当前位置: 仪器信息网 > 行业主题 > >

傅若农

仪器信息网傅若农专题为您整合傅若农相关的最新文章,在傅若农专题,您不仅可以免费浏览傅若农的资讯, 同时您还可以浏览傅若农的相关资料、解决方案,参与社区傅若农话题讨论。

傅若农相关的论坛

  • 傅若农文集(持续更新中)

    傅若农老师在仪器信息网已做了十四讲有关气相色谱的讲座,从气相色谱技术发展的历史及趋势到脂肪酸气相色谱分析的故事,大家对这一系列的讲座有什么意见呢?欢迎提出,同时大家还想了解气相色谱哪方面的知识也请提出你宝贵的意见?http://simg.instrument.com.cn/bbs/images/default/em09505.gif第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱第十四讲:脂肪酸气相色谱分析的故事

  • 【傅若农教授文章;第五讲】:气-固色谱的魅力

    傅若农教授是我国老一辈色谱研究专家,本章傅教授介绍了气-固色谱所用固定相的今夕。编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索;1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。http://bimg.instrument.com.cn/show/NewsImags/images/2014109102133.bmp

  • 【傅若农教授文章;第四讲】:气相色谱固定液的前世今生

    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索;1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。http://bimg.instrument.com.cn/show/NewsImags/images/201492103952.bmp

  • 【傅若农教授文章;第二讲】:从国产气相产品看国内气相发展脉络及现状

    傅若农教授是我国老一辈色谱研究专家,本章傅教授介绍了国产气相色谱仪技术发展的历史及现状。 编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索;1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。  第一讲:傅若农讲述气相色谱技术发展历史及趋势(1)  第二讲:傅若农:从三家公司GC产品更迭看气相技术发展

  • 【傅若农教授文章;第七讲】:酒驾判官—顶空气相色谱的前世今生

    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索;1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。http://bimg.instrument.com.cn/show/NewsImags/images/2014125174635.png

  • 【傅若农教授文章;第八讲】:一扫而光——吹扫捕集-气相色谱的发展

    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索;1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。http://bimg.instrument.com.cn/show/NewsImags/images/201516143559.png

  • 【傅若农教授文章;第六讲】:PLOT气相色谱柱的诱惑力

    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索;1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者http://bimg.instrument.com.cn/show/NewsImags/images/2014114164856.png

  • 【傅若农教授文章;第十讲】:扭转乾坤—神奇的反应顶空气相色谱分析

    http://bimg.instrument.com.cn/show/NewsImags/images/2015211191452.png编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索;1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。

  • 傅若农:从三家公司GC产品更迭看气相技术发展

    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索;1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。第一讲:傅若农讲述气相色谱技术发展历史及趋势(1)  1.珀金埃尔默(PerkinElmer)公司  20世纪四五十年代,正值二战之后,百废待兴,能源是工业的命脉,生命科学是延长人类寿命的根本,在二者的牵引下,利用当时机械和电气技术的支持,出现了科学仪器的工业。  第一个真正开发出来的“仪器”是红外分光光度计,但是使用它的只有很少数的实验室,而且操作和使用它需要熟练的专门技术人员。1952年诞生了气相色谱技术,为了能普遍地利用气相色谱进行石油和石化的发展和探索生命的奥秘,PerkinElmer于1955年5月开发出世界上第一台商品气相色谱仪Model 154,而它代表了真正的自动化分析仪器,每个实验室都可以使用和操作它。同时,PerkinElmer提供了具有广泛分离能力的标准色谱柱,从而可以让该仪器成功地分析各种样品。这一仪器立即获得了广泛的应用,使色谱科学得以迅速发展。  1958年在PerkinElmer工作的M.J.E. Golay博士发明了开管柱(毛细管柱),PerkinElmer在1959年匹兹堡会议上推出另一款气相色谱仪Model 154-C,它具有使用毛细管色谱柱的功能,并可以使用新型火焰离子化检测器,在Model 154-C上火焰离子化检测器的放大器放在仪器主机外的另一个盒子里。而后在1990年的匹兹堡会议上首次亮相的Model 154-D型气相色谱仪就把火焰离子化检测器的放大器整合到仪器内,同时Model 154-D还提供了更完善的毛细管色谱柱进样系统。  在气相色谱仪出现不久以后,从事石油工业方面的化学家想要分析宽沸程的样品,要完成这一类型的分析,单一、等温操作的仪器是不行的,在当时色谱柱程序升温还没有开发出来,所以就采用使用多柱串联的方法,每一支色谱柱使用不同的温度,样品分别逐次进入每一色谱柱后面的热导池。PerkinElmer 1957年推出的Model 188型气相色谱仪就是此类仪器,它本质上是三台Model 154气相色谱仪的柱箱和检测器串联在一起。但是这一仪器的在市场上存在的时间不长,之后单柱程序升温的仪器出现,程序升温很好地解决了石化科学家的这一需求。

  • 傅若农:脂肪酸气相色谱分析的故事

    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。[url=http://www.instrument.com.cn/news/20140623/134647.shtml][b]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/b][/url][url=http://www.instrument.com.cn/news/20140714/136528.shtml][b]第二讲:傅若农:从三家公司GC产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/b][/url][url=http://www.instrument.com.cn/news/20140811/138629.shtml][b]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/b][/url][url=http://www.instrument.com.cn/news/20140902/140376.shtml][b]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/b][/url][url=http://www.instrument.com.cn/news/20141009/143041.shtml][b]第五讲:傅若农:气-固色谱的魅力[/b][/url][url=http://www.instrument.com.cn/news/20141104/145381.shtml][b]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/b][/url][url=http://www.instrument.com.cn/news/20141205/147891.shtml][b]第七讲:傅若农:酒驾判官——顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/b][/url][url=http://www.instrument.com.cn/news/20150106/150406.shtml][b]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/b][/url][url=http://www.instrument.com.cn/news/20150211/153795.shtml][b]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/b][/url][url=http://www.instrument.com.cn/news/20150312/155171.shtml][b]第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用[/b][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][b]第十一讲:傅若农:扭转乾坤——神奇的反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析[/b][/url][url=http://www.instrument.com.cn/news/20150519/160962.shtml][b]第十二讲:擒魔序曲——脂质组学研究中的样品处理[/b][/url][url=http://www.instrument.com.cn/news/20150617/164595.shtml][b]第十三讲:离子液体柱——脂质组学中分离脂肪酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱[/b][/url] 上一讲我们主要介绍了在脂质组学中对脂肪酸的分析所用的离子液体毛细管色谱柱,但是用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析脂肪酸源远流长,有许多故事,了解一些过去的故事对现在的发展理解有好处,温故才可以知新。  先讲一下脂质组学中常常要研究的血浆分析,其中一个重要的项目是分析其中的脂肪酸,下面一个例子,概要介绍了血浆中脂肪酸的主要成分:  “虽然游离脂肪酸只占血浆中脂肪酸的一小部分,但它代表一类高度代谢活性的脂质,脂肪组织是血浆游离脂肪酸的主要来源,其分布与食物的脂肪酸组成密切相关。在正常情况下从脂肪组织中释放脂肪酸与组织对能量的需要紧密相连。但是当代谢失调时,这种平衡被打乱,导致脂解增加,会释放出多于组织所需要脂肪酸的量。健康人经过一夜禁食后血浆中含有214 nmol/ml游离脂肪酸,油酸(18:1)的含量最高,其次是棕榈酸(16:0)和硬脂酸(18:0),这三种酸占全部游离脂肪酸的78%。亚油酸(18:2)和花生四酸(20:4) 是主要的多不饱和脂肪酸(约占8%)。但是有营养作用的α-亚麻酸(18:3ω-3),二十碳五烯酸(20:5, EPA)和二十二碳六烯酸(22:6, DHA)也占有一定比例,约为全部游离脂肪酸的1%。”[b]1 脂肪酸[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的历史故事[/b]  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]被认为是分析复杂混合物中脂肪酸的可靠方法,这一方法可追述到上世纪50年代,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的出现于脂肪酸的分析有密切的关系,1952年[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]发明人A. T. James 和 A. J. P. Martin就用最为原始的自制[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分析小分子脂肪酸(Biochem J,1952,50:679),他们首次阐明气-液分配[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的原理,设计了自动滴定检测脂肪酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]。实验过程中使用的色谱柱为玻璃柱,其内径为4mm,长度为5英尺,固定相是把DC 550硅油涂渍在硅藻土Celite 545上。分离小分子脂肪酸的色谱如图1所示。[align=center][img=,447,375]http://img1.17img.cn/17img/images/201507/insimg/61b94fed-1bf5-43f3-93da-1ebfab5b7ea9.jpg[/img][/align][align=center]图1 用自动滴定计[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分析小分子脂肪酸的色谱图[/align]  分离从乙酸到戊酸的色谱如图2所示:[align=center][img=,980,405]http://img1.17img.cn/17img/images/201507/insimg/9b27c31a-9d5a-48ec-b12a-bc1ea173f76b.jpg[/img][/align][align=center]图 2 分离从乙酸到戊酸的色谱[/align]  此后分析脂肪酸的一个重大进步是把脂肪酸进行甲酯化,1956年James和Martin使用气体密度检测器,并把脂肪酸进行甲酯化,使用阿皮松类高温润滑脂作固定相,可以分离分子量大的脂肪酸。图3 是分离C5-C13直链和支链脂肪酸甲酯的色谱图。[align=center][img=,636,312]http://img1.17img.cn/17img/images/201507/insimg/f9e2cd62-91c6-4c45-b078-1e094672482d.jpg[/img][/align][align=center]图 3 用高沸点润滑脂分离C5-C13直链和支链脂肪酸甲酯的色谱图[/align][align=center]色谱柱:在硅藻土载体上涂渍高沸点润滑脂;柱温:197℃;载气:氮气 14.1mL/min [/align][align=center]色谱峰: (1) 空气, (2) n-戊酸甲酯,(3) n-己酸甲酯, (4) 4-甲基己酸甲酯,[/align][align=center](5) 6-甲基庚酸甲酯, (6) n-辛酸甲酯, (7) 6-甲基辛酸甲酯, (8) n-壬酸甲酯,[/align][align=center](9) 8-甲基壬酸酯, (10) n-癸酸酯, (11) 8-甲基癸酸酯, (12) 10-甲基十一酸酯 ,[/align][align=center](13) n-十二酸酯, (14) 10-甲基十二酸酯[/align][b]2 脂肪酸[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的发展[/b]  脂肪酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析由于它的极性和挥发性不好而带来麻烦,所以首先要把它的极性羰基转化成易于挥发的非极性衍生物。有多种烷基化试剂可以进行羰基的衍生化,使用最多的是进行甲基化,特别是使用氢火焰离子化监测器(FID)[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]时,尤为方便普及。但是使用FID也有一些不足之处。绝对的定量要依靠内标物的信号强度,经常使用的内标物是十七酸(而不是使用化学和物理性质与所测定脂肪酸相近的同位素标记脂肪酸混合物作内标)。人类体内不能合成奇数碳链的脂肪酸(包括碳17酸),但是人们可以通过食物摄取它们,它们存在于血液的血浆中,增加内标物十七酸的量,从而扰乱定量分析。  进一步讲,FID不能提供分子质量或其他结构特征信息,以便区分不同的脂肪酸,所以色谱和FID只是解决把所有要研究的脂肪酸分子完全分离开,用质谱解决脂肪酸的结构信息。大家应该知道使用电子轰击电离脂肪酸分子很容易被打成碎片,通过这些碎片可以进行脂肪酸的结构分析,但是灵敏度受到限制。弱电离技术比如负化学电离(NCI)可以改善检测限。使用卤代衍生化试剂可以进一步提高检测灵敏度,这种试剂增加了电子亲和力,可改善NCI-MS的灵敏度。Kawahara 使用五氟基苄(PFB) 作衍生化试剂来衍生化有机羧酸,这样的含氟衍生物电子很容易被俘获。此后这一方法扩展到脂肪酸的衍生化为脂肪酸酯,与脂肪酸甲酯相比,它很容易被NCI-MS检测。所以使用五氟基苄进行衍生化有利于提高检测灵敏度。许多研究者使用PFB做衍生化试剂进行脂质组学中的脂肪酸分析,例如Quehenberger等就是用这一方法分析巨噬细胞中的各种脂肪酸(Prostaglandins, Leukotrienesand Essential Fatty Acids,2008,79:123-129)。下图4 是分析巨噬细胞中的各种脂肪酸的色谱图。[align=center][img]http://img1.17img.cn/17img/images/201507/insimg/635e7c1e-7efa-4eed-837a-9bfa06c09743.jpg[/img][/align][align=center]图 4 巨噬细胞中的各种脂肪酸的色谱图[/align]图中色谱峰的脂肪酸如下:(1)12:0 (2)14:0 (3)15:0 (4)16:1 (5)16:0 (6)17:1 (7)17:0 (8) a18:3 (9) 18:4 (10) g18:3 (11)18:2 (12)18:1 (13)18:0 (14)20:4 (15)20:5 (16)11,14,17-20:3 (17)bishomo-20:3 (18)20:2 (19)5,8,11-20:3 (20)20:0 (21)22:6 (22)22:4 (23)22:5 (24)22:2 (25)22:3 (26)22:1 (27)22:0 (28) 23:0 (29)24:1 (30)24:0 [b]3 国内外进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析脂肪酸的一些例证[/b]   为了进一步了解进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析脂肪酸的具体情况,下面表1列出近50例分析各种样品中脂肪酸的色谱柱和分离对象。表2列出国外文献中分析人体组织中脂肪酸的例证。[align=center]表 1 国内[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析脂肪酸的色谱柱和分析对象[/align][align=center][img]http://img1.17img.cn/17img/images/201507/insimg/c07d6e64-cac4-484e-b55b-223e661a9428.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201507/insimg/14f8f7fd-2ffa-42c6-92a1-d4f76974d997.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201507/insimg/33ac5148-1e5c-40c2-b020-f4b060069667.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201507/insimg/b6341370-11cb-4f8b-9cad-7c3fe68cbf1d.jpg[/img][/align][align=center] [img]http://img1.17img.cn/17img/images/201507/insimg/10c1b919-87e8-4556-9c19-069776bdff30.jpg[/img][/align][align=center]表 2 国外文献中有关分析人体组织中脂肪酸的衍生化方法和所用色谱柱[/align][align=center][img]http://img1.17img.cn/17img/images/201507/insimg/aa700648-c2f0-46c4-9dc4-7e7a0e8046c9.jpg[/img][/align][b]4 脂肪酸[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析所用色谱柱[/b]  从已发表的文献看分析整体脂肪酸需用非极性的聚硅氧烷毛细管色谱柱,如聚二甲基硅氧烷,分离多不饱和脂肪酸需用极性强的色谱柱,如OV-275,OV-275(这是聚硅氧烷固定相中极性最强的色谱柱)和CP-Sil 88(HP-88)。 据安捷伦公司一份研究报告(5989-3760 EN),他们对最重要的一些脂肪酸(甲酯)(见表3)进行研究,研究总结认为:聚乙二醇柱对不太复杂的样品可以得到很好的分离 而中等极性的氰丙基聚硅氧烷柱(DB 23)对复杂的 FAMEs 样品可以得到很好的分离,对一些顺反异构体也可以得到分离 要使顺反异构体分离的更好,就要使用更高极性的 HP-88 氰丙基色谱柱。[align=center]表3 重要的一些脂肪酸[/align][align=center][img]http://img1.17img.cn/17img/images/201507/insimg/a32c5a7c-ad56-4d1f-b931-571d62dcc2ef.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201507/insimg/41e73287-563e-4c3e-8492-14654205c91f.jpg[/img][/align]  三种主要色谱柱分离脂肪酸的特点如下:[align=center][img=,535,220]http://img1.17img.cn/17img/images/201507/insimg/d0e6bad9-c004-4643-901c-50da5d2dd237.jpg[/img][/align]  使用DB-Wax柱,DB-23 柱和HP-88 柱上分离37种脂肪酸混合物的色谱见图5-图7.[align=center][img=,523,336]http://img1.17img.cn/17img/images/201507/insimg/79b786e5-47c6-4ae9-889b-f21ab6d31d63.jpg[/img][/align][align=center]图 5 FAMEs在30 m 0.25 mm ID, 0.25 μm DB-Wax 色谱柱上的色谱[/align][align=center][img=,590,386]http://img1.17img.cn/17img/images/201507/insimg/b2712d45-4458-43b7-b438-c9850c36d79a.jpg[/img][/align][align=center]图 6 FAMEs混合物在 60 m 0.25 mm ID, 0.15 μm DB-23 柱上的色谱[/align][align=center][img=,613,302]http://img1.17img.cn/17img/images/201507/insimg/030c6655-3455-46cc-ae1b-161dad79e757.jpg[/img][/align][align=center]图 7 FAMEs 混合物 在 100 m 0.25 mm ID, 0.2 μm HP-88 柱上 的色谱[/align]  其中HP-88 柱的极性最强,是含88%氰丙基甲基聚硅氧烷,其结构如下图8:[align=center][img=,318,216]http://img1.17img.cn/17img/images/201507/insimg/af6643d5-2712-4ea3-989b-a54a9e1eaa1a.jpg[/img][/align][align=center]图8 HP-88 的分子结构[/align]  HP-88 对一些异构体的分离能力由于DB-23如下图9所示[align=center][img=,525,416]http://img1.17img.cn/17img/images/201507/insimg/d847f9ec-bc54-42d6-a7d3-342dd51c2796.jpg[/img][/align][align=center]  图 8 HP-88和HP-23分离能力的差别[/align][align=center]  (此图来自Walter Jennings博士2008年在北京大学作报告时的ppt文稿)[/align]  吴惠勤等使用P-88毛细管色谱柱分离了39种脂肪酸得到的质谱基峰离子和特征离子如表4中的数据。[align=center]表4 39种脂肪酸在HP-88毛细管色谱柱上出峰次序[/align][align=center]( 吴惠勤等,分析化学,2007,35(7):998-1003)[/align][img=,788,221]http://img1.17img.cn/17img/images/201507/insimg/22b55fc1-507f-4aae-abe5-1072d47c5ade.jpg[/img][align=center][img]http://img1.17img.cn/17img/images/201507/insimg/f8d1bd71-3e0e-4d24-8a13-ac431d892732.jpg[/img][/align][align=center][img]http://img1.17img.cn/17img/images/201507/insimg/3ab11370-4f33-4d3b-9044-e51759ed0422.jpg[/img][/align]

  • 傅若农:气-固色谱的魅力

    [b]编者注:[/b]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势,以飨读者。  [url=http://www.instrument.com.cn/news/20140623/134647.shtml][color=#800080]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][/url][color=#800080]  [/color][url=http://www.instrument.com.cn/news/20140714/136528.shtml][color=#800080]第二讲:傅若农:从三家公司GC产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][/url][color=#800080]  [/color][url=http://www.instrument.com.cn/news/20140811/138629.shtml][color=#800080]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][/url][color=#800080]  [/color][url=http://www.instrument.com.cn/news/20140902/140376.shtml][color=#800080]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][/url] [color=#0000ff] [b]一、 气-固色谱早于气-液色谱问世[/b][/color]  大多数人知道1952年Martin和Synge由于发明了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]而获得诺贝尔化学奖,但是,真正的第一台气-固色谱仪是Erika Cremer和她的学生在奥地利因斯布鲁克(Innsbruck)大学开发出来的。1944-1945年第二次世界大战正酣期间,Cremer和她的学生设计开发出第一台气-固色谱仪。在此期间有一段迷人的故事。  Erika Cremer(1900-1996)学的是物理化学,具有很好的吸附/解吸方面的研究背景。1940年,她进入奥地利因斯布鲁克大学参与了乙炔的氢化研究工作,她碰到的问题之一是测定混合物中的乙炔和乙烯的含量,她在开始时的试验是用选择性吸附方法进行测定,但是,她发现这两个化合物的吸附热的差别不足以使它们用经典的吸附方法得到分离,与此同时她很熟悉由Hesse写的液相色谱教科书(1943年出版),此书让她知道可以考虑使用吸附色谱的方法,用气体作流动相,利用吸附性差别来分离混合物。  Cremer经过研究和思考,总结了她的新思路并写成一篇短文,投送到Naturwissenschaften 杂志发表,该杂志于1944年11月29日收到她的论文,1945年2月杂志接受了她的论文, Cremer收到出版社的清样后立即校对返回。可是当出版社正准备以特刊付印时,出版社工厂在空袭中被炸毁,所以这篇论文葬身于废墟之中,一直未能发表,直到31年后的1976年才作为历史文件发表。  在第二次世界大战结束以后,奥地利因斯布鲁克大学的实验室大部分被毁了,但是Cremer的一个新来的研究生Fritz Prior,可以在他原来的中学(他原是这个中学的老师)进行试验,作为他的博士论文,Cremer决定进行在空袭中被炸毁论文中设想的气-固色谱仪器和方法,幸运的是她原来自己设计制作的热导池还在,她们组装的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]具备了现代[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的主要部件,氢气发生气做载气,有载气流量调节器,有一个进样系统,分离用色谱柱和一个热导检测器,这一方案现在还存放在德意志博物馆的波恩分馆中展出。  1947年春Prior的工作结束了,得到了正结果,这一仪器可以定量分离空气、乙炔、乙烯。下图是这篇论文的一张分离图。[align=center][img=,312,180]http://img1.17img.cn/17img/old/NewsImags/images/2014109101225.png[/img][/align][align=center][b]图 1 Prior 分离乙炔和乙烯的色谱[/b][/align][align=center]色谱柱:u型管,直径1 cm,填充硅胶20 cm 柱温 25 ℃.[/align][align=center]A= 空气, B= 乙烯, C= 乙炔[/align][align=center][img=,572,380]http://img1.17img.cn/17img/old/NewsImags/images/2014109101241.png[/img][/align][align=center][b]图 2 1959年Cremer在东德举行的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]报告会时和当代四位著名色谱学专家的合影[/b][/align][align=center](中间是Cremer)[/align][align=center](来源:L. S. Ettre,Chromatographia,2002,55:625)[/align]  [color=#0000ff][b]二、 早期的气-固色谱的固定相[/b][/color]  气-固色谱的出现早于气-液色谱,这也是因为在上世纪40-50年代有几位出色的物理化学家研究吸附剂的吸附理论,为气-固色谱奠定了理论和实际基础。  在上世纪后半页用于气-固色谱的吸附剂有硅胶、活性碳、氧化铝、分子筛、石墨化炭黑、碳分子筛、多孔聚合物等,这些吸附剂可以作填充柱的固定相,也可以填充或涂渍到玻璃、金属或弹性石英毛细管中。这些吸附剂的用途如表 1 所示。[align=center][b]表 1 吸附剂的应用领域[/b][/align][align=center][b][img=,491,183]http://img1.17img.cn/17img/old/NewsImags/images/2014109101314.bmp[/img][/b][/align]  [b]1、硅胶吸附剂[/b]  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]发展早期,硅胶可以用作气-固色谱的固定相,也可以用作气-液色谱的载体,由于硅胶制作工艺、原料表面积及孔径的不同,其分离性能有很大的差别,为此厂家进行了标准化的分级,有不同品牌和规格的色谱用硅胶,下表是Rhone- Progil 公司生产的球型多孔硅胶,而Waters公司又把其中的 Porasil 进一步筛分成不同粒度的产品。[align=center][b]表 2 商品硅胶的型号和规格[/b][/align][align=center][b][img=,576,224]http://img1.17img.cn/17img/old/NewsImags/images/201410910145.bmp[/img][/b][/align]  我国当时的天津第二试剂厂也生产了DG-1,DG-2,DG-3和DG-4,其性能类似于Porasil A,Porasil B,Porasil C,Porasil D。例如Supelco公司和Sigma-Aldrich公司供应用于分析硫化合物的硅胶填充色谱柱:Chromosil 310和 Chromosil 330,有许多实际使用的报告。  硅胶吸附剂的填充柱使用者不多,但在分析硫化物的场合仍然有人在用,如上海大学的Hui Wang等使用Chromosil 310和 GDX 502(极性聚合物多孔小球)以吸附-解吸方是分析色谱方式分析氢气中 ppb 级 SO2. (Intern.J. hydrogen energy,2010,35:2994-2996)。  德国的 Martin Steinbacher等也是使用Chromosil 310 柱(152cm x 3.2mm id )分析土壤和大气中的微量的硫化羰和二氧化硫(Atmospheric Environment, 2004,38:6043-6052)。  英国的 Evelyn E. Newby 利用 Chromosil 330 柱(244cm x 3.2mm id )在60℃分析口腔气体中的硫化氢和甲基硫醇等气体,评价牙膏消除口臭的作用(Archives of oral biology 53,2008, Suppl. 1 :S19-S25)。  美国的Julie K. Furne等利用Chromosil 330 柱(244cm x 3.2mm id )分析排泄物中的硫化氢。(J. Chromatogr.B, 2001,754:253-258)。  英国的M. Steinke 等使用Chromosil 330 柱(183cm x 3.2mm id )的顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定二甲基硫化物评价硫代甜菜碱裂解酶的活性。(J. Sea Research,2000, 43:233-244)。 [b] 2、 氧化铝吸附剂[/b]  氧化铝有5种晶形,在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]里多用g型,它有很好的热稳定性和机械强度,其含水量不同吸附性就有很大的差异,所以在使用前要进行适当的活化处理。上世纪80年代已故色谱学者鞠云甫对氧化铝吸附剂做过深入研究,他得到如下的结论:  (1) 可用改变热处理温度的方法来控制g-氧化铝微球的比表面, 氧化铝微球在350 ℃ 发生相转变, 至420℃ 完全转变为g氧化铝。  (2) g-氧化铝微球表面的酸, 主要是路易斯酸可用涂渍固定液改性的方法予以降低。改性后的 g-氧化铝微球表面酸度低于国外氧化铝表面酸度, 这种改性减弱了固定相的极性。  (3)热处理温度对要分离组分的保留值有重大影响,如用0.3% 阿皮松-L 对经过500℃ 灼烧4小时得到的g-氧化铝微球改性而制得的固定相, 在85 ℃ 柱温下能够全分离C1-C 4的烃类15个组分。(鞠云甫等,燃料化学学报,1983,12(1):69-76)  但是后来的研究表明,人们用碱金属卤化物让氧化铝改性,也可以得到很好的效果。英国的 A. Braithwaitel等研究了用碱金属卤化物处理氧化铝的表面,得到以下的结论:  (1) 未改性氧化铝表面有路易斯酸活化点,可以与不饱和烃的p电子产生作用,比饱和烃的保留时间增加,同时不饱和烃的色谱峰会产生拖尾,用碱金属卤化物改性氧化铝表面会消除拖尾,但是也会影响饱和烃和不饱和烃的分离保留因子。  (2) 氧化铝的改性必须要减少路易斯酸活化点,以便形成更为均一的表面性能,假定氧化铝表面的改性过程是碱金属阳离子和阴离子的共同作用,那么改性剂的阴离子就有选择性封闭大部分路易斯酸活化点的作用,这些活化点就不能再和被分析物作用,但不是所有的卤化物阴离子都有这一作用。改性剂的阳离子也会影响氧化铝的吸附作用,主要是卤化物的阳离子随其阳离子体积的减小,使烯烃/烷烃的分离度增加。其原因显然是表面上的极性或者是表面上阳离子的电荷密度增加所致,或者是两种原因的结合所致。  (3) 假定阳离子对氧化铝表面的改性是由于它降低了吸附剂的吸附特性,从而降低了吸附物质和吸附剂的作用力,被改型吸附剂的活性就可以用改性剂的量来控制,但是只要很少量的改性剂就可以使色谱峰的拖尾消除,得到对称的色谱峰。改性剂浓度超过一个临界值盐就会析出来,就起不到封闭活化点的作用,改性剂的浓度在2-4%之间。(Chromatographia,1996,42(1/2):77-82)  [b]3、分子筛吸附剂[/b]  1925年人们发现了天然泡沸石(如菱沸石)对水、甲醇、乙醇等蒸气有很强的吸附作用,而对丙酮、醚和苯等蒸气则不予吸附,这种泡沸石就是天然的分子筛。后来人们模仿天然泡沸石的生成条件,并不断改进合成工艺,合成了多种类型的人造分子筛。所以叫做分子筛,是因为泡沸石具有象笼子一样的结晶结构,笼子的孔穴大小一致,而且正好是与分子的尺寸大小相当,分子尺寸比泡沸石孔穴尺寸小的就容易吸附,相反就不吸附。  分子筛具有几何选择性:分子筛的结晶结构有一定的尺寸,不同类型的分子筛具有不同的尺寸,表 中的数据。因而分子筛的选择性和所用分子筛类型及被分离化合物的临界尺寸有关。所谓临界尺寸是指垂直于其长度的最大横截面的直径,一些化合物的临界尺寸见表3。[align=center][b]表3 气固色谱用分子筛的几何尺寸[/b][/align][align=center][b][img=,361,112]http://img1.17img.cn/17img/old/NewsImags/images/2014109101344.bmp[/img][/b][/align]  分子筛对极性分子和极化率大的分子作用力强,对极性分子和不饱和烃分子有较大的亲和力,如在4A 分子筛上吸附下列气体的能力依次加大:  O2 N2 CH4 CO C2H6 C2H4 CO2 C2H2  分子筛对有可成氢键的化合物有很强的作用力 如分子筛对水、CO2、NO2有不可逆吸附的作用。  分子筛具有一些其他吸附剂所没有的特点,如:即使在低浓度下对被吸附物质也有较高的吸附容量。在高温下对被吸附物质也有较高的吸附容量。在高流速下对被吸附物质也有较高的吸附能力。  使用分子筛应注意的问题:使用分子筛之前一定要活化,一般是在真空下于300~400℃干燥 3h 。或在550℃干燥2h。分子筛的型号不同,其分离性能也有很大的差异。分子筛对一些活性气体有不可逆吸附的特点,如H2O、CO2、NO2、H2S、SO2、Cl2、HCl等在分子筛上是可逆吸附。  分子筛在气固色谱中的应用:主要用于O2、N2 、CO、CH4等永久气体的分离,由于碳多孔小球的出现,分子筛的作用有一定程度的下降。  但是近年来由于介孔分子筛的出现,把分子筛的孔径提高到30nm,为分子筛的应用扩大了范围。1992年,Kresge等首次利用烷基季铵盐阳离子作为表面活性剂,合成了介孔分子筛如 MCM-41,此类介孔分子筛的比表面积大、孔径均一、孔径可调等特点,突破了微孔材料(如沸石)的孔径限制,在催化分离等方面有广阔的应用前景。但是由于 MCM-41 有孔径较小、孔壁较薄、水热稳定性及化学稳定性较差等缺点,使其应用受到很大的限制。1998年在美国加州大学圣芭芭拉分校作博士后研究的赵东元等(现在是复旦大学教授,院士)用亲水的三嵌段共聚物聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(即P123)制备了有序二维六方相介孔分子筛 SBA-15(SBA 是Santa Barbara Amorphous的字头),其壁厚可达6.4nm,孔径可达30nm,并且具有较高的水热性能(100℃,50h)。SBA-15不仅弥补了MCM-41水热性能方面的不足,而且三嵌段共聚物具有可生物降解、无毒、价廉等特点,满足了环保和经济发展的需求,成为近年来的研究热点之一,在催化、吸附、分离、纳米组装、生物医药和传感等方面得到了广泛的应用。下图是SBA-15不同孔径的结构图(文献来源:赵东元等. Science ,1998,279:548 宗蒙,黄英,赵阳,材料导报A:综述篇,2012,26(9):54-59)[align=center][img=,380,577]http://img1.17img.cn/17img/old/NewsImags/images/2014109101441.png[/img][/align][align=center][b]图3 SBA-15投射电镜图[/b][/align][align=center](A) 6nm, (B)8.9nm (C) 20nm, (D) 26nm[/align][align=center]  平均孔径数据来自BET和X-射线衍射结果.[/align]  国内一些单位把SBA-15介孔分子筛作为气-固色谱固定相,如中科院煤炭化学研究所的赵燕玲等研究了SBA-15介孔分子筛作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相对含有甲烷、乙烷、乙烯、丙烷和丙烯的气态烃类混合物和正己烷/l-己烯、正庚烷/l-庚烯、正辛烷/1-辛烯 3 种液态烃类混合物的色谱分离性能 并与硅胶作为色谱固定相分离3 种液态烃类混合物的情况进行了比较。与常规色谱填料硅胶相比,SBA-15介孔分子筛更适合作为烯烃/烷烃分离的色谱固定相。(赵燕玲等,石油化工,2010,39(10):1110-1114)[b]  4、高分子多孔小球(GDX)[/b]  高分子多孔小球是1966年 Hollis 用苯乙烯和二乙烯基苯进行共聚而得到的,他对这类聚合物的色谱分离性能进行了详细的研究,把它们叫做Porapak。他所研究 Porapak Q 是一种色谱分离性能十分优秀的气-固色谱固定相。不久出现了各种品牌的高分子多孔小球固定相。我国在60年代末中科院化学所也研究出这类高分子多孔小球固定相,把它们命名为GDX(Gaofenzi Duokong Xiaoqiu),是高分子多孔小球汉语拼音的字头。后来天津化学试剂二厂生产了GDX 101、GDX 102、GDX 103、GDX 104、GDX 105、GDX 201、GDX 301、GDX 501等牌号,上海化学试剂厂生产了叫做“401.....404有机载体”的高分子多孔小球。  [b](1) GDX的特点[/b]  a、GDX的疏水性很强,水峰可以在乙烷后洗脱出,为有机物中微量水的测定提供了一种优良的色谱固定相。  b、GDX是球形,大小均匀,有利于色谱柱的填充,提高了柱效。  c、改变聚合工艺条件,可改变GDX的极性和孔径,制出各种性能的的高分子多孔小球来。  [b](2) GDX的制备[/b]   GDX是用二乙烯基苯和苯乙烯在水中进行悬浮聚合而得。即把要聚合的单体分散在水中,在引发剂的作用下进行共聚,由于在原料中加入一定量的溶剂作稀释剂,在聚合过程中稀释剂不起反应,但它会在小球中占据一定空间,待聚合后把稀释剂赶出来,在高分子多孔小球中就形成了很多小孔。GDX的结构如图4。[align=center][img=,225,166]http://img1.17img.cn/17img/old/NewsImags/images/201410910155.png[/img][/align][align=center][b]图 4 GDX的结构[/b][/align]  [b](3) GDX的性质[/b]  GDX是白色或微黄色的圆球,比表面从几十到几百 m2/g,表观密度为0.1~0.5 g/mL,一般可耐高温250~270℃。国内外高分子多孔小球的性能见分析化学手册第5分册-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析。  [b](4) GDX的应用[/b]  有机物中微量水的测定:如顺丁橡胶的合成中要求单体丁二烯含水量在3×10-5 g/mL以下,用100 cm × 0.4cm i.d.GDX-105色谱柱,在120℃柱温下,载气流速 33mL/min,可很好地进行测定。有机溶剂和氯化氢中的微量水分可用GDX-104柱测定。  半水煤气成分的测定:用GDX-104(3.7m)和分子筛(3.0m)的串联柱,通过阀切换在GDX-104柱上分离CH4、CO、CO2。在分子筛柱上分离O2和N2。可避免CO2通过分子筛柱。  自从Hollis 开发出高分子多孔小球之后有很多近一步的研究,但是没有更多的突破,只是在扩大了应用方面有不少研究工作。  [b]5、碳吸附剂  (1)活性碳[/b]  早期除去硅胶以外活性碳是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]使用最早的固定相,开始主要使用工业级别的活性碳,但是,使用了一段时间以后,色谱性能不能令人满意,就把它改性,以适应色谱分离的要求。在制备活性碳当中,要得到所需要的性能,碳化和活化过程的参数中最最重要的是原料的选择和预处理。活性碳的基本性质决定于所用原料,使用的原料有自然的木头、泥炭、煤、果核、坚果的外壳以及人工合成物质,主要是聚合物。在没有空气和化学品条件下的碳化过程中,首先是大多数非碳元素(氢、氧和微量硫和氮)由于裂解的破坏而分解挥发了,这样元素碳就留下来,形成结晶化的石墨,其结晶以无规则方式相互排列,而碳则无规律地存在于自由空间里,这一空间是由于滞留在这里的物质被沉积和分解而形成的。进行碳化的目的是使之形成适当的空隙并形成碳的排列结构,碳化过程使碳吸附剂具有较低的吸附容量,使其比表面只有几个 m2/g,一直到没有所担心的过高的吸附性。为了得到高空隙度和一定的比表面积,碳化还要进行活化过程。从天然原料制得的活性碳要比从合成物制得的活性碳具有较高的灰分,从合成物制得的活性碳几乎没有灰分,并且具有很好的机械性能,不易压碎和被磨损。由天然原料制得的活性碳其吸附性能受到它表面化学结构的影响,而其表面性质又决定于与其键合在一起各种杂原子(如氧、氮、氢、硫、氯等)的种类,活性碳是没有特殊选择性,或选择性很小的吸附剂,制备良好的活性碳为多孔结构,主要是各种直径的微孔和介孔,其比表面可达1000 m2/g到2m2/g,或者更高一些,使其具有高的吸附容量。由于活性碳表面具有很大的化学和几何不均一性,特别是工业用活性碳尤为严重,即使是低沸点气体和轻烃,也会产生很厉害的拖尾。在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]发展早期活性碳只用于分析稳定的气体特别是惰性气体和轻烃。上世纪 50年代初捷克的 Janak 和 60年代初波兰的 Zielinski 在使用活性碳作固定相分析气体混合物方面做了很多工作。此后由于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展和活性碳研究的深入,人们就对活性碳的表面进行改性,包括用化学方法除去活性碳中的灰分(除去无机杂质),在无氧气氛中进行高温处理除去活性碳表面结合的氧,用催化活化及高温碳沉积的方法对多孔结构进行改性。用活性碳填充的色谱柱出现拖尾不仅是由于活性碳上的微孔和孔径的不均一所造成毛细管凝聚,更重要的也还由于混合物中的一些成分在各种非碳物质上的强烈吸附所致,这些附加的物质有两类,在活性碳孔中的无机物,他们在表面上没有键合,部分灰分和杂原子(常常是氧和氢、硫、氮、卤素等),这些杂原子与碳骨架进行了化学结合。而且这些附加物会使进行色谱分离的物质产生可逆吸附。在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的应用中,活性碳的改性是把活性碳在150-200 ℃下处理几个小时,并在0.1 mm Hg真空下除去水分,这样不会影响吸附剂的表面性能。之后就出现了石墨化炭黑和碳分子筛。 [b] (2)石墨化碳黑[/b]  为了克服活性碳的缺点,国内外早期进行了许多研究,就把碳黑在真空中或在还原性气氛中进行高温处理,如加热到3000℃,结果在碳表面上形成石墨状的晶形。这样处理之后,表面均匀、活化点也大为减少了。比表面由几百 m2/g 下降到 低于 30 m2/g 。所以大大改善了色谱峰形。提高了分析的再现性。据原苏联基先列夫的研究,认为在石墨化碳黑的表面上没有官能团,没有π键,所以它的吸附性主要靠色散力起作用,因而石墨化碳黑的极性比角鲨烷还小。  为了适应各种样品的分离,可对它进行各种表面处理,如:  ① 涂渍少量固定液消除残存的少量活化点。  ② 分离酸性化合物时可用磷酸处理石墨化碳黑。  ③ 分离碱性化合物时可用有机碱处理石墨化碳黑。  ④ 在100℃下用氢气处理石墨化碳黑可除去表面的氧,适于还原性物质的分离。[b]  (3) 碳分子筛 (碳多孔小球)[/b]  1968年 Kaiser 制备出一种碳吸附剂叫“碳分子筛”,国外的商品名是 Carbosieve B,它是用偏聚氯乙烯小球进行热裂解,得到固体多孔状的碳,其比表面为1000 m2/g,平均孔径为 1.2 nm 。  我国上海高桥化工厂、中科院化学所和天津试剂二厂相继研制成功这类碳分子筛,商品名叫做:碳多孔小球(TDX), 具体的牌号有 TDX-01 TDX-02。它们的堆积密度为 0.6 g/mL,比表面为 800 m2/g,碳多孔小球具有下面一些特点:  ① 非极性很强,表面活化点少,疏水性强,可使水峰在甲烷前或后洗脱出。  柱效高,1 m 色谱柱可有 1200~1500 理论塔板数。  ③ 耐腐蚀、耐辐射。  ④ 寿命长。  碳多孔小球用于一些永久气体的分析:TDX 可用于 H2、N2,、O2、CO、O2 、CH4、C2H2、C2H4、C2H6、以及C3的烃类和SO2等气体的分析。碳多孔小球即使在50℃的柱温下对N2,和O2也有一定的分离能力。TDX可很好地用于氮肥厂的半水煤气分析在半水煤气中含有N2, O2,CO, CO2和CH4,用TDX-1柱可把这些气体分开。TDX 可用于金属热处理气氛的分析在金属热处理中为了控制渗碳或渗氮的量,要分析热处理炉子里的气氛,所含组分类似于半水煤气,可用TDX-1柱进行分析。由于碳多孔小球的非极性很突出,极性化合物在这一固定相上的保留时间很短,同时由于它的表面上活化点很少,一些氢键型化合物可得到对称色谱峰。所以它适于分析这类化合物。碳多孔小球的表面类似于石墨化碳黑,对水的保留作用极差,但对烃类有较强的保留作用,因此可用碳多孔小球分析低碳烃中的水分。[b] [color=#0000ff] 三、 近年出现的气-固色谱固定相[/color]  1、碳纳米材料[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相[/b]  自从1991年日本学者饭岛澄男(Sumio Iijima)发现了碳纳米管(CNTs)之后,改变了人们过去对碳的三种形态(金刚石、石墨和无定形碳)的认识,对碳纳米管不断进行研究,并竞相把这种新奇的材料用在各个领域,在2004年又出现了另外一种有趣的碳物质——石墨烯,G),CNTs和G是碳的两种同素异形体,他们具有sp2杂化网络,但是结构不同,CNTs具有管状纳米结构,由石墨烯片卷成管状,形成准一维结构,而G是打开纳米管形成的平面二维薄片。CNTs可分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs),石墨碳家族的各种形态如图5所示。[align=center][img=,624,530]http://img1.17img.cn/17img/old/NewsImags/images/2014109101521.png[/img][/align][align=center][b]图 5 石墨碳家族的各种形态[/b][/align][align=center](Angew. Chem. Int. Ed. 2009, 48:7752-7777)[/align]  由于CNTs具有表面积大、活化点多、p-p键作用力强等特殊性能,适合于在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相中应用,而且它的纳米级多孔性能有利于减小传质阻力,可得到对称的色谱峰,目前它的应用主要限于标准的混合物,如烷烃、芳香族化合物、醇类、酯类、酮类。  厦门大学的袁东星早在2002年就是用比较纯净的碳纳米管做成填充柱进行研究,并与活性  炭、石墨化碳黑(Carbopack B)柱进行比较,比较它们分离醇、酮、醚、酯、有机酸类的性能。2005年 Mitra等首次把自组装碳纳米管使用化学蒸汽沉积(CVD)方法涂渍在长的毛细管色谱柱中,得到高的柱效,改变CVD条件会改变CNTs膜的厚度和形态,因而可调整色谱的选择性。2006年 Mitra 等又利用鈷和鉬盐进行催化的化学蒸汽沉积方法吧单壁CNTs涂渍在毛细管色谱柱中,厚度达300nm,柱效可达每米1000理论塔板数,测试其麦氏常数属非极性固定相。同年国内袁黎明研究组把单壁CNTs和离子液体组成混合[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,制备成毛细管色谱柱,CNTs可以改善离子液体的分离性能。此后有两年停滞,从2008年又有一些研究报告出现。到近5年CNTs作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的研究又多起来,下表4列出2008年至今发表的一些有关CNTs作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的研究的工作。[align=center][b]表4 2008年后有关CNTs作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的研究的工作[/b][/align][align=center][b][img=,601,591]http://img1.17img.cn/17img/old/NewsImags/images/2014109101551.bmp[/img][/b][/align][align=center][b][img=,600,148]http://img1.17img.cn/17img/old/NewsImags/images/201410910167.bmp[/img][/b][/align][align=center][b][img=,600,442]http://img1.17img.cn/17img/old/NewsImags/images/2014109101618.bmp[/img][/b][/align]  [b]2、金属有机框架化合物作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相[/b]  金属有机框架化合物(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料。其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs极适宜于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景,MOFs在分析化学中有多种应用,也是极好的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相。  由于MOFs不容易涂渍在毛细管壁上。南开大学严秀平研究组用动态法把纳米级MOF-101涂渍在15m长的大内径(0.53mm)石英毛细管柱上,使最难分离的二甲苯三个位置异构体得到十分漂亮的基线分离,并用于多种混合物的分离上。[align=center][img=,304,232]http://img1.17img.cn/17img/old/NewsImags/images/2014109101636.png[/img][/align][align=center][b]图 6 二甲苯三个位置异构体的分离图[/b][/align]  近几年国内严秀平研究组和云南师范大学的袁黎明研究组对MOFs作色谱固定相做了许多十分出色的工作,限于篇幅有机会再讨论。  另外固体固定相当今主要用于制备PLOT(多孔层开管柱,这一课题下次再讨论。  在结束此文之际,看到已故蒋生祥先生和郭勇博士团队今年发表的一篇有关碳基吸附剂-碳纳米管的综述(J Chromatogr A, 2014,1357:53-67)(但是此文只涉及碳纳米管作固相萃取和固相微萃取的论述,没有设计碳基吸附剂作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的综述)。同时看到瞿其署先生团队在2014年发表的有关石墨烯的制备、性能及在分析化学中应用的综述论文(J Chromatogr A,2014,1362:1-15 ),有兴趣者可直接阅读。 [color=#0000ff][b] 小结[/b][/color]  气-固色谱虽然它的应用广泛性远不如气-液色谱,但它还是一个很有用的方法,有它突出的魅力,是气-液色谱不能代替的技术。使用上述几种吸附剂制备的填充柱或PLOT柱,对低沸点混合物的分离具有独到的作用。不过,近年出现的多种纳米材料可作气-固色谱固定相,虽然它们具有独特的优点,但是还有待进行更深入的工作,形成商品柱,才能发挥其作用。目前实际应用的还是常规的气-固色谱固定相。下一讲,我将介绍PLOT柱的诱惑力。([color=#0000ff]未完待续[/color])[align=right]  (作者:北京理工大学傅若农教授)[/align]

