环形磁铁悬浮在半空中,研究人员可以控制磁铁外部包含的极热的带电粒子气体。研究人员表示,这些气体的密度与核聚变所需的密度非常接近。[img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005111814_217581_1634653_3.jpg[/img] 5.光弯曲物质 虽然我们很容易看到物质弯曲光的现象(棱镜弯曲光),但是我们很难看到光弯曲物质的现象。不过科学家在报告中表示,2010年3月他们通过一项试验看到了这种现象。研究人员在一间黑暗的实验室里组装扁平的纳米粒子(直径只有数十亿分之一米的微型物质)带。当这种带状物接触光时,它就会弯曲变成螺旋状。这项发现有助于工程师设计新型光学产品和电子产品。 [url=http://photo.blog.sina.com.cn/photo/593e3406t83c360597f10#pic][img]http://static3.photo.sina.com.cn/middle/593e3406t83c3607c46e2&690[/img][/url]6.奇异的粒子三组合 科学家利用锂原子再现了在二世纪阿富汗佛教艺术中可以看到的一种远古数学符号。这种符号又被称作博罗梅安环(Borromean ring),它显示的是三个环相互连接在一起。如果一个环被拿走,其他环就会彼此分开。据物理学家预测,粒子应该能形成相同序列,但是直到现在才有人在这方面取得成功。该试验成果在2009年12月公布,这距里该预言诞生已有40年。 [img]http://ng1.17img.cn/bbsfiles/images/2010/05/201005111814_217582_1634653_3.jpg[/img]7.夸克-胶子汤 “夸克-胶子汤”是今年布克海文国家实验室的相对论重离子对撞机获得的另一项重大成就。2010年2月科学家宣布,他们已经制成“夸克-胶子汤”,这里的质子和中子的基本组成成分已经分解成夸克和胶子。利用金原子在这个对撞机里进行极其猛烈的撞击,才能达到生成夸克-胶子汤所需的温度——大约7万亿华氏度(4万亿摄氏度)。这些环境比太阳中心热2.5万倍,跟宇宙刚刚诞生后出现的高温环境非常类似。这是地球上生成的温度最高的环境。(杨孝文)

