当前位置: 仪器信息网 > 行业主题 > >

光信号

仪器信息网光信号专题为您整合光信号相关的最新文章,在光信号专题,您不仅可以免费浏览光信号的资讯, 同时您还可以浏览光信号的相关资料、解决方案,参与社区光信号话题讨论。

光信号相关的资讯

  • 新技术可将光信号变成沿金属表面行进的波
    有助于下一代单芯片光子互联的实现   据物理学家组织网4月22日报道,美国科学家制造出一种新的纳米尺度的连接设备,能将光学信号转变成沿金属表面行进的波。更为重要的是,新设备还能识别偏振光的偏振方向,并据此朝不同的方向发送信号。研究发表在4月19日出版的《科学》杂志上。   科学家们表示,最新研究提供了一种新的方式,让人们能在亚波长尺度下精确地操控光,而不会破坏可能携带有数据的信号,这为有效地从光子设备传递信息给电子设备从而实现下一代单芯片光子互联打开了大门。   该研究的合作者、哈佛大学工程和应用科学学院的研究生巴尔萨泽穆勒说:“如果你想朝一块拥有很多元件的小芯片周围发送一个数据信号,那么,你需要能精确地控制信号的行进方向。如果你无法做到这一点,信号就有可能丢失。方向是信号能否成功传递的重要因素。”   过去,科学家们也能通过改变光射入连接设备表面的角度来控制这些波的行进方向。但就像穆勒所说的:“这实在很麻烦,光学电路很难成一条直线,因此,为了给信号设定方向而不断重新调整角度非常不实际。”   新连接设备由一层薄薄的金组成,其上布满小孔,科学家们设计的天才之处正在于这些切口形成的像鲱鱼鱼骨(箭尾形)一样的图案。该研究的主要作者、哈佛大学工程与应用科学学院的费德里科卡帕索教授指出:“迄今为止,科学家们一直采用一系列平行的沟槽(格栅)来做这类事情,虽然它也能完成,但很多信号会丢失,而新设备上的新结构则能采用一种非常简单和优雅的方式来控制信号的行进方向。”   现在,光只需要垂直地射入即可,新设备会做其他事情。它会将入射光变成表面等离子体激元(在金属表面存在的自由振动的电子与光子相互作用产生的沿着金属表面传播的疏密波)。它也会阅读入射光波的偏振方向——直线、左旋圆极化还是右旋圆极化,然后为其安排合适的路径。新设备甚至能将一束光分成两部分并朝不同方向发送不同的部分,这就使得多通路信息传送成为可能。   新结构非常微小,每个图案单元比可见光的波长还要小,因此,科学家们认为,新结构应该很容易同平面光学等新奇技术整合。然而,卡帕索表示,新设备最有可能用于未来的高速信息网络内——纳米尺度的电子设备(目前已经出现)、光子设备和等离子体有望集成在一块微芯片上,从而实现下一代单芯片光子互联。
  • 放大NO₂光谱信号 快速锁定大气污染“元凶”
    近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。 导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士说道,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成介绍到,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 从细胞到光信号:ATP微生物检测仪的工作原理解析
    ATP微生物检测仪作为一种可靠的检测工具,以生物化学反应将微生物的存在转化为可测量的光信号为检测原理,不仅实现了对微生物数量的快速检测,也为各种应用领域提供了关键的卫生状况评估。了解更多ATP微生物检测仪产品详情→https://www.instrument.com.cn/show/C541815.htmlATP的基本概念三磷酸腺苷(ATP)是一种在所有活细胞中广泛存在的能量转移分子。它在细胞的能量代谢过程中起着核心作用,每个活细胞都包含恒定量的ATP。因此,ATP的存在可以作为生物活性的指标,反映样品中微生物的数量和活动状况。ATP的检测对于评估细菌、真菌以及其他微生物的存在和数量具有重要意义。检测过程的第一步:ATP的释放ATP微生物检测仪的工作始于样品中的ATP释放。检测过程中,首先使用ATP拭子从样品中提取ATP。ATP拭子含有特殊试剂,这些试剂能够裂解细胞膜,从而释放细胞内的ATP。这一过程是确保所有可测量的ATP都从细胞中释放出来的重要步骤,为后续的荧光检测提供了充足的ATP源。荧光反应的核心:荧光素酶—荧光素体系释放出的ATP与拭子中含有的荧光素酶和荧光素发生反应,形成荧光反应。荧光素酶是一种催化剂,它能够将ATP转化为荧光素,通过与荧光素的反应产生光信号。这一反应基于萤火虫发光的原理,其中荧光素酶催化荧光素与ATP结合,生成光信号。这一过程的核心是荧光素酶的催化作用,它使得ATP的存在能够通过发光现象被检测到。光信号的测量与结果分析产生的光信号通过荧光照度计进行测量。荧光照度计能够准确地捕捉到反应产生的光信号强度,并将其转化为数字信号。光信号的强度与样品中ATP的浓度成正比,因此,可以通过测量光信号强度来推断样品中微生物的数量。较强的光信号通常意味着较高的ATP含量,从而反映出样品中微生物的较多存在。应用与优势ATP微生物检测仪因其快速、准确的检测能力,被广泛应用于食品安全、医疗卫生、制药和环境监测等领域。其能够实时、可靠地评估样品中的卫生状况,确保环境和产品的质量。相较于传统微生物检测方法,ATP检测法提供了更为便捷和即时的结果,帮助我们迅速做出响应和决策。结论ATP微生物检测仪通过将细胞中的ATP转化为光信号,提供了一种可靠的微生物检测方法。其工作原理涵盖了从ATP的释放、荧光反应的核心到光信号测量,为微生物检测提供了科学、准确的解决方案。这一技术的应用更大地提升了卫生监测的效率,确保了各种行业的安全与质量。
  • 显微拉曼探究猪肉组织拉曼光谱信号
    一、研究背景猪肉含有丰富的营养成分,在储藏过程中受到微生物的污染而产生质量变化,以致腐坏。猪肉冷藏或冷冻后仍会缓慢变质,营养价值和品质降低。肉类品质是影响人们生活和健康的重要因素。肉类品质的好坏单凭感官检测易受主观因素的影响,感官评价的可靠性、可比性差,存在一定缺陷,因此国内外专家一直致力于建立一套快速科学、客观的对肉类食品品质进行仪器测定的方法,并使之与感官评价相结合,以确保评价结果的准确性。研究采用如海三通道显微拉曼光谱仪对猪肉进行检测分析,选择与猪肉品质指标相关的主要拉曼峰进行研究。探讨肉品变化与拉曼峰的内在联系,得到简单有效的检测方法,为猪肉储存过程中肉品变化提供检测依据。本次研究旨在利用显微拉曼光谱仪对猪肉进行测试,为检测猪肉信号提供一种新的技术手段,推动绿色实验开发技术的可持续发展。二、测试样品及实验仪器设备1. 测试样品样品从左到右分别为:石英载片猪肉样品、玻璃载片猪肉样品和钢板载片猪肉样品。图1猪肉样品图2. 设备搭建使用三通道显微拉曼光谱测量(如图2所示),测试时可直接将样品载玻片放置在升降台口处采集样品的拉曼光谱。图2 三通道显微拉曼光谱仪样品测试过程 三、测试结果 三种不同载片的猪肉光谱图覆盖了低波数区域(或称指纹区),这个区域大约在200-500cm-¹ ,包含了分子振动的详细信息,常常用于物质的鉴定。中波数区域大约500-1500cm-¹ ,通常包含了更多的分子振动的信息。高波数区域在1500-3000cm-¹ ,通常涉及更高级的振动模式和某些特定的官能团。从总光谱图中可以看出,每种样品随波长的变化呈现出独特的拉曼光谱特征,这些特征峰的位置和强度是猪肉组织识别和分类的重要依据。为了更详细地了解这些猪肉的性质,对猪肉的单个光谱图进行了详细的分析。图4钢板-10倍物镜猪肉拉曼图谱发现钢板上测得猪肉的拉曼光谱,在900cm-1、1000cm-1、1100cm-1、1400cm-1、1650cm-1、2800cm-1和2900cm-1处为猪肉的拉曼特征峰。1000cm-1处对应于顺式双键的异相面外弯曲振动,1100cm-1处对应脂肪族面外伸缩振动υ(C–C),1400cm-1处为亚甲基(CH2)剪式振动峰;1650cm-1处归属为不饱和双键(C=C)的伸缩振动,2800cm-1左右的谱带主要归属为对称的次甲基(-CH2)伸缩。图5钢板不同倍物镜猪肉对比拉曼图谱由图5可以看出,分别是物镜倍数为10倍、20倍和50倍。发现10倍与20倍的拉曼光谱的特征趋势是一致的,样品表面脂肪的拉曼特征位移集中在1200~1800cm-1和2800~3000cm-1附近,其中1120cm-1为C-C键伸缩振动,1300cm-1为-CH2-弯曲振动,1440cm-1为-CH2-剪切振动,1650cm-1左右为C=C伸缩振动,2800cm-1为-CH3的对称振动不饱和脂肪酸的特征峰,可以表征脂肪的饱和程度,在一定程度上反映猪肉脂肪的氧化程度。 四、实验结论使用如海光电三通道显微拉曼光谱仪,测得的拉曼光谱曲线能快速、简便,得出猪肉组织脂肪族氨基酸、肽链和蛋白质拉曼信号。根据猪肉的拉曼光谱间的差异和特征峰可初步评价猪肉组织的新鲜度评价。五、仪器推荐
  • 世界最强X射线激光破解细胞信号传导密码
    p   中科院上海药物研究所徐华强研究员领衔的国际交叉团队经过联合攻关,成功解析了磷酸化视紫红质(Rhodopsin)与阻遏蛋白(Arrestin)复合物的晶体结构,并破解了负责关闭GPCR传导信号的磷酸化密码。7月27日,相关研究成果以封面文章发表于《细胞》杂志。 /p p   生命的功能是依靠信号传导密码来体现或来执行的。G蛋白偶联受体(GPCR)是人体内最大的细胞膜表面受体家族,通过G蛋白和阻遏蛋白这两条主要信号通路,承担着细胞信号转导的“信号兵”的职责。当受到外界信号刺激,GPCR激活G蛋白发出“开放”信号。而“关闭”信号的则来自于磷酸化密码——GPCR尾部一旦被磷酸化,随即将激活阻遏蛋白并与之形成紧密结合为复合物,从而关闭传导信号。因此鉴定与解释GPCR磷酸化密码是当今细胞信号传导领域的重要科学问题。 /p p   据悉,徐华强领衔的交叉团队在2015年成功解析GPCR与阻遏蛋白复合物的完整复合体结构的基础上,对于该结构的尾部高分辨率结构与磷酸化机制展开攻关。 /p p   “我们利用世界上最强X射线激光,看清楚了复合晶体的尾部结构信息,并从中解析了其尾部磷酸化招募并与阻遏蛋白结合的过程。”徐华强将研究过程比喻为生命密码的层层解密,“为了验证磷酸化密码的普适性,我们试验了96%的GPCR蛋白,发现70%-80%GPCR的“关闭”信号都由磷酸化密码控制。”最后通过一系列验证生物学功能验证,GPCR招募阻遏蛋白的磷酸化密码就此破解——GPCR通过其尾部氨基酸的磷酸化招募并与阻遏蛋白结合,同时发现该密码对整个GPCR蛋白组具有普遍性。 /p p   据了解,结构生物学的重大突破往往与同步辐射光源+X射线自由电子激光的组合密切相关。目前全球已有6个这样的组合,分别位于德国、美国、日本、韩国、瑞士和意大利。 “我们非常期待我国自有的重大科技基础设施,如正在建设与推进中的软X射线与硬X射线自由电子激光装置。”徐华强表示,“这些大科学平台能够为科学家提供更先进、丰富的综合实验手段。” /p p   据介绍,这项研究获得国家“重大新药创制”重大专项、973、先导专项以及国际项目等基金的资助。合作研究机构包括加拿大多伦多大学、斯克利普斯研究所、德国Desy自由电子激光科学中心、德国汉堡超快成像中心、加州大学洛杉矶分校、南加州大学、上海科技大学和范德堡大学等。 /p
  • 放大光谱信号实现超极限大气二氧化氮探测
    通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。周家成中国科学院合肥物质科学研究院安徽光机所博士近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士告诉科技日报记者,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成告诉记者,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 日本将禁止向俄罗斯出口示波器、光谱仪、信号放大器、信号发生器等产品
    近日,日本经济产业省公布了在乌克兰军事行动后将禁止向俄罗斯出口的产品清单。该禁令包括57个项目,将于3月18日生效。该部表示,该清单包括31种通用商品和26种技术项目,包括软件。出口禁令适用于半导体、雷达、传感器、激光器、通信设备、记录设备及其组件、示波器、光谱仪、信号放大器、信号发生器、电阻器、加密设备、电视摄像机、滤光片和氟化物光纤。此外,还对导航设备、无线电电子设备、水下监视设备、潜水设备和柴油发动机实施了禁令。此外,禁止的是拖拉机部件,飞机及其部件的燃气涡轮发动机以及炼油设备。2月24日,在分离的顿巴斯共和国呼吁帮助保卫自己免受乌克兰军方的攻击后,俄罗斯在乌克兰发动了军事行动。作为回应,西方国家对莫斯科实施了全面制裁。
  • 安捷伦和阿尔卡特朗讯贝尔实验室联合打破光信号记录
    安捷伦公司(NYSE:A)1月29日宣布,已经成功验证了世界上最快的复合调节的光接口速率。来自阿尔卡特朗讯贝尔实验室和安捷伦的一个联合小组共同组织了该实验,实验采用了Infiniium 90000 Q系列示玻器来发送长距离远途信号,接口速率创世界记录。   依靠阿尔卡特-朗讯贝尔实验室先进的检测系统和数据分析以及安捷伦极佳测量性能的Infiniium 90000 Q系列示波器,成功实现了PDM-16QAM调制1.28兆的双载波光信号。   合作团队同时操作两台63GHz的9000Q系列示玻器在160GSa/s的4X模拟 - 数字转换器条件下运行,带宽结合测量范围内的精确度确保了实验的成功。除了63GHz外,RealEdge技术的启用、9000Q系列示波器的特色—在33GHz时超过5.5的最高有效位数(ENOB)和小于0.5ps的国际范围最低的标准偏差也是实验获得成功不可缺少的因素。   “最前沿的研究需要最先进的测量,”安捷伦副总裁兼示波器产品部总经理Jay Alexander说“9000Q系列示波器可以提供业内最精确的测量,并且安捷伦也非常自豪能够在阿尔卡特-朗讯实验室开创性的实验成果中扮演一个关键性的角色。”   安捷伦联合阿尔卡特-朗讯在去年秋天的IEEE 光子协会年会上共同发表了一篇论文,说明了接口技术的突破。论文讲述了安捷伦和阿尔卡特-朗讯的联合团队是如何建立并配置世界上最快的接口速率以及以高频谱效率通过长距离传输信号的。在安捷伦和阿尔卡特-朗讯之间的合作实验开始于2012年并花费了整整一年的时间,最后将精华部分写入了该论文:“在5.2 B / S /Hz时,1Tb / s的双载波80 GBaud的PDM-16QAM WDM可传输3200公里。”   具有63GHz的实时带宽的安捷伦Infiniium 90000 Q系列示波器已经在2012年4月推出。业内噪音最低,检测宽带最高,并配有一套应用广泛的测量应用软件是其主要特色。