  • 傅若农教授第15讲:吹口气,知健康——GC-MS检测呼气疾病标记物

    http://img1.17img.cn/17img/images/201508/insimg/9c5158c1-78ff-476a-a0d9-a7249fcc74da.jpg编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索;1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。

  • 傅若农:步入分析化学的蹉跎岁月(1)——被推进分析化学的行当

    傅若农:步入分析化学的蹉跎岁月(1)——被推进分析化学的行当

    傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。由傅若农老师主审,仪器论坛组织编写的《气相色谱百问精编》得到了气相色谱使用用户的一致好评,傅若农老师亲笔记录了他在分析化学领域的生活经历,以连载形式,发布于仪器论坛。如想与傅老师交流心得,请跟帖留言,仪器论坛官方会将部分留言转达给傅若农老师。 以下文章内容为傅若农老师亲笔:步入分析化学的蹉跎岁月(1) —— 被推进分析化学的行当 上世纪50年代初,分析化学在当时的四大化学中是不太受重视的方向,当时的分析化学着重于无机分析,有机分析还包含在有机化学当中。因为当时无机分析只有容量分析(滴定)和重量分析(沉淀、过滤、干燥和灼烧),不像现在分析化学使用了所有的现在技术,渗透到各个领域,分析检测技术我所不在。当年我们在大学受到的分析化学教育只有最基本的无机定性分析和无机定量分析。 我走进化学大门是受高中化学老师的影响,高中二年级的化学老师是当年北平的化学名师,叫刘伯忠,他说要考上大学就要能背诵化学周期表,记住300个化学方程式。高三的化学老师是武永兴(他当时在北京大学化学系工作,在我们北京河北高中做兼职化学老师),他的特点是把重要的概念和内容掰开揉碎地讲,例如他把气体方程式(PV=nRT)反复多次地讲述,使我们受益匪浅。所以在考大学时就选择了化学专业。1、入门 1950年进入北京大学化学系,大一上的化学课是普通化学和定性分析,讲课老师是鼎鼎大名的曾昭伦教授(当时他又是教育部副部长),他总是上午的第1,2节课,上完课夹着皮包上教育部。记得辅导老师是就是武永兴老师,定性分析主要是实验课,由苏勉曾老师辅导(苏老师现在还健在),主要是做无机离子的硫化氢系统沉淀显色的定性分析。为了深入学习,我买了老师指定的参考书 (我们一入学,在系里的布告栏上就公布了我们要阅读的书目,有十多本) :Treadwell & Hall分析化学(Treadwell & Hall,AnalyticalChemistry, Vol 1 Qualitative Analysis)。和Latimer & Hildbrand 的“无机化学”(Referance book of InorganicChemistry)见下图。http://ng1.17img.cn/bbsfiles/images/2016/06/201606221450_597719_2984502_3.jpg 这几本老书一直陪伴了我65年,虽然是上世纪40年代出版的,但是对基本的无机化学反应记载的很全,让我一辈子受益。记得1953年我被分配到北京工业学院(现在的北京理工大学)工作的第一年就做分析化学(定性分析)的辅导助教,主讲教师上课后课代表就交给我一叠答疑条子,要回答这些问题,拍脑袋是解决不了的。又不像现在有互联网,有百度,搜一搜全解决了。那时要翻书找答案,所以Treadwell & Hall和Latimer(我们都这么叫这两本书)就成了救命稻草。以后的年代经常要求教于它们。 在1951年大二时,上定量分析课,我们有幸聆听高小霞先生的课,她当时刚刚回国,第一次就给我们讲无机定量分析课,没有讲义,只记笔记,但是要我们读一本权威性的书,就是美国分析化学大师Kolthoff的“无机定量分析”。http://ng1.17img.cn/bbsfiles/images/2016/06/201606221451_597720_2984502_3.jpg 当时真不知道这本书的厉害,多年后了解到Kolthoff是一位了不起的分析化学家,它的书自然是经典之作了。周天泽(首都师范大学化学系教授)曾有一篇报道Kolthoff的文章(分析科学学报,1996,第3期),他写道:“分析化学家I M Kolthoff 1993年3月8日逝世了,终年99岁(美籍荷兰人,出生于1894年2月11日)。七十多年来他在分析化学、物理化学、高分子化学和化学教育诸领域积极从事学术活动,有922篇论文、11部著作、一千多名博士“弟子”。特别是他为分析化学奠基方面取得的巨大成就,在全球化学界享有盛誉,可谓有口皆碑,垂范当代。周教授对他的主要工作和学术及教育思想作了简介,他的研究论文从1915年关于磷酸性质的研究报告开始,一共发表了九百多篇论文(单行本专著除外)。涉及的课题主要包括:酸碱滴定、pH概念、缓冲体系和指示剂;氧化还原滴定和沉淀滴定;电导滴定、电位滴定“。其实Kolthoff有两套很著名的书,一套是“极谱分析”,另一套是“容量分析”(有梁树权院士的翻译本),是当年是十分普及和有用的书。 高先生讲课的具体内容现在记不清了,笔记本找不到了,可是Kolthoff的这本书却伴随我度过了65个春秋,书的纸页都变黄了,一碰就碎掉了,多年来靠它在教学、科研中寻求答案。记得第一次进分析实验室,为学生做实验准备,首先要用铬酸洗涤液,这是实验室必备的,但是要自己配制,在大学做实验时由试验人员给配好了,用就是了。但是自己备课时,没人给你准备好,要自己配制,不知道怎么配。这是想到了Kolthoff,一查,在235页的底部就有制备铬酸洗涤溶液的方法和注意事项。在工作中有不少这类问题都是它帮助我解决了问题。http://ng1.17img.cn/bbsfiles/images/2016/06/201606221452_597721_2984502_3.png2 、 修炼 化学是实验科学,对实验技术正确操作的训练是化学教育的一个重点,分析化学实验技能的锻炼自然要重视并要严格要求,老师对我们的基本知识和化学技能有严格的要求,为我们后来的工作打下较好的基础。例如:我上大二时定量分析实验课就是我们最较劲的一门实验课,当时指导实验课的老师是恽婉,是一位端庄、严肃、要求严格的、但又不失和蔼的女老师,我们做的未知样品达不到规定的误差范围,绝对是过不去的,必须“repeat”,(这是我们同学间经常使用的话),一直到达到要求为止,老师在你的报告单上打钩算完事,有时一个实验要“repeat”三次才能过关,所以我们经常是下午没有正课时,就要穿上带有“千疮百孔”的自备实验服,闷在实验室做重复试验。(洗净玻璃仪器要用前面说过的铬酸洗涤液浸泡玻璃仪器,不免要弄到衣服上,就会烧成大大小小的孔洞。所以我们一不留神穿着实验服出去,一看就知道是化学系的学生)。为了记住这艰苦的磨炼,我一直保存着当年的定量分析实验报告,下面是其中的两张。http://ng1.17img.cn/bbsfiles/images/2016/06/201606221452_597722_2984502_3.png 应该说,我们当年受到的化学教育是很基础的,掌握了一些最基本的知识和技能,与现在大学的化学教学水平比那是太浅显了,不过学到了基本能力,为进一步学习进入各个化学领域具备了基础。3、被推入分析化学的行当 前面讲过,在上世纪50年代,念化学的学生不太愿意到分析化学这个行当来,我当时喜欢有机化学,在大三时我们有五、六个同学选了当时医学院药学系蒋明谦先生的高等药物化学(1952年北大的医学院已经从北京大学分了出去,成立北京医学院,当时还在城里的平安里校区,新北京大学搬到西郊的燕京大学校址,但是北大的学生可以去城里的药学系上课)。我们这几个同学当中,后来只有金声和吴世晖满足了他们从事有机化学研究的愿望,从事有机化学的教学和研究,后来成为著名的有机化学家(他们分别做北京大学化学系和复旦大学化学系的有机化学教研室主任)。我呢,毕业分配到北京工业院学后,领导把我放到分析化学教学组,当时服从分配是“必须的”,所以一来二去,也就确定了我的终身从事分析化学教学与研究的行当。 兴趣是可以培养的,所以此后就一头扎到分析化学的圈里了。在分析化学教学组呆了半年,又由于某种原因被调到新成立的专业教研室,当时教研室来了一位苏联专家(其实就是一个刚刚拿到副博士学位的副教授)。要求给学火药专业的学生开一门“火药分析实验课”,这一工作就落到我的头上。当时这位专家给了我一个实验项目的单子,和一本1941年出版的俄文“火药分析”书。为完成这一任务,我一边到沈阳一个研究所学习当年前苏联火药分析的标准方法(ΓΟC T),一边吃力地翻译那本书(原书没有给我,是我把整本书照成照片,每张照片只有半张A4纸大小)。1954年的下半年我写出了“火药分析”实验讲义,开出了“火药分析”试验。但是读了半年胶片上的俄文,我也戴上了100度的近视眼镜。

  • 傅若农老师的发言

    傅若农很高兴今天有这么多厂家搞色谱,我记得50年代末只有北分厂和上分厂,还有当时的大连仪表二厂(现在的依利特),这么多厂家为我国色谱仪器的生产和发展做了很多工作,听了大家的介绍,发现每年都有进步,确实无论在管理、生产组织和技术上都有很大的进步,和色谱配套的核心部件如色谱柱等产品也有突破。可是我们的柱子一直也上不去,如果中科安泰的柱子能够和安捷伦的相比美,说明我们的柱子研发水平上了一大步。朱良漪老先生现在仍然为国产仪器奔走。我们和国外的差距缩小的不明显,某种程度上差距在扩大。根据十几年来我的经验,现在的色谱仪生产厂家有下面问题需要继续努力。1、大家太分散,荷叶包钉子,大家都要出头,无法和国外抗衡,这个过程很慢,可是希望大家能够想办法尽量缩短作大作强的过程,各厂家尽量努力,整合起来,共同对抗国外厂商。2、强抢联合,产业链合作,色谱柱厂家和色谱厂家结合,对大家都有好处,3、我看了PE的发展,他们有一大批世界顶级科学家给他们做研究,给他们和主意,他们非常重视应用研究。搞仪器的人总觉得搞化学的不懂仪器,是没用的。这个观点是错误的。应用支持是非常重要的,仪器厂家如果没有和化学家,分析人员的结合,发展是会受到阻碍的。国产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]有50%的份额,液相只有10%左右。只有我们提高自己的仪器水平,特别是可靠性,才能被用户接受。我看到的一台国产液相色谱,就是不是今天坏,就是明天坏。我们要象家电厂商学习,如果你的东西即便宜又好,谁不愿意用?我希望在座厂商能逐渐把市场份额从国外厂家那里抢过来。国家粮食科学院的王松雪博士国内很多仪器性能,特别是硬件上和国外差不多,但是软件上差距比较大,用起来不太方便,人性化程度不够。软件上的方法也差的很多,国外的软件上的方法不断的更新,让人觉得即先进,又很方便。国内在联用方面做的不太好,另外就是一些配件耗材的问题,质量不太好。数据库的建立,国外每个厂家都能搭上一个数据库,国内厂家能否在色谱和柱子上配上一个配套的数据库,方便用户的使用仪器的使用和使用者关系比较大,厂家在研发和应用很多,能不能多把自己的应用文章提供给大家共享。

  • 傅若农:PLOT气相色谱柱的诱惑力

    [color=#0000ff]编者注:[/color]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势,以飨读者。  [url=http://www.instrument.com.cn/news/20140623/134647.shtml][color=#800080]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][/url][color=#800080]  [/color][url=http://www.instrument.com.cn/news/20140714/136528.shtml][color=#800080]第二讲:傅若农:从三家公司GC产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][/url][color=#800080]  [/color][url=http://www.instrument.com.cn/news/20140811/138629.shtml][color=#800080]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][/url][color=#800080]  [/color][url=http://www.instrument.com.cn/news/20140902/140376.shtml][color=#800080]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][/url][color=#800080]  [/color][url=http://www.instrument.com.cn/news/20141009/143041.shtml][color=#800080]第五讲:傅若农:气-固色谱的魅力[/color][/url]  看看下面这张图1,1 min 多一点时间就把苯到二甲苯几个难分离的混合物分开了,而且把间位和对位二甲苯也给分开了,遗憾的是间位和邻位二甲苯没有分开,当然只用了15 m 长的毛细管色谱柱,这种色谱柱叫做PLOT柱,这是半个世纪前在英国“自然”杂志(Nature)上一篇简短论文上报道的(Halasz I,Horvath C,Nature,1963,197:71-72)。这一工作是最早使用石墨化炭黑作固定相PLOT柱完成的,这一实例对想利用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]用于石油和石化工业分析的人员来说有很大的诱惑力,为什么?这是因为色谱柱短、固定相耐温性好、无流失、分析时间短,可以把在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中最难分离的间、对二甲苯基线分离。  再看看图 2,这是最近云南师范大的袁黎明研究组把手性向列结构的介孔材料制备成PLOT柱分离手性化合物,这样的PLOT柱,柱高温、分辨率高、可作手性分离,扩展了PLOT柱的应用范围。在新的应用领域又体现了它的诱惑力。[align=center]  [b]图1 石墨化炭黑作固定相PLOT柱分离苯、甲苯、乙苯和二甲苯[/b][/align][align=center][b][img=,273,254]http://img1.17img.cn/17img/old/NewsImags/images/2014114163039.bmp[/img][/b][/align][align=center]  色谱柱:15 m x 0.25mm,5.4mg 石墨化炭黑/m,柱温:245 ℃,[/align][align=center]  分流比:1:1050,进样:0.2μL[/align][align=center]  [b]图2 手性相列内消旋硅胶PLOT柱分离手性化合物[/b][/align][align=center]  (Anal Chem,2014,86:9595)[/align][align=center][img=,296,164]http://img1.17img.cn/17img/old/NewsImags/images/2014114163054.bmp[/img][/align] [b] [color=#0000ff]1、什么是PLOT柱[/color][/b]  PLOT柱是多孔层开管柱(Porous Layer open tubular column)的缩写,早在上世纪50年代末毛细管色谱柱的发明人 Golay就指出:如果把光滑的毛细管壁变成均匀多孔的细颗粒,就会大大有利于毛细管柱的效能(M J R Golay,Gas Chromatography 1957),他在1960年又进一步详细阐述了这一方法,这种多孔层毛细管色谱柱可以降低相比率,同时又使固定液液膜比较薄,有利于传质阻力提高柱效,在具有多孔层毛细管内壁上涂渍一层可以增加内壁的表面积,多孔层物质可以用化学方法处理,也可以用颗粒悬浮物沉积到管壁上,于是早期的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]开拓者们就循这一思路研发,1962-1963年Horv?th等开发了这一类型的毛细管多孔层色谱柱。  大家知道Csaba Horv?th (1930-2004)是液相色谱的开拓者之一,他是匈牙利人,上世纪50年代在匈牙利受到化学工程方面的高等教育,1962-1963年间在德国法兰克福大学(美音河畔的法兰克福)Hal?sz的实验室攻读博士期间,研究了无机色谱固定相,使用Golay的静态涂渍技术制备出多孔层气-液色谱柱(在氧化铁颗粒上涂渍聚乙二醇),这种色谱柱叫做载体涂渍开管柱(support-coated open-tubular ,SCOT),属于多孔层开管柱(PLOT)的一种,同时也制备了吸附型气-固色谱柱(见上图1)(Nature,1963,197:71-72)。  PLOT柱发展早期,很多研究是针对SCOT柱,即把填充柱使用的载体用某种胶粘附在毛细管壁上,然后再在这一载体上涂渍固定液。现在商品PLOT柱则严格地限于把多孔吸附剂以化学或物理方法粘附在毛细管内壁上,进行气-固色谱,所以有人也把它叫做“吸附固相开管柱”(adsorption solid-phase open-tubular column,ASPOT)。 [b] [color=#0000ff]2、早期的填充毛细管柱到PLOT柱[/color][/b]  由于填充[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的分离能力有限,致使许多复杂的混合物无法分离,尽管开发了许许多多固定相,但是仍然由于填充柱柱效不高,无法满足实际工作的需要,而壁涂毛细管柱(WCOT),由于其液膜厚度的限制柱容量小,对低沸点物质保留作用小,对一些永久气体不能分离,而气-固色谱可以分离低沸点物质,但是柱效低对难分离的混合物受到限制,所以出现了填充毛细管气-固色谱柱,1962年Halasz和 Heine就制备了氧化铝的填充毛细管柱,他们把一根1mm直径洁净的钢丝穿入直径为2.2mm的玻璃管,在玻璃管和钢丝的空隙中装入吸附剂,把填充好吸附剂的玻璃管水平放在毛细管拉制机上,并小心地把钢丝移除,把玻璃管拉制成直径为0.3mm的毛细管。在作者的实验中使用的吸附剂是在400℃ 加热9h的氧化铝,吸附剂颗粒直径在 0.10-0.15mm之间,然后把毛细管在120℃下用氢气吹扫24h,以除去吸附剂吸附的水分。用这种10m长的色谱柱就可以把15个C5的烃类在6min 内分离开(Nature,1962,194:971),见下图3。[align=center]  [b]图3 填充毛细管气-固色谱柱分离芳烃的色谱[/b][/align][align=center][b][img=,355,285]http://img1.17img.cn/17img/old/NewsImags/images/2014114163113.bmp[/img][/b][/align][align=center]  色谱柱:10m 柱温:80℃,色谱柱脱活:用晶体硫酸钠湿润载气[/align][align=center]  载气:氢气,流速:2.5ml/min , 分流比:1:600,FID 检测器[/align][align=center]  1— 甲烷,2—乙烷,3—乙烯,4—丙烷,5—丙烯,6—乙炔,7—异丁烷,[/align][align=center]  8—正丁烷,9—丁烯-1,10—反丁烯-2,11—异丁烯,12—顺丁烯-2,[/align][align=center]  13-异戊烷,14—正戊烷,15—丁二烯(Nature,1962,194:971)[/align]  这种填充毛细管柱可能是由于制作麻烦未能普及,而1963年,Kirkland在开管柱中沉积氧化铝,制备了氧化铝PLOT柱(Anal Chem,1963,35(9):1297),之后,人们把Kirkland作为PLOT柱得第一发明人。前面我们提到Horvath C同时在1963年制备了石墨化炭黑的PLOT柱,因为Horvath C的工作发表在Nature上,可能被人忽视。不过很有意思,后来Kirkland和Horvath二人都成为赫赫有名的液相色谱先驱。由于PLOT柱在许多领域实际工作中得到应用,直到现在有大量商品化的PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱,得到广泛的应用。 [b] [color=#0000ff]3、现代商品化PLOT柱所使用的固定相和色谱柱类型[/color][/b]  按照季振华1999年的综述(J Chromatogr. A, 1999),842:115-142),商品化PLOT柱所使用的吸附剂有:氧化铝、石墨化炭黑、分子筛、有机多孔聚合物等,见下表1。[align=center] [b] 表1 商品化PLOT柱所使用的吸附剂(固定相)[/b][/align][align=center][b][img=,731,247]http://img1.17img.cn/17img/old/NewsImags/images/2014114163136.bmp[/img][/b][/align]  目前世界上几个著名的色谱柱生产厂家都有上述固定相的PLOT柱,比如安捷伦公司就有专门生产PLOT柱的生产线。这些PLOT柱可用于分析干气、低分子量的轻烃异构体和挥发性极性化合物(见表2)。HP家族中的PLOT柱有各种不同的规格,可满足不同领域的使用,有适用于大容量分析的530μm柱,如果要进行快速分析或进行GC/MS分析可以选择250μm或320μm的PLOT柱。[align=center] [b] 表2 HP-PLOT柱的应用[/b][/align][align=center][b][img=,711,191]http://img1.17img.cn/17img/old/NewsImags/images/2014114163155.bmp[/img][/b][/align]  [b](1)HP-PLOT 分子筛柱[/b]  使用HP-PLOT 分子筛柱分析永久气体和惰性气体, HP-PLOT 分子筛柱是在柱内涂渍有固定化的5A分子筛,涂层厚度为12 ~50μm。这样可以保证对氮、氧、氩、甲烷和一氧化碳的分离。  把吸附剂键合到毛细管壁上,减少颗粒脱落的机会,以免颗粒进入系统的阀或检测器里,这样可以大大提高检测器的灵敏度和整个系统的精确性。  分析永久气体一般使用分子筛柱,HP-PLOT 分子筛柱有足够的柱效和柱容量用以很好地分离氮、氧、甲烷和一氧化碳。这种色谱柱适合于多种气体分析样品阀所要求的时间选择。在进行等温40℃分析时,氧和氩只能部分分离。如果要把它们完全分离,可以不用冷冻低温而使用厚膜HP-PLOT 分子筛柱, 可在接近环境温度下分析环境中的惰性气体。在35℃下可以把惰性气体及氧和氮很好地分离,分析时间不到10min。  HP-PLOT 分子筛柱的柱径规格为0.32和0.53mm, 为了能在不使用冷冻低温下分离氧和氩气,可以使用厚膜柱HP-PLOT MoleSieve/5A分子筛柱。薄膜HP-PLOT 分子筛柱是多种应用分析(包括常规的空气监测)的色谱柱,分析时间小于10s。使用薄膜HP-PLOT 分子筛柱可以在低温下分离氧和氩。  [b](2)HP-PLOT 三氧化二铝柱[/b]  HP-PLOT 三氧化二铝柱系列,包括使用三氧化二铝颗粒和各种脱活的三氧化二铝颗粒的涂层开管柱。所有HP-PLOT 三氧化二铝柱都适用于烃气流中C1-C6异构体的分离,每种类型的HP-PLOT 三氧化二铝柱都各有其特点和优点,如表3所述。  HP-PLOT 三氧化二铝柱的柱径从0.25mm到0.53mm, 0.53mm 柱的使用更为普遍,因为它的柱容量大,适合于大体积进样阀的应用。如使用0.53mm HP-PLOT 三氧化二铝KCl柱可分析乙烯和丙烯气体中的组分,用HP-PLOT 三氧化二铝柱检测烃类的检测限为10ppm。对0.32mm和0.53mm内径的所有三种色谱柱其温度上限均为200℃,对0.25mm柱可以在250℃下短时间使用。由于0.25mm柱的柱效高并且使用温度上限也较高,所以它可以用于高达C10的烃类 。[align=center]  [b]表3 HP-PLOT 三氧化二铝柱[/b][/align][align=center][b][img=,710,201]http://img1.17img.cn/17img/old/NewsImags/images/2014114163218.bmp[/img][/b][/align]  [b](3)HP-PLOT Q柱[/b]  HP-PLOT Q柱是HP公司PLOT柱中应用广泛的色谱柱,HP-PLOT Q柱适合于以下对象的分离:  * 烃类(所有C1-C3异构体,一直到C14的链烃,天然气,炼厂气,乙烯,丙烯气体),  * 二氧化碳,空气/一氧化碳,水,  * 极性溶剂,含氧和含硫化合物。  HP-PLOT Q柱具有以下的点:  a 具有优良的机械稳定性,很少或没有碎片脱落,使其适合于有阀控制的分析和GC/MS的分析  b流失量小,减少老化时间,提高灵敏度  c 重复性好,节省工作时间和购置费用  d 最高恒温使用温度为270℃ [color=#0000ff] [b]4、近年出现新材料制备的PLOT柱[/b][/color]  [b](1)金属有机框架材料(MOFs)制备的PLOT柱[/b]  近年金属有机框架材料(MOFs)风靡一时,趋之若鹜,尝试在各个领域中应用的文章数不胜数,在分析化学中的应用如下图 4 所示。[align=center] [b] 图4 金属有机框架材料(MOFs)在分析化学中的应用领域[/b][/align][align=center][b][img=,359,341]http://img1.17img.cn/17img/old/NewsImags/images/2014114163247.bmp[/img][/b][/align]  何谓金属有机框架材料(MOFs)?金属有机框架化合物(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料。其中,金属为顶点,有机配体为桥链。MOFs结构中的金属离子几乎包含了所有过渡金属离子。通常分为含氮杂环有机配体、含羧基有机配体、含氮杂环与羧酸混合配体三种类型。MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs极适宜于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用(Li J, Sculley J, Zhou H,Chem Rev,2012, 112:869-932)。由于MOFs具有优异的性质,比如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景(Gu Z,Yang C, N Chang,et al,Accounts Chem Res,2012),MOFs在分析化学中有多种应用,也是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相很好的选项。  2006年陈邦林等(Chen B, Liang C,Yang J,Angew Chem,Inter Ed,2006, 45:1390 -1393)首次把金属有机框架化合物 MOF-508用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,用以分离直链烃和叉链烃,MOF-508的分子式为 Zn(BDC)(4,4’-Bipy)0.5(MOF-508:BDC=1,4-苯羧酸, 4,4’-Bipy=4,4’-联吡啶),其空间结构如图5,它据有简单的立方体带孔的框架,孔径可由两个互相穿插的情况来调节,其一维通道横截面大约为 0.4x0.4 nm,这样的结构对[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分离烷烃具有很好的选择性。但是陈邦林是把金属有机框架材料MOF-508 制备成填充柱进行研究的。[align=center]  [b]图5 MOF-508 的空间结构[/b][/align][align=center][b][img=,326,166]http://img1.17img.cn/17img/old/NewsImags/images/2014114163315.bmp[/img][/b][/align]  真正制备成毛细管柱,即多孔层毛细管色谱柱(PLOT柱)的研究是南开大学的严秀平研究组(Gu Z,Yan X, Angew Chem,In ted. 2010,47:1477)和云南师范大学的袁黎明研究组(Xie S,Zhang Z, Wang Z,et al, JACS,2011, 133:11892-11895)的工作。严秀平等在2010年在德国“应用化学”上发表了使用MOF-101作固定相分离二甲苯位置异构体和乙苯混合物以及其他苯取代化合物的工作,MOF-101是铬和对苯二甲酸的金属框架配位化合物(Cr3O(H2O)2F(BDC)3),具有较大的孔径(2.9-3.4 nm),适合于做气-固色谱的固定相,他们用动态法把MOF-101涂渍在15m长的大内径(0.53mm)石英毛细管柱上,所用的涂渍方法类似于1963年Horvath所用的方法:首先把MOF-101和乙醇制备成悬浮液,然后以气体压力灌注到毛细管(15m x 0.53mm id)中,以动态涂渍技术把固定相沉积到毛细管壁上,这一色谱柱,自然是PLOT柱了,色谱柱的横截面图如图6所示。用这一色谱柱分离三个二甲苯位置易购体得到十分漂亮的基线分离图,而且分离时间很短见图 7。[align=center]  [b]图6 MOF-101 毛细管柱的电镜横截面图[/b][/align][align=center][b][img=,452,202]http://img1.17img.cn/17img/old/NewsImags/images/2014114163329.bmp[/img][/b][/align][align=center][b]  图7 MOF-101 毛细管柱分离二甲苯异构体的色谱[/b][/align][align=center][b][img=,316,256]http://img1.17img.cn/17img/old/NewsImags/images/2014114163440.bmp[/img][/b][/align]  袁黎明研究组主要是研究MOFs的手性固定相,2011年他们合成了 (H2sala = N-(2-羟苄基)-L-丙氨酸),涂渍成毛细管色谱柱,用以分离外消旋的烃类、醇类和Grob试剂,分离效果见表5。  2013年他们合成了三维开放框架手性MOF,Co(D-Cam)1/2(bdc)1/2(tmdpy) (D-Cam=D-樟脑酸 bdc=1,4-苯二羧酸酯,tmdpy=4,4′-三亚甲基联嘧啶),制备成毛细管手性色谱柱,这种Co(D-Cam)1/2(bdc)1/2(tmdpy)化合物具有手性构架的三维结构,具备内在手性的拓扑网络。把它制备成两种毛细管色谱柱,柱A为30m长的530μm的大内径柱,柱B为2m长的75μm小内径柱,用动态法制备毛细管色谱柱,在120℃下以正十二烷测试它们的柱效,分别为1450 plate/m和3100plate/m.使用烷烃、醇类、外消旋化合物和Grob试剂测试色谱柱。用柱B和商品手性柱分离一些外消旋化合物的分离因子对比见表4。[align=center]  [b]表4 柱上分离一些外消旋化合物的分离因子[/b][/align][align=center][b][img]http://img1.17img.cn/17img/old/NewsImags/images/2014114163544.bmp[/img][/b][/align]  2013年华南师范大学章伟光和郑盛润研究组也涉足MOFs用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的研究,他们把管状金属有机框架化合物 MOF-CJ3动态涂渍在毛细管柱中,研究色谱保留行为。MOF-CJ3是以1,3,5-苯三羧酸(TBC)为有机桥联基的管状MOFs,具有一维沿着C的方向延伸的管道,孔壁由TBC有机桥联基组成,它可以提供苯环和羧基形成超分子作用。研究者选择直链、叉链烃、二甲苯和乙苯以及芳香族位置异构体(如甲酚、对苯二酚和二氯苯)作分离测试物,并测定了麦氏常数见表5[align=center]  [b]表5 MOF-CJ3 色谱柱的麦氏常数[/b][/align][align=center][b][img=,642,89]http://img1.17img.cn/17img/old/NewsImags/images/201411416364.bmp[/img][/b][/align]  表6是近年使用各种MOFs作固定相的PLOT柱。[align=center]  [b]表6 各种MOFs作固定相的PLOT柱(J Chromatogr A,2014,1348:1-16)[/b][/align][align=center][img=,686,442]http://img1.17img.cn/17img/old/NewsImags/images/201411416438.bmp[/img][/align]  [b](2) 介孔分子筛固定相的PLOT柱[/b]  1992年,Kresge等首次利用烷基季铵盐阳离子作为表面活性剂,合成了介孔分子筛如 MCM-41,此类介孔分子筛的比表面积大、孔径均一、孔径可调等特点,突破了微孔材料(如沸石)的孔径限制,扩大了用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的范围。 1998年赵东元等(现在是复旦大学教授,院士)用亲水的三嵌段共聚物聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(即P123)制备了有序二维六方相介孔分子筛 SBA-15,其壁厚可达6.4nm,孔径可达30nm,并且具有较高的水热性能(100℃,50h)。SBA-15不仅弥补了MCM-41水热性能方面的不足,而且三嵌段共聚物具有可生物降解、无毒、价廉等特点,满足了环保要求,成为近年来的研究热点之一,在催化、吸附、分离、纳米组装、生物医药和传感等方面得到了广泛的应用。( 赵东元等. Science ,1998,279:548)  以前有人利用这类介孔材料的填充柱分离烃类混合物。最近袁黎明研究组把手性向列结构的介孔材料(CNMS)制备成PLOT柱分离手性化合物,这是PLOT柱向高温、高分辨、特殊分离型毛细管色谱方向发展(Anal. Chem. 2014, 86: 9595-9602)。下表7是CNMS柱与典型手性色谱柱分离性能的比较。[align=center]  [b]表7 CNMS柱与环糊精和氨基酸聚硅氧烷手性色谱柱分离性能的比较[/b][/align][align=center][b][img=,713,266]http://img1.17img.cn/17img/old/NewsImags/images/2014114164513.bmp[/img][/b][/align]  [b](3)碳纳米材料作固定相的PLOT柱[/b]  2005年 Mitra等首次把自组装碳纳米管使用化学蒸汽沉积(CVD)方法涂渍在长的毛细管色谱柱中,得到高的柱效,改变CVD条件会改变CNTs膜的厚度和形态,因而可调整色谱的选择性(Anal Chim Acta,2010,675 :207-212)。2006年 Mitra 等又利用鈷和鉬盐进行催化的化学蒸汽沉积方法吧单壁CNTs涂渍在毛细管色谱柱中,厚度达300nm,柱效可达每米1000理论塔板数,测试其麦氏常数属非极性固定相(Anal Chem,2006,78:2064-2070)。2003年至今发表的一些有关碳纳米材料作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的研究的工作见表9[align=center]  [b]表8 有关CNTs作PLOT柱的研究的工作[/b][/align][align=center][b][img=,673,303]http://img1.17img.cn/17img/old/NewsImags/images/2014114164547.bmp[/img][/b][/align] [color=#0000ff] [b]小结[/b][/color]  常规PLOT柱在石油和石化等领域有十分成功的应用,而各个大色谱柱生产商都供应各种类型通用和专用类型的PLOT柱。近年各种新材料的出现促使人们把它们制备成PLOT柱进行研究,有很成功的案例,但是没有看到有深入进行色谱柱工艺优化的研究,还没有达到商品色谱柱的性能。希望研究者自己或联合厂家协作进行深入的柱工艺研究,完成这类PLOT柱商品化的过度。下一讲和大家聊一聊“顶空进样技术的过去和现在”。([color=#0000ff]未完待续[/color])[align=right]  (作者:北京理工大学傅若农教授)[/align]

