当前位置: 仪器信息网 > 行业主题 > >

电催化

仪器信息网电催化专题为您整合电催化相关的最新文章,在电催化专题,您不仅可以免费浏览电催化的资讯, 同时您还可以浏览电催化的相关资料、解决方案,参与社区电催化话题讨论。

电催化相关的论坛

  • 二氧化碳电催化相关问题

    各位大佬,求助一下大家,大家做电催化有没有用PVDF和导电炭黑作为电极的一部分的,我不太清楚这个比例,大家有没有相关的参考文献。我做二氧化碳电催化根据文献来说先是在碳布上涂一层PVDF 导电炭黑 NMP的混合粘聚物,再涂Nafion和催化剂;但是按照文献的说法这个PVDF的粘聚物很难涂到碳布上。

  • 二氧化碳电催化相关问题

    各位大佬大家好,想咨询一下各位在二氧化碳电催化[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]产物的过程中,我想把电催化产物中的甲醇和乙醇分出来用[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]测量,请教一下大家。

  • 二氧化碳电催化相关问题

    麻烦问下大家,我的二氧化碳电催化按照文献中的PVDF: 炭黑:NMP比很难粘合涂到碳布上,有没有做该方面的有相关文献的参考?

  • 系统气相与双通道电催化与热催化在线检测系统

    系统气相与双通道电催化与热催化在线检测系统

    新型肺炎期间,琢磨出双通道电催化与热催化在线检测系统,实验室以前都是一个反应器对应一台GC,现在省纪委二个反应器可以直接在一台GC上获得测试结果,还能够全自动化检测。。。如开发的双通道电化学CO2还原测试系统,如图1所示,可以在14min内获取2组样品的测试结果[img=,492,590]https://ng1.17img.cn/bbsfiles/images/2020/07/202007082158397466_1536_4231648_3.jpg!w492x590.jpg[/img]同时,也开发了全自动控制检测系统,如下图所示,需要合作的请联系。[img=,690,387]https://ng1.17img.cn/bbsfiles/images/2020/07/202007082202289915_5731_4231648_3.png!w690x387.jpg[/img]

  • 【推荐讲座】【推荐讲座】瑞士万通《电化学测试技术在电催化研究中的应用》(2017-11-1414:00)

    [align=left][b]【推荐讲座】瑞士万通《电化学测试技术在电催化研究中的应用》[/b][/align][align=left][b]讲座时间:[/b][/align][align=left]2017年11月14日 14:00:00[/align][align=left][b]免费报名:[/b][/align][color=black][url]http://www.instrument.com.cn/webinar/meeting_2975.html[/url][/color][align=left][b]会议内容:[/b][/align][color=black]目前电催化的研究非常热门,电化学测试技术在这个领域的应用也十分普遍,本次讲座主要将对该应用做尽可能详细完整的介绍。[/color]且听瑞士万通中国有限公司雷涛总监给您带来的精彩讲座!欢迎您积极报名参会![align=left][b]主讲人:[/b][/align][align=left]雷涛,瑞士万通Autolab产品线大中国区产品应用专家,在电化学工作站领域具有多年丰富的实践经验。[/align][align=left] [/align]

  • 【推荐讲座】【推荐讲座】瑞士万通《电化学测试技术在电催化研究中的应用》(2017-11-1414:00)

    [align=left][b]【推荐讲座】瑞士万通《电化学测试技术在电催化研究中的应用》[/b][/align][align=left][b]讲座时间:[/b][/align][align=left]2017年11月14日 14:00:00[/align][align=left][b]免费报名:[/b][/align][color=black][url]http://www.instrument.com.cn/webinar/meeting_2975.html[/url][/color][align=left][b]会议内容:[/b][/align][color=black]目前电催化的研究非常热门,电化学测试技术在这个领域的应用也十分普遍,本次讲座主要将对该应用做尽可能详细完整的介绍。[/color]且听瑞士万通中国有限公司雷涛总监给您带来的精彩讲座!欢迎您积极报名参会![align=left][b]主讲人:[/b][/align][align=left]雷涛,瑞士万通Autolab产品线大中国区产品应用专家,在电化学工作站领域具有多年丰富的实践经验。[/align][align=left] [/align]

  • 高校科研院所招聘联盟诚聘华南理工大学发光材料与器件国家重点实验室-光电催化,坐标广东,你准备好了吗?

    [b]职位名称:[/b]华南理工大学发光材料与器件国家重点实验室-光电催化[b]职位描述/要求:[/b]导师 :顾成(gucheng@scut.edu.cn) 1)截止到正式申请博士后岗位时,在国内985、211院校或国际前100知名院校取得博士学位两周年以内,年龄35周岁以下; 2)光催化/电催化方向或相关理论研究背景; 3)热爱科研、勤奋努力,有良好的团队协作精神和沟通协调能力,须全职工作,不得在外兼职; 4)良好的英文阅读、写作及交流能力,在重要学术刊物上发表至少一篇论文; 5)能独立开展相关课题的研究,协助指导研究生进行相关实验及管理工作,配合完成项目申报。 [b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/59924]查看全部[/url]

  • 高校科研院所招聘联盟诚聘华南理工大学发光材料与器件国家重点实验室-光电催化方向,坐标广东,你准备好了吗?

