当前位置: 仪器信息网 > 行业主题 > >

电性能

仪器信息网电性能专题为您整合电性能相关的最新文章,在电性能专题,您不仅可以免费浏览电性能的资讯, 同时您还可以浏览电性能的相关资料、解决方案,参与社区电性能话题讨论。

电性能相关的资讯

  • 软件评估将被纳入家电安全及性能检测
    说起家电产品中的嵌入式软件,多数人首先想到的都是它能让家电更“聪明”。但业内专家指出,随着电子电路在家电产品中被越来越广泛地应用,软件不仅在家电性能的提升中起着积极作用,同时也充当着安全卫士的角色,因此将家电软件评估纳入安全及性能检测势在必行。   “如果说汽车的刹车是靠软件控制的,那你开车时会不会觉得不踏实?”国家家用电器质量监督检验中心综合检验部部长鲁建国在向记者解释安全功能的软件在电器运行过程中所起的作用时就举了这样一个例子。“其实,在洗衣机运行过程中也有需要紧急刹车的时候,比如突然打开波轮洗衣机的上盖,转动着的洗衣机就会骤然停止。”他介绍说,现在越来越多的洗衣机是由软件来完整这一程序控制的。还有不少电器中的过流保护、过热保护等都是通过软件感知热量、电流,并判断是否需要断电停机。   这些电子线路有些是实现其正常工作条件下的控制功能,有些还同时具有非正常条件下的保护功能。可以说,安全软件已经成为大多数家电产品的必要组成部分,而其可靠性直接关系到所控制器具对使用者和环境的安全。这些控制器相比传统的机电式控制器更易受到环境温度、湿度、电压和电磁场等的影响,其失效的方式多种多样,难以预见。对这些智能家电的安全性评估与对传统机电式家电评估相比,无法通过设置简单的故障条件来判断其符合性,必须对其进行软件评估。   国际电工委员会最早于2004年在IEC60335-1Ed4.1标准中的第19章就引入了关于电子电路失效评估试验要求,该标准附录R中规定了电子电路软件评估试验方法。我国现行国家标准GB4706.1-2005《家用和类似用途电器的安全》等同采用这一要求。由于该标准对软件评估做了明确规定,因此无论是进行3C、CQC等国内安全认证还是进行CB、CE等国际安全认证,家电产品在适用的情况下均要按照附录R进行软件评估。另据了解,上述标准目前还仅存在于通用要求中,关于洗衣机等不同种类产品的特殊要求正在制定中。“与计算机系统软件不同,嵌入式软件和硬件有着密切的联系,大多数时候是不能将软件与硬件分离开来的。”鲁建国进一步解释说,家电软件评估,尤其是安全软件评估实际上是对整个电子控制器的评估,包含着对软件和硬件的评估。软件评估要确认软件文档及软件程序的适合性、软件文档与程序的一致性等。   目前高端产品基本上所有控制都由计算机程序完成的,无论是安全防护还是各种正常功能控制,都依赖于电子线路和软件。从硬件方面比较,各个品牌之间没有太大的差别,硬件水平提升的空间也有限,但是软件却千差万别,不同的程序流程、转速、时间、温度等参数会对洗衣机的性能产生重大影响,包括洗净比、磨损率、噪声、含水率、震动、用电量、用水量、寿命等,这些性能指标是洗衣机产品尤其是高端洗衣机产品竞争的亮点。   鲁建国指出,安全评估已经成为家用电器安全检测及认证必不可少的一环。相比家电安全软件评估,对家电中软件进行全面的评估更为复杂,但对预防和消除软件缺陷,提高软件质量以及家电产品可靠性和性能具有非常重要的作用。不过目前软件评估还主要限于安全功能软件,对软件全面度量进行评估还需要一个较长的发展过程。同时,即便是必要的安全软件评估,从日常检测情况以及对制造商调查了解来看,也存在着对软件评估了解少、不清楚产品是否需要软件评估、不清楚如何开展软件评估等突出的问题。有相当部分的洗衣机采用保护性电子电路及软件进行安全防护,但未进行软件评估确认,这种情况的出现与软件本身的特性有关,更与行业的认知和重视程度有关,以致有些制造商有意去回避软件评估。因此,将软件评估纳入家电产品安全和性能质量检测范围势在必行。
  • 新型光敏纳米粒子可同时获得光电最佳性能
    宁志军博士展示喷涂了胶体量子点的薄膜实验样品。   加拿大研究人员设计并测试了一种新型固态、稳定的光敏纳米粒子&mdash &mdash 胶体量子点技术,该技术或将用于开发更为廉价、柔性的太阳能电池及更好的气体感应器、红外激光器、红外发光二极管。此项研究成果发表在最新一期《自然· 材料》上。   胶体量子点基于两种类型的半导体收集阳光:N型(富电子)和P型(乏电子)。但N型半导体材料暴露于空气中时,会与氧原子结合,失去其电子,转变成P型材料。   论文第一作者、多伦多大学电气与计算机工程系博士后宁志军在接受科技日报记者采访时说,其研究小组开发的新型胶体量子点技术,可使N型材料在暴露于空气中时,不与氧结合。同时维持稳定的N型和P型层,不仅能提高光的吸收效率,还打开了同时获得光捕获和电传导最佳性能的新型光电器件的大门,这也意味着可利用新技术开发出更复杂的气象卫星、遥控设备、卫星通信或污染检测仪。   宁志军称,这仅是此项材料创新研究的第一步,利用这种新材料可构建出新的器件结构。与普通硅材料电池相比,胶体量子点材料可在低温下合成,耗能低且工艺简单。这种溶液可处理的无机材料增强了电池的稳定性和便携性。研究发现,碘是兼备高效和空气稳定性的量子点太阳能电池的完美配体。   由于吸收光谱可达红外区域,这种N-P混合型新材料可吸收更多光能,从而使太阳能转换效率最高可达8%。改进性能还仅是这种新型量子点太阳能电池结构的开始,未来这些功能强劲的量子点可与油墨混合,喷涂或印刷到轻薄、柔软的屋面瓦表面,从而大大降低太阳能电力的成本,造福普通民众。   宁志军介绍,胶体量子点太阳能光伏技术在最近10年里已取得飞速发展,太阳能转换效率已从最初的0.1%提高到实验室条件下的10%左右。但要实现该技术的商业化,还需持续改进其绝对性能,或电力转换效率。
  • 化学所等在硅带隙以下高性能有机光电探测方面获进展
    近红外光响应的有机光电探测器(OPDs)具有光电性质易调控、可大面积柔性印刷制备、可室温工作等优点,在可穿戴智能设备、柔性电子皮肤、生物医学成像等新兴领域颇具应用前景。然而,高性能的超窄带隙有机半导体材料的设计合成较为困难。目前关于强近红外Ⅱ区(1000-1700 nm)尤其是硅带隙以下波段(1100 nm)响应的有机光电探测器鲜有报道,且比探测率(D*)普遍低于商用无机探测器。   中国科学院化学研究所有机固体院重点实验室林禹泽课题组在高性能近红外有机光伏材料与光电器件方面开展了相关研究,并取得了系列进展。近日,该课题组设计合成了一种具有高Mulliken电负性的含氰醌式端基,4-二氰基亚甲基-1-萘醌(QC)。基于该端基构筑的超窄带隙受体材料实现了硅带隙以下的高灵敏光电探测。端基QC结合了醌类分子的还原诱导芳香稳定性和氰基的强吸电子特性,表现出明显高于目前常用端基(4.61~5.46 eV)的Mulliken电负性(5.62 eV)。与常用端基3-(二氰基亚甲基)靛酮相比,QC端基构筑的小分子受体材料的光学带隙普遍减小了0.40-0.45 eV,最小的光学带隙可窄至0.77 eV。在光伏模式下,二极管型近红外OPD器件在0.41~1.2 μm的宽响应范围内获得了超过1012 Jones的比探测率,在1.02 μm处获得了最大值2.9 × 1012 Jones。虽然可探测的波长极限短于InGaAs探测器,但该OPD器件在0.9~1.2 μm范围内的D*值已与商用InGaAs探测器相当,高于商用的Ge探测器。基于高灵敏近红外OPD器件,林禹泽课题组与合作者实现了宽范围(0.4~1.25 μm)的光谱准确测量以及硅带隙以下1.2 μm近红外Ⅱ区成像。   该研究由化学所、吉林大学和浙江大学合作完成。相关研究成果近日发表在《科学进展》(Science Advances)上,并入选当期Featured Image。研究工作得到国家自然科学基金和中科院的支持。 基于高电负性端基的超窄带隙材料的OPD实现1.2 μm近红外Ⅱ区成像 The Featured Image
  • “视觉模组光电性能的图像式检测方法” 正式成为国家标准
    2022年3月9日,由国家市场监督管理总局和国家标准化管理委员会联合发文(中华人民共和国国家标准公告),批准了由机器视觉产业联盟牵头制定的“视觉模组光电性能的图像式检测方法”正式成为国家标准。据了解,这项标准的推出,标志着我国机器视觉技术水平实现了新突破,机器视觉行业国际话语权得到提升,为我国视觉科技高质量发展奠定了坚实基础。   近年来,随着国家经济和科技实力的快速增强,智能制造在国家经济社会发展中地位作用进一步彰显,机器视觉作为智能制造核心领域的支撑作用也越来越突出。但在世界机器视觉领域,由于我国起步晚,发展滞后,机器视觉行业的标准和话语权基本都由西方发达国家制定或掌握,导致我国在这一行业的持续创新和高质量发展受到较大的制约。   2015年始,机器视觉产业联盟迈出了标准制定工作的探索之路,组织相关专家将欧洲机器视觉协会的国际行业标准EMVA1288《图像传感器与相机性能测试标准》进行全文翻译,经过了近2年时间,于2017年8月正式发布了EMVA1288 R3.1中文版,它也是整个G3组织与EMVA认可的该标准的中文版。随后,机器视觉产业联盟组织开展了更为广泛而深入的调研工作,在学习参考国外理念和经验的基础上,结合国内行业实际情况及国家标准的相关政策规定,并在国标委相关专家的支持与指导下,国标起草组推出了“标准”的初级版,经历了两年多时间的深入探索实践,不断克服疫情等不利条件的影响,经过数十次线上或线下会议讨论,在先后修改了十几版后才最终完成了此次被国家认定的“行业标准”。   参与本次标准起草组的冯兵博士介绍说,这个“标准”意味着中国机器视觉跨入了新的门槛,在未来的世界智能制造领域,中国机器视觉企业将有更大的参与和竞争机会,也将为世界经济发展作出中国贡献。
  • 新材料助力大化所推出低价、高性能光电放大器组件
    仪器信息网讯 2016年10月10日,慕尼黑上海分析生化展(analytica China 2016)召开同期,中国科学院大连化学物理研究所(以下简称:大化所)携AccuOpt 2000光电放大器组件、小型化学衍生器等产品参加。 中国科学院大连化学物理研究所参加analytica China 2016  大化所研究员关亚风向仪器信息网介绍了AccuOpt 2000光电放大器组件的特点及潜在的优势应用领域。AccuOpt 2000光电放大器组件的检测器采用了硅光二极管制成的检测器,结合自有的信号放大电路设计,使得AccuOpt 2000的噪音电平达到0.01mV。硅光二极管检测器的应用,使AccuOpt 2000的光谱响应范围为320~1100nm,覆盖近红外光波段,可替代昂贵的红外增强型光电倍增管。同时,这也给AccuOpt 2000带来了抗震、抗强光的特点,为适应更多的应用场合带来潜在的优势。AccuOpt 2000仅需5~12V的供电电源,并能在2分钟内平衡稳定,一方面能降低仪器在供电电源方面的成本;同时,专为AccuOpt 2000提供的DC-DC电源,12V输入,单块电源功率2W或3W,就能同时为8支AccuOpt 2000供电,这也大大减少仪器运行中的能源消耗,契合当前绿色仪器的发展大趋势。 AccuOpt 2000光电放大器组件  AccuOpt 2000价格远低于光电倍增管,如果应用于食品快检领域,将为用户提供低价、高质的食品安全快速筛查解决方案。从大化所展位现场看到,AccuOpt 2000已经成功应用于LED荧光检测器、激光诱导荧光检测器、叶绿素α 检测器中。据了解,AccuOpt 2000已经实现批量化生产,第一批生产1000支。  大化所的小型化学衍生器也吸引了信息网编辑的目光。这是一款小型柱后碘/溴化学衍生器,能使黄曲霉毒素B1和G1的荧光强度提高6.5倍。关亚风介绍到,该款小型化学衍生器已经批量生产100台,完全具备了批量化生产能力,为国内企业的供货价格将是市场同类产品的4分之一。 小型化学衍生器  关亚风特别提到,是新材料在零部件上的使用,实现了AccuOpt 2000低价和高性能这两者之间的很好结合。
  • 2025版《中国药典》4026 药典塑料耐压性能检查法解读
    2025版《中国药典》4026 药典塑料耐压性能检查法解读在2023年,国家药典委发布了“4026塑料耐压性能检查法”,这一标准预计将在2025版中国药典的药包材部分得到体现。耐压性能是软性药包材产品的一个重要评价指标,它考察了包装材料在运输和使用过程中对药品的保护能力。这一标准的制定,源于对《国家药包材标准》中多个与耐压性能相关的项目的修订,旨在为药包材的耐压性能提供全面的规范。耐压性能系指通过模拟药包材包装药品后,包装整体对外界或外界负荷的承受能力。耐压性能测试主要分为内压法和外压法两种方法。外压法适用于非注射剂用复合袋,而内压法则适用于药用复合软膏管和输液袋(或瓶)。为了满足这些测试需求,济南三泉中石实验仪器有限公司推出了NLY-05包装耐压强度试验仪和MFY-06S智能密封仪,这两款仪器均符合“4026塑料耐压性能检查法”的要求。一、外压法:适用于非注射剂用复合袋。三泉中石专为外压法设计的NLY-05包装耐压强度试验仪,将试样置于专用的测试舱内,按照不同规格设置相应的压力,维持相应的时间即可判定是否合格。NLY-05包装耐压强度试验仪不仅适用于药用复合袋的耐压测试,还适用于食品包装袋、纸碗、纸盒等产品的耐压试验。该仪器的设计确保了测试的准确性和可靠性,其测试原理是通过将试样装夹在夹具的两个夹头之间,进行相对运动,并通过力值传感器采集试验过程中的力值变化。当达到设定的压力后,仪器会保持压力,如果在整个过程中试样未破裂或渗漏,则视为合格;否则为不合格。二、内压法:适用于药用复合软管和输液袋(或瓶)。其中复合软管是采用MFY-06S智能密封仪从管尾处注入0.2MPa的气压,将样品放入水中,样品无破裂或者无气泡冒出即为合格。输液袋或者瓶是将试样分别置于MFY-06S智能密封仪两平行平板之间,加压至内压为 67kPa,维持 10 分钟,应无液体漏出。济南三泉中石的MFY-06S智能密封仪则广泛应用于医疗器械、制药、食品、包装、质检等行业。它的测试原理是在包装上打孔连接仪器,将包装物放入水中,充入一定气体,使试样产生内外压差,通过观察试样内气体外溢情况来判断试样的密封性。济南三泉中石实验仪器通过这两款仪器的推出,不仅为药包材生产厂家、制药企业和药检机构提供了专业的耐压性能测试解决方案,也为国家标准体系的建立提供了有力的技术支持。通过这些先进的检测设备,可以确保药品包装材料在各种环境下的耐压性能和密封性,从而保障药品的安全和有效性。