  • 激光诱导击穿光谱分析对火星潜在生命信号的探测启示
    近日,中科院地质与地球物理研究所地球与行星物理院重点实验室地球与行星磁场及宜居性学科组的申建勋博士后与合作导师林巍研究员等,利用激光诱导击穿光谱(LIBS)对地球类火星环境中岩石样品的光谱特征进行了研究,结合拉曼光谱测量,探讨了LIBS技术在火星生命信号筛选中的应用潜力。该研究选取了柴达木盆地西北干旱区岩滩的一块典型岩石碎屑样品(图1),分别利用拉曼光谱和LIBS对样品不同部位(岩上、岩侧和岩下)的数百个点进行了系统分析。图1 柴达木盆地采样点(a)地形图、(b)地质图以及(c和d)石英岩碎屑样品拉曼光谱分析显示岩下部位存在能够吸收紫外辐射并清除氧自由基的β-胡萝卜素,指示了岩石下部有耐辐射微生物群落的存在。而岩上、岩侧未检测到有效的微生物信号,仅发现石英和少量其他矿物信号(图2)。该研究结果表明在环境恶劣的类火星地区,岩石下部为微生物生存提供了适宜的生态位,未来的火星生命探测中可以着重关注火星岩下区域。同时结合前人研究,揭示出合成色素分子是类火星极端环境微生物的一类重要生存策略。图2 柴达木盆地西北干旱区类火星环境石英岩碎屑样品部分测量位点的拉曼光谱图。Qz:石英;Fr:锌铁矿;Hm:赤铁矿;Cr:β-胡萝卜素为了评估LIBS筛选生命信号的潜力,进一步对该样品的岩上、岩侧和岩下不同部位进行了LIBS分析。研究显示样品不同区域的LIBS光谱整体特征类似,但利用多元统计分析方法(主成分分析法PCA和相似性分析ANOSIM)可以对岩石样品不同部位的LIBS光谱数据进行区分(图3)。进一步分析区分样品的波段信息,发现涵盖了部分钙、镁的峰区和一些可能由于生命化学元素空间分布而产生的相互作用信号。以上结果表明,在样本均质程度较高但有足够样本量的前提下,基于LIBS数据的多元统计分析可以作为快速筛选潜在生命信号的一种手段,再结合其他探测技术,有望在火星生命信号的原位探测中发挥作用。图3 类火星环境石英岩碎屑样品部分测量位点的LIBS光谱图(左图)与PCA散点图(右图)研究成果发表于美国化学学会旗下期刊ACS Earth and Space Chemistry(申建勋,刘立,陈妍,孙宇,林巍. Geochemical and biological profiles of a quartz stone in the Qaidam Mars analog using LIBS: Implications for the search for biosignatures on Mars[J]. ACS Earth and Space Chemistry, 2022. DOI: 10.1021/acsearthspacechem.2c00129)。该成果受中国科学院、国家自然科学基金、中国科学院地质与地球物理研究所等联合资助。
  • 高分辨率激光外差光谱技术新突破!信号探测和测量精度双双大幅提升
    近日,中科院合肥研究院安光所许振宇副研究员课题组科研人员在激光外差光谱技术研究中取得新的突破,相关研究成果发表在《光学通信》(Optics Letters)上,且该论文被编入编辑精选(Editor’s Pick)。激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,安光所科研团队邓昊博士后首次提出基于半导体光放大技术的微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明所研发的基于半导体光放大的高分辨率激光外差光谱仪相比于传统的高分辨率激光外差光谱仪在弱光信号探测以及气体浓度测量精度方面得到大幅提升。该研究提高了高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大的应用潜力。基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果文章链接:https://opg.optica.org/ol/fulltext.cfm?uri=ol-47-17-4335&id=493999
  • HORIBA前沿用户报道 | 将传统光信号处理速度提升了近10倍,浙江大学做到了
    作者 | 虞绍良光调制是现代光学技术中的基本环节,通过光与材料的相互作用,实现对光束的调控,在光通信、超快激光和光传感领域有广泛的应用。目前传统的方式是通过电学方法来提高信息处理速度,但快也只能在20~30个皮秒内完成信息处理。基于此背景,浙江大学童利民教授研究组与复旦大学刘韡韬教授等合作,另辟蹊径,以二维材料为基础,采用全光调制,将处理时间提升至2~3个皮秒内,达到传统方法的近十倍速度。具体如何实现?请跟随我们的脚步一起来探究吧。1石墨烯全光调制技术,实现光信号处理速度提升近10倍首先我们了解一下全光调制的基本原理:利用不同材料的非线性效应, 实现一束光对另外一束光强度和相位等物理量的调控。具体来看,研究组将脉冲光和连续光同时作用于石墨烯,在脉冲光的激发下,石墨烯中载流子的跃迁和弛豫过程,会导致导带电子的耗尽和价带能级的填充。因为泡利阻塞,会形成连续光吸收的减少,也就实现了脉冲光对连续光进行强度调控。基于二维材料的光调制的基本原理与响应时间范围石墨烯的线性能带结构使该过程发生在2~3个皮秒内,相比传统电光调制,光信号的处理速度提升了近十倍。2石墨烯超快全光相位调制,实现更高调制效率和更低光损耗率研究中,脉冲光的激发不仅会影响石墨烯对光的吸收,也会改变其折射率,导致连续光相位的移动。为实现更高的调制效率和更低的光损耗率,在基于石墨烯直接光强度调制的基础上,研究人员进一步提出用脉冲光调控连续光相位的构想(即石墨烯超快全光相位调制)。实际实验中,当连续光相位移动时,研究人员观察到连续光强度发生了显著变化。基于石墨烯的全光相位调制,在保持超快速响应的基础上,同时还可以将器件的调制深度大幅提升,插入损耗大幅降低, 这样很好地克服了直接强度调制中这两个参数之间互相制约的问题。相关研究已发表了综述论文。论文中,作者不仅介绍了石墨烯全光调制研究工作,也对二维材料在光调制应用中的发展现状、优势和不足进行了系统分析。相比传统的体材料 ,二维材料由于其特殊的结构尺寸和光学性质,在响应时间、工作波段和高密度集成等方面有着明显的优势。但同时也存在二维材料的线性吸收、热效应等因素,限制了其在大功率器件上的应用,还有待未来的研究工作解决。该系列实验过程中,HORIBA iHR 320光谱仪主要用于对石墨烯转移过程中的层数判断和精确定位。如果您也想了解相关产品信息,可通过文末左下角“阅读原文”提交信息查看相关产品资料。浙江大学童利民教授课题组浙江大学童利民教授课题组长期致力于微纳光子学研究,在微纳尺度光场的产生、约束和调控等方向深耕多年,以一维波导为核心,发展了微纳谐振腔、激光器、调制器、传感器等多种光器件。二维材料超快光调制为课题组近年的研究方向之一。研究组在该方向的系列论文发表于Nano Lett. 14, 955-959 (2014)、Light: Science & Applications 4, e348 (2015)、Optica 3, 541-544 (2016)、Adv. Mater. 29, 1606128 (2017)。该工作得到了科技部、国家科学基金委的资助。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 【最新进展】清华大学王哲课题组:理解激光诱导击穿光谱信号不稳定性的来源
    p style=" text-align: right text-indent: 2em " span style=" font-size: 14px " 清华大学王哲教授团队最近在Frontiers of Physics发表的一篇论文[1]揭示了激光诱导击穿光谱分析中信号不确定性产生的物理机理。 /span /p p style=" text-align: center text-indent: 0em " strong span style=" font-family: & quot times new roman& quot font-size: 18px " Vincenzo Palleschi /span /strong /p p style=" text-align: center text-indent: 0em " span style=" font-size: 14px font-family: & quot times new roman& quot " Applied and Laser Spectroscopy Laboratory, Institute of Chemistry of Organometallic Compounds, Research Area of CNR, Via G. Moruzzi, 1–56124 Pisa, Italy /span /p p style=" text-align: center text-indent: 0em " span style=" font-size: 14px font-family: & quot times new roman& quot " E-mail: vincenzo.palleschi@cnr.it /span /p p style=" text-align: justify text-indent: 2em " 整整20年前,我在意大利比萨(Pisa, Italy)组织召开了第一届国际激光诱导击穿光谱(Laser-induced breakdown spectroscopy, LIBS)会议,这一活动首次将LIBS研究同仁聚集在一个国际会议上,极大地推动了激光诱导等离子体光谱领域的研究[2],以及该技术在工业诊断[3]、环境检测[4]、生物医学[5]、文化遗产[6]等领域的应用。 /p p style=" text-align: justify text-indent: 2em " 事实上,LIBS技术具有许多独特的特点,包括设备简单可靠、无需对样品进行任何处理即可检测等优点,这使其成为快速原位分析应用的极佳选择[7];另一方面,LIBS的实验室分析应用并没有与实验室外应用以相同的速度增长,LIBS等离子体远未达到光谱分析测量的理想状态,它们在其存在周期的大部分时间内都是非稳定、不均匀和非热平衡的[8]。自吸收[9]和基体效应使得光谱发射强度与分析物浓度之间的关联变得困难,而使用激光来烧蚀和激发样品极大地限制了分别优化这两个过程的可能性。测量过程中极小的烧蚀质量导致了强烈的信号波动,同时对于大多数感兴趣的应用中,分析元素的检出限较高。 /p p style=" text-align: justify text-indent: 2em " 在过去的20年里,一些重要的研究表明,为了提高LIBS技术在实验室中的性能,需要更好地理解激光-样品和激光-等离子体相互作用的机理。1998年,加拿大的Sabsabi教授团队提出了在LIBS分析中使用脉冲序列[10]来提高信背比的想法;1999年,我们在比萨提出了一种新的免标准样品LIBS分析方法,称为免定标LIBS(CF-LIBS)[11-13],以克服基体效应和自吸收效应;2013年,意大利的De Giacomo教授团队提出了使用金属纳米粒子[14,15]来增强LIBS信号并改善其分析性能的想法。这三项提高实验室LIBS分析能力的关键改进方法是在北美和欧洲发展起来的,这反映了这样一个事实:直到21世纪的头十年,LIBS研究主要由美国、加拿大和欧洲国家主导。然而,情况在2014年开始发生变化,当时LIBS国际会议首次走出美国和欧洲-地中海地区,抵达中国北京。LIBS-2014国际会议的成功举办证明了亚洲地区在LIBS基础研究和应用方面取得了巨大进展。 /p p style=" text-align: justify text-indent: 2em " 清华大学王哲教授所在的团队在Frontiers of Physics上发表的论文[1]是其多年来辛勤工作的成果,经过这些年的努力,清华大学LIBS实验室已经成为世界上最具影响力LIBS研究团体之一。王哲教授建立了一个LIBS历史上最为先进和昂贵的实验室,可能仅次于LIBS在火星空间应用实验室[16]。他和他的同事们使用了三个增强型CMOS相机对激光诱导等离子体进行成像,另外一个相机连接到阶梯型光谱仪上进行时间分辨光谱采集,这使得他们能够以更清晰的方式研究等离子体演化及其对LIBS信号的影响规律。 /p p style=" text-align: justify text-indent: 2em " 这个令人印象深刻的实验证明了在激光脉冲激发样品产生等离子体后约140~170 ns的关键时间处,等离子体中开始出现不稳定性[1]。作者指出这种不稳定性是LIBS分析应用中信号波动和不确定性的主要来源。他们还解释了这种不稳定性的产生机制,即等离子体受激波反作用力的影响,在向内反弹的过程中,放大了早期阶段的微小形态变化,并导致不可避免的LIBS信号不稳定性(图1)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/be0d4361-80d9-4e27-abd9-2b0161a328a1.jpg" title=" 微信图片_20201127170840.jpg" alt=" 微信图片_20201127170840.jpg" / /p p style=" text-align: center text-indent: 0em " 图1& nbsp 早期等离子体演化示意图及图像相关性。 /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " References /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 1. Y. T. Fu, W. L. Gu, Z. Y. Hou, S. A. Muhammed, T. Q. Li, Y. Wang, and Z. Wang, Mechanism of signal uncertainty generation for laser-induced breakdown spectroscopy, Front. Phys. 16(2), 22502 (2021) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 2. S. M. Aberkane, A. Safi, A. Botto, B. Campanella, S. Legnaioli, F. Poggialini, S. Raneri, F. Rezaei, and V. Palleschi, Laser-induced breakdown spectroscopy for determination of spectral fundamental parameters, Appl. Sci. 10(14), 4973 (2020) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 3. S. Legnaioli, B. Campanella, F. Poggialini, S. Pagnotta, M. A. Harith, Z. A. Abdel-Salam, and V. Palleschi, Industrial applications of laser-induced breakdown spectroscopy: A review, Anal. Methods. 