    [b]职位名称:[/b]华南理工大学发光材料与器件国家重点实验室-光电催化方向[b]职位描述/要求:[/b]导师 :顾成(gucheng@scut.edu.cn) 1)截止到正式申请博士后岗位时,在国内985、211院校或国际前100知名院校取得博士学位两周年以内,年龄35周岁以下; 2)光催化/电催化方向或相关理论研究背景; 3)热爱科研、勤奋努力,有良好的团队协作精神和沟通协调能力,须全职工作,不得在外兼职; 4)良好的英文阅读、写作及交流能力,在重要学术刊物上发表至少一篇论文; 5)能独立开展相关课题的研究,协助指导研究生进行相关实验及管理工作,配合完成项目申报。 [b]公司介绍:[/b] 仪器信息网仪器直聘栏目针对高校科研院所的免费职位发布平台,汇集了全国数十所高校科研院所的招聘信息。发布信息请联系010-51654077...[url=https://www.instrument.com.cn/job/user/job/position/59924]查看全部[/url]

  • 催化剂表征与评价—催化领域多位专家齐上阵,长江学者领衔报告

    催化剂表征与评价—催化领域多位专家齐上阵,长江学者领衔报告

    [align=center][img=https://www.instrument.com.cn/webinar/meetings/catalyst2022/,690,151]https://ng1.17img.cn/bbsfiles/images/2022/06/202206101025467345_9400_3295121_3.jpg!w690x151.jpg[/img][/align][size=24px][color=#ff0000]催化剂表征与评价 主题网络研讨会[/color][/size][size=18px]举办时间:6月28日 14:00[/size][font=&]1、韩一帆(华东理工大学/郑州大学 长江学者、中原学者、教授/博士生导师):Elucidating Active Sites for Syngas to Olefins through F-T Reaction[/font]2、周琰(安东帕(上海)商贸有限公司 产品经理):气体吸附在催化剂表征中的应用3、刘丽萍(大连理工大学 高级工程师):固体多孔材料比表面积和孔结构分析方法应用探讨4、杨军(中国科学院过程工程研究所 研究员):贵金属基异质结构纳米材料及其电催化应用戳链接,[size=18px][color=#ff0000]免费[/color][/size]报名:[url]https://www.instrument.com.cn/webinar/meetings/catalyst2022/[/url]

  • 【分享】光催化净化原理

    光催化材料是具有环境净化和自洁功能的半导体材料的总称。它在微量紫外线作用下,能产生强大的光氧化还原能力,催化分解附表的有机物和部分无机物。光催化技术的特点是能有效利用光能、易操作、无二次污染,在环境保护(废水废气净化、空气净化)、新能源开发、有机合成、自洁和抗菌材料生产等领域具有广阔的应用前景。 TiO2是公认的最有效光催化剂,它的显著优点是:能有效吸收太阳光谱中的弱紫外辐射部分;氧化还原性较强;在较大pH值范围内的稳定性强;无毒。但由于TiO2的禁带宽度为3.2eV,只能吸收波长小于387nm的紫外辐射,不能充分利用太阳能。另外,TiO2的光量子效率也有待进一步提高。有鉴于此,国内外已从多种途径对TiO2材料进行改性,包括TiO2表面贵金属淀积、金属离子掺杂、半导体光敏化和复合半导体的研制等。近来研究发现纳米级TiO2材料的催化效率高于一般半导体材料。纳米半导体粒子存在显著的量子尺寸效应,它们的光物理和光化学性质已成为目前最活跃的研究领域之一,其中纳米半导体粒子优异的光电催化活性倍受世人注目。与体相材料相比,纳米半导体量子阱中的热载流子冷却速度下降,量子效率提高;光生电子和空穴的氧化还原能力增强;振子强度反比于粒子体积而增大;室温下激子效应明显;纳米粒子比表面积大,具有强大的吸附有机物的能力,有利于催化反应。 纳米TiO2具有良好的半导体光催化氧化特性,是一种优良的降解VOCs(可挥发性有机化合物)的光催化剂。它的本质是在光电转换中进行氧化还原反应。根据半导体的电子结构,当其吸收一个能量不小于其带隙能(Eg)的光子时,电子(e-)会从充满的价带跃迁到空的导带,而在价带留下带正电的空穴(h+)。价带空穴具有强氧化性,而导带电子具有强还原性,它们可以直接与反应物作用,还可以与吸附在催化剂上的其他电子给体和受体反应。例如空穴可以使H2O氧化,电子使空气中的O2还原,生成H2O2,OH" 基团和HO2" ,这些基团的氧化能力都很强,能有效的将有机污染物氧化,最终将其分解为CO2、H2O、PO43-、SO42-、NO23-以及卤素离子等无机小分子,达到消除VOCs的目的。TiO2 +hv —— e - + h +e - + h + —— N +能量 (hv’入射光能量hv或热能)HO- +h+ —— OHH2O + h+ —— OH +H+O2 + e- —— O2-O2-+H2O —— OOH +OH-2OOH —— H2O2 +OH-OOH +H2O+ e- ——H2O2 +OH-H2O2 + e- —— OH+OH-