  • 《电子倍增电荷耦合成像器件光电性能通用测试方法》CAIA标准发布
    2021年6月,中国分析测试协会标准化委员会组织了以张新荣教授为组长的“仪器及零部件性能测试方法标准工作组”,对中国电子科技集团第四十四研究所及钢研纳克检测技术股份有限公司在完成《国家重大科学仪器设备开发专项》项目时制定的《电子倍增电荷耦合成像器件光电性能通用测试方法》CAIA标准草案和编制说明,进行了网上审议。“仪器及零部件性能测试方法标准工作组”的专家审了标准草案和编制说明,提出了修改意见,同意将修改后的标准草案和编制说明提交CAIA标委会全体委员进行审议。中国分析测试协会标准化委员会秘书组将修改后的标准草案和标准草案编制说明,用电子邮件发给中国分析测试协会标准化委员会的一个委员进行审议。在规定的审议时间内,委员们在同意该标准草案的前提下,对标准草案和编制说明提出了一些修改意见。标准草案的起草人根据委员们提出的修改意见,对标准草案再次进行了修改,形成了“CAIA标准”的正式文本,报中国分析测试协会标准化委员会主任委员张玉奎院士审批。经张玉奎院士审查同意,现将该“CAIA标准”正式发布。附件:《电子倍增电荷耦合成像器件光电性能通用测试方法(发布稿)》.pdf
  • 2025年版《中国药典》4051 药典金属罐耐压性能测定法解读
    2025年版《中国药典》4051 药典金属罐耐压性能测定法解读金属罐的耐压性能是衡量其承压能力的重要指标,尤其是在药品包装领域,金属罐因其密封性、耐腐蚀性和可回收性而被广泛使用。对于需要保持内部压力稳定的气雾剂等产品,金属罐的耐压性能直接关系到药品的完整性和有效性。本文将介绍金属罐气密性水浴试验仪(MFY-06S)和金属罐爆破压力测定仪(NLY-03)的产品特点及其在耐压性能测试中的应用。1.金属罐耐压性能的重要性金属罐的耐压性能测试是确保药品在储存和运输过程中安全性和完整性的关键。根据2025年版《中国药典》4051金属罐耐压性能测定法,以及相关国家标准和国际标准,金属罐的耐压性能测试包括气密性能测试和变形压力及爆破压力测定。主要考虑的是金属罐体里面承受较高压力,在此压力下包装的密封性能和承压能力。三泉中石推出的金属罐气密性水浴试验仪、金属罐爆破压力测定仪能够很好解决两种测试。2.试验设备介绍济南三泉中石实验仪器有限公司自主研发生产的金属罐气密性水浴试验仪(MFY-06S)和金属罐爆破压力测定仪(NLY-03)是进行金属罐耐压性能测试的专业设备。(1)金属罐气密性水浴试验仪(MFY-06S)产品特点:采用特殊定制的夹具连接金属罐与仪器管路,能够向罐体内通入0.8MPa至0.85MPa的高压气体,通过在水下观察保压过程中的压力变化和瓶身是否有气泡冒出来判断气密性。需提醒的是三泉中石气密性水浴试验仪设置了自动保压功能,能够保持整个测试过程中压力的保持。应用:适用于药品包装用吸入气雾剂、外用气雾剂等金属罐的气密性能测定。(2)金属罐爆破压力测定仪(NLY-03)产品特点:全自动显示整个实验过程的压力变化,能够满足各容量爆破压力试验要求。其实是测试金属罐的极限承压能力,同样要采取三泉中石为其特殊定制的专用夹具,在样品罐内注满液压油或纯化水后,通过特殊定制的专用夹具将金属罐与设备相连,逐渐升高压力至变形压力和爆破压力规定值,保持10秒,观察罐体有无永久性变形,继续升压至爆破压力规定值,保持10秒,观察罐体是否爆裂。由于试样的变形导致压力变化,在此过程中仪器需要自动补压,维持规定压力。需要注意的是因为爆破压力较高,安全起见,仪器必须有可靠的防护装置才能进行实验,三泉中石的金属罐爆破压力测定仪可满足此要求。应用:测试金属罐的极限承压能力,适用于药品包装用金属罐的变形压力和爆破压力测定。3.试验过程与结果在耐压性能测试中,金属罐经过气密性测试,确保无气泡泄露。通过爆破压力测定仪(NLY-03)进行极限承压测试,观察在规定压力下罐体是否发生永久性变形和爆裂。试验结果显示,所测试的金属罐在规定的耐压范围内表现出良好的气密性和抗压能力,未发生泄漏或破裂。4.结论金属罐的耐压性能测试对于保证药品质量至关重要。济南三泉中石实验仪器有限公司提供的金属罐气密性水浴试验仪和金属罐爆破压力测定仪,以其高效、精确的性能,为金属罐的耐压性能测试提供了强有力的技术支撑。这些设备不仅满足了国家标准的要求,而且在技术创新和国家标准的制定中发挥着积极作用,为药品包装检测领域提供了高标准的检测设备和解决方案。
  • 点赞 | 实现性能调控的纳米尺度结构设计
    p   在物理与材料研究领域中,众多问题的解决受限于样品质量、尺寸、探测极限等因素制约而搁置,而这些问题是可以通过电子显微学方法来实现突破。近年发展起来的球差矫正等先进电子显微学方法,为在纳米乃至原子尺度对众多物理量及其耦合关系的测量与表征提供了可能,也为实现性能调控的纳米尺度结构设计提供了依据。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/a8bbe64e-d38a-46f2-b984-3ba9190a2d19.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 325" border=" 0" vspace=" 0" style=" width: 450px height: 325px " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 田鹤老师科研工作照 /span /p p   众所周知,大多数材料在温度变化时呈现热胀冷缩的性质,而有一类特殊的材料因其在温度变化时体积基本保持不变,被称为零膨胀材料。一直以来,零膨胀材料因其在高精度仪器、极端条件元器件等方面极具应用价值而备受关注。然而,目前发现的零膨胀材料仍非常稀少,设计制备宽服役温度范围、低膨胀系数的零膨胀材料是该领域的核心目标。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/84763b66-77b5-492c-be61-1be8b29b18d9.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 600" height=" 281" border=" 0" vspace=" 0" style=" width: 600px height: 281px " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 研究图a /span /p p   针对这一问题,张泽院士带领下的田鹤团队进行了系统的原位实验及微结构研究,表明铁电材料中,封闭介孔内存在着正负铁电极化表面,这些表面分别由氧离子、氧空位的聚集而被屏蔽。这一特殊的自发铁电极化屏蔽机制使得介孔微区附近的铁电性消失,从而显示出正膨胀性能。这一特性与钛酸铅本征的负膨胀性质相协同,从而使单晶介孔钛酸铅纤维表现出零膨胀的特性。成功将大量纳米尺度的封闭介孔引入到单晶钙钛矿钛酸铅中,这有效地调制了热膨胀性能,其晶胞体积在极宽的温度范围内基本保持不变。这一研究揭示了铁电体内部表面微结构的构建及其铁电极化屏蔽机制对材料热膨胀性能起到了显著调控作用,为设计、制备性能优异的新一类单相零膨胀材料提供了新思路。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/45816567-b796-4776-9c9f-f02335703bfd.jpg" title=" 3.jpg" alt=" 3.jpg" width=" 600" height=" 455" border=" 0" vspace=" 0" style=" width: 600px height: 455px " / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 研究图b /span /p p   另一方面,由于尺寸、表面和界面效应以及量子效应等因素,材料中的有序结构,如铁磁有序、铁电有序等,通常在极限尺寸下被显著抑制。由于长程有序的尺寸限制,到目前为止,在室温下实现具有垂直于表面极化的原子厚度铁电薄膜仍然是一个艰巨的挑战,严重制约了高密度非易失性存储器件的发展与小型化。针对这一问题,我们团队利用球差矫正电子显微镜,在一个单位晶胞厚的BiFeO3薄膜中直接观察到了面外的强自发极化,并且实现了高达370% 的隧道电流变效应。这一发现证实了BiFeO3薄膜中的铁电临界厚度可以通过结构设计以实现突破,这对于高密度数据存储显示出巨大的应用前景,将为铁电基器件的小型化突破开辟可能性。 /p p   借助先进电子显微学方法,在纳米乃至原子尺度对众多物理量及其耦合关系进行研究的能力,可以为探索材料性能与微结构关系提供依据,为设计、优化功能性材料特性,实现纳米尺度结构设计调控宏观性能提供新的途径。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201904/uepic/59832007-ec42-4212-85c3-242933457bcf.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 600" height=" 275" border=" 0" vspace=" 0" style=" width: 600px height: 275px " / /p p   在此工作基础上,田鹤负责的“实现性能调控的纳米尺度结构设计”成功入围浙江大学“2018年度十大学术进展评选”活动。以下为该项目具体情况: /p p    strong 项目名称 /strong :实现性能调控的纳米尺度结构设计 /p p    strong 申报单位 /strong :材料科学与工程学院 /p p    strong 负责人 /strong :田鹤 /p p    strong 项目简介 /strong /p p   在过渡族金属氧化物这类强关联电子体系中,电子表现出的不仅是电荷,还有自旋、轨道这些复杂的属性,相互耦合诞生了如高温超导、庞磁电阻、多铁性等诸多具有重要应用前景的特性。但对电荷、轨道、自旋间的耦合关系,及其有序性与晶格的耦合、相互作用理解的依然不足,制约了对此类功能性材料性能有效调控的探索。 /p p   项目的主要特色是摆脱性能测试宏观、平均的限制,在纳米乃至原子尺度通过对各物理量间耦合关系的研究,直接构建微观结构对宏观性能的影响。通过纳米尺度结构设计,探索调控宏观性能的途径,为设计新型的功能性材料与器件提供了新的机遇。证实了针对性纳米尺度结构设计,对宏观性能的有效调控。成功研制了一种具有宽温度服役范围(低温、室温与高温区)的单相零膨胀系数材料,为航天、航空等领域,精密载荷关键部件的高精度、高稳定性需求提供了新的解决方案 在常温下实现了具有原子级别厚度,面外铁电极化的高密度纳米器件,打破了铁电薄膜临界厚度的认知。 /p p    strong 项目团队 /strong /p p   张泽院士领导的田鹤团队利用自主发展的电子显微学方法,在纳米乃至原子尺度对各物理量间耦合关系开展研究,有针对性的探知耦合本质与性能的依存关系,并探索性能调控的途径。揭示了在铁电材料内部,引入纳米尺度极化表面,对单相铁电材料宏观热膨胀行为调控的物理机制。与浙江大学韩高荣、任召辉团队合作,设计并制备出一种PbTiO3单相铁电介孔零膨胀系数材料 创新提出了一种调制铁电材料热膨胀系数的新途径,为设计、制备性能优异的单相零膨胀材料提供了新思路。(Nature Communications, 9 (2018) 1638 )进而,发现了晶格调控可突破极限尺寸对铁电极化的抑制作用。与新加坡国立大学陈景生团队合作,实现了四方相BiFeO3薄膜在室温二维极限尺度下的铁电序 证实了极限尺度下(一个单胞厚)的BiFeO3薄膜,所具有的超强铁电性与自发的面外极化 揭示了铁电极化产生、稳定和转化的物理机制 奠定了其作为高密度非易失性存储器的科学基础。(Nature communications 9 (2018) 3319) /p
  • 如何使便携式精密冷镜露点仪保持良好的性能?
