当前位置: 仪器信息网 > 行业主题 > >

分子束

仪器信息网分子束专题为您整合分子束相关的最新文章,在分子束专题,您不仅可以免费浏览分子束的资讯, 同时您还可以浏览分子束的相关资料、解决方案,参与社区分子束话题讨论。

分子束相关的论坛

  • 紫薯粉稀释问题

    微生物 25克紫薯粉加到225ML稀释水里 然后特别浓稠 [url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]都吸不上来1ml 然后我把[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url][/color][/url]枪头嘴剪了一点点 能吸上来一点 但是吸不住 浓稠物一直掉 用1g紫薯粉加到9ml 稀释水里 也是一样浓稠 有什么其它方法将样品进行10倍稀释吗 求助大佬们

  • 【求助】红外分束器受潮了的原因

    红外分束器受潮了,不能用了。我准备死马当活马医,自己打磨KBr的分束器,或者用KBr水溶液溶解除去表面已经受潮的部分,然后快速干燥,不知道我这个办法能不能修复分束器,大家给点建议啊!!!!!现在附上分束器的图片和原因分析,期待对各位有所帮助。我记得前面我发了一个购买探测器的帖子,新购买的探测器也附在文件里了,也算是对前面那个帖子的回复吧。(事情太多,随便写的一个东西,也没有修改,期待大家指正)

  • 【原创】红外的分束器

    一直以来觉得分束器是一件很神秘的器件,一般都说是KBr镀锗做的,我也很奇怪,咱们国内也有好多家做光学镀膜的,怎么分束器还是得进口?难道国产的不行吗?一次偶然的机会,认识了一个做镀膜的朋友,就下意识的问了一下关于半透半返的透镜能不能做(2--6um)?他说能做,并且原先做过,还有原先做过的镜子的透过率的光谱图。说实话,他让我看的这张光谱图并不是像我想象的那么好,但是别管怎样,毕竟这也是基本做到了半透半返啊。(附件有图)我这里没有测过真正的红外分束器的透过率光谱图,如果哪位朋友测过不妨将图谱传上来大家一块欣赏一下。同时也希望国内的厂家继续努力,在不久的将来傅里叶上的分束器都是国产的。

  • 【资料】-分子印迹技术在样品前处理中的应用(及其他分子印迹文献)