12(8), 1014 (2020) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 4. G. A. Lithgow, A. L. Robinson, and S. G. Buckley, Ambient measurements of metal-containing PM2.5 in an urban environment using laser-induced breakdown spectroscopy, Atmos. Environ. 38(20), 3319 (2004) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 5. R. Gaudiuso, N. Melikechi, Z. A. Abdel-Salam, M. A. Harith, V. Palleschi, V. Motto-Ros, and B. Busser, Laser-induced breakdown spectroscopy for human and animal health: A review, Spectrochim. Acta Part B: Atomic Spectrosc. 152, 123 (2019) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 6. A. Botto, B. Campanella, S. Legnaioli, M. Lezzerini, G. Lorenzetti, S. Pagnotta, F. Poggialini, and V. Palleschi, Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: A critical review, J. Anal. At. Spectrom. 34(1), 81 (2019) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 7. A. W. Miziolek, V. Palleschi, and I. Schechter, Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, Cambridge University Press, 2006& nbsp & nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 8. G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: Beyond the McWhirter criterion, Spectrochim. Acta Part B: Atomic Spectrosc. 65(1), 86 (2010) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 9. F. Rezaei, G. Cristoforetti, E. Tognoni, S. Legnaioli, V. Palleschi, and A. Safi, A review of the current analytical approaches for evaluating, compensating and exploiting self-absorption in laser induced breakdown spectroscopy, Spectrochim. Acta Part B: Atomic Spectrosc. 105878 (2020) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 10. L. St-Onge, M. Sabsabi, and P. Cielo, Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode, Spectrochim. Acta Part B: Atomic Spectrosc. 53(3), 407 (1998) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 11. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy, Appl. Spectrosc. 53(8), 960 (1999) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 12. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, et al., A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy, Spectrochim. Acta Part B: Atomic Spectrosc. 57(2), 339 (2002) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 13. G. H. Cavalcanti, D. V. Teixeira, S. Legnaioli, G. Lorenzetti, L. Pardini, and V. Palleschi, One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis, Spectrochim. Acta Part B: Atomic Spectrosc. 87, 51 (2013) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 14. A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples, Anal. Chem. 85(21), 10180 (2013) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 15. A. De Giacomo, Z. Salajkova, and M. Dell’Aglio, A quantum chemistry approach based on the analogy with π-system in polymers for a rapid estimation of the resonance wavelength of nanoparticle systems, Nanomaterials 9(7), 1 (2019) /span /p p style=" text-align: justify text-indent: 2em " span style=" font-size: 14px font-family: & quot times new roman& quot " 16. S. Maurice, S. M. Clegg, R. C. Wiens, O. Gasnault, W. Rapin, et al., ChemCam activities and discoveries during the nominal missionof the Mars Science Laboratory in Gale crater, Mars, J. Anal. At. Spectrom. 31(4), 863 (2016) /span /p
  • 德国研制出世界最小光电信号转换器
    光纤网络是现代信息传递的基础,光电信号转换器是其核心,德国卡尔斯鲁尔研究中心的科研人员研制出一种世界最小的光电信号转换器。其内部结构为平行排列的两个微小黄金电极,长度约29微米,两电极之间的间隙约为0.1微米,整个结构直径不到人头发的1/3,两电极之间引入变化的电压信号,其频率与传输的数据信号相关,在电极中间充填有特殊的塑料材料,其对光线的折射率随所施加的电压发生改变。在两电极的间隙中导入连续光束后,会激发出表面电磁波(表面等离子体),这种表面电磁波受到施加与电极间隙中充填的塑料材料中的电压信号的调制,而经过调制的表面电磁波又可影响穿过间隙的光束的相位,实现信息通过施加于两电极的电压信号调制光束而转换成光信号在光介质中的传输。经过实验验证,这种光电转换器可实现的数据转换速率达到40G比特/秒,可工作在目前宽带光纤网常用的红外光波长范围内(波长1480-1600纳米),工作温度可达85摄氏度,是目前世界上最小型化的高速光电信号(相位)转换器,可用目前成熟的微电子技术手段进行规模化生产,并集成在微电子芯片中,可实现信息的高速率低能耗传输。
  • 超灵敏磁强计可将信号功率放大64%
    德国弗劳恩霍夫应用固体物理研究所(IAF)发布公告称,该所研究人员在基于金刚石氮—空位(NV)中心的超灵敏激光阈值磁强计研究中取得重要进展,可通过受激发射实现64%的信号功率放大,并显示出创纪录的33%的超高对比度。该研究将为进一步开发用于室温和现有背景场下的高灵敏度磁场传感器铺平道路。相关成果发表在近日的《科学进展》杂志上。金刚石中的NV中心是由一个氮原子和一个碳空位组成的原子系统。在被绿色激光照射时,会激发出红光。由于这些原子级NV中心的光度取决于外部磁场的强度,因此它们可用于高空间分辨率的微磁场测量。研究人员成功制造出具有高密度NV中心的金刚石,进而研发高精细的NV激光腔,首次通过实验验证了激光阈值磁强计的理论原理。IAF研究人员扬杰斯克博士解释说:“由于其材料特性,具有高密度NV中心的金刚石在用作激光介质时可显著提高测量精度。”杰斯克团队通过CVD(化学气相沉积)工艺在金刚石生长中实现了高水平的氮掺杂,并使用电子束和热处理,在后处理中使NV密度增加了20—70倍。在表征过程中,他们优化了3个关键因素:高NV密度、通过高通量辐照实现取代氮的高转化率和高电荷稳定性,从而成功生产出具有高密度NV中心的高质量CVD金刚石。此前,NV中心已被用于量子磁传感,但信号一直是自发发射而不是受激发射或激光输出。现在,IAF的研究人员不仅通过受激发射实现了64%的信号功率增加,还创造了一项纪录:与磁场相关的发射显示出33%的对比度和毫瓦(mW)范围内的最大输出功率。
  • 免费试用!国仪量子微弱信号测量系列产品等你体验
    随着科技不断进步,科研以及工业领域精细测量微弱信号的需求不断增长。为满足用户需求,同时推动国产科研仪器发展,国仪量子于近日正式推出“微弱信号测量系列设备免费试用”活动(包括国仪量子的锁相放大器、任意波形发生器、时间数字转换器、同步控制系统等产品,如有更多产品试用需求请在下方问卷中登记)。活动免费试用产品扫描下方二维码或点击底部“阅读原文”填写相关需求,参与试用活动。填问卷试用仪器数字锁相放大器LIA001M国仪量子 LIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效简化科研工作流程和设备依赖,提高科研效率和质量。任意波形发生器AWG4100国仪量子 AWG4100是一款多通道的高性能任意波形发生器。该产品拥有四个相互独立的波形输出通道,每个通道可以提供高达1.2 GSa/s采样率、16位垂直分辨率的单端波形输出。每通道拥有最大512 MSa的存储深度,配合灵活的用户自定义波形编辑以及序列播放功能,能够轻松应对各种不同场景的复杂波形需求。时间数字转换器TDC1610国仪量子 TDC1610是一款结构紧凑的高精度时间测量仪器,拥有16个采集通道,8 ps时间分辨率;支持时间标签模式,可以实时记录采集信号的时间信息。产品采用易于操作的图形化界面,提供C++、Python和LabVIEW的SDK供用户进行二次开发,可广泛应用于统计激光器后脉冲分布、量子光学、光检测和激光雷达测距等科研领域。同步控制系统SCS1800国仪量子 SCS1800同步控制系统是基于高精度网络时钟与时间同步技术,实现多节点时钟信号的分发和亚纳秒级同步控制,可广泛应用于量子计算、工业自动化控制、分布式基站、电力电网同步、自适应阵列天线和多基地雷达等多种应用场景。注:1.本次试用产品包括国仪量子的锁相放大器、任意波形发生器、时间数字转换器、同步控制系统,如有其他产品试用需求,请登记详询;2.本次活动时间截止到2022年12月31日,后续如有变动,将另行通知;3.本次活动最终解释权归国仪量子(合肥)技术有限公司所有。
  • 光学波段信号可当探测热木星大气逃逸探针
    记者从中国科学院云南天文台了解到,该台与美国亚利桑那大学研究人员合作,发现光学波段的信号可以作为探测热木星大气逃逸的探针。国际著名期刊《天体物理杂志快报》发表了这一成果。  早在2003年,人们通过观测远紫外波段的信号,发现离主星很近的热木星大气中处在低能态的较冷氢原子以一种剧烈的形式向外逃逸。这种逃逸可对行星演化造成严重影响。  “近几年,人们在光学波段成功探测到行星大气中较热氢原子对主星遮挡时产生的微弱吸收信号,如氢的光学波段透射光谱。”云南天文台郭建恒研究员说,然而研究者一直缺乏有力的模型,来论证这些较热的氢原子产生的吸收信号与大气逃逸之间的关系。  郭建恒与博士研究生闫冬冬以及亚利桑那大学黄辰亮博士等人合作,基于自主开发的流体动力学逃逸大气模型和辐射转移模型,在细致地计算了冷热氢原子的分布后,模拟了热木星WASP-121b在不同观测时刻光学波段透射光谱的数据。研究表明,这颗行星周围存在数量巨大的逃逸中性氢气体,每年损失物质以10万亿吨计。这些被行星抛射的物质中,热氢原子的速度比声速更快,并造成了光学波段的吸收。这也说明,光学波段的信号可以用作探测大气逃逸探针。  进一步研究发现,行星大气在不同时刻的吸收水平变化,反映了主星不同的活动特性,恒星更强的活动水平可导致行星大气更深的吸收。这一发现有助于更好地理解主星活动性对行星大气逃逸的影响。
  • 外部参考信号、全新屏显,你要的升级锁相放大器来啦!
