当前位置: 仪器信息网 > 行业主题 > >

电催化

仪器信息网电催化专题为您整合电催化相关的最新文章,在电催化专题,您不仅可以免费浏览电催化的资讯, 同时您还可以浏览电催化的相关资料、解决方案,参与社区电催化话题讨论。

电催化相关的资讯

  • 大连化物所实现电催化过程电子转移成像
    近日,大连化物所催化国家重点实验室分子催化与原位表征研究组(503组)李灿院士、范峰滔研究员等在液相原位电化学成像的研究方面取得新进展,实现了电催化过程中电荷转移过程的纳米尺度直观成像,直接观察到金属电极在微纳尺度存在空间差异的界面内电势差,突破了人们在传统电化学方面对电子转移过程的认识。  电化学反应的内在驱动力是电化学势,而电化学势的决定因素是界面内电位差,即电子转移情况。如何探测界面电势的局域分布,揭示其与电子转移动力学之间的内在关系对于纳米催化剂的反应机理的认识至关重要。一直以来,研究人员就设想通过纳米探针观测反应过程的电子转移情况,但该尺度下的电流极其微弱,常常受到外界噪音干扰。另外,液相中化学物种的扩散过程常常使电化学成像难以稳定。更重要的是,在电催化过程中,催化反应与电子转移过程卷积在一起,使得该电子转移过程难以直接探测。  本工作中,李灿团队建立了具有纳米级空间分辨率的原子力显微镜和扫描电化学成像联用的表征方法。该方法利用纳米探针的移动扫描测量了能够转移电子的外球电对分子和催化产物分子的局域分布,实现了对电子转移过程和电催化反应过程的原位反应成像。在金属纳米颗粒上的电子转移成像发现,该过程呈现位点依赖的空间异质性,突破了人们对金属电极上电子转移过程的微观认识。同时,通过解耦传质效应对界面电子转移的干扰,数学建模的有限元方法提取速率常数和内电势差测量等一系列精细的实验,揭示了空间差异的界面内电势差与电子转移速率常数对数间的线性关系。该方法在电化学领域对电子转移过程和催化反应实现原位观测,对原位成像技术的发展以及电催化过程机理探测方面提供新思路。  国际同行认为,该工作是原位扫描电化学探针技术的一个新里程碑,这也使人们可以从物理化学底层原理出发,发现纳米催化剂的结构—性能关系。  李灿团队长期致力于太阳能光催化、光电催化、电催化以及催化光谱表征的前沿科学研究,取得了系列成果,特别是利用自主研发的空间分辨的表面光电压显微镜对光催化剂表面光生电荷给出了可视化图像,在国际上最早将其应用到微纳尺度光催化材料电荷分离的成像研究(Angew. Chem. Int. Ed., 2015;Nature Energy, 2018;Angew. Chem. Int. Ed., 2020等)中。  相关研究成果以“Visualizing the Spatial Heterogeneity of Electron Transfer on a Metallic Nanoplate Prism”为题,发表在《纳米快报》(Nano Letters)上。该工作的第一作者是大连化物所503组博士研究生聂伟。该工作得到国家自然科学基金委,“人工光合成”基础科学中心项目、中科院和大连化物所等相关项目的资助。  文章链接:https://pubs.acs.org/doi/10.1021/acs.nanolett.1c03529
  • 【HORIBA学术简讯】催化剂、电催化、光催化、陶瓷 领域 | 2021年第38期
    “学术简讯”栏目旨在帮助光谱技术使用者时时掌握新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等。帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。如您对本栏目有任何建议,欢迎留言。本周我们推荐5篇前沿学术成果,针对催化剂、电催化、光催化、陶瓷领域,涉及拉曼、荧光技术。催化剂电催化光催化陶瓷更多光学光谱文献,欢迎访问Wikispectra 文献库。
  • 想提高电催化研究效率?多电极控温流动看过来!