    便携式精密冷镜露点仪露点测量中需注意的问题:  露点仪通常在大气环境下存放和使用,由于环境空气中的水分含量极高,可达数千到数万×10-6 V/V(体积分数),从而给露点测量操作造成了很大的困难,使得露点测量结果往往发散性比较大。要使测量数据准确可靠,除了保证便携式精密冷镜露点仪具有良好的性能外,还必须注意下面几个问题:  (1)气路系统应具有良好的密封性,以防止外界环境空气中的水分渗入气路系统中,影响测量结果;  (2)如果被测气体将直接排入大气,则应考虑大气中的较高含量水分在浓差作用下向测量系统内部反向扩散的问题。常用的方法为在仪器排放口连接一段适当长度的管子,其长度和管径以不会造成背压,影响测量腔的压力为准;  (3)测量取样管路应尽量短,并避免在管路上有较多的阀门和接头以避免造成死角,从而减少可能的干扰;  (4)便携式精密冷镜露点仪所使用的管道和测量腔室应选用憎水性强的材料,不锈钢是较好的选择,其次为聚四氟乙烯、铜和聚乙烯等,应尽量避免使用尼龙或橡胶材质的管道进行露点测量。此外,管道和腔室内壁应尽量保证光洁干净。
  • 精确数据源于仪器性能和分析人员的黄金分割点
    编者按:对一个公司或生化企业,是仪器分析员重要还是先进的仪器性能重要?你所在的实验室重视人还是更看重仪器的性能? 实验室是生化企业中必不可少的一个部门,它肩负着原材料的进厂检验,生产过程检验,产品出厂质量检验这3项重大的职责。可以看出实验室起着多么重要的职能。   然而我们在看到企业介绍自身实力的时候,往往都是在说我们有多少多少先进的仪器,很少有公司会说我们公司实验室有多少分析人员。这不难看出我国大多数生化企业对硬件的重视程度大于企业本身软件的提高。熟话说:&ldquo 看企业管理,知企业产品;看企业员工素质,知企业产品质量;看企业精神,知企业发展!&rdquo 。下面编者就从企业的实验室来分析一下我国大多数企业的现状。   所谓实验室硬件就是分析实验用的仪器,而软件就是从事实验分析工作的技术人员。许多人认为实验员就是通过一份实验方法和检测标准就可以利用仪器做出结果。所以许多企业往往不重视实验员的技术培训和福利待遇。盲目的最求仪器的性能来提高检测水准,这样的做法是不正确的。   仪器是死的,人是活的,优秀的实验员能用三流的仪器做出一流的分析结果,因为优秀的实验员能做到精确的实验操作和准确的结果分析。在仪器的使用过程中一流的仪器给三流的分析人员用,可能只能得到三流的分析结果;三流的仪器给一流的分析人员用,就可能得到一流的分析结果。在仪器的维护过程中,三分仪器七分维护.如果检测人员对仪器只知道使用不积极维护,仪器也有性能下降的一天,这一天来到更快,到时一流仪器很快就变成三流仪器。   先进的仪器配上优秀的化验员才可以最大程度的发挥仪器的性能。仪器只是按照人设定的程序去做的,它可不会动脑筋帮你解决什么问题,实验室的整体水平主要还是体现在人员的素质,责任心上。其实任何行业都是这样,只要你有人,硬件差点也没关系,都能越做越好。如果人员素质不够好,再好的硬件也会变成废铁的。   近年来,国家也意识到了企业的这一现状,加大了实验员培训的力度。2009年全国分析检测人员能力培训与考核体系启动。其对象是从事产品理化性能、专用性能及安全性能检测的分析检测人员。该体系统一规范了分析检测人员分析检测能力的培训和考核标准。此次正式启动并推广该体系,旨在通过搭建分析检测人员培训公共平台,提高我国分析检测人员的分析检测技术能力,确保检测实验室向社会提供分析检测结果的准确性和可靠性。   许多企业购置了先进的仪器却闲置在一旁,更有甚者,使用者几年都还没有掌握仪器性能,一直按照错误的步骤操作,仪器只是一个平台,真正能让仪器发挥性能的还是高素质的使用者。   综上所述,编者认为对于一个企业来说找个仪器性能和实验员能力的黄金分割点是保证准确的检验数据的关键。这也适用于整个企业,如何平衡企业的硬件基础和企业的软件素质也是主导一个企业发展的最大问题。
  • 台积电3nm节点性能增强版N3P芯片将于今年量产!
    台积电于2023年第四季度成功开始采用第二代3nm级工艺技术生产芯片,实现了计划的里程碑。该公司目前正准备大规模生产该节点的性能增强版N3P芯片。台积电在欧洲技术研讨会上宣布,这将在2024年下半年进行。N3E工艺如期进入量产,缺陷密度与2020年量产时的N5工艺相当。台积电将N3E良率描述为“很棒”,目前唯一使用N3E的处理器 - 苹果M4 - 与基于N3工艺的M3相比,晶体管数量和运行时钟速度都大幅增加。台积电一位高管在活动中表示:“N3E按计划于去年第四季度开始量产。我们已经看到客户产品的出色产量表现,因此他们确实按计划进入了市场。”N3E工艺的关键细节是它相对于台积电初代N3工艺(又名N3B)的简化。通过去除一些需要EUV光刻的层并完全避免使用EUV双图案化,N3E降低了生产成本,拓宽了工艺窗口并提高了产量。然而,这些变化有时会降低晶体管密度和功率效率,这种权衡可以通过设计优化来缓解。展望未来,N3P工艺提供了N3E的光学缩放,并且也显示出有希望的进展。它已通过必要的资格认证,并显示出接近N3E的良率性能。台积电技术组合的下一次演进旨在在相同时钟速度下将性能提高高达4%或将功耗降低约9%,同时还将混合设计配置芯片的晶体管密度提高4%。N3P保持与N3E的IP模块、设计工具和方法的兼容性,这使其成为对开发人员有吸引力的选择。这种连续性确保大多数新芯片设计(流片)有望从使用N3E过渡到N3P,利用后者改进的性能和成本效率。N3P的最终生产准备工作预计在今年下半年进行,届时将进入HVM(大批量制造)阶段。台积电预计芯片设计厂商将会立即采用。鉴于其性能和成本优势,N3P有望受到台积电客户的青睐,包括苹果和AMD。虽然基于N3P的芯片上市的确切时间仍不确定,但预计苹果等主要厂商将在2025年处理器系列中使用该技术,其中包括用于智能手机、个人电脑和平板电脑的SoC。“我们还成功交付了N3P技术,”台积电高管表示。 “它已经通过认证,良率表现接近N3E。(工艺技术)也已收到产品客户流片,并将于今年下半年开始生产。由于N3P的(PPA优势),我们预计N3 上的大部分流片都流向了N3P。”
  • 无掩膜直写光刻系统助力二维材料异质结构电输运性能研究,意大利科学家揭秘其机理!
    期刊:ACS NanoIF:18.027文章链接: https://doi.org/10.1021/acsnano.1c09131 【引言】MoS2是一种典型的二维材料,也是电子器件的重要组成部分。研究者发现,当MoS2与石墨烯接触会产生van der Waals作用,使之具有良好的电学特性,可广泛应用于各类柔性电子器件、光电器件、传感器件的研究。然而,MoS2-石墨烯异质结构背后的电输运机理尚不明确。这主要是因为传统器件只有两个接触点,不能将MoS2-石墨烯异质结构产生的电学输运特性与二维材料自身的电学特性所区分。此外,电荷转移、应变、电荷在缺陷处被俘获等因素也会对器件的电输运性能产生影响,进一步提高了相关研究的难度。尽管已有很多文献报道MoS2-石墨烯异质结构的电输运性能,但这些研究主要基于理论计算,缺乏对MoS2-石墨烯异质结构的电输运性能在场效应器件中的实验研究。 【成果简介】2021年,意大利比萨大学Ciampalini教授课题组利用小型台式无掩膜直写光刻系统- MicroWriter ML3 制备出基于MoS2-石墨烯异质结构的多场效应管器件,在场效应管器件中直接测量了MoS2-石墨烯异质结构的电输运特性。通过比较MoS2的跨导曲线和石墨烯的电流电压特性,发现在n通道的跨导输运被抑制,这一现象明显不同于传统对场效应的认知。借助第一性原理计算发现这一独特的输运抑制现象与硫空位相关。本文中所使用的小型台式无掩膜直写光刻系统- MicroWriter ML3无需掩膜版,可在光刻胶上直接曝光绘出所要的图案。设备采用集成化设计,全自动控制,可靠性高,操作简便,同时其还具备结构紧凑(70cm X 70cm X 70cm)、高直写速度,高分辨率(XY:图4. MoS2的输运特性。(a)室温条件下,MoS2在0-80V的VG范围内的I-V特性曲线。(b)转移特性显示出强烈的迟滞。红色箭头表面扫频方向,红色虚线为场效应移动的预计值。其中插图为测量器件的光学照片,电极用黑色圆点表示。图5. MoS2覆盖层对石墨烯的电子输运的影响。(a,b)石墨烯上不同MoS2覆盖面积的器件光学照片。(c-g)石墨烯上不同MoS2覆盖面积的转移特性,黑色覆盖率0%,橘色48%,蓝色 55%,黄色69%,紫色79%。图6. 硫空位对场效应的影响。(a)MoS2-石墨烯界面的能带结构和态密度。(b)不同门电压条件下,场效应所导致的电子和空位的分布。蓝色表示电子,红色表示空位。(c,d)在不同门电压条件下,MoS2-石墨烯界面的侧视图以及硫空位(绿色)的位置。图7. 不同硫空位密度条件下,石墨烯导电性能计算值。 【结论】Ciampalini教授课题组首先制备了MoS2-石墨烯二维材料的异质结构,在此基础上使用小型台式无掩膜直写光刻系统- MicroWriter ML3制备了多场效应管器件。通过对多场效应管器件的直接测量,发现了MoS2覆盖层对石墨烯电输运性能的独特抑制作用。为了更好地理解这一独特电输运现象,采用第一性原理的方法,计算了硫空位对石墨烯导电性能的影响。该工作为后续的石墨烯场效应电学及光电器件的研究和应用打下良好的基础。同时,从文中也可以看出,课题组最主要的优势是能够制备出基于MoS2-石墨烯异质结构的多场效应管器件。在制备该器件过程中,需要及时修改相应的参数,得到优化的实验结果,十分依赖灵活多变的光刻手段,小型台式无掩膜直写光刻系统- MicroWriter ML3可以任意调整光刻图形,对二维材料进行精准套刻,帮助用户快速实现器件制备,助力电输运研究。小型台式无掩膜直写光刻系统- MicroWriter ML3
  • 华南理工研制新型有机半导体红外光电探测器,性能超越传统近红外探测器
    随着近红外(NIR)和短波红外(SWIR)光谱在人工智能驱动技术(如机器人、自动驾驶汽车、增强现实/虚拟现实以及3D人脸识别)中的广泛应用,市场对高计数、低成本焦平面阵列的需求日益增长。传统短波红外光电二极管主要基于InGaAs或锗(Ge)晶体,其制造工艺复杂、器件暗电流大。有机半导体是一种可行的替代品,其制造工艺更简单且光学特性可调谐。据麦姆斯咨询报道,近日,华南理工大学的研究团队研制出基于有机半导体的新型红外光电探测器。这项技术有望彻底改变成像技术,该有机光电二极管在近紫外到短波红外的宽波段内均优于传统无机探测器。这项研究成果以“Infrared Photodetectors and Image Arrays Made with Organic Semiconductors”为题发表在Chinese Journal of Polymer Science期刊上。研究团队采用窄带隙聚合物半导体制造薄膜光电二极管,该器件探测范围涵盖红外波段。这种新技术的成本仅为传统无机光电探测器的一小部分,但其性能可与传统无机光电探测器(如InGaAs光电探测器)相媲美。研究人员将更大的杂原子、不规则的骨架与侧链上更长的分支位置结合起来,创造出光谱响应范围涵盖近紫外到短波红外波段的聚合物半导体(PPCPD),并制造出基于PPCPD的光电探测器,相关性能结果如图1所示。图1 基于PPCPD的光电探测器性能在特定探测率方面,该器件与基于InGaAs的探测器相比具有竞争力,在1.15 μm波长上的探测率可达5.55 × 10¹² Jones。该有机光电探测器的显著特征是,当其集成到高像素密度图像传感器阵列时,无需在传感层中进行像素级图案化。这种集成制造工艺显著简化了制备流程,大幅降低了成本。图2 短波红外成像系统及成像示例华南理工大学教授、发光材料与器件国家重点实验室副主任黄飞教授表示:“我们开发的有机光电探测器标志着高性价比、高性能的红外成像技术的发展向前迈出了关键的一步。与传统无机光电二极管相比,有机器件具有适应性和可扩展性,其潜在应用范围还包括工业机器人和医疗诊断领域。”该新型有机光电探测器有望对各行各业产生重大影响。它们为监控和安全领域的成像系统提供了更为经济的选择。未来,基于有机技术的医疗成像设备有望更加普及,价格也会更加合理,从而在医疗环境中实现更全面的应用。该器件的适应性和可扩展性还为尖端机器人和人工智能等领域的应用铺平道路。这项研究得到了国家自然科学基金(编号:U21A6002和51933003)和广东省基础与应用基础研究重大项目(编号:2019B030302007)的资助。论文链接:https://doi.org/10.1007/s10118-023-2973-8