    [B]分子印迹技术在样品前处理中的应用[/B][I]作者:胡小刚 李攻科[/I]摘 要 分子印迹聚合物具有选择性高、稳定性好及制备简单的特点,可用于生物、医药、环境样品等复杂基体中痕量分析物的高选择性分离与富集,因此在样品前处理中的应用特别引人关注。本文介绍了分子印迹技术的基本原理,综述了分子印迹技术在样品前处理中应用的研究进展。关键词 分子印迹,样品前处理,固相萃取,固相微萃取,膜分离,评述1 引 言  复杂基体如生物、医药和环境样品中痕量、超痕量物质分析要依赖高效和高选择性的样品前处理技术。但相对于仪器分析技术的发展,样品前处理技术的进展一直较缓慢。  固相萃取(SPE)是70年代中期出现的技术。其萃取机制取决于分析物与固相(填充剂)表面的活性基团之间的分子间作用力。SPE填充剂主要为键合材料,如C8、C18离子交换树脂等,选择性不强,在富集分析物的同时,大量基体和干扰物质也被富集,导致洗脱液中仍含有基体和杂质,干扰最后的色谱分析。近来出现一种利用抗体自身选择性的免疫吸附剂[1],作为固相萃取材料具有选择性高的优点,但制备复杂、耗时且可供选择的抗体种类少,机械强度和稳定性均较差。  1989年Belardi等提出了固相微萃取(SPME)技术,SPME是基于分析物在流动相以及固定在熔融SiO2纤维表面的高分子固定相之间两相分配的原理,实现对样品中的有机分子进行萃取和富集。然后可直接在联用仪器中解吸、进样及分析,使样品预处理过程大为简化,提高了分析速度及灵敏度。与传统的样品前处理技术如液液萃取、索氏提取、SPE相比,克服了需使用大量溶剂和样品、处理时间长、操作繁琐、易产生二次污染及不易在线联用等缺点,在环境、食品、生物以及药物等领域得到了广泛应用。在SPME技术中,纤维涂层的材料是最关键的。但目前商品化的纤维涂层仅有少数几种,并且以非特异性吸附作用为主,选择性不够高,在样品前处理时仍有大量化学、物理性质相近的基体物质同时被富集,处理极性或碱性药物时会遇到较大的困难[2,3]。虽然一些文献报道了新的SPME涂层的研制工作[4~5],但主要是用于测定挥发或半挥发性的有机环境污染物,急需研制出选择性更高的纤维涂层。  分子印迹(MI)技术的发展,可望解决以上问题。分子印迹技术是将要分离的目标分子与功能单体通过共价或非共价作用进行预组装,与交联剂共聚制备得到聚合物。除去目标分子后,聚合物中形成与目标分子空间互补并具有预定的多重作用位点的“空穴”,对目标分子的空间结构具有“记忆”效应,能够高选择性识别复杂样品中的印迹分子。分子印迹聚合物(molecularly imprinted polymer, MIP)制备简单,能够反复使用,机械强度较高,稳定性好。因此它非常适合用作SPE的填充剂或SPME的涂层材料来分离富集复杂样品中的分析物,以达到分离净化和富集的目的。MIP作为膜分离的材料可将膜的筛分作用与MIP的高选择性结合在一起,用于样品的富集、回收或去除杂质等。  2 分子印迹技术的基本原理  MIP是以某种化合物分子为模板合成的聚合物,对模板分子具有较高的特异性识别能力,类似于酶底物的“钥匙锁”相互作用原理。目前,根据印迹分子与功能单体在聚合过程中相互作用的机理,将分子印迹技术分为共价法与非共价法两种类型。目前各类文献上报道的MIP制备方法基本上是非共价法。在此方法中,印迹分子与功能单体之间通过分子间的非共价作用预先自组装排列,以非共价键形成多重作用位点,这种分子间的相互作用通过交联聚合后保留下来。常用的非共价作用有:氢键、静电引力、金属螯合作用、电荷转移、疏水作用以及范德华力等,其中以氢键应用最为广泛[6]。   目前,文献报道中制备出的MIP一般均具有较好的物理和化学稳定性:机械强度较高;耐高温、高压;能抵抗酸、碱、高浓度离子及有机溶剂的作用;在很复杂的化学环境中能保持稳定[7]。研究表明,MIP反复使用300次之后印迹能力也未发生衰减[8];保存八个月之后其性能不发生改变[9]。  关于MIP的制备和性能研究,国内外已有较多综述文章详细介绍[10~12],本文不再详述。[color=#DC143C][B]注:其他的三篇相关文献在4-6楼。[/B][/color]

  • 涡轮分子泵求助

    仪器型号 岛津QP2020 分子泵型号nEXT200/200D一开始是仪器报错 分子涡轮泵无法达到所需要的真空度,于是找了第三方维修。然后第三方维修人员说控制器坏了于是又换了一个控制器。现在维修好的泵已经装上机了但是出现了新的问题,测试分子涡轮泵的供电是24v没问题,泵上的灯也是亮的,但是在软件界面点击启动泵始终没有反应,像是接收不到负责启动的信号,又换了一个接收器还是这样。想问问一般的分子涡轮泵和质谱之间需要有什么特殊的协议让他识别吗,还是需要给分子涡轮泵的主板写一个特殊的程序,又或者是仍存在其他问题?

  • 【登记处,仅限此贴有效,活动结束】庆祝端午节,粽子也疯狂!!(祝福送出,你得积分!)!

    【登记处,仅限此贴有效,活动结束】庆祝端午节,粽子也疯狂!!(祝福送出,你得积分!)!

    互动时间:5月27号------5月30互动内容:送给你最好的朋友或者曾经帮助过你的人“粽子”。署上他的ID号,你得到2积分。(每人仅限一次)(格式:送给您的亲朋好友一句话 请在次输入朋友的ID号 例如:祝福4077端午节快乐.ID号 :4077(你将会得到我们送出的积分。)[img]http://ng1.17img.cn/bbsfiles/images/2009/05/200905271506_152230_1603372_3.jpg[/img]————————————————————————————[color=#00008B]开此贴,主要是用来统计登记人数。其他地方就不要发了,发了也没有用。[color=#DC143C]请已经发了的板油,合作一下。谢谢![/color]请板油们注意一人只能送一个ID。请大家互相监督。积分有限,如果有重复发的,被板油发现。给我发站内短信,属实将获得双倍积分奖励。“造假者”将被扣分。。[/color][em09511][em09510]

  • 授权签字人考核:如何理解十分熟悉记录,报告及其核查程序

    a 熟悉记录管理程序的内容。记录要内容真实,字迹清晰、用词准确、项目完整、签字齐全,信息要充分。若有修改,要符合规范要求。检测原始记录要有复核人签字。b 熟悉报告管理程序的内容。报告要明确、清楚、客观、准确,信息要充分,要与原始记录信息相符。了解分包、非标等情况和不确定度。c 要明确各类人员在记录、报告编制、核查中的职责和作用。检验人员职责:正确执行检验标准进行检验,认真观察并采集记录检测数据,如实填写检测原始记录,正确编制检验报告。