    电化学----“古老又年轻”电催化作为纳米材料和能源化学领域的研究热点,是未来新能源存储与转化技术的关键所在,如以电解水制氢和燃料电池为核心的氢能产业。除了可以通过小分子的活化转化将可再生能源存储为化学能,电催化更有魅力的地方在于温和、可控、绿色的化学品合成。其实,电化学的发展史是非常有渊源的。早在1893年Thompson发现电子以前,电化学的基本原理和规律就已从实验中得出。 图1:1780年Galvani发现“生物电”现象电化学的起源可以追湖到1780年Galvani从生命体系中发现的“生物电”现象,它揭示了生物学和电化学之间的深奥联系。 图2:1800年Volta发明利用电化学原理连续供电的伏打电堆1800年Volta发明了人类*个电池,它是利用电化学原理制成的*个具有实用价值的连续供电装置。(图1-2)早期,科学家主要是依赖对电流、电位、电容和电量等电化学参数的测量和分析研究,获得的宏观数据限制了对电极界面结构和反应历程的实质性认识。电化学*的进步发生在20世纪的后30年间,把光谱技术同电化学方法结合在同一电解池中工作,从而实现在分子水平上认识电化学现象和规律。随着光谱、波谱技术从60年代,特别是80年代以来的迅速发展,原位光、波谱电化学方法,以及理论计算方法在电化学过程动力学的研究方面日益受到重视并得到了广泛应用。经过近100年的发展,电催化从最初作为电化学科学的一个分支,目前已经成为一门交叉性极强的学科,科学家也在不断挖掘新的合成路径来提高电催化性能。催化剂“动起来”更有效率近期,美国化学学会Chemrxiv预印本期刊发表的一篇文章中使用Vapourtec离子电化学反应器开发了一种用于生成六元二锂盐的多相连续流,该例建立了一种生成六元二芳基碘酸盐的多步连续流动方法。这是对现有批处理方法在可伸缩性和原子经济方面的一个显著改进。该方法Friedel-Crafts类烷基化中使用容易获得的乙酸苄基酯,而随后的阳极氧化环化直接生成相应的环状碘鎓盐。* Friedel-Crafts 反应(傅-克反应)指芳香化合物在酸(Lewis酸或质子酸)催化下与卤代烃和酰卤等亲电试剂作用,在芳环上导入烷基或酰基的反应,分为Friedel-Crafts烷基化反应和Friedel-Crafts酰基化反应。* 高价碘化合物(HVI)是合成化学家公认的试剂。它们被描述为其他危险过渡金属的替代品。这是由于它们在亲电基团转移、光催化或有机催化中的巨大反应性,以及它们作为天然产物合成的构建块的实用性。在这篇研究文章中,科学家通过Brø nsted酸介导的Friedel-Crafts反应,然后进行氧化环化,以形成所需的CDIS 1,改进了碘油烯的形成。这种合成方法是以邻碘苄基醇为起始原料。它允许在短的反应时间内完成各种繁琐的合成CDIS方法。流动化学可显著提高电催化剂的抗疲劳性和稳定性,甚至可以让很不稳定的催化剂达到持久稳定的催化效果。合成挑战一个显著的缺点是使用化学计量量的化学氧化剂,这降低原子经济性并需要额外的处理程序。解决方案碘烯的阳极氧化。电化学是一种非常经济的工具,可以避免使用化学氧化剂合成高价碘试剂。碘芳烃在电池内或电池外电化学过程中都是合适且成熟的介质。HVI、DIS和CDIS通过阳极氧化产生。电化学工艺的明显优势,因为不需要进一步稀释或添加,所以其在流动中的实验操作简单直接。因此,将已经建立的针对CDIS 1的传统合成法转化为多步电化学流程,从而提高反应时间、原子经济性和可扩展性。实验过程1、建立分批优化的反应条件 在分批条件下电化学氧化和环化中间体碘油烯,通过初步观察,确定三氟甲磺酸适合环化并作为抗衡离子。2、引入流动化学在仅两当量的TfOH以74%的产率形成产物1a。但是研究人员发现由于需要额外的苯,这些反应条件不能转移到多步骤反应中,会形成堵塞流动反应器的黑色沉淀物。 