  • 行业领先水平!武汉光谷实验室研发出高性能量子点光刻胶
    据中国光谷官微消息,近日,湖北光谷实验室、华中科技大学集成电路学院和光电子器件与三维集成团队的张建兵等人与广纳珈源(广州)科技有限公司合作,研发出高性能量子点光刻胶(QD-PR),其蓝光转换效率达到44.6%(绿色)和45.0%(红色),光刻精度达到1um,各项性能指标为行业领先水平。据介绍,目前主流的 RGB 三色 micro-LED 全彩技术,存在巨量转移次数多、成本高昂、驱动控制电路复杂、不同颜色光衰不同等问题,并且由于 micro-LED 尺寸减小,红色 LED 的发光效率急剧下降。而使用单色蓝光 micro-LED 激发绿色和红色荧光材料实现全彩化显示可以规避上述问题。2023年获得诺贝尔奖的材料——胶体量子点,因具有发光半峰宽窄、颜色可调、效率高、粒径小等优异的性能,是配合蓝光micro-LED的荧光材料的理想选择。量子点色转换层需要像素化才能与蓝光micro-LED阵列配合,当前实现量子点像素化的方案主要有两种:喷墨打印和光刻。相较而言,光刻精度更高、获得的量子点像素更小,更适合于高PPI的AR、VR应用。量子点光刻像素基于高性能的量子点光刻胶,研究团队实现了高精度的量子点像素。此外,这些量子点色转换像素还表现出优异的稳定性,在空气中75℃加热120小时后仍能保留原始发光性能的92.5%(红色)和93.4%(绿色)。通过红绿量子点套刻,配合蓝色面光源,研究团队获得了高精度的基于量子点色转换像素的静态图案。
  • 海尔欣光电HPPD-M-B探测器性能介绍
    1. 概述MCT 中红外探测器是一种热电冷却光电导 HgCdTe(碲镉汞,MCT)探测器, 这种材料对 2 到 12um 的中红外光谱波段光波敏感。海尔欣的中红外探测器可采用直流或交流耦合输出,直流耦合方便用户实时观测探测器上的光强信号,继而方便系统对光调试;交流耦合输出可以让用户解调微弱的交流小信号,一定程度上避免过高的直流光信号将探测器饱和。探测器与热电冷却器(TEC)相连接, TEC 采用一个热敏电阻反馈电路对探测器元件的温度控制在-30℃甚至更低温度,从而将热噪声和背景辐射对输出信号的影响最小化。为有效地减少电磁噪声对检测输出信号的影响, 探测器外壳采用了铝合金屏蔽壳体制作,同时起到散热的作用。2. 性能• 半导体冷却型碲镉汞红外光电探测器;• 对2~12 um的中红外光谱波段光波敏感;• 内部一体化集成低噪声前置运放+TEC控制单元;• TEC热电冷却稳定 -80℃ 至-30℃ ,极大地降低了热噪声;3. 优势l • 前放+制冷控制一体化,噪声能进一步降低,使用也更为便捷l • 性价比高于同款进口产品,波长覆盖也更宽l • 海尔欣针对红外探测应用自主研发,更适合系统集成,更及时完善的售后服务4 探测器噪声测试l 测试原理待测噪声A,频谱分析仪基底噪声为B,噪声A 接入频谱分析仪后,测得噪声为频谱分析仪总噪声C(探测器放大后噪声A和频谱分析仪基底噪声B)。它们之间关系如下:A2+B2=C2图.1 HPPD-M-B探测器噪声测试系统 由于HPPD-M-B探测器感光单元噪声Ain信号较小,需要对噪声信号Ain进行放大处理,图.1 中间框HPPD-M-B专指探测器前置放大电路,实际探测器芯片已集成到HPPD-M-B探测器产品中。 其中Ain为归一化到探测器输入端的电流噪声密度(单位为pA/√Hz),为我们的待求结果,A0为Ain经探测器HPPD-M-B放大N倍后的信号,Rout为探测器的输出阻抗(Ω),A为频谱分析仪输入端信号,Rin为频谱分析仪的输入阻抗(Ω),B为频谱仪基底噪声(与测量系统基底噪声相同),C为频谱分析仪的频率扫描结果。可以得到系统中存在如下关系:A0=Ain*NA=A0*Rin/(Rin+Rout)A2+B2=C2 注:功率dBm转volts:http://wera.cen.uni-hamburg.de/DBM.shtmlvolts转噪声密度:噪声密度(nV/√Hz)= RMS volts/√RBW故通过频率分析仪测试探测器输出端噪声,便可容易的推算出归一化到探测器输入端的电流噪声密度。l 测试系统参数说明:放大倍数N = 15000V/A,探测器输出阻抗Rout =16Ω,频谱分析仪输入阻抗Rin = 50Ω频率扫描范围0-100 kHz,分辨率带宽RBW = 10Hzl 测试过程:1.短路频谱分析仪的信号输入端口,为频谱仪噪声基底的频率扫描结果得到系统基底噪声B1;2.按图1连接测试系统,将配套SMA转BNC同轴线缆一端连接到探测器的SMA输出端口,另一端连接到频谱分析仪(型号N9320B)的信号输入端口;得到未供电时的测试系统频率扫描结果,为测试系统的噪声基底B,可以发现测试系统的噪声基底B与频谱仪输入端短路时噪声B1相同,如下图2中的曲线V1(该曲线为系统的基底噪声B)。3.系统供电,将配套+5V电源适配器一端插入探测器电源供电口,另一端插入市电插座,拨动电源开关上电,此时风扇将正常工作,探测器开始温度调节,热机约10分钟后,温控指示灯亮,温度稳定于预设值。此时,可得到供电状态下,测试系统的频率扫描结果,如下图2中的曲线V2(该曲线为系统的总噪声C)。注意:测试过程中,探测器感光单元一直为遮光状态。l 计算结果读图:100kHz时,频谱仪基底B =-120dBm,扫频结果C = -117dBm,两者RMS均为10Hz。功率dBm转RMS volts:查表http://wera.cen.uni-hamburg.de/DBM.shtml-120dBm对应RMS volts为223.607nV;-117dBm对应RMS volts为315.853nV。根据RBM volts转噪声密度公式:噪声密度(nV/√Hz)= RMS volts/√RBW计算噪声密度B 为70.71nV/√Hz ,噪声密度C 为99.88nV/√Hz。根据计算公式:A2+B2=C2可以等到A=70.54nV/√Hz根据计算公式 :A=A0*Rin/(Rin+Rout);Rin=50?、Rout=16? 可以得到A0=93.11nV/√Hz 。通过公式:A0=Ain*N其中N为放大倍数15000V/A 可以得到Ain=6.2pA/√Hz。l 附1.探测器芯片的电流噪声密度HPPD-M-B编号:96610,芯片电流噪声 4.7 pA/√Hz5V适配器编号:01191027140测试结果表明,归一化到探测器输入端的电流噪声密度Ain为6.2pA/√Hz,则海尔欣的前置低噪声运放的噪声系数仅为2.4dB。计算方法为:信噪比:信号功率/噪声功率(下述计算提到的功率都以归一化噪声电流同比表示)噪声系数NF = 输入端信噪比/输出端信噪比 噪声系数可由下列式表示:Si为输入信号功率,即为光电流信号;Ni 为输入噪声功率,即为芯片电流噪声 4.7 pA/√HzS0为输出端信号功率,即为S0=Si*NN0为输出噪声功率,即为Ain*N通过上计算可以得到噪声系数NF=Ain/Ni根据上面计算结果可知Ain=6.2 pA/√Hz,Ni=4.7 pA/√Hz则噪声系数NF=1.32,根据噪声系数转换噪声dB公式:dB=20lgNF=2.4可以得到噪声系数为2.4 dB.(关于低噪声前置运放的噪声系数概念,请参考:http://www.ti.com.cn/cn/lit/an/zhca525/zhca525.pdf) l 附2.与进口探测器比较 图.3 VIGO探测器与HPPD-M-B噪声比较V3为HPPD-M-B ,适配器供电(放大15000倍)V2为某进口探测器,本底比HPPD-M-B低是因其放大倍数较低的缘故。 5 结论综合来看,海尔欣的HPPD-M-B型中红外探测器噪声与进口探测器处于同一水平,从功能上来讲没有太大差别。再结合其运放与TEC制冷高度集成的设计,HPPD-M-B型探测器极大地方便了用户的使用和系统集成,是一款小巧、出色的制冷型单像素红外探测器。
  • Granutools发布粉体静电吸附性能分析仪 Granucharge新品
    说明粉体在流动过程中会产生静电荷。电荷的出现是由于摩擦电效应,这是两个固体接触时电荷的交换。当粉体在设备内流动时(例如搅拌机、料仓、输送机等),摩擦电效应发生在颗粒之间的接触处,颗粒与设备之间的接触处。因此,粉体的特性和用于制造该装置的材料的性质是重要的参数。原理GranuCharge自动精确地测量粉体在与选定材料接触过程中产生的静电荷量。粉体样品在振动的V型管中流动,落在与静电计相连的法拉第杯中。静电计测量粉体在V形管内流动时所获得的电荷。为了获得可重复的结果,采用旋转或振动装置有规律地给V形管进料。优势高精度(精度接近0.5nC),高重复性(误差率接近4%)测量方法简单、快速且易于解释。可以测量粉体的初始状态电荷和流动后的电荷通过直观的软件,电荷是通过时间来测量的。它还允许对结果进行比较。所有数据都是自动收集和存储,以备后处理。便捷的数据传输,并能自动生成报告。采用封闭系统,满足安全要求。环境条件可控 (如温度、湿度、气体环境)。可记录的标准操作程序,增加测量的重复性。通过其构造简洁的设计,GranuCharge提高实验效率。它由模块组成,每个模块都可以互换,以避免需要大量实验条件切换而浪费的时间。GranuCharge可以测量各种规格的粉体。零件容易清洗。独特性设计和原理是完全具有专利性的,并且也是独特的。管道表面材料可更换,以研究每种应用中所涉及到的不同材料带来的不同效果。可以测量电荷密度随时间的变化。应用通过检测粉体对不同材料管道的相应程度,帮助客户选择最佳的管材组合,从而对改进气动真空输送工艺优化的可能性提供了可靠依据。此举可有效避免颗粒团聚和粉体粘附在管道表面的情况发生。对粉体加工性能进行分类。提供粉体表面特性的信息,从而为增材制造中的粉体回收工艺优化提供了依据。可选配件校验套件标准配置316L不锈钢管道,但可另行选择其他不同材质的管道(玻璃/HDPE/PVC/铝制)离线分析软件授权许可:一台计算机运行测量,同时可使用另一台计算机分析数据,从而提高实验和数据分析效率。GRANUCHARGE 参数图1: 石墨添加剂对玻璃微珠样品电荷密度的影响图2: 气动传输工艺优化创新点:1.设计和原理是完全具有专利性的,并且也是独特的。 2.管道表面材料可更换,以研究每种应用中所涉及到的不同材料带来的不同效果。 3.可以测量电荷密度随时间的变化。 粉体静电吸附性能分析仪 Granucharge
  • 博纳艾杰尔高性能硅胶基质色谱分离材料及色谱柱进入欧洲药典
    记者在天津市滨海新区开发区了解到,天津开发区高新技术企业天津市博纳艾杰尔科技有限公司承担的“十一五”国家科技支撑计划重大项目--高性能硅胶基质色谱分离材料及色谱柱,近日通过专家鉴定,进入欧洲药典。这意味着我国已经掌握了高性能色谱行业的核心技术,从而为制药、化工以及环保、食品检测提供有力支持。这也是我国首个进入欧洲药典的色谱柱。   天津博纳艾杰尔科技成立于2007年,是天津泰达国际创业中心孵化的开发区高新技术企业,主要生产和开发分离材料及其派生产品,主打产品为色谱耗材。博纳艾杰尔已经为此项目成立了一支40多人的研发团队,建立了完整的生产产业链,可生产近百种规格的高性能色谱填料,每年的色谱填料产量在300公斤、色谱柱7000支,其中三分之一用于出口。
  • 电力行业《发电用煤智能采制样系统技术要求与性能验收方法》等标准研讨会在三德科技成功召开