  • 分子的极性简介

    分子的极性简介 如果分子中所有的化学键都是非极性的,那么价电子就被键合原子相等地共用。因而,在分子中电子是呈对称均匀分布的。这种均匀分布的发生与化学键的数目和它们在空间的伸展方向无关。具有这种特性的分子叫做非极性分子。如H2,Cl2,N2,O2等。像HCl和HBr这类双原子分子只有一对电子形成化学键,并且是极性键。其电子云分布是不对称、不均衡的,被叫做极性分子。如果分子含有多个极性键,从分子的整体来看,它可能是极性的,也可能是非极性的,这取决于分子中化学键的空间排布。如果分子中的极性键都相同,从分子的极性的总体来说,它只取决于化学键的空间排布。以上的看法可以从用带静电荷的棒来靠近细水流及四氯化碳流所发生的现象来证实,细的水流受到吸引而四氯化碳流不受影响。可以说明水分子是极性分子,而四氯化碳分子尽管是由4个极性键构成但因为其排布均匀,就其总体来说是非极性分子,具有类似结构的还有CH4、C2H6等。水分子的极性应归因于其弯曲的结构,而四氯化碳分子是正四面体结构,如下页图:二氧化碳分子的非极性则是由于它的直线型结构,锥形的氨分子是极性的。下面我们就极性键和极性分子的性质进一步做一些探讨。氯化氢分子是极性分子,而且是电偶极子(即把氯化氢分子看成是由数值相等而符号相反的彼此间有一定距离的一对电荷所组成的体系)。分子的极性是用它们的偶极矩μ来定量地表征的。对双原子分子来说(这是比较简单而易于理解的例子),μ是电子电荷的数值e与正负电荷“重心”间距离l的乘积。l值称为偶极长度:μ=el因为l是和分子大小(10-10m)为同一量度单位,而电子的电荷是1.602×10-19C(库仑),所以偶极矩μ的数量级将为10-29Cm。偶极矩越大,分子的极性越强。分子偶极矩的数值,在实验中是根据分子在电场中行为的研究来测定的。这样所得到的数值可以用于计算化合物中原子的有效电荷。例如,从实验测得HCl分子的偶极矩值等于0.35×10-29Cm,而用物理方法可以测得该分子中H—Cl的核间距为1.27×10-10m[或0.127nm(纳米)]。如果假设该分子中的键是离子型的,那么每一个离子(H+和Cl-)电荷的绝对值应等于1.602×10-19C,在这种情况下该分子的偶极矩应等于:1.602×10-19×1.27×10-10=2.02×10-29(Cm)但实际上,实验测得的偶极矩是0.35×10-29Cm,即为100%离这正与HCl分子中原子的有效电荷等于+0.17和-0.17(以电子电荷与单位)相符。知道了偶极矩的数值,也可以算出偶极长度,即正负电荷重心之间的距离(l),即通过上述计算,我们对离子键、共价键、极性(共价)键的理解就更加深刻了。应该说在离子键形成的化合物和共价键形成的化合物之间,并不存在截然明显的分界线。处于中间过渡的键的情况,大多是既具有典型共价键的性质也具有典型离子键的性质,或者也可以说具有部分离子性的共价键。关于极性分子所组成物质的性质和非极性分子所组成物质的性质也是不一样的。相邻的极性分子趋向于以偶极子的不同极相互确定指向,这时它们之间产生了静电吸引力。其结果之一就是使极性分子趋向于缔合。由极性分子组成的液体的另一特性是具有很强的使其它物质电离的作用,也就是当该液体与溶质相互作用时,具有生成溶剂化离子的能力。例如当氯化氢溶于水时,形成水合离子。但是,氯化氢在非极性的苯中所形成的溶液就不能导电,这就证明溶液中没有离子存在。

  • 一个有趣的分子

    最近在作一个分子,是一个大环后面带了一个12个C的长链。在水中,长链伸到环的里面,可以看到链上很多CH2的化学位移跑到了0和-2之间。做了一系列mixtime的1d noe没有发现链和环的空间关系。分子在室温的峰很宽,60度的峰形好的多,可以看到链末尾甲基的三重峰。现在准备在高温做一个cosy看看这些CH2的归属。再试试高温下decoupling那个甲基,看看他和谁couple的。大家有没有好的建议啊?