  • 【原创大赛】为水处理催化剂而来——记第十六届国际催化大会

    【原创大赛】为水处理催化剂而来——记第十六届国际催化大会

    这几天北京国家会议中心举办了第十六届国际催化大会,据说是第一次在中国举办国际催化会议,四年才举办一次哦,还是在北京!简直太巧了!http://simg.instrument.com.cn/bbs/images/default/em09505.gif昨天晚上收到公司通知,去凑个热闹。想想就好激动呢~好歹在公司也是做水处理方面催化剂的啊~哈哈,来参观参观,学习学习~http://simg.instrument.com.cn/bbs/images/default/em09502.gif 大清早的到了国家会议中心,结果发现,木有人,来早了。。。http://ng1.17img.cn/bbsfiles/images/2016/07/201607062210_599509_2695184_3.jpg 吃了个煎饼果子等了一个小时,终于可以进去了。。http://ng1.17img.cn/bbsfiles/images/2016/07/201607062211_599511_2695184_3.jpg 我只想说,里面好凉快啊~http://simg.instrument.com.cn/bbs/images/default/em09502.gifhttp://ng1.17img.cn/bbsfiles/images/2016/07/201607062213_599515_2695184_3.jpg 进入了主会场,果然是国际会议,人好多,据说两三千人,还有好多国际友人。主持人巴拉巴拉在上面说了一通,才发现全程英文,好吧,国际会议嘛~一年都不怎么说英语了,听起来略费劲。http://ng1.17img.cn/bbsfiles/images/2016/07/201607062211_599514_2695184_3.jpg 匆匆的翻看了会议报告页,找到自己能看的,发现,艾玛。能跟我们相关的还真的不多。。。。做催化剂的多,但做水处理催化剂的好少。。。。我和我的小伙伴都惊呆了。。。。 什么能源催化、催化材料、催化理论、环境催化、工业催化、光电催化、催化化学合成、生物质转化啊,发现能听的也就催化剂材料制备了,听完了主会场,直奔分会场。坐下来听听确实还不错,能跟自己搞的东西比较沾边。来来来,上几张图。。。http://ng1.17img.cn/bbsfiles/images/2016/07/201607062220_599516_2695184_3.jpg 瑞士的这个小伙给讲了讲通过原子沉积在氧化铝表面形成膜层,给做的表征也不少,图做的还挺漂亮,哈哈http://ng1.17img.cn/bbsfiles/images/2016/07/201607062223_599518_2695184_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/07/201607062225_599519_2695184_3.jpg制备的过程跟我们的还是比较类似的嘛。http://ng1.17img.cn/bbsfiles/images/2016/07/201607062226_599520_2695184_3.jpg 美国西北大学的这位白发苍苍教授也是用的ALD方法来制备的催化剂,看样子用这个方法还是挺多的,问了下旁边的小伙伴,这方法制备出来的催化剂效果还是不错,只不过制备过程比较复杂,用的设备比较高端,我们水处理催化剂用不起啊~屌丝气质瞬间显示出来了。呐,看看人家的实例吧:http://ng1.17img.cn/bbsfiles/images/2016/07/201607062230_599521_2695184_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/07/201607062231_599522_2695184_3.jpghttp://ng1.17img.cn/bbsfiles/images/2016/07/201607062231_599523_2695184_3.jpg是吧,还不错吧~嘿嘿~听了几个讲座,就到中午了,可惜今天只有半天~不过也算学习了不少好东西。。。感谢公司给提供的机会,感谢催化大会给带来的见识~最后,想说,这个注册费好贵。。。http://ng1.17img.cn/bbsfiles/images/2016/07/201607062234_599524_2695184_3.jpg 是不是又暴露了屌丝气质。。。 算了,我不说话了。

  • 请问催化去除甲烷的催化剂或催化炉的成分和原理是什么?

    首先说明:这里讨论的是催化方法[b] 除掉样气中的甲烷[/b],催化生成H2O和CO2。 而不是加氢催化无机碳生成CH4市场上有测量非甲烷总烃的FID设备,原理是使用催化炉除掉样气中的CH4,至于其他如乙烷、乙烯、甲醇等其他 有机成分都保留,送到FID测量,得到非甲烷总烃。请问这种催化剂的原理和成分是什么?