  • 傅若农:重症早期预警——呼出气用SIFT-MS 实时快速检测

    [b][color=#00b0f0]编者注:[/color][/b]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。[url=http://www.instrument.com.cn/news/20140623/134647.shtml][b]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/b][/url][url=http://www.instrument.com.cn/news/20140714/136528.shtml][b]第二讲:傅若农:从三家公司GC产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/b][/url][url=http://www.instrument.com.cn/news/20140811/138629.shtml][b]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/b][/url][url=http://www.instrument.com.cn/news/20140902/140376.shtml][b]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/b][/url][url=http://www.instrument.com.cn/news/20141009/143041.shtml][b]第五讲:傅若农:气-固色谱的魅力[/b][/url][url=http://www.instrument.com.cn/news/20141104/145381.shtml][b]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/b][/url][url=http://www.instrument.com.cn/news/20141205/147891.shtml][b]第七讲:傅若农:酒驾判官——顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/b][/url][url=http://www.instrument.com.cn/news/20150106/150406.shtml][b]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/b][/url][url=http://www.instrument.com.cn/news/20150211/153795.shtml][b]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/b][/url][url=http://www.instrument.com.cn/news/20150312/155171.shtml][b]第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用[/b][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][b]第十一讲:傅若农:扭转乾坤——神奇的反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析[/b][/url][url=http://www.instrument.com.cn/news/20150519/160962.shtml][b]第十二讲:擒魔序曲——脂质组学研究中的样品处理[/b][/url][url=http://www.instrument.com.cn/news/20150617/164595.shtml][b]第十三讲:离子液体柱——脂质组学中分离脂肪酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱[/b][/url][url=http://www.instrument.com.cn/news/20150716/167186.shtml][b]第十四讲:脂肪酸[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的故事[/b][/url][url=http://www.instrument.com.cn/news/20150820/170240.shtml][b]第十五讲:吹口气,知健康——GC-MS检测呼气疾病标记物 [/b][/url][color=#0070c0][b] [/b][/color] 呼吸气检测相比其他通常医疗检测的最大优点是无损伤和安全性,由于它在临床诊断和明确的评估方面具有巨大的优势,所以呼吸气检测今天受到极大的重视,这一方法对一些病人成为每天控制重要指标的必要测试项目(就像检测血糖和尿液一样)。呼吸气检测有多种方法,表 1列出分析呼出气体的一些方法。[align=center]表 1 用于分析呼出气体的一些方法[/align][align=center][img=,673,196]http://img1.17img.cn/17img/images/201509/insimg/646b33a1-b677-47f9-ba7f-04bd4eb610c4.jpg[/img][/align]  上次我们介绍了GC-MS分析人呼出气体中预示疾病的生物标记物。这里我们介绍用SIFT-MS快速实时分析呼出气体中预示疾病的生物标记物的方法。[b]1. 用选择性离子流动管质谱(SIFT-MS)快速、实时、准确地分析呼吸气体中的疾病标记物[/b]  早期的质谱是采用低压电子电离源,用以测定分子量、元素组成以及探究物质的化学结构,后者是利用分子电离后的碎片组成来实现的。近年电离方法的发展是针对直接分析液体或固体样品而设计的,包括快原子轰击(FAB),基质辅助激光吸附/电离(MALDI),和电喷雾电离(ESI)方法。后面2个方法特别适合于分子量大的化合物的鉴定,ESI与液相色谱(HPLC)的结合更为有效。在气体样品电离的方法方面也得到重要的发展,包括化学电离(软电离)的各种变体,多使用正离子电离,以减少初始电离分子碎片的量,大气压电离是化学电离的一个特殊的方法。也开发出用于气体分析在漂移管中从H3O+离子进行质子转移的化学电离方法,叫做质子转移反应质谱(PTR-MS)。  使用电子电离质谱进行大气和呼吸气中微量组分的实时鉴定和定量分析,是一个具有挑战性的任务。因为在离子源中会浸入过多的气体如氮、氧和水蒸气,要解决这些问题,使用多种过滤膜,这些过滤膜只让极性的被测气体进入离子源,而排出大量的空气。但是这些过滤膜仍会阻挡其他一些痕迹量气体(尤其是烃类),所以要针对每种痕迹量气体小心校正过滤膜的穿透性,才能达到准确地定量结果。要不然为了避免不同化合物同时进行电离就只得使用GC-MS进行分析。  如果是能够直接、实时地分析大气中的痕迹量杂质,即解决环境科学,特别是呼吸气体中特殊气体的分析,开发扩大医疗诊断的领域,那就好了。尽管GC-MS可以分析空气和呼气中的10[sup]-12[/sup](ppb)和10[sup]-9[/sup](ppt)的痕迹量组分,但是需要收集大容量的样品到冷冻或吸附阱里。  显然,这就不是实时监测了。而且GC不适合监测像氨和甲醛一类小分子量物质。  David Smith等于1976年开发了选择性离子流动管质谱(SIFT-MS),它是一种可以进行定量分析的质谱方法,它开拓了使用选择性前体正离子进行化学电离的方法,此正离子可在一定的短暂反应时间里与空气或呼吸气体中痕迹量气体进行反应。这一技术是把快速流动管技术、化学电离和定量质谱分析很好的结合在一起,用以对一些空气和呼吸气体中痕迹量物质进行精确的定量分析,检测量可低达10-9浓度级别,分析时间只用几秒钟。  SIFT 的构思和发展始于1976年,是研究离子和中性物质反应的标准方法,开始时用于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]离子和中性物质反应的动力学数据,各国进行了大量的实验,积累了大量数据,奠定了离子和中性物质反应的基本概念。[b]2.SIFT-MS 的原理和装置[/b]  SIFT-MS 的工作原理如图 1 所示:[align=center][img=,1053,618]http://img1.17img.cn/17img/images/201509/insimg/3590bc40-6816-42bb-875f-6a5599218cde.jpg[/img][/align][align=center]图 1 SIFT-MS 的工作原理示意图[/align]  在离子源中用微波放电或射频离子源来产生正离子,离子进入一个上游管中,其中有一个四极杆滤质器,用以过滤掉无用离子,留下首选的母离子,通常选择H3O+,NO+和O2+为母离子,母离子通过一个文丘里管(一般管径为1-2 mm)进入到反应流动管中,这里样品气用载气氦以一定速进入流动管,载气压力通常为100 Pa,在这里母离子与样品气反应,反应产物离子进入一个下游管,管长一般为30-100 cm,管末端的文丘里管(一般管径为0.3mm)进入到另一个四极杆滤质器对它们进行质量过滤。用电子倍增器检测,对选择出来的目标反应产物离子进行离子计数,进行定量分析。[b]3.SIFT 中的反应速率常数[/b]  样品+载气注射到不锈钢流动管(内径通常为4-8 cm,内径以dt表示),用罗茨泵抽动,使管中总流速在40-80 m/s,以vg表示,它可以用载气流速,压力pg,温度Tg (K) 和dt进行精确计算,即:[align=center][img]http://img1.17img.cn/17img/images/201509/insimg/b41a9e0f-c11e-4741-a31c-cb93ba324a50.jpg[/img](1)[/align]  被加热的离子很快沿着流动管进行扩散,离子沿着流动管的平均速率为Vi这一速率决定着离子与反应气的反应时间 t,Vi要大于Vg,要进行精确测量,理论证明二者的关系为:[align=center][img]http://img1.17img.cn/17img/images/201509/insimg/ce6e5c00-85ae-4315-83e3-a6e1f7b23816.jpg[/img](2)[/align]  反应气进样口进入流动管,其流速为ΦR。简单地处理,t是反应长度l(进样口到下游进样孔之间的距离)和Vi之比,但是l需要包括一个小的“末端校正”ε,典型情况下ε为2cm,这是考虑到反应气和载气的一定的混合距离。  为了确定反应的速率系数,需要知道载气中反应气分子的数密度值,可以从载气和反应气的流速得到[align=center][img]http://img1.17img.cn/17img/images/201509/insimg/8605a811-acd1-499a-831f-cfb2e61eca93.jpg[/img](3)[/align]  kb 是玻尔兹曼常数。  下面用一个例子解释如何确定速率常数的,我们选择H3O+为起始离子与丙酮作用,此反应用于呼吸气的分析,这是一个很简单的反应,H3O+的质子进入丙酮分子中:[align=center][img]http://img1.17img.cn/17img/images/201509/insimg/01851f86-3930-47bc-80d8-7a3f7254d5e6.jpg[/img][/align]  在流动管中H3O+的原始数密度随时间而降低,Ni可以用下面的动力学公式描述:[align=center][img]http://img1.17img.cn/17img/images/201509/insimg/25951713-d73b-45e9-aaad-98459c6d0f5d.jpg[/img][/align]  式(5)中右面第1项表示原始离子(母离子)扩散到流动管壁的损失,以扩散系数 Di和Λ来表征,Λ表示扩散距离,与流动管的直径有关。第2项表示原始离子由于反应的损失,k 是反应(4)质子转移的速率系数,A是反应物(丙酮)的数密度。实际上原始离子H3O+和产物离子(CH3COCH3?H+)的计数率都可以用下游的质谱系统在丙酮蒸汽几个不同的流速下进行测定得到,在丙酮存在下H3O+的计数率I与没有丙酮时的的计数率I0相关,把公式(5)积分可得到:[align=center][img]http://img1.17img.cn/17img/images/201509/insimg/e83a1f8f-767e-4a6c-9d14-9c7d0febf661.jpg[/img][/align]  k 的绝对值可从logI对作图得到。  速率系数k是分析测定必须有的数据,见后面的叙述。[b]4 .SIFT-MS 分析法[/b]  从公式(5)和(6)知道,如果反应的前体离子和反应物A的速率系数知道,当分子A流入载气里是,前体离子的计数率就开始降低,这样就可以测定,但是如果一个反应混合物气体同时进入载气里,那么前体离子计数率的降低是所有可反应气体造成的,就不能达到分析混合物的目的。但是,如果每一个反应气体和前体离子反应生成不同的产物离子。那么反应产物的信号就既可以定性又可以定量,所以SIFT-MS分析集中于用下游质谱仪测定前体和反应气体产物离子的计数率,所以它提供一个实时定量分析复杂混合物中的痕迹量气体,比如环境气体和呼吸气体。[b]5 .呼吸气体分析实例[/b]  Turner等人采用SIFT-MS对30位健康志愿者(19位男性,11位女性)进行为期六个月呼出气中乙醇和乙醛的监测,每周8:45 到 13:00(午餐前)志愿者取样,对乙醇和乙醛即可用SIFT-MS进行测定,使用H3O+为前体离子,测得乙醇平均浓度为196 ppb。乙醛的平均浓度为24 ppb。测得正常人呼出气中乙醇浓度在0到1663ppb之间,平均值为450ppb,乙醛浓度在0到104ppb之间,平均值为41ppb。环境中乙醇的背景浓度为50ppb左右,但是几乎没有检测到环境中的乙醛。但是在测定前2 h要是吃了甜饮料/食品乙醇的浓度会增加。(Rapid Commun Mass Spectrom,2006,20(1):6l-68 王海东等,现代科学仪器,2013,(4):40-45)[b](1) 具体方法概述[/b]  SIFT-MS有两种不同的运行模式,一种是全扫描模式,即在一定m/z范围内得到通常的质谱图,用于鉴定前体、产物离子和他们相应的计数率,在线计算机立刻计算这些痕迹量气体在呼吸气中的分压,为此要有可鉴定的产物离子,而且它们还要包括在分析所需要的动力学数据库中,动力学数据库包括速率系数和前体离子/痕迹量气体化合物反应的产物离子。对各种类型的化合物(醇类、醛类、酮类、烃类等)和三种前体离子经过SIFT的详细研究,构建了数据库。  另一种是多离子检测模式,在这一模式下,下游分析用质谱仪用很快的切换方式对前体离子和反应产物离子的选择性m/z值进行处理,定量分析水蒸气和痕迹量目标化合物。这一模式可以更为精确地定量分析痕迹量目标化合物。  图 2是使用多离子检测模式,使用H3O+为前体离子的SIFT-MS进行测定,获得乙醇和甲醇浓度在三次呼出气体随时间变化的曲线。本研究是用这一模式测定肺泡空气中的乙醇和乙醛浓度,在测定呼吸气体的间隙同时测定周围空气中的乙醇和乙醛浓度,看它是否影响对呼吸气体中目标化合物的测定。[align=center][img=,1114,616]http://img1.17img.cn/17img/images/201509/insimg/4c7af3d2-78e7-416e-b183-8b5cd24840b7.jpg[/img][/align][align=center]图 2 SIFT-MS 定量分析呼吸气中乙醇和甲醇的浓度随时间的变化图[/align]  SIFT-MS 定量分析呼吸气中乙醇,浓度随时间的变化是使用前体离子、前体离子水化物和乙醇特征产物离子及水化物(C2H5OH2+,m/z 47)信号比进行计算,还要知道反应时间和样品及载气的流速。  乙醇可以很快地与所有三种前体离子(H3O+,NO+, O2+)反应,与H3O+是直接进行反应,得到m/z 47的质子化乙醇,如下面的反应式:[align=center][img]http://img1.17img.cn/17img/images/201509/insimg/c307f24e-b3b6-4c03-9cee-127e17345b4b.jpg[/img] (7)[/align]  此反应(7)是放热反应,决定于碰撞速率。  当含有水汽的呼吸气进入载气时,产物离子很快形成水合离子,含有一个水分子和两个水分子的质子化乙醇其m/z为65(C2H5OH2+?H2O)和83(C2H5OH2+?(H2O)2),他们必须要计算到乙醇的测定当中。乙醛的离子化也类似于乙醇,它们是CH3CHOH2+ m/z 45, CH3CHOH2+?H2O m/z 63,和CH3CHOH2+?(H2O)2 m/z 81,分析时要计算进去[b](2) 检测30个志愿者呼气结果[/b]  采用SIFT-MS对30位健康志愿者(19位男性,11位女性)进行为期六个月呼出气中乙醇和乙醛的监测,表2是在6个月期间测试30个志愿者呼气中乙醇含量的数据。对每一个志愿者每天测定他们的呼出气的乙醇浓度,是3次连续呼吸气的平均值,如图2中的数据,总数为478个平均值,测定了1434次呼气。每个志愿者呼气中的乙醇浓度平均值是为期半年积累的数据。连同测定的标准偏差(SD)数据见表2.按志愿者的年龄从上到下排列,也列出他(她)们的性别和身体质量指数(BMI)。个体之间乙醇浓度的散布很宽,所有志愿者的乙醇浓度在0 到 1663 ppb之间,平均值为196 ppb,SD 为 244 ppb,中间值为112 ppb。表 2 6个月期间测试30个志愿者呼气中乙醇含量的数据[align=center][img=,812,558]http://img1.17img.cn/17img/images/201509/insimg/02ebfcd9-bf25-45f5-9469-7b0f89e5a611.jpg[/img][/align]  *BMI =身体质量指数(Body Mass Index)(体重除以身高的平方)表 3 6个月期间测试30个志愿者呼气中乙醛含量的数据[align=center][img=,668,421]http://img1.17img.cn/17img/images/201509/insimg/43a33ac9-b4cf-4e19-97a9-2502239e716f.jpg[/img][/align]  30个志愿者呼气中乙醇浓度的散布见图3(a),是所有478次肺泡呼吸气中乙醇的浓度,这一分布接近于对数正态分布,符合预期的呼吸代谢的水平。[align=center][img=,790,561]http://img1.17img.cn/17img/images/201509/insimg/2effd15c-face-4776-9af4-8447e32abcbc.jpg[/img][/align][align=center]图 3 30个志愿者6个月内呼吸气中乙醇和乙醛浓度测定的分布图[/align]  棒图纵坐标为样品数,a和 d 是针对所有样品,b和 e是志愿者在测试前2 h没有食用含糖食品或饮料的数据,c 和f是志愿者在测试前2 h吃了含糖食品或饮料的数据  根据这一文章作者们的研究指出吃了含糖食品或饮料会增加呼吸气中乙醇的浓度,这是由于蔗糖通过口腔菌群或肠道菌群的作用产生乙醇。他们研究这一现象,是否会显著影响呼吸气中乙醇浓度的测定,所以分别研究了在测定前两小时吃和没吃甜品志愿者的呼吸气中的乙醇浓度。图 3 中的(b)是志愿者在测试2h 前没有吃甜品的292呼吸气样品得到的结果,图 3 中的(c)是志愿者在测试2h 前没有吃甜品的186呼吸气样品得到的结果,考察呼气中乙醇浓度的增加是否实施由于蔗糖通过口腔菌群或肠道菌群的作用所产生乙醇。  以前的研究已经阐述过,环境空气中乙醇背景浓度对呼吸气中乙醇浓度的测定的影响,本研究说明背景乙醇浓度很容易检测出来(环境中的乙醛背景浓度测不出来)。[b]小结[/b] 我这里引述的研究是2005年的工作,已经过去10年了,跟进的工作不多,可见还没有被人们认识,也涉及到仪器的昂贵,虽然已经有商品仪器,但是没有普及。看来进一步发展这一方法还需要医学和化学工作者结合,以及仪器的普及。

  • 傅若农:擒魔序曲——脂质组学研究中的样品处理

    [color=#0000ff][b]编者注:[/b][/color]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。[color=#0000ff][url=http://www.instrument.com.cn/news/20140623/134647.shtml][color=#0000ff]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20140714/136528.shtml][color=#0000ff]第二讲:傅若农:从三家公司[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20140811/138629.shtml][color=#0000ff]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20140902/140376.shtml][color=#0000ff]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20141009/143041.shtml][color=#0000ff]第五讲:傅若农:气-固色谱的魅力[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20141104/145381.shtml][color=#0000ff]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20141205/147891.shtml][color=#0000ff]第七讲:傅若农:酒驾判官——顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20150106/150406.shtml][color=#0000ff]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20150211/153795.shtml][color=#0000ff]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/color][/url][/color][url=http://www.instrument.com.cn/news/20150312/155171.shtml][color=#0000ff]第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用[/color][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][color=#0000ff]第十一讲:[/color][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][color=#0000ff]傅若农:扭转乾坤——神奇的反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析[/color][/url][b]前言[/b]  脂质是一类自然界存在的疏水或两性、难溶于水而易溶于非极性溶剂的有机物小分子,存在于大多数生物体系中。脂质是细胞膜的骨架物质和第二能量来源,还参与细胞的许多重要功能,人类许多重大疾病都与脂质代谢紊乱有关,如糖尿病、肥胖病、癌症、阿兹海默症、以及一些传染病等,  作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。  2005年国际上把组织、细胞中的脂质分子分为8大类(J Lipid Res 2009,50(Supp) 9-14),有明确结构的脂质化合物已经有38000个(BMC Bioinformatics 2014, 15(Suppl 7):S9),这8类脂质分子见表1。[align=center][b]表 1 8大类脂质分子[/b][/align][table][tr][td][align=left]类别[/align][/td][td][align=left]缩写[/align][/td][td][align=left]数据库中的结构数量[/align][/td][/tr][tr][td][align=left]脂肪酰类(Fatty acyls)[/align][/td][td][align=left]FA[/align][/td][td][align=left]2678[/align][/td][/tr][tr][td][align=left]甘油脂类(glycerolipids )[/align][/td][td][align=left]GL[/align][/td][td][align=left]3009[/align][/td][/tr][tr][td][align=left]甘油磷酸脂类(glycerophospholipids)[/align][/td][td][align=left]GP[/align][/td][td][align=left]1970[/align][/td][/tr][tr][td][align=left]鞘脂类(sphingolipids )[/align][/td][td][align=left]SP[/align][/td][td][align=left]620[/align][/td][/tr][tr][td][align=left]固醇脂类(sterol lipids )[/align][/td][td][align=left]ST[/align][/td][td][align=left]1744[/align][/td][/tr][tr][td][align=left]异戊烯醇脂类(prenol lipids ()[/align][/td][td][align=left]PR[/align][/td][td][align=left]610[/align][/td][/tr][tr][td][align=left]糖脂类(saccharolipids )[/align][/td][td][align=left]SL[/align][/td][td][align=left]11[/align][/td][/tr][tr][td][align=left]多聚乙烯类(polyketides )[/align][/td][td][align=left]PK[/align][/td][td][align=left]132[/align][/td][/tr][/table]  在过去,由于技术限制人们难以分析数量巨大的脂质分析,因为多种脂质代谢产物的物理性质需要大批纯化系统、分离的复杂技术操作。2003年韩贤林等继基因组学、蛋白质组学等之后提出脂质组学(lipidomics)(Han X et a1.J Lipid Res,2003,44:1071),脂质组学的发展推动了新分析平台的研发,特别是在质谱法领域,该方法已使这些操作合理化,并且已允许更多的脂质分子得到非常详细的分析。  脂质存在于细胞、细胞器和细胞外的体液如血浆、胆汁、乳、肠液、尿液中。若要研究某一特定部位的脂质,首先要将这部分组织或细胞分离出来。由于脂质不溶于水,通常采用有机溶剂进行萃取。传统的萃取剂是氯仿、甲醇和水的混合液。所需的样品在这种混合液中提取所有脂质,向提取液中加入过量的水使之分成2个相,上面是甲醇和水,下面是氯仿。脂质就留在氯仿相,蒸发浓缩后,使之干燥就得到所需的脂质。这种脂质提取方法,能够提出组织样品中的总脂。这种方法降低了脂质的损失率,操作简便,而且提取效果较好。对于只检测总脂中的部分脂质,固相萃取(SPE)是一种较好的方法,利用固体吸附剂将液体样品中的目标化合物吸附,与样品的基体和干扰物分离,然后再用洗脱液洗脱或加热解吸附,达到分离和富集目标化合物的目的。固相萃取技术设备要求低,操作简单,能快速分离组分复杂及含量低的样品。当然由于化学分析样品前处理技术的发展,有许多其他可用的样品前处理方法。  总体上对脂质组学的研究Chin Chye Teo等归纳为如下的工作流程,第一步就是对样品的处理。[b]1[b]、[/b]脂质组学研究的工作流程[/b]  根据Chin Chye Teo的综述报告(Chin Chye Teo et al,TrAC,2015,65:1-18),脂质组学研究的工作流程如下表1.[align=center][b]表1 脂质组学研究的工作流程[/b][/align][table][tr][td=2,1][align=center]从患者得到脂质组学研究的样品[/align][/td][/tr][tr][td][align=center]液体[/align][/td][td][align=center]固体[/align][/td][/tr][tr][td][align=center]体液,泪水,血清,血浆,尿液[/align][align=center](低温保存样品)[/align][/td][td][align=center]细胞,组织,器官[/align][/td][/tr][tr][td=2,1][align=center][b]对上述样品进行萃取方法[/b][/align][/td][/tr][tr][td]对极性化合物,单独的有机化合物进行:液-液萃取,固相萃取[/td][td]对能源性物质进行:加压液相萃取,微波辅助萃取,超声辅助萃取[/td][/tr][tr][td=2,1][align=center]萃取得到的脂质化合物[/align][/td][/tr][tr][td]使用色谱方法分离:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],液相色谱,电泳[/td][td]不使用色谱方法分离:直接进样,成像[/td][/tr][tr][td=2,1][align=center][b]上述分离或未分离样品进行质谱分析[/b][/align][/td][/tr][tr][td][align=center]质谱分析的接口[/align][/td][td][align=center]质量分析器[/align][/td][/tr][tr][td]电子轰击电离(EI),电喷雾电离(ESI),化学电离(CI),大气压(APCI)化学与电离,基质辅助激光解析电离(MALDI)[/td][td]四级杆飞行时间质谱(qTOF),三重四级杆质谱( qqq),轨道阱质谱(Orbitrap)[/td][/tr][tr][td=2,1][align=center][b]质谱原始数据语预处理[/b][/align][align=center](利用商品或自制软件)[/align][/td][/tr][tr][td=2,1][align=center]分类和脂质鉴定(使用各种资源如LIPID maps,Lipid Bank,Lipid Blast)[/align][/td][/tr][tr][td=2,1][align=center][b]判定在疾病中的机制/在疾病演化中的作用[/b][/align][/td][/tr][tr][td=2,1][align=center]为进一步诊断找出生物标记物(预防),提供药物治疗的指导[/align][/td][/tr][/table][b]2[b]、[/b]脂质组学的样品制备[/b]  本文只讲脂质组学的样品制备,Chin Chye Teo等总结了近年在脂质组学研究中使用的样品处理方法,见表2.[align=center][b]表2 脂质组学研究中的样品处理方法比较(Chin Chye Teo et al,TrAC,2015,65:1-18) [/b][/align][table=576][tr][td]萃取方法[/td][td]临床样品类型(生物液体或固体)[/td][td]优点[/td][td]缺点[/td][td]原文文献编号[/td][/tr][tr][td]单一有机溶剂萃取(SOSE)[/td][td]血清(生物液体)皮肤(固体)[/td][td]容易完成萃取时间短成本低低温适于热敏感化合物无需外部能量[/td][td]使用有毒有机溶剂分析时难以摆脱使用有机溶剂[/td][td]1.23[/td][/tr][tr][td]液-液萃取(LLE)[/td][td]眼泪(生物液体)血清(生物液体)血浆(生物液体)尿液(生物液体)滑液(生物液体)动脉粥样硬化血小板(生物液体)皮肤(固体)组织(固体)[/td][td]易于建立的方法容易完成设备便宜萃取时间短使用廉价溶剂(如甲醇,水)低温适于热敏感化合物无需外部能量萃取时间短[/td][td]使用大量有毒有机溶剂常使用超过一种类型的溶剂需要排除溶剂以免影响分析[/td][td]24,9-135,14-228,2372425-2728,29[/td][/tr][tr][td]固相萃取(SPE)[/td][td]血清(生物液体)血清(生物液体)血浆(生物液体)眼(固体)皮肤(固体)[/td][td]容易完成清除干扰基体EPE的选择低温适于热敏感化合物萃取时间短[/td][td]SPE萃取小柱比较贵需要洗掉有机溶剂以免影响分析使用有毒有机溶剂分析时难以摆脱使用有机溶剂[/td][td]1,12230263,27[/td][/tr][tr][td]固相微萃取(SPME)[/td][td]肺(固体)头发(固体)[/td][td]容易完成可与[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] x[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 联用对挥发性化合物可以进行顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]有毒溶剂消耗量少低温适于热敏感化合物无需外部能量萃取时间短[/td][td]萃取头比较贵需要洗掉有机溶剂以免影响分析分析时难以摆脱使用有机溶剂[/td][td]3132[/td][/tr][tr][td]超临界流体萃取(SFE)[/td][td]血浆(生物液体)[/td][td]容易完成萃取时间短对非极性化合物萃取效率高CO[sub]2[/sub]可循环使用温度压力可控可加改性剂提高萃取液极性和效率[/td][td]要精心操作设备昂贵[/td][td]33[/td][/tr][tr][td]微波辅助萃取(MAE)[/td][td]血浆(生物液体)皮肤(固体)[/td][td]容易完成萃取时间短萃取效率高萃取溶剂消耗量少温度压力可控[/td][td]需要冷却防止溶剂逃逸购买设备费用高[/td][td]3435[/td][/tr][tr][td]超声辅助萃取(UAE)[/td][td]血(生物液体)[/td][td]容易完成萃取时间短萃取溶剂消耗量少温度压力可控[/td][td]听力会受损要使用有毒有机溶剂会吸入有害溶剂需要外部能源购买设备费用高提高温度会使化合物降解[/td][td]36,37[/td][/tr][/table][b]3[b]、[/b]脂质组学的溶剂萃取[/b]  液-液萃取是脂质组学研究中使用最为普遍的方法,这一方法是使用两种互不混溶的有机溶剂——使用最多的是氯仿、甲醇和水——为了对关键脂质类得到最大的萃取效率,从磷脂类和糖脂类到脂肪酸,三酰基甘油类(TAGs)、二酰基甘油类(DAGs)。最初使用的是Folch 脂质萃取法(氯仿/甲醇/水为 8:4:3 v/v/v),之后有Bligh 和 Dyer脂质萃取法(氯仿/甲醇/水为 1:2:0.8 v/v/v)。  (1)Folch 脂质萃取法(Folch et al., J Biol Chem 1957, 226: 497)  把样品组织用2:1氯仿/甲醇均一化,最后的溶剂体积是组织的20倍(20mL 溶剂里有1g样品),分散均匀后于室温下把混合物在轨道振荡器上震动15-20min。均匀混合物经漏斗中折叠滤纸过滤,或进行离心处理,回收液相。  液相溶剂用0.2体积的水(20 mL液相使用4 mL水),最好使用0.9%的NaCl溶液洗涤,涡旋几秒后在低速离心机(2000 rpm)上离心混合物,用虹吸方法弃去上层液相,用以分析神经节糖苷或小分子有机极性化合物,如需要(需移去标记分子),用1:1甲醇/水洗涤交界处的有机相两次,无需混合全部制备物。  经离心分离后虹吸掉上面的液相,下面含有脂质的氯仿在旋转蒸发器中真空蒸发,或用氮气吹拂到2-3 mL体积。  (2)Bligh 和 Dyer脂质萃取法(Can J Biochem Physiol 37:911-917)  a. 每1 mL 样品加入3.75mL 1:2(v/v) CHCl3:CH3OH 很好涡旋,如果要进行[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 分析,溶剂中要含有内标(如0.5μg谷甾醇)  b. 然后加入1.5mL CHCl3很好涡旋  c. 最后加入1.25mL蒸馏水很好涡旋  d. 在1000rpm离心机中室温下离心5min,得到一个两相分离(上层为水相,下层为有机相)的液体  e. 回收有机相:用一个巴斯德吸管(Pastuer pipette)通过上层水相,轻微施加正压避免上层水相浸入吸管,吸管口到达离心管底部,吸取下层有机相溶液的90%到吸管中。[align=center][b]下表列出不同样品容积需要加入的试剂量[/b][/align][align=center][img=,1448,391]http://img1.17img.cn/17img/old/NewsImags/images/201551910359.png[/img][/align]  如果你要得到干净的底部的有机相溶液,就要用上层“真正”的上层液相洗涤有机相溶液,方法如下:  a 制备“真正”的上层液相:取一个大的玻璃管,或者几个常规玻璃管,以水代替样品胺上述方法进行萃取操作,把几个管子中的上层水相合并在一起备用。  b 把上述第5步得到的底层溶液倒入一个玻璃管中,然后加入适量(样品+蒸馏水的体积)“真正”的上层液相。比如你是1 mL样品就加入2.25mL“真正”的上层液相。  c 好好地涡旋,离心,收集下层相。  Cui等的改进Bligh 和 Dyer脂质萃取法(Cui L,e al, PLoS Negl Trop Dis,2013,7:e2373):  900μL氯仿-甲醇(1:2)加入到100 μL样品中,进行涡旋,在4°C下保温,然后加入300μL氯仿和300μL双重蒸馏水,以9000 rpm离心2 min,脂质物在离心管底部的有机相中,然后加入500 μL氯仿在4°C下进行涡旋20 min。从有机相中回收脂质物并与前次得到的脂质物合并,脂质萃取物经真空干燥后于-80°C下存放备用。  多少年来人们使用类似于上述方法进行脂质的萃取,例如:李国琛等在脂质组学研究中也采用Bligh 和 Oyer法萃取磷脂,并作适当改进.他们的方法是:  称取100 mg鱼肉样品,加入400 p,L甲醇/氯仿(体积比2:1),涡旋混匀后,于一30℃放置过夜.取出后于4℃以10000 转速离心5 min.将上清液转出,在残渣中加入200 mL甲醇/氯仿(体积比2:1)再次提取,将2次所得上清液合并.在上清液中先后加入100 mL氯仿及100mL水,离心后,将磷脂所在的氯仿相与水相分离.采用真空离心蒸发浓缩器干燥氯仿相(温度不超过45℃,下同),将干燥后的样品于一30℃保存备用.(高等学校化学学报,2010,31(2):269-273)  人们为了提高某些脂质种类的萃取效率,改变氯仿/甲醇/水的比例,并加入一些其他添加剂,如乙酸、盐酸等,探索改进萃取各类脂质化合物的得率,如酸性磷脂和脂肪酸。(Jensen S K, Lipid Technol,2008, 20: 280-281)。[b]HCl-Bligh萃取法步骤:[/b]  为了更好地萃取生物样品中的脂肪酸,使用加盐酸的HCl-Bligh萃取法:取0.6 g均匀好的样品装入10-ml 带盖的培养试管中,加如1 ml 3M HCl,在80℃水浴上加热1 h,之后加入1.50 ml甲醇和1.00 ml氯仿,以及17:0脂肪酸内标,把混合物摇震1 min,然后加入ELGA-纯水系统制备的纯水1.00 ml 和2.00 ml氯仿,把试管振荡1 min,然后在3000 rpm离心机上进行离心处理5 min。把1 ml氯仿相进行甲基化,用氮气把氯仿蒸发掉,加入0.8 ml NaOH/甲醇溶液,把试管充满氮气,密封在100 ℃下烘箱中15 min,冷却后加入1 ml BF3溶液,密封在100 ℃下烘箱中45 min。在冷却后加入2 ml辛烷和4 ml饱和NaCl溶液,把混合物进行涡旋,在3000 rpm离心机上进行离心处理10 min。用1μL 样品进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析。  根据Jensen的研究,认为此方法可以对脂肪酸的萃取率提高15%,对多不饱和脂肪酸的萃取率可提高30-50%。  由于氯仿的毒性大人们就用二氯甲烷来代替氯仿(J Agr Food Chem,2008,56:4297-4303),之后就有许多研究者效仿用以萃取临床样品,包括生物液体,如血清/血浆,尿液和固体样品,如皮肤和动脉粥样硬化血小板(表中文献4,5,8,9,10,14-17,23-25,28).  近几年也用甲基特丁基醚(MTBM )做萃取溶剂代替氯仿(Matyash et al. J Lipid Res. 2008,49 (5) :1137-1146.)。Matyash 认为MTBM进行萃取快速而且可以得到干净的脂质,可以适合于自动进行鸟枪法得到脂质轮廓。因为MTBM的密度低,水相和有机相分开时,有机相在上层,这样简化了手机有机相的手续,减少了吸取的损失,不可萃取的基质小球处于离心管的底部,易于去除。严格的测试证明MTBM进行萃取对绝大多数脂质种类和“黄金标准”Folch 或 Bligh and Dyer萃取方法类似或更好。2013年中科院大连化学物理研究所许国旺和德国图宾根大学医学院的R Lehmannb使用MTBM进行萃取开创了一个从一小片肝脏或肌肉组织同时进行道谢组学和脂质组学的研究(J Chromatog A, 2013, 1298:9- 16)  人们的思路总是由简单到复杂,又由复杂回归到简单,所以脂质组学中的萃取方法,近来也有多种溶剂向单一溶剂发展, Stübiger G (表中文献1)就使用 Zhao Z等提出的单一溶剂萃取(SOSE)磷脂类脂质(J Lipid Res 2010 51:652)方法如下:  把500 mL甲醇加入到20 mL人血浆中,其中已经含有0.01% BHT(2,6-二叔丁基对甲酚)和0.5 mmol EDTA (用作抗氧化剂)和3mmol Pefablock(4-(2 aminoethyl) benzenesulfonylfluoride hydrochloride)用作磷脂酶的抑制剂,加入内标物,把样品激烈震荡1min,在冰浴中放置30 min,进行脂质的萃取,之后在10,000 rpm离心机上,离心5 min(4℃),最后把离心管上面的液体小心滴转移到2 mL玻璃样品瓶中,在零下70℃保存备用。[b]4[b]、[/b]固相萃取(SPE)[/b]  SPE 是十分成熟的样品预处理技术,使用装有固定相的小柱子和各种流动相选择性地保留与固定相有特定作用力的特殊种类分子。SPE的典型应用是和 SOSE 和 LLE相结合,作为一种附加的净化步骤或从生物液体或固体住址样品中富集某种特定种类的目标脂质(表中文献1,3,12,26,27),市场有各种各样的萃取小柱供选择。供脂质萃取的SPE小柱有正相硅胶柱和反相柱(C8 和 C18),以及离子交换柱(氨丙基柱),硅胶柱和氨丙基柱多用于分离中性和极性脂质,利用改变洗脱溶剂以达到分离的目的。而C8 和 C18柱用于从水基样品中分离卵磷脂(PC)、脑苷脂、神经节糖苷和脂肪酸。  针对不同的脂质使用不同的SPE,如 Stübiger(表2文献1)在进行导致动脉粥样硬化的磷脂的研究中,使用C18 净化柱从血浆脂质萃取和富集体液氧化磷脂(OxPLs),其步骤如下:  把脂质萃取液倒入微量制备高效固相萃取柱(mHP-SPE)C18 spin-columns (PepClean, Pierce)中,小柱事先用500mL MeOH:0.2%甲酸(70:30 重量比)洗涤,然后用700 mL MeOH:0.2%甲酸(82:18 重量比)洗脱一次,再用800 mL MeOH:0.2%甲酸(92:2 重量比)洗脱一次,最后小柱用500 mL 2-丙醇再生,以便从小柱中彻底清除脂质(即中性脂质),净化后的纯度用薄层色谱检查,得到的氧化脂质用LC-ESI-MS/MS进行分析。  而Ruben t’Kindt进行皮肤神经酰胺的脂质组学研究中,则使用氨丙基硅胶小柱对脂质萃取液进行净化(表2文献3),方法如下:  使用氨丙基硅胶小柱(100 mg, 3.0 mL)先用2 mL己烷洗涤,把已经干燥的脂质溶于300 μL 11:1 的己烷:异丙醇(v/v)中,用2 mL己烷/甲醇/氯仿(80/10/10 (v/v))洗脱神经酰胺,用氮气吹扫干燥,溶于300 μL异丙醇/氯仿(50/50)(v/v)中,进行HPLC/MS分析。[b]5、固相微萃取(SPME)[/b]  Pawliszyn 研究组在1991年发明了SPME,1993年出现了SPME的商品化产品,使之成为广泛使用的样品前处理技术。这一方法是集萃取、浓缩、解吸、进样于一体,它以固相萃取(SPE)为基础,保留了SPE的全部优点,排除了需要柱填充物和使用有机溶剂进行解吸的缺点。SPME是以涂渍在石英玻璃纤维上的固定相(高分子涂层或吸着剂)作为吸收(吸附)介质,对目标分析物进行萃取和浓缩,并在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进样口中直接热解吸(或用HPLC流动相冲洗到液相色谱柱中,甚至可以直接进行质谱分析),这一技术适合于挥发性和半挥发性有机物的样品处理和分析。SPME有8大优点:1 操作简单,2 功能多样,3 设备低廉,4 萃取快捷,5 无需溶剂,6 可在线、活体取样,7 可自动化, 8 可在分析系统直接脱附。SPME可以对环境中的污染物进行检测,如:农药残留、酚类、多氯联苯、多环芳烃、脂肪酸、胺类、醛类、苯系物、非离子表面活性剂以及有机金属化合物、无机金属离子等,也可以用有类似特点的领域,如食品、医药、临床、法庭分析等方面。自然,在脂质组学中也会使用这一技术。  武汉大学曾昭睿研究组用自制的甲基丙烯酸丁酯/端羟基硅油萃取头,萃取肺组织中的长链脂肪酸(表2文献31)。F Pragst 利用SPME萃取头发中的脂肪酸乙酯和葡萄糖苷酸乙酯来诊断过度酗酒(表2文献32)。脂质中的脂肪酸都可以衍生化为酯类用SPME进行萃取。  SPME 的魅力在于它可以进行活体样品中萃取分析物,用于代谢组学和脂质组学的研究,对这一课题SPME的发明人 Pawliszyn 近年进行了阐述(Angew Chem, 2013, 125:12346 -12348 Anal Chem, 2014, 86:12022-12029)。分析脂质代谢产物中游离脂肪酸的示意图如下。[align=center][img=,532,304]http://img1.17img.cn/17img/old/NewsImags/images/2015519101028.png[/img][/align][align=center][b](Anal Chem, 2014, 86:12022-12029)[/b][/align][b]6、超临界流体萃取(SFE)[/b]  超临界流体具有特殊的理化特性,黏度为普通流体的1%~10% 扩散系数约为普通液体的10~100倍 密度比常压气体大100~1 000倍。因而超临界流体既有液体溶解能力大的特点,又有气体易于扩散和运动的特性,传质速率大大高于液相过程。所以从萃取效率和对环境友好都受到欢迎。最常用的超临界流体是超临界二氧化碳(SF-CO2)它的临界压力和温度低,只有7.4MPa和32℃。SF-CO2无毒易于从样品中排除,其极性与戊烷近似,很适于萃取疏水性化合物,如脂质化合物(J Chromatogr A 2007,1163:2-24)。为了分离极性化合物往二氧化碳中加入改性剂,如甲醇。过去更多的工作时从植物类物质中萃取脂质,但是近来已经扩展到从动物组织中萃取脂质,例如浙江大学药学院王龙虎利用江苏省南通市华安超临界萃取有限公司的 HA220-50-06 SFE装置萃取鸵鸟脂肪中的脂肪酸:萃取装置包括一个1 L 不锈钢萃取釜,两个1 L 分离器,一个注射泵,和一个冷凝装置。用压力调节器调节压力,用可调节温度的水浴控制温度,通过调节泵的频率来控制二氧化碳的流速。从液态二氧化碳钢瓶把二氧化碳送到萃取器中,并达到超临界状态,在分离器中调节压力和温度可把萃取出来的组分里出来。试验中取250 g鸵鸟脂肪组织用二氧化碳萃取5h,压力15-30 MPa,温度40-50℃,二氧化碳流速为15-35 L/h,用以考察萃取效果。(Eur. J. Lipid Sci. Technol. 2011, 113, 775-779)。  但是SFE更重要的是萃取人干血浆斑点中的脂质分子,Uchikata等(表2文献33)比较了用SFE和液液萃取(Bligh 和 Dyer方法)磷脂的效果,证明SFE要比液液萃取方法对磷脂具有更好的选择性,包括磷脂酰胆碱(PC)、溶血性磷脂酰胆碱(lysoPC)、磷脂酰乙醇胺(PE)和神经鞘磷脂(SM)。国内在1995年就有类似研究(薄层扫描法测定蛋黄磷脂中PC、SM和LPC的含量?——路萍 赖炳森,药物分析杂志,1995,(13):231-232),他们也是用SFE萃取之后进行薄层色谱分离。[b]7、微波辅助萃取(MAE)[/b]  微波辅助萃取(MAE)是利用微波能强化溶剂萃取效率,即利用微波加热来加速溶剂对固体样品中目标萃取物的萃取过程。MAE 可以快速高效地把样品及溶剂中的偶极分子在高频微波能的作用下,产生偶极涡流,离子传导和高频率摩擦,从而在短时间内产生大量的热量。偶极分子旋转导致的弱氢键破裂、离子迁移等加速了溶剂分子对样品基体的渗透,待分析成分很快溶剂化,使微波萃取时间显著缩短。  微波加热具有选择性微波对介电性质不同的物料呈现出选择性的加热特点,介电常数及介质损耗小的物料,对微波的入射可以说是“透明”的。溶质和溶剂的极性越大,对微波能的吸收越大,升温越快,促进了萃取速度。而对于不吸收微波的非极性溶剂,微波几乎不起加热作用。所以,在选择萃取剂时一定要考虑到溶剂的极性,以达到最佳效果。  MAE具有生物效应(非热效应) ,由于大多数生物体内含有极性水分子,在微波场的作用下引起强烈的极性震荡,从而导致细胞分子间氢键松弛,细胞膜结构电击穿破裂,加速了溶剂分子对基体的渗透和待提取成分的溶剂化。因此,利用MAE从生物基体萃取待分析的成分时,能提高萃取效率。(李核等,分析化学,2003,31(109):126l~1268)  例如:万益群,吴世芳利用MAE萃取何首乌中的磷脂(分析测试学报,2008,27(7):782—784),方法如下:确称取约1.0 g何首乌样品于溶样杯中,加入20 mL萃取溶剂(氯仿与甲醇体积 比为1:2),把溶样杯放入罐体中,组装好罐体后放入微波制样系统中,插入温度探针。设置萃取压力为安全压力(1.5 MPa),萃取时间15 min,温度为45℃。微波萃取完毕后,将样品过滤。滤液用体积为滤液总体积l/4的8 g/L氯化钠溶液萃取2次,收集有机相。将有机相旋转浓缩至近干,用甲醇定容至10 mL。取样品溶液3 mL用甲醇稀释至10 mL,过0.45μm微孔滤膜,待测。[b]7、超声辅助萃取(UAE)[/b]  超声波为频率高于20kHz以上的声波,是一种机械振动在介质中的传播过程,在传播过程中,超声波与介质的相互作用,可以使超声波的相位和幅度等发生变化 功率超声波则会使介质的状态、组成、结构和功能等发生变化,超声萃取中的应用可分为两类:一类是频率高,能量低(一般小于1W/cm2)的检测超声波,其频率多以MHz为单位 另一类是频率低,能量高(通常为10—100 W/cmz)的功率超声波,其频率则以kHz为单位。UAE是一种重复性好、萃取质量高的方法,它不像MAE,不会让萃取系统的温度升高,不利于热稳定差的代谢物萃取。UAE还可以和液液萃取配合改进生物样品中脂质的萃取效率。例如上海交通大学药学院的刘玉敏等(Anal Bioanal Chem,2011, 400:1405-1417)成功地开发了UAE 和 LLE结合萃取人血清样品中的代谢产物,从而比单独使用液液萃取脂肪酸提高5-60%。Pizarro等使用类似的方法以MTBE作溶剂辅以UAE萃取人血中的脂质,比单纯使用MTBE的液液萃取可以多检出30%的脂质种类,MTBE-UAE萃取方法具有更好的重复性,相对标准偏差降低6%,脂质成分的回收率提高7成(表2文献36)。除去萃取生物液体外,UAE-LLE也用于萃取样品中的脂肪酸,例如哈尔宾医科大学的李颖等研究了用UAE-LLE萃取鼠的肝脏组织,考察了超声波功率、萃取溶剂、萃取容积、萃取时间等,结果表明萃取时间比Folch萃取法萃取脂肪酸从12 h 缩短到 20 min,回收率在87-120%之间。(J Chromatogr Sci, 2013 51:376-382)[b]8、其他可用的萃取方法[/b]  在化学分析样品处理中还有两种重要的样品前处理方法,即加速溶剂萃取(ASE)和基质固相分散萃取(MSPD),可以用于脂质组学研究的样品前处理。  加速溶剂萃取(Accelrated Solvent Extraction, ASE),这一方法是一种在提高温度和压力的条件下,用有机溶剂萃取的自动化方法。与其他液体萃取方法相比,其突出的优点是有机溶剂用量少、快速、回收率高。(牟世芬等,现代分析仪器,2001,(3):18-20)。 Spiric A等使用ASE萃取鲤鱼肉中的脂肪酸谱和胆固醇含量,并与改进的索氏萃取法进行比较,表明ASE萃取方法是可用的。(Anal Chim Acta,2010, 672:66-71)。Jansen B等利用ASE从土壤中萃取脂质生物标记物,萃取效果和其他萃取方法一样(Appl Geochem ,2006, 21:1006-1015)。Balasubramanian R K等用ASE和其他方法进行了从海水微海藻细胞中萃取脂质的研究,表明ASE是一种可以使用的方法(Chem Engineering J,2013, 215-216:929-936)。  MSPD方法是1989年首次提出是用来处理动物组织样品的方法,样品与涂渍有C18等的各种聚合物载体的固相萃取材料一起研磨,得到半干状态的混合物并将其作为填料装柱,然后用不同的的溶液洗脱柱子,将各种待测物洗脱下来。其依据是采用脂溶性材料(C18)破坏细胞膜并将组织分散,C18充当分散剂。在硅胶固相萃取材料表面键合有机相,与传统方法使用砂子做吸附剂类似,在样品与固体材料搅拌的过程中,利用剪切力作用将组织分散。键合的有机相就像溶剂或洗涤剂一样,将样品组分溶解和分散在支持物表面。这大大增加了萃取样品的表面积,样品按各自极性分布在有机相中,如非极性组分分散在非极性有机相中,极性小分子与硅胶上的硅烷醇结合,大的弱极性分子则分散在多相物质表面。(乌日娜等,食品科学,2006,26(6):266-268)。香港城市大学的Qing Shen等利用二氧化钛纳米颗粒作萃取剂,以基质固相分散萃取方法进行橄榄果的脂质组学研究,研究证明这一方法可以把磷脂从非磷脂中完全选择性地分离出来。(Food Research Int,2013, 54:2054-2061)。[align=center][b]表2中的文献 [/b][/align][table=574][tr][td][align=left]1[/align][/td][td][align=left]Stubiger G, et al, Atherosclerosis, 2012,224:177-186.[/align][/td][/tr][tr][td][align=left]2[/align][/td][td][align=left]Zhao Z, et al, J Lipid Res, 2010, 51:652-659[/align][/td][/tr][tr][td][align=left]3[/align][/td][td][align=left]t’Kindt R, et al, Anal Chem, 2012,84:403-411[/align][/td][/tr][tr][td][align=left]4[/align][/td][td][align=left]Cui L, et al, PLoS Negl Trop Dis,2013,7:e2373[/align][/td][/tr][tr][td][align=left]5[/align][/td][td][align=left]Sandra K,et al, J Chromatogr A,2010,1217:4087-4099.[/align][/td][/tr][tr][td][align=left]6[/align][/td][td][align=left]Lam S M, et al, J Lipid Res, 2014,55: 289-298[/align][/td][/tr][tr][td][align=left]7[/align][/td][td][align=left]Giera M, et al, Biochim Biophys Acta, 2012, 1821:415-424[/align][/td][/tr][tr][td][align=left]8[/align][/td][td][align=left]Min H K, Anal Bioanal Chem, 2011, 399:823-830.[/align][/td][/tr][tr][td][align=left]9[/align][/td][td][align=left]Heilbronn L K, et al, Obesity,2013, 21:E649-E659[/align][/td][/tr][tr][td][align=left]10[/align][/td][td][align=left]Hilvo M, et al, Int J Cancer 134 (2014) 1725-1733[/align][/td][/tr][tr][td][align=left]11[/align][/td][td][align=left]Montoliu I, et al, Aging (Albany NY),2014,6:9-25[/align][/td][/tr][tr][td][align=left]12[/align][/td][td][align=left]Chen Y , et al, Clin. Chim. Acta, 2013,428: 20-25.[/align][/td][/tr][tr][td][align=left]13[/align][/td][td][align=left]Zivkovic A M, et al, Metabolomics,2009,5:507-516[/align][/td][/tr][tr][td][align=left]14[/align][/td][td][align=left]Chen F,et al, Biomarkers, 2011, 16:321-333[/align][/td][/tr][tr][td][align=left]15[/align][/td][td][align=left]M. Ollero, et al, J. Lipid Res, 2011, 52:1011-1022[/align][/td][/tr][tr][td][align=left]16[/align][/td][td][align=left]Shah V, Rapid Commun. Mass Spectrom, 2013, 27:2195-2200[/align][/td][/tr][tr][td][align=left]17[/align][/td][td][align=left]Lankinen M, et al, PLoS ONE, 2009,4:e5258.[/align][/td][/tr][tr][td][align=left]18[/align][/td][td][align=left]J. Graessler, et al, PLoS ONE,2009, 4:e6261[/align][/td][/tr][tr][td][align=left]19[/align][/td][td][align=left]Lofgren L et al,, J Lipid Res, 2012,53:1690-1700[/align][/td][/tr][tr][td][align=left]20[/align][/td][td][align=left]Gurdeniz G, et al, PLoS ONE, 2013,8:e69589.[/align][/td][/tr][tr][td][align=left]21[/align][/td][td][align=left]Zhou X, et al, PLoS ONE, 2012, 7:e48889.[/align][/td][/tr][tr][td][align=left]22[/align][/td][td][align=left]Bui H H, et al, Anal Biochem, 2012,423:187-194.[/align][/td][/tr][tr][td][align=left]23[/align][/td][td][align=left]Kim H, et al, Analyst, 2008, 133:1656-1663.[/align][/td][/tr][tr][td][align=left]24[/align][/td][td][align=left]Stegemann C, et al, Circ Cardiovasc Genet, 2011,4:232-242.[/align][/td][/tr][tr][td][align=left]25[/align][/td][td][align=left]van Smeden J, et al, J Lipid Res, 2011,52:1211-1221.[/align][/td][/tr][tr][td][align=left]26[/align][/td][td][align=left]Acar N, et al, PLoS ONE,2012, 7:e35102.[/align][/td][/tr][tr][td][align=left]27[/align][/td][td][align=left]Shin J H, et al, Anal Bioanal Chem,2014,406:1917-1932[/align][/td][/tr][tr][td][align=left]28[/align][/td][td][align=left]Cheng H, et al, J Neurochem, 2013,127:733-738.[/align][/td][/tr][tr][td][align=left]29[/align][/td][td][align=left]Pietilainen K H,et al, PLoS Biol,2011, 9:e1000623.[/align][/td][/tr][tr][td][align=left]30[/align][/td][td][align=left]Cha D, et al, J Chromatogr A,2009,1216:1450-1457.[/align][/td][/tr][tr][td][align=left]31[/align][/td][td][align=left]Cha D, et al, Anal Chim Acta,2006, 572: 47-54.[/align][/td][/tr][tr][td][align=left]32[/align][/td][td][align=left]Pragst F, et al, Forensic Sci Int,2010, 196: 101-110[/align][/td][/tr][tr][td][align=left]33[/align][/td][td][align=left]Uchik T,et al, J. Chromatogr A, 2012,1250:69-75.[/align][/td][/tr][tr][td][align=left]34[/align][/td][td][align=left]de Morais D R, et al, Rev Bras Hematol Hemoter,2010,32:439-443.[/align][/td][/tr][tr][td][align=left]35[/align][/td][td][align=left]Gonzalez-Illan F,et al,J Anal Toxicol,2011,35:232-237.[/align][/td][/tr][tr][td][align=left]36[/align][/td][td][align=left]Pizarro C, et al, Anal Chem,2013,8:12085-12092.[/align][/td][/tr][tr][td][align=left]37[/align][/td][td][align=left]Pang L Q, et al, J Chromatogr B,2008,869: 118-125[/align][/td][/tr][/table]