    锁定放大器用于测量非常小的交流信号,即使小信号被数千倍大的噪声源所掩盖,也可以进行准确的测量。这种设备用利用一种称为相敏检测(phase-sensitive detection, PSD)的技术来挑选出特定参考频率和相位的信号分量,提取具有已知载波的调制信号。锁定放大器在各种光学测量仪器个设备中扮演着十分关键的角色。昕虹光电HPLIA微型双通道调制解调锁相放大器以当今FPGA +ARM单片机的业界流行配置而设计,长期深受用户青睐。迎接2022年,我们回应广大客户的需求,推出了升级版HPLIA Plus调制解调锁相放大器,不仅提升了颜值,更支持了大家期待已久的外部参考信号输入,实现更便捷、更弹性的调制和解调功能!海尔欣HPLIA Plus外观展示图HPLIA Plus 亮点:1.老版仅支持内部同步DDS信号,进行独立的双通道内同步解调。而HPLIA Plus终于支持外同步模式啦!用户可选择去同步外部输入的参考信号模式,而由Input1去解调微弱信号。内外同步模式,便于用户灵活自选调制信号,让您的实验设置更弹性!2.在外同步模式下,其中一路调制通道DDS输出与用户参考信号锁相的正弦波,可以用于同步其他HPLIA Plus,这样的配置可使多通道锁相解调成为可能,可借由数个HPLIA Plus锁相放大器串联,实现简易、便捷、经济的多路信号同步锁相解调。3.全新的UI界面,支持原有PC显示或机身自带高分辨触摸显示屏,实验设备玩出高级感!
  • 我国科研人员开发出新型高灵敏钙信号荧光蛋白探针
    近日,北京师范大学认知神经科学与学习国家重点实验室教授章晓辉团队、北师大生命科学学院教授王友军团队与中国科学技大学教授唐爱辉团队合作开发构建了一类新型的检测钙信号的荧光蛋白探针“尼莫”(NEMO),该探针具有更强和更精准的定量测定性能。近日,该成果在线发表于期刊《自然-方法》。生命体的许多活动都离不开钙离子(Ca2+)信号分子。细胞内钙离子浓度时空变化被称之为钙信号,它控制或调节各种细胞生命活动。开发灵敏和精准的钙信号检测探针工具对探究生命活动相关的信号机制和规律至关重要。在相关领域内被广泛应用的钙探针主要包括有机小分子类探针和遗传编码的(荧光)蛋白探针(GECIs)。目前最被广泛应用的单荧光GECI工具为GCaMPs系列,它由钙感知和荧光反应两大模块组装构建而成。其中,钙感知模块包含钙结合蛋白(如钙调蛋白CaM)及其靶肽(如M13/RS20),产生荧光变化的模块为环化重排的绿色荧光蛋白cpGFP。科学家们发现,通过改变CaM、M13与GFP三个元件之间的连接方式,连接短肽及互作界面中的关键氨基酸等方式,可改善GECIs的表现。因此,在2001年最初构建的GCaMP1版本上多次迭代改造后,至2023年最新发展的GCaMP8系列具备了显著改善的灵敏度和反应速度,但它们的反应幅度,即对钙信号大小的分辨率和线性动态范围始终有待提高。对此,合作团队采用了全新策略构建的新型高灵敏钙离子探针。从增强GECI对钙离子浓度变化的的荧光反应大小出发,合作团队采用亮度更高的新型荧光蛋白mNeoGreen(mNG)来替换广泛使用的cpGFP,结合多种设计及优化策略组合,构建了含几十个候选复合分子的GECI库,并通过系统的钙离子成像筛选和体外鉴定后,最终获得到了一组名为NEMO的新型GECI探针。与现有的GCaMP系列探针相比,NEMO探针的灵敏度及钙响应幅度有了显著提升,在领域中首次实现GECI探针对细胞内钙信号的反应幅度超过100倍;同时具有更好的抗光淬灭能力与pH稳定性,并能实现对钙离子水平的绝对定量检测。合作团队进一步在对非兴奋性细胞系、分离培养的大鼠神经元、小鼠脑内神经元在体双光子激光成像和深部脑区光纤记录等测试中发现,相比于最新或最广泛使用的GCaMP8s或GCaMP6s,NEMO系列对胞内钙信号的反应速度相当,但更灵敏并具更高的信噪比,且反应幅度提高达约10倍之多。
  • 《Nature Methods》|新型高灵敏钙信号荧光蛋白探针被成功研发
    近日,北京师范大学认知神经科学与学习国家重点实验室教授章晓辉团队、北师大生命科学学院教授王友军团队与中国科学技大学教授唐爱辉团队合作开发构建了一类新型的检测钙信号的荧光蛋白探针NEMO,具有高灵敏度和反应能力,对钙信号的动态分辨范围有了很大提升。荧光探针在分子生物学研究和开发中越来越受到重视。许多科学家正在医学、制药和绿色生物技术等领域都有应用,荧光探针在很多情况下被描述为荧光化学传感器,荧光探针是具有吸收特定波长的光并发射不同波长的光的小分子,通常是更长的波长(称为荧光的过程),用于研究生物样品。 这些分子可以附着在目标分子上,作为荧光显微镜分析的标记,也称为荧光团。细胞中的一些蛋白质或小分子是天然荧光的,这称为内在荧光或自发荧光,比如绿色荧光蛋白 (GFP)。 蛋白质、核酸、脂质或小分子可以用外在荧光团(一种荧光染料)标记,它可以是小分子、蛋白质或量子点。遗传编码钙离子指示剂(genetically encoded calcium indicators,GECIs),是一种新型的钙离子指示剂,它可以实现在体实验中对钙离子的长时程检测和实时动态检测,并且还可以借助细胞器的特异性定位信号表征某些特定的亚细胞结构的钙离子变化情况。目前常用的荧光蛋白指示剂有Cameleons、TN-XXL、GCaMP、Pericams和Camgaroo等。GCaMP系列蛋白(Single-fluorophore)特别是GCaMP6系列蛋白是最主要的钙离子指示剂。与GCaMP6s相比,NEMOs能够检测到体内SBR峰高2倍、中位SBR峰高4倍的神经元的单动作电位,从而优于大多数现有的最先进的GECIs(蛋白探针)。科学家们发现,通过改变CaM、M13与GFP三个元件之间的连接方式FF0C,连接短肽及互作界面中的关键氨基酸等方式,可改善GECIs的表现。合作团队采用了全新策略构建的新型高灵敏钙离子探针。从增强GECI对钙离子浓度变化的的荧光反应大小出发,合作团队采用亮度更高的新型荧光蛋白mNeoGreen(mNG)来替换广泛使用的cpGFP,结合多种设计及优化策略组合,构建了含几十个候选复合分子的GECI库,并通过系统的钙离子成像筛选和体外鉴定后,最终获得到了一组名为NEMO的新型GECI探针。在领域中首次实现GECI探针对细胞内钙信号的反应幅度超过100倍;同时具有更好的抗光淬灭能力与pH稳定性,并能实现对钙离子水平的绝对定量检测。科学家们用与gcamp6兼容的成像装置检查了在电场刺激下离解大鼠神经元中NEMO传感器的反应(Figure 3)。我们观察到,所有NEMO传感器都能够检测到由单个动作电位(AP)引发的Ca2+信号(Figure 3a),其峰值SBR大约是gcamp6或gcamp6的两倍。NEMOf足以区分频率高达5 Hz的神经元反应(图3b)。总的来说,NEMO传感器可以作为监测哺乳动物细胞、组织或体内以及植物中Ca2+动态的首选工具。
  • Life tech最新Akt信号通路研究工具及文献
    通路聚焦:Akt信号通路 产品聚集 Akt磷酸化蛋白和总蛋白定量了解更多 新型磷酸化Akt苏氨酸308 ABfinity™ 抗体了解更多 PDGF介导的Akt信号通路的激活了解更多 肿瘤发生中的Akt和ROS之间的相互作用研究了解更多 研究工具 细胞染色模拟工具——使用多种标记Molecular Probes® 染料对您的细胞进行虚拟染色。立即对您的细胞进行染色 免疫测定选择指南新品!——利用我们的新型在线搜索和过滤工具即可轻松找出合适的免疫测定方法。立即搜索免疫测定 3D Cell iPhone™ App——利用我们的新型三维细胞工具了解细胞及其结构,甚至观看活细胞视频。了解有关3D Cell iPhone™ App的更多详情 新鲜出炉——Chang, W., et al.(2011) Jurkat T细胞中对氨基酚诱导的细胞毒性:2(RS)-n-丙基噻唑烷-4(R)-羧酸的保护作用。J Biochem Mol Toxicol. doi:10.1002/jbt.20402 [电子版]。了解更多Setshedi, M., et al.(2011) 酒精诱导的脂肪肝实验模型中N-乙酰半胱氨酸对肝脏胰岛素抵抗的有限治疗功效。Alcohol Clin Exp Res.35(12):2139-2151.了解更多 Life Technologies 中国区办事处销售服务信箱:sales-cn@lifetech.com技术服务信箱:cntechsupport@lifetech.com客户服务热线:800-820-8982400-820-8982www.lifetechnologies.com FOR RESEARCH USE ONLY. NOT INTENDED FOR ANY ANIMAL OR HUMAN THERAPEUTIC OR DIAGNOSTIC USE, UNLESS OTHERWISE STATED.© 2011 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. In compliance with federal regulations, we hereby disclose that this email communication is for commercial purposes.View the Life Technologies privacy policy.Follow Life Technologies
  • 十年研究,徐华强教授突破GPCR信号传导领域世界级难题
    十年研究,徐华强教授突破gpcr信号传导领域世界级难题 近日,2016药明康德生命化学研究奖评选结果新鲜出炉。中国科学院上海药物研究所研究员、中国科学院受体结构与功能重点实验室主任徐华强教授凭借受体结构与功能研究领域的累累硕果,摘得2016药明康德生命化学研究奖“杰出成就奖”。徐华强教授主要研究的领域是gpcr(g蛋白偶联受体)的结构与作用机制。在全球,这个充满魅力的研究领域正不断为医药业带来新的活力——至少有三分之一的小分子药物是gpcr的激活剂或者拮抗剂,还有更多这样的候选药物小分子在临床研发中。全世界多个顶尖实验室和企业都在这一领域竞相研发。在这个重要的领域,徐华强教授持续攻坚十年,取得了多项重大突破。他在gpcr结构方面的多项研究攻克了许多未解难题,被学术界誉为结构生物学研究领域的里程碑,轰动了国内外医学界与药学界。一个激动人心的药物研发领域2012年,罗伯特莱夫科维茨(robert j. lefkowitz)和布莱恩克比尔卡(brian k. kobilka)两位科学家因“g蛋白偶联受体研究”获得当年的诺贝尔化学奖。这一发现揭开了人体信息交流系统的许多秘密:我们的身体究竟是如何感知外部世界,并将这些信号“通知”到各个细胞。然而,gpcr信号通路的多样性和复杂性决定了这一诺奖成果的取得并不是一个领域研究的完结,而是意味着更多探索旅程的开始。在细胞通讯中,作为信号蛋白的arrestin与多种g蛋白都可以结合gpcr,以传递重要的指令,执行例如生长调控和激素分泌等众多基本生命过程。不过,g蛋白信号通路和arrestin信号通路在生理作用上截然不同。arrestin通过脱敏作用会阻止g蛋白的激活,并通过内化作用的过程将gpcr回收。长期以来,科学家们对于arrestin如何结合gpcr、如何激活不同组的细胞信号、以及这与g蛋白和gpcr互作之间的差别知之甚少。这极大地限制了许多潜在药物的研发。实际上,如果能靶向作用于其中一条信号通路,那么这样的gpcr抑制剂往往更可能成为理想的药物分子。相比非选择性的药物,它们能够带来更好的疗效和更少的不良副作用。然而,要想得到这样的小分子,就必需了解它们与gpcr之间的详细作用过程。小细胞大贡献,毫厘之间进化生命医学过去十年间,徐华强教授所领导的团队始终致力于揭示arrestin与 gpcr rhodopsin构成的复合物的结构。沉浸于探索分子世界的他们,终于在去年取得了突破性进展,将生命过程的一条路径展现给了世界。 ▲徐华强教授的发现攻克世界级的科学难题研究中,徐华强教授创造性地采用了“最亮”的x射线自由电子激光技术lcls(linac coherent light source,目前世界上最强的x射线自由电子激光器,能够以比以往x-射线源强10亿倍的亮度发射x-射线脉冲),生成了与gpcr结合arrestin时的首个三维图像。这一发现攻克了细胞信号传导领域的世界级科学难题,也为开发选择性更高的药物奠定了理论基础,使开发出副作用更小、更有效的心脏病、神经退行性疾病和癌症等疾病疗法成为可能。