  • 【资料】分子光谱技术应用现状

    分子光谱仪和液相色谱仪、[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]均为分析和生命科学实验室的常用分析工具。紫外-可见和红外这类分子光谱技术通常作为检测器集成在液相色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]器上 在许多质量控制和研发实验室中,分析者也会单独(或离线)地 使用分子光谱设备作为补充工具。  分子光谱测量的是光与待测样本之间的相互作用情况。光波长在紫外、可见、和/或红外区域时,样本对光的吸收、发射、和/或反射,特征地反映了不同分子振动、转动、及相互作用的化学样本的一些能级变化,不同分子的这种特征吸收、发射、反射是不同的。除核磁共振(NMR)外,分子光谱技术是非破坏性的,可用于分析液态、气态和固态样本。  荧光、紫外-可见(UV-Vis)和近红外(NIR)光谱技术是定量测试技术,而红外光谱(IR)、核磁共振谱(NMR)、显色(color)和拉曼光谱则是定性测试手段。NMR和IR测量的均为光吸收谱,而显色(color)和拉曼光谱测量的则是散射或反射光。上述光谱技术中,NMR是最强大的分子光谱技术,它可以表征样品非常确定的结构信息。  不久前对全球525家分子光谱用户的调查结果显示,上述分子光谱仪中,紫外-可见和红外光谱仪最为常用,在接受调查的用户中使用率分别占70%和50%。接受调查的用户来自40多个国家的不同工业领域,其中多数来自美国和欧洲。

  • 【资料】我国超分子配位聚合物研究进入国际前沿

    我国超分子配位聚合物研究进入国际前沿最近美国出版的《纳米科学与纳米技术百科全书》(十卷丛书),收入了中国科学院福建物质结构研究所吴新涛院士及其研究组人员应邀撰写的评述性论文———《超分子配位聚合物》,这表明我国超分子配位聚合物研究领域已进入国际前沿。该文以占幅19书页的专章形式被收入,据介绍,该丛书其所“囊括”的全部章节均由“世界顶级科学家提供”。   纳米是近年来发展很快的尖端科技领域,构筑超分子和超分子配位聚合物研究意义重大。这一领域在结构化学方面有结构多样性,并在功能材料等方面具有巨大的潜在应用前景。《超分子配位聚合物》这一章主要评述零维、一维、二维和三维几个方面的纳米结构材料,评述国内外这方面的前沿研究进展,特别是详细介绍了中国科学院福建物质结构研究所吴新涛、洪茂椿两位院士分别领导的研究组的工作。   据介绍,《纳米科学和纳米技术百科全书》是世界上第一部关于纳米科学和技术领域的百科全书。它在概括了近20年来有关开拓性研究成果的同时,填补了纳米科技基础和应用方面基本信息的空白;是自从纳米技术领域开辟以来唯一的一部由该领域核心知识和最新进展相结合的科学著作。   诺贝尔化学奖获得者Richard.E.Smalley教授评价说:“这部百科全书是专业研究人员、技术投资人员和开发人员查找科学、工程和医学等学科有关纳米技术的最新信息所不可缺少的参考书。它将鼓舞未来几代致力于开发新的纳米材料和器件的学术研究和工业应用研究的人们。”另一位诺贝尔化学奖获得者Jean-MarieLehn教授亦高度评价该书“对纳米科技的发展将产生深远的影响,必将成为广大科学家获取科学信息和精神鼓舞的源泉。”