  • 傅若农:吹口气,知健康——GC-MS检测呼气疾病标记物

    [b][color=#00b0f0]编者注:[/color][/b]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。[url=http://www.instrument.com.cn/news/20140623/134647.shtml][b][color=#0070c0]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20140714/136528.shtml][b][color=#0070c0]第二讲:傅若农:从三家公司GC产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20140811/138629.shtml][b][color=#0070c0]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20140902/140376.shtml][b][color=#0070c0]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20141009/143041.shtml][b][color=#0070c0]第五讲:傅若农:气-固色谱的魅力[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20141104/145381.shtml][b][color=#0070c0]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20141205/147891.shtml][b][color=#0070c0]第七讲:傅若农:酒驾判官——顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150106/150406.shtml][b][color=#0070c0]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150211/153795.shtml][b][color=#0070c0]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150312/155171.shtml][b][color=#0070c0]第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][b][color=#0070c0]第十一讲:傅若农:扭转乾坤——神奇的反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150519/160962.shtml][b][color=#0070c0]第十二讲:擒魔序曲——脂质组学研究中的样品处理[/color][color=#0070c0][/color][/b][/url][url=http://www.instrument.com.cn/news/20150617/164595.shtml][color=#00b0f0][b][color=#0070c0]第十三讲:离子液体柱——脂质组学中分离脂肪酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱[/color][color=#0070c0][/color][color=#0070c0][/color][/b][/color][/url][url=http://www.instrument.com.cn/news/20150716/167186.shtml][color=#00b0f0][b][color=#0070c0]第十四讲:脂肪酸[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的故事[/color][color=#0070c0][/color][color=#0070c0][/color][/b][/color][/url] 人体呼吸气体的测试是一种无损伤的检测方法,日益受到重视,它可以评估健康状态、检测疾病类型,呼吸气体的检测可以利用简单的分析仪器进行。古代希腊医生已经知道人类呼吸气体的气味可以用于疾病的诊断,糖尿病人的呼吸气味由于含有丙酮,具有恶臭,呼吸气具有尿骚味预示肾脏有毛病。肺脓肿病人的呼吸气具有下水道的气味,这是由于厌氧菌繁殖而形成的气味。而有肝病的病人呼出气体具有臭鱼烂虾气味。  当我们从口中呼出气体,有成千上万的分子排放到空气中,呼出气体样品常常是无机气体(如NO, CO2, 和 CO)、挥发性有机化合物(例如异戊二烯、乙烷、戊烷和丙酮)以及其他典型的非挥发性物质的混合物(例如:异前列素、过氧化亚硝酸盐、细胞激素等)。由于这些分子源于内源性和外源性物质,详细分析这些物质的组成,可以提供多种体内所发生的生理学过程的特征(即呼吸谱),以及摄取和吸收物质的途径。如果获取和分析得到的呼吸谱是正确的,那么他就可以为你提供一个当前的健康状态,以及可预示将来的可能的后果。  呼吸气检测相比其他通常医疗检测的最大优点是非侵害性和安全性,由于其在临床诊断和明确的评估方面具有巨大的优势,所以呼吸气检测今天受到极大的重视,这一方法成为一些病人每天控制重要指标的必要测试项目(就像测血糖和尿液一样)。  已经开发了多种方法可以检测呼出气体,可以把它们分为几大类:  1. 基于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和质谱联用(GC-MS)(或其他类型的质谱方法)  2. 化学传感器  3. 激光-吸收光谱  在表 1 中列出这些分析方法以及相关信息。表 1 用于分析呼出气体的一些方法[align=center][img=,655,193]http://img1.17img.cn/17img/images/201508/insimg/e4ae96e5-f897-456e-9062-19d09d296e08.jpg[/img][/align]文献:  1 Cao W,et al, Crit Rev Anal Chem,2007, 37:3.  1. Pleil J D, et al, Clin Chem, 1997, 43:723.  2. Smith D, et al, Int Review Phys Chem, 1996,15:231  3. McCurdy M R, et al,J Breath Res, 2007,1 : 1.  4. Pleil J D, et al, J Toxicol Environ Health, B, 2008,11: 613.  5. Schubert J K, et al, G.F.E. Expert Rev Mol Diag, 2004, 4 : 619.  6. Zayasu K, et al, Am J Respir Crit Care Med, 1997,156:1140.  7. Hansel A, et al, Int J Mass Spectrom Ion Processes, 1995, 150: 609.  8. Boschetti A, et al, Postharv Biol Technol,1999, 17:143.  10 Huang H H, et al, Sens Actuators, B, 2004,101: 316.[b][url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析呼吸气体[/b]  使用最多的是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](GC)或者[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]与质谱、离子淌度谱(IMS)结合来分析人的呼出气体。用GC直接进行分析,把样品直接注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的进样口即可,样品混合物经色谱柱分离成单一化合物(或几个化合物),用各种检测器检测其含量,人呼出气多为极性化合物,要用极性色谱柱进行分析。GC-FID是使用最多的模式,因为FID灵敏度高,线性范围宽,噪声低。GC和MS结合是现代分析检测的极为普遍的方法。下面举一个例子说明用GC-MS来对肺癌和其他肺病病人呼吸气进行测定。  呼吸气体可以鉴定出由于细胞膜脂质中脂肪酸被过氧化而产生的饱和烃和含氧化合物,用以鉴别肺癌患者。意大利 Diana Poli等(J Chromatogr B,2010,878:2643-2651)研究发现通过呼吸气体中含有的VOCs(脂肪族和芳香族烃)的类别可以区分非小细胞肺癌患者(非小细胞肺癌(Non-small-cell carcinoma )属于肺癌的一种,它包括鳞癌、腺癌、大细胞癌,与小细胞癌相比,其癌细胞生长分裂较慢,扩散转移相对较晚,非小细胞肺癌约占肺癌总敉的80-85% ,目前采用化疗的方式进行治疗 )、慢性阻塞性肺病(COPD)患者、非临床症状吸烟者和健康人,灵敏度达72.2%,特异性达93.6%。在此基础上研究者们进一步寻找呼出气体中的其他物质可以更灵敏地区分健康人和肺病患者,并早期检查出肺癌患者。  多种羰基化合物作为二级氧化产物,他们选择挥发性直链醛作为组织破坏的生物标记物,特别是饱和醛像己醛、庚醛和壬醛是n-3和n-6不饱和脂肪酸(PUFAs)的过氧化产物,它们是细胞膜磷脂的主要成分,同时因为挥发性醛不溶解在血液中,所以当它形成时就会进入到呼吸气体中。  在呼吸气体中这种物质的浓度在10?12M(pM)和10?9M(nM)之间,所以在测定时需要进行预浓缩。这一研究中使用固相微萃取(SPME)进行预浓缩,用纤维内衍生化方法可以很好地解决呼吸气体中挥发性化合物的浓缩,包括脂肪和芳香烃,以及羰基化合物。但是并非能把所有呼吸气中的各种化合物都直接萃取出来,这决定于吸附剂涂层和萃取化合物的物理化学性质。  这一研究的目的是使用SPME上进行衍生化方法结合[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱的方法检测人呼气的最后一部分气体(肺泡气),肺泡气参与肺中的气体交换。[b]1. 人体呼气取样[/b]  取样如图1 所示:[align=center][img=,352,366]http://img1.17img.cn/17img/images/201508/insimg/73c261c9-6342-4ddb-8b29-305dd7d51e26.jpg[/img][/align][align=center][img=,284,425]http://img1.17img.cn/17img/images/201508/insimg/307031d7-8bfe-4c5b-8ec7-b2c5624f1cf6.jpg[/img][/align]图1 人体用Bio-VOC管呼气取样 取样是让进行试验个体进行一次肺活量测试呼吸,以便得到最后150mL呼出气体。加入1μL 10[sup]?[/sup][sup]5[/sup]M内标物(IS)(丙醛, n-丁醛, n-戊醛, n-己醛, n-庚醛, n-辛醛,n-壬醛, 2-甲基戊醛),把Bio-VOC管在4℃下保存,在2 h内进行分析。Bio-VOC管在使用前要进行再生,即用氮气彻底吹拂干净。[b]2 SPME 进行样品衍生化[/b]  SPME萃取头保存在图 2 的装置里。  醛类用65μm PDMS/DVB萃取头进行萃取,新萃取头要先进行老和处理,在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口中,在250℃下在氢气气流里加热30 min,每次使用前在气化室里于280℃下加热 1 min,目的是除去可能有的污染物,然后把萃取头插入4ml 带有聚四氟乙烯盖的茶色样品瓶中,瓶内装有浓度为17 mg/mL 的1mL PFBHA(五氟苄基羟胺盐酸盐)水溶液,在室温和电磁搅拌下萃取10 min,然后把此萃取头放入Bio-VOC呼吸气进样装置中于室温下处理45min(进行萃取头上的衍生化), 之后在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的进样口中于280℃下进行热脱附。PFBHA试剂与醛类进行衍生化反应得到两种PFBHA-肟异构体(顺,反异构体)。[align=center][img=,453,310]http://img1.17img.cn/17img/images/201508/insimg/2be3e5b2-1340-448c-a51f-4586ba7b2969.jpg[/img][/align]图 2 SPME萃取头保存装置 保存管包括上管(A)和密封管(B),萃取头(C)必须旋紧在A管中 然后插入到下面的B管中,B管用带弹簧的聚四氟乙烯盖密封[b]3 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱分析(GC-MS)[/b] 使用HP 6890 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]和HP 5973质谱选择性检测器进行分析。色谱柱使用HP-5MS(30m×0.25mmID 0.50 μm膜厚),氢气作载气,载气流速为1ml/min。色谱条件:柱温:以8℃/min速度从100℃升温到150℃,然后再以30℃/min速度升温到250℃,然后保持1 min。整个分析时间为10.58 min。用选择离子检测(SIM) 进行定量分析。获取质谱碎片m/z181(间隔时间400ms),每个醛的鉴定离子为181,是五氟苄-肟的特征离子碎片。同时以纯化合物的保留时间进行确认。[b]4 测试对象[/b] 40个在接受肺切除治疗之前的非小细胞肺癌(NSCLC)I 或 II期患者,所有患者都进行了胸腹部CT扫描,做了脑CT,腹部超声检测或骨质的闪烁扫描,没有一个患者进行过抗癌治疗。 38个对照健康没有临床治疗的人员,他们没有肿瘤或临床肺病历史。研究对象的特点见表 2。 吸烟是根据受试者自己讲述目前的吸烟情况,他们报告了吸烟的数量和吸烟的年数,在一年前就停止吸烟者定义为前-吸烟者(ex-smokers)。NSCLC的确认是根据组织学检查确定的,有23个肺腺癌(ADCs)患者,13个鳞状细胞癌(SCCs) 患者,和一个大细胞癌患者,但是所有这些患者都是临床手术前I 或 II期,最后病理学显示I期有29人(18个IA期11个临床IB),6个IIB,5个IIIA。见表2.表2. 测试对象特点[align=center][img]http://img1.17img.cn/17img/images/201508/insimg/09890691-2141-4f44-970b-bbd4bcbd33c3.jpg[/img][/align][b]5 测试结果探究[/b] 肺癌的早期诊断可以提高存活率,呼吸气的检测可以探测出呼吸道肿瘤形成的信息,而且呼吸气体的检测无伤害、安全,有利于在临床实践中的应用。由于肺比其他器官更直接暴露于较高氧气浓度的环境中,所以更容易诱发呼吸道疾病。研究数据显示肺癌是由于脂质被氧化而引起,很少人知道在呼出气体中含有直链醛类,知道在呼出气中含有直链醛类和肺癌有关的人更少。有研究结果显示,在肺癌患者的其他生物样品(如尿样、血液/血浆以及凝缩的呼吸气)中含有醛类。在健康人、哮喘患者和慢性阻塞性肺病(COPD)患者的液态呼吸气体(EBC)中也检测到醛类,特别是丙二酰二醛。 呼吸气体分析需要娴熟的技术和昂贵的仪器,因为这些目标化合物来自脂质过氧化过程,含量很低(10[sup]?[/sup][sup]12[/sup]M 到10[sup]?[/sup][sup]9 [/sup]M) ,所以需要严格的预浓缩步骤。使用SPME可以简化人呼出气体的分析,而且SPME已经在VOCs分析中有大量应用,而且SPME不会受到大量水分的影响,所以这一方法十分适合于人呼出气体的预浓缩。呼出气体中含有大量水汽,会影响预浓缩和某些化合物的GC-MS分析。不过SPME需要进行严格的操作参数的优化和认证,特别是对痕迹量化合物的情况。并非所有呼出气体的组分都可以轻易地被萃取,这就要选择SPME萃取头的选择性了,在许多情况下就需要进行事先的衍生化处理。 SPME萃取头上用PFHBA进行衍生化从生物样品中萃取醛类乙腈有所使用,本研究作者改进了这一方法,使用Bio-VOC 能够检测到呼出气体中的痕迹量的醛类,可以无害地从呼吸道中抽取小气泡,除去己醛、庚醛和壬醛(它们是3n和16n不饱和脂肪酸被过氧化产生)外,本研究作者还研究了其他直链醛类,覆盖了整个丙醛(C3)到壬醛(C9),甲醛和乙醛没有包括,因为它们他们存在于户内和户外环境中,是烟草燃烧的产物,而且许多肺癌患者过去吸烟,或者现在还在吸烟。而且呼出气体中乙醛的含量还取决于乙醇的代谢。检测对象的呼出气中的醛含量见表3表3 不同人群呼出气体检测结果[align=center][img=,659,263]http://img1.17img.cn/17img/images/201508/insimg/8c5c169b-7177-4a9f-bd98-26787c3fb459.jpg[/img][/align][b]6 测试中的问题[/b] 呼出气体醛类的稳定性,醛是不稳定化合物,在呼出气体中的醛会随时间而降解,但是在SPME上吸附并衍生化的醛要稳定的多,见图3所示[align=center][img=,567,492]http://img1.17img.cn/17img/images/201508/insimg/6017e878-1352-44c4-8312-a7e6f23af89e.jpg[/img][/align][align=center][img=,515,484]http://img1.17img.cn/17img/images/201508/insimg/f8ad4a39-89b4-4347-9971-c2fed8a0e18d.jpg[/img][/align] 图 3 呼出气体中醛类随时间降解图(propanal 丙醛,butanal 丁醛,pentanal 戊醛,hexanal己醛,Heptanal庚醛, octanal辛醛)为了对比外源和内源醛含量,如图 4所示[align=center][img=,687,488]http://img1.17img.cn/17img/images/201508/insimg/ea38f46b-53ef-4901-b398-c6d336e70de4.jpg[/img][/align][align=center][img=,590,470]http://img1.17img.cn/17img/images/201508/insimg/cddaa414-9479-4894-a2f0-569187d430e8.jpg[/img][/align]图 4 内源和环境中醛类含量测定的对比(Exhaled Air 呼气,Environmant 环境)[b]小结[/b] 把这一方法用于NSCLC早期患者和一组无临床症状人群,结果证明所择的醛类谱对区分无临床症状不吸烟人群和NSCLC早期患者有效,鉴别NSCLC早期患者成功率为90%。鉴别对照健康人群成功率为92.1%。吸烟或年龄影响不大。

  • 傅若农:扭转乾坤—神奇的反应顶空气相色谱分析

    [color=#0000ff][b]编者注:[/b][/color]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。[url=http://www.instrument.com.cn/news/20140623/134647.shtml][color=#0000ff]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][/url][url=http://www.instrument.com.cn/news/20140714/136528.shtml][color=#0000ff]第二讲:傅若农:从三家公司GC产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][/url][url=http://www.instrument.com.cn/news/20140811/138629.shtml][color=#0000ff]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][/url][url=http://www.instrument.com.cn/news/20140902/140376.shtml][color=#0000ff]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][/url][url=http://www.instrument.com.cn/news/20141009/143041.shtml][color=#0000ff]第五讲:傅若农:气-固色谱的魅力[/color][/url][url=http://www.instrument.com.cn/news/20141104/145381.shtml][color=#0000ff]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/color][/url][url=http://www.instrument.com.cn/news/20141205/147891.shtml][color=#0000ff]第七讲:傅若农:酒驾判官—顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/color][/url][url=http://www.instrument.com.cn/news/20150106/150406.shtml][color=#0000ff]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/color][/url][url=http://www.instrument.com.cn/news/20150211/153795.shtml][color=#0000ff]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/color][/url][url=http://www.instrument.com.cn/news/20150312/155171.shtml][color=#0000ff]第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用[/color][/url] 我们在前面讨论了四讲和顶空分析有关的色谱分析方法,它们都是针对挥发和半挥发性物质的,也就是说难挥发和不挥发性物质是不可以用这些方法分析的。但是化学是一种很神奇的东西,可以扭转乾坤,本来不可为,但是用化学的力量可以变成可为。反应顶空分析就是可以把难挥发和不会发性物质进行顶空分析。  反应顶空分析是反应[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的一个分支,另外两个大的分支是裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]和衍生化[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],反应[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]就是不可能进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的对象经过化学反应,使被分析物转化为有挥发性的物质,从而可以用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行分析它们。  2001年华南理工大学的柴欣生教授在美国亚特兰大佐治亚理工大学造纸科学技术研究院任职期间和朱俊勇教授等最先提出了反应顶空分析的概念 。之后2003年Guzowski等 也把相转化反应技术应用于顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],用以测定化学试剂中的羟胺。通过在醋酸钠缓冲溶液中与FeCl3反应,羟胺在单步反应中可以转变成氧化亚氮(N2O) ,产物气体N2O用电子捕获检测测进行测定。大家知道氧化亚氮(笑气)是比较稳定的化合物,用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定很容易。  在之后的十几年里,柴欣生教授在结合制浆造纸、生物质、高分子合成等学科的研究中开发出许多用顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析不挥发样品的新方法,开通了可以使用顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析不挥发和难挥发化合物的道路。[b]反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的应用1. 测定造纸厂黑液中的碳酸盐含量[/b]  碳酸盐和酸作用生成二氧化碳,用顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定CO2含量估算样品中的碳酸盐量,用纯碳酸钠标准溶液进行仪器的标定(J. Chromatogr. A,2001, 909:249-257),测定方法如下:  把一个21.6 ml的样品瓶配以有隔垫的瓶盖,用130 ml/s流速的氮气吹扫此样品瓶2 min,以排除样品瓶空气中的CO2气,然后加入0.5 ml 2mol/L 的硫酸溶液,用注射器加入10-1000 ml样品溶液,把样品瓶置于自动进样器上,进行顶空分析。许多工业液体如浓缩的黑液,白液,和绿液可以直接进样,无需预处理。而固体样品必须先溶解成溶液之后进行分析。[b](1) 温度的影响[/b]  二氧化碳于20℃下在水中的溶解度为(体积比)1:0.878,而在25℃下在水中的溶解度为(体积比)1:0.759,所以提高温度可以减少它在水中的溶解度,把它从水溶液中释放出来,从而提高测定的灵敏度,在本研究中使用60℃,同时溶液有过量的酸保证可以把CO2气体全部释放出来。不过不能是使用太高浓度的酸以防腐蚀仪器。[b](2) 检测器线性和恒定的凝固相释放气体速率[/b]  这一方法的基础是在给定实验条件下从凝固相中释放出气体的速率时恒定的,大家知道热导池检测CO2在空气中浓度变化的范围,是在热导池的线性范围之内,可以用检测器的线性来考察从凝固相中释放CO2气体的速率是否恒定。用碳酸钠溶液作标准样进行试验,实验证明碳酸钠的浓度可以达100 μmol。实验证明从碳酸钠转化为CO2气体的速率是恒定的。[b](3) 顶空气体稀释变化对分析准确度的影响[/b]  用碳酸钠标准溶液加入量的变化测试顶空气体稀释变化对分析准确度的影响,顶空气体稀释度的变化,可以通过两种反应物的起始样品量的变化,来改变反应瓶中反应后的顶空体积(。作者进行了两组实验,用固定体积的硫酸(反应物R)溶液(VR=0.5 ml)与碳酸钠标准溶液反应。第一组实验使用9个碳酸钠标准溶液含有同样数量的碳酸钠1.06μg,但是他们的体积不同,从Vs=100μL 到350μL,同样数量碳酸钠反应后近似的顶空体积等于,由于样品体积变化带来的顶空稀释度的影响可以用GC信号的变化来计算,对使用21.6 ml样品瓶来说,当样品体积从100μL到1100μL ,GC信号的变化不超过5%。使用的商品自动进样器是恒压近样,可以抵消一部分样品体积变化带来的影响。测定出的相对标准偏差只有1.3%,可以忽略不计,见表1.  表 1 样品体积变对准确度的影响[align=center][img=,1508,505]http://img1.17img.cn/17img/old/NewsImags/images/201541794933.png[/img][/align][b](1) 空气中二氧化碳的影响[/b]  空气中含有二氧化碳,会对结果又影响,在标准空气中二氧化碳的量约为15μmol/L,在21.6mL样品瓶中含有约0.3μmol二氧化碳,这一量高于检测灵敏度0.1μmol,这样对低浓度样品就会有影响。为了提高测定准确度需要把顶空瓶中的二氧化碳排除,在加入反映了物之前用用一只23号注射针以氮气彻底吹扫顶空瓶,降低二氧化碳的浓度,结果说明氮气以130mL/min的速度吹扫2min就可以使二氧化碳降低到检测不出来的程度。[b](2) 测定精度[/b]  作者测定了碳酸钠标准和造纸厂黑液中二氧化碳的浓度,把100μL 0.1mol 的碳酸钠标准溶液分析5次,100μL造纸厂黑液也分析5次,其结果见表2,标准偏差分别为0.62%和3.74%。[align=center]  表 2 测定了碳酸钠标准和造纸厂黑液中二氧化碳的精度[/align][align=center] [img=,956,482]http://img1.17img.cn/17img/old/NewsImags/images/20154179523.png[/img][/align][b]2 用顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定样品中少量酸和碱的方法[/b]  柴欣生等使用顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定少量含酸和含碱样品,这次是与前面的方法相反,使用标准的碳酸氢钠溶液和酸性盐反应产生二氧化碳,用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的热导检测器测定二氧化碳的含量。[b](1) 测定使用的仪器和条件[/b]  所有的测定都使用HP-7694自动进样器和HP-6890毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],用热导检测器进行检测。  色谱条件:  色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱)  柱温:60℃  载气:He 3.1 mL/min  样品瓶用He加压0.2 min,  样品环注入样品0.2 min  样品环平衡 0.05 min  样品瓶装液体样品平衡2 min  样品瓶装固体样品平衡 10 min[b](2)样品分析步骤[/b]  (a)分析样品中的碱:取一定量的样品(液体或固体)加入一定体积的0.100 mol/L的盐酸标准溶液中,把样品中的碱中和掉,还有多余的盐酸标准溶液,用注射器取一定量的此溶液,注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。  (b)分析样品中的酸:用注射器取一定量的被测溶液,直接注入含有4mL标准碳酸氢钠溶液的顶空样品瓶中,进行顶空GC分析。  (3)分析条件的影响  (a)温度:60℃时二氧化碳的无因次分配系数大于1000,几乎全部从溶液中释放出来,所以能够用测定二氧化碳进行定量分析样品中的酸或碱。但是在高温下碳酸氢钠会分解。但是碳酸氢钠分解放出二氧化碳也是一个平衡反应,碳酸氢钠分解出来的蒸汽相和液相之间完全平衡,在一个给定的样品瓶密闭空间中需要约8 min,约有10%的碳酸氢钠分解为二氧化碳,所以这样会影响样品测定的准确度,特别是测定的酸含量较低时更为显著。分解与碳酸氢钠的浓度有直接关系,根据实验研究在一个密闭空间、短时间内分解出来的二氧化碳来的二氧化碳量远小于样品分解出来的二氧化碳的量,如图 1所示,在60℃时短时间内分解量很小。[align=center][img=,680,536]http://img1.17img.cn/17img/old/NewsImags/images/201541795443.png[/img][/align][align=center] 图 1 碳酸氢钠分解出CO2随时间的变化[/align]  (b)空气中二氧化碳的影响  在本实验中采用进行空白试验的方法,通过校准抵消空气中二氧化碳的影响。  (c)液体样品的体积  一般来讲,往顶空样品瓶中加入较多的样品量,可以提高测定灵敏度,但同时需要过量的碳酸氢钠,使用现行的商品自动进样器,改变顶空体积就会就会影响检测结果,所以避免大幅度改变顶空的体积,例如在一个20mL的顶空瓶含有4mL碳酸氢钠溶液,使用的样品量为200μL,这样会使用顶空体积改变1.25%,对测量结果没有多大影响。对固体样品可以用制备成的溶液量来调节。[b](3)这一方法的准确度和精密度[/b]  使用现有的商品仪器进行反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的精密度和准确度与经典方法进行了对比,如表3和表4所示。[align=center]表3 测定酸与滴定法的比较[/align][table][tr][td=1,2][align=center]样品[/align][/td][td=2,1]盐酸/(mol/L)[/td][td=1,2]相对偏差/%[/td][/tr][tr][td]本方法[/td][td]滴定法[/td][/tr][tr][td]1号溶液[/td][td][align=center]0.1002[/align][/td][td][align=center]0.1000[/align][/td][td][align=center]0.2[/align][/td][/tr][tr][td]2号溶液[/td][td][align=center]0.0498[/align][/td][td][align=center]0.0500[/align][/td][td][align=center]-0.3[/align][/td][/tr][tr][td]3号溶液[/td][td][align=center]0.0247[/align][/td][td][align=center]0.0250[/align][/td][td][align=center]-1.2[/align][/td][/tr][tr][td]4号溶液[/td][td][align=center]0.0101[/align][/td][td][align=center]0.0100[/align][/td][td][align=center]1.0[/align][/td][/tr][/table][align=center]表4 测定碳酸钠与电导法的比较[/align][table][tr][td=1,2][align=center]样品[/align][/td][td=2,1][align=center]碳酸钠/%[/align][/td][td=1,2][align=center]相对偏差/%[/align][/td][/tr][tr][td][align=center]本方法[/align][/td][td][align=center]电导法[/align][/td][/tr][tr][td]1号黑液[/td][td][align=center]4.9[/align][/td][td][align=center]4.7[/align][/td][td][align=center]4.3[/align][/td][/tr][tr][td]2号黑液[/td][td][align=center]23.2[/align][/td][td][align=center]24.1[/align][/td][td][align=center]-3.7[/align][/td][/tr][tr][td]3号黑液[/td][td][align=center]25.1[/align][/td][td][align=center]24.5[/align][/td][td][align=center]2.4[/align][/td][/tr][tr][td]4号黑液[/td][td][align=center]42.0[/align][/td][td][align=center]42.8[/align][/td][td][align=center]-1.9[/align][/td][/tr][/table][b]3 用反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定木纤维中羧基[/b]  在纤维材料中含有的羧基(COOHs)代表它的离子交换能力,即在加工过程中吸收金属阳离子的能力,它影响木纤维的膨胀和均匀性,从而有助于纤维的结合,有利于造纸助留剂的吸附,纸的电性能决定于木纤维中羧酸基团结合金属离子的数量。另一方面,被羧酸基团吸着的阳离子对纤维和纸张干燥时的变色机制有影响。这些羧酸基团对木纤维的改性起着重要作用,因为有很强的反应能力,对加成和取代反应至关重要,最后这些羧酸基团可以增加专用级别溶解木浆的粘度并降低纤维的溶解度。  所以对木纤维羧基含量的测定无论是基础研究还是应用研究都是至关重要的。柴欣生等开发了用反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析木纤维中的羧基含量,关键问题是优化分析条件,把羧基完全转化为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]可以检测的挥发性物质,以提高测定的准确性。[b](1) 测定原理[/b]  木纤维上的羧基与碳酸氢钠反应,可以释放出二氧化碳,用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]热导检测器进行检测分析,反应如下:[align=center][img=,532,37]http://img1.17img.cn/17img/old/NewsImags/images/201541795923.png[/img][/align][b](2) 测定使用的仪器和条件[/b]  所有的测定都使用HP-7694自动进样器和HP-6890毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],用热导检测器进行检测。  色谱条件:  色谱柱:大内径涂渍二乙烯基苯聚合物的PLOT柱(GS-Q PLOT柱30m x 0.53mm )  柱温:60℃  载气:He 3.1 mL/min,使用不分流模式  样品瓶用He加压0.2 min,  样品环注入样品0.2 min  样品环平衡 0.05 min  样品瓶装液体样品平衡2 min  样品瓶装固体样品平衡 10 min  样品瓶如图2所示:[align=center][img=,472,336]http://img1.17img.cn/17img/old/NewsImags/images/201541710133.png[/img][/align][align=center]图 2 反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定木纤维中羧基的样品瓶[/align][b](3)测定步骤[/b]  首先在室温下把纤维样品用0.100mol/L盐酸溶液处理1h,以匀速用磁搅拌器进行搅拌,烘干的纤维在酸溶液中的浓度为1.2%,然后把纤维样品在一个离心果汁萃取器中脱水浓缩,确定脱水纤维的浓度,这样就确定了纤维中残留盐酸的量。  取4mL 0.005mol/L标准碳酸氢钠和0.1mol/L NaCl的混合溶液,注入顶空测试瓶中,取一支长 2.54 cm 的针,穿过顶空瓶隔垫(如图2),称量0.15g脱水纤维置于隔垫里面的针上,样品不要和瓶中的溶液接触反应,把顶空瓶的隔垫盖紧,把针拔出,纤维样品就落入反应溶液中。[b](4)这一方法的准确和精密度[/b]  表4列出用反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析木纤维中羧基的比较结果[align=center]表4 顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析木纤维中羧基的比较结果[/align][table][tr][td=1,2][align=center]样品[/align][/td][td=2,1][align=center]纤维中羧基含量/(mmol/g)[/align][/td][td=1,2][align=center]相对偏差/%[/align][/td][/tr][tr][td][align=center]本方法[/align][/td][td][align=center]滴定法[/align][/td][/tr][tr][td]1号样品[/td][td][align=center]0.0789[/align][/td][td][align=center]0.0786[/align][/td][td][align=center]0.35[/align][/td][/tr][tr][td]2号样品[/td][td][align=center]0.0682[/align][/td][td][align=center]0.0739[/align][/td][td][align=center]-7.11[/align][/td][/tr][tr][td]3号样品[/td][td][align=center]0.0413[/align][/td][td][align=center]0.0415[/align][/td][td][align=center]-0.57[/align][/td][/tr][tr][td]4号样品[/td][td][align=center]0.0695[/align][/td][td][align=center]0.0694[/align][/td][td][align=center]0.04[/align][/td][/tr][tr][td]5号样品[/td][td][align=center]0.0815[/align][/td][td][align=center]0.0755[/align][/td][td][align=center]8.01[/align][/td][/tr][tr][td]6号样品[/td][td][align=center]0.0611[/align][/td][td][align=center]0.0610[/align][/td][td][align=center]0.10[/align][/td][/tr][tr][td]7号样品[/td][td][align=center]0.0225[/align][/td][td][align=center]0.0241[/align][/td][td][align=center]-6.87[/align][/td][/tr][tr][td]8号样品[/td][td][align=center]0.0577[/align][/td][td][align=center]0.0581[/align][/td][td][align=center]-0.69[/align][/td][/tr][/table][b](1) 方法的进一步改进[/b]  两年后柴欣生教授的研究组又进一步把方法加以改进,把样品制备(即样品酸化之后把样品进行水洗),反应试剂的浓度(即降低碳酸氢钠的浓度,减少它的分解),和样品加入方式(即直接加入样品)进行改进。新方法更为简洁、可靠、更为实用,可以用于非纤维状的样品。  (a)修改后的方法:取烘干后的纸浆样品0.2g 置于装有200mL 0.1mol/L盐酸溶液的烧杯中,在室温下用电磁搅拌混合 1 h,之后把纸浆样品用去离子水彻底清洗,除去残留的盐酸,测定洗涤水的pH值以确定是否清洗彻底,把清洗后的纸浆样品放在恒温恒湿的环境下进行空气干燥。根据纸浆含有羧基的量用分析天平称取0.03-0.08 g样品置于顶空样品瓶中,加入4 mL碳酸氢钠溶液后立即把瓶密封,摇动顶空瓶使样品分散到溶液中,之后置于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的自动进样器中,进行顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析。  (b)如果样品中含有更强的酸,就会和碳酸氢钠溶液立刻反应产生出二氧化碳,所以既要把样品和碳酸氢钠溶液的混合在顶空瓶密封之后进行,因此设计了如图3的方式,即把碳酸氢钠置于一个小试管中,等顶空瓶加上隔垫盖之后,使之倾倒与样品反应。[align=center][img=,324,291]http://img1.17img.cn/17img/old/NewsImags/images/201541710455.png[/img][/align][align=center]图3 测定纸浆中羧基的顶空样品瓶[/align][b]4 用反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定氧脱木质素过程溶液中的草酸盐[/b]  ( JChromatogr A,2006,1122:209-214)  测定造纸过程中氧脱木质素液体中的草酸盐对研究工艺条件有重要作用,大家从基础分析化学知道,测定草酸盐用高锰酸钾标准溶液以滴定法进行测定,反应如下:[align=center][img=,548,41]http://img1.17img.cn/17img/old/NewsImags/images/201541710646.png[/img][/align]  这一反应在提高温度是会加速反应,以高锰酸钾的消耗量进行定量,但是这一反应如果样品中含有还原物时不能使用,如有机物,氧脱木质素液体很复杂,其中的草酸盐不能用此法进行定量分析。但是柴欣生教授的研究组把反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]【他们叫做”相变反应”(Phase conversion reaction,PCR)顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]】与他们以前研究的“多次顶空萃取”(multiple headspace extraction)(用于测定造纸厂黑液中甲醇形成的动力学研究(J Chromatogr A,2002,946:177-183)[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]相结合来解决这一问题。  氧脱木质素液体中的草酸盐与酸性高锰酸钾反应很快便产生出二氧化碳,但是和其中的有机物经氧化反应产生出二氧化碳要慢得多,因此可以用测定后者产生规律和数据来修正测定氧脱木质素液体中的草酸盐含量的方法。(这一方法相对复杂一些,由于篇幅不做详述,有兴趣的可以阅读柴教授的原文)。  柴欣生教授的研究团队还有许多文章阐述反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的应用,这里无法一一介绍。[align=center]  下面列出部分相关的文献供读者参考:[/align][table][tr][td]序号[/td][td]题目[/td][td]原始文献[/td][/tr][tr][td]1[/td][td]制浆过程废液挥发性有机化合物的生成规律(顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法)[/td][td]J. Pulp Paper Sci., 1999, 256-262.[/td][/tr][tr][td]2[/td][td]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析复杂基质中的非挥发性物质[/td][td]J. Chromatogr. A, 2001, 909:249-257.[/td][/tr][tr][td]3[/td][td]木质纤维羧基含量: 1.顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定羧基含量[/td][td]Ind. Eng. Chem. Res., 2003, 42: 5440-5444.[/td][/tr][tr][td]4[/td][td]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定酸和碱组分[/td][td]J. Chromatogr. A, 2005, 1093:212-216.[/td][/tr][tr][td]5[/td][td]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定木质素的甲氧基含量[/td][td]J. Agric. Food Chem., 2012, 60: 5307-5310.[/td][/tr][tr][td]6[/td][td]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]快速测定纸浆漂白废液的过氧化氢含量[/td][td]J. Chromatogr. A, 2012,1235:182-184.[/td][/tr][tr][td]7[/td][td]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定丁二酸酐改性纤维素的取代度[/td][td]J. Chromatogr. A,2012,1229:302-304.[/td][/tr][tr][td]8[/td][td]一种实用的顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定纸浆漂白废液的草酸根含量[/td][td]J. Ind. Eng. Chem., 2014,20:13-16.[/td][/tr][tr][td]9[/td][td]一种新颖的顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法分析乙基纤维素的乙氧基含量[/td][td]Anal. Lett., 2012, 45: 1028-1035.[/td][/tr][tr][td]10[/td][td]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术快速测定个护用品中的甲醛含量[/td][td]Anal. Sci., 2012, 28: 689-692.[/td][/tr][tr][td]11[/td][td]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定以甲醛为原料的聚合物乳液中的残余甲醛含量[/td][td]J. Ind. Eng. Chem.,2013,19:748-751.[/td][/tr][tr][td]12[/td][td]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法检测纸浆中羰基含量的研究[/td][td]中国造纸, 2014,33(10): 36-39.[/td][/tr][tr][td]13[/td][td]静态顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术[/td][td]化学进展, 2008,20(5): 762-766.[/td][/tr][/table][b]5 更多反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的应用[/b]  国内还有不少学者在许多领域使用反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]解决诸多分析问题,下面列出一些用例。[table][tr][td]序号[/td][td]题目[/td][td]方法要点[/td][td] [/td][/tr][tr][td]1[/td][td]顶空进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定大气中吡啶的研究[/td][td]用硫酸溶液为吸收液采集大气中的吡啶,吸收液倒入20 mL 顶空瓶中,加入3 g 氯化钠,少量氢氧化钠,调节pH为12,密闭摇匀至所加盐全部溶解,于顶空进样器进样,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]分析。[/td][td]王艳丽等,中国环境监测,2013,29(2):62-64[/td][/tr][tr][td]2[/td][td]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定粮食中的氰化物[/td][td]称取试样5-10 g于100 ml顶空管中加入纯水至80 ml, 混匀, 在超声波清洗器中超声提取20 min, 取出, 分别加入磷酸盐缓冲溶液1.0 ml和1%氯胺T溶液0.25 ml, 立即用橡胶反堵胶塞密封, 混匀, 置于40℃恒温水浴中, 反应及平衡50 min, 抽取顶空气体100 μl注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进行测定。[/td][td]刘宇等,中国卫生检验杂志2009,19(3):552-553[/td][/tr][tr][td]3[/td][td]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定膨化大枣中的亚硫酸盐含量[/td][td]将粉碎样品放入500mL 顶空瓶中, 加入浓盐酸, 在40℃恒温水浴中反应10min, 亚硫酸盐在酸性条件下转化为SO[sub]2[/sub]气体, 取顶空气体进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析。通过测定[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中二氧化硫的含量, 间接测定样品中的亚硫酸盐含量[/td][td]王晓云等,山东化工,2007,36(1):36-38[/td][/tr][tr][td]4[/td][td]使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获气相色谱法[/td][td]在20 mL 顶空瓶中加入0.1 g 抗坏血酸、0.2 gEDTA 络合物,然后称取5.0 g 匀浆后的样品于此顶空瓶中,再加入10 mL 预先配制好的氯化锡盐酸溶液,加盖密封,超声震荡2 min,然后在水温为80℃的水浴锅中加热2 h,每隔30 min 摇匀一次,摇匀时间为1 min,待反应完成,稍冷,然后置于自动顶空装置托盘,顶空平衡温度60℃,平衡时间3 min,分析反应产生的二硫化碳[/td][td]聂春林等,精细化工中间体,2010,40(6):63-66[/td][/tr][tr][td]5[/td][td]测定尿中三氯乙酸的自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[/td][td]尿中的三氯乙酸加热脱羧生成三氯甲烷进星[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分离,,取5 ml 样品移入顶空瓶中,同时取5 ml 双蒸水作为空白对照,立即加盖密封。顶空瓶放入90 ℃水浴中150 min,然后依次放入顶空装置内,启动自动进样分析[/td][td]李添娣等,职业与健康 2012,28(16 ):1982-1983[/td][/tr][/table][b]小结:[/b]化学反应很神奇,利用它创造出瑰丽的世界,制造出无数无奇不有的物件,满足人们的各种需求,为人们提供了绚丽多彩的生活条件。利用化学反应把本来不能进行顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的样品变为可能,大大提高了它的应用范围。这一方法是有限的,但是这一思路是无限的。[b]致谢:[/b]感谢柴欣生教授提供部分资料并对本文进行审阅和修改。