徐华强教授表示:“在药物发现领域,对药物靶点蛋白的结构与功能关系理解越深,开发出高效低毒药物的几率就越大。”去年这一里程碑成果一经发布在《自然》期刊上后,马上在生物医学界引起热议,该新闻还入选了2015年中国十大科技进展新闻,并于今年3月再获国际蛋白质学会(the protein society)颁发的hans neurath奖。国际蛋白质学会执行委员会的成员查尔斯桑德斯博士评论道:“此项研究是结构生物学研究领域的里程碑,为众多基础生物学研究及生物医学发展提供了广泛而深入的见解,这项工作非常优秀。”科研狂人:成功就是99%的努力工作“从事科学研究,一是对科学的兴趣,尤其对生命科学的各种奥秘感兴趣;二是贵在坚持,科学研究是探索,长年的工作才有一点点突破,就是最大的欣慰;三是在于努力,科学研究的成功就是99%的努力工作,再加上1%的运气,”徐华强教授曾这样说道。在研究方面,徐华强所带领的团队可以说是硕果累累,已在《自然》、《科学》、《science signaling》、《jounal of biological chemistry》、《proceedings of the national academy of sciences》等国际著名学术期刊发表论文百余篇,获得专利十余项。在科研的道路上,教授从未停歇。同事都说,他是个”科研狂人”。自1980年在清华大学开始接触核子物理科学后,徐教授就一直沉浸在科研当中。从国内到国外,再从国外辗转回到国内,始终不变的是他对生命科学奥秘的探索和追求。在中国科学院上海药物研究所,他还先后创建了药物靶标结构与功能中心和受体结构与功能重点实验室,主要从事核激素受体、肝细胞生长因子(hgf)受体、g蛋白偶联受体(gpcr)、离子通道和植物激素受体等结构与功能领域研究,开展基于晶体结构的肿瘤与糖尿病的药物研发,并取得了多项原创性发现。一直以来,他研究的是生命科学。他尊重生命,懂得生命的意义。医生一次只能治疗一个患者,而基础研究成果却可能拯救无数人的生命、无数代人的生命。这也是为什么在科研这条道路上,他从不停歇、从不松懈。
  • 10月21日网络讲座:原子力显微镜高次谐波信号分析、提取及成像
    摘要:原子力显微镜(AFM)轻敲模式(TM)成像过程中,针尖与样品间的非线性相互作用会导致探针检测信号的频谱中出现各种倍频分量,即高次谐波信号。利用高次谐波信号的幅度/相位信息进行成像,可以表征样品表面精细结构和分析研究样品表面纳米力学性质。报告介绍了利用小波变换对高次谐波信号特性开展的分析研究,以及几种常用的对微弱高次谐波信号增强放大、提取的方法。最后,展示了研制的高次谐波成像系统及其在样品表征中的应用。报告人:北京航空航天大学物理学院钱建强教授钱建强,北京航空航天大学物理学院教授,博士生导师。中国仪器仪表学会显微仪器分会理事,中国宇航学会空间遥感专业委员会委员,全国高等学校光学教学研究会理事,主要从事纳米测量方法与显微仪器技术研究。上世纪90年代初师从姚骏恩院士,研制成功国内首批激光检测原子力显微镜。近年来承担并完成国家科技支撑计划重大课题子课题、国家863、国家自然科学基金、北京市自然科学基金等项目20余项。先后研制成功基于自激励和自感知的石英音叉探针频率调制原子力显微镜,原子力显微镜液相环境频率调制成像系统,原子力显微镜高次谐波/多频激励成像系统。率先开展了基于压缩感知的原子力显微镜成像方法研究,基于小波变换的原子力显微镜高次谐波信号分析。在Nanotechnology、 Ultramicroscopy、Review of Scientific Instruments等国内外学术期刊发表论文100余篇,获授权国家发明专利15项,主编并出版工信部“十二五”规划教材1部。网络讲座时间:北京时间 2021年10月21日 上午10:00-上午11:00申请方法:关注“Park原子力显微镜”公众号查看首页文章进行注册即可参加。届时直播间会抽送十位赠送精美礼物。
  • 高内涵——基于FRET分析活细胞中的ERK信号转导
    Extracellular signal-regulated kinase(ERK)是胚胎发生,细胞分化,细胞增殖和细胞死亡调控的关键组成部分。ERK途径起源于质膜中的活化受体,并通过Ras/Raf/MEK至ERK(图1)。图1. Ras/Raf/MEK/ERK信号级联将信号从细胞表面受体如EGF受体(EGFR)传播到细胞内蛋白质。ERK是该途径的最终组分,并且在被生长因子(例如EGF(表皮生长因子))激活后,触发下游效应,如激酶或转录因子的激活。该途径被不同类型的受体激活,包括受体酪氨酸激酶 (例如EGF受体)以及G蛋白偶联受体。作为信号传导途径的最终组分,ERK磷酸化不同的细胞内蛋白质,包括大量其他激酶和转录因子。ERK信号传导途径存在于各种癌症类型中,因此正在研究作为治疗干预的靶标。在这里,我们描述了如何在Operetta CLS高内涵分析系统上自动化研究ERK信号传导的活细胞FRET测定。该测定可以用于药物发现。基于FRET的ERK生物传感器FRET是从供体分子到受体分子的非辐射能量转移。能量转移需要供体和受体间隔小于10nm,因此提供了研究分子接近度变化的敏感工具,例如蛋白质 - 蛋白质相互作用(分子间FRET)或蛋白质的构象变化(分子内FRET)。在这项研究中,我们专注于分子内FRET,使用称为EKAREV的CFP-YFP生物传感器(图2)。稳定表达EKAREV的细胞由Somponnat Sampattavanich博士友情提供(图3)。在该生物传感器中,供体和受体荧光团以单一融合蛋白编码。EKAREV生物传感器经过优化,可以减少随机触发的基础FRET信号,并使其可靠地与距离相关。ERK对EKAREV的磷酸化触发构象变化,使CFP和YFP靠近诱导FRET。图2.细胞外信号调节激酶活性报告基因(EKAREV)的示意图。在该生物传感器中,两种荧光蛋白通过ERK底物结构域,接头和结合结构域分开。一旦ERK底物结构域经过ERK的磷酸化,就会触发构象变化,使CFP和YFP紧密接近并允许FRET发生。EKAREV生物传感器是分子内FRET的实例,其中供体和受体以1:1的固定化学计量存在。因此,进行双通道比率实验就足够了,通道1检测受体发射光(IAcceptor),通道2检测供体发射(IDonor),将得到的两个荧光信号强度进行背景校正,并计算它们的比率以给出相对FRET效率EFRET:测定方法将1.2×104EKAREV细胞/孔接种到CellCarrier-96Ultra微量培养板(PerkinElmer#6055300),150μl培养基(表1)中。孵育2天后(37℃,5%CO2),150μl饥饿培养基洗涤两次并在饥饿培养基中孵育5小时以降低基础ERK活性。另外,在孵育开始时向细胞中加入各种浓度的抑制剂或DMSO。4.5小时后,将细胞核用4μM DRAQ5在37℃,5%CO2下染色30分钟。然后用饥饿培养基洗涤细胞一次,并加入含有8μl 20x浓缩抑制剂或DMSO对照的150μl新鲜饥饿培养基。作为对照,在某一时间点,向细胞中加入8μl20x浓缩诱导物(PMA或EGF)。为了抑制FRET信号,应用PD184352,SCH772984和Ulixertinib。含有或不含有所测试化合物的最高DMSO浓度的培养基用作对照。试剂,化合物和介质列表成像在宽场模式下使用20x高NA物镜(NA 0.8)在Operetta CLS系统上建立长时间实验,获取图像总共97分钟。将FRET诱导化合物添加到血清饥饿细胞后,开始时间序列,测量间隔为每8分钟一次,在此设置中获得了四个渠道:DRAQ5 (ex 615-645,em655-760),CFP(ex 435-460,em 470-515),YFP(ex490-515,em 525-580)和FRET(ex 435-460,em 515-580)(图3)。图3.稳定表达EKAREV生物传感器的人乳腺上皮细胞。细胞核用DRAQ5染色。随后,在Operetta CLS系统上使用宽场模式的20x高NA物镜对细胞成像。分析策略使用Harmony® 高内涵成像和分析软件进行自动图像分析。简言之,将图像分割成细胞和背景。计算细胞质和背景中的供体和FRET强度,然后计算背景校正的FRET比率作为最终结果(图4)。图4.使用Harmony软件进行比率FRET定量的图像分析工作流程:细胞和背景的细胞质被分段,低表达细胞被强度阈值排除。量化供体和FRET通道的强度及其适当的背景,并计算背景校正的FRET强度比。减去背景强度在活细胞应用中尤其有利,其中具有自发荧光组分的培养基通常导致更高的背景并因此导致更小的测定窗口。结果为了探索是否可以使用基于FRET的生物传感器在Operetta CLS上研究ERK信号传导的调节,用不同的ERK和MEK激活剂和抑制剂处理EKAREV细胞。(图5)。图5.外源添加的活化剂(绿色)和抑制剂(红色)示意图及其对ERK信号通路的影响。表达EKAREV的细胞用EGF或PMA处理以诱导ERK活化,另外,用三种MEK和ERK特异性抑制剂(PD184352,SCH772984,Ulixertinib),在途径的不同位置中断信号转导。PMA和EGF充当Ras/Raf/MEK/ERK信号级联的特异性激活剂。EGF特异性结合细胞表面上的EGF受体,而PMA作为亲脂性,膜可渗透的分子通过直接激活RAF激活该途径。PD184352可以通过选择性抑制MEK1/2来抑制ERK途径,而Ulixertinib和SCH772984都是ERK1/2的有效和选择性抑制剂。首先,为了更多地了解FRET诱导和抑制的动态性质,记录了97分钟的长时实验。正如所料,与未处理的对照相比,单独用EGF或PMA处理细胞导致FRET比率的强烈增加(图6)。大约30分钟后信号处于高位。对照显示较低水平的ERK活化,并且观察到随时间稳定增加。由于ERK1/2可以通过多种生长因子和有丝分裂来调节,这可能是由活细胞成像过程中的自分泌或旁分泌信号引起的。用不同浓度的ERK抑制剂(SCH772984)共同处理细胞导致ERK反应的剂量依赖性降低。在5μMSCH772984中,通过EGF的ERK活化几乎可以忽略不计,表明在该浓度下ERK被完全抑制。请注意,0.5%DMSO是实验中使用的最高浓度,确实对FRET比率有影响,因此需要包括此对照。用第二种ERK1/2特异性抑制剂Ulixertinib获得了类似的结果(数据未显示)。图6.在Operetta CLS系统上使用基于EKAREV FRET的生物传感器的ERK信号传导的时间进程。通过EGF或PMA刺激ERK诱导快速FRET信号增加,在约30分钟后平稳。高浓度的SCH772984(5μM)导致几乎完全抑制ERK活化(1μg/ ml EGF),没有可测量的FRET信号增加。较高稀释度的SCH772984仅部分抑制EGF诱导的ERK活化。control显示没有任何处理的样品有中间轻微上升的FRET信号。0.5%DMSO略微抑制FRET信号,这是实验中使用的DMSO的最高浓度。测定统计:Z' = 0.87(在时间点32分钟计算,DMSO为阴性,EGF为阳性对照)当FRET信号在32分钟后达到恒定水平时,选择该时间点以确定SCH772984的IC50值。用1μg/ mL EGF和系列稀释的SCH772984处理EKAREV细胞,稀释范围为10pM至3μM。计算的IC50值为272nM的剂量反应曲线如图7所示。图7.ERK抑制剂SCH772984导致基于FRET的EKAREV信号的剂量依赖性降低。在1μg/ ml EGF存在下,用递增浓度的SCH772984处理EKAREV细胞。在孵育32分钟后,在Operetta CLS系统上测定FRET比率,因为信号在此时间点稳定。高Z' 值(Z' = 0.89)显示出优异的分析性能。为了研究EKAREV FRET成像测定是否可用于研究直接作用于MEK1/2的途径调节,测试了MEK1/2抑制剂PD184352对PMA化细胞的作用(图8)。如图所示,PD184352抑制PMA诱导的ERK活化。图8.在Operetta CLS系统上测量的PD184352对PMA活化的Ras/Raf/MEK/ERK信号级联的抑制。EKAREV细胞用另一组活化剂和抑制剂(PMA+PD184352)处理,其作用在RAF/MEK的上游(与图5比较)。用200或2000nM PMA处理的EKAREV细胞显示出高FRET反应(诱导后32分钟)。通过将细胞与MEK1/2特异性抑制剂PD184352以10μM的浓度共孵育来抑制活化。