  • 【分享】知识分子的含义

    原来我理解的知识分子是错的, 你理解的正确吗?下文出自:http://www.ftchinese.com/story/001029173。知识分子”(intellectual)一词的产生源于法国历史上著名的德雷福斯事件(Dreyfus Affair)。1894年法国参谋部得知内部有人秘密向德国情报机关提供武器资料,此事引起上层军官重视,将军要求在最短的时间内找出叛徒。参谋部在证据极不充分的情况下将实习军官犹太人德雷福斯推上审判席,经过秘密审判德雷福斯以间谍罪和叛国罪被判终身流放。两年后一些新的证据被媒体披露,这些证据足以证明真正的叛徒逍遥法外而德雷福斯只不过是“替罪羊”,许多法国人纷纷向政府和军队呼吁要求重新审判德雷福斯案。在舆论压力下法院重新开庭,但审判结果不仅维持了原判还将一个向媒体说出实情的军官判为泄密罪。作家左拉在报纸上发表了《致法兰西共和国总统的公开信》,它有一个更为大家所熟悉的标题——《我控诉》。在公开信中左拉以极大的勇气控诉国防机关、军事法庭及某些上层军官违法乱纪的行为,指出这是最为可耻的违背人道和正义的“国家犯罪”。法国军方以“诽谤罪”对左拉提出起诉,左拉被判有罪,逃亡英国。流亡国外的左拉并未放弃抵抗,他号召更多的人认清真相,起来斗争。除了左拉,许多学者、教师、媒体工作者、学生都纷纷站出来,表达他们的正义和良知。这时“知识分子”一词出现了,初始这是对抗议者的蔑称,暗示这些人的行为脱离现实、不合时宜,但抗议者却主动接受“知识分子”的叫法。在“知识分子”的带动下,越来越多的法国民众发出质疑的声音,法院不得不再次重审德雷福斯案,这次审判依旧认为德雷福斯有罪,但迫于公众的压力,新上任的总统宣布特赦德雷福斯。1906年,在德雷福斯首次被宣判有罪十二年之后,上诉法庭终于宣布取消德雷福斯的叛国罪、间谍罪罪名,为其恢复名誉。在这一事件中诞生的“知识分子”一词毫无疑问和争取公理、正义以及对抗强权有密切关系,而在西方学者对知识分子的概念界定中,无论是萨伊德认为的“知识分子是具有能力‘向''公众以及‘为''公众来代表、具现、表明信息、观点、态度、哲学或意见的个人,在扮演这个角色时必须意识到其处境就是公开提出令人尴尬的问题,对抗(而不是产生)正统与教条,不能轻易被政府或集团收编,其存在的理由就是代表所有那些惯常被遗忘或弃之不顾的人们和议题。”还是福柯提出的“知识分子的工作不是去塑造他人的政治意志,而是通过他在自己研究领域的分析,对那些自说自话的规则质疑,去打扰人们的精神习惯、他们行事与思想的方式,去驱散那些熟悉和已被接受下来的东西,去重新检验那些规则和体制,在这一重新质疑的基础上(他在其中完成作为知识分子的特殊任务),去参与政治意志的形成过程(他在其中扮演公民的角色)。”亦或是萨特的例证,“当一个科学家在实验室里进行核试验研究时他不是一个知识分子,而当他在反对核战争的请愿书上签名时才是。”具有公共关怀和批判意识,且有强烈社会责任感显然是知识分子的一大特质。然而在中国,知识分子的概念却是模糊的,在很多人的意识中知识分子只是和知识有着简单联系的一批人[color=#DC143C]。《现代汉语词典》对知识分子一词的解释为:“具有较高文化水平、从事脑力劳动的人。如科学工作者、教师、医生、记者、工程师等。”在这个定义里,知识分子的社会角色被完全忽略。这种忽略当然是极权统治的本质使然,统治者不可能允许在他们之外还有任何团体或阶层可以发挥具有独立精神和批判意识的影响力。近年来时见关于知识分子道德沦丧、信用破产的讨论,被拿来作为例证的如四川地震后含泪劝告请愿灾民“识大体、明大理”的余秋雨,认为上访专业户99%以上都是偏执型精神障碍的孙东东,但其实缺乏基本公共关怀和对强权的批判,这样的人很难被称为知识分子。[/color]

  • 【分享】如何区分分子量、分子质量和相对分子质量

    [center]如何区分分子量、分子质量和相对分子质量 与原子的质量计量一样,分子的质量计量也先后存在3个量名称:相对分子质量、分子质量和分子量。众所周知,分子的质量为组成分子的各原子的质量之和。在日常专业工作中,不论是单质还是化合物,它们的分子质量都是根据各元素原子的个数和各元素的“相对原子质量”(由元素周期表上查到)计算得到。既然元素的相对原子质量是一个单位为“1”的相对质量,那么由此计算得到的分子质量必然也是一个单位为“1”的相对质量。对于某些结构复杂的生物大分子,往往都是通过电泳、离心或色谱分析等方法测得其近似分子质量,因而更是一个相对概念的量值。所以,我们过去长期习惯使用着的“分子量”实际上都是相对的分子质量。因此,国标指出“以前称为分子量”的即是“相对分子质量”(relative molecular mass),并将后者定义为“物质的分子或特定单元的平均质量与核素12C原子质量的1/12之比”。相对分子质量是两个质量之比,也在计算表达形式上进一步明确了“相对”的含义。对于定义中的“特定单元”,主要是指空气等组成成分基本不变的特殊混合物,它们的相对质量可根据其组成成分(N2,O2,CO2,Ar等)的相对分子质量和其在空气中的体积分数计算其平均质量,然后与12C原子质量的1/12相比即可获得。相对分子质量的量符号为Mr.,单位为“1”。 对于过去长期使用的“分子量”,其英文为molecular weight,确切原意为“分子重量”。它既不是质量概念,又没有相对的含意,因而也是一个不够准确和不够科学的量名称。根据国标规定,“分子量”应停止使用,凡过去使用“分子量”的场合都应换以使用“相对分子质量”。另外,过去一直以“Dalton”、“D”和“kD”作为分子量的单位,后来也曾有人提出以“u”作为分子量的单位,这些都是不恰当的用法。相对分子质量的单位只能是“1”,而不是“Dalton”,“D”,“kD”或“u”。  至于分子质量,国标中仅给出了一个量符号m,其单位为“kg”和“u”。从理论上说,分子质量应是一个与“原子质量”对应的绝对意义的质量。但在现实中,这样的“分子质量”几乎是不可能得到的,而且在实际工作中也不可能接触和使用它。因此,我们可以不必花费精力去研究它。[/center]