  • 【原创大赛】单原子催化剂的介绍及其相关研究

    【原创大赛】单原子催化剂的介绍及其相关研究

    [align=center][font=微软雅黑]单原子催化剂的介绍及其相关研究[/font][/align][b][font=微软雅黑][font=微软雅黑]钱冠求[/font] [/font][/b][align=center][font=微软雅黑]([/font][font=微软雅黑]北京[/font][font=微软雅黑]化工[/font][font=微软雅黑]大学化学学院[/font][font=微软雅黑] [/font][font=微软雅黑]北京[/font][font=微软雅黑] [/font][font=微软雅黑])[/font][/align][font=微软雅黑][font=微软雅黑]摘[/font] 要:[/font][font=微软雅黑][font=微软雅黑]近年来,单原子催化剂以其优异的催化性能、极大的比表面积与较好的稳定性成为了催化领域炙手可热的研究方向,已被广泛应用于各种催化领域的研究。本文通过整理大量文献,简明地阐述了单原子催化剂的发展情况以及制备方式,并以部分文献中的实验过程和表征结果为基础简要地提出了一些理论上可行的改进方法,以期能为之后单原子催化剂的合理设计与可控合成实验提供新思路。除此之外,单原子催化剂在表征与测试方面优异的表现,更证实了其在电催化、[/font]CO优先氧化等领域上有着良好的应用前景。[/font][font=微软雅黑] [/font][font=微软雅黑]关键词:单原子,催化剂,贵金属,非贵金属[/font][font=微软雅黑]一、研究背景[/font][font=微软雅黑]单[/font][font=微软雅黑]原子催化剂,是指通过一系列手段阻止载体上的金属原子团聚,使之以单个原子的形态均匀分散在载体上的一系列催化剂的总称。其具有高反应活性、高稳定性、高选择性的特点,同时,原子的高程度分散,也使得原子利用率得到极大提高,从而节省了催化剂原子的浪费与经济支出,具有明确的现实经济意义。[/font][font=微软雅黑][font=微软雅黑]将催化剂单原子化概念的产生,可以追溯到上个世纪,早在[/font]1[/font][font=微软雅黑]997[/font][font=微软雅黑]年,[/font][font=微软雅黑]Haruta[/font][sup][font=微软雅黑][font=微软雅黑][1][/font][/font][/sup][font=微软雅黑][font=微软雅黑]等人就在文章中写道,贵金属[/font]Au的催化活性往往不尽如人意,但是当其高度分散到直径5nm以下时,低温下的催化活性高于Pt与Pd。他的另一项研究[/font][sup][font=微软雅黑][font=微软雅黑][2][/font][/font][/sup][font=微软雅黑][font=微软雅黑]也表明了,[/font]Au催化剂的单位面积活性随Au的粒径减小而增大。2[/font][font=微软雅黑]011[/font][font=微软雅黑][font=微软雅黑]年,[/font]Qiao[/font][sup][font=微软雅黑][font=微软雅黑][3][/font][/font][/sup][font=微软雅黑]等人利用[/font][font=微软雅黑]P[/font][font=微软雅黑]t原子与Fe/[/font][font=微软雅黑]O[/font][font=微软雅黑]x的相互作用,合成了高分散度、高活性与稳定性的单原子催化剂Pt[/font][font=微软雅黑]1/F[/font][font=微软雅黑]e[/font][font=微软雅黑]O[/font][font=微软雅黑]x,掀起了对单原子催化剂的合成热潮。[/font][font=微软雅黑][font=微软雅黑]多相催化反应的发生需要经历三个过程,即反应物的吸附[/font]-反应-脱附过程[/font][sup][font=微软雅黑][font=微软雅黑][4][/font][/font][/sup][font=微软雅黑][font=微软雅黑],就反应步来说,具有高催化活性的原子往往是贵金属,其高昂的成本限制了其工业化的大规模应用。除此之外,[/font]Pt的中毒等现象也令其实用性受到了极大阻碍。[/font][font=微软雅黑][font=微软雅黑]于是,人们自然而然的将目光投向了贵金属催化剂的改性以及用[/font]Fe、Cu、Co等廉价金属替代贵金属的研究上,[/font][font=微软雅黑]Liang[/font][sup][font=微软雅黑][font=微软雅黑][5][/font][/font][/sup][font=微软雅黑][font=微软雅黑]等以维生素[/font]B[/font][sub][font=微软雅黑][font=微软雅黑]12[/font][/font][/sub][font=微软雅黑][font=微软雅黑]与聚苯胺铁络合物为前体,制备出了高活性的非贵金属[/font]Fe-[/font][font=微软雅黑]N-C[/font][font=微软雅黑]催化剂。随[/font][font=微软雅黑][font=微软雅黑]后,[/font]Co[/font][sup][font=微软雅黑][font=微软雅黑][6][/font][/font][/sup][font=微软雅黑][font=微软雅黑]、[/font]N[/font][font=微软雅黑]i[/font][sup][font=微软雅黑][font=微软雅黑][7][/font][/font][/sup][font=微软雅黑][font=微软雅黑]、[/font]C[/font][font=微软雅黑]u[/font][sup][font=微软雅黑][font=微软雅黑][8][/font][/font][/sup][font=微软雅黑]等高性能催化剂也[/font][font=微软雅黑]被相继研发出来。单原子催化剂可以广泛应用于电催化[/font][sup][font=微软雅黑][font=微软雅黑][7][/font][/font][/sup][sup][font=微软雅黑][font=微软雅黑][9][/font][/font][/sup][sup][font=微软雅黑][font=微软雅黑][10][/font][/font][/sup][font=微软雅黑][font=微软雅黑]、[/font]C[/font][font=微软雅黑]O[/font][font=微软雅黑]的优先氧化[/font][sup][font=微软雅黑][font=微软雅黑][3][/font][/font][/sup][font=微软雅黑]、硝基芳烃还原[/font][sup][font=微软雅黑][font=微软雅黑][6][/font][/font][/sup][font=微软雅黑]、葡萄糖的催化氧化[/font][sup][font=微软雅黑][font=微软雅黑][11][/font][/font][/sup][font=微软雅黑]等研究领域。