3、两步流程优化 反应在Vapourtec离子电化学流动反应器中进行,分别采用玻璃碳 (GC) 阳极和铂阴极。收率是基于在各自条件下通过两个反应器体积后的20 min (0.200 mmol) 收集。4、研究不同对位取代芳烃 在Vapourtec离子电化学流动反应器中研究了不同的对位取代芳烃。通过使用仲苄基醇来衍生苄基位置,在0°C下,3g转化的Friedel-Crafts步骤缩短了约10倍。实验总结1、开发了*个多步连续流动程序,用于生成环状六元二芳基碘鎓盐;2、从容易获得的乙酸苄基酯开始,将Friedel-Crafts烷基化与随后的阳极氧化环化相结合。由于这些反应的条件相当苛刻,该方法目前受到使用的窄原料的限制;3、未来可以通过解决窄原料的限制问题,实现其他基质和更高的产量;4、缩短反应时间,提高原子经济性和可扩展性。Vapourtec电化学反应器连续电化学反应电化学反应器一旦与Vapourtec流动化学系统集成,离子电化学反应器的温度可以控制在-10º C和100º C之间,这为探索开辟了广阔的化学反应空间。历史上,绝大多数电化学反应都是在室温下进行的,很少有冷却电化学反应的例子。辉瑞公司和日本庆应义塾大学最近发表的一些重要文献也表明,加热电化学反应时,反应结果会有很好的改善。 ● 集成或独立操作选项,易于组装/拆卸,无泄漏操作 ● 与E系列和R系列系统兼容 ● -10°C~+100°C ● 在高达5bar的压力下操作 ● 20种电极材料可用,使用5 cm x 5 cm扁平电极 ● 电极间距、电极面积和反应器体积的灵活性。*封面图来源于Pexels,其他图片来源于网络,旨在分享,如有侵权请联系删除参考文献:[1] One-Pot Synthesis and Conformational Analysis of Six-Membered Cyclic Iodonium Salts Lucien D. Caspers, Julian Spils, Mattis Damrath, Enno Lork, and Boris J. NachtsheimThe Journal of Organic Chemistry 2020 85 (14), 9161-9178 DOI: 10.1021/acs.joc.0c01125[2] https://chemrxiv.org/engage/chemrxiv/article-details/634bfda24a18762789e5c3b1
  • 中国科大在电催化界面过程成像分析上取得新进展
    近日,中国科大环境科学与工程系在电催化界面动态过程的原位成像分析方面取得进展,研究成果以“Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts”为题发表于Nature Communications上(Nature Communications 2022,13: 7869)。   污染物的电催化转化是水污染控制技术的重要方法。纳米催化剂的表界面是电催化反应发生的场所,因此在微观上理解电催化反应过程,建立纳米催化剂结构与催化转化性能的构效关系是提高催化剂活性的关键。传统电催化研究通过电极电流密度和催化产物,评估催化剂性能,难以在微纳尺寸上原位实时分析单个催化剂的活性分布或反应动态过程。 图1.单个二硫化钼纳米片的充电和催化过程成像分析示意图   针对上述问题,刘贤伟教授课题组博士生赵小娜和周晓丽博士通过表面化学调控,充分发挥了表面等离子体成像技术对电极表面电荷密度高度敏感的特性,原位成像分析了层状二维电催化材料的充电电荷密度分布和电催化界面电荷交换过程。该方法消除了电极表面充放电流的干扰,分别定量了催化剂表面的充电和氧化还原电流分布,结合课题组前期发展的表面等离子激元原位蚀刻技术(Chem, 2021, 7: 1626-1638),发现了二硫化钼催化性能和层数之间的依赖性,建立了催化剂导电性和电催化性能之间的关系。该研究对于设计新型高效污染控制电催化纳米材料具有重要的意义。 图2.单个二硫化钼纳米片随层数变化的电催化过程   该项工作得到了国家自然科学基金的资助,也获得了环境科学与工程系陈洁洁教授课题组在量化计算方面的支持。