  • 傅若农:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱

    [b][color=#0000ff]编者注:[/color][/b]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。[color=#0000ff][url=http://www.instrument.com.cn/news/20140623/134647.shtml][color=#0000ff]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20140714/136528.shtml][color=#0000ff]第二讲:傅若农:从三家公司[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20140811/138629.shtml][color=#0000ff]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20140902/140376.shtml][color=#0000ff]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20141009/143041.shtml][color=#0000ff]第五讲:傅若农:气-固色谱的魅力[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20141104/145381.shtml][color=#0000ff]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20141205/147891.shtml][color=#0000ff]第七讲:傅若农:酒驾判官——顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20150106/150406.shtml][color=#0000ff]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/color][/url][/color][color=#0000ff][url=http://www.instrument.com.cn/news/20150211/153795.shtml][color=#0000ff]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/color][/url][/color][url=http://www.instrument.com.cn/news/20150312/155171.shtml][color=#0000ff]第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用[/color][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][color=#0000ff]第十一讲:[/color][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][color=#0000ff]傅若农:扭转乾坤——神奇的反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析[/color][/url][url=http://www.instrument.com.cn/news/20150519/160962.shtml][color=#0000ff]第十二讲:擒魔序曲——脂质组学研究中的样品处理[/color][/url][b]前言[/b]  作为代谢组学的重要分支之一,脂质组学(Lipidomics)的研究对象是生物体的所有脂质分子,并以此为依据推测其它与脂质作用的生物分子的变化,进而揭示脂质在各种生命活动中的重要作用机制。脂质组学是总体研究和这些疾病有关的脂质化合物,找到昭示这些疾病的生物标记物。  前一篇讲述了脂质组学研究中的样品处理技术,一般情况下样品处理后可以直接用鸟枪法进行质谱分析,但是如果是一个成分复杂的系统,就要进行分离,可以用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、液相色谱、薄层色谱或毛细管电泳,本文介绍代谢组学研究中使用离子液体色谱柱分离脂肪酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]方法。[b]1、基本情况[/b]  由于脂质分子是不挥发性的化合物,同时有些脂质分子受热易于降解,所以在脂质组学研究中使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]有些困难,逊色于薄层色谱和液相色谱。如果使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行衍生化是必须的步骤,但是很多情况下衍生化会丧失脂质分子种类特点的结构信息。但是由于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]以其对异构体的高分离能力、高灵敏度、便于进行定量分析的能力,它仍然是脂质组学分析中的有力工具。通常[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]用于分析某些类别的脂质,可以获得很高的分离度和灵敏度,所以经过很特殊的萃取、用TLC 或 HPLC与分离、再经衍生化是用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行脂质组学研究的基本方法。用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]可以很灵敏地检测许多类别的脂质,如脂肪酸、磷脂、鞘脂类、甘油酯、胆固醇和类固醇。分析高分子量的化合物,必须使用高柱温,甚至需要400 C,近年Sutton等配置了高温[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-飞行时间质谱,这一系统可以进行高分子量化合物(m/z达1850),进行在线质谱分析温度达430℃,这样的系统适合于长链脂质的分析。  近年把离子液体用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,用以分离脂质混合物,特别是脂质的异构体。Delmonte等讨论了脂肪酸顺反异构体的分离问题,一些单不饱和脂肪酸的几何和位置异构体可以得到很好的分离。使用这一方法对18:1 FFA的各种异构体可以分离出10个单独的峰,此后使用这一方法分析了人头发、指甲等实际样品,因此建议使用离子液体毛细管色谱柱分析全脂肪酸或脂肪酸甲酯,这种固定相适合于脂质组学,得到更多脂质分子的种类信息。(刘虎威研究组,Anal Chem, 2014, 86, 161-175)[b]2、室温离子液体作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相[/b]  室温离子液体,是指室温或接近室温时呈液态的离子化合物,一般由体积相对较大的有机阳离子(如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐)和相对较小的无机或有机阴离子如六氟磷酸根(-)、四氟硼酸根(-)、硝酸根(NO3-)、三氟甲基磺酰亚胺(-)等构成。离子液体,早期称作熔盐,在一战时期(1914)发现的第一个室温离子液体为乙基季胺硝酸盐。第一个使用熔盐作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的是Barber(1959年),他利用硬脂酸和二价金属离子的盐(锰、钴、镍、铜和锌盐)作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,测定了烃类、酮类、醇类和胺类在156℃下的保留行为,具有特点的是用锰的硬脂酸熔盐作固定相可以很好地分离α-甲基吡啶和β-甲基吡啶,而使用相阿皮松一类固定相则完全不能分离。1982年 Poole等研究了乙基季胺硝酸盐作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的保留行为,发现这一固定相可在40-120℃范围内使用,是一种极性强于PEG20M 的具有静电力和氢键力的极性固定相,适于分离醇类和苯的单功能团取代衍生物,而胺类与固定相有强烈的作用,不能从色谱柱洗脱出来。就在这一年 Wilker 等报道了首例基于1-烷基-3-甲基咪唑为阳离子的室温离子液体,研究了它们的合成方法和在电化学中的应用。此后Armstrong等在1999年首先将六氟磷酸 1-丁基-3-甲基咪唑 ( ) 及相应的氯化物( )用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相 ,通过分离烃类、芳香族化合物、醛、酰胺、醚、酮、醇、酚、胺及羧酸类化合物 ,发现离子液体固定相具有双重性质:当分离非极性物质或弱极性物质时表现为非极性或弱极性固定相 当分离含有酸性或碱性官能团的分子时 ,表现为强极性固定相,并测定了和色谱固定相的麦氏(McRynolds)常数。之后的几年里Armstrong等进行了一系列有关室温离子液体作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的研究,奠定了室温离子液体固定相在实际中应用的基础。此后人们竞相研究室温离子液体用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的问题,最近两年由于Supelco公司承袭了Armstrong研究团队的研究成果,把室温离子液体固定相商品化,出现了几种性能优越的室温离子液体毛细管色谱柱,就促使许多研究者使用商品室温离子液体柱,分离一些复杂的难分离的混合物,因而也大大促进了离子液体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的广泛使用。(傅若农,化学试剂,2013,35( 6): 481 ~ 490)[b](1).室温离子液体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的特点[/b]  室温离子液在许多领域得到了广泛的应用,如有机合成溶剂、催化剂用溶剂、基质辅助激光解析/电离质谱的液体基质、萃取溶剂、液相微萃取溶剂、毛细管电泳缓冲溶液添加剂等,此外它们在分析化学领域得样品制备、分离介质中也得到充分的应用,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相是应用最多的一个领域。所以能得到如此广泛的应用是因为它具有许多特殊的性能,联系到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,它们非常适应毛细管色谱柱的多方面要求:[b](a) 蒸汽压低[/b]  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相在使用温度下具有很低的蒸汽压是必要条件,室温离子液体具有很低的蒸汽压,它们能很好地满足[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的这一要求,例如现在使用较多的1-丁基-3-甲基咪唑二(三氟甲基磺酰)亚胺()的蒸汽压见下表1,从表中数据看出在在不到180℃下蒸汽压不到1 mm Hg柱,这完全符合[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的要求。[align=center]表1 在不同温度下的蒸汽压[/align][table][tr][td][align=center]温度/℃[/align][/td][td][align=center]蒸汽压/P×10[sup]2[/sup] (Pa)[/align][/td][/tr][tr][td][align=center]184.5[/align][/td][td][align=center]1.22(0.92 mmHg柱)[/align][/td][/tr][tr][td][align=center]194.4[/align][/td][td][align=center]2.29(1.72 mmHg柱)[/align][/td][/tr][tr][td][align=center]205.5[/align][/td][td][align=center]5.07 (3.8 mmHg柱)[/align][/td][/tr][tr][td][align=center]214.4[/align][/td][td][align=center]8.74 (6.6 mmHg柱)[/align][/td][/tr][tr][td][align=center]224.4[/align][/td][td][align=center]15.2 (11.4 mmHg柱)[/align][/td][/tr][tr][td][align=center]234.4[/align][/td][td][align=center]27.4 (20.5 mmHg柱)[/align][/td][/tr][tr][td][align=center]244.3[/align][/td][td][align=center]46.6 (35.0 mmHg柱)[/align][/td][/tr][/table][b](b) 粘度高[/b]  室温离子液体的粘度高,适合于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的要求,而且在较宽的温度范围内变化不大,因为粘度低会影响色谱柱的分离效率和寿命,因为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相在温度升高时趋向于降低粘度使液膜流动,造成膜厚改变,降低柱效,甚至液膜破裂降低柱寿命,室温离子液体的黏度比一般溶剂高很多,例如二乙基咪唑二(三氟甲基磺酰)亚胺在20℃的粘度为34cP,n-己基-3-甲基咪唑氯化物在25℃的粘度为18000 cP,所以离子液体的粘度一般比传统溶剂高1到3个数量级 。[b](c) 湿润性好[/b]  要使毛细管色谱柱的柱效提高,就要把固定相涂渍成一层均匀、牢固的薄膜,这样固定相对毛细管壁要有很好的湿润性,室温离子液体正好具备这样的特性,它们的表面张力在 30 到 50 dyne/cm 之间,例如1-丁基-3-甲基咪唑六氟磷酸盐,1-己基-3-甲基咪唑六氟磷酸盐,和1-辛基-3-甲基咪唑六氟磷酸盐分别为44.81, 39.02, 和 35.16 dyne/cm,这样的表面张力正好可以让固定相溶液湿润并铺展在未经处理的石英毛细管内壁上 。[b](d)热稳定性好[/b]  大家都知道色谱柱的保留性能稳定性和柱寿命都与固定相的热稳定性有关,室温离子液体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的热稳定性自然是十分重要的关键性能,离子液体的热稳定性随其阴阳离子的不同有很大的差异,离子液体的阴离子具有低亲和性及共轭键时(如三氟磺酸基,三氟甲基磺酰亚胺阴离子)就有很高的热稳定性,反之具有亲和性强的阴离子(如卤素基)其热稳定性就不好,一般像二烷基咪唑类离子液体固定相在220-250℃之间稳定,具有长烷基链的季鏻基离子液体可以在335-405℃之间稳定,Anderson等研究了双阴离子咪唑和双吡咯烷鎓基离子液体的热稳定性。极性强的室温离子液体[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相(比如商品名为SLB-IL 111)的热稳定性虽然比不上二甲基硅氧烷的好,但是要比强极性固定相(氰丙基聚硅氧烷)的热稳定性要好,可是它的极性要比后者高,因而在分离脂肪酸甲酯的能力要大大优于后者。从图1可以看出商品离子液体柱SLB-IL82的热稳定性大大优于一些常用的极性固定相。[align=center][img=,537,347]http://img1.17img.cn/17img/old/NewsImags/images/201561710517.jpg[/img][/align][align=center]图1 几种离子液体色谱柱和常规固定相色谱柱热稳定性的比较[/align][b](e) 极性高[/b]  固定相的极性是极为重要的关键指标,目前表示固定相极性的有Mcrynolds常数,和Abrham溶剂化参数,离子液体的极性也仍然使用这两种方法表示,McReynolds常数是于120℃下以10种典型化合物测定所研究固定相的保留指数差(△I) ,用五种典型化合物(苯、正丁醇、2-戊酮、硝基丙烷和吡啶)的保留指数差(△I)之和来表示固定液的极性。Abraham表征固定相的方法是使用多种具有特殊作用力的标样来表征固定相和溶质 n-电子对及π-电子对作用能力、与溶质的静电和诱导作用能力、与溶质的氢键碱性作用能力、与溶质的氢键酸性作用能力、与溶质的色散作用能力。表 2 是几种商品离子液体固定相的极性,从表中数据看出,室温离子液体的极性要比极性最强的TCEP(1,2,3-三(2-氰乙氧基)丙烷)还要高,这样在分离脂肪酸甲酯和石油样品分析中就有特殊的用途。[align=center]表 2 几种商品离子液体固定相的极性 [/align][table=536][tr][td][align=left]商品色谱柱[/align][/td][td][align=left]组成[/align][/td][td][align=left]McRynolds 极性(P)[/align][/td][td][align=left]相对极性数(p.N.)*[/align][/td][/tr][tr][td][align=left]SLB-IL 111[/align][/td][td][align=left] 1,5-二(2,3-二甲基咪唑)戊烷二(三氟甲基磺酰基)亚胺[/align][/td][td][align=left]5150[/align][/td][td][align=left]116[/align][/td][/tr][tr][td][align=left]SLB-IL 100[/align][/td][td][align=left]1,9-二(3-乙烯基咪唑)壬烷二(三氟甲磺酰基)亚胺[/align][/td][td][align=left]4437[/align][/td][td][align=left]100[/align][/td][/tr][tr][td][align=left]TCEP[/align][/td][td][align=left]1,2,3-三(2-氰乙氧基)丙烷[/align][/td][td][align=left]4294[/align][/td][td][align=left]94[/align][/td][/tr][tr][td][align=left]SLB-IL 82[/align][/td][td][align=left]1,12-二(2,3-二甲基咪唑)十二烷二(三氟甲基磺酰基)亚胺[/align][/td][td][align=left]3638[/align][/td][td][align=left]82[/align][/td][/tr][tr][td][align=left]SLB-IL 76[/align][/td][td][align=left]三(三丙基鏻六氨基)三甲氨(三氟甲基磺酰基)亚胺[/align][/td][td][align=left]3379[/align][/td][td][align=left]76[/align][/td][/tr][tr][td][align=left]SLB-IL 69[/align][/td][td][align=left]未知 [/align][/td][td][align=left]3126[/align][/td][td][align=left]70[/align][/td][/tr][tr][td][align=left]SLB-IL 65[/align][/td][td][align=left]未知 [/align][/td][td][align=left]2834[/align][/td][td][align=left]64[/align][/td][/tr][tr][td][align=left]SLB-IL 61[/align][/td][td][align=left]1,12-二(三丙基鏻)十二烷-(三氟甲基磺酰基)亚胺-三氟甲基磺酸盐[/align][/td][td][align=left]2705[/align][/td][td][align=left]61[/align][/td][/tr][tr][td][align=left]SLB-IL 60[/align][/td][td][align=left]1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺(柱表面去活)[/align][/td][td][align=left]2666[/align][/td][td][align=left]60[/align][/td][/tr][tr][td][align=left]SLB-IL 59[/align][/td][td][align=left]1,12-二(三丙基鏻)十二烷二(三氟甲基磺酰基)亚胺[/align][/td][td][align=left]2624[/align][/td][td][align=left]59[/align][/td][/tr][tr][td][align=left]SupelcoWax[/align][/td][td][align=left]100%聚乙二醇[/align][/td][td][align=left]2324[/align][/td][td][align=left]52[/align][/td][/tr][tr][td][align=left]SPB-5MS[/align][/td][td][align=left]5%二苯基/95%二甲基)硅氧烷[/align][/td][td][align=left]251[/align][/td][td][align=left]6[/align][/td][/tr][tr][td][align=left]Equity-1[/align][/td][td][align=left]100%聚二甲基硅氧烷[/align][/td][td][align=left]130[/align][/td][td][align=left]3[/align][/td][/tr][/table][align=center]*相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的 McRynolds 极性[/align][align=center](McRynolds 极性指标是上世纪60年代中期研究建立的一种[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相极性量度指标,近半个世纪一直在使用,W O McReynolds.J Chromatogr Sci,1970,8:685-691)[/align][align=left]几种离子液体色谱柱的结构和性能见表3[/align][align=center]表3:几种离子液体色谱柱的结构和性能[/align][align=center][img=,439,481]http://img1.17img.cn/17img/old/NewsImags/images/2015617101819.png[/img][/align][align=center][img=,440,494]http://img1.17img.cn/17img/old/NewsImags/images/2015617101838.png[/img][/align][align=center][img=,453,584]http://img1.17img.cn/17img/old/NewsImags/images/2015617101858.png[/img][/align][b]3、几种商品离子液体色谱柱在脂肪酸甲酯分离中应用举例,见表4[/b][align=center]表4 离子液体色谱柱在脂肪酸甲酯分离中应用[/align][table=555][tr][td]1[/td][td]SLB-IL111[/td][td]奶油中的脂肪酸[/td][td]使用200m 长的SLB-IL111色谱柱可以很好地分离奶油中的脂肪酸,包括顺反和位置异构体[/td][td]1[/td][/tr][tr][td]2[/td][td]SLB-IL 82 和 SLB-IL 100[/td][td]水藻中的脂肪酸[/td][td]这两种商品离子液体柱用于分离水藻中的脂肪酸,具有很好的选择性和低流失,可以得到详细的脂肪酸分布,这是一种分析各种脂肪酸的色谱柱。一维:聚二甲基硅氧烷二维:SLB-IL 82 和 SLB-IL 100[/td][td]2[/td][/tr][tr][td]3[/td][td]SLB-IL100[/td][td]鱼的类脂中反式20碳烯酸顺反异构体的分析[/td][td]用60m长色谱柱可把C20:13和C20:11异构体得到基线分离,分离因子1.02,分离度1,57[/td][td]3[/td][/tr][tr][td]4[/td][td]SLB-IL111[/td][td]分离16碳烯酸顺反异构体和其他不饱和脂肪酸[/td][td]如果不使用SLB-IL111柱就不可能发现岩芹酸(顺式-6-十八碳烯酸),可以把cis-8 18:1和cis-6 18:1基线分离。证明岩芹酸在人的头发、指甲和皮肤中是内源性脂肪酸。[/td][td]4[/td][/tr][tr][td]5[/td][td]SLB-IL111[/td][td]分离脂肪酸顺反异构体[/td][td]SLB-IL111 可以很好地分离cis-,trans-18:1和 cis/trans 共轭异构体脂肪酸[/td][td]5[/td][/tr][tr][td]6[/td][td][align=left] SLB-IL100[/align][/td][td]牛奶和牛油中的脂肪酸顺反异构体[/td][td]使用全二维[url=https://insevent.instrument.com.cn/t/Mp]gc[/url],把离子液体柱用作第一维色谱柱一维:SLB-IL100二维:SGE BPX50 (50% 苯基聚亚芳基硅氧烷[/td][td]6[/td][/tr][tr][td]7[/td][td]SLB-IL 100(快速柱)[/td][td]生物柴油中的脂肪酸甲酯(C1-C28)[/td][td]SLB-IL100是极性很高的固定相,可以排除样品中的饱和烴的干扰,减少了样品处理难度,免去使用全二维[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]。[/td][td]7[/td][/tr][tr][td]8[/td][td]SLB-IL100[/td][td]分离C[sub]18:1[/sub], C[sub]18:2[/sub], 和 C[sub]18:3[/sub]顺反异构体[/td][td]SLB-IL100是极性很高的固定相,可以很好地分离不饱和脂肪酸顺反异构体,优于二丙氰聚硅氧烷色谱柱[/td][td]8[/td][/tr][tr][td]9[/td][td]SLB-IL111SLB-IL100SLB-IL82SLB-IL76SLB-IL61SLB-IL60SLB-IL59[/td][td]评价7种商品离子液体固定相分离37种脂肪酸甲酯的分离性能[/td][td]IL59, IL60, 和 IL61三种色谱柱性能近似,不能分离C18:1脂肪酸的顺/反异构体,所有的色谱柱度可以基线分离C18:2 顺/反, C18:3 n6/n3, 和 C20:3 n6/n3异构体,IL82柱以5℃/min程序升温,可以把实验的37种脂肪酸甲酯分离开[/td][td]9[/td][/tr][tr][td]10[/td][td]SLB-IL59SLB-IL60SLB-IL61SLB-IL76SLB-IL82 SLB-IL100 SLB-IL111[/td][td]用7种商品离子液体固定相分离脂肪酸甲酯的及和异构体[/td][td]除去IL60柱以外所有色谱柱上对饱和脂肪酸的洗脱温度,随它们的极性降低而增加,当固定相极性增加是它们的等价链长急剧增加。还研究了脂肪酸甲酯在这些色谱柱上Abraham 的保留能量线性关系[/td][td]10[/td][/tr][tr][td]11[/td][td]SLB-IL111[/td][td]使用强极性离子液体色谱柱快速分离食用油中的反式脂肪酸[/td][td]使用强极性薄液膜细内径离子液体毛细管柱(75 m × 0.18 mm i d , 0.18 μm)快速分离食用油(例如奶油)中的反式脂肪酸[/td][td]11[/td][/tr][tr][td]12[/td][td]SLB-IL111[/td][td]使用强极性离子液体色谱柱分析食用油中顺反式硬脂酸[/td][td]在120℃柱温下可以分离所有cis-C18:1位置异构体,把柱温提高到160℃可以分离反-6-C18:1 和 反-7-C18:1异构体[/td][td]12[/td][/tr][/table][b]表中文献[/b][table][tr][td]1[/td][td]Delmonte P, Fardin-Kia A R, Kramer J K G,et al, Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat .[b]J. Chromatogr.A,2012, 1233:137-146[/b][/td][/tr][tr][td]2[/td][td][align=left]Gua, Q , David F., Lynen F. et al., Evaluation of ionic liquid stationary phases for one dimensional gas chromatography-mass spectrometry and comprehensive two dimensional gas chromatographic analyses of fatty acids in marine biota. [b]J. Chromatogr.A, 2011, 1218:3056-3063[/b][/align][/td][/tr][tr][td]3[/td][td]Ando Y.Sasaki, [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] separation of cis-eicosenoic acid positional isomers on an ionic liquid SLB-IL100 stationary phase. [b]J. Am. Chem. Oil Soc.,2011,88:743-748[/b][/td][/tr][tr][td]4[/td][td][align=left]Destaillats F.,Guitard M. Cruz-Hernandez C, Identification of _6-monounsaturated fatty acids in human hair and nail samples by gas-chromatography-mass-spectrometry using ionic-liquid coated capillary column. [b]J.Chromatogr.A2011,1218: 9384- 9389[/b][/align][/td][/tr][tr][td]5[/td][td][align=left]Delmonte P, Fardin Kia A-R, Kramerb J.K.G.et al, Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column. [b]J.Chromatogr.A, 2011,1218: 545-554[/b][/align][/td][/tr][tr][td]6[/td][td][align=left]Villegas C.Zhao, Y.Curtis J M, Two methods for the separation of monounsaturated octadecenoic acid isomers .[b]J. Chromatogr. A, 1217 (2010) 775-784[/b][/align][/td][/tr][tr][td]7[/td][td]Ragonesea C,Tranchidaa P. Q.,Sciarronea D.et al, Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase. [b]J. Chromatogr.A[/b], [b]2009,1216:8992-8997[/b][/td][/tr][tr][td]8[/td][td]Ragonese C, Tranchida P Q, Dugo P,et al,Evaluation of use of a dicationic liquid stationary phase in the fast and Cconventional gas chromatographic analysis of health-Hazardous C18 Cis/Trans fatty acids. [b]Anal. Chem., 2009, 81:5561-5568[/b][/td][/tr][tr][td]9[/td][td]Dettmer K, Assessment of ionic liquid stationary phases for the [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] analysisof fatty acid methyl esters,[b]Anal Bioanal Chem[/b] ,2014, 406:4931-4939[/td][/tr][tr][td]10[/td][td]Characterisation of capillary ionic liquid columns for gaschromatography-mass spectrometry analysis of fatty acid methylestersAnnie Zeng X, Chin S , Nolvachai Y,et al, [b]Anal Chim Acta[/b] , 2013 803:166- 173[/td][/tr][tr][td]11[/td][td]Inagaki S,Numata M, Fast [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] Analysis of Fatty Acid Methyl Esters Using a HighlyPolar Ionic Liquid Column and its Application for the Determination of Trans Fatty Acid Contents in Edible Oils,[b]Chromatographia[/b] , 2015,78:291-295[/td][/tr][tr][td]12[/td][td]Yoshinaga K,Asanuma M,Mizobe H et al,Characterization of cis- and trans-octadecenoic acid positional isomers in edible fat and oil using gas chromatography-flame ionisation detector equipped with highly polar ionic liquid capillary column, [b]Food Chemistry[/b] , 2014 160:39-45[/td][/tr][/table] 有关离子液体固定相在分离脂肪酸时的一些选择性和分离特点在下一讲叙述。