  • 【实战宝典】分子印迹膜分离技术

    [font=宋体]链接:[/font]https://bbs.instrument.com.cn/topic/6028886问题描述:[font=宋体]分子印迹膜分离技术[/font]解答:[font=宋体]分子印迹技术是指合成对模板分子或目标分子具有特异性识别能力的分子印迹聚合物([/font]molecularlyimprinted polymers[font=宋体],[/font]MIPs[font=宋体])的新型分离技术。[/font][font=宋体]有特异性识别能力的分子印迹聚合物([/font]molecularly[font=宋体]当模板分子(印迹分子)与聚合物单体接触时会形成多重作用点,通过聚合过程这种作用就会被记忆下来,当模板分子除去后,聚合物中就形成了与模板分子空间构型相匹配的具有多重作用点的空穴,这样的空穴将对模板分子及其类似物具有选择识别特性。[/font]MIPS[font=宋体]最广泛的应用之一是利用其特异的识别功能去分离混合物,近年来,引人瞩目的立体、特殊识别位选择性分离已经完成。其适用的印迹分子范围广,无论是小分子(如氨基酸、药品和碳氢化合物等)还是大分子(如蛋白质等)已被应用于各种印迹技术中。[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 【讨论】如何区分分子量、分子质量和相对分子质量

    与原子的质量计量一样,分子的质量计量也先后存在3个量名称:相对分子质量、分子质量和分子量。众所周知,分子的质量为组成分子的各原子的质量之合。在日常专业工作中,不论是单质还是化合物,它们的分子质量都是根据各元素原子的个数和各元素的“相对原子质量”(由元素周期表上查到)计算得到。既然元素的相对原子质量是一个单位为“1”的相对质量,那么由此计算得到的分子质量必然也是一个单位为“1”的相对质量。对于某些结构复杂的生物大分子,往往都是通过电泳、离心或色谱分析等方法测得其近似分子质量,因而更是一个相对概念的量值。所以,我们过去长期习惯使用着的“分子量”实际上都是相对的分子质量。因此,国标指出“以前称为分子量”的即是“相对分子质量”(relative molecular mass),并将后者定义为“物质的分子或特定单元的平均质量与核素12C原子质量的1/12之比”。相对分子质量是两个质量之比,也在计算表达形式上进一步明确了“相对”的含义。对于定义中的“特定单元”,主要是指空气等组成成分基本不变的特殊混合物,它们的相对质量可根据其组成成分(N2,O2,CO2,Ar等)的相对分子质量和其在空气中的体积分数计算其平均质量,然后与 12C原子质量的1/12相比即可获得。相对分子质量的量符号为Mr,单位为“1”。  对于过去长期使用的“分子量”,其英文为molecular weight,确切原意为“分子重量”。它既不是质量概念,又没有相对的含意,因而也是一个不够准确和不够科学的量名称。根据国标规定,“分子量”应停止使用,凡过去使用“分子量”的场合都应换以使用“相对分子质量”。另外,过去一直以“Dalton”、“D”和“kD”作为分子量的单位,后来也曾有人提出以“u”作为分子量的单位,这些都是不恰当的用法。相对分子质量的单位只能是“1”,而不是“Dalton”,“D”,“kD”或“u”。  至于分子质量,国标中仅给出了一个量符号m,其单位为“kg”和“u”。从理论上说,分子质量应是一个与“原子质量”对应的绝对意义的质量。但在现实中,这样的“分子质量”几乎是不可能得到的,而且在实际工作中也不可能接触和使用它。