  • 瑞士万通参加“2018电催化与电合成国际研讨会”
    2018年3月30日-4月1日,由湖南大学主办的“第一届电催化与电合成国际研讨会 (“2018 International Symposium on Electrocatalysis and Electrosynthesis”)在星城长沙顺利召开。 本次会议的目的是对电催化与电合成的研究进行讨论和思考,专注于能源电催化、燃料电池电催化、电解水电催化、光电催化、电催化合成等方面的研究。共有约500名研究人员,学者,博士,业界专业人员参与了此次盛会。瑞士万通携旗下电化学产品参加了此次会议。大会开幕式现场 大会开幕式上,厦门大学孙世刚院士为大会致开幕词。本次会议分为大会报告和三个分论坛举行,共近150场学术汇报。瑞士万通展台 会场外,瑞士万通设立了展台,展出了电化学拉曼光谱仪和旋转环盘电极(RRDE),吸引了众多学者前来交流讨论,不少专家对我们的仪器产生了浓烈的兴趣。 RRDE 旋转环盘电极主要特点:独特的汞密封技术,将固-固接触变为固-液接触,实现静音工作,终身免维护内置光电测速系统,实现对转速的闭环控制,在10000rpm下的误差不超过2rpm可完全密封,满足用户对环境的苛刻要求体积仅为同类产品的1/10,小巧的体积可以轻松放入手套箱中 关于Metrohm Autolab三十多年来,Metrohm Autolab恒电位/恒电流仪在品质,可靠性和耐用性方面,已经成为电化学领域的标杆!我们致力于为从事电化学研究的用户,提供最前沿的仪器,控制软件,附件和应用方案 。Mmetrohm Autolab为满足电化学研究的需要,提供一系列仪器,包括紧凑型,经济型仪器,灵活的模块化系统,以及可以同时测定多个样品的多通道工作站。
  • 华南师大兰亚乾团队在光电催化领域取得新进展
    近日,华南师范大学化学学院教授兰亚乾团队首次报道了水中绿色合成双功能酞菁-卟啉共价有机框架(COFs)并成功用于电催化CO2还原耦合甲醇氧化。相关成果发表于《国家科学评论》。  在光电催化领域,金属酞菁与卟啉分子由于表现出多种催化活性而被广泛研究。然而,如何将金属酞菁与卟啉两种功能分子有效结合,实现两者功能的耦合而进一步用于串联催化反应是一个巨大挑战。  已有报道将酞菁与卟啉分子进行共价偶联形成功能有机分子,但均不可避免使用有毒溶剂来进行合成反应。另一方面,在电催化能源转化中,电催化CO2还原结合有机氧化是生产高附加值化学品和提高能源效率的一种有前途的策略。然而,由于缺乏合适的电催化剂,实现有效的氧化还原偶联反应仍然具有挑战性。  为解决以上问题,研究人员首次发展了在纯水相中的绿色水热合成法将金属酞菁与卟啉共价组装合成聚酰亚胺连接的共价有机框架材料NiPc-2HPor COF,并且通过进一步金属后修饰合成了氧化还原双功能NiPc-NiPor COF。  更重要的是,由于NiPc-NiPor COF的高导电性和明确定义的双活性位点,在双活性位点的协同作用下,所合成的酞菁-卟啉COFs实现了同时高效CO2还原与甲醇氧化反应,且在低电压(2.1 V)下具有显著的长期稳定性。此外,原位红外实验证据和密度泛函理论计算表明,ECR过程主要在NiPor的辅助下在NiPc单元上进行,而MOR更倾向于NiPor与NiPc的结合。NiPc-NiPor COF的两个单元协同促进耦合氧化还原反应。  该研究工作首次实现了绿色化学合成酞菁-卟啉共价有机框架用于耦合多相催化的双功能催化剂的设计,为晶体材料多功能催化剂开辟了新的视野。