  • 傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用

    [color=#0000ff]编者注:[color=#000000]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势,以飨读者。[/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20140623/134647.shtml][color=#0000ff]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][color=#0000ff][/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20140714/136528.shtml][color=#0000ff]第二讲:傅若农:从三家公司GC产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20140811/138629.shtml][color=#0000ff]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][color=#0000ff][/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20140902/140376.shtml][color=#0000ff]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20141009/143041.shtml][color=#0000ff]第五讲:傅若农:气-固色谱的魅力[/color][color=#0000ff][/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20141104/145381.shtml][color=#0000cd]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20141205/147891.shtml][color=#0000cd]第七讲:[/color][/url][url=http://www.instrument.com.cn/news/20141205/147891.shtml][color=#0000cd]傅若农:酒驾判官—顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20150106/150406.shtml][color=#0000ff]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/color][/url][/color][/color][url=http://www.instrument.com.cn/news/20150211/153795.shtml][color=#0000ff]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/color][/url] 单液滴微萃取(single drop microextraction,SDME)类似于SPME,只是把萃取丝换成一滴有机溶剂液滴(悬于注射针头或毛细管口)。用单滴溶剂作为用液体吸着分析物在分析化学中的应用可以追溯到上世纪90年代中期的Dasgupta的工作,Dasgupta 研究组在1995年首次开发了用单滴液体作为吸着气体的界面来萃取空气中的氨和二氧化硫等气体( Anal Chem 1996,68:1817-1882),用石英毛细管口的水滴作吸着剂来收集被分析物,然后用在线光度法进行测定。1996年们又用滴中滴(水滴包围有机溶剂液滴)小型化溶剂萃取系统,他们把十二烷基硫酸钠和亚甲基蓝作为离子对萃取到氯仿液滴中,如图1所示 。他们利用一个蠕动泵把萃取后的液滴排除,用光纤检测器进行光度分析。[align=center][img=,436,605]http://img1.17img.cn/17img/old/NewsImags/images/2015312161820.png[/img][/align][align=center]图 1 滴中滴液-液微萃取[/align][align=center]( Anal Chem 1996,68:1817-1882)[/align]  Cantwell 研究组首次把单滴溶剂微萃取技术直接与色谱分析相结合(Jeannot M A , Cantwell F F, Anal Chem,1996,68:2236),他们在一只聚四氟乙烯棒底端做成一个窝,其中可容纳8μL辛烷液滴,把液滴浸入要萃取的水溶液中,搅拌水溶液进行萃取,他们把这一过程叫做“溶剂微萃取”(“solvent microextraction” ,SME),见图 2 ,萃取之后用注射器抽取一部分辛烷液滴用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行分析。[align=center][img=,364,363]http://img1.17img.cn/17img/old/NewsImags/images/2015312161916.png[/img][/align][align=center]图 2 “溶剂微萃取”示意图[/align][align=center]( Anal Chem 1996,68:2236)[/align]  1997年Jeannot和 Cantwell 首次使用注射器针头的有机溶剂液滴浸入水相进行液-液微萃取,然后把注射器进样到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中进行分析。[align=center][img=,588,470]http://img1.17img.cn/17img/old/NewsImags/images/2015312162056.png[/img][/align][align=center]图 3 “用注射器针头下液滴进行溶剂微萃取”示意图[/align][align=center](M A Jeannot, F F Cantwell, Anal Chem,1997,69 :235-239)[/align]  进入新世纪之初,把SDME 延伸到顶空(HS)分析,是由Przyjazny、Jeannot、和Vickackaite研究组分别各自进行的( Przyjazny A, Kokosa J M, J Chromatogr A,2002 ,977:143   Theis A L, Waldack A J, Hansen S M, Jeannot M A, Anal Chem,2001,73 :5651) Tankeviciute A, Kazlauskas R, Vickackaite V, Analyst,2001, 126 :1674)。SDME 顶空(HS)分析如图 4所示[align=center][img=,186,246]http://img1.17img.cn/17img/old/NewsImags/images/2015312162155.png[/img][/align][align=center]图4 顶空溶剂微萃取示意图[/align]  通常用高沸点有机溶剂如1-辛醇或正十六烷作萃取溶剂,适合于测定挥发或半挥发性分析物, HS-SDME 可以得到较大液滴的稳定性,避免液滴被污染,不会由于样品基体“脏”而受到影响,与浸入法相比有些情况下会得到更快的萃取速度。  SDME 和SPME类似,快速、简单可以自动化,但是它很便宜,无需什么设备。通过选择适当的萃取溶剂改变其选择性,从而可以降低检测限。与常规的液-液萃取(LLE)不同的是只需要极少量溶剂,由于每次都使用新鲜的溶剂(每次更新溶剂)不会有携留问题。也不像SPME每次都要脱附。在SPME情况下,吸着剂涂渍在萃取丝的表面上,被分析物的吸着主要是吸附,在某些应用中全部被分析物能被吸附的很有限。在SDME中液滴不仅可以吸附还可以吸收,所以它的吸着容量要大于SPME。1、SDME 的模式  到目前SDME有7种模式,可以分为双相和三相微萃取,决定于相平衡中共存的相数。双相模式有直接浸入(DI)式,连续流动(CF)式,液滴到液滴(DD) 式,和直接悬浮(DSD)式。而三相模式有顶空(HS),液-液-液(LLL)式和LLL 与 DSD结合的模式。见图 5[table=584][tr][td=7,1] 单滴微萃取(SDME)[/td][/tr][tr][td=4,1] 双相[/td][td=3,1] 三相[/td][/tr][tr][td]直接浸入 (DI)[/td][td]连续流动(CF)[/td][td]液滴-液滴 (DD)[/td][td]直接悬浮(DSD)[/td][td]顶空(HS)[/td][td]液-液-液(LLL)[/td][td]液-液-液+直接悬浮(LLL + DSD)[/td][/tr][/table][align=center]图 5 SDME的7种模式[/align]  SDME 各种模式的使用频率如图 6所示,双相萃取占52%,三相萃取占48%。[align=center][img=,327,304]http://img1.17img.cn/17img/old/NewsImags/images/2015312162858.png[/img][/align][align=center]图 6 SDME各种模式的使用频率[/align]  到目前为止,在SDME各种模式中使用最多的是顶空SDME,占到全部SDME的41%,其次是直接浸入SDME,占38%。所以如此是由于这两种模式简单,所需设备便宜,但也是由于他们是文献中第一个溶剂微萃取方法,其他5种模式使用不多,可能是由于要使用附加的设备如泵(CF),或者由于应用于分析物的范围小(如LLLME大多用于可离子化的化合物)。  为了改善传质速率,顶空SDME和直接浸入SDME可以使用动态模式,在动态模式下不仅供给相(样品),而且接受相(萃取溶剂)都可以流动。动态SDME可以使用两种方法:暴露液滴和不暴露液滴,在不暴露液滴(或者在注射器中)方法中,溶剂连同样品1-3 μL液体或顶空液滴一起抽吸到注射器中,保持一定时间(停留时间),然后把样品排出,把这一过程循环30-90次,分析萃取出来的样品。在暴露液滴方法中进行萃取的注射器针头下的溶剂液滴是暴露于被萃取样品的,在液滴周围的样品持续一定的时间后被吸入注射器中,停留一段时间后,再把液滴推出针头,但是样品没有排除注射器。不暴露液滴法是He和Lee首先开发出来,他们是以手动操纵注射器活塞完成推出和吸入操作的。此后有人使用重复性更好的注射泵完成注射器活塞的推出和吸入操作(Anal Chem 1997,69:4634)) 。He和Lee比较了静态和动态SDME方法的效果。  静态方法的操作:(1) 用10μL 注射器吸取1μL甲苯,(2)把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 推动活塞形成1μL甲苯液滴到样品溶液里,在甲苯和样品之间平衡15min, (4) 把甲苯液滴抽回到注射器中并从样品瓶中拔出注射器,(5) 把注射器针插入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口进行分析。  动态方法的操作:(1) 用10μL 注射器吸取1μL甲苯,(2) 把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 在大约2 s 时间内抽取3μL样品水溶液到注射器中,滞留约3 s的时间,然后在大约2 s 时间内再推出3μL样品水溶液,等待3 s ,这样的操作,约3 min 重复一次,进行20次。最后把样品溶液推出注射器,留下1μL甲苯,(4) 把注射器 从样品瓶中拔出, (5) 把注射器针插入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口进行分析。  暴露液滴法和不暴露液滴法的全盘自动化是由中山大学的欧阳钢锋等完成的( Ouyang G,.Zhao W, Pawliszyn J, J Chromatogr A ,2007,1138: 47),使用商品计算机与自动进样器连接来控制溶剂吸取、活塞速度、停留时间和注射器进样等动作。  两种使用最多的模式——直接浸入和顶空溶剂微萃取——具有一些不同的应用领域(尽管有一些分析物可以使用任何这两种样品制备方法),因为直接浸入SDME法的萃取溶剂要和水溶液样品直接接触,所用溶剂必须和水溶液不能混溶,即要使用非极性或弱极性溶剂,所以这一方法适合于从干净样品(如自来水或地下水)中分离和富集非极性或中等极性的挥发和半挥发物质。因为挥发性化合物最好使用顶空SDME,而直接浸入SDME最好用于半挥发性分析物,如有机氯农药、邻苯二甲酸酯类、或药物。  一般讲直接浸入SDME 萃取溶剂应该是挥发性溶剂,如己烷或甲苯,它们可以和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]配合。因此[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]曾经是与直接浸入SDME 萃取相结合的主要方式,在文献中有超过62%是直接浸入SDME和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行配合的。和其他分析方法配合的有液相色谱(超过21% 的 DI-SDME是和HPLC一起使用的),使用HPLC可以分析极性半挥发性物质如苯酚类化合物,但是在此情况下萃取溶剂一定要更换,包括把原来的萃取溶剂慢慢蒸发掉,再用可以与HPLC 流动相兼容的溶剂,或者HPLC 流动相溶解蒸发后的残留样品。  除去HPLC之外,可以用DI-SDME把样品处理之后进行分析的方法有:大气压基质辅助激光解析/电离质谱(AP-MALDI-MS),这一方法使用者日益增加。如果使用DI-SDME进行无机组分的分离/浓缩(如金属离子),那么在进行衍生化之后就可以用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]或诱导耦合等离子质谱进行分析。  DI-SDME的最大优点是使用的设备简单(至少在静态模式下是这样)费用低,在最简单的情况下,只用一个萃取样品瓶和一个隔垫盖,一只搅拌棒和电磁搅拌器,一支微量注射器,以及少许溶剂即可。DI-SDME的缺点是-在萃取过程中液滴容易从针头处脱落,这样就限制了样品溶液的搅拌速度,以及样品要相对干净一些(没有固体颗粒),典型的搅拌速度最大到1700 rpm。在液-液萃取系统中由于扩散系数小,传质速度慢,所以就需要激烈搅拌,或者使用动态模式,这样也就造成DI-SDME模式要比其他SDME模式要用较长的萃取时间。  顶空SDME 是萃取挥发和半挥发化合物样品的选项,无论是极性还是非极性都可以,样品复杂也好、脏也好都可以,含有固体颗粒也可以适应,除去液体样品之外,固体或气体也可以使用这一模式进行萃取。  在最简单的条件下,使用手动HS-SDME,通常用一只注射器抽取1 到 3 μL溶剂,较大的溶剂体积可以提高检测灵敏度,但是有使液滴从针头脱落的危险,一些实验人员建议把针头弄粗糙一些,这样有助于保留住液滴。样品可以使用20 mL大小的顶空瓶,用水浴加热20 到 30 min,并进行搅拌。萃取之后把液滴吸入针头内,注射到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中进行分析。  HS-SDME 可适应各种各样分析物,因为它对萃取溶剂除去挥发性之外没有什么限制,经常使用HS-SDME 萃取的样品例子如三卤甲烷、BTEX烃类、挥发性有机化合物、无机和金属有机化合物(萃取前要进行衍生化)。HS-SDME常常用于萃取极性挥发物如醛类化合物,之后或者同时进行衍生化,例如 Stalikas 等(Anal Chim Acta, 2007,599:76-83)就是用2μL正辛醇液滴(含有4.0×10-6M 浓度的正十五烷和2.0×10-3M浓度的 2,4,6-三氯苯肼)进行萃取并衍生化醛类,之后进行色谱分析。HS-SDME 也可用于萃取半挥发性化合物,如多环芳烃、多氯联苯、酚类和氯代酚。萃取溶剂可以使用非极性的或极性的,后者包括离子液体、水溶液甚至纯水。在HS-SDME中使用水基溶液很有意思,因为它完全回避了使用有机溶剂。例如Yi He(Anal Chim Acta, 2007,589:225)使用磷酸水溶液液滴萃取尿液中的甲基苯丙胺和苯丙胺。  在HS-SDME中普遍使用的萃取溶剂是1-辛醇、十六烷、十二烷和十烷,因为这一模式是三相系统,其平衡时间要比直接浸入两相平衡模式长,但是 HS-SDME可以通过增加顶空的容量即增加在顶空中被萃取物的量来提高效率,顶空容量等于顶空(空气)体积Va,和空气-水之间的分配系数Kaw,只要增加Va或Kaw,或二者都增加就会大大提高顶空容量,如果被分析物萃取到有机溶剂中的量小于顶空容量(小于5%),那么从顶空中萃取分析物就几乎不可能了。这样在快速萃取中只要几分钟就可以完成,因为在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中的扩散系数要比在液相中扩散大得多(约4个数量级)。要提高传质速率提高样品温度是最简单的办法,这样可以使样品中的被测组分更多地蒸发到顶空中,但是提高温度又会降低溶剂液滴-顶空之间的分配系数,降低测试的灵敏度,如果把液滴温度降低就可以避免灵敏度的降低。如图7是华南理工大学杭义萍等在分析水溶液中的氟化物时,用冰袋冷却注射器,从而使萃取液滴得到降温。[align=center][img=,412,412]http://img1.17img.cn/17img/old/NewsImags/images/2015312163227.png[/img][/align][align=center]图 7 把液滴温度降低的设备图[/align][align=center]1— 电磁搅拌器 2—水 3--电磁搅拌棒 4—样品溶液 5—液滴[/align][align=center]6—冰袋 7—微量注射器 8—聚四氟乙烯喇叭口[/align][align=center](Anal Chim Acta,2010,661:161)[/align]  图 7的方法简单,但是温度不能正确控制,中科院大连化学物理研究所关亚风研究组设计的冷却方法可以精确控制冷却温度。他们的方法是在萃取瓶上的特殊瓶盖(图8中的a),盖顶端有一个直径为3mm 的洞,洞中可以容纳40μL溶剂而不会流出,用它做萃取溶剂液滴窝,在进行萃取时先用注射器往液滴窝中注入20μL溶剂(实验证明20μL溶剂萃取效果最好)(图中 b),把瓶盖拧到萃取瓶上(图中e),然后把冷却用热电冷却器装在瓶盖上(图中f),萃取溶剂的冷却。[align=center][img=,1092,226]http://img1.17img.cn/17img/old/NewsImags/images/2015312162440.png[/img][/align][align=center][img=,440,710]http://img1.17img.cn/17img/old/NewsImags/images/2015312162519.png[/img][/align][align=center]图8 用热电冷却器冷却萃取溶剂[/align][align=center](J Chromatogr A,2010,1217:5883)[/align]2、SDME 与分析仪器的配合  与HS-SDME配合进行最后分析的技术主要是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],占到到过75%,而使用HPLC配合HS-SDME的只有不到10%,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]光度分析的占5%,用毛细管电泳分析的占3.5%。  各种模式SDME 的配合所占比例见图 8[align=center][img=,484,379]http://img1.17img.cn/17img/old/NewsImags/images/2015312163438.png[/img][/align][align=center]图 8 SDME 与分析仪器的配合的比例[/align]  国内外期刊近几年有关用一滴溶剂微萃取进行分析的文献[table][tr][td] [/td][td] [/td][td] [/td][td] [/td][/tr][tr][td]1[/td][td]SDME 结合GC-FPD分析水中6种有机磷农药[/td][td]在5μL注射器针头装一个2mm 长的锥形物,抽取3.5μL萃取溶剂在水样中进行萃取[/td][td]Tian F,Liu W,Fang H ,et al,Chromatographia,2014,77:487-492(暨南大学)[/td][/tr][tr][td]2[/td][td]通过衍生化SDME分析复杂体系中测定短链脂肪酸的有效预处理方法[/td][td]用BF3-乙醇衍生化短链脂肪酸经SDME萃取,1.0 μL邻苯二甲酸二丁酯做萃取溶剂,萃取20min[/td][td]Chen Y, Li Y,Xiong Y,et al,J Chromatogr A,2014,1325:49- 55(中科院地球化学所)[/td][/tr][tr][td]3[/td][td]用全自动裸露和注射器内动态单滴微萃取在线搅动测定珠江口和南中国海表面水中多环麝香[/td][td]在优化条件下浓缩比达110-182,回收率为84.9 - 119.5%,[/td][td]Wang X,Yuan K,Liu H,et al, J Sep Sci,2014, 37: 1842-1849(中山大学)[/td][/tr][tr][td]4[/td][td]动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析连翘中的精油[/td][td]3 μL离子液体( 1-甲基-3-辛基咪唑六氟磷酸盐)作萃取液滴,50mg 样品萃取13min[/td][td]Yang J, Wei H, Teng X,et al, Phytochem. Anal. 2014, 25:178-184(吉林大学)[/td][/tr][tr][td]5[/td][td]新的纳米纤维-碳纳米管-离子液体三元萃取剂进行单滴微萃取[/td][td]使用三元萃取剂可以有效地萃取烧烤食品中的2-氨基-3,8-二甲基咪唑并 喹喔啉[/td][td]Ruiz-Palomero, C,LauraSoriano M, Valcárcel M,Talanta,2014,125:72-77(西班牙科尔多瓦大学)[/td][/tr][tr][td]6[/td][td]单滴微萃取-液相色谱-质谱快速分析主流烟草烟雾中六种有毒酚类化合物[/td][td]用1-十二醇作萃取液滴,萃取12min.六种酚类为苯酚、邻苯二酚、间苯二酚、对苯二酚、邻甲酚、和对甲酚[/td][td]Saha S, Mistri R,Ray B C,Anal Bioanal Chem, 2013,405:9265-9272(印度贾达普大学)[/td][/tr][tr][td]7[/td][td]用自动注射器中单滴溶剂顶空萃取测定白酒中的乙醇[/td][td]注射器中液滴为8 mol /L硫酸中3 mmol/ L重铬酸钾,使乙醇还原后进行光度分析,测定乙醇含量[/td][td]?rámková I, Horstkotte B , Solich P, et al, Anal Chim Acta 2014,828:53-60(捷克查尔斯大学)[/td][/tr][tr][td]8[/td][td]单滴微萃取-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定水样中的吡氟草胺,灭派林,氟虫腈,丙草胺[/td][td]1μL庚烷液滴浸入4.0 mL样品中,在室温下以500rpm搅拌30min进行萃取[/td][td]Araujo L, Troconis M E, Cubillán D,et al, Environ Monit Assess, 2013,185:10225-10233[/td][/tr][tr][td]9[/td][td]用Fe[sub]2[/sub]O[sub]3[/sub]磁性微珠微波蒸馏和单滴溶剂顶空萃取测定花椒中的精油[/td][td]2.0 μL十二烷液滴作萃取剂,在微波炉中蒸发精油被液滴吸收[/td][td]Ye Q,J Sep Sci, 2013, 36: 2028-2034(上饶师范大学)[/td][/tr][tr][td]10[/td][td]用香豆素作荧光开关以单滴微萃取分析化妆品中残留的丙酮[/td][td] 2.5μL水溶液液滴,含有3 x10[sup]-4[/sup]mol/L 7-羟基-4-甲基香豆素或6 x10[sup]-6[/sup]mol/L 7-二甲基胺-4-甲基香豆素(40%乙醇溶液),在4 ℃下萃取3min[/td][td]Cabaleiro N,Calle I De la,Bendicho C,et al,Talanta,2014,129:113-118(西班牙维戈大学)[/td][/tr][tr][td]11[/td][td]以单滴微萃取GC-MS分析细辛中的挥发物[/td][td]正-十三烷:乙酸丁酯(1:1)作萃取液滴,10 lL在70℃下萃取15min[/td][td] Wang G, Qi M,Chinese Chemical Letters,2013, 24:542-544(北京理工大学)[/td][/tr][tr][td]12[/td][td]微波蒸馏顶空单滴微萃取-GC-MS分析具刺杜氏木属植物DC中的挥发物[/td][td]10 μL注射器取2.5 μL正-十七烷溶剂液滴,萃取微波加热蒸馏出来的被测组分[/td][td]Gholivand M B, Abolghasemi M M , Piryaei M, et al, Food Chemistry, 2013,138:251-255(伊朗Razi大学)[/td][/tr][tr][td]13[/td][td]表面活化剂辅助直接悬浮单液滴微萃取浓缩[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析生物样品中的曲马朵的多变量优化[/td][td]把有机溶剂液滴用注射器注入含有Triton X-100和 曲马朵的水性样品中,在搅拌样品溶液条件下进行萃取,之后再用注射器把有机溶剂抽出进行色谱分析[/td][td]Ebrahimzadeh H,Mollazadeh N,Asgharinezhad A A,et al, J Sep Sci,2013, 36:3783-3790[/td][/tr][tr][td]14[/td][td]用离子液体辅助微波蒸馏单液滴微萃取及GC-MS快速分析香鳞毛蕨精油[/td][td]1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 μL正-十七烷溶剂作萃取液滴[/td][td] Jiao J ,Gai Q Y,Wang W,et al, J Sep Sci,2013, 36:3799-3806(东北林业大学)[/td][/tr][tr][td]15[/td][td]农田土壤中阿特拉津和甲氨基粉的快速测定—使用单液滴中鼓泡微萃取浓缩GC-MS分析[/td][td]往注射器中吸入1 μL萃取溶剂,之后再吸入0.5 μL空气,满满地把溶剂和空气泡注入被萃取的水溶液中,让空气在溶剂中形成一个气泡,萃取20min 后把溶剂吸入注射器,用GC-MS分析[/td][td]Williams D B G,George M J, Marjanovic L,J Agric Food Chem. 2014, 62:7676-7681[/td][/tr][tr][td]16[/td][td]用SDME/GC-MS测定椰子水中19种农药残留(有机磷、有机氯、拟除虫菊酯、氨基甲酸酯、硫代氨基甲酸酯、嗜球果伞素)[/td][td]10 mL样品用甲苯作萃取剂,液滴1.0 μL,样品用HCl酸化,不加盐,200 rpm搅拌下萃取30 min[/td][td]dos Anjos P J, de Andrade J B,Microchem J,2014,112 :119-126[/td][/tr][tr][td]17[/td][td]动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析果汁中的风味化合物[/td][td]1-羟基-3-咪唑四氟硼酸盐离子液体作萃取液滴,萃取液体12.5 mL,萃取5min,萃取温度80 ℃[/td][td] Jiang C, Wei S , Li X,et al, Talanta, 2013,106:237-242(吉林大学)[/td][/tr][tr][td]18[/td][td]用顶空单滴液体微萃取光度法自动分析混凝土中的氨[/td][td]用0.1 М H3PO4作液滴吸收样品释放出来的人氨气,自动进行光度测定。[/td][td]Timofeeva I, Khubaibullin I, Kamencev M,et al, Talanta,2015,133:34-37[/td][/tr][tr][td]19[/td][td]高效单滴液体微萃取-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]新策略[/td][td]毛细管上安装一个漏斗状顶盖,用以悬挂有机萃取液滴,液滴中引入一定体积的空气泡,用1 μL氯苯液滴和1 μL空气进行萃取,以700 rpm进行搅拌,在3.4 min时间里可浓缩农药70 到 135倍[/td][td]Xie H Y, Yan J, Jahan S,et al,Analyst, 2014, 139: 2545-2550[/td][/tr][tr][td]20[/td][td]用离子液体辅助微波蒸馏单液滴微萃取及GC-MS快速分析连翘精油[/td][td]1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 μL正-十七烷溶剂作萃取液滴[/td][td]Jiao J ,Ma D H,Gai Q Y, et al, Anal Chim Acta,2013, 804:143- 150(东北林业大学)[/td][/tr][tr][td]21[/td][td]自动顶空单滴液体微萃取和顶空固相微萃取进行快速分析食用油中No. 6溶剂残留的比较[/td][td]用2μL正十一烷作萃取溶剂,30 ℃萃取3 min[/td][td] Ke Y, Li W, Wang Y,et al, Microchem J, 2014, 117:187-193(贵阳医学院)[/td][/tr][tr][td]22[/td][td]用离子对单滴液体微萃取分析水中化学战剂降解产物[/td][td]分析物在水相形成离子对,萃取液滴中含有N-(特丁基二甲基硅烷基)-N-甲基三氟乙酰胺衍生化试剂[/td][td]Park Y K , Chung W Y, Kim B,Chromatographia,2013,76:679-685[/td][/tr][tr][td]23[/td][td]液相微萃取-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]法测定水中硝基苯的含量[/td][td]lμL甲苯作萃取剂,,萃取15min,进行GC-MS中分析[/td][td]耿飞,青年科学,2014,(6):208[/td][/tr][tr][td]24[/td][td]离子液体顶空单滴微萃取分析中药中的高沸点挥发性成分[/td][td]采用微量进样器下端的塑料套管烧制成一端凸起的圆饼状(3.5mm o.d),以增大悬挂的离子液体与套管的接触面积,用2 5μL微量进样器精密吸取12μL离子液体轻轻推出,使其在距液面1cm处形成液滴,顶空萃取30min,萃取后直接将液滴吸回,进样HPLC分析检测。[/td][td]李梅,科学与财富,2013,(12):265[/td][/tr][tr][td]25[/td][td]顶空单滴液相微萃取与GC—MS联用测定易挥发溶剂[/td][td]了十二烷和正癸烷 作萃取溶剂,0.5μ L萃取溶剂,萃取10 min[/td][td]徐庆娟, 冯宇辉, 吴学,延边大学学报(自然科学版),2011,37(2):144-147[/td][/tr][tr][td]26[/td][td]单液滴微萃取一[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]/质谱法检测水中多环芳烃[/td][td]萃取溶剂1.0μL、萃取时间20 min,萃取温度室温[/td][td]常薇,郁翠华,周娟,环境污染与防治,2009,31(5)-:54-56,82[/td][/tr][tr][td]27[/td][td]单滴液相微萃取-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]在香精分析中的运用[/td][td]正戊醇作萃取溶剂2.0μL ,萃取温度 30 ℃,萃取时间35 min[/td][td]徐青,何洛强,梁健林等,2013中国上海第三届全国香料香精化妆品专题学术论坛,163页[/td][/tr][tr][td]28[/td][td]单滴微萃取.[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用测定水中的硝基咪唑类药物[/td][td]。用5μL迸样器吸取有机溶剂,将针尖浸入到待测溶液中,挤出进样器中的有机溶剂,在针尖形成一个小液滴。在50℃,600 rpm搅拌速度下,萃取20 min[/td][td]王金玲,李义坤,赵京杨等,分析试验室,2010,29(1):107-110[/td][/tr][tr][td]29[/td][td]单滴微萃取.[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法分析海水中的四种苯胺推荐一个环保的综合化学实验[/td][td]将微量进样器吸 0.7O uL的甲苯使之在针尖形成稳定的液滴。在500 r/min 搅拌下,萃取l 5 min[/td][td]曾景斌,崔炳文,冯锡兰等,广东化工,2011,38(10): 215-216[/td][/tr][tr][td]30[/td][td]单滴微萃取-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定塑料食品包装浸出液中邻苯二甲酸酯类物质[/td][td]1.4μL二甲苯为萃取剂,萃取时间为20 min,萃取温度为40℃,搅拌速度为200 r/min[/td][td]张聪敏,食品与生物技术学报,2011,30 (6):863-867[/td][/tr][tr][td]31[/td][td]单滴微萃取技术测定饲料中硝基咪唑类药物残留研究[/td][td]溶剂为2.5 μL正辛醇,温度为50℃,搅拌速度为600 r/min。时间为20rain。萃取后,微液滴于70℃衍生45min[/td][td]刘登才,赵京杨,王金玲等,湖北农业科学2010,49 (7):1703-1706[/td][/tr][tr][td]32[/td][td]超声雾化一顶空单滴微萃取[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱联用检测八角茴香中挥发油成分[/td][td]3μL 悬滴溶剂正十六烷悬在提取液的顶空,富集15 mim。富集后将正十六烷抽回微量进样器进入GC-MS系统分析[/td][td]王璐,张慧慧,李雪源等,分析化学学,2009,37(增刊)D071[/td][/tr][tr][td]33[/td][td]不同品种荔枝对荔枝蒂蛀虫引诱活性成分的研究[/td][td]将摘取的荔枝幼果,马上放进顶空样品瓶中(样品体积占顶空体积的一半),盖紧。室温下平衡l h后,插人已吸取3止正丁醇的微量进样针直至针尖距样品上表面约l cm,顶空萃取30 min进行分析[/td][td]郭育晖,叶慧娟,方炜等,天然产物研究与开发, 2013.25:1218-1221[/td][/tr][tr][td]34[/td][td]TG-SDME-GC/MS 联用法研究叶黄素在空气氛围中的热解行为[/td][td]乙醇作为萃取溶剂,液滴体积保持约为10 μL[/td][td]吴亿勤,杨柳,秦云华等,烟草化学 ,2014 (10):61-66[/td][/tr][/table]3、SDME 参数对萃取的影响 (1) 萃取溶剂的影响(J. Sep. Sci. 2013, 36:3758-3768)  在单滴溶剂选择适当的溶剂是很重要的,影响这一方法的灵敏度、选择性、准确度和精密度,萃取溶剂需满足一下要求:  【1】 它应该能完全萃取所要分析的对象。  【2】 它应该有比较高的沸点、较低的挥发性和较低的蒸汽压,以便在萃取过程中不至于挥发掉。  【3】 它应该有较高的粘度,以便形成较大稳定的液滴。  【4】 它应该不能与水混溶。  【5】 它应该与以后分析仪器所用溶剂相适应。  如果需要,一滴溶剂中应该含有内标物、衍生化试剂或螯合试剂。  有人用水作一滴溶剂,用于分析一些无机物,把这一方法叫做“顶空水基液相微萃取”,是一种不用有机溶剂的绿色方法。含有纳米微粒的一滴溶剂用于生物大分子如肽和蛋白质的萃取, 金或银纳米微粒溶于甲苯中,用来预浓缩分析物,之后直接把液滴点到MALDI-MS的目标靶上进行分析。量子点分散到微滴有机溶剂中用于顶空-一滴液体挥发性有机物的分析中。近年把离子液体用于一滴液体微萃取分析中(Trends in Analytical Chemistry 61 (2014) 54-66)。  (2) 萃取温度的影响  一滴溶剂萃取过程的温度很重要,因为既要考虑萃取物从基体中挥发又要考虑在液滴和[url=https://insevent.instrument.com.cn/t/Mp]气相[/url](液相)之间的平衡,提高温度可以让分析物更多地蒸发到空间,增加[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中分析物的浓度,但是增加温度也是萃取液滴的温度提高,这样会降低萃取效率,因为液滴萃取溶解分析物是一个放热过程,温度增加就会降低萃取效率,另外萃取温度度提高会使萃取液滴溶剂蒸发。所以就出现了冷却萃取液滴的办法和装置(图 7)。  (3)萃取时间的影响  研究萃取时间主要是为了最高的分析物信号,并保证得到满意的准确和再现的结果,传质速度决定时间的长短,一般来讲萃取时间增加会增加萃取量,然而时间太长液滴会变得不稳定,并增加整个分析时间,一般提高搅拌速度会缩短萃取时间,但是搅拌太快会使液滴从注射器针头脱落。  (4)样品溶液离子强度的影响  往样品溶液中加入盐广泛地用于液-液萃取中,水分子在盐离子周围形成一个水化的球,所以溶解萃取物的水量就相对降低,从而降低了萃取物在水中的溶解度,所以加入盐可以提高萃取效率,但是也有报告证明加入盐有相反的作用,其解释是盐的分子与被萃取物分子间的相互作用,或者说是改变了Nernst扩散层的物理性质,所以盐的加入要考虑萃取物的性质和盐的加入量。这一矛盾现象迫使人们在确定萃取条件时要考虑这一因素。  (5)搅拌萃取溶液速度的影响  在萃取过程中进行搅拌可以提高水相的传质速度,这样在水相和顶空[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]或者说在水相和有机溶剂液滴之间的平衡加快了,所以在萃取过程中都要进行搅拌,可以提高样品的萃取效率,缩短萃取的时间,当然也不能搅拌太快,否则液滴会脱落。  小结:  一滴溶剂微萃取是一种简便易行的样品处理技术,可以和多种分析仪结合使用,简化了样品处理的时间和步骤,是固相微萃取的一个很好的补充,是液-液萃取技术的一次跃升,所以这一技术还在进一步研究和改进中。  下一讲和大家讨论“扭转乾坤—神奇的反应顶空分析”

  • 傅若农讲述气相色谱技术发展历史及趋势(1)

    [b]编者注:[/b]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势,以飨读者。[color=#0000ff]  [/color][color=#0000ff][b] 一、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]伴随和促进科技革命的发展[/b][/color]  16世纪以来,世界科技大致发生了五次革命(两次科学革命和三次技术革命),包括近代物理学诞生、蒸汽机和机械革命、电力和运输革命、相对论和量子信息化革命等。  近几年国内外对第六次科技革命的核心内涵正在讨论探索之中,没有达成共识。 徐光宪院士认为第六次科技革命的核心内涵必须解决当前中国和世界的迫切问题,缓解世界经济危机,使各国都走上健康的发展道路。目前大致有14个问题值得我们特别关注:  (1)彻底改造污染环境的化工厂,建立绿色化学和化工以及冶金企业。  (2)现在的化工原料主要来自石油或煤炭(利用煤焦油或电石)。因为它们也作为能源燃料使用,如果维持现在的消耗速度,世界的石油资源将在几十年内耗竭,煤炭资源在一二百年内耗竭。  (3)温室气体二氧化碳的减少排放问题,即少用煤和石油,大力发展节能材料和新能源,如稀土节能灯,利用稀土材料做发电机的风能,利用稀土光电转换材料的太阳能,利用钍的核能等。  (4)不可再生、不能取代的稀土等矿产资源的节约高效开采,保护环境和综合利用。开发从废品中回收稀土的技术,避免浪费和快速耗竭稀土以及其他不可再生的战略矿产资源。  (5)淡水资源节约利用和海水的高效、低成本淡化问题。  (6)高新技术材料的研发和合成问题。  (7)海洋和太空资源(例如海底的可燃冰和月球上大量的He-3核聚变能源)的开发利用问题。  (8)人类的健康和新药物、新医学以及人工器官的研发问题。人工生命的合成,使化学与生物学互相连接的问题。研究合成直接导向病灶的靶点药物,大幅降低药物的副作用。  (9)人工合成固氮酶,使水稻、小麦等非豆科植物,也能利用空气中的氮,不必使用氮肥,或用生物科技新技术培养含有固氮酶的非豆科植物,引发农业科学技术的革命。  (10)研究光合作用的基本原理,找出光合作用的催化机理,提高太阳能的利用效益,有可能引发农业技术的革命。  (11)天气预报、地震预报、台风预报,以及其他自然和人为灾难的预防和急救问题。  (12)军事科学技术问题。中国要呼吁世界和平,必须有先进的军事科学技术,才有维护世界和平的发言权。世界上主要国家的军力必须平衡,才能制止第三次世界大战。  (13)和平科学的理论和实践问题。20世纪发生了两次世界大战和不断的局部战争,21世纪必须避免第三次世界大战,因为如果发生,那将是毁灭一半人类的核大战。所以必须研究和平科学的理论和实践。  (14)研究世界人口的节制和优生优育问题,研究中国和世界各国人民和谐相处,共同富裕、共同幸福的理论和实践。  并且认为大化学(广义分子科学)革命与上述14个世界迫切需要解决问题的前10个问题密切相关。  大化学的支柱之一是分析测试,而在分析测试技术中,色谱和与其相联用的检测技术又是关键性重要领域,所以它们必然是第六次科技革命的进程中重要工具,实际上近年色谱和与其相联用的检测技术在不断发展,以适应各个领域的需要。[color=#0000ff] [b] 二、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术初期的发展[/b][/color]  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]是色谱领域中发展较早、相当成熟的技术,由于它是快速、简易、相对便宜而又重复性好的分析方法,可以分析各种基质中的成分,如石油石化产品、环境污染物、药物、食品等等,而且由于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]所固有的高分离效率以及可以和各种灵敏的、选择性好的检测器相连接,所以配备各种检测器的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]成为各个领域成分鉴定、分析不可或缺的工具。色谱学的发展是伴随着科技革命,而又促进科技革命的发展进程。  第三次科技革命(20世纪四五十年代)发生在二战后,资本主义推行福利制度与国家垄断资本主义,政局稳定。20世纪初科学理论的重大突破和一定的物质、技术基础的形成,出现了对石油、人工合成材料、分子生物学和遗传工程等高新技术的需求,人们在研究这些复杂物质混合物时,就需要把他们分离开来考察其性能,因而必然要发展各种分离技术,而色谱是分离技术中效率最高的一类方法,所以在上世纪四十年代末五十年代初诞生了以气体为流动相,液体或固体为固定相的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],1955年PerkinElmer公司开发出第一台[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]。而第一台[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的诞生有一个传奇的故事。  在 1953-1954 年间,PerkinElmer公司的代表首次听到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]先驱者A.T. James 和 A.J.P. Martin在英国伦敦British Medical Council实验室,以及 C.S.G.Phillips在牛津大学所进行的GC研究工作。随后访问了他们的实验室,学习了这一新技术的原理,以这一信息为基础,在位于美国康涅狄格州Norwalk的公司总部启动了研究开发这一仪器的计划,最终在 1955 年推出了世界上第一台商品化[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url] Model 154 Vapor Fractometer (Model 154 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url])。  在当时,这一仪器的主要特点是:使用了空气恒温器(“柱箱”),可以使分离色谱柱在室温和150 °C之间保持恒温,有一个快速蒸发器,可以用注射器通过橡胶隔垫把液体和气体样品送到载气里,以及使用热敏型热导检测器。同时,PerkinElmer提供了具有广泛分离能力的标准色谱柱,从而可以让仪器成功地分析各种样品。这一仪器立即获得了成功,在美国分析化学杂志(Analytical Chemistry,AC)的社论里对其评价为:“是一个自动分析的辉煌典范”,它得到的色谱图“赏心悦目”。在仪器推出之后不久,PerkinElmer 公司出版了一本简单的小册子,解释[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的原理和如何选择操作参数。AC在新的一期社论里赞美这一小册子,把它称做“一个简短而信息充实的概要”,帮助“传播科学技术知识”。自然,在推出 Model 154 以后,PerkinElmer的研究和开发工作并没有停息,在1956年初又推出一个改进的型号,即Model 154-B,在这一新型号仪器上使用温度提高到225 °C,并可选择旋转阀和各种定量进样管,用于气体的进样。这一措施十分引人注目,现在众多公司提供的多端口进样和切换阀设计都可以追溯到这一个阀的设计上。[align=center][img=,324,471]http://img1.17img.cn/17img/old/NewsImags/images/20146240103.png[/img][/align][align=center]Model 154-B [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url][/align]  (图注:在这一装置左侧的门后是色谱柱箱,在右侧上面的面板是加热控制部件,热导检测器的控制器在右侧下面的面板上。流量计在中间部位,左侧的下面是注射器的加热进样口,电位差计记录仪常放在另外的地方,Model 154和这一仪器的样子和尺寸相同。)  (以上信息转自PerkinElmer公司资料“PerkinElmer 公司[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的发展过程”)[b][color=#0000ff]  三、国内[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]初期(上世纪50到60年代)的发展历程[/color][/b]  新中国建立后百废待兴,各个工业部门蓬勃发展,其中以石油和煤为主要能源的研究和工业急需发展,因而发展[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]就成为必不可少的前提了。下面是色谱老专家俞惟乐老师在1980年为美国分析化学写的有关中国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]发展的历程(Anal. Chem. 1980, 52:324R-360R):  中国从1955年开始进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的研究,首先进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的是中科院大连石油研究所,之后,中科院在北京、上海和长春的一些研究所也参与进来,几年之后[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的研究和应用便普及开来。  1958年,中科院大连石油研究所一分为三,分别成立了中科院大连化学物理研究所,中科院兰州化学物理研究所和中科院太原煤炭化学研究所。拆分后,三个所都进行他们各自所关心的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究,如色谱条件的优化、色谱固定相的研究、色谱仪各种配件的研制。  在此阶段,中国高校在进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的教学之外,也进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的专业研究和基础数据的编纂,出版了十多本有关[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的教科书、手册及字典。此外,在这20年中,我国科学界举办了三次[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]学术会议。第一次全国色谱报告会于1961年10月在大连举行,共收到45篇报告。4年后在兰州举行第二次全国色谱报告会,发表的报告数达到100篇。受四人帮动乱干扰,全国色谱学术报告会中断,十年之后的1979年,在大连召开了第3届全国色谱报告会(包括[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]、液相色谱和薄层色谱),此次共收到有12篇综述报告和122篇论文。这一时期各个工业部门、研究单位和高校也组织了许多有关[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的讨论会、报告会,而且地方的科学学会也各自举行地方[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]会议,部分有关[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的论文在科学通报、化学学报、燃料化学学报上发表。  有关这一时期国内[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]器的发展,俞惟乐老师在上述综述文章中提到:上世纪60年代初已经有商品化的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]了,但商品化仪器仍然不能满足一些研究所、大学和各个工业部门的要求,他们相继开发适合自己需求的专用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],当时有大约十个国家级工厂可提供20多种型号的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],年产量大约有2000台。  在这些产品中有上海分析仪器厂的103型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]及北京分析仪器厂的SP 2308型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]。SP 2308型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]配备了各种现代化检测器、裂解器、色谱图积分仪和打印机。103型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]可用填充柱和毛细管柱,103型和SP 2308型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]都可用于实验室级别的制备。此外,其他型号的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]器,有便携式及在线监测用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],用途也很广泛,包括专用于检测水分、比表面积、孔径分布等。其中二氧化碳激光裂解器[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]、半导体薄膜[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],以及一些专用的原型机都是由一些研究机构制造。  国内记述这段历史的著作有大连化学物理研究所编纂的《[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法》,1973年出版,书后列举了11种商品化[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],SP-2302型、SP-2304型、SP-2305型、SP-2306型(北京分析仪器厂生产) 100型、102型(上海分析仪器厂生产) DQS-5101型(威海天平仪器厂生产) SP-01型、SP-02型、SP-05型(自动制备色谱仪)、SP-07型(大连第二仪表厂生产)。([color=#0000ff]未完待续[/color])