结论EKAREV FRET生物传感器可用于Operetta CLS系统的活细胞成像测定,以研究ERK的激活和抑制。级联内不同靶标的调节很容易测量,因此这种方法可以有助于鉴定干扰Ras/Raf/MEK/ERK信号级联的新化合物。该测定在活细胞中进行,因此它可用于分析ERK信号传导动力学,而定量ERK磷酸化的常规生物化学技术通常是终点测定。尽管细胞群中生物传感器表达水平相对不均匀(图3),但FRET比率的计算提供了特别好的化验数据和统计数据,Z' 值高于0.87。EKAREV生物传感器的优化设计,Operetta CLS系统的高质量成像以及Harmony内图像分析的出色工具都有助于提高这里提供的高含量FRET分析的稳定性。Harmony软件的构建模块概念允许创建易于设置和理解的图像分析序列,并且不需要专业的图像分析知识。该测定还提供了Opera Phenix™ 高含量筛选系统的可比较结果和测定统计数据。由于Operetta CLS和Opera Phenix系统比传统显微镜具有更高的通量,基于FRET的生物传感器的高含量成像为药物发现和细胞信号传导中的基础研究开辟了新的可能性。参考文献1. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B-E.,Karandikar, M., Berman, K. & Cobb, M. H. (2001).Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocrine Reviews, 22(2), 153-183. doi/10.1210/edrv.22.2.04282. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M.,Roberts, K. & Walter, P. (2007) Molecular Biology of the Cell,Garland Science., 5th revised edition, ISBN-10: 08153410593. McCubrey, J. A, Steelman, L. S., Chappell, W. H., Abrams,S. L., Wong, E. W. T., Chang, F., Lehmann, B., Terrian, D.M., Milella, M., Tafuri, A., Stivala, F., Libra, M., Basecke, J.,Evangelisti, C., Martelli, A. M., and Franklin, R. A. (2007):Roles of the Raf/ MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta, 1773,1263–84. doi:10.1016/j.bbamcr.2006.10.0014. F?rster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 437 (1-2), 55-75.5. Sun, Y., Wallrabe, H., Seo, S.-A., & Periasamy, A. (2012). FRET microscopy in 2010: The legacy of Theodor F?rster on the 100th anniversary of his birth. Chemphyschem., 12(3), 462–474.doi:10.1002/cphc.201000664. FRET6. Fassler, M., Boettcher, K., Malle, M. (2015): Measuring FRET using the Opera Phenix High Content Screening System: A High Throughput Assay to Study Protein-Protein Interactions,Application Note published by PerkinElmer, In., Waltham,MA, USA7. Komatsu, N., Aoki, K., Yamada, M., Yukinaga, H., Fujita,Y., Kamioka, Y., & Matsuda, M. (2011). Development of an optimized backbone of FRET biosensors for kinases and GTPases.Mol Biol Cell, 22, 4647-56. doi/10.1091/mbc.E11-01-00728. Harvey,C. D., Ehrhardt, A. G., Cellurale, C., Zhong, H., Yasuda,R., Davis, R. J., & Svoboda K. (2008). A genetically encoded fluorescent sensor of ERK activity. PNAS, 105(49), 19264-19269. doi_10.1073_pnas.080459点击链接了解更多珀金埃尔默高内涵相关资料http://e86.me/0ZaJW1关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 叶坚团队在光照安全剂量内实现拉曼光学信号穿透14 厘米肌肉组织的检测
    无创检测体内肿瘤病灶对于临床医学肿瘤诊疗至关重要。医学成像技术如计算机断层扫描、核磁共振或正电子发射计算机断层扫描等虽然能诊断体内深层病灶,但存在采集时间长、仪器昂贵或辐射剂量大等原因,更常用于术前检查。与之相比,光学检测和成像方法具有实时、高灵敏、非电离辐射、采集方便等优势,结合外源性造影剂可以提供生物体结构、功能和分子的精确信息,是肿瘤诊断的绝佳工具。但是,现有的肿瘤光学检测技术的进一步发展也面临着瓶颈:组织穿透深度较低,无法检测深层病灶。由于生物组织对光子强烈的散射和吸收作用(如图1),光在生物组织中的穿透深度受限一直是这个领域中的巨大挑战。例如,近红外区域肌肉组织的传输平均自由程只有1~2 mm,目前广泛使用的荧光成像技术的组织穿透深度通常只有几毫米。临床结果发现,基于吲哚菁绿的分子影像无法检测到距离胸膜深度超过1.3 cm的肺结节,容易造成假阴性。图1. 生物组织对光子的散射与吸收表面增强拉曼光谱(SERS)对金属纳米颗粒附近的分子的拉曼信号实现极大地增强,具有高特异性和高灵敏度等优点,非常适合用于生物光谱检测。为了获取更高的检测深度,已经报道了光源和探测器间具有一定空间偏移的空间偏移拉曼光谱装置。它利用了生物组织的高散射特性,即来自深层的光子到达表面时会有更大的横向偏移。空间偏移拉曼光谱抑制了表层的背景信号,因此提高了来自深层信号的信噪比。它的一种特殊形式是透射拉曼光谱,它将激光和拉曼探测器放置在样品的两侧。据报道,透射拉曼光谱技术可以实现具有高组织穿透能力的无创检测。尽管如此,透射拉曼光谱技术的最新水平仍未能满足实际生物医学应用的需求。首先,目前文献报道的透射拉曼光谱技术的检测深度或组织厚度仍远低于与人体相关的厚度值。例如,人类的腹背距离超过10 cm。然而,使用透射拉曼光谱技术穿透超过10 cm厚的体外组织或活体动物的可行性迄今尚未得到证实。其次,光子在透射拉曼检测中的传播过程以及测量因素如何决定信号尚不清楚。透射拉曼信号不仅受组织散射系数和吸收系数的影响,还可能与SERS纳米探针的亮度、病灶埋深、组织总厚度等因素有关。评估这些决定性因素之间的关系至关重要。第三,激光的安全性是光学模态临床转化中一个长期关注的问题。临床激光的光安全性通常由最大允许照射量来评估,即对暴露的身体表面造成损伤的风险可忽略不计的最高激光辐射水平。然而,目前大多数体内SERS研究使用的激光剂量远远高于光安全剂量限值,这在很大程度上阻碍了SERS技术的临床转化。图2. 使用透射拉曼装置和超亮SERS探针对小鼠深部肿瘤进行无创成像(示意图)以及透射拉曼光谱信号的理论计算为了解决本领域的上述重要问题,上海交通大学生物医学工程学院叶坚团队首先从透射拉曼光谱测量过程中拉曼光子传播的理论建模和计算入手,研究了实验参数(组织厚度、SERS纳米探针位置、纳米探针亮度、激光功率和光束尺寸)对透射拉曼光谱探测深度的影响(如图2)。理论计算表明,透射拉曼信号与信号源的埋深之间呈不对称的U型关系,说明病变位于组织中部时信号最弱,对透射拉曼信号的检测是最具挑战性的。而提高SERS纳米探针的亮度是增加检测深度/透射组织厚度最直接有效的途径。此外,光束尺寸的增大对深部病灶的透射拉曼检测强度几乎没有影响。因此,可以采用较大的激光束尺寸来降低功率密度。图3. 扩散光束照明的体外透射拉曼光谱检测基于这些发现,该团队设计制备了超亮SERS纳米探针与自制的透射拉曼装置相结合,开发了一个拉曼检测/成像系统。该系统具有以下优点:(1)深度检测能力,使用了低至单颗粒检测水平的超亮SERS纳米探针 (2)临床光安全,样品表面的激光功率密度低于安全光照剂量阈值。利用该系统,团队成功地在安全光照剂量内通过体外14cm厚的组织实现了对包埋在其中的SERS纳米探针的检测(图3),与目前已报道的透射拉曼光谱检测研究相比,穿透深度提高了约97%。进一步地,团队在安全光照剂量内实现了1.5 cm厚未剃毛活鼠体内深层SERS纳米探针的体内无创成像(图4),相比之下,传统的背散射拉曼成像无法获得显著信号。这项工作为透射拉曼光谱技术在体内非侵入性生物医学检查方面的发展提供了新的见解,证明透射拉曼光谱有望成为未来临床癌症诊断的可行工具。图4. 活体小鼠无创光安全透射拉曼光谱检测
  • 上海交大开发新型探针:小至70nm 依然可实现超强拉曼信号 | 前沿用户报道
    供稿:张雨晴编辑:Chen导读:近日,上海交通大学叶坚教授团队开发了一种新型拉曼探针(P-GERTs),尺寸仅为70nm左右,依然可实现拉曼信号的整体增强和成像速度的大幅提高,为突破SERS生物成像发展瓶颈,实现快速超灵敏生物成像开辟新机。SERS生物成像技术的发展前景与瓶颈得益于表面增强拉曼散射(SERS)技术灵敏度高、分辨率高、稳定性好等优点及其“探针”所特有的指纹图谱(高特异性)和超窄线宽(多指标检测)优势,SERS技术在生物体内成像方面表现出广阔的前景,目前临床肿瘤的治疗手术中,利用拉曼成像检测肿瘤边缘和残留微小肿瘤就是重要应用之一。然而,现有的SERS成像速度远远落后于临床需要,通常需要几十分钟甚至几小时才能获得一个大范围的拉曼活体图像。其中影响SERS成像速度的重要因素之一便是SERS探针的整体拉曼信号不够强。Tips: SERS探针的信号强度和成像速度很大程度上取决于探针电磁场热点区域(hot spots)的信号分子数量。常用增强信号强度的策略是通过控制探针的形貌,使其具有一些尖端或者粗糙表面来形成电磁场热点区域;或者通过在金属纳米结构表面或内部引入纳米缝隙来有效地构建电磁场热点。但大多数都不能产生均匀且稳定的SERS信号增强。研究人员一般通过改变探针形貌来提高SERS探针信号强度,但大多数都不能产生均匀且稳定的SERS信号增强。而且这类探针尺寸相对较大,通常在100-200 nm之间,应用于生物成像领域,会降低探针在体内的血液循环时间,影响探针的体内分布情况和代谢动力学,不利于体内的靶向识别、成像和检测等应用的实现。因此,如何获得尺寸较小、且可实现信号强度和成像速度大幅提高的探针,成为研究人员面临的重要课题。 新型探针突破SERS生物成像发展瓶颈近日,上海交通大学叶坚教授团队便开发出了这样一款强大探针——新型的、外壳为花瓣状结构的“多热点”缝隙增强拉曼探针(P-GERTs),尺寸仅为70 nm左右,且同时实现了拉曼信号的整体增强和成像速度的大幅提高,为突破目前SERS生物成像发展瓶颈,实现快速超灵敏生物成像开辟了新机。叶坚教授团队采用将拉曼信号分子同时嵌入核壳颗粒内部和外部花瓣状结构之间的亚纳米缝隙这一方法制得探针,表征发现该探针能够大程度地提高单颗粒上报告分子的吸附量,实现超强的拉曼信号。此外,研究人员还可以通过调节内嵌的拉曼信号分子数量,来调节探针的形貌和SERS性能;或通过改变外部拉曼信号分子的种类,获得多种信号探针以实现多重检测和成像。实验结果验证为了进一步验证P-GERTs探针的信号强度和成像速度,研究人员对实验结果进行了进一步表征。