  • 橘子的营养十分丰富

    橘子维C高:橘子味甘酸、性温,具有开胃益气,止咳润肺的功效;橘子的营养也十分丰富,其中维C的含量更是高的惊人,橘子的丰富营养更有降血脂、抗动脉粥样硬化的作用!橘子中的维生素A还能够增强人体在黑暗环境中的视力和治疗夜盲症。[align=center][img=,270,199]https://ng1.17img.cn/bbsfiles/images/2018/12/201812051555056726_5588_676_3.jpg!w270x199.jpg[/img][/align]橘子不宜食用过量,吃太多会患有胡萝卜素血症,皮肤呈深黄色,如同黄疸一般。若因吃太多橘子造成手掌变黄,只要停吃一段时间,就能让肤色渐渐恢复正常。明代张岱季叔张烨芳对橘子情有独钟,据载其"性好啖橘,橘熟,堆砌床案间,无非橘者,自刊不给,辄命数僮环立剥之",吃到手脚都呈现黄色。

  • 【原创】“点评疯子送积分”活动开始了!失败了!

    轰轰烈烈的“疯言疯语论群雄”活动终于结束了,疯子把我点评的实在是不咋地,居然说我爱臭美!!!!应众多版友的强烈要求,现在大家来点评疯子,我自掏腰包啊,大家都积极点,凡是被疯子欺负过的,和即将被欺负的都进来发发牢骚,形式不拘,内容不限,越猛烈越好!凡是能让疯子崩溃的,楼主另有500分相送!另:疯子不要删我的帖子啊!是你先得罪我的!!![em09504]周五晚上8点结贴!时间有限!