  • 傅若农:步入分析化学的踟蹰岁月杂集

    傅若农:步入分析化学的踟蹰岁月杂集

    [align=center][img=,400,320]http://ng1.17img.cn/bbsfiles/images/2017/09/201709061422_01_3224499_3.jpg[/img][/align]傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。由傅若农老师主审,仪器论坛组织编写的《[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]百问精编》得到了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]使用用户的一致好评,傅若农老师亲笔记录了他在分析化学领域的生活经历,以连载形式,发布于仪器论坛,本帖特将傅老师的系列文章——“步入分析化学的蹉跎岁月和踟蹰岁月”进行整理汇总,带领大家体会那个年代的生活和学习。[b] [color=red]步入分析化学的蹉跎岁月(1) —— 被推进分析化学的行当[/color][/b] 我走进化学大门是受高中化学老师的影响,高中二年级的化学老师是当年北平的化学名师,叫刘伯忠,他说要考上大学就要能背诵化学周期表,记住300个化学方程式。高三的化学老师是武永兴(他当时在北京大学化学系工作,在我们北京河北高中做兼职化学老师),他的特点是把重要的概念和内容掰开揉碎地讲,使我们受益匪浅,所以在考大学时就选择了化学专业。进入大学后的入门、修炼及被推入分析化学的行当详见原帖[url]http://bbs.instrument.com.cn/topic/6215300[/url][b][color=red]步入分析化学的踟蹰岁月(2)——迷恋书苑芬芳,陶醉百年宝藏[/color][/b]在第一篇我讲了考化学专业是受到中学老师的感染,从事了分析化学行当是服从组织分配,而一生迷恋图书馆和化学文献是源于幼年和青年时期受到家庭和环境的影响。下面和大家聊聊我的这段故事,跟着我一起追忆童年,回到旧时的图书馆和大学吧[url]http://bbs.instrument.com.cn/topic/6232296[/url][b][color=red][/color][color=red]步入分析化学的踟蹰岁月(3)——回顾老北大西斋两年的生活[/color][/b]我是1950年高中毕业,我们班的一些尖子同学都考入清华,我呢,由于家里只有我和母亲,当时住在朝阳门里北小街的一个小巷里,为了能照顾母亲,在考大学时五个志愿全部填的是北京大学的院系。最后居然幸运第被北大化学系录取。同年9月进入老北大,当时男生宿舍在景山东街西口的“西斋”,在这里生活了两年,但是在我一生的记忆里确占据了较多的位置,因为这两年是我一生里最愉快、最幸福的时光,经历了各种前所未有的丰富多彩的生活,详情见[color=#ff0000][/color][url]http://bbs.instrument.com.cn/topic/6317413[/url][b][url=http://bbs.instrument.com.cn/topic/6321300][color=#ff0000]步入分析化学的踟蹰岁月(4)——回顾在燕园一年的生活[/color][/url][/b]1952年下学期,我国学习前苏联的大学体制,建立综合性大学,把北京大学、清华大学和燕京大学的文、理、法等学科合并成立新的北京大学,是类似苏联综合性大学的模式,三校集中到西郊燕京大学。我们有幸经历了旧北大,又转入新北大,回顾燕园的一年,可谓化学“牛人”荟萃,课余生活丰富有趣,更多故事及照片见[url]http://bbs.instrument.com.cn/topic/6321300[/url] [b][url=http://www.instrument.com.cn/expert/art/40998/][color=#ff0000]步入分析化学的踟蹰岁月(5)—进入火药分析领域[/color][/url][/b]1953年被分配到北京工业学院工作。这所大学前身为1940年中国共产党创建的第一所理工科大学——延安自然科学院,解放后迁校北京,更名华北大学工学院。1954年,学校来了苏联专家,我所在的专业按苏联专家的要求,要给学生开一门“火药分析实验”课,当时的政治协理员孙志管找我谈话,要把我从分析化学小组调到专业教研室,承担这一任务,从此进入了火药分析领域[url]http://www.instrument.com.cn/expert/art/40998/[/url] [b][url=http://bbs.instrument.com.cn/topic/6342416][color=#ff0000]步入分析化学的踟蹰岁月(6)———独自“练兵”[/color][/url][/b]到1955年,指导火药分析这门实验课已经驾轻就熟了。除去做教学工作和一些行政工作(实验室主任)外,还有相当多的时间,就想做些“研究”性的工作来锻炼自己,不过当年学校的主要任务是教学,而一些老师也大都是“讲课型”教授,同时也没有纵向或横向的研究课题。所以我就作了“独自练兵”的几项实验研究,如首次做[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究[url]http://bbs.instrument.com.cn/topic/6342416[/url] [b][url=http://bbs.instrument.com.cn/topic/6449898][color=#ff0000]步入分析化学的踟蹰岁月(7) —— 进入[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 行当[/color][/url][/b]1971年末我参加了部署工厂、研究所组织的“国内火炸药分析测试技术水平和状况”的调研,我参加的一个组走访了东北地区几个工厂和研究所。我们在大连拜访了中科院大连化学物理研究所,大化所负责接待我们的是周良模先生,他向我们介绍了国内外和大化所有关色谱技术的水平和发展概况,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的现状。这次调研后我们形成一个共同的认识,要把[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]方法引入火炸药分析中。也就促使我又开始研读[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]文献[url]http://bbs.instrument.com.cn/topic/6449898[/url] [b][url=http://bbs.instrument.com.cn/topic/6449913_1][color=#ff0000]步入分析化学的踟蹰岁月(8)—— 举办第一届[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]培训班[/color][/url][/b]上世纪70年代中期,中国经过几年的文革困扰之后,生产、教育、文化百废待兴,在分析化学领域学习、利用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的热度不断升高,国内也有几家生产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的厂家提供中低档[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],市场上也可以买到一些[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]必须的试剂,提供了开展[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]应用和研究的基本条件,所以除去石油、石化行业领先使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]之外,其他化学、化工及相关领域也都争相使用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术。在此背景下,各地兴起了学习[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],开办[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]培训班的热潮。我们也就在此时(1974年)受命为当时部属化工厂办第一届[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]培训班[url]http://bbs.instrument.com.cn/topic/6449913_1[/url] [b][url=http://bbs.instrument.com.cn/topic/6449979][color=#ff0000]步入分析化学的踟蹰岁月(9)——难忘的1976年[/color][/url][/b]由于我们第一届[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]培训班十分成功,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]在火炸药工厂的实际应也得到推广,所以在1976年上级机关就再次让我们办第二届[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]培训班。然而,这一年发生了太多难忘的事情[url]http://bbs.instrument.com.cn/topic/6449979[/url] [b][url=http://bbs.instrument.com.cn/topic/6449992_1][color=#ff0000]步入分析化学的踟蹰岁月(10)——从事[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]培训工作的几年[/color][/url][/b]上世纪70年代末,由于粉碎了四人帮,结束了十年动乱,国家进入社会主义建设蓬勃发展时期,大学恢复高考,科技走向振兴,工业大干快上,各行各业欣欣向荣,所以搞分析检测行当的人员有了用武之地,分析检测行业各个分支纷纷兴办检测培训班,各行各业对[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的需求与日俱增。由于我们已经成功地举办过几次[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]培训班,所以当时的北京分析仪器厂(北分)教育科解科长找到我,让我帮他们讲授[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]理论课,于是在1977年就进入北分厂,此后的几年里不断地为北分厂举办的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]培训班讲授[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]课[url]http://bbs.instrument.com.cn/topic/6449992_1[/url][b][url=http://bbs.instrument.com.cn/topic/6455897][color=#ff0000]步入分析化学的踟蹰岁月(11)——从填充柱色谱开始[/color][/url][/b]1974年我们购入了北京分析仪器厂的SP 2305 E 型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url](即恒温型填充柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]),所以能做的工作只能是用填充柱进行恒温[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的工作,进而进行了几项填充柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究[url]http://bbs.instrument.com.cn/topic/6455897[/url][b][url=http://bbs.instrument.com.cn/topic/6477505][color=#ff0000]步入分析化学的踟蹰岁月(12)——开始毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究[/color][/url][/b]1980年末由于进行了几项填充柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究之后,感觉到填充柱的柱效太低,难以分离一些复杂或者难分离的混合物,自然想到应该往毛细管柱方面发展了。当时,石油化工研究院陆婉真先生团队已经成功地解决了玻璃毛细管柱的制备问题,我们就及时地学习了他们的方法,开始了玻璃毛细管柱的制备和应用研究[url]http://bbs.instrument.com.cn/topic/6477505[/url][b][url=http://bbs.instrument.com.cn/topic/6501084][color=#ff0000]步入分析化学的踟蹰岁月(13)——研究液晶作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相[/color][/url][/b]在我们做了几年的研究之后,特别是常常遇到芳香族化合物的位置异构体,比如二甲苯的三个异构体(邻、对、间-二甲苯)在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析中是很难分离的一类混合物,用常规固定相很难分离。当时,国内有一些单位已经开始研究用液晶作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的固定相,于是我们试图用液晶作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,分离一些常用固定相难以分离的芳香族位置异构体,研究过程见[url]http://bbs.instrument.com.cn/topic/6501084[/url][b][url=http://bbs.instrument.com.cn/topic/6522041][color=#ff0000]步入分析化学的踟蹰岁月(14)——研究冠醚作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相[/color][/url][/b]我们研究了用液晶作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,没有得到满意的结果,就把注意力转向冠醚。正好在一次会议中,偶遇我们北大化学系毕业的师兄张伦,当时他在武汉大学化学系工作,他介绍我和武大化学系的黄载福老师认识,并进行合作研究,之后我们进行了多年的共同研究,取得很好的效果,详见[url]http://bbs.instrument.com.cn/topic/6522041[/url] [b][url=http://bbs.instrument.com.cn/topic/6548089][color=#ff0000]步入分析化学的踟蹰岁月(15) ——不断学习中前进[/color][/url][/b]早在读初中时,就迷恋上当时的北京图书馆,因为那里太迷人啦,北图坐落在北京北海公园湖的西边,一座美丽华贵的古建筑。围墙是红色,大屋顶有黄色的琉璃瓦,墙壁镶嵌有绿色琉璃瓦装饰。院中有古柏苍松,大门和大殿气势非凡。所以一有空闲就骑车跑到那里读书玩耍,更多图书馆和学习介绍请见[url]http://bbs.instrument.com.cn/topic/6548089[/url][b][url=http://bbs.instrument.com.cn/topic/6574165][color=#ff0000]步入分析化学的踟蹰岁月(16)——探索新规律,最后的研究工作[/color][/url][/b]我们研究组在研究色谱中的超分子化学问题时,发现在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]混合固定相中存在“协同效应”(即混合固定相的分离能力大于两个单独的固定相,通俗的讲就是一加一大于二)。也重现了在毛细管电泳中混合的手性选择剂存在“协同效应”(在毛细管电泳中有“协同效应”的报道)。但是在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中以前从未有过“协同效应”的报道,我们多次试验发现在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中也存在“协同效应”。更多研究请见[url]http://bbs.instrument.com.cn/topic/6574165[/url][b][color=red]未完待续,更多精彩请下载APP,一键关注傅若农老师。[/color][/b][align=center][b][color=red][img=,329,307]http://ng1.17img.cn/bbsfiles/images/2017/09/201709061452_01_3224499_3.png[/img][/color][/b][/align]

  • 傅若农:各个医院用呼出气检测幽门螺旋杆菌的方法“火”了

    [b][color=#0070c0]编者注:[/color][/b]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。[url=http://www.instrument.com.cn/news/20140623/134647.shtml][b]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/b][/url][url=http://www.instrument.com.cn/news/20140714/136528.shtml][b]第二讲:傅若农:从三家公司[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/b][/url][url=http://www.instrument.com.cn/news/20140811/138629.shtml][b]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/b][/url][url=http://www.instrument.com.cn/news/20140902/140376.shtml][b]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/b][/url][url=http://www.instrument.com.cn/news/20141009/143041.shtml][b]第五讲:傅若农:气-固色谱的魅力[/b][/url][url=http://www.instrument.com.cn/news/20141104/145381.shtml][b]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/b][/url][url=http://www.instrument.com.cn/news/20141205/147891.shtml][b]第七讲:傅若农:酒驾判官——顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/b][/url][url=http://www.instrument.com.cn/news/20150106/150406.shtml][b]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/b][/url][url=http://www.instrument.com.cn/news/20150211/153795.shtml][b]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/b][/url][url=http://www.instrument.com.cn/news/20150312/155171.shtml][b]第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用[/b][/url][url=http://www.instrument.com.cn/news/20150417/158106.shtml][b]第十一讲:傅若农:扭转乾坤——神奇的反应顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析[/b][/url][url=http://www.instrument.com.cn/news/20140714/136528.shtml][b]第十二讲:擒魔序曲——脂质组学研究中的样品处理[/b][/url][url=http://www.instrument.com.cn/news/20150617/164595.shtml][b]第十三讲:离子液体柱——脂质组学中分离脂肪酸的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱[/b][/url][url=http://www.instrument.com.cn/news/20150716/167186.shtml][b]第十四讲:脂肪酸[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的故事[/b][/url][url=http://www.instrument.com.cn/news/20150820/170240.shtml][b]第十五讲:吹口气,知健康——[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS检测呼气疾病标记物  [/b][/url][url=http://www.instrument.com.cn/news/20150929/173804.shtml][b]第十六讲:重症早期预警——呼出气用SIFT-MS 实时快速检测[/b][/url][b] 前言 用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS或SIFT-MS检测呼出气体的方法有推广的可能 [/b]  前面我们讲述了用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS或SIFT-MS检测呼出气体的方法,当然这两种方法使用起来比较麻烦,专业性强了一些,但是像现在医院使用的一些检测仪器,如核磁共振不也是非常广泛吗?而且像[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS或SIFT-MS都可以设计为专用设备,使用简化操作模式。比如现在十分流行的14C尿素呼气试验检测幽门螺旋杆菌(HP)的方法。 幽门螺旋杆菌(HP)的感染与多种上消化道疾病相关,因此临床检查HP的感染对多种上消化道疾病的治疗起着十分积极的指导作用。目前大多数医院检测HP感染的主要方法为快速尿素酶实验及胃粘膜Giemsa染色,但该两种方法为侵入性有创检测手段,对患者有一定的损伤 而14C尿素呼气实验(14C-UBT)为非侵人性无创检测手段,具有简便、快速、可靠等特点,正逐渐被临床应用(四川医学,2006,27 (8):798))。14C-UBT的原理: HP能生产大量的尿素酶,尿素酶可分解尿素生成氨和二氧化碳,人服用含14C标记的尿素后,可被HP生产的尿素酶分解为14C标记的CO2,并从肺呼出。收集呼气样本,用气体同位素质谱仪检测同位素标记14C的量即可判断是否感染HP。SIFT-MS 更简单,更快速,更实时,更普适。经过临床医生、色谱学者和仪器制造厂家的共同努力是可以把[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS或SIFT-MS用于临床检测的。  [b][url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS或SIFT-MS检测呼出气体的方法的比较[/b]  我在第15和16篇文章介绍了使用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS和选择性离子流动管质谱(SIFT-MS)分析呼吸气体中疾病标记物的方法。[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS是十分成熟可靠的方法,应用极为广泛,为了比较这两种方法,这里介绍新西兰M. J. McEwan等人的研究工作,他们比较了这两种方法分析各种挥发性气体的效果(Rapid Commun Mass Spectrom, 2014, 28: 10-18)。  [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS是十分成熟的方法,积累了大量成熟技术和色谱及质谱数据,有7万个化合物在极性和非极性色谱柱上保留指数的数据库,以及有21万个化合物的电子轰击源质谱数据库,可以用于化合物的鉴定(NIST/EPA/NIH Mass Spectral Database (NIST11) and NIST Mass Spectral Search Program (version 2.0g). U.S. Dept. of Commerce, Standard Reference Data Program, Gaithersburg, MD, 2011)。 当然[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS也有一些必备的条件,直接气态进样或液态顶空进样挥发性有机物去掉还是有些困难,很多情况下需要进行预浓缩,顶空进样挥发性有机物主要使用吹扫捕集技术,用惰性气体把有机挥发性物质从水溶液中吹扫出来,再吸附在吸着剂上,经过浓缩,再经过热解析进样分析(就像我们在第15篇文章已经介绍了使用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS 分析人体呼出气体的方法)。SIFT-MS方法实时、直接、快速,不像[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS那样成熟,不过比14C-UBT方法更简单一些,无需事前服用含14C标记的尿素。  SIFT-MS方法有过一些研究,证明这一方法可以准确、实时、快速地分析挥发性有机化合物(VOCs ),但是没有直接和其他方法进行过比较。McEwan等人详细地比较了SIFT-MS和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS两个方法的检测数据。[b]1 分析用标样[/b]  为了有效性使用常规法测定所要分析的25个VOC标样(最通用的方法是US EPA的TO-14A 和 TO-15),此标样是稀释在氮气中,每个化合物浓度为1ppm,见表1[align=center]表1 比较所用标样中的化合物[/align][align=center] [img]http://img1.17img.cn/17img/images/201511/insimg/c14b7004-319d-47e8-abb0-55503d58e360.jpg[/img][/align]  [b]第1组实验[/b]  利用已经有的SIFT-MS数据库,只要知道相关的离子-分子动力学数据,不用任何校准就可以测定Tedlar样品袋中样品的浓度。为了测定SIFT-MS的响应值,把样品稀释:在样品袋中用1-L气密注射器注入1 L 零空气,用气密注射器把校准用标准气注入到零空气中,稀释气的浓度范围为1ppm(v) 到5ppb(v)。  使用表1中的25个标准化合物对[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS进行的校准,用气密注射器从标准气钢瓶中吸取一定容积的标样,与含水分的空气一起注入15-L的样品罐,形成一个10ppb浓度的测试样品。从一个含有1ppm浓度的一溴一氯甲烷、4-溴氟苯、氯苯-d5 和1,4-二氟苯的标样中吸取一定量的标样,以相同方式制备一个浓度为50ppb 的内标物,标定[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS系统使用US EPA TO-15的方法。吸取0.5 到50 ppb浓度的6个标样进行标定。用质谱评估日间重复性。  [b]第2组实验[/b]  使用表1 中的另外一组17个VOCs,对SIFT-MS 和 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS进行直接比较,这17个化合物见表 2.[align=center]表 2 直接比较用的17个化合物[/align][align=center][img]http://img1.17img.cn/17img/images/201511/insimg/b07a077e-f5dc-4293-895b-f5ead5cdc664.jpg[/img][/align]  从这17个化合物中选择挥发性相近的几个物质,制备3组液体混合物。  使用10-μL气密注射器往4个样品罐中液体上面加入不同量的顶空样品。用含湿零空气让样品罐造成 5 psig的正压。然后用SIFT-MS方法进行快速定量测定,确定其符合[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS系统所需的线性范围,在0.5 到 50 ppb之间。对SIFT-MS从动力学数据库导出的浓度还要做一些小的修正,使其分析物的浓度在校正混合物标样浓度的10%之内。还要对样品罐内正压力为 5 psig进行修正,因为分析物的压力为大气压力。另外7个化合物不在混合物里面,也用来检测两种仪器的背景信号水平。  [b]第3组实验[/b]  第3组实验是用两组实际样品来比较[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS 和 SIFT-MS方法测定的结果,所选两组实际样品,一组是从被染料油污染土壤排出的气体,另一组是来自一个冰毒(甲基苯丙胺)实验室,经过净化的气体。在分析时环境样品或土壤中的蒸汽使用限流孔采样器,以180mL/min,在样品罐剩余压力为127 Torr时完成,充以零空气稀释使之成为正压,稀释因子约为2。[b]2 SIFT-MS方法和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS测定[/b]  在此研究中作者们使用便携式Voice200 SIFT-MS 仪器 (Syft Technologies Ltd, Christchurch, New Zealand)([url=http://www.syft.com]www.syft.com[/url] ),在此仪器上可以用湿空气在0.35 Torr下微波放电产生三种反应离子(H3O+, NO+ 和 O2+), 形成的反应离子在流动管前经四极杆质谱过滤,并和氦载气(0.6 Torr)一起进入流动管,这些离子沿着曲线管流动,通过一个锐孔进入流动管末端,这里正好是针孔透镜后面,然后用一个分流涡轮泵把离子泵入下游四极杆质谱,进行质谱选择并计量。为了无遗漏地分析所有的被分析物,每相隔10 ms进行三种反应离子的切换。为了避免样品由于吸附而损失,仪器的进样口进行了钝化处理,进样口与样品罐通过一个经Silonite钝化的Micro-QT?微型阀(Entech Instruments Inc.)连接,Tedlar样品袋用一段短的聚四氟乙烯管连接。反应离子与样品的反应时间为3.7 s。  [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS 分析是由R.J. Hill Laboratories Limited.完成的,这一实验室经ISO 17025标准认证,可以进行 US EPA TO-15方法的分析。使用 7890A [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]和 5975C MSD进行分析,色谱柱为. HP-1 固定相的 60 m×0.32 mm i.d. 毛细管柱,载气为氦气,流速 36 cm/ s,色谱柱箱起始温度35°,保持4 min,以4°C/min升温到110℃,保持0.1 min,之后以15°C/min升温到220℃保持5 min,总分析时间为36.2 min,4 min后进行质谱数据收集,从m/z 29到160,持续到10 min,另外的分析把质谱范围改变为m/z 34 到270。[b]3 结果  实验 1[/b]  使用Voice200分析表 1 所列出的 25个化合物的结果见表3,所测定的结果是利用文献报道的速率系数和相关反应离子反应的转移比例而得到的。对于每个被分析物,可能研究三种不同试剂的离子反应,不过在25个或多个分析物基体中,一些产物离子可能具有相同的质量(异构体),因此异构体和试剂离子的离子产物不包括在分析结果中。  表3的结果表明,用试剂离子测定得到分析物浓度是基于现有数据库的动力学数据,86%结果是在35%的误差之内。一些异常值可能只是由于取样袋被污染造成的。其中一个例子是萘的结果,可能又由于从Tedlar袋吸附造成的损失,导致所有三种试剂离子结果都偏低。另外,丙酮和丁酮的结果偏低,如果用一个渗透管取样,丙酮在校正后的结果,误差在10%的范围内。  表3的右边的两列显示检测限(LOD)和定量限(LOQ)。  SIFT-MS仪器响应值浓度与标准值的对应关系如图1所示。用零空气稀释产生一系列的不同浓度样品进行测量,浓度在1 ppmv到5 ppbv之间,得到校准曲线,其相关系数≥0.997。典型的关系如图1所示。图1(a)为烃化合物,(b)为的氯化烃。[align=center][img=,824,594]http://img1.17img.cn/17img/images/201511/insimg/1692112e-4c17-47fa-92d4-0a6263d53955.jpg[/img][/align][align=center][img=,914,595]http://img1.17img.cn/17img/images/201511/insimg/b462a608-d60c-49ef-b52e-c5652521763f.jpg[/img][/align][align=center][img=,1000,322]http://img1.17img.cn/17img/images/201511/insimg/b1109f97-4ff6-4907-ab67-b8722e3aae64.jpg[/img][/align][align=center][img=,579,447]http://img1.17img.cn/17img/images/201511/insimg/94185f28-745a-4ff4-ad79-cfd1107519b8.jpg[/img][img=,542,421]http://img1.17img.cn/17img/images/201511/insimg/e8971913-f28f-4753-8921-2f58075112d6.jpg[/img][/align]  [b]实验 2 SIFT-MS 和 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS 方法测试挥发性混合物的比较[/b]  样品罐中目标挥发物(从低浓度到中等浓度ppb/v)用SIFT-MS和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS进行测试,列于表4。斜体的VOCs代表背景含量浓度,测试每个仪器和方法,但不在混合物中。总之,对17个VOCs两种方法是相符合的。偏差大于30%的只有高苯乙烯(SIFT-MS比[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS的结果高),丙酮和二硫化物在所有混合物样品中SIFT-MS的结果低于[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS。这些问题有待进一步研究。[align=center]表 4 SIFT-MS和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS 测试结果[/align][align=center][img=,759,437]http://img1.17img.cn/17img/images/201511/insimg/7c0249cc-ac7d-4926-aa16-ca2b440b3d40.jpg[/img][/align]  a 这些化合物不包括在混合物中,用于仪器背景信号的检测。  b C2-烷基苯包括乙苯和三个二甲苯位置异构体用于SIFT-MS的研究,这一实验只把乙苯加到混合物中。  c C3-烷基苯包括所有异构体用于SIFT-MS的研究,这一实验只把1,3,5-三甲苯加到混合物中。  d [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS没有测定乙腈  [b]实验3:对4个实际样品的测定[/b]  4个实际样品测试结果的比较列于表5。第一个样品来自一个被燃油罐污染的土壤,样品取自油罐周围燃料流过和渗漏的地方。其中的挥发性有机化合物的比较结果在第1栏中,第2栏表示来自油流过污染土壤上方空气中的分析物浓度样,第3栏是来自土壤样品的分析结果。第二个样品是来自一个冰毒实验室中空气样品的分析结果。  结果说明对非污染样品如空气样品,所测定结果两种方法是很一致的,被污染的样品(土壤气体)中小分子的芳烃(苯,甲苯,C2-烷基苯)的结果很一致。但是在土壤样品中的另外一些化合物结果一致性差,结果不一致是因为土壤饱和吸收烃类化合物所致,这些烃类化合物造成SIFT-MS产物离子重叠,在这种情况下,SIFT-MS在样品化合物组分多时会受到干扰。而在冰毒实验室中空气样品的分析结果却很一致。  表 5 实际样品测试结果的比较[align=center][img=,915,648]http://img1.17img.cn/17img/images/201511/insimg/4008f0f4-1301-498c-ae3e-5e7c270023b2.jpg[/img][/align]  a C2-烷基苯包括乙苯和三个二甲苯位置异构体用于SIFT-MS的研究, [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS 可测定这些异构体  b C3-烷基苯包括所有异构体用于SIFT-MS的研究,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS 可测定这些异构体  c 没有[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS的数据,因为2-甲基丁烷有干扰。  d [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS没有数据[b]结论[/b]  在一个符合USA EPA TO15要求的实验室进行SIFT-MS 和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS方法的比较, SIFT-MS方法进行标准气体样品的测定,尽管没用这些样品实现对仪器进行校准,使用了文献中的动力学数据,对大多数化合物还是符合要求的。比较了17个化合物的测定,说明SIFT-MS方法可以取代[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS方法。对四个实际样品的比较,说明 SIFT-MS可用于实际样品的分析。  SIFT-MS方法是一个实时、快速分析痕迹量(ppt/v)的方法,无需事先进行样品吸附-解析,分离步骤。[b]后记[/b]  既然各个医院都用呼出气快速检测幽门螺旋杆菌的方法来诊断胃病(胃癌),说明用呼出气快速筛查疾病是一种很好的方法,而且使用了同位素质谱技术。那么SIFT-MS检验疾病的方法也是可行的,SIFT-MS无需使用同位素检测试剂。如果医学、化学、仪器专家共同努力进一步发展这一方法还是有希望用于医疗检测的。

  • 傅若农:酒驾判官—顶空气相色谱的前世今生

    [color=#0000ff]编者注:[/color]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势,以飨读者。  [url=http://www.instrument.com.cn/news/20140623/134647.shtml]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/url]  [url=http://www.instrument.com.cn/news/20140714/136528.shtml]第二讲:傅若农:从三家公司[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/url]  [url=http://www.instrument.com.cn/news/20140811/138629.shtml]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/url]  [url=http://www.instrument.com.cn/news/20140902/140376.shtml]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/url]  [url=http://www.instrument.com.cn/news/20141009/143041.shtml]第五讲:傅若农:气-固色谱的魅力[/url]  [url=http://www.instrument.com.cn/news/20141104/145381.shtml]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/url]  很多人是通过酒驾司机血液中酒精含量检测知道“顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]”这一名称的。可能顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]这一方法应用较多之一也是检测酒驾人员血液中的酒精含量(使用公安部的法定标准GA/T842-2009 进行检测)。  其实顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]现在是应用非常广泛的一种分析方法,如果你用“顶空进样”这一关键词检索“知网”就会有两千多篇文章 在仪器信息网上的仪器展播中有关顶空进样的仪器有50多种,再看下面一张从1990年到2001年发表的有关顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]文章的增长趋势图,12年里发表文章的总数达到4000篇,可见这一方法的应用有多么广阔。[align=center][img=,580,404]http://img1.17img.cn/17img/old/NewsImags/images/2014125175546.jpg[/img][/align][align=center]图 1 1990-2001年顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]文献增长趋势[/align][align=center]HS-[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 全部顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url] Dynamic 动态顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],SPME 固相微萃取顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url][/align][align=center]( TrAC 2002, 21:608)[/align][color=#0000ff][b]  1 顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的起源[/b][/color]  这里我简要地讲述一些顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的故事。  其实顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]由来已久,先給大家讲一个故事:在 1958-1959 冬季 Leslie S. Ettre (国际知名色谱学家,匈牙利人,当时在Perkin-Elmer 公司作应用研究工程师),有一个马铃薯片公司的化学家要求他给这个公司设计一个用 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 分析马铃薯片在贮存过程中变质后产生特有怪味的方法,用以检测马铃薯片变质的程度。几天后 Ettre 收到马铃薯片公司给他发来的一个大箱子样品,箱子里面有 144 个马铃薯片的袋子,这是他们可以运输的最少数量了,Ettre 把一些马铃薯片袋存放在室温下,另外一些马铃薯片袋存放在热的屋子里。几天以后 Ettre 打开常温和高温屋子存放的马铃薯片袋子,发现它们有很不同的气味。但是问题是如何把袋子里的气体注入到色谱仪里,当时气体进样常规的方法是使用气体进样阀,但是进样阀需要有正压才行。Ettre 就使用了一个医用注射器(0.5-1 mL),当时还没有微量注射器,用注射器针刺穿马铃薯片袋子吸取其中的0.5-1 mL 气体,注射到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中。的确,不同的马铃薯片袋子中的气体得到的色谱是不一样的。自然这一方法就是顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的方法了。据 Ettre 称 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 中顶空进样的第一篇论文是在 1960 年一月份的 Food Technology 上由 Stahl 等人发表的,( W.H. Stahl, W.A. Voelker, and J.H. Sullivan, Food Technol. 1960,14 :14-16 ),文章的标题是“罐头顶空气体(主要是氧气)的测定”。  第一篇有关顶空进样的应用文章是在 1939年发表的,是 R.N.Harger 等人(印第安纳大学生物化学和药物学系)在一篇美国生物化学家学会的33届年会的报告(J. Biol. Chem.1939, 128:xxxviii-xxxix )中叙述的,他们叫做“气体测量法”(aerometric method),用来快速测定水和体液中的乙醇。这一方法,把动态和静态方法结合起来,把液体样品上面的气体通过一个硫酸-高锰酸盐试剂(进行氧化还原测定),用以定量测定乙醇的含量。作者们还用这一方法测定了空气-水体系在 0-40 °C 的温度范围内的分配系数。  把顶空进样和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]结合起来的分析开始于 1958 年的 Amsterdam 国际会议上,是 比利时 Schelle 电站的 Bovijn 等人用这一方法分析高压锅炉水中微量( 1-ppb 数据级)的烃类,取一部分平衡下的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]样品到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中,用热导池进行检测。据作者说这一装置在文章发表前在电厂已经运转了一年多。  Stahl 等人发表的标题为“罐头顶空气体(主要是氧气)的测定”文章中,他们是把罐头顶部刺一个孔,用注射器抽取 0.5-1 mL 顶空的气体注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进行分析。显然 Stahl 的工作推动了 Beckman 公司开发出一种设备用于罐头顶空气体或其他密闭空间气体的测定(“Beckman Headspace Sampler, bulletin number 7012,” Beckman Scientific and Process Instruments Division (Fullerton, California,September 1962).)。  这一装置有一个带有刺孔针的抽取样品气的密闭容器,刺入要分析的罐头罐时可以把顶部气体吸入此密闭容器中,这一装置所用的原理是测定罐中存在的氧气,为了测定这一装置连接到一个极谱测定氧的传感器,并连接到直接读数的显示器上。(值得一提的是这一氧传感器也用于探测水星计划的空间舱中)。此外,气体样品可以通过这一容器侧面的橡胶隔垫用注射器抽出来,用于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析,图 2 就是这一装置的照片图。这一仪器几乎被人们遗忘了。[align=center][img=,185,207]http://img1.17img.cn/17img/old/NewsImags/images/201412518231.jpg[/img][/align][align=center]图 2 顶空取样容器照片[/align]  [color=#0000ff][b]2 顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的基本原理和类型[/b][/color]  顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]([url=https://insevent.instrument.com.cn/t/Mp]gc[/url] headspace Analysis,[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-HS analysis ) 是指对液体或固体中的挥发性成分进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的一种间接测定法,它是在热力学平衡的蒸[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]与被分析样品同时存在于一个密闭系统中进行的。例如测定血液中的乙醇,把血样置于一个密闭恒温的样品瓶中,测定恒温后样品瓶蒸[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中的乙醇浓度,通过校准曲线计算血样中的乙醇含量。这一方法从[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]角度讲,是一种进样系统,即“顶空进样系统”。有不少仪器公司有商品的顶空进样系统。有关顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的名称,美国称为:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] headspace Analysis,前苏联的文献称为: Equilibrium Vapour Analysis,德国叫做 Dampfraumanalyse ( 英文为:Vapour Volume Analysis ) 。我国一般称为:顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析,但早期有人称为: “液上[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析”,这样的名称不全面,因为有不少样品是固体。所以现在统一名称还是用“顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析”。  有关顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]原理详细的描述由于篇幅的关系这里就不讲解了,需要了解的读者可以读读早期出版的书,在国内全面介绍顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析的书有 Hachenberg等1977年出版的 Gas chromatographic headspace Analysis([url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]顶空分析),翻译本为“液上[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析”(见下图3)。图4是1984年出版的原苏联列宁格勒国立大学(现名圣彼得堡大学)的 Ioffe 撰写的“[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中的顶空分析及相关方法”和1997年出版(修订版是2006年)的Kolb 等撰写的“静态顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析”封面,。[align=center][img=,338,600]http://img1.17img.cn/17img/old/NewsImags/images/20141251836.jpg[/img][img]http://img1.17img.cn/17img/old/NewsImags/images/2014126153637.jpg[/img][/align][align=center]图3 1977年(中译本1981年)出版的顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]书[/align][align=center][img=,238,346]http://img1.17img.cn/17img/old/NewsImags/images/201412518329.jpg[/img][img]http://img1.17img.cn/17img/old/NewsImags/images/201412615363.jpg[/img][/align][align=center]图4[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]中的顶空分析及相关方法(Ioffe等)和 静态顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url](B. Kolb 等)[/align]  顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的类型有:  (1)静态顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]:所谓静态顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]是在一个密闭恒温体系中,液汽或固汽达到平衡时用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法分析蒸[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中的被测组分 。如下图5[align=center][img=,598,345]http://img1.17img.cn/17img/old/NewsImags/images/201412518349.jpg[/img][/align][align=center]图5 静态顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]示意图[/align][align=center]1—注射器 2—密封隔垫 3—螺帽 4—容器 5—样品 6—恒温浴 7—温度计[/align]  (2)动态顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]:也叫做吹扫-捕集(Purge-Tranp)分析法,这一方法是用惰性气体通入液体样品(或固体表面),把要分析的组分吹扫出来,使之通过一个吸附剂进行富集,然后再把吸附剂加热,使被吸附的组分脱附,用载气带到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中进行分析。如图6的示意图。[align=center][img=,240,184]http://img1.17img.cn/17img/old/NewsImags/images/201412518410.jpg[/img][/align][align=center]图 6 动态顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]示意图[/align][align=center]1—捕集管 2—冷却水 3—样品管 4—水浴 5—洗气瓶[/align]  (3)固相微萃取(SPME)顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]:这种方法是在静态顶空瓶顶空蒸汽中装一支固相微萃取头,在一定温度下吸附顶空重的蒸汽分子一定时间,然后把固相微萃取头取出,插入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的进样口中,进行[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析。如下图7所示:[align=center][img=,584,372]http://img1.17img.cn/17img/old/NewsImags/images/201412518431.jpg[/img][/align][align=center]图7 固相微萃取(SPME)顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]示意图[/align][align=center](Forensic Sci Intern 2000,107:129)[/align][align=center]左图4ml 顶空瓶,内装10mg头发,内标和1mL 4%的NaOH,0.5gNa2SO4,使头发消化预热30min。[/align][align=center]中间图:顶空吸附30min。右图:在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口脱附。[/align]  固相微萃取(SPME)装置如下图8所示:[align=center][img=,600,508]http://img1.17img.cn/17img/old/NewsImags/images/201412518531.jpg[/img][/align][align=center]图8 固相微萃取装置示意图[/align]  (4)一滴溶剂顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]:这种进样方式类似于SPME顶空进样,只是把固相微萃取进样装置换成一支注射器,在注射器针头处悬一滴萃取用溶剂液滴,如下图9所示:[align=center][img=,544,364]http://img1.17img.cn/17img/old/NewsImags/images/201412518555.jpg[/img][/align][align=center]图 9 一滴溶剂顶空萃取示意图[/align][align=center](J Chromatgr A 2007,1152:184)[/align]  [color=#0000ff][b]3 静态顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的方法[/b][/color]  静态顶空最简单的方式是在一个 恒温系统(空气浴、水浴、甘油浴或金属块加热,. 样品瓶多为玻璃样品瓶,加可穿刺的密封盖,瓶体积为十至数十毫升,. 注射器宜用气体注射器或气密性较好的医用注射器。样品在恒温器中于一定温度下加热一定时间,取蒸汽样注入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进行分析,当然在转移中由于温度降低会出现误差。所以现在多用各种顶空进样器连接在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]上,通过保温管线转移到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中。  顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进样必须从密闭的样品瓶的顶空取样到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中,要控制取样的重复性是至关重要的,常使用压力平衡进样。所谓平衡压力进样就是使用惰性气体往恒温的密闭样品瓶中加压,然后让受压的顶空气体在一定的时间里膨胀到色谱柱中。依靠控制压力和时间可以很精确地从样品瓶中吸取一定容积的顶空气体样品。这一方法叫做“平衡压力进样” ,平衡压力进样的过程如图 10所示。(a)恒温样品瓶和进样针是分开的,(b) 通入气体加压,(3)关闭载气,顶空瓶中的气体膨胀到色谱柱中。[align=center][img=,416,240]http://img1.17img.cn/17img/old/NewsImags/images/201412518625(1).jpg[/img][/align][align=center]图 10 平衡压力进样的过程[/align]  根据上述原理P-E公司开发了顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]自动进样器F-40,于1967年在德国法兰克福举行的化工展览会上展出,见图11。近年有大量各种各样的顶空进样器出现。[align=center][img=,202,157]http://img1.17img.cn/17img/old/NewsImags/images/201412518658.jpg[/img][/align][align=center]图 11 F-40自动顶空进样器[/align][align=center](L.S. Ettre, LC-[url=https://insevent.instrument.com.cn/t/Mp]gc[/url],2002, 20(12), 1121)[/align]  [color=#0000ff][b]4 静态顶空进样方法的应用[/b][/color]  静态顶空的应用极为广泛,遍及各个领域,如食品、医药、环境、农业等,表1列举了近年利用顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行分析检测的文章,同时也看出大多使用各种顶空进样器完成分析。  自动顶空进样器有很多种,在仪器信息网上展播的就有50多种,那些是使用比较多的呢,表1列举了60篇国内期刊上发表有关顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]文章。从表中可以看出顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]用于各种各样的分析中。第60篇是最新一期色谱杂志上的文章,他们使用Agilent 7697 自动顶空进样器和Agilent 7000[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-三重四极杆质谱仪分析了化妆品中常见及禁用的36种有机溶剂,使用双柱(极性的VF-1301柱和非极性的DB-5ms柱,利用NIST MS search 2.0作检索工具,研究了36种挥发性有机溶剂的分析方法。[align=center]表 1 顶空进样[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]论文所使用的顶空进样器[/align][table=100%][tr][td][align=center]序号[/align][/td][td][align=center]题名[/align][/td][td][align=center]使用顶空进样器[/align][/td][td][align=center]文献[/align][/td][/tr][tr][td][align=center]1[/align][/td][td][align=center]测定尿中三氯乙酸的自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]李添娣等,职业与健康,2012,28(6):1982-1983[/align][/td][/tr][tr][td][align=center]2[/align][/td][td][align=center]顶空-毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定葡萄酒中的甲醇[/align][/td][td][align=center]TurboMatrix 40自动顶空进样器[/align][/td][td][align=center]曾游等,现代食品科技[b],[/b]2013,29(2):405-408[/align][/td][/tr][tr][td][align=center]3[/align][/td][td][align=center]顶空-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定水产品中一氧化碳[/align][/td][td][align=center]TurboMatrix HS 40 Trap 顶空自动进样器[/align][/td][td][align=center]王萍亚等,浙江海洋学院学报(自然科学版),2012,31(6):518-520,535[/align][/td][/tr][tr][td][align=center]4[/align][/td][td][align=center]顶空- [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]同时测定比卡鲁胺原料药中6 种有机溶剂残留量[/align][/td][td][align=center]HP7694E 顶空进样器[/align][/td][td][align=center]许瑞征等,现代仪器[b],[/b]2004,(3):15-16[/align][/td][/tr][tr][td][align=center]5[/align][/td][td][align=center]顶空萃取-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱法分析芝麻油中的挥发性成分[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]陈俊卿等,质谱学报,2005,26(1):49-51[/align][/td][/tr][tr][td][align=center]6[/align][/td][td][align=center]顶空进样一毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法侧定啤酒的香味组分[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]王莉娜等,啤酒科技,2001,(1):9-11[/align][/td][/tr][tr][td][align=center]7[/align][/td][td][align=center]顶空进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定大气中吡啶的研究[/align][/td][td][align=center]DANI HSS 86.50 顶空进样器[/align][/td][td][align=center]王艳丽等,中国环境监测,2013,29(2):62-64[/align][/td][/tr][tr][td][align=center]8[/align][/td][td][align=center]顶空进样器在快速检测食品美拉德反应风味物质中的新应用[/align][/td][td][align=center]TurboMatrix HS 40 Trap 顶空自动进样器[/align][/td][td][align=center]钟罗宝等,现代食品科技,2009,25(9):1091-1095[/align][/td][/tr][tr][td][align=center]9[/align][/td][td][align=center]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用法分析粪便中挥发性脂肪酸[/align][/td][td][align=center]瑞士CTC CombiPAL 顶空进样器[/align][/td][td][align=center]江振作等,分析化学,2014,42(3):429-435[/align][/td][/tr][tr][td][align=center]10[/align][/td][td][align=center]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定生物柴油中的微量甲醇[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]李长秀等,石油化工,2012,41(10):1196-1200[/align][/td][/tr][tr][td][align=center]11[/align][/td][td][align=center]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定食品包装中残留乙烯[/align][/td][td][align=center]TurboMatrix HS 40 Trap 顶空自动进样器[/align][/td][td][align=center]周相娟等,食品工程,2012,(6):128-129[/align][/td][/tr][tr][td][align=center]12[/align][/td][td][align=center]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定药品中残留溶剂的影响因素考察[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]秦立等,药物分析杂志,2005,25(7):823-826[/align][/td][/tr][tr][td][align=center]13[/align][/td][td][align=center]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法快速检测卫生纸中的细菌含量[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]田迎新等,造纸科学与技术,2012,31 (2):59-62[/align][/td][/tr][tr][td][align=center]14[/align][/td][td][align=center]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]内标法测定血液中乙醇含量[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]邹黎,检验医学与临床,2011,8(2):2761-2762[/align][/td][/tr][tr][td][align=center]15[/align][/td][td][align=center]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url].质谱法测定玩具中的10种挥发性有机物[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]吕庆等,色谱,2010,28(8):800-804[/align][/td][/tr][tr][td][align=center]16[/align][/td][td][align=center]顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]一质谱法测定婴幼儿食品中的呋喃[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]刘平等,色谱,2008,26(1):35-38[/align][/td][/tr][tr][td][align=center]17[/align][/td][td][align=center]纺织品中挥发性有机物(VOCs) 的检测-[/align][align=center]静态顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱法[/align][/td][td][align=center]Agilent G1888自动顶空进样器:[/align][/td][td][align=center]涂貌贞,中国纤检,2009,(9):66-68[/align][/td][/tr][tr][td][align=center]19[/align][/td][td][align=center]基于HS-[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS 的棉织物鱼腥味检测[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]王晓宁等,纺织学报,2011,32(2):68-72[/align][/td][/tr][tr][td][align=center]20[/align][/td][td][align=center]利用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]顶空装置测定红磷储存过程中生成的磷化氢[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]陈海群等,色谱,2004,22(4):442- 444[/align][/td][/tr][tr][td][align=center]21[/align][/td][td][align=center]两种轻烃分析方法(“PTV切割反吹”和“顶空”)的对比研究[/align][/td][td][align=center]意大利 FISONS 8500 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url], HS800 顶空自动进样装置[/align][/td][td][align=center]肖廷荣等,色谱,2001,19(4):304-308[/align][/td][/tr][tr][td][align=center]22[/align][/td][td][align=center]啤酒中挥发性风味物质的分析及风味评价[/align][/td][td][align=center]TurboMatrix 40自动顶空进样器[/align][/td][td][align=center]王志沛等,酿酒科技,2001,21,(4):59-61[/align][/td][/tr][tr][td][align=center]23[/align][/td][td][align=center]使用自动顶空进样器测定梨中代森锰锌残留量的电子捕获[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法[/align][/td][td][align=center]HT2000 自动顶空进样器(意大利)[/align][/td][td][align=center]聂春林等,精细化工中间体,2010,40(6):63-66[/align][/td][/tr][tr][td][align=center]24[/align][/td][td][align=center]水中12种卤代有机物的自动顶空- [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定方法研究[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]张燕等,中国卫生检验杂志,2010,20(11):2716-2718[/align][/td][/tr][tr][td][align=center]25[/align][/td][td][align=center]水中54种挥发性有机物的顶空- [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法研究[/align][/td][td][align=center]自动顶空进样器, 成都科林公司[/align][/td][td][align=center]高玲等,中国卫生检验杂志,2010,20(7):1645-1648[/align][/td][/tr][tr][td][align=center]26[/align][/td][td][align=center]水中三氯甲烷、四氯化碳的QHSS-40 自动进样顶[/align][align=center]空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定法[/align][/td][td][align=center]QHSS-40 全自动顶空进样器(QUMA Elektronik & Analytik GmbH)[/align][/td][td][align=center]罗黎明,职业与健康,2012,28(14): 1722-1723[/align][/td][/tr][tr][td][align=center]27[/align][/td][td][align=center]血中乙醇的顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析[/align][/td][td][align=center]安捷伦1888型自动顶空进样器[/align][/td][td][align=center]刘兆等,中国人民公安大学学报(自然科学版),2008,(4):18-19[/align][/td][/tr][tr][td][align=center]28[/align][/td][td][align=center]衍生- 顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定化妆品中游离甲醛[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]环境与职业医学,2012,29(7):459-461[/align][/td][/tr][tr][td][align=center]29[/align][/td][td][align=center]液液萃取- 顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定饮用水中卤乙酸[/align][/td][td][align=center]Tekmar7000自动顶空进样器[/align][/td][td][align=center]中国卫生检验杂志,2011,21(6):1338-1340[/align][/td][/tr][tr][td][align=center]30[/align][/td][td][align=center]乙基纤维素乙氧基含量的顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定[/align][/td][td][align=center]HS86-50型自动顶空进样器,意大利DANI公司[/align][/td][td][align=center]付时雨等,华南理工大学学报(自然科学版),2011,39(11):17-21[/align][/td][/tr][tr][td][align=center]31[/align][/td][td][align=center]用顶空进样法分析烯烃废碱液中硫化物[/align][/td][td][align=center]TurboMatrix HS 40 Trap 顶空自动进样器[/align][/td][td][align=center]高巍等,齐鲁石油化工,2013 ,41 ( 3 ) :252 - 254[/align][/td][/tr][tr][td][align=center]32[/align][/td][td][align=center]蒸气顶空富集装置- 自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法在海水中痕量苯系物检测中的应用[/align][/td][td][align=center]顶空自动进样器( 瑞士CTC Analysis AG 公司)[/align][/td][td][align=center]孙秀梅等,山东化工,2014,43(7):73-76[/align][/td][/tr][tr][td][align=center]33[/align][/td][td][align=center]柱前衍生化顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法同时检测非布司他原料药中3 种微量有机酸[/align][/td][td][align=center]G1888 型自动顶空进样[/align][align=center]器(美国安捷伦科技公司[/align][/td][td][align=center]朱圣亮等,中国药房,2012,23(25) :2372-2373[/align][/td][/tr][tr][td][align=center]34[/align][/td][td][align=center]自动顶空-毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定水中苯系物[/align][/td][td][align=center]德国MS6多功能自动进样器[/align][/td][td][align=center]刘俩燕,中国卫生检验杂志,2010,20 (8):1918-1920[/align][/td][/tr][tr][td][align=center]35[/align][/td][td][align=center]自动顶空-毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定饮用水中11 种挥发性有机物[/align][/td][td][align=center]Agilent G1888 顶空自动进样器、[/align][/td][td][align=center]刘兰侠等,上海预防医学,2014,26(1):27-28,48[/align][/td][/tr][tr][td][align=center]36[/align][/td][td][align=center]自动顶空-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定地表水中乙醛的方法研究[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]邢志贤等,河北工业科技,2010,27(3):143-145,173[/align][/td][/tr][tr][td][align=center]37[/align][/td][td][align=center]自动顶空- [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定食品包装材料中残留氯乙烯单体[/align][/td][td][align=center]Agilent G1888 顶空自动进样器、[/align][/td][td][align=center]戴华等,中国卫生检验杂志,2011,21(1):36-37[/align][/td][/tr][tr][td][align=center]38[/align][/td][td][align=center]自动顶空- [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定水质中苯系物的研究[/align][/td][td][align=center]Agilent G1888 顶空自动进样器[/align][/td][td][align=center]刘保献等,现代仪器,201,18(3):30-33[/align][/td][/tr][tr][td][align=center]39[/align][/td][td][align=center]自动顶空- [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定水中甲醇的方法优化[/align][/td][td][align=center]Agilent G1888 顶空自动进样器[/align][/td][td][align=center]付翠轻等,中国环境监测,2012,28(4):61-64[/align][/td][/tr][tr][td][align=center]40[/align][/td][td][align=center]自动顶空- [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定水中四乙基铅方法研究[/align][/td][td][align=center]DANI HSS 86.50 顶空进样器[/align][/td][td][align=center]王玲玲等,环境科学与技术,2014,37(5):99-101[/align][/td][/tr][tr][td][align=center]41[/align][/td][td][align=center]自动顶空-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法检测食品包装材料中挥发性有机物[/align][/td][td][align=center]TurboMatrix HS 40 Trap 顶空自动进样器[/align][/td][td][align=center]方 益等,食品科技,2013,38(2):291-295[/align][/td][/tr][tr][td][align=center]42[/align][/td][td][align=center]自动顶空-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法同时测定水中7种挥发性卤代烃[/align][/td][td][align=center]TurboMatrix HS 40 Trap 顶空自动进样器[/align][/td][td][align=center]王建蓉等,供水技术,2012,6(4):62-64[/align][/td][/tr][tr][td][align=center]43[/align][/td][td][align=center]自动顶空- [url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱联用技术测定化工原料中1,2[/align][align=center]-二氯乙烷[/align][/td][td][align=center]TurboMatrix HS 40 Trap 顶空自动[/align][/td][td][align=center]蔡志斌等,中国卫生检验杂志, 2013,23(3):622-624,627[/align][/td][/tr][tr][td][align=center]44[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]gc[/url] /MS测定血液中乙醇含量不确定度评定[/align][/td][td][align=center]DANI HSS 86.50 顶空进样器[/align][/td][td][align=center]周枝凤,中国法医学杂志,2010,25(1):43-46[/align][/td][/tr][tr][td][align=center]45[/align][/td][td][align=center]自动顶空进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定柠檬酸中溶剂残留[/align][/td][td][align=center]AutoHS自动顶空进样器(成都科林)[/align][/td][td][align=center]李锋格,检验检疫学刊,2011,21(1):6-10[/align][/td][/tr][tr][td][align=center]46[/align][/td][td][align=center]自动顶空毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定食品包装中残留丙烯腈单体[/align][/td][td][align=center]PE Turbo Matrix 40 Trap 自动顶空进样器[/align][/td][td][align=center]周相娟等,食品科技,2008,(10):240-242[/align][/td][/tr][tr][td][align=center]47[/align][/td][td][align=center]自动顶空毛细管柱[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法同时检测生活饮用水中7 种挥发性卤代烃[/align][/td][td][align=center]Tekmar 7000 自动顶空进样器[/align][/td][td][align=center]周闰等,中国卫生检验杂志,2013,23(6):1417-1419[/align][/td][/tr][tr][td][align=center]48[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定番茄酱中二硫代氨基甲酸酯的残留量[/align][/td][td][align=center]AutoHS自动顶空进样器(成都科林)[/align][/td][td][align=center]姚伟琴等,中国卫生检验杂志,2009,19(1):52- 53[/align][/td][/tr][tr][td][align=center]48[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定番茄酱中二硫代氨基甲酸酯的残留量[/align][/td][td][align=center]AutoHS自动顶空进样器(成都科林)[/align][/td][td][align=center]姚伟琴等,中国卫生检验杂志,2009,19(1):52- 53[/align][/td][/tr][tr][td][align=center]49[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定番茄酱中乙烯利的残留量[/align][/td][td][align=center]AutoHS自动顶空进样器(成都科林)[/align][/td][td][align=center]姚伟琴等,中国卫生检验杂志,2008,18(8):1537- 1538[/align][/td][/tr][tr][td][align=center]50[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定化妆品中的甲醇[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]高建民等, 化学分析计量,2003,12(3):7-10[/align][/td][/tr][tr][td][align=center]51[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定食品包装材料中残留丙烯腈单体[/align][/td][td][align=center]AutoHS自动顶空进样器(成都科林)[/align][/td][td][align=center]刘俊等,中国卫生检验杂志,2008,18(10):2021-2022[/align][/td][/tr][tr][td][align=center]52[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定水中苯系物的研究[/align][/td][td][align=center]AOC - 5000 液体自动进样、顶空、固相微萃取三合一自动进样器[/align][/td][td][align=center]王臻等,中国热带医学2008,8(1):128-129[/align][/td][/tr][tr][td][align=center]53[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定血液中的乙醇[/align][/td][td][align=center]Tekmar 7000 自动顶空进样器[/align][/td][td][align=center]刘文卫等,1502 中国卫生检验杂志 2012,22(7):1502-1503 ,1506[/align][/td][/tr][tr][td][align=center]54[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定[/align][align=center]液体餐具洗涤剂中的甲醇[/align][/td][td][align=center]PE Turbo Matrix 40 Trap 自动顶空进样器[/align][/td][td][align=center]王禄等,日用化学品科学2013,36(12):21-24[/align][/td][/tr][tr][td][align=center]55[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定饮用水中三氯甲烷和四氯化碳[/align][/td][td][align=center]Combi PAL 自动顶空进样器[/align][/td][td][align=center]杨志国等,中国卫生检验杂志 2013,23(3):589-591[/align][/td][/tr][tr][td][align=center]56[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法间接测定水中的苦味酸[/align][/td][td][align=center]顶空自动进样器( 瑞士CTC Analysis AG 公司)[/align][/td][td][align=center]邵国健等,中国卫生检验杂志, 2012,22(6):1275-1276.1280[/align][/td][/tr][tr][td][align=center]57[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法快速测定饮用水中多种挥发性卤代烃[/align][/td][td][align=center]Agilent 7694E 自动顶空进样器[/align][/td][td][align=center]叶金伟等,工业用水与废水,2010,41(2): 90-91[/align][/td][/tr][tr][td][align=center]58[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法同时测定服装中残留丙烯腈和氯乙烯单体[/align][/td][td][align=center]Agilent G1888 顶空自动进样器、[/align][/td][td][align=center]刘俊等,中国卫生检验杂志2010,20(9):2164-2166[/align][/td][/tr][tr][td][align=center]59[/align][/td][td][align=center]自动顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法同时测定水中的甲醇乙醇丙酮和苯系物[/align][/td][td][align=center]Agilent 7697 自动顶空进样器 [/align][/td][td][align=center]邵红艳等,污染防治技术,2013,26(5):66-68,71[/align][align=center] [/align][/td][/tr][tr][td][align=center]60[/align][/td][td][align=center]化妆品中挥发性有机溶剂的通用检测方法[/align][/td][td][align=center]Agilent 7697 自动顶空进样器 [/align][/td][td][align=center]达晶等,色谱,2014,32(11):1251-1259[/align][/td][/tr][/table]  看看他们使用了那些自动顶空进样器。从表中可以看出使用较多的有Agilent 7694E 自动顶空进样器,Agilent G1888 顶空自动进样器,PE Turbo Matrix 40 Trap 自动顶空进样器,意大利DANI HSS 86.50 顶空进样器和国产成都科林公司的AutoHS自动顶空进样器。有关这些公司的进样器资料网上可以找到。图12是安捷伦公司的 7694E自动顶空进样器。[align=center][img=,300,325]http://img1.17img.cn/17img/old/NewsImags/images/201412518168.jpg[/img][/align][align=center]图 12 7694E自动顶空进样器[/align][align=center][img=,280,280]http://img1.17img.cn/17img/old/NewsImags/images/201412518757.jpg[/img][/align][align=center]图 13 AutoHS自动顶空进样器(成都科林)[/align][align=center][img=,300,300]http://img1.17img.cn/17img/old/NewsImags/images/201412518823.jpg[/img][/align][align=center]图 14 PE Turbo Matrix 40 Trap 自动顶空进样器[/align]  由于篇幅的关系,有关吹扫捕集顶空进样、固相微萃取顶空进样、反应顶空进样,在下一讲继续讨论。