[/font][font=微软雅黑]二、[/font][font=微软雅黑]制备方法[/font][font=微软雅黑]1.原子层沉积法[/font][font=微软雅黑]将反应物交替释放到体系中,以此精确控制沉积层数,随着循环次数增加,催化剂的质量也均匀上升,故而该法可控性强。但当载体表面官能团过少时易成核生长或难以均匀成膜。产量低、不利于大规模生产。[/font][align=center][img=,367,207]https://ng1.17img.cn/bbsfiles/images/2021/12/202112161056027180_7399_3237657_3.png!w367x207.jpg[/img][/align][align=center][font=微软雅黑][font=微软雅黑]图[/font]1.原子层沉积法示意图[/font][/align][font=微软雅黑]2.液相还原法[/font][font=微软雅黑]利用还原性物质在液相中将前体还原,和[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]还原法相比,液相还原所需的温度更低,可以有效避免金属离子的聚集、保护载体不被高温破坏,受到还原剂、温度、金属阳离子种类的影响可能造成颗粒过大或使用大量表面活性剂,难以去除。[/font][font=微软雅黑]3.沉积-沉淀法[/font][font=微软雅黑][font=微软雅黑]通过在有金属盐与载体的溶液中缓慢加入弱碱,使金属盐沉淀在载体空隙中温度过高可能引起大量快速沉淀,[/font]pH的局部过浓或过稀也会影响沉淀的形貌。不利于制造催化原子含量高的催化剂。催化剂金颗粒尺寸分布比较均匀、操作简单。[/font][font=微软雅黑]4.高温裂解法[/font][font=微软雅黑][font=微软雅黑]过高温将含有[/font]C、N有机配位配体的金属前驱体分解在载体上,来制备催化剂的手段,直接高温裂解法后得到的N-C结构可能包含大量无序结构,且会造成金属离子团聚,采用MOF骨架可以使催化剂活性位点被锁在分子笼中,耐久度高,活性位点密度大。[/font][align=center][img=,437,132]https://ng1.17img.cn/bbsfiles/images/2021/12/202112161056204036_2347_3237657_3.png!w437x132.jpg[/img][/align][align=center][font=微软雅黑][font=微软雅黑]图[/font]2.高温裂解法示意图[/font][/align][font=微软雅黑]三、[/font][font=微软雅黑][font=微软雅黑]实例分析:单原子[/font]Fe-Nx-C作为锌空气电池的高效电催化剂[/font][font=微软雅黑]1.制备[/font][align=center][img=,385,244]https://ng1.17img.cn/bbsfiles/images/2021/12/202112161056513914_4988_3237657_3.jpg!w385x244.jpg[/img][/align][align=center][font=微软雅黑][font=微软雅黑]图[/font]3.制备流程示意图[/font][/align][font=微软雅黑]如图[/font][font=微软雅黑]3[/font][font=微软雅黑][font=微软雅黑]所示,首先通过[/font]Fe[/font][sup][font=微软雅黑][font=微软雅黑] 2+[/font][/font][/sup][font=微软雅黑][font=微软雅黑]离子与[/font]1,10-菲咯啉(Phen)配合形成Fe-Phen复合物,接着通过Zn[/font][sup][font=微软雅黑][font=微软雅黑] 2+[/font][/font][/sup][font=微软雅黑][font=微软雅黑]和[/font]2-甲基咪唑(2-MI)的组装,将Fe-Phen复合物原位封装在沸石咪唑酯骨架(ZIF-8)的笼子中,获得的样品称为Fe-Phen @ ZIF-8。[/font][font=微软雅黑][font=微软雅黑]最后在氩气氛下于[/font]900°C的温度下热解后,Fe-Phen @ ZIF-8在氮掺杂碳骨架(Fe-N x - C)上转化为孤立的单原子铁。[/font][font=微软雅黑]2.表征[/font][align=center][img=,497,349]https://ng1.17img.cn/bbsfiles/images/2021/12/202112161057058977_5382_3237657_3.jpg!w497x349.jpg[/img][/align][align=center][font=微软雅黑][font=微软雅黑]图[/font]4.各表征谱图[/font][/align][font=微软雅黑]对图[/font][font=微软雅黑]4[/font][font=微软雅黑]阐述分析:[/font][font=微软雅黑][font=微软雅黑]图[/font]a:Fe-Phen @ ZIF-8的X射线衍射(XRD)图与纯ZIF-8的X射线衍射图非常匹配,表明其高结晶度和类似的沸石型结构。图b-d:扫描电子显微镜(SEM)和透射电子显微镜(TEM)图像显示,热处理后Fe‐Nx‐C保持其初始十二面体形状,而表面变得更粗糙。图e:高分辨率透射电子显微镜(HRTEM)图像中,石墨碳层的晶向间距为0.34nm。图f:选择区域电子衍射(SAED)图像示出了环,指示整个碳骨架的结晶性差,在900℃热处理过程中形成无结晶的铁。(g,h在Fe - Nx - C的红圈区域,经过像差校正的HAADF‐STEM图像和EELS点谱)。图g:显示出单个的铁原子。图h:表明Fe和N以Fe‐Nx形式共存。之后XPS结果一致,证实了分散良好的Fe原子与N配位。图i:Fe‐Nx ‐C的拉曼光谱在1347和1572 cm [/font][sup][font=微软雅黑][font=微软雅黑]-1[/font][/font][/sup][font=微软雅黑][font=微软雅黑]处显示两个峰,其[/font]I D / I G值为2.51,低于N‐C(I D/ I G = 1.86)。D峰表示晶格的缺陷。该结果表明,在碳骨架中引入铁原子诱导了碳基质的缺陷位点的形成,据报道该缺陷位点是氧电极的活性位点。[/font][font=微软雅黑]四、总结与展望[/font][font=微软雅黑]单[/font][font=微软雅黑][font=微软雅黑]原子催化剂的发展,是科技进步的结果,它的诞生,为科学家们寻找高效的[/font]Pt[/font][font=微软雅黑]/C[/font][font=微软雅黑]催化剂替代品提供了可行的思路。