  • 岛津亮相2023电催化与电合成国际研讨会
    2023年4月7-9日,2023电催化与电合成国际研讨会在长沙普瑞酒店隆重召开。本届会议由由中国化学会电化学专业委员会和湖南大学共同主办,湖南大学化学化工学院承办。会议的宗旨是共享电催化与电合成研究创新成果与前沿技术、加强学术交流与探讨、拓宽研究思路,促进学术成果转化。会议名家荟萃、大咖云集,有来自中国、加拿大、澳大利亚、新加坡等国家的相关专家、学者、产业界人士与会进行学术交流。本届研讨会围绕会议主题采取大会报告、基础电化学讲座、主题报告和优秀青年人才论坛+资深专家点评等交流模式。设立了电催化、有机电合成、环境催化、光电催化、理论机制与方法、能源电化学、优秀青年人才论坛(专家点评)多个主题分会。岛津发表岛津分析计测事业部市场部资深专家龚沿东做了题目为《射线光电子能谱技术在催化材料研究中的应用》的报告。催化剂如今已经广泛应用于化工合成以及其他很多领域(如化肥生产、各种高分子材料合成,以及汽车尾气排放等等),使得原本必须在极其特殊条件下(高温、高压等)才能发生的化学反应可以在相对宽松的条件下就可以进行,并使反应效率得到很大的提高。由于所有的催化反应都是在催化剂表面几个原子层内进行的,而催化剂材料表面的形貌特征(包括晶体取向)都对催化效果有非常大的影响,其机理在于表面能的大小对反应物的选择性吸附有决定性的作用。利用XPS可以研究催化剂表面的元素成分及其所处的状态,从而对吸附和脱附的机理进行表征;通过在真空系统内引入反应气体,可以进行原位的吸附与脱附研究;通过对失效(中毒)的催化剂的表面元素成分与价态的研究,就可以为催化剂的活化提供必要的理论依据。岛津展位本文内容非商业广告,仅供专业人士参考。
  • 2021 年第一期飞纳电镜优秀论文赏析|一种新型电催化剂
    随着能源不断消耗,大气中 CO2 的排放量逐年递增,由此引发的环境问题已成为全球关注的热点。去年的联合国大会上,我国向世界承诺,二氧化碳排放力争于 2030 年前达到峰值,努力争取 2060 年前实现碳中和。如何减少 CO2 排放、有效转化和利用 CO2 已引起各国政府的高度关注,CO2 的固定和转化是降低其含量的有效途径之一。 我们都知道自然生物可以利用太阳能、化能等能量形式固定二氧化碳进行自养生长。到目前为止,科学家共发现了 6 种天然固碳途径。其中卡尔文循环(光合作用中的碳反应部分)是自然界分布最广的固碳途径,每年可将 1 千亿吨二氧化碳转化成再生物质。但天然固碳的转换效率较低、经济性较差,是限制其实现工业化利用的主要瓶颈。因此构建具有高转化效率的人工固碳途径一直是相关领域的研究重点。 图1. 卡尔文循环(来自:维基百科) CO2 电化学还原(ERC)技术是在常温常压条件下,利用电能(尤其是可再生能源发电)将 CO2 与水直接反应生成合成气、甲酸、碳氢化合物、醇类等高附加值的化学品或液态燃料的新技术,是一条实现可再生能源存储与 CO2 转化利用的绿色途径,对人类的可持续发展具有重要意义。ERC 技术不需要制氢、加温和加压等额外消耗的能量,且设备投资少,其潜在的经济效益和环境效益引起了研究者广泛关注。 近年来,电化学还原技术取得了长足进展,但仍存在许多亟待解决的问题,例如产物的选择性低、偏电流密度低、催化剂的稳定性与耐久性欠佳等,这些问题限制了 ERC 技术的实际应用和商业化。电催化剂作为 ERC 技术的关键材料,其性能直接影响 CO2 转化效率、还原产物选择性及稳定性。因此,开发高性能的电催化剂,提高催化剂的催化活性、选择性和稳定性具有重要的研究意义和应用价值。 在所有金属电催化剂中,Cu 基催化剂是唯一可在水溶性电解质溶液中将 CO2 高选择性地催化还原生成碳氢化合物和醇类的催化剂。在 Cu 基催化剂表面,CO2 可以还原成 CO、HCOOH、CH4、C2H6、C2H4 及含氧碳氢化合物(醇类)等 16 种不同的还原产物。