研究人员使用HORIBAXploRA INV拉曼成像光谱仪和NanoRaman系统对P-GERTs探针的拉曼增强效果进行表征,发现:P-GERTs拉曼信号增强因子高达5 × 109,相较于常见的拉曼探针提高了1-3个数量级,实现了超强的拉曼信号。结合HORIBA拉曼成像技术(Duoscan成像模式和Swift数据处理方式),研究人员进一步发现成像单点采集时间仅为0.7 ms /像素,成像速度大幅提升。在低至370 uW功率时6秒内就获得高分辨单细胞拉曼成像(2500个像素),52秒内获得高对比度大范围(3.2 × 2.8 cm2)的小鼠活体前哨淋巴结拉曼成像,表现出良好的信号均一性和光稳定性。 “多热点”缝隙增强拉曼探针结果图a) 示意图;b) 单细胞透射电镜图;c) 明场图d) 高分辨快速拉曼成像图 (50×50像素)e) 高对比度大范围 (3.2×2.8cm2) 的小鼠活体前哨淋巴结拉曼成像上海交通大学叶坚教授团队的这项研究结果表明:P-GERTs作为超亮和超稳定的SERS探针,为克服目前SERS生物成像发展瓶颈,实现高速、高对比度超灵敏的细胞和生物组织成像提供了新机会。文章作者&论文直达文章作者:Yuqing Zhang, Yuqing Gu, Jing He, Benjamin D. Thackray, Jian Ye*题目&杂志:Ultrabright gap-enhanced Raman tagsfor high-speed bioimaging. Nature Communications, 2019, 10, 3509.DOI:https://doi.org/10.1038/s41467-019-11829-y课题组网页:http://www.yelab.sjtu.edu.cn/致谢:叶坚课题组提供论文注:如果您对本报道的研究方法感兴趣,希望联系作者,或者想对本研究拉曼光谱测试方法一探究竟,欢迎点击“阅读原文”留言,我们的拉曼应用专家将乐于为您提供解答服务。今日话题表面增强拉曼散射(SERS)技术应用广泛,那么具体应用有哪些呢?欢迎您分享科研过程中与SERS技术相关的内容。我们会在下次前沿应用专栏中分享给大家,本文发出后3个工作日内留言获赞多的读者我们还将送出星巴克咖啡券一份哦。? 点击查看更多往期精彩文章 拉曼与统计分析神助攻,复旦破译PM2.5重要成分 | 前沿用户报道清华大学魏飞团队实现一步法制备纯度99.9999%半导体碳纳米管阵列严峻环境下的自救——探寻端气候下的生命存续 | 前沿应用【上篇】发现生命的轨迹——化石中的碳元素分析 | 前沿应用地底深处的生命探索——矿物中的化学反应分析 | 前沿应用【下篇】瞪你一眼,就能“看透”你 | 用户动态青岛能源所实现毫秒级单细胞拉曼分选,"后液滴"设计功不可没|前沿用户报道表面增强共振拉曼光谱探究细胞色素c在活性界面上的电子转移新型荧光探针——细胞膜脂变化无所遁形!复旦巧用增强拉曼“识”雾霾 | 前沿用户报道1+1≥3,AFM-Raman 材料表征新技术!——附新相关论文 免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载,文章版权、数据及所述观点归原作者原出处所有。HORIBA Scientific 发布及转载目的在于传递更多信息,以供读者阅读、自行参考及评述,并不代表本网赞同其观点和对其真实性负责。如果您认为本文存在侵权之处,请与我们取得联系,我们会及时进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 372万!广东工业大学计划采购毫米波矢量信号发生器等设备
    一、项目基本情况项目编号:M4400000707016896001项目名称:毫米波矢量信号发生器等设备采购采购方式:公开招标预算金额:3,720,000.00元采购需求:合同包1(毫米波矢量信号发生器等设备):合同包预算金额:3,720,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他专用仪器仪表低频网络分析仪1(台)详见采购文件230,000.00-1-2其他专用仪器仪表毫米波矢量信号分析仪1(台)详见采购文件930,000.00-1-3其他专用仪器仪表毫米波矢量信号发生器1(台)详见采购文件1,370,000.00-1-4其他专用仪器仪表毫米波网络分析仪1(台)详见采购文件1,190,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起至质保期满之日二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明) 副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供投标截止日前6个月内任意1个月依法缴纳税收和社会保障资金的相关材料。 如依法免税或不需要缴纳社会保障资金的, 提供相应证明材料。3)具有良好的商业信誉和健全的财务会计制度:供应商必须具有良好的商业信誉和健全的财务会计制度(提供2021年度财务状况报告或基本开户行出具的资信证明) 。4)履行合同所必需的设备和专业技术能力:按投标(响应)文件格式填报设备及专业技术能力情况。5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标(报价)函相关承诺格式内容。 重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(根据财库〔2022〕3号文,“较大数额罚款”认定为200万元以上的罚款,法律、行政法规以及国务院有关部门明确规定相关领域“较大数额罚款”标准高于200万元的,从其规定)2.落实政府采购政策需满足的资格要求: 无。3.本项目的特定资格要求:合同包1(毫米波矢量信号发生器等设备)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法案件当事人名单或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以资格审查人员于投标(响应)截止时间当天在“信用中国”网站(www.creditchina.gov.cn)及中国政府采购网(http://www.ccgp.gov.cn/)查询结果为准,如相关失信记录已失效,供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。(3)本采购包不接受联合体投标。三、获取招标文件时间: 2022年11月30日 至 2022年12月07日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2022年12月21日 09时30分00秒 (北京时间)递交文件地点:电子投标文件递交至广东省政府采购网https://gdgpo.czt.gd.gov.cn/开标地点:广州市越秀区环市中路316号金鹰大厦10楼会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过020-88696588 进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。4.潜在投标人请同时在广东省机电设备招标有限公司广咨电子招投标交易平台网站(www.gzebid.cn)进行网上注册。网上注册:具体操作方法请浏览“广咨电子招投标交易平台平台服务办事指引网上注册指南”。咨询方式:网站客服(QQ):3151435402,热线电话:400-150-3001。5.本项目开标方式为云平台“远程电子开标”,供应商无须到开标现场,有关注意事项如下:(1)本项目供应商需上传电子投标文件并取得云平台回执、开标当天登陆供应商的账号(在投标截止时间前)。(2)供应商在投标截止时间后提示的时间内使用CA在自己的账号上解密电子投标文件,解密完成后进行电子签章确认。 6.项目事宜联系邮箱:gmetb3@163.com七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广东工业大学地 址:广州市广州大学城外环西路100号联系方式:020-393400322.采购代理机构信息名 称:广东省机电设备招标有限公司地 址:广州市越秀区环市中路316号金鹰大厦13楼联系方式:020-83543065(邮箱:gmetb3@163.com)3.项目联系方式项目联系人:陈工、罗工电 话:020-83543065(邮箱:gmetb3@163.com)广东省机电设备招标有限公司2022年11月30日
  • 《Research》:基于Pμ SL 3D打印的超拉伸抗冻导电水凝胶用于柔性传感及脑电信号的采集
    近年来,柔性电子在可穿戴设备、电子皮肤等众多应用中扮演着越来越重要的角色,以水凝胶为基质设计的柔性电子由于其良好的导电性、柔性以及生物相容性等特点受到广泛的关注,在柔性传感器、柔性能源器件及人机接口等方面表现出广阔的应用前景。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和定制设计的结构,为以水凝胶基质设计的柔性电子器件的制造提供了灵活性和简便性。结合3D打印技术,并对水凝胶进行诸如超抗冻、超拉伸、导电等性能设计,在一定程度上拓宽了水凝胶的功能和应用范围。近日,湖南大学王兆龙助理教授、段辉高教授与上海交通大学郑平院士等人合作,该团队基于摩方精密(BMF)超高精度光固化3D打印机nanoArch S/P140,开发了一种能够耐受-115℃极高导电能力的水凝胶体系,实现了极低温条件下的可穿戴设备运动信号检测及脑电信号高精度采集。文章以“3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogelfor Sensitive Motion and Electrophysiological Signal Monitoring”为题发表在Research(Volume 2020 |Article ID 1426078)上。其中,王兆龙助理教授及硕士研究生陈雷为共同一作。基于面投影微立体光刻技术制造水凝胶结构,首先,作者通过计算机辅助设计(CAD)软件生成的3D模型按照特定层厚切片为一系列平行的二维数字图像,然后,这些切出来的2D图案被传输到DMD芯片上,DMD芯片通过2D图案的形状调节其上照射的紫外光(LED,405nm)。具有相应定义的2D图案的成形紫外光通过一个缩小透镜,该透镜将2D图像投影到具有缩小特征尺寸的水凝胶前体溶液上。图案化的紫外光照射将会使水凝胶前体溶液在相应区域发生局部聚合反应并成型附着在打印平台上。再控制降低打印平台,紫外光投影照射继续打印下一层。这个过程反复进行,直到整个水凝胶结构被制造出来(图1)。研究者引入亲水性的三元醇作为光引发剂TPO-L的良性溶剂,将不溶于水的TPO-L均匀分散在水中,提高光引发剂引发效率,结合光固化3D打印nanoArchS/P140设备的离型膜的快速离型,大大提高水凝胶的光固化速度;利用纳米羟基磷灰石与水凝胶高分子链之间形成强烈的物理作用,从而提高3D打印水凝胶的拉伸性(2500%),并进一步提高其机械强度;三元醇和高浓度离子盐的协同作用赋予了水凝胶极佳的导电性和抗冻性(-115℃左右),3D打印水凝胶在极低温情况下仍然能够完成拉伸、弯曲和扭转的动作,并具有一定的低温导电性(图2)。图1 基于面投影微立体光刻技术的水凝胶加工过程图2 水凝胶的力学、电学和抗冻性能设计优异的机械性能和良好的导电性能使其3D打印水凝胶能够作为应变传感器用于识别包括手指弯曲、发声及吞咽等人体运动信号(图3);水凝胶还可作为柔性电极检测和采集诸如人睁、闭眼时的脑/眼电信号(EEG/ EOG),当志愿者在闭上眼睛并放松时,脑电信号显示出明显的α波(8~13Hz),当志愿者睁开眼睛并积极思考时,脑电α波即刻消失并逐渐向β波(14~30Hz)方向移动。与当前最精确的传统脑电信号采集装置对比实验表明,新体系水凝胶可以准确采集大脑中的脑电信号,反映大脑活动的整体信息,显示出在人机交互,特别是低温领域的脑机接口等方面的应用潜力(图4)。图3 柔性应变传感器应用图4 水凝胶柔性电极脑机接口应用总而言之,本研究基于面投影微立体光刻技术,引入亲水性的三元醇作为光引发剂TPO-L的良性溶剂,利用纳米羟基磷灰石提高拉伸性,并结合高浓度的离子盐和三元醇作为导电介质和抗冻剂,使得所开发的水凝胶体系具有优异机械、导电和抗冻性能,并且可作为柔性应变传感器实现对人体运动和微弱信号的实时监控,同时可进一步用作脑机接口,准确采集大脑中的脑电信号,包括α、β波以反映大脑活动的整体信息。本文提出的水凝胶在电子皮肤、人机交互甚至极低温情况下的可穿戴设备中具有良好的应用前景。未来,微尺度3D打印技术的加入使得复杂3D结构多功能柔性电子和复杂脑机接口的快速制造成为可能。原文链接:https://spj.sciencemag.org/journals/research/2020/1426078/