目前,科学家们正致力于提高催化剂的比表面积与催化活性,为此开发出了许多新奇的催化剂结构[/font][font=微软雅黑];[/font][font=微软雅黑]同时,不同的催化载体也被开发出来,从胶体[/font][sup][font=微软雅黑][font=微软雅黑][11][/font][/font][/sup][font=微软雅黑]到负载,从金属氧化物[/font][sup][font=微软雅黑][font=微软雅黑][3][/font][/font][/sup][font=微软雅黑][font=微软雅黑]到[/font]M[/font][font=微软雅黑]OF[/font][sup][font=微软雅黑][font=微软雅黑][9][/font][/font][/sup][font=微软雅黑][font=微软雅黑],合成的方法越来越简便。此外,也有一些使我们感到新颖的合成思路,比如[/font]Yin[/font][sup][font=微软雅黑][font=微软雅黑][9][/font][/font][/sup][font=微软雅黑][font=微软雅黑]等人利用[/font]Zn占位来控制Co的间隔,以及用外加电势[/font][sup][font=微软雅黑][font=微软雅黑][7][/font][/font][/sup][font=微软雅黑][font=微软雅黑]的方法活化[/font]N[/font][font=微软雅黑]i[/font][font=微软雅黑]-[/font][font=微软雅黑]C[/font][font=微软雅黑]催化剂等。[/font][font=微软雅黑]但是,在催化剂的制备领域还有许多亟待解决的问题。如诸多的合成方式都存在一定的缺陷,在合成的可控性上还有提升的空间。以及从我在网上浏览的资[/font][font=微软雅黑]料来看,似乎部分催化剂的载体和催化原子很廉价,但是其余的合成试剂甚至是实验所需的催化剂原子的特定形态价格昂贵,我想这也是单原子目前还停留在实验室阶段的重要原因之一。想要将合成的成本降下来,可以从以更廉价的方式合成载体及反应所需催化剂原子特定形态入手,也可以尝试从一些含目标原子的其他化合物入手,通过调控合成步骤达到与昂贵反应试剂近似的效果。[/font][b][font=微软雅黑][font=微软雅黑]参考文献[/font]:[/font][/b][font=微软雅黑][1] Haruta M. Size-and support-dependency in the catalysis of gold[J]. 1997, 36(1): 153-166.[/font][font=微软雅黑][font=微软雅黑][2] Sakurai H, Haruta M. Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides[J]. Catalysis Today, 1996, 29(1/4): p. 361-365.[/font] [/font][font=微软雅黑][3] Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8): 634-41.[/font][font=微软雅黑][4] Ren S, Yu Q, Yu X, et al. Graphene-supported metal single-atom catalysts: a concise review[J]. Science China Materials, 2020, 63(06): 903-920.[/font][font=微软雅黑][5] Liang H W, Wei W, Wu Z S, et al. Mesoporous Metal-Nitrogen-Doped Carbon Electrocatalysts for Highly Efficient Oxygen Reduction Reaction[J]. Journal of the American Chemical Society, 2013, 135(43): 16002-16005.[/font][font=微软雅黑][6] Liu W, Zhang L, Yan W, et al. Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes[J]. Chemical Science, 2016, 7: 5758-5764.[/font][font=微软雅黑][7] Fan L, Liu P, Yan X, et al. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis[J]. Nature communications, 2016, 7: 10667[/font][font=微软雅黑][8] 王兵, 曲雅男, 安灏, 王金凯, 郭振美, 吕志果. 高性能纳米Cu/SiO[/font][sub][font=微软雅黑][font=微软雅黑]2[/font][/font][/sub][font=微软雅黑][font=微软雅黑]催化剂制备及其催化芳酮加氢性能[/font][J]. 青岛科技大学学报(自然科学版), 2020, 41(03): 48-55.[/font][font=微软雅黑][9][/font][font=微软雅黑] [/font][font=微软雅黑]Yin P, Yao T, Wu Y, et al. [/font][font=微软雅黑]Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts[J]. [/font][font=微软雅黑]Angewandte Chemie, 2016, 55: 10800-10805.[/font][font=微软雅黑][10] Deng J, Li H, Wang S, et al. [/font][font=微软雅黑]Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production[J]. [/font][font=微软雅黑]Nat Commun, 2017, 8: 14430.[/font][font=微软雅黑][11] Zhang H, Kawashima K, Okumura M, et al. [/font][font=微软雅黑]Colloidal Au single-atom catalysts embedded on Pd nanoclusters[J]. Journal of Materials Chemistry A, 2014, 2(33): 13498.[/font][font=微软雅黑] [/font][font=微软雅黑] [/font]