  • 当归中发现有效抗骨质疏松分子及化学全合成

    [size=14px] [/size] [size=14px]骨质疏松症是一种全身性代谢性骨病,其高发病率和致残率已成为全球关注的主要公共卫生问题。目前市场上防治骨质疏松的药物包括双磷酸盐类、降钙素类、激素类等。然而,这些药物尚存在副作用明显、疗效不稳定或价格高昂等问题。中药在治疗骨质疏松症等与年龄有关的疾病方面具有独特优势,已经提供了许多具有优异疗效和安全性的潜在药物。当归(Angelica sinensis)是著名的传统中药,被用于治疗妇科疾病、心脑血管疾病和骨质疏松。然而当归中仍存在大量未被充分认知的成分,制约着当归药效物质基础和科学内涵的全面阐明。[/size] [size=14px]2024年2月21日,暨南大学中药及天然药物研究所高昊联合中国科学院深圳先进技术研究院王新峦团队在ACS Central Science(IF = 18.2)发表题为“Discovery of a Potent Antiosteoporotic Drug Molecular Scaffold Derived from Angelica sinensis and Its Bioinspired Total Synthesis”的文章,研究遵循中医骨疾病理论,以临床高频使用的中药当归为研究对象,从中发现一类新型分子骨架的苯酞“法卡林苯酞” Falcarinphthalides A-B(1-2),并在其结构解析、生源机制、抗骨质疏松活性和机制,以及化学全合成等方面进行研究。最终发现Falcarinphthalide A(1)表现出显著的体外抗骨质疏松活性,是一种非常有前途的先导化合物。[/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px]1、新结构类型的苯酞“法卡林苯酞”的结构解析[/size] [size=14px]首先,作者从当归中分离出了两种新型苯酞Falcarinphthalides A-B(1-2)及其生源前体(3R,8S)-Falcarindiol(3)和(Z)-Ligustilide(4),并核磁共振技术鉴定了该类化合物的平面结构[/size] [size=14px]随后作者以化合物1(falcarinphthalide A)为例,通过简化结构计算电子圆二色谱(ECD)推断其绝对构型为(3'R,8'S)-1,并通过振动圆二色谱(VCD)进行了验证。化合物2(falcarinphthalideV)的结构解析解析为(3′R,8′S),化合物3和4鉴定为(3R,8S)-Falcarindiol和(Z)-Ligustilide(图2)。[/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px]图2 ECD和VCD曲线确定化合物1的立体构型[/size] [size=14px]2、新结构类型的苯酞“法卡林苯酞”的生源推测[/size] [size=14px]结合四种化合物的结构特点,作者推测Falcarinphthalides A-B(1-2)可能的生源机制,以化合物3和4为前体,通过Diels?Alder和retro-Diels?Alder级联反应合成。进一步通过对LC-HR-ESI-MS对法卡林苯酞标准品(falcarinphthalide A-B)和新鲜当归95%乙醇冷提液进行分析,发现这两种新型苯酞Falcarinphthalides A-B(1-2)并发现非人工产物。接着通过DFT计算模拟研究该Diels?Alder/retro-Diels?Alder级联反应过程,整体反应能垒较高,暗示着该反应过程需要酶参与(图3)。[/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px]图3 新型苯酞及其前体的生源推测[/size] [size=14px]3、新结构类型的苯酞“法卡林苯酞”的体外抗骨质疏松活性及机制[/size] [size=14px]接着作者体外检测了化合物1-4的抑制破骨细胞活性的能力,发现化合物1、3和4能够抑制破骨细胞分化,破坏破骨细胞F-actin环的形成,最终抑制破骨细胞的骨吸收。而化合物2没有表现出上述任何活性,表明Falcarinphthalide的不同连接方式对其抑制破骨细胞活性至关重要(图4)。[/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px]图4 体外抗骨质疏松活性[/size] [size=14px]随后,作者对上述化合物抗破骨细胞的机制进行初步研究,发现化合物1、3和4有效降低与破骨细胞生成有关的转录因子c-Fos和NFATc1以及下游相关蛋白Integrin-β3的表达,下调DC-STAMP、OSCAR和TRAP的基因表达。此外,化合物1和4还能有效抑制NF-κB p65的核易位。与前面结果一致,化合物2在这些通路中未表现出任何抑制作用。结果表明Falcarinphthalide A(1)通过抑制NF-κB和c-Fos通路,进而抑制RANKL诱导的破骨细胞分化(图5)。[/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px]图5 体外抗骨质疏松活性的机制[/size] [size=14px]4、新结构类型的苯酞“法卡林苯酞”的化学全合成[/size] [size=14px]由于化合物1显示良好的抗破骨活性,作者对其进行了全合成。由于法卡林二醇作为亲双烯体的反应活性较低,作者根据生源机制通过3和4直接进行Diels?Alder反应均失败,故而设计了设计了化合物5和7两种硅烷亲双烯体,通过DFT计算发现化合物7能够高效的与藁本内酯发生逆电子Diels-Alder/retro-Diels-Alder反应。最后,在IEDDA量子化学计算结果的指导下,作者通过10步反应实现了对Falcarinphthalide A(1)的克级全合成(图6)。[/size] [size=14px]图片[/size] [size=14px] [/size] [size=14px]图6 新结构类型的苯酞“法卡林苯酞”的化学全合成[/size] [size=14px]总结[/size] [size=14px]该研究从传统中药当归中分离鉴定的一类具有全新碳骨架的苯酞类化合物Falcarinphthalides A-B(1-2),体外实验表明,Falcarinphthalide A(1)及其生源前体(3和4)显示出显著的抗破骨体外活性,主要通过抑制NF-κB和c-Fos通路干预RANKL诱导的破骨细胞生成。在生源机制启发和DFT计算驱动下,我们以Diels-Alder/retro-Diels-Alder级联反应为关键步骤,通过10步反应实现了法卡林苯酞A的克级全合成。研究不仅为骨质疏松防治提供了全新药物分子骨架,凸显了中药活性分子在骨质疏松防治方面的巨大潜力,也为传统中药药效物质解析和科学内涵阐明奠定了基础。[/size]

  • 【实战宝典】分子印迹膜分离技术的基本流程有哪些?

    [font=宋体]链接:[/font]https://bbs.instrument.com.cn/topic/774432问题描述:分子印迹膜分离技术的基本流程有哪些?解答:a) [font=宋体]模板分子与功能单体中的功能基团结合,形成功能单体[/font]-[font=宋体]模板分子的主客体配合物。[/font]b) [font=宋体]选择合适的交联剂,在惰性溶剂(致孔剂)中,对功能单体[/font]-[font=宋体]模板分子配合物进行交联,形成共聚物。在交联过程中,将功能单体上与模板分子结合的功能基团的空间取向与排列位置固定下来。[/font][font='Times New Roman','serif']c) [/font][font=宋体]通过一定的方式(物理或化学方法),断开模板分子与功能单体的结合键,再去除模板分子。[/font]以上内容来自仪器信息网《样品前处理实战宝典》

  • 中国分子光谱研究的奠基人之一——吴学周

    吴学周,物理化学家,中国分子光谱研究的奠基人之一和化学科学研究的卓越组织者。他为中国分子光谱研究和化学科学研究的发展贡献了毕生的 精力;他服从建设需要,投身工业基地,组织研究队伍,培养了几代科学研究人才;他在学术上的成就是对多原子分子的电子光谱和分子结构进行了开拓性研究,在振动光谱的应用研究、反应动力学研究和电化学研究中也有建树。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制