不同的 Cu 基催化剂用于 ERC 反应时,还原产物分布不同。影响还原产物选择性和还原效率有多种因素,包括催化剂的结构、形貌、晶面、尺寸、组成、表面缺陷等。 浙江大学功能复合材料与结构研究所的研究人员研发出一种新型电催化剂,今年 6 月 2 日,相关研究成果以《在铜-分子界面上紧固溴离子使 CO2 高效电还原成乙醇》(Fastening Br&ndash Ions at Copper&ndash Molecule Interface Enables Highly Efficient Electroreduction of CO2 to Ethanol)为题,发表在《ACS Energy Letter》上。 图2. 在新型电催化剂 CuBr 作用下的 CO2 &ldquo 酿&rdquo 酒过程 研发出的新型电催化剂十二烷硫醇改性 CuBr,在催化过程中会形成一个稳定的 Br 掺杂 Cu 硫醇界面,从而更高效地将二氧化碳还原成乙醇。该电催化剂的 C2+(含有两个碳原子及以上的化合物)法拉第效率提高了 72%, 乙醇的法拉第效率达到 35.9%。 图3. 新型电催化剂的合成过程 上图阐述了在铜箔上合成 CuBr 纳米四面体并使用十二硫醇(DDT)进行修饰改性的过程。首先将机械抛光的铜箔片在 CuBr2 溶液中浸泡 30s,快速形成 CuBr四面体。利用飞纳台式场发射扫描电镜 Phenom Pharos 对 CuBr 和 CuBr - DDT 的形貌进行观察,在铜箔的整个表面上可以清晰地观察到排列紧密、表面光滑的四面体纳米结构(图 3b)。经过 DDT 处理后,可以看到 CuBr 四面体表面吸附的絮凝状 DDT(图 3c)。 实验结果表明,用 DDT 分子修饰的 CuBr 对 C2+ 的法拉第效率高达 72%,乙醇-乙烯比接近 1.1。DDT 在 CuBr 上的吸附会阻碍 Br 的迁移和 CuBr 的完全还原,从而在催化过程中形成独特的 Br 掺杂 Cu 硫醇界面,且界面稳定性高。同时,DDT 的吸附抑制了氢和甲烷的产物选择性。在 Cu 中引入 Br- 可以稳定高价态 Cu,从而提升对乙醇的选择性。这一策略将有助于其他复杂电子-质子转移过程的电催化系统的设计。
  • 北京中教金源应邀参加2018电催化与电合成国际研讨会
    3月30日至4月1日,由中国化学会主办,中国化学会电化学专业委员会和湖南大学共同承办的2018电催化与电合成国际研讨会在长沙召开。开幕式由大会共同主席王双印教授主持,中国化学会常务理事,厦门大学孙世刚院士,湖南大学谭蔚泓院士,曹一家副校长出席活动。来自5个国家和地区,100多家国内外高校,研究机构近500名电催化与电合成领域的学者参加了会议。 北京中教金源科技有限公司作为光电催化领域的国内知名的实验室设备仪器生产商和提供商,全方位系统解决方案供应商也应邀参加了本次会议。 会议设置主会场1个,分会场3个,大会主题报告1个,大会报告13个,分会主题报告21个。邀请报告51个和口头报告15个。厦门大学孙世刚院士,武汉大学庄林教授,吉林大学林海波教授,新加坡南洋理工大学楼雄文教授,国家纳米科学中心唐智勇研究员,中山大学童叶翔教授,澳大利亚格里菲斯大学姚向东教授,重庆大学魏子栋教授,澳大利亚科廷大学蒋三平教授,阿德莱德大学乔世璋教授,加州大学圣克鲁兹分校陈少伟教授等做了报告。 会议充分展示和交流了近年来我国广大科技工作者在电催化与电合成领域所取得的最新进展和突出成果,深入探讨了该领域当前所面临的机遇,挑战及未来发展方向,为电催化与电合成的研究提供了新理念,新思路,新举措。 本次会议中教金源由蔡总亲自带队,携2018全力打造的新产品高温光热催化反应系统(光热协同)参会。会议现场中教金源展台蔡总和客户交流