  • 催化转化器

    转化器是什么呢?它是汽车上面的一个小东西。可是汽车少了它那是万万不行的。其实这个东西我还真没有见过,它的外观还是黑色的,远处看好象是塑料做成的。其实它是钢做成的。外型也挺可爱的,那我们一起来研究一下,们来看看催化转化器综述:随着环境保护要求的日益苛刻,越来越多的汽车安装了废气催化转化器以及氧传感器装置。它安装在发动机排气管中,通过氧化还原反应,将发动机排放的三种废气有害物CO、HC和NOx转化为无害的水、二氧化碳和氮气,故又称之为三元(效)催化转化器,其催化剂大都含有铂、锗等贵金属或稀土元素,价格昂贵,在正常情况下,它的寿命为八万公里左右。由于三效催化转化器的工作要求比较严格,如果使用不当,会造成催化器失效层损坏。在高温度过高 常温下三元催化转化器不具备催化能力,其催化剂必须加热到一定温度才具有氧化或还原的能力,通常催化转化器的起燃温度在250—350℃之间。催化转化器工作时会产生大量的自量越高,氧化的温度也愈高,这都会使未燃烧的混合气进入催化反应器,造成排气温度过高,影响催化转化器的效能。硫和铅来自于汽油,磷和锌来自于润滑油,这四种物质及它们在发动机中燃烧后形成氧化物颗粒易被吸附在催化剂的表面,使催化剂无法与废气接触,从而失去了催化作用中毒现象还是比较高的,在三元催化器无法启动,发动机排出的炭烟会附着在催化剂的表面。这样长期下来便使载体的孔隙堵塞,影响其转化效能。催化转化器对污染物的转化能力有一定的限度,因此必须通过机内净化技术将原始排气降到最低。如果排放的废气污染物各成分的浓度、总量过大,比如混合气偏浓等,就会影响催化器的催化转化能力,降低其转化效。在排气状况就发生变化,安装三元催化器的位置就不同,这都会影响三元催化转化器的催化转化效果。因此,不同的车辆,应使用不同的三元催化转化器。然在发动机排气管中安装氧传感器并实现闭环控制,其工作原理是氧传感器将测得废气中氧的浓度,转换成电信号后发送给ECU,使发动机的空燃比控制在一个狭小的。还有它的注意事项:1.安装有催化器的汽车绝对不允许使用有铅汽油。 2.要避免催化转化器发生磕碰。 3.汽车不要长时间怠速,以防催化转化器烧坏。 4.要避免突然加速,以防止催化转化器过热。   5.要保证发动机正常运转,以防止催化转化器排气净化率最佳。由于三效催化转化器发动机始终处于理论空燃比的情况下工作,这时排气净化率最高。发动机电控系统、点火系统和燃油系统的故障都会使发动机工作不正常,混合气浓度偏离理论空燃化,使排气净化率降低,三效催化转化器寿命缩短。你们看一个催化转化器都有这么多条件,还有这么多的知识值得我们去看,去读,去理解,你们懂了吗?

  • 【求助】有机催化反应后,要测定催化剂的流失,如何处理样品?

    本人是作催化的,公司新买了ICP,但没有人会用。有2个问题想向各位请教一下。用钯/活性炭 作为催化剂,催化苯乙酮加氢还原,得到苯乙醇。1、想测定催化反应循环过程中,每次催化剂的流失。如何处理样品?(注* 催化剂颗粒很小,即使用高速离心机处理,产物相还是有点黑,也就是还有少量催化剂在里面)2、想测定钯/活性炭 催化剂中 钯的量。样品又如何处理?谢谢各位啦!!

  • 催化剂的分类

    催化剂的分类方式有很多种:按聚集状态分类、按化学键分类、按催化剂组成及使用功能分类以及按催化剂工艺和工程特点分类。目前,国内外均以功能划分为主,兼顾市场类型及应用产业。我国尚无统一的工业催化剂分类法,参考一些大型书目和国外分类方法可将工业催化剂分成:石油炼制、无机化工、有机化工、环境保护和其他催化剂5大类。细分情况见图。http://ng1.17img.cn/bbsfiles/images/2017/02/201702061522_01_1241901_3.jpg

  • 《催化原理》

    催化原理[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15185]催化原理[/url]

  • 《催化展望》

    催化展望[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15187]催化展望[/url]

  • 催化反应疑问

    请问反应体系是这样:一种反应物1是液体,另一种反应物2(室温时是固体,加热到50度成液体),在室温下将2加入到1中,液体混浊,如将2加热到60度以液体形式加入到1中,观察到透明,请问2溶于1吗?反应温度调在65度以上,是不是可以认为2溶于1中,如果不加催化剂它们之间的反应是属于均相反应吗?如果在此反应温度下,催化剂加入后溶液呈混浊状或者催化剂明显不溶,那么此情况下反应是否属于非均相反应?还是非均相反应必须是两反应物分别处于两相中,采用一种相转移催化剂的反应才是真正意义的非均相反应?请各位做过催化研究的大侠帮我分析一下,在此表示十分感谢。

  • 【资料】环境保护催化剂简介!