  • 那场蓝色预警信号的沙尘,都给我们送来了哪些无机元素
    那场蓝色预警信号的沙尘,都给我们送来了哪些无机元素?关注我们,更多干货和惊喜好礼5月11日和12日,北京连续两天遭遇沙尘天气袭击,这些沙尘究竟是从哪里来的呢?风云四号卫星从太空中已经洞悉了一切。沙尘5月11日午后,蒙古国境内出现大范围沙尘,在蒙古气旋以及西北气流的影响下,逐步向东南方向移动。从卫星图像上可以看到,紫色的沙尘带自蒙古国开始出现,沿我国内蒙古、山西、河北以及京津地区形成一条大范围沙尘带,最终输送至北京,到了11日晚间,北京城区出现大风沙尘天气,21时,PM10成为北京空气中的首要污染物,浓度达500,空气质量为严重污染,期间淅淅沥沥的小雨,携带沙尘而下,落在街面汽车、行人身上、手机屏幕上,形成一个个泥点。那么问题来了这些大称谓的“泥点”都包含了哪些元素?含量范围又有多少?用哪些仪器能够准确测量这些元素? 伴随着这些问题的提出,让我们了解一下Thermo Fisher Scientific TEA&ICP-MS产品线(原子光谱与无机质谱)的成员,包含iCE 3000 AAS、iCAP RQ/TQ ICP-MS以及最新款iCAP PRO ICP-OES,这三类仪器将成为前述所提问题的终结者,无论是从准确度和灵敏度,还是从稳定度和分析速度都会给出无与伦比的体验感受。对于此次泥点雨的元素成份评估,我们主要选择了ICP-OES进行测试,全新型iCAP PRO ICP-OES的问世,以全新的径向双向激发光源、高色散能力分光系统和高清晰像素分辨检测器技术,使产品性能得到了飞速的发展,特别是在分析速度、数据稳定性、检测灵敏度、抗干扰能力、仪器维护和操作便利性表现出最高层次的水平,结合仪器全新高色散率的分光系统和400万级像素的检测器,能够有效保证避免基体元素对目标分析元素产生的干扰影响,而双向观测的设计方式,实现了越宽线性范围(径向)和超高灵敏度(轴向)的双重特点追求,实现一次性完成样品中所有元素的同时测定,大幅提升工作效率,满足于各环境土壤和沉积物类样品中各种主、次和痕量元素的精确测量。 实验收集了窗口、车身和路面不同空间场景的泥点样品,样品采用混酸全消解体系,一次性完成泥点样品中24种主、次和痕量元素的测定,通过随带与分析样品类似的土壤和水系沉积物国家一级标准物质验证,24种元素实际测量值均能控制在标准物质不确定范围内,具有极高的测量准确度和结果可信度。滑动查看更多 是不是觉得iCAP PRO ICP-OES能力太强大了,获得了这么多的数据信息,但如此数据量或许又让大家看得有些眼花缭乱,有些分不清这次的泥点雨到底有些什么特点?让我们用一种更为直观的图形来表述给大家,通过与土壤和水系沉积物国家一级标准对比,我们发现此次“泥点雨”是名副其实的“泥点”,其主、次和痕量元素与常规土壤和水系沉积物并不存在显著性差异,所以大家不必过于担心,只不过是在外界风力的作用下,让原本在地表的PM10级的泥土颗粒飞了起来,并形成了大范围的空间迁移,大家做好颗粒物的吸入防护就好。相关阅读• 赛默飞重磅推出iCAP PRO 系列ICP-OES新品!• 全新iCAP RPO ICP-OES,让您的发动机不再受伤!• 定了:新固废法9月1日实施!赛默飞全流程检测方案助力固废污染防治 赛默飞iCAP PRO系列ICP-OES解决方案扫描以下二维码填写表单,立即免费下载【赛默飞iCAP PRO系列ICP-OES解决方案】如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 香港大学成功研发超高速显微镜,捕捉脑电波信号,助力研究脑退化
    香港大学近日宣布,该校研究团队成功研发一款超高速显微镜,能有效捕捉脑电波信号,为脑退化等脑疾病的研究提供线索。据新华社报道,港大携手美国加州大学伯克利分校团队开发的“双光子荧光显微镜”,能捕捉神经元之间的电子讯号和化学物质传递。团队成功在实验中记录一只活体老鼠脑部神经元所产生在毫秒间闪现的电脉冲讯号。该显微镜采用了由港大团队研发的超高速激光扫描技术,以一对平行的反射镜产生一排激光脉冲,速度比目前的激光扫描技术快至少1000倍。在实验中,研究人员利用高速显微镜将扫描激光投射在小鼠脑部,为小鼠大脑皮层进行每秒1000至3000次的二维扫描影像。率领研究团队的电机电子工程系副教授及生物医学工程课程总监谢坚文介绍,目前有不同类型的技术能捕捉脑电波信号,包括将电极植入脑部,直接量度脑部电压,但创伤性大;磁力共振和传统光学显微镜则速度较慢。港大这项新技术的优点是创伤性低,而且能精确定位个别神经元,以毫秒为单位追踪它们的激发路径。谢坚文表示,这项新科技能侦测活脑中单一神经元在毫秒间的活动变化。团队希望在未来1至2年将技术进一步提升,探索更深层脑部的结构,更全面了解大脑功能。该研究成果已在学术期刊《自然方法》(Nature Methods)上发表。
  • 美成功将大脑信号翻译成口语单词
    北京时间9月8日消息,据国外媒体报道,美国犹他大学科学家近日利用两组植入癫痫患者大脑中的微电极阵列成功实现将大脑信号转化为口语单词。这一重大研究成果将能够帮助因患严重麻痹症而失去语言能力的患者轻松地表达自己的思想。   据科学家介绍,这种微电极阵列每组包括16个微电极,通常植入到头骨之下,大脑之上。美国犹他大学生物工程学助理教授布拉德利-格雷格尔介绍说,“通过这种设备我们可以获得大脑信号。只需这些大脑信号,我们就可以将其解码为人类口语单词。这种设备将可以长期帮助因患严重麻痹症而失去语言能力的患者。” 一位癫痫症患者大脑的核磁共振成像图,图片显示两种电极的位置分布情况。一种电极是传统的脑皮层电图电极(黄色),用于定位癫痫发作的源头,从而帮助医生进行手术。红色的则是两组实验用微脑皮层电图电极,每组阵列包括16个微电极,用于读取来自大脑的语言信号。 本图显示了置于癫痫症患者大脑顶部的两种电极。较大的标有数字的电极就是脑皮层电图电极。此外,志愿者大脑的两个语言区顶部还被置放两组更小的微电极阵列。 微电极阵列,也被称为微脑皮层电图电极网格。一组微电极阵列排列成4*4的模式,被展示于一枚25美分硬币上。   由于这种方法还需进一步完善,此外还涉及到植入大脑这一复杂的过程,因此格雷格尔表示该方法要投入到用于治疗“闭锁综合症”等疾病的临床实验还需数年时间。科学家的研究成果论文发表于九月版的《神经工程学期刊》(Journal of Neural Engineering)之上,论文论证了将大脑信号解码为计算机发音的口语单词的可行性。   犹他大学的科研团队将两组微电极阵列植入到一位志愿者的大脑语言中枢上方。这位志愿者患有严重的癫痫症,已经经历过一次开颅手术。因此,医生很容易将更大的传统电极放置于导致他癫痫发作的源头,从而从手术上可以阻止癫痫的发作。   患者被要求阅读如下十个英语单词,即“是、不、热、冷、饥饿、口渴、哈罗、再见、更多和更少”。通常认为,这十个英语单词对于麻痹症患者的康复很有帮助。随着患者不断重复这十个英语单词,科学家们也记录下他的大脑信号。接下来,他们在尝试解码这些大脑信号分别代表十个单词中的哪一个。当患者说 “是”或“不”时,科学家们再分别对比这两个单词所产生的大脑信号。   目前,他们已能够较好地区分清每一个单词的大脑信号,每一次的准确率达76%到90%。不过,当他们一次性检测所有10个大脑信号时,准确率只有28%到48%。这一准确率比随机检测的准确率(应该是10%)要高。但是,对于一个将患者思想翻译为计算机发音的口语语言的设备来说,这种准确率还不够高。   格雷格尔表示,“这是一种概念的实验。我们已经证明这些信号能够告诉你患者在说什么,而且准确率比随机性要高。但是,我们需要进一步完善,争取能够识别出更多的单词,准确率更高。这样,患者将能够真正地发现它的用处。”格雷格尔希望,患者最终将受益于这项研究成果。将来,通过一个无线设备,就可以将患者的思想转化为计算机发音的口语语言。这些患者包括由于脑中风、葛雷克氏症以及外伤导致的麻痹症患者。“闭锁综合症”患者通常通过自己尽可能做出的动作与他人进行交流,如眨眼睛或轻轻地移动手部。   与格雷格尔一起共事的犹他大学研究团队的其他成员还包括电子工程师斯宾塞-科利斯、工程学院院长理查德-布朗以及神经外科学助理教授保罗-豪斯等人。论文的另一联合作者凯-米勒是来自美国华盛顿大学的一位神经学科学家。这项研究由美国国立卫生研究院、美国国防部高级研究计划署、犹他大学研究基金会以及美国国家自然科学基金会等单位联合赞助。   这项研究采用了一种新型的非穿透性微电极,这种电极置于大脑之上,但没有穿透大脑。它们通常也被称为“微电极阵列”,因为它们是用于脑皮层电图中的体积更大的电极的微缩版,即微脑皮层电图电极。   对于某些通过药物治疗病情仍未得到控制的癫痫症患者来说,可以通过开颅手术,将一个包含有脑皮层电图电极的硅树脂垫置于大脑之上数日或数周时间。这种钮扣大小的脑皮层电图电极不会穿透大脑,但可以检测到反常的电行为,从而帮助外科医生定位并移除大脑中导致癫痫发作的一小部分。   去年,格雷格尔和同事们已经发表过一篇论文,该论文证明,更小的微电极能够“读取”用于控制手臂动作的大脑信号。去年参与研究的一位癫痫症患者志愿参与今年的新研究计划。   由于微电极不需要穿透大脑物质,因此它们放置到大脑的语言控制区被认为是安全的。而利用穿透性电极也是无法做到这一点的。在一些实验中,通常利用穿透性电极来帮助麻痹症患者控制电脑鼠标或操纵义肢。   脑电图电极通常用于放在头颅之上来记录脑电波,但是这种电极太大,而且记录太多的大脑信号,以致于很难将这些信号解码为口语语言。   在新研究中,微电极被用于检测来自大脑的微弱信号,这些信号由数千个神经元产生。两组微电极阵列分别由16个微电极组成,每个微电极相隔一毫米。两组微电极阵列分别置放于大脑的两个语言区上方。第一个区域是面部运动皮层,它控制面部、嘴唇、舌头等部位的运动,主要涉及说话的肌肉。第二个区域是威尼克区,这是人类大脑中关于语言理解功能的区域。   研究实验共持续四天,每天一个阶段,每阶段一个小时。研究人员告诉癫痫症患者,当他们每一次指向患者时,患者必须要不断重复十个单词中的一个。通过两组微电极阵列,研究人员将大脑信号记录下来。每个单词共重复了31次到96次不等。   格雷格尔介绍说,研究人员接下来通过分析每一个神经信号的不同频率的强度变化,区别出不同单词的大脑信号。研究人员发现,每一个口语单词产生不同的大脑信号。他们认为,这有力地支持了如下理论,即置于大脑上的微电极可以捕捉到大脑的语言信号。   此外,科学家们还在研究中取得了一个意外的发现。当患者重复单词时,大脑面部运动皮层最活跃,而威尼克区则不够活跃。但是,当患者完成上述动作受到研究人员感谢时,威尼克区则开始活跃起来。格雷格尔解释说,这表明威尼克区与更高层的语言理解功能的关系更密切,而面部运动皮层功能则是控制面部帮助发声的肌肉。通过利用录自面部运动皮层的大脑信号,研究人员一个一个地区分这些单词时,准确率最高,达到85%。而利用录自威尼克区的大脑信号进行区分时,准确率则相当较低,为76%。   科学家们又分别选取了每组阵列16个微电极中的五个,这十个微电极在解码来自面部运动皮层的信号时准确率是32个微电极中最高的。它们在对单词进行二选一辨别时,准确率几乎可以达到90%。在从十个单词中识别一个单词这样更复杂、更困难的实验中,最初每一次取得的准确率仅为28%。这一准确率尽管不够高,但是比10%的随机率要高。然而,当研究人员利用每一组中五个最准确的微电极进行识别时,他们发现准确率几乎可以达到48%。   格雷格尔表示,“这并不意味着问题已完全解决,我们可以回家了。它表明,这种技术具有可行性,但我们还需要继续完善,直到闭锁综合症等疾病患者能够真正地交流。很明显,我们下一步计划是,使用更大的微电极阵列,比如11*11微电极阵列,共121个微电极。我们可以做更多的阵列,可以使用更多的微电极,可以从大脑中获取更多的数据。这意味着可以读出更多的单词,准确率更高。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制