    6月19日~21日,电力行业标准修订研讨会在三德科技总部成功召开。本次会议由西安热工研究院有限公司、国网湖北省电力有限公司电力科学研究院主办,三德科技承办,会议内容主要预审《DL/T 747发电用煤智能采制样系统技术要求与性能验收方法》、《DL/T 520火力发电厂入厂煤检测试验室技术导则》、《DL/T 567.6火电厂燃料试验方法 第6部分:飞灰和炉渣可燃物和碳含量测定方法》、《DL/T 567.7火力发电厂燃料试验方法 第7部分:灰及渣中硫的测定和燃煤可燃硫的计算》四项标准,来自西安热工院、国网湖北电科院、华电电科院、大唐集团、华能集团、国家能源集团、华电集团以及业内头部企业代表等全国各地30余位权威专家参会,三德科技总经理朱青、产品总监张明庆等出席。标准修订的意义在于不断提高标准的科学性、权威性和适用性,促进相关领域的发展和进步。此次研讨会的成功召开,有助于提高电力行业的产品质量和技术水平,可以推动行业向规范化、标准化和高质量发展的方向迈进,从而推动整个产业升级和技术创新。基于此,研讨会上,与会代表们对标准修编草案内容逐条逐字进行了认真讨论,并根据实际情况给出了具体的优化意见与建议,确保标准的准确性和实用性。三德科技作为国内领先的煤炭采样、采制对接、制样、样品输送、样品存查、化验全环节无人化系统和燃料管控、煤场管理系统的研发、制造、销售、实施、运维供应商,截至目前,已累计参与起草制订国家/行业产品技术标准12项。
  • 出道即dian峰—Orbitrap Exploris GC全面性能揭秘
    出道即dian峰—Orbitrap Exploris GC全面性能揭秘关注我们,更多干货和惊喜好礼2021年3月2号Orbitrap Exploris GC系列2021年3月2号,赛默飞在中国率先发布新一代Orbitrap Exploris GC系列高分辨气质联用仪。那么这款高分辨气质联用仪到底性能如何呢?多氯联苯(PCBs)和多环芳烃(PAHs)作为常见的环境污染物,具有种类多,毒性强,污染范围广等特点,常用GCMS进行分析,分析时会遇到同系物多分离难,沸程宽分析时间长,容易残留维护频率高等问题。本文以分析环境中PAHs和PCBs为例,探讨全新一代的Orbitrap Exploris GC系列高分辨气质的性能。 实验结果 请输入 01快速分离能力: 利用TG-PAH专用分析柱,在20 min 的时间内即可完成PAHs和 PCBs的分析,特别是部分高沸点芳烃,都可以得到良好的分离,与此同时各组分都得到较好的方法学性能指标。(点击查看大图) 02超高灵敏度: 为了真实评价计算MDL和LOQ,利用基质匹配标准物质重复进样法计算出45 种化合物的方法检测限 MDL在0.1-0.5 μg/kg之间,定量限LOQ在0.5-5.0 μg/kg之间,见证了Orbitrap Exploris GC 系统实现飞克级灵敏度。(点击查看大图) 03稳定的离子比率和质量精度: 在连续三周分析中,仅当校正质谱时会影响仪器的正常运行时间,而每周仅需校正一次。质控标样中所有化合物的质量精度平均值均小于1 ppm,证实了其质量精度稳定性。而离子比率均在预期值的 ±15% 范围内,该预期值为 0.1-500 pg/μL范围内校正曲线的平均值,展现了稳定的离子比率。 04超强的耐用性能: 在500 次样品的分析序列中,低浓度质控样仍具有较高的 RRF 稳定性,所有化合物的 RRF% RSD 均 15%,平均值为 4%,体现了Orbitrap Exploris GC具有长期稳定性并适用于土壤中多环芳烃和多氯联苯的分析。(点击查看大图) 05卓yue的定量能力: 当用于定量低浓度质控样时,离子比率和质量偏差的稳定性异常重要,以检出PCB-28为例,与校正均值的离子比率偏差仅为 0.7%,理论准确质量数的质量偏差为0.2 ppm,并且全扫描谱图始终保持最di基质干扰,保证了Orbitrap Exploris GC在低浓度点仍可以实现准确定量。(点击查看大图) 06超强未知污染物筛查能力: 利用高分辨和高质量精度的全扫描采集的优势,对样品进行了回顾性分析以及其他未知污染物筛查,先进的化合物发现和识别流程便于了解样品的全面信息,Compound Discoverer 软件内置全套高级软件工具,可将全扫描 HRAM数据转换为已知化合物,同时快速发现未知化合物,并自动进行统计学显著性差异分析。(点击查看大图) 结论Thermo Scientific™ Orbitrap Exploris™ GC 质谱仪的问世,完美地解决了目前土壤污染物GCMS分析时常遇到的分析时间长、通量小、污染物种类多、定性困难、维护频率高等问题,超越了日常环境检测的需求。各方面性能的提升不仅可以简化操作,还可以始终提供准确结果,是进行土壤多污染物表征分析的不二选择。 实验原文感兴趣的小伙伴请扫码登记后下载上述实验原文。 扫码下载 如需合作转载本文,请文末留言 扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+ 了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
  • 防疫关键点—超便捷可靠的抗血液穿透性能测试方式!
    记得去年夏天,医护人员站岗防疫点,因身穿白色防护服被网友亲切称为“大白”。而他们防护服下是止不住的大汗淋漓。医护人员为何冒着中暑风险,迟迟不愿脱下厚重的防护服呢?这是因为——随着新型冠状病毒肺炎(COVID-19)疫情席卷全球,医务人员在工作时需接触具有潜在感染性的患者血液、体液、分泌物、空气中的颗粒物等,而医用防护产品为他们提供了阻隔和防护作用,是维护他们生命健康的重要保障。因此,确保医用防护产品的防护性能达标也成了重中之重。Q:如何检验防护性能?A:采用抗合成血液穿透的检测方法——抗血液穿透性能是医用防护产品的一个重要检验指标,例如国标《GB 19082-2009 医用一次性防护服技术要求》、《YY0469-2011 医用一次性口罩》中对于该性能的检测标准都是采用抗合成血液穿透检测方法。即利用人工配制的液体(合成血液)模拟血液或体液的某些性能对防护材料进行评价,因此使用质量达标的合成血液是保证试验准确性的重要前提。Q:凭借什么指标评定合成血液质量?A:液体对固体材料的穿透能力主要是由液体在固体表面的展开情况决定的,液体的表面张力是表征这个过程的一个重要参数。液体的表面张力越小,那么它在固体表面展开的体积越大,越容易进入固体内部,所以液体表面张力是合成血液模拟真实血液中需要评定一个重要物理指标。Q:如何确保表面张力符合要求?A:合成血液配制过程中的有一项重要工作——表面张力值的测试,只有测试结果准确才能确保合成血液的表面张力符合要求。Q:又要配置又要测试,感觉很费时啊?Pickering Laboratories科学家根据标准方法ASTM F1819-07, ASTM F1670, ASTM F1862和ASTM F2100配制的一种产品,具有最接近人体真实血液的表面张力和粘度的人工合成血液。保证了实验的准确性。A:Pickering人工合成血液——免去您自行配制血液时的表面张力值测试,大大节省试验时间,直接测试即可得到稳定可靠的结果。*注:该人工合成血液配方不适合医学研究。除了人工合成血液,我们还有:1、Pickering laboratories还可提供人工汗液、人工皮脂、人工唾液、人工耳垢等数十种人工测试体液类产品;2、包括智能穿戴设备、牙科设备、电子元器件、金合金、纺织品、光学产品等相关测试领域均有广泛的应用;3、我们还可针对客户的使用需求,提供对应的定制方案供您选择!关于Pickering Laboratories美国Pickering Laboratories公司是全球仅有的专业提供人工测试体液和柱后衍生化学试剂、色谱柱、分析方法等柱后衍生分析整体解决方案的机构,其不断创新及良好的信誉被众多的美国政府机构如EPA、ATF、FDA、AOAC和世界的厂商所认可。
  • 钽酸铋量子点修饰洋葱圈结构的石墨相氮化碳的S型异质结构的光催化析氢性能
    1. 文章信息标题:Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation中文标题: 钽酸铋量子点修饰洋葱圈结构的石墨相氮化碳的S型异质结构的光催化析氢性能 页码:958-968 DOI: 10.1016/j.renene.2021.11.030 2. 期刊信息期刊名:Renewable EnergyISSN: 0960-1481 2022年影响因子: 8.634 分区信息: 中科院一区;JCR分区(Q1) 涉及研究方向: 工程技术,能源与燃料,绿色可持续发展技术 3. 作者信息:第一作者是 施伟龙(江苏科技大学)、孙苇(北华大学)(共同一作)。通讯作者为 林雪(北华大学),郭峰(江苏科技大学),洪远志(北华大学)。4. 光催化活性评价系统型号:北京中教金源(CEL-PAEM-D8,Beijing ChinaEducation Au-Light Co., Ltd.);气相色谱型号:北京中教金源(GC7920,Beijing China Education Au-Light Co., Ltd.)。本工作利用SiO2微米球为硬模板和三聚氰胺为前驱体,通过空气化学气相沉积 (CVD)方法合成洋葱圈状结构的g-C3N4(OR-CN),且基于溶剂热法与0D Bi3TaO7量子点(BTO QDs)复合,形成0D BTO QDs/3D OR-CN S型异质结复合物光催化剂,在λ 420 nm的可见光驱动下,讨论了不同质量比的BTO/OR-CN化合物催化剂在2小时内的析氢性能。其中,0.3wt% BTO/OR-CN样品赋予了最佳的光催化析氢速率为4891 μmol g-1,且在420 nm处的表观量子产率(AQY)为4.1%,约是相同条件下的OR-CN的3倍。其增强的光催化活性归因于0D BTO量子点与OR-CN之间形成了S型异质结,有助于促进光生电荷载流子的分散,且增强了可见光吸收强度,此外,通过4次循环实验,发现0D BTO QDs/3D OR-CN S型异质结复合物光催化剂具有优异的稳定性,有应用前景。图1. 制备BTO/OR-CN化合物的实验过程如图1所示,BTO/OR-CN的制备是通过加入0.2 g的OR-CN在BTO的合成过程中,合成的样品命名为xBTO/OR-CN,其中x代表BTO在化合物中的质量比,分别为0.1%,0.3%,0.5%,1.0%。此外,为了比较,合成了块体g-C3N4(B-CN)和0.3%BTO/B-CN复合物,B-CN的合成是通过一步煅烧3 g三聚氰胺,550 °C加热4小时,升温速率为2.3 °C/min,从而得到黄色的产物。0.3% BTO/B-CN复合物的合成类似于0.3% BTO/OR-CN复合物的合成过程,仅仅用B-CN代替OR-CN。图2. BTO、OR-CN和不同复合物的XRD图如图2示,OR-CN、BTO以及不同质量比的BTO/OR-CN化合物(0.1%、0.3%、0.5%和1.0%)的XRD图表征晶体结构和结晶度。对于BTO样品,2θ在28.2°、32.7°、46.9°和58.4°属于Bi3TaO7的(111)、(200)、(220)和(222)面(JCPDS:44-0202)。OR-CN拥有两个衍射峰在13.1°(100)和27.4°(002),分别归因于芳香单元的层内结构堆积基序和层间堆积基序。至于BTO/OR-CN化合物,引入BTO没有影响OR-CN的相结构,当负载0.1%、0.3%、0.5%和1.0%的BTO在OR-CN上,很难发现额外的BTO特征峰,这很可能是因为少量的BTO QDs。图3. OR-CN的SEM图(a)0.3% BTO/OR-CN复合材料的SEM图(b)TEM图(c)HRTEM图(d)和EDX图(e)如图3所示,通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析制备的样品的结构和形貌。OR-CN样品呈现了洋葱圈形状,尺寸大约在150-200 nm。负载BTO QDs在OR-CN的表面上形成BTO/OR-CN复合物之后,OR-CN的洋葱圈结构没有改变,但表面变得更粗糙。为了进一步清晰地观察BTO/OR-CN化合物,0.3%BTO/OR-CN的TEM图展现了BTO QDs均匀地分布在OR-CN表面上且与OR-CN底物亲密的接触,这有助于电荷的分散和转移。同时,化合物的高分辨透射图(HRTEM)反映了BTO和OR-CN之间有好的界面接触,其中,晶格间距为0.27 nm与Bi3TaO7晶格面(200)相匹配。展现了成功地构造了0D/3D BTO/OR-CN异质结催化剂。0.3%BTO/OR-CN的EDX图揭示了C,N,Bi,Ta,O元素的存在,进一步证实BTO QDs锚定在OR-CN的表面上。图4. 光催化产氢(a)析氢速率(b)B-CN、OR-CN、及其0.3%化合物光催化产氢(c)析氢速率(d)循环实验(e)循环实验前后的XRD图(f)如图4所示,以300 W的氙灯作为光源(λ 420 nm),研究了制备的样品的光催化析氢活性。