    催化剂工业中的一类产品,用于借助催化作用来消除环境污染的工艺。自20世纪70年代汽车排气催化净化技术商业化以后,此类催化剂与石油炼制催化剂、化工催化剂(包括石油化工催化剂和无机化工催化剂并列为催化剂工业中的三大类产品。环境保护用催化剂通常有较高的催化活性,能将浓度本来很低的污染物经催化转化为无毒物;能承受较高的作业负荷,以节约催化剂用量和治理污染的设备投资;能在室温或不太高的温度下作业,以减少治理污染所需的能耗。被处理的气体,通常含有粉尘、重金属、含硫化合物、含氯化合物、酸雾等,因此要求催化剂的抗毒能力较强,化学稳定性好,具有足够的催化剂寿命。有时,要求有良好的催化剂选择性不致因副反应所生成的产物造成二次污染。在环境治理工程中,由于被污染物的组成、浓度、温度等常有变化,故要求催化剂能在较宽的反应条件下保持其效率,这与典型的化工生产中所用的催化剂是有所不同的。   燃烧催化剂  用完全催化氧化的方法使可燃性污染物质转化为二氧化碳和水的催化剂。广泛用于治理工厂的排气污染,主要是一氧化碳、烃类及其含氧衍生物,如醇、醛、酮、酯等引起的污染。第一次世界大战时曾用CuO和MnOx为催化剂,置于防毒面具中以净化毒气(一氧化碳等),在室温下即有效。催化燃烧技术现在广泛地用于排放有机溶剂废气的行业和排放可燃尾气的化工厂。将直接燃烧和催化燃烧法比较,依据不同的污染物,起燃温度(为保持反应正常进行所需的最低温度)分别为600~800℃和室温至400℃,即用催化法治理污染的起燃温度低,可节约能源。最常用的催化剂是以铂、钯、氧化铜、氧化锰、氧化钴、氧化镍、氧化钒等为活性组分,以氧化铝为载体。含贵金属的催化剂极为活泼,在催化剂中的含量通常为0.3%~0.1%,它们甚至在低于100℃时可使烃类完全转化,铂转化一氧化碳效率优于钯,而对烃类的燃烧活性则反之。以甲烷为例,催化燃烧活性顺序为Pd>Pt>Co3O4>PdO>Cr2O3>Mn2O3>CuO>CeO2>Fe2O3>V2O5>NiO>MoO3>TiO2。非贵金属氧化物催化剂价廉,但起燃温度较高。近年来,在处理大气量的催化燃烧炉中,多采用蜂窝状造型的催化剂,后者为柱状制件,沿柱体的轴向开有许多平行的孔道,形似蜂窝。这种造型的催化剂对气流的阻力比球状催化剂小得多。

  • 【资料】试剂介绍-催化剂

    [size=4]定义  [/size][b][size=4] [/size][/b][size=4] [/size][size=4]又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为[/size][size=4]催化作用[/size][size=4]。涉及催化剂的反应为催化反应。[/size][size=4][/size][size=4]  催化剂(catalyst)会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。催化剂在工业上也称为[/size][size=4]触媒[/size][size=4]。[/size][size=4]  催化剂自身的组成、化学性质和质量在反应前后不发生变化;它和反应体系的关系就像锁与钥匙的关系一样,具有高度的选择性(或专一性)。一种催化剂并非对所有的化学反应都有催化作用,例如二氧化锰在[/size][size=4]氯酸钾[/size][size=4]受热分解中起催化作用,加快[/size][size=4]化学反应速率[/size][size=4],但对其他的化学反应就不一定有催化作用。某些化学反应并非只有唯一的催化剂,例如氯酸钾受热分解中能起催化作用的还有[/size][size=4]氧化镁[/size][size=4]、[/size][size=4]氧化铁[/size][size=4]和氧化铜等等。[/size][size=4]  初中书上定义:在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。催化剂在化学反应中所起的作用叫催化作用。[/size][size=4]  也有一种说法,催化剂先与反应物中的一种反应,然后两者的生成物继续在原有条件下进行新的化学反应,而催化剂反应的生成物的反应条件较原有反应物的反应条件有所改变。催化剂原先因发生化学反应而生成的物质会在之后进一步的反应中重新生成原有催化剂,即上面提到的质量和化学性质在反应前后都没有发生变化。[/size]

  • 【资料】固体酸催化剂!

    【资料】固体酸催化剂!

    酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 固体酸催化剂  性质  与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051910_194402_1643419_3.jpg[/img]红外光谱研究表明,800℃焙烧过的 γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。SiO2-Al2O3的酸中心模型 (见图)有多种模式。②酸强度,可用哈梅特酸强度函数H0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO-Al2O3、B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为H0≤3.3,H0≤1.5,H0≤-3,-3H0+1.5。在同类型的催化剂上进行同一反应时,催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,除应考虑其表面的酸功能外,还必须考虑孔隙构造对反应物的扩散及传热过程的影响。例如对于烃类反应,设计了许多具有规整孔结构的固体酸催化剂,如具有管状和笼状孔道的分子筛催化剂,具有层叠结构的半晶态的铝硅酸盐或硅酸盐催化剂。 [img]http://ng1.17img.cn/bbsfiles/images/2010/01/201001051912_194404_1643419_3.jpg[/img]

  • 《择形催化》

    择形催化[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=15135]择形催化[/url]

  • 化工催化剂检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-38856.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]随着负载型双组份催化剂的发展,催化剂表征方法的建立使人们对催化剂中组分、活性以及存在状态具备综合分析的依据,能够对于所制备的催化剂的反应行为给予更合理的解释。如应用TPR及H2和O2化学吸附等方法对PtSn/Al2O3催化剂中的锡组分存在状态的表征,应用电镜和XRD对催化剂结构进行表征,通过ICP及XRF对催化剂进行定性及定量分析,另外对催化剂的积碳失活的检测有助于催化剂表面再生行为的研究,运用TPO、TG及STA等手段对催化剂表面积碳行为。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]平台基础配套设施齐全,配备催化剂表征所具备的材料物化分析检测仪器设备,主要包括STA、[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]、FT-IR、ICP、XRD、XRF等以及催化剂原位表征,包括化学吸附-质谱联用、吡啶透射红外、原位XRD、原位漫反射红外等。[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]化工产品/催化剂[/td][td]比表面积[/td][td]GB/T 19587-2017[/td][/tr][/table]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制