  • 【讨论】探索物理学难题的科学意义--- 97个悬而未决的难题

    1.自然界是否存在五种以上的基本作用力? 2.基本物理常数的数值会随时间改变吗? 3.自然界的基本常数为什么具有现在的数值? 4.引力能否被屏蔽? 5.负引力存在吗? 6.宇宙中不断有物质创生吗? 7.引力子,你在何方? 8.新以太是否存在? 9.为什么时间具有方向性? 10.宇宙时是不均匀时间流吗? 11.为什么物理学的基本方程都具有时间反演不变性? 12.为什么绝对零度不可达到? 13.为什么热水比冷水冻结快些(Erasto Mpemba问题)? 14.运动物体的温度会改变吗? 15.开放系统的熵具有什么物理意义? 16.湍流形成的机理是什么? 17.地球磁场极性颠倒的原因是什么? 18.南极空洞是怎么形成的? 19.生物体内有核反应吗? 20.地球外有智慧生物吗? 21.地震前的地光是怎么形成的? 22.为什么闪电多‘之'字形少球形? 23.自然界是否存在七种对称性晶体? 24.能否解决强关联多电子系统的基态和元激发问题? 25.能否解决低维凝聚态物理新现象的理论问题?26.何时能揭开狄拉克的大数之谜? 27.可观测宇宙的空间有多大? 28.宇宙中的暗物质是由什么粒子构成的?29.为什么宇宙中反物质如此少? 30.反物质世界存在吗? 31.反物质能源能否实现? 32.可控轻核聚变能否实现? 33.激光热核反应的点火条件(劳森判据)能否达到? 34.常温核聚变能否实现? 35.冷核聚变能否实现? 36.薛定谔的猫是死还是活? 37.EPR之谜能否解决? 38.量子混沌确实存在吗? 39.高温超导的微观机理是什么? 40.可否发现室温超导体? 41.最后一个超重元素的质子数是多少? 42.热中子辐射俘获疑问的实质是什么? 43.原子核磁矩能否准确计算出来? 44.Gamow-Teller巨共振问题gA(核内核子)!=gA(自由核子)能否解决? 45.奇异电子峰是怎样形成的? 46.EMC效应能否解决? 47.质子自旋危机能否解决? 48.电子与核散射中,纵向响应形状因子问题能否解决? 49.有限核的结合能与能极能否一一准确算出来? 50.夸克-胶子等离子体( GP)物质态是否真的存在? 51.双生子佯谬能否解决? 52.穿洞佯谬能否解决? 53.滑落佯谬能否解决? 54.柔绳佯谬能否解决? 55.直角杠杆佯谬能否解决? 56.静止长度上限佯谬能否解决? 57.运动物体视在形象佯谬能否解决? 58.长度缩短的应力效应佯谬能否解决? 59.超光速佯谬能否解决? 60.快子佯谬能否解决? 61.奥本海默佯谬能否解决? 62.奥伯斯佯谬能否解决? 63.宇宙种子磁场的来历是什么?64.太阳中微子之谜能否解决? 65.中微子有无静止质量? 66.有无中微子振荡? 67.类星体的能源是什么? 68.黑洞何时可以露真容? 69.磁单极是否存在? 70.Higgs粒子是否存在? 71.质量的起源是什么? 72.真正的对称自发破损的机理是什么? 73.自由夸克能否直接在实验中被发现? 74.有无胶子球存在? 75.轴子,畴壁能否找到? 76.存在第四代基本粒子吗? 77.CP不守恒难题只能在中性K介子衰变中见到吗? 78.引起CP对称性破坏的力是什么? 79.e-u-t之谜何时能解开? 80.亚夸克结构仅仅是推测吗? 81.质子的寿命有多长? 82.电子有无结构? 83.光子有无结构? 84.真空的本质是什么? 85.有无奇异物质存在? 86.C,Ψ物理中的ρπ疑难能否解决?87.是否存在中性,稳性,质量至少大于40GeV的超对称粒子? 88.究竟有无超弦? 89.虫洞究竟有没有? 90.时间机器能造出来吗? 91.引力能否用量子理论加以描述?92.能否将引力和其他几种基本力统一起来?93.自然界手征不对称起源的关键是什么? 94.宇宙会一直膨胀下去吗? 95.宇宙大爆炸的量子起源是什么?96.大爆炸之前可能存在什么? 97.我们的宇宙是否有兄弟姐妹?

  • 【分享】造一个太阳!

    万物生长靠太阳,人类生存自然也离不开太阳。我们生火煮饭的柴草来自太阳,水力发电来自太阳,汽车里燃烧的汽油来自太阳……实际上,迄今为止,除了核能以外,我们使用的所有能源几乎都来自太阳。太阳像所有的恒星一样进行着简单的热核聚变,向外无休止地辐射着能量。我们现今所使用的能源,有些直接来自太阳,有些是太阳能转化的能源,像水能、风能、生物能,有些是早期由太阳能转化来的一直储存在地球上的能源,像煤炭、石油这样的化石燃料。人类社会发展到今天,仅靠太阳给予的可用能源已经不够用了。人类能源消耗快速增加,水能的开发几近到达极限,风能、太阳能无法形成规模。我们今天使用的主要能源是化石燃料,再有100多年即将用尽。人们还抱怨化石燃料对大气造成了污染,增加了温室气体。要知道它们是太阳和地球用了上亿年才形成的,但只够人类使用三四百年,而且它们是不可再生的。另外,煤炭、石油等是人类重要的自然资源,作为燃料烧掉是非常可惜的。人们无不担心,煤和石油烧完了,而其他能源又接替不上该怎么办?能源危机开始困扰着人类,人们一直在寻找各种可能的未来能源,以维持人类社会的持续发展。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制