结果表明制备的BTO样品几乎不产氢,而OR-CN在2小时辐照过程中产生了相对较低的氢气,约为1736 μmol g-1,这是由于BTO对可见光的吸收较低和电子-空穴的快速重组所致。当耦合OR-CN和BTO之后,光催化析氢活性显著的增强,其中,最佳的0.3% BTO/OR-CN复合材料展现了析氢量大约是4891 μmol g-1,是单组分OR-CN样品的3倍左右。同时,0.3% BTO/OR-CN异质结光催化剂在420 nm波长表现出较高的表观量子产率(AQY)为4.11%。当BTO QDs的加入量从0.1%增加到1.0%时,光催化析氢性能呈现出先增后减的趋势,其中,最优的0.3% BTO/OR-CN样品的光催化性能优于其他复合样品,这是因为构建了S型异质结,加速了光生电荷的传输和分布。此外,在OR-CN上引入BTO QDs可以增加比表面积、提供更多的活性位点、增强光响应强度和延长光诱导电荷寿命。随着进一步增加BTO QDs的量,光催化产氢速率减小,这是因为过量的BTO QDs负载在OR-CN表面可能会影响BTO QDs的分散,且由于屏蔽效应阻碍OR-CN的光吸收效率。因此,负载合适量的BTO QDs有利于光催化产氢。此外,最优样0.3% BTO/OR-CN的产氢速率为2445.5 μmol g-1。为了比较,还合成了0.3%BTO/OR-CN复合物,制备的样品的析氢量和析氢速率的排序:0.3%BTO/OR-CNOR-CN0.3%BTO/B-CNB-CN,这表明CN的洋葱圈结构和化合物的异质结界面有利于提高光催化活性。经过四次循环实验,可以清晰地发现光催化析氢有轻微的降低。同时,XRD图也用于评价样品的稳定性,循环前后的XRD图没有发生改变。这些结果展现了制备的 BTO/OR-CN样品拥有优异的稳定性和光催化析氢活性。图5. MS图(a和b)S型异质结机理(c)BTO/OR-CN复合物光催化析氢中光生电荷分离转移机理(d)利用Mott-Schottky(MS)图确定OR-CN和BTO的能带结构。OR-CN和BTO样品的质谱图在1000、2000和3000 Hz处呈现正斜率,说明OR-CN和BTO具有典型的n型半导体特征。OR-CN和BTO在接触前的带位置存在偏差,OR-CN是一种费米能级较高的还原型光催化剂,而BTO是一种费米能级较低的氧化型光催化剂。此外,通过紫外光电子能谱(UPS)计算了OR-CN 和BTO的功函数,分析了界面电荷转移过程。确定OR-CN和BTO样品的二次电子截止边的结合能(Ecut-off)分别为16.921 eV和16.054 eV。然后,BTO和OR-CN在黑暗中密切接触后,OR-CN的CB上的电子自发地流向BTO,直到二者的费米能级达到相同水平。因此,OR-CN组分失去电子并携带正电荷,导致OR-CN的CB边缘向上弯曲,同时,BTO组分得到电子,电子在其CB上积聚,BTO带负电荷,导致CB边缘向下弯曲,从而,OR-CN和BTO界面形成内部电场。在可见光的照射下,电子在内部电场和库伦相互作用的驱动下由BTO的CB转移到OR-CN的VB上与空穴复合,此外,保留在OR-CN的CB上的电子和BTO的VB上的空穴将分别参与光催化氧化还原反应。基于以上的分析,提出了BTO/OR-CN光催化反应的可能的S型机理,在可见光的照射下,BTO和OR-CN中价带(VB)上的电子跃迁到导带(CB)上,价带上形成空穴,BTO导带上的电子可以转移到OR-CN的价带上并与空穴结合。由于OR-CN导带的电势比H+/H2(0 eV vs. NHE)更负,所以,H2O分子可以与电子反应生成H2。用三乙醇胺(TEOA)猝灭BTO价带上积累的空穴。
  • 高性能蠕动泵厂家,打造流体控制新巅峰!
    随着技术的不断发展,高性能蠕动泵成为现代流体控制领域中的一项重要技术。针对流体控制的需求,高性能蠕动泵厂家应运而生,为客户提供了先进的流体控制解决方案。本文将为您介绍高性能蠕动泵的特点、应用领域以及优势,为您全面了解高性能蠕动泵提供详细的解读。  高性能蠕动泵是一种以蠕动原理驱动的泵,其工作原理简单而高效。它通过不断的蠕动运动将液体输送到需要的位置,实现了准确、稳定的流体控制。高性能蠕动泵的制造商精心研发出了一系列先进的技术,使得蠕动泵的性能得到了显著的提升。这使得高性能蠕动泵在诸多领域中得以广泛应用。  高性能蠕动泵具有广泛的应用领域。在医疗行业中,高性能蠕动泵能够实现精确的液体输送,用于药物配制、人工心脏等领域 在环保行业中,高性能蠕动泵能够有效地处理废水、废液,帮助环境保护 在化工领域中,高性能蠕动泵被广泛应用于流体控制、化学反应等过程中 在食品工业中,高性能蠕动泵可用于液体灌装、食品加工等领域。可以说,高性能蠕动泵凭借其卓越的性能和多样的应用领域,已经成为现代工业中不可或缺的一部分。  高性能蠕动泵的优势不仅仅体现在其广泛的应用领域上,更体现在其卓越的性能上。高性能蠕动泵具有极高的流量控制精度,能够实现准确到微升级别的流体控制。其高效的流体输送能力,使得高性能蠕动泵在高压、高粘度液体输送中表现出色。此外,高性能蠕动泵的结构紧凑,体积小,易于安装和维护,为用户带来了极大的便利。这些优势使得高性能蠕动泵成为众多用户的首选。  综上所述,高性能蠕动泵作为一种先进的流体控制技术,在现代工业中扮演着重要角色。高性能蠕动泵厂家通过不断创新和研发,为客户提供了先进的流体控制解决方案。无论是在医疗、环保、化工还是食品等领域,高性能蠕动泵都展现出了出色的性能和广阔的应用前景。相信随着技术的不断发展,高性能蠕动泵将会在更多领域中发挥重要作用,为流体控制领域带来新的突破!
  • 《中国药典》红外光谱法草案二次公示 修订仪器性能确认等内容
    近日,药典委发布关于0402 红外分光光度法标准草案的公示(第二次),对此前公示过的《红外光谱法草案公示稿(第一次)》进行了进一步修订。此次公示为期一个月,相关人员可在线对草案进行反馈。此次修订稿起草单位包括中国食品药品检定研究院、天津大学、江苏省食品药品监督检验研究院、宁夏回 族自治区药品检验研究院、广州市药品检验所、清华大学等,云南省食品药品监督检验研究院、哈尔滨市药品和医疗器械检验检测中心、湖南省药品评审与不良反应监测中心、上海市食品药品检验研究院、安徽省食品药品检验研究院、 山西省检验检测中心等也参与其中, 赵瑜、尹利辉、李晨曦、黄朝瑜、朱会琴、张立雯、李睿、孙素琴等担任主要起草人。此前第一次公示的草案在《中国药典》0402 红外分光光度法的基础上修订了如下内容:1. 对通则结构做了调整;2. 增订了红外光谱法的应用范围、谱图表示单位;3. 测量模式部分补充了原理,并增加了漫反射和红外显微镜的内容; 而本次草案,根据 2024 年 2 月 0402 红外光谱法首次公示稿的反馈意见和建议,在第一次公示稿的基础上修订了部分内容,包括概述、测量模式、仪器性能确认、鉴别、 定量分析、测定法部分,更多内容详见附件。附件:0402 红外光谱法草案公示稿(第二次) (2).pdf
  • HORIBA用户动态 | 表面增强拉曼光谱探究银@碳点核壳纳米粒子的催化性能
    撰文:金静碳点(CDs)作为小的碳材料之一,自2004年被发现以来,已逐渐发展成为一种明星材料。作为一种新型的量子点,CDs具有可实用的光电转化能力,良好的生物相容性和低毒性,双光子吸收和上转换荧光能力,以及易于化学修饰和功能集成性等优点,在光催化,光电器件,环境检测和生物成像领域有着广泛的应用。将CDs与金属复合,以表面增强拉曼光谱(SERS)技术来研究复合基底界面与分子的化学相互作用和化学反应以及催化反应的机理,将为SERS技术的发展带来新的契机。基于以上背景,吉林大学超分子结构与材料国家重点实验室的赵冰教授和宋薇副教授等人在这方面做了新的研究,有了新的发现。该研究利用碳点的还原性制备出了浓度和尺寸都可调控的核壳结构银@碳点核壳纳米粒子(Ag@CDs NPs),作为SERS基底,检测到PATP探针分子低浓度为10-9 M,增强因子达6.7*10-5M,获得了佳的SERS信号。接着,与相同浓度的银纳米粒子(Ag NPs)进行SERS对比,结果发现Ag@CDs NPs具有更好的SERS性能。同时CDs荧光被猝灭后得到了其本身碳材料固有的D带和G带。之后,研究人员以Ag@CDs NPs同时作为SERS基底和催化剂,成功监测了Ag@CDs NPs催化氧化TMB,催化还原PNTP-DMAB以及PNTP-PATP的过程。他们欣喜地发现:由于CDs和Ag NPs的协同作用和电荷转移作用,Ag@CDsNPs的催化效率比相同浓度的单独的Ag NPs和CDs要高很多,并且检测到非常具有意义的H2O2的低浓度为1.6*10-8 M。由此得出Ag@CDs NPs具有更优良的SERS和催化性能的结论。图2.(a)SERS监控Ag@CDs NPs催化氧化TMB,(b) 不同浓度的H2O2催化氧化TMB的SERS,(c)Ag@CDs NPs 等离子体催化耦合PNTP-DMAB,(d) 以NaBH4为还原剂,Ag@CDS NPs 催化还原PNTP-PATP。本研究利用拉曼光谱不仅得到了被催化分子的变化信息,对分子的定性和定量具有重要意义,而且促进了核壳结构SERS基底的发展,扩展了CDs在SERS和催化领域的应用。值得一提的是,本研究中,SERS光谱的采集使用了HORIBA激光共聚焦拉曼光谱仪,所有的拉曼数据通过LabSpec软件进行分析。此项研究工作得到了国家自然科学基金项目的资金支持。相关成果近期发表在杂志《ACS Applied Materials& Interfaces》上,受到了业界同行的广泛关注,同时受邀报道在HORIBA科学仪器事业部上。Jing Jin,Shoujun Zhu, Yubin Song, Hongyue Zhao, Zhen Zhang, YueGuo, Junbo Li, Wei Song,Bai Yang, and Bing Zhao,“Precisely Controllable Core?Shell Ag@Carbon Dots Nanoparticles: Application to in Situ Super-Sensitive Monitoring of Catalytic Reactions”.ACS Appl. Mater. Interfaces 2016, 8, 27956?27965.HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 山东省市场监督管理局发布《电动汽车充电设施计量性能在线监测技术规范》等15项地方计量技术规范
    根据《中华人民共和国计量法》等有关法律法规规定,现批准《电动汽车充电设施计量性能在线监测技术规范》等15项地方计量技术规范发布实施。特此通告。附件:地方计量技术规范发布实施目录山东省市场监督管理局2023年9月5日附件地方计量技术规范发布实施目录序号编号名称实施日期1JJF(鲁)160-2023电动汽车充电设施计量性能在线监测技术规范2023-10-012JJF(鲁)161-2023高压电能表校准装置校准规范2023-10-013JJF(鲁)162-2023中心距卡尺校准规范2023-10-014JJF(鲁)163-2023钢筋重量偏差测量仪校准规范2023-10-015JJF(鲁)164-2023气体采样器综合校准装置校准规范2023-10-016JJF(鲁)165-2023快速核酸检测仪温度、时间参数校准规范2023-10-017JJF(鲁)166-2023回弹仪检定器校准规范2023-10-018JJF(鲁)167-2023吸油烟机能效测试系统校准规范2023-10-019JJF(鲁)168-2023麻醉呼吸机校准规范2023-10-0110JJF(鲁)169-2023单光子发射计算机断层成像系统(SPECT)校准规范2023-10-0111JJF(鲁)170-2023标准表法卧式罐容量校准规范2023-10-0112JJF(鲁)171-2023混凝土搅拌运输车满载容量校准规范2023-10-0113JJF(鲁)172-2023数字滴定器校准规范2023-10-0114JJF(鲁)173-2023微量进样器校准规范2023-10-0115JJF(鲁)174-2023计量体系和能力评价规范2023-10-01
  • 突破电池性能瓶颈,科学家研发500 Wh/kg高性能锂金属电池!