  • Nature Catalysis:最新二维电催化材料研究进展
    p style=" text-align: justify "   二维材料独特的各向异性和电子性能引起了人们对其基本电化学和广泛的应用领域的极大兴趣。从2D材料原型——石墨烯开始,对其他超薄层结构的广泛研究逐渐出现。其中包括过渡金属二硫代化合物TMDs、层状双氢氧化物LDH、金属碳化物和氮化物(MXenes)以及单元素化合物的黑磷族。随着可持续能源的发展得到全球的关注,评估各种二维纳米材料在这些领域的有效性已成为当务之急。电催化技术是未来清洁能源转化技术的核心,主要通过析氢反应(HER)、氢氧化反应(HOR)、氧还原反应(ORR)、析氧反应(OER)和二氧化碳还原反应(CO2RR)实现。而二维纳米材料可作为昂贵的铂基催化剂的经济替代品。 /p p style=" text-align: justify "   【成果介绍】 /p p style=" text-align: justify "   最近新加坡南洋理工大学的XinyiChia与布拉格化工大学的MartinPumera教授以”Characteristics and performance of two-dimensional materials for electrocatalysis“为题在Nature catalysis上发表综述,主要讨论了这些二维材料的相似之处,并强调了它们在电化学和电催化性能上的差异。介绍了工业重要反应中与能源有关的电催化二维材料的研究进展。 /p p style=" text-align: justify "   【图文导读】 /p p style=" text-align: justify "   1. 2D材料的结构 /p p style=" text-align: justify "   二维材料独特的各向异性和电子性能引起了人们对其基本电化学和广泛的应用领域的极大兴趣。从2D材料原型——石墨烯开始,对其他超薄层结构的广泛研究逐渐出现。文章主要探讨了超薄2 D纳米材料的结构、电催化性能及其影响因素,包括石墨烯、单或一些层次化的过渡金属(TMD),如金属氧化物、水滑石(类)、六角氮化硼(h-BN), g-C3N4, MXenes,黑磷等,其结构如图1所示。 /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 111111111111.webp.jpg" alt=" 111111111111.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/46566102-1ac7-4757-bab6-7787b308ae47.jpg" / /p p style=" text-align: center "   图1 二维材料结构构型示意图. (a)石墨烯 (b)氮化硼 (c) g-C3H4 MoS2的两种物相(d)2H型, (e)1T型 黑磷的两种物相(f)三方晶系, (g)正交晶系. (h)MXenes, 以Ti3AlC2为例。 /p p style=" text-align: justify "   2. 二维电极材料的电化学稳定性 /p p style=" text-align: justify "   由于材料在使用过程中可能会发生化学或结构变化,因此了解二维电极材料的稳定性对于二维纳米材料的应用是必不可少的。电极的稳定性是由其固有的电化学性质和催化反应倾向来决定的,即取决于电解液的选择和应用的电位窗口。如Bonde[1]等首先报道了酸性条件下MoS2和WS2进行HER反应后,通过XPS观察到催化剂表面形成了MoO3,SO42-等氧化产物。最近有相关报道VIB族元素化合物在电位区间为1.0~1.2V(vs. Ag/AgCl)易被氧化成高价金属离子