  • 傅若农:从国产气相产品看国内气相发展脉络及现状

    [b]编者注:[/b]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势,以飨读者。  [url=http://www.instrument.com.cn/news/20140623/134647.shtml][color=#800080]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势(1)[/color][/url]  [url=http://www.instrument.com.cn/news/20140714/136528.shtml][color=#800080]第二讲:傅若农:从三家公司[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展 [/color][/url] [color=#0000ff] [b]1、 我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的发展脉络[/b][/color]  我国从上世纪50年代中期许多单位就开始了[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法的研究和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的制造。  在上世纪50年代国家科委组成专题攻关组,采取专家与生产厂家相结合的方式,主要在中国科学院大连石油研究所(后称中科院大连化学物理研究所)以及石油部石油科学研究院、 化工部北京化工研究院等研究机构展开研究。  上世纪60年代初,北京分析仪器厂和北京化工研究院共同研制出我国首批商品化[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]——SP-02[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],之后上海分析仪器厂也有商品化[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]问世。  上世纪70年代初,北京分析仪器厂生产的SP-2305和上海分析仪器厂生产的100型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]已逾千台,在国内达到普及应用的程度。  上世纪80年代,北京分析仪器厂引进美国Varian公司(瓦里安,现[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品线被布鲁克收购)的3700和3400系列[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]技术组装产品, 之后逐步提高国产化的程度, 先后推出3410、3420、3460等型号[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]。上海分析仪器厂则生产1001系列[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],并组装HP公司(现安捷伦)的HP-5890-II系列[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]。  1997年,北京分析仪器厂和北京瑞利分析仪器有限公司合并组建成北京北分瑞利分析仪器(集团)有限责任公司,现在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]产品有:SP2020、SP3400、SP3420A、SP2100A、SP2100等。  上海分析仪器厂和上海第三分析仪器厂重组整合为上海精密科学仪器有限公司,现上海仪电科学仪器股份有限公司。现在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]产品有:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]122、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]112A、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]102M、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]102NJ/AF/AT、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]126、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]128等。  山东鲁南化工仪器厂始建于1969年,设计生产了SP-501、SP-502型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],有不少用户。它经多次更名,现在叫山东鲁南瑞虹化工仪器有限公司,1998年以后,研制了SP-2000B、SP-6800A6、SP-6890型、SP-9890、SP-7890型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]。  四川仪表九厂是1965年建立的,现为重庆川仪自动化股份有限公司,过去有SC 1001系列[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],现有SC-2000、SC-6000[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]。  改革开放之后不断有民营企业加入到色谱仪研制、生产的行列,较早面向市场的是北京东西分析仪器有限公司(北京市东西电子技术研究所),其成立于1988年,已成为中国高速成长的民营企业之一。2013年8月东西分析仪器有限公司收购了澳大利亚通用分析仪器制造商GBC,尝试探索一条新的国际化、多元化的发展道路。[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]产品有:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]4000系列、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]4400便携式光离子化[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],以及自主研发的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-MS3100型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪。  1992成立的上海科创色谱仪器有限公司和1994年成立的上海天美科学仪器有限公司也都有不俗的表现。上海科创生产[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]2002系列、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]900系列、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]9800(N)系列、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]9800系列、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]9900系列等[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]。上海天美的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]产品有[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]7700、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]7890、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]7900系列,上海天美的 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 7980 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]全部采用EPC(电子压力控制系统)控制气路,获得了2013年BCEIA金奖。  浙江温岭福立公司1998年建立,最初主要生产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]零配件,1999年开始涉足科学仪器的整机研发、制造,并且逐步发展成初具规模的科学仪器制造企业。其[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]产品有:[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]9790、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]9790‖、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]9790SD、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]9750、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]9710、[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]9720。  进入21世纪一些非传统色谱仪生产厂家如北京普析通用仪器有限公司,以前主要生产光谱仪器,现在也涉足[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的生产。另外一个异军突起的厂家是聚光科技(杭州)股份有限公司,也是非传统色谱仪生产厂家。他们自主研发的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-2000型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],采用全电子气路控制技术,大屏幕彩色液晶显示屏,触屏控制,可进行方法编辑和仪器运行状态监控等操作,产品出口到伊朗,并自主研发微板气流控制装置,取得初步成功。 [color=#0000ff][b] 2、我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]厂家奋起赶上国际先近水平,志在高远[/b][/color]  据最近权威专家对我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术现状的总结:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术已相对成熟,但是国内外相关仪器厂家仍然不断推出性能更稳定、功能更全面、自动化程度更高的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],特别是国产色谱仪的进步更加明显,据统计2013年[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的国内市场需求已经超过10000台,国产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]具有较高的市场占有率,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]与各类质谱仪的联用日渐成为研究机构和法规实验室的常规手段。  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的发展相对稳定,近年来没有明显的技术突破。在2013年BCEIA展会上,温岭福立和上海天美都推出了带EPC控制的高端[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],两款产品都实现了3个检测器、9个气路(空气、氢气、尾吹气)和3个进样器9个气路(载气、分流、隔膜吹扫)共18路气体的EPC控制,控制精度达到了0.01 psi(国外[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的控制精度达到了0.001 psi),上海天美的 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url] 7980 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]全部采用EPC控制气路,性能接近国际先进水平。这一款仪器通过自主研发的软件系统实现对仪器的完全控制,3路独立数字信号输出和3路模拟信号输出,3个模块化进样器可独立控温,具有10个独立控温区,主机可存储9个操作方法。  [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]具备EPC气路控制是现代[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的必备条件,科技部在‘十一五’国家科技支撑项目“色谱仪器关键零部件的研制与开发”项目中进行了相关立项,由上海精科和温岭福立共同研发[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的气体压力和流量电子控制部件。这两个单位在研制期间,做了大量研究设计工作,比如上海精科购买了测试设备,建立了电子流量/压力控制模块测试方法,并把研制过程撰写了论文,发表在《光学仪器》2011年第4期(8月)上。上海精科也成功开发具有专利技术的EPC,初步实现流量数字设置,传感器检测反馈和高速电子阀件的闭环控制,这一装置用在其型号为的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]128[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]上。  同时承担这一课题的温岭福立也把自己研发的EPC部件配置在高档[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]上,据我了解他们花了5年时间研发EPC,使用多国原器件进行对比研究,不断提升EPC的精度,目前已经可以达到0.001 psi。他们也自主研发了无阀气流切换的微流板技术,并把它用于中心切割的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析,该技术已经在上海石化得到应用。 [color=#0000ff][b] 3、国产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]曾为我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展作出贡献[/b][/color]  近日网上新闻报道说有些单位拒绝购买国产仪器,我认为拒绝国产仪器是否正确要根据实际情况来看,不能说一定对与不对。根据我自己的经验和文献调查,我只能说国产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]在我国的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]发展中发挥了不可忽视的作用,立下了汗马功劳。下面用事实说明。  [b](一) 国产仪器解决生产实际问题:[/b]  (1) 上世纪70-80年代生产第一线的分析检测大多是靠当时的国产仪器完成的。我举一个我亲身经历的例子。1975年上半年我们在山西一个化工厂办[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]培训班,为一线[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]操作工人做[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的理论知识培训,当时这个厂主要是进行双基发射药和推进剂中硝化甘油(即三硝酸甘油酯,NG)等成分的定量测定,其中关键成分是NG的准确含量,它决定产品主要性能,在下一道工序进行之前必须得到它的确定数据。过去用化学分析方法费时费力,改用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法分析就很方便快速,但是在产品中NG的含量很高(25-40%),而要求的精度是千分之三,NG超过130度就开始分解。就在这样的条件下分析员是使用当时北京分析仪器厂生产的 SP 2304 A[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url](当时是为石化部门分析聚合物原料中微量水设计的仪器)。这一仪器可以说很简单,色谱柱柱箱和热导检测器放在一个恒温箱中,开机后要2-3h 才可以使温度恒定,记录仪还是使用上海生产的工业控制用电子电位差计。就是在这样的仪器和条件下,尽量发挥人的能动性和智慧,分析员经过一个月的强化训练,能够达到配合大工业生产的要求。现在回想起来这是一件很了不起的事。  (2)第二个例子是我们实验室的经历。上世纪80年代初,我们上级机关所属的工厂要出口到德意志联邦共和国(西德)制造泡沫塑料的原料二硝基甲苯(DNT),西德要求产品必须要提供DNT六个位置异构体含量数据,这就必须要使用毛细管[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]来完成,而当时的生产厂既没有仪器也没有方法。于是就让我们实验室来完成这一工作。  当时我们正是利用北京分析仪器厂的SP-2305E型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]做研究工作。为了完成这一任务,我们请求北京分析仪器厂庞增义高工帮我设计并制作了毛细管柱接头,装在SP-2305E型[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]上,利用我们自己制备的玻璃毛细管柱,可以很好地进行毛细管色谱工作。为了能分析DNT六个异构体我们研究了多种不同固定相的毛细管柱,最后使用OV-225固定相涂渍的毛细管柱可以很好地分离DNT六个异构体,甚至用9m长的色谱柱也可以分离DNT所有6个异构体,最后把这一方法交给生产厂,为他们改装了SP-2305[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],完成生产任务。(这一工作的论文发表在《高等学校化学学报》,1984,5(6):839-841)。  (3) 第三个例子也是我们自己亲身经历的,我们承接了一个检测炸药厂废水中炸药的课题,我们也是使用北京分析仪器厂的 SP-2308[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],以电子捕获检测器进行分析,使用北京分析仪器厂生产的OV-101毛细管色谱柱(21m x 0.25mm),用外标法进行定量分析,圆满地完成了任务。(工作发表在《兵工学报》,1987,(4):37-43)。  [b](二) 使用国产仪器进行高质量[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的科学研究[/b]  我统计了《色谱杂志》1984年到1988年5年里发表[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的文章中所使用国产仪器和进口仪器的比例,见下表1。[align=center][b]表1 1984-1988年《色谱》杂志发表193篇[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]文章所用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的统计[/b][/align][align=center][b][img=,567,301]http://img1.17img.cn/17img/old/NewsImags/images/2014811162013.jpg[/img][/b][/align]  从上表看出[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究中国产仪器占一半多一些,其中主要是北京分析仪器厂和上海分析仪器厂的产品。国外进口仪器主要是日本岛津的产品。  从这些文章中可以发现不乏有很多开创性论文是使用国产仪器完成的,例如:  (1) 《色谱》1988,6(8):129是石油化工科学研究院陆婉珍院士研究组发表的“新型氧化铝填充毛细管色谱柱”的研究。这一工作实现了炼厂气中C1~C6的全部分离的开创性研究,这种色谱柱的保留值重复性好,柱负荷大,制备简单,寿命长。  (2)《色谱》1985,3(7):121是中科院大连化学物理研究所张乐丰先生等的文章,他们用上海分析仪器厂的102G [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]与Nicolt 7199 傅立叶变换红外光谱仪联用,进行[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-FTIR 有关重建色谱图中各类化合物的响应特征的研究。这在当时是难能可贵的研究工作。  (3)《色谱》1988,6(4):227 是吉林化学工业公司研究院顾蕙祥老师等用石墨化炭黑固定相分析合成甲基叔丁基醚的反应产物。这是他们在研制石墨化炭黑固定相过程中的一篇应用性论文,研制石墨化炭黑固定相在当时是一项很有意义的工作。  (4)《色谱》1988,6(4):179,南开大学元素所王琴孙先生等利用国产 SP-2305 [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进行农药微量的残留量分析方法研究,这在现在来看似乎是不可思议的。  这些例证说明当年在我国经济状况比较紧迫时,国产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]为我们的生产和科研做出了历史性贡献。  [color=#0000ff][b]4、国产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]近几年的状况[/b][/color]  尽管国产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]近几年有长足的进展,有些公司的产品已经和国外仪器的主要性能接近,但是总体的稳定性、耐用性、可靠性方面还有待进一步提高,人们对国产仪器的信任度还有待提高。此外,近年国家经济好转,一些大的研究单位和法定检测部门的科研经费充裕,为了保证检测数据和研究结果的可靠、可信、快速,在购置[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]时,自然首选进口仪器。不过还是有许多基层单位在大量使用国产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],据相关机构的调查和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]生产厂家的销售记录,有大量国产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]产品在出售。  不过一些科学研究和大的法定测试部门所发表的论文大都使用进口仪器。我统计了在国内期刊上发表的775篇重要的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]论文,所使用的[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]和[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]/MS仪器 (2009年全年,2010年1-10月),结果表明使用最多的是安捷伦公司的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url](6890 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url], 7890 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]和6890 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-5973 MS,6890 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-5975 MS,7890 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-5973 MS,7890 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]-5975 MS),第二位的是日本岛津公司的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url] 第三位是赛默飞世尔的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]。使用国产仪器的只有1.5%。  此外,根据仪器信息网在[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]板块进行的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]使用品牌调查(2011年8月-2012年12月,有效样本325个)显示,参与调查的用户中约26.7%用户使用国产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url](见下图1)。[align=center][b]图1 仪器信息网[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]品牌调查调查结果(2011年8月-2012年12月)[/b][/align][align=center][b][img=,730,471]http://img1.17img.cn/17img/old/NewsImags/images/201481116305.gif[/img][/b][/align]   [color=#0000ff][b]小结[/b][/color]  国产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的厂家过去为我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展作出了很大贡献,希望再接再厉,做大做强,尽快制造出全面赶上国际先进水平,可靠、耐用、皮实的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]。希望[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的用户在满足使用要求的情况下优先选用国产[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]。希望国家制定鼓励、支持国产仪器行业发展的政策,使国产仪器早日超越PAS(PerkinElmer、Agilent、Shimadzu)。下一章,我将为大家讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术核心——[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的前世今生。([color=#0000ff]未完待续[/color])注:本稿在写作过程中得到了中国分析测试协会汪正范研究员的帮助,在此表示感谢。[align=right](作者:北京理工大学傅若农教授)[/align]

  • 【重要通知】仪器大讲堂 气相色谱系列讲座之二(主讲:傅若农教授、庞增义高级工程师)

    仪器信息网为提高广大仪器用户的仪器操作应用水平,经过长时间的筹划,正式推出系列网下活动——仪器大讲堂。本网将邀请仪器行业著名的专家学者为大家举办仪器讲座。仪器大讲堂所有讲座的最大特点就是都将以实例分析为主,着重解决大家在工作中碰到的实际问题。每次讲座我们还都将安排答疑时间,让用户和专家进行互动。 2006年9月23日仪器大讲堂[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]系列讲座的第一讲开讲,得到了广大VIP用户的欢迎。2006年10月21日我们将推出[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]第二讲。因教室容量有限,为保证学习效果,[color=red]听课名额仅限55名[/color],请速报名![b]色谱系列讲座之二的主要内容[/b]一、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的心脏——[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱及固定相 (10月21日上午,傅若农教授)1.哪一些重要的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相和它们的发展变化;2.从分析实际的需要出发以分子间作用力的不同对[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱及固定相极性分类——McRynolds 常数表,McRynolds 常数表如何使用;3.常用和最常用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相——五类最常用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的结构、特点、保留性能;4.[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的选择——选择[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的化学依据和原则及规律;5.选择[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的实际例子。二、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的操作与维护技巧之进样系统篇(10月21日下午,庞增义高级工程师)1.填充柱进样系统(包括分类、常压气体进样方法和特点、气体进样阀的种类、特点和选择、六通阀气体进样技术与技巧、对一个设计优良液体进样系统基本要求、常用液体进样系统的种类和选用)2.毛细管柱进样系统(包括其特点和对进样系统基本要求、汽化衬管的使用目的、汽化衬管分类和选用以及汽化衬管中为什么要填充玻璃棉、填充量如何定、已及安装注意事项等、注射隔垫可能引起的故障、注射隔垫的种类、选用和使用注意事项)3.进样系统的选择和进样方法(包括进样系统的选用原则、首选填充柱进样系统的原因、毛细管柱进样器的选择注意事项、进样量的大小依据、进样量对定性与定量结果影响,以及不同分析目的和方法允许的最大进样量范围、常用进样方法、如何减小进样死体积对峰展宽的影响、用微量注射器进液体样前的几点考虑、液体微量注射器使用注意事项与技巧等)[b]主讲老师[/b]傅若农教授 北京理工大学博士生导师,几十年的气象色谱研究经验庞增义高级工程师 原北京分析仪器厂总工,几十年的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研发经历[b]讲座时间:[/b]10月21日星期六 8:30-17:00 [b]讲座地点:[/b]北京西城区新街口外大街28号普天德胜科技园B座三楼会议室[b]听课费用[/b]本次讲座收费全天200元/人,半天100元/人(可选择只听上午傅若农老师的讲座或下午庞增义高级工程师的讲座,报名时请说明),提供培训资料,上午来听课的我们还提供午餐。需要发票的我们可开具培训费发票。完整听完[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]系列讲座(共4讲)的用户,颁发学习证书。除了听课费用远低于传统培训班外(一般5天1500元左右),本网VIP用户还可以用积分来冲抵听课费用,每500分可以冲抵50元的听课费,以此类推,为了方便计算,只能用500分的整数倍积分来冲抵。[color=red]现任版主听课免费[/color][b]付费方式[/b]1、预付费: 银行汇款 开户行:中国工商银行北京分行海淀支行二里庄储蓄所 卡 号:9558800200201456999 户 名:田彩岚注明:培训费用,款汇出后请打电话010-51654077-15确认2、预付费: 邮局汇款 汇款地址:北京市西城区新街口外大街28号科技园B座416室 收 款 人:田彩岚 邮政编码:100088注明:培训费用,款汇出后请将汇款底单传真至010-82051730(田彩岚收)3、现场交费本次讲座对于预付费的用户,预留位置。[b]报名方式[/b]1、电话报名:010-51654077-15 杨小姐2、email报名:training@instrument.com.cn3、站内短信报名:在仪器论坛内发站内短信给4077。4、在线报名:http://www.instrument.com.cn/training/train_view.asp?TRI_No=100133报名时请说明您的VIP用户名、密码、姓名、单位、通信地址、邮编、电话等信息。机会难得,名额有限,请速报名。

  • 傅若农教授讲气相色谱第23讲:MOFs成就更完美的SPME

    傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。往期讲座内容见:傅若农老师讲气相色谱技术发展  MOFs是当今世界上有机和无机基团结合的多功能材料,SPME 是当今绿色的样品处理方法,二者相配当属珠联璧合的联姻,良材铸利器的结合。上一讲我们知道:金属有机框架化合物(Metal Orgaic Framework)(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料,MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs非常适合于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面有着广泛的应用。由于MOFs具有优异的性质,如比表面高、热稳定性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景,尤其是非常适合用作固相微萃取的吸附剂。  SPME 是一种广泛使用的样品前处理技术,它是集萃取、浓缩、解吸、进样于一体的样品前处理新技术,它以固相萃取(SPE)为基础,保留了SPE的全部优点,排除了需要柱填充物和使用有机溶剂进行解吸的缺点。SPME是以涂渍在石英玻璃纤维(或不锈钢金属丝)上的固定相(高分子涂层或吸附剂)作为吸收(吸附)介质,对目标分析物进行萃取和浓缩,并在气相色谱进样口中进行分析(或变通结构在液相色谱系统里用液相色谱流动相洗脱吸附样品,用液相色谱进行分析),这一技术适合于很多技术领域的样品处理和分析。  1. SPME 使用过的吸着剂  SPME发明人Pawliszyn 研究组最早使用的吸着剂是涂渍有二甲基硅氧烷(PDMS)和聚丙烯酸酯(PA)涂层的萃取丝,涂渍工艺类似于毛细管气相色谱柱,但是膜厚远高于毛细管气相色谱柱。起初商品SPME萃取丝的固定相有:聚二甲基硅氧烷,聚丙烯酸酯(PA),碳吸附剂等。  除去这常用的固定相之外,十几年来人们研究了多种固定相涂层,在SPME 应用中,没有一种单一的涂层可以适应所有的化合物。涂层的性质要和被分析物的性质相匹配,选用的固定相涂层首先要对有机分子有较强的萃取富集能力,使分析物在涂层中有较快的扩散速度,能在较短时间内达到分配平衡,并在热解析时能迅速脱离固定相涂层,而不会造成峰的扩宽。同时,由于分析物是在高温下易于解吸,因此针对不同的分析物对涂层可有多种选择,为了适应各种需要,特别是用于极性化合物的SPME固定相,这就推动了新SPME固定相的开发和研究。人们首先开发的是混合型SPME萃取丝涂层,如PDMS-DVB(聚二甲基硅氧烷-二乙烯基苯),PDMS-Carboxen(聚二甲基硅氧烷-专利碳吸附剂),CW-DVB(聚乙二醇-二乙烯基苯),CW-TRR(聚乙二醇-高温树脂),上述固定相 Sulelco 公司都把它们形成商品SPME产品。为了改进能够萃取极性化合物的涂层,又要满足涂层必须涂渍到石英丝上、可适应高温的要求,因此寻找新的性能优越的SPME固定相是比较困难的。人们所研究过的SPME吸着剂涉及的无机材料有石墨化碳黑,铅笔芯,玻璃碳,陶瓷等,碳类SPME是研究最多的一类涂层材料。自从1997年有人把HPLC固定相使用的键合硅胶固定相C8和C18用做SPME的涂层以后,这类吸着剂的研究和应用越来越多。  1999年Pawliszyn 研究组把导电聚合物用于SPME涂层,他们把聚吡咯(PPY)及其衍生物用电化学方法涂渍在金属丝上,它有利于通过 π-π 相互作用力萃取芳香族化合物,特别是多环芳烃,由于它有极性基团适合于萃取极性多环芳烃,它还具有阴离子交换的倾向,可以萃取阴离子化合物,此后这一SPME有多方面的研究和使用。  分子印迹技术(molecular imprinting technology , MIT) 是一种高选择性分离技术,由于MIT模仿了生物界的锁匙作用原理,使制备的材料具有极高的选择性,在固相萃取、化学或生物传感器、不对称催化和模拟酶等方面得到了应用。2001年 Koster把 MIP 用作 SPME 萃取丝上的分离介质, Pawliszyn 研究组MIP 用作管内 SPME 固定相和HPLC联用测定体液中的 β-阻断剂药物。  限进介质吸附剂(restricted accessmatrix sorbents)是针对大分子的体积排阻功能和对小分子分析物的保留功能,通过控制吸附剂合适的孔径和对吸附剂的外表面进行适当的亲水性修饰,使得生物或环境样品溶液中的大分子不能进入吸附剂的内孔中去,且亲水性的外表面使生物大分子在吸附剂外表面不会发生不可逆的变性和吸附,可以用这一类吸附剂排除生物大分子,而对小分子分析物可以进行萃取,这种限进介质吸附剂在固相萃取中得到很多应用。  2 MOFs 用作SPME 吸着剂  在寻求SPME的研究中,人们自然会想到具有优异的性质的MOFs。  (1)MOFs 首次用作SPME 萃取头涂层  2009年严秀平研究组首次把把 MOFs 用于SPME ,他们使用原位水热生长法,把MOF-199涂渍在不锈钢丝表面上,应用于空气中挥发性苯系物的萃取和富集,结果表明,MOF-199纤维涂层对苯系物选择性好、富集因子高、线性范围宽,其远优于商品化PDMS/DVB纤维涂层。对苯系物的检出限分别为8.3?23.3 ng/L ,相对标准偏差(RSD)2%~7.7%。。三次平行制备纤维纤维重复性(RSD)为3.5%?9.4%,对室内空气样品进行了分析苯系物的添加回收率在87%? 106%的范围。MOF-199纤维涂层对苯系物选择性好、富集因子高,远优于商品化PDMS/DVB纤维涂层.MOF-199对苯系物的高选择性和富集效率高是由于MOF-199比表面积大、孔结构独特和骨架上有1,3,5-苯三酸配体与苯系物芳环的π-π相互作用,以及孔内的路易斯酸位点与富电子的苯系物之间的π-π相互作用所致。但是,由于MOF-199的金属空配位点很容易被水分子占据,因此只适合用于气态样品或相对湿度较低样品的富集。(Anal Chem, 2009, 81(23):9771-9777)(分析化学,2013,41(9):1297-130l)。  (2)MOF-199, ZIF-8, 和 ZIF-7 用作SPME 萃取头涂层  2011年严秀平研究组把 ZIF-8作为选择性固相微萃取和ZIF-8作毛细管色谱柱的固定相结合,用以分析复杂基体(如石油和体液)中的正构烷烃。  (a) MOFs萃取头的制备:取20cm 长一段不锈钢丝,3 cm浸在王水(HCl:HNO3 = 3:1,v/v)中20min,不锈钢丝表面慢慢变粗,在刻蚀过程中有小气泡冒出,之后用超纯水轻轻洗净。刻蚀过的不锈钢丝安装到一个5μL微量注射上,在涂渍吸附剂前于气相色谱仪气化室 250℃下老化 1 h。把要涂渍的MOFs(MOF-199, ZIF-8, 和 ZIF-7)纳米级晶体颗粒用DMF(或甲醇)洗涤三次,分散在10mL DMF中,然后把老化好的不锈钢丝浸入MOFs溶液中,搅拌20 s。取出来在气相色谱仪进样口中在干燥N2中干燥10min,这一操作重复10次。使用前要把萃取头在气相色谱仪气化室中250℃下老化1 h,以除去残留的溶剂。得到的萃取头电镜图见图1。http://img1.17img.cn/17img/images/201605/insimg/051f62db-ebf2-4235-b53a-bb83e6b24db0.jpg图 1 涂渍MOFs的SPME萃取丝电镜图(a) 刻蚀后的不锈钢丝 (b) 涂渍MOF-199的萃取丝 (c) 涂渍ZIF-8的萃取丝(d) 涂渍ZIF-7的萃取丝  (b)萃取方法  石油基燃料样品用十四烷稀释500倍,取1μL稀释样于100mL 气密密封玻璃瓶中,超声5min,把萃取头插入样品瓶中,进行顶空萃取20 min,进行气相色谱分析。  (c) MOF萃取头的选择性和性能  为了考察不同MOFs不同孔隙对萃取物的选择性,他们对五个不同的孔隙,孔隙的孔径结构,研究了孔径的选择性和分子筛效应或尺寸排阻效应。选择MOF-199,ZIF-8,和ZIF-7的孔径尺寸为 0.9nm,0.34nm,和0.29nm用作固相微萃取吸着剂。  制备出来的固相微萃取头,MOF的涂层不仅光滑均匀(图1),而且坚固稳定。从石油基燃料中萃取烃类以考察萃取头的选择性,同时使用商品SPME萃取头PDMS/DVB进行比较,PDMS/DVB对苯系物、直链烷烃和支链烷烃没有什么选择性,萃取物进行色谱分析的色谱图很复杂。MOF-199涂渍的SPME萃取头,其选择性也很差,这是因为它的孔径为0.9nm x 0.9nm,它不仅可以吸附直链烷烃,也可以吸附支链烷烃和苯系物,结果轻烃比高沸点烃类有更高的萃取量,这是因为轻

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制