    【科学背景】随着锂金属电池(LMBs)技术的发展,高能量密度电池的需求日益增加,LMBs因其有望实现超过500 Wh kg&minus 1的能量密度而引起了科学家的广泛关注。其中,电极/电解质界面在二次电池中的质量传输和能量转换效率起着关键作用。然而,由于锂金属负极(LMA)相关的挑战,如锂枝晶的形成和低库仑效率(CE),这一领域的研究面临着巨大的困难。特别是在界面处的锂离子(Li+)溶剂化结构与电场的相互作用研究方面,仍然存在诸多未解之谜。为了解决这些问题,各国纷纷启动了战略研发计划,以推动LMBs的商业化应用。例如,美国的Battery500联盟和中国的五年计划等。然而,尽管已有许多研究通过调节Li+溶剂化结构来试图优化固体电解质界面(SEI)的形成,如通过溶剂-盐电解质、弱溶剂化电解质和高熵电解质等手段增加接触离子对(CIPs)和聚集体(AGGs)的比例,这些努力在实际应用中仍面临着诸多挑战。电解质设计的目标是稳定电极/电解质界面,从而提高锂镀层/剥离的库仑效率,但在实际应用中,相似的溶剂化化学在不同条件下仍然会表现出不同的电化学性能。鉴于此,浙江大学范修林团队提出了一种介电策略,旨在通过调控界面电场下的Li+溶剂化物行为,解决LMA相关问题。具体而言,这一策略通过优化介电环境,保持阳离子-阴离子对在界面处的高振荡幅度,从而促进阴离子衍生的SEI形成,并减少电解质在电极/电解质界面的持续消耗。最终,这一研究成功地在工业锂金属软包电池中实现了PFB电解质的应用,并且实现了500 Wh kg&minus 1以上能量密度的电池设计,展示了介电调控策略在高能量LMBs中的巨大潜力。【科学亮点】1. 实验首次在锂金属电池中研究了阳离子溶剂化在电极-电解质界面的行为,揭示了外部和分子内电场对锂金属阳极适应Li+溶剂化物的协同效应。通过对带电界面上的阳离子-阴离子对的周期性振荡分布进行观察,发现低振荡幅度会加剧电解质的分解并增加表面阻抗。2. 实验通过提出一种新的介电策略,有效保持了界面上的阳离子-阴离子配位的高振荡幅度。这一策略通过调节界面电场,防止电解质过度分解,并促进形成稳定的固态电解质界面(SEI),从而提高了电池的库仑效率和能量密度。3. 实验成功在安时(Ah)级别上实现了一种能量密度为500&thinsp Wh&thinsp kg&minus 1的锂金属软包电池,验证了该介电策略在实际应用中的有效性。此研究为锂金属电池技术的发展提供了新的思路和方向。【科学图文】图1:界面电场随介质环境的演变。图2:分析CE对Li+电解液的依赖性。图3:Li+溶剂化物的界面动态。图 4: 实时Li+溶剂化与界面化学之间的相关性。图 5: 揭示微结构尺寸上的Li沉积。图 6: Li金属软包电池的电化学性能【科学结论】本文的研究揭示了阳离子溶剂化在电极-电解质界面上的复杂行为及其对电池性能的关键影响。作者发现,虽然阳离子溶剂化在体相溶液中已被广泛研究,但在电极-电解质界面上的机制仍不完全明确。研究表明,界面处的阳离子-阴离子对呈周期性振荡分布,且低振荡幅度会加剧电解质分解并增加表面阻抗。为了解决这些问题,作者提出了一种介电策略,通过在界面上保持高振荡幅度来稳定阳离子-阴离子配位,从而有效减少电解质消耗,提升电池性能。通过应用这一策略,作者成功实现了使用超低量电解质的锂金属软包电池,能量密度达到500&thinsp Wh&thinsp kg&minus 1。这一发现不仅优化了电池界面的电化学性能,也为电池技术的进一步发展提供了新的方向。本文的研究为如何调控固/液界面的电化学行为提供了宝贵的见解,对未来高能量密度电池的设计与应用具有重要的指导意义。参考文献:Zhang, S., Li, R., Deng, T. et al. Oscillatory solvation chemistry for a 500 Wh kg&minus 1 Li-metal pouch cell. Nat Energy (2024). https://doi.org/10.1038/s41560-024-01621-8
  • 超高品质单晶生长!高温可达3000℃,可胜任高熔点、高挥发性材料制备的高性能激光浮区法单晶炉LFZ
    激光浮区技术(LFZ),在过去的几十年里,作为一种简单、快速、无需坩埚的生长高质量单晶材料的方法,在高熔点材料的单晶生长领域取得进展。 LFZ与常规光学浮区技术OFZ大的区别是用于加热和熔化的光辐照源不同。OFZ通常是使用椭球镜将卤素灯或者氙灯光源聚焦到生长棒来实现晶体生长。LFZ则是采用激光作为加热光源进行晶体生长,由于激光光束具有能量密度高的特点,因此可实现高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。 随着技术的不断迭代,2020年Quantum Design Japan公司和日本理化研究所Yoshio Kaneko教授密切合作,联合设计开发了新一代高性能激光浮区法单晶炉LFZ,该系统采用了5束激光光路的设计方案,保证了激光辐照强度均匀分布在原材料的环向外围,并提供高功率分别为1.5 kW和2 kW两种规格的系统。此外,在新一代高性能激光浮区炉LFZ的光路设计中,采用了Yoshio Kaneko教授的温度梯度优化设计,能有助于改善晶体生长过程中的剩余热应变弛豫;除此之外,该系统还采用了Yoshio Kaneko教授的温度反馈控制闭环设计方案,实现了温度的实时监控与自动调节。实例讲解:1. 磁性材料Bi2CuO4 传统的磁性记忆合金依赖于双磁态,如铁磁体的自旋向上、自旋向下两种状态。增加磁态数量,且采用无杂散场的反铁磁材料,有望实现更高容量存储。近一篇发表于Nature Communications期刊题为Visualizing rotation and reversal of the Néel vector through antiferromagnetic trichroism的工作表明磁电共线反铁磁Bi2CuO4中不仅具有四个稳定的Néel矢量方向,还存在引人注目的反铁磁三色现象,即在可见光范围内的磁电效应使得吸收系数随光传播矢量和Néel矢量之间的角度变化而取三个离散值。利用这种反铁磁三色性,该工作可实现可视化的场驱动Néel矢量的旋转甚至反转[1],为电场调控和光学读取的高密度存储器设计提供可能性。 在该篇工作中看,磁性材料Bi2CuO4的制备使用了Quantum Design LFZ1A 激光浮区法单晶炉。该材料表面张力较低,熔融区难以控制,早期研究多采用较快的生长速度,但生长速度过快往往会导致微裂隙的存在而影响样品品质。在此,利用LFZ1A,通过精细调节生长条件,实现了高质量单晶的生长,从而实现了更精细的磁电性质测量。 在晶体生长的初几个小时,为稳定熔融区域,激光电流手动调节在26.9 - 27.4 A范围,随后,便可以切换到自动恒温模式下,生长速度控制在2.0 mmh-1,进料棒和籽晶棒反向旋转10 rpm,实现晶体的超过24 h的稳定生长,而不需要其他的手动操作。晶体生长在流动的纯氧气氛中进行。图1. Bi2CuO4的磁性测量。SQUID面内面外磁化率的测量都表明材料是TN=44K发生了反铁磁转变。单晶棒非常容易从Z平面解理开,插图显示解理面非常光亮,表明了样品的质量很高[1]。 2. 烧绿石Nd2Mo2O7 烧绿石Nd2Mo2O7中,Mo子晶格呈现出自旋倾斜、近乎共线铁磁排布,其标量自旋手性诱导出巨大的拓扑霍尔效应,可应用于霍尔效应传感器。Nd2Mo2O7是一种高挥发性材料,单晶合成需要被加热到1630℃,MoO2等成分高度挥发,并在生长石英管内壁沉积,导致光源辐照受阻,进而导致熔融区域温度降低,生长不稳定。得益于LFZ设备高精度和快速响应的温度控制系统,在熔融区域失稳前,迅速增加激光功率,激光光通量密度比卤素灯高几个量,因而可以迅速将温度提升到1100℃,促进沉积到石英管内壁上的MoO2的再挥发,当沉积与再挥发达到平衡时,激光加热功率稳定下来,终实现晶体的稳定生长。 近发表在Physical Review B期刊题为Robust noncoplanar magnetism in band-filling-tuned (Nd1−xCax)2Mo2O7的工作中,Max Hirschberger等人通过Ca2+取代Nd3+来调控化学势,实现了对Mo子晶格倾斜自旋铁磁稳定性的调控[2]。 他们先利用Quantum Design LFZ制备了一系列不同组分的厘米尺寸单晶(Nd1−xCax)2Mo2O7(x=0.01, 0.03, 0.05, 0.07, 0.10, 0.15, 0.22, 0.30和0.40)。在氩气氛下,生长温度控制在1630-1700℃,生长速度为1.8-2 mm/h。对不同组分单晶的磁性研究证明了在x≤0.15时倾斜铁磁态以及自旋倾角具有稳定性。而在x=0.22以上,Mo-Mo和Mo-Nd磁耦合变号,自旋玻璃金属态取代倾斜的铁磁态。图2, (Nd1−xCax)2Mo2O7不同组分磁化曲线和相图。左图:x=0.01, 0.22和0.40的三个组分单晶的场冷曲线,可以清晰的判断出倾斜铁磁态和自旋玻璃态的转变温度。右图:不同组分获得的转变温度总结的相图,包括有倾斜铁磁态、自旋玻璃态和顺磁态[2]。高品质数据的采集得益于高质量的单晶样品和的成分控制。 3. 高熔点材料SmB6 SmB6是早发现的重费米子材料之一,其研究已经有五十多年的历史。随着拓扑领域的发展,近几年人们发现SmB6是一种拓扑近藤缘体。它的电缘性来自于强关联的电子相互作用,不仅如此,它的缘态存在能带反转,具有拓扑非平庸属性,表面会出现无能隙拓扑表面态。由于体态完全缘,这个表面态可以用来做新型二维电子器件[3]。 对SmB6拓扑和低温性质的准确探索,离不开高质量的材料,但因为该材料的高熔点(2350℃),很难通过常规手段获得。而Yoshio Kaneko等人应用Quantum Design LFZ实现了高品质SmB6的生长。生长条件:1标准大气压的氩气氛,气体流速2000 cc/m,生长速率20 mm/h。图3. SmB6单晶形貌图和劳厄衍射图。SmB6单晶表面如镜面般光亮,晶体(111)面的劳厄斑体现了很好的三重对称性,佐证了样品的高品质,适用于拓扑性质的精细测量[4]。 总结 综上,Quantum Design新一代高性能激光浮区法单晶炉(LFZ)与传统浮区法单晶生长系统相比,特的激光光路可实现更高功率、更加均匀的能量分布和更加稳定的性能。LFZ将浮区法晶体生长技术推向一个全新的高度,可广泛应用于制备红宝石、SmB6等高熔点材料,Ba2Co2Fe12O22等不一致熔融材料,以及Nd2Mo2O7、SrRuO3等高挥发性材料,为凝聚态物理、化学、半导体、光学等多种学科领域提供了丰富的高品质单晶储备,使得更精细的单晶性质测量和表征成为可能。图4. 新一代高性能激光浮区法单晶炉LFZ外观图(左)和原型机中被五束激光加热的原料棒(右)。 参考文献: [1]. K. Kimura, Y. Otake, T. Kimura, Visualizing rotation and reversal of the Neel vector through antiferromagnetic trichroism. Nat Commun 13, 697 (2022).[2]. M. Hirschberger et al., Robust noncoplanar magnetism in band-filling-tuned (Nd1−xCax)2Mo2O7. Physical Review B 104, (2021).[3]. N. Kumar, S. N. Guin, K. Manna, C. Shekhar, C. Felser, Topological Quantum Materials from the Viewpoint of Chemistry. Chem Rev 121, 2780-2815 (2021).[4]. Y. Kaneko, Y. Tokura, Floating zone furnace equipped with a high power laser of 1 kW composed of five smart beams. Journal of Crystal Growth 533, 125435 (2020).
  • 如何正确进行仪器性能确认(PQ)?
    分析仪器的验证作为仪器使用前的一个重要环节,其目的在于通过书面形式,证明整个测量过程能够达到预期效果,即能够获得稳定、可靠和准确的分析数据。制药生产关系到人们的生命健康,其数据的真实准确至关重要。分析仪器是进行药品质量检验工作的必要设备,《药品生产质量管理规范(2010年修订)》第一百四十条明确提出,应当建立确认与验证的文件和记录,并能以文件和记录证明达到以下预定的目标:(一)设计确认应当证明厂房、设施、设备的设计符合预定用途和本规范要求;(二)安装确认应当证明厂房、设施、设备的建造和安装符合设计标准;(三)运行确认应当证明厂房、设施、设备的运行符合设计标准;(四)确认应当证明厂房、设施、设备在正常操作方法和工艺条件下能够持续符合标准;(五)工艺验证应当证明一个生产工艺按照规定的工艺参数能够持续生产出符合预定用途和注册要求的产品。分析仪器属于检验设备,属于上述(四)的范畴,而PQ(Performance Qualification)的含义即性能确认。性能确认不仅在《药品生产质量管理规范》中有明确规定,在美国药典 USP 1225分析方法验证、ICH分析方法验证的通则里也有相关要求。分析仪器的性能确认包括哪些项目?这些项目的具体含义分别是什么?本文以药企常用的分析仪器“总有机碳TOC分析仪”为例,对性能确认作出科学诠释,旨在减少仪器故障的发生率,避免不合格情况的出现,将风险降到最低。检验方法验证检验方法验证(即检验仪器的确认)是根据检测项目的要求,预先设置一定的验证内容,并通过设计合理的实验来验证所采用的分析方法是否符合检测项目的要求。检验方法验证的基本内容包括方案的起草、审批以及检验仪器的确认。其中,方案的起草与审批,企业需根据自身情况进行撰写。至于检验仪器的确认,则包括多个检测项目。验证参数释义《药品生产质量管理规范(2010年修订)》中明确指出,检验方法验证的检测项目包括精密度、定量限/检测限、准确度、线性/范围、专属性、样品溶液稳定性以及系统适应性。以下是这些验证参数的具体含义。精密度精密度指在一定的受控条件下重复测定均一样品所得测定值的一致程度,它反映了测量系统存在的随机误差大小。比如,用不同品牌的总有机碳分析仪对同一个水样进行测定,仪器的精密度越高,测量数据就越集中,倘若测量数据均集中在真值附近,则测量结果就越理想。举例而言,同样配置500 ppb(1 ppm=1 mg C/l,1 ppb=1μg C/l)的标准蔗糖溶液,表1的两组数据中,数据A的精密度较好。表1:两组数据的精密度对比数据A(单位:ppb)数据B(单位:ppb)498476491462508536511521499509准确度准确度指在一定实验条件下多次测定的平均值与真值相符合的程度,用来表示误差的大小。精密度和准确度的区别就如同士兵打靶,如果子弹头分布很松散,则表明射击精密度低;如果子弹头密集在一起,则表明射击精密度高。在射击精密度高的情况下,聚集在枪靶中心的子弹头越多,则准确度越高。图2表示精密度高,准确度低;图3则表示精密度低,准确度高。图2 精密度高,准确度低图3 精密度低,准确度高定量限/检测限定量限(Limit of Quantification,LOQ),指可定量测定样品中待测组分的最低浓度或最低量。此处所指的最低浓度,应满足上述精密度和准确度的要求。比如在满足1%精密度和±2%准确度的前提下,测量最低浓度为4 ppb的水样。如果低于这个值,测量结果将不再准确。检测限(Limit of Detection,LOD),指能够被识别和检测的最低浓度。当仪器处于稳定状态时,仪器本身存在着噪声会导致测量读数出现漂移和波动。此值通常是仪器噪声水平标准偏差的3倍,检测限表示检测器对测定物质敏感程度的指标,其值越低,则说明检测器性能越好。线性/范围在给定范围内,所提供的样品与测试结果之间存在线性关系。通常,两点确定一条直线,对于最后的测试数据要求,应列出回归方程、相关系数、残差平方和以及线性图(或其他数学模型)。回归系数以1为基准,距离1越近则表示线性越好。专属性专属性指在其他成分(如杂质、降解产物、辅料等)可能存在的情况下,采用的方法能准确测定出被测物的特性,反映的是对被测物质准确而专属的测定能力,是用于复杂样品分析时相互干扰程度的度量。比如,对于总有机碳分析仪而言,不论样品化学结构或分子组成如何,都能准确地测量出其中的有机碳化合物。以此建立专属性验证标样组,所使用的品种如下:● 1瓶试剂水(空白溶液);● 1瓶500 ppb的TOC标样(甲醇);● 1瓶500 ppb的TOC标样(烟酰胺);● 1瓶500 ppb的TOC标样(邻苯二甲酸氢钾,简称KHP)。甲醇的分子式为CH3OH,由甲基和羟基组成,一个分子中仅含有一个碳原子,具有醇的化学性质,容易挥发和流失。即便只有一个碳原子,总有机碳分析仪仍能探测到它的存在,说明其专属性是合格的。烟酰胺含有一个氮的杂原子,同样适用于含碳物质的测试。通过专属性测试,也能够测量出其中含有的物质。KHP是一种呈无色单斜结晶或白色结晶性粉末状的化学物质,其特点是具有一个苯环,较难氧化,化学性质稳定,便于保存。可使用KHP进行检测,进而反映仪器的氧化能力。样品溶液稳定性样品溶液稳定性也称鲁棒性,是指仪器在受到扰动或者不确定的情况下,仍然可以维持某些性能的特性。英文名字为Robustness,即健壮和强壮。标样组设有以下几个品种:● 1瓶试剂水(空白溶液);● 1瓶500 ppb的TOC标样(USP 蔗糖);● 1瓶500 ppb的TOC标样(USP 1,4-苯醌)。根据美国药典 USP 1225分析方法验证的要求,所使用的试验方法必须是稳定的。举例而言,TOC既与温度无关,也与pH值无关,即使改变温度或 pH值,也不会影响样品溶液的稳定性。系统适用性可通过两种最极端的物质,即一个在自然环境中最容易氧化的物质“蔗糖”和另外一种在自然环境中最不容易氧化的物质“1,4-苯醌”进行测试。各自配置500 ppb浓度的蔗糖溶液、500 ppb浓度的 1,4-苯醌溶液,以及空白溶液放置到总有机碳分析仪中进行测定,测定的响应值分别记为Rs、Rss以及Rw,通过测定三种溶液,确定总有机碳分析仪的适用性。响应效率(Re)按下列公式计算:Re=100[(Rss-Rw)/(Rs-Rw)]如果85%Re115%,则确定该分析仪适用。药企可以根据自身生产的产品对风险进行评估。建议同步进行系统适用性测试(SST),以记录整个测量系统的性能(即人员、工艺、仪器和标样)。系统适用性标样的可接受回收率范围在85%~115%。如果能够通过系统适用性测试,则表明总有机碳分析仪的氧化性能良好。结语药企质量部和工程部人员不应只满足于对照药典和药品GMP指南中有关规定的字面理解,而应该从根本上掌握性能验证与各个测定项目的真正含义。在此基础上,使用合格的分析仪器来满足药品质量检测的需要。原文刊登于《流程工业 制药业》杂志2021年第12期,作者:Sievers分析仪 王欣◆ ◆ ◆联系我们,了解更多!
  • 步入式试验室性能及特点
    步入式试验室性能及特点:1、具有极宽的温湿度控制范围,可满足用户的各种需要。采用独特的平衡调温调湿方式,可获得安全、精确的温湿度环境。具有稳定、平衡的加热、加湿性能,可进行高精度、高稳定的温湿度控制。2、装备高精度智能化的温度调节器,温湿度采用LED数字显示方式。可选配温湿度记录仪。3、制冷回路自动选择,自控装置具有随温度的设定值自动选择运转制冷回路的性能,实现高温状态下直接启动制冷机,直接降温。4、内门装有大观察窗,可方便观察供试样品的试验状态。5、装有先进的安全、保护装置-漏电断路器、超温保护器,缺相保护器,断水保护器。高低温试验箱、恒温恒湿试验室、高低温湿热试验室、高低温交变湿热试验室、盐雾腐蚀试验室、以上试验室可根据客户要求定做。技术参数温度范围:-40℃~80℃(可交变温度范围:-40℃~60℃ )温度度动:±0.5℃温度均匀度:±2℃升温速率: 1.0℃~3.0℃/min降温速率: 0.7℃~1.0℃/min 温度范围:RT+10~400℃试验室类型步入式试验室,是配置有保护、加热、制冷的一系列装置,为大型零件、半成品、成品做环境测试的实验室。该实验室在箱体侧面设有带塞子的φ50mm测试孔,塞子材料为硅橡胶低发泡,能耐高低温,兼具保温效能。中文名 步入式试验室 温度度动 ±0.5℃ 温度均匀度 ±2℃ 升温速率 1.0℃~3.0℃/min箱体材料外箱材质:优质碳素钢板.磷化静电喷塑处理内箱材质:SUS304不锈钢优质光板保温材质:聚胺脂硬质发泡大门密封采用双层硅橡胶密封材料观察窗为多层导电膜钢化中空玻璃,为防止低温时玻璃结霜,特设内置式特制发热丝环绕,并设有照明灯,为观察提供照明控制系统采用:进口可编程触摸式液晶中文对话式显示,微电脑集成控制器保护系统整体设备超温/欠相/逆相/定时制冷系统过载/超压其它还有漏电、缺水、运行指示,故障报警后自动停机等保护加热加湿加热器采用瓷架镍铬丝电加热器,此加热器热惰性小,寿命长由仪表输出可控脉冲占空比PID信号,通过固态继电器来控制,控制平稳、可靠制冷系统压缩机:全进口半封闭德国谷轮;美国“艾高”干燥过滤器,台湾“冠亚”油分离器,意大利“卡士妥”电磁阀;冷冻系统采用单元或二元式低温回路系统设计;采用多翼式送风机强力送风循环,避免任何死角,可使测试区域内温度分布均匀;风路循环出风回风设计,风压、风速均符合测试标准,并可使开门瞬间温度回稳时间快;升温、降温、系统完全独立可提高效率,降低测试成本,增长寿命,减低故障率。步入式恒温恒湿室具有试验空间大,操作人员可以试验室对试验品进行操作的特点,为工业生产厂家的批量或者大型零件、半成品、成品提供了温湿度环境测试的条件。采用先进的中文液晶显示画面触摸屏,可进行各种复杂的程序设定,程序设定采用对话方式,操作简单、迅速。可实现制冷机自动运转,最大程度上实现自动化,可配制LAN通讯接口,便于用户远程距离程制和中央集中控制。可记录90天的温度、温度参数,相当配备无纸记录仪。东莞市海银环境测试设备有限公司成立于2010年,是国度高新技术企业,先后荣获ISO9001、国度AAA信誉体系等多项认证。 公司长期从事上下温实验箱,可程式恒温恒湿实验箱,冷热冲击实验箱,复层实环境老化实验箱,步入式上下温湿热实验箱,盐雾实验箱,紫外线加速老化实验机,振动实验台,跌落实验机,IP等级淋雨实验箱,IP等级沙尘实验箱,氙灯老化实验箱等牢靠性测试设备的研发和消费。 本着诚信、高效、感恩、共赢的运营理念,公司与中科院、清华大学、华为等数千家企事业单位坚持长期的良性协作。在此非常感激您的信任和选择,勤卓团队将会全力效劳您的协作需求。让我们携手,共创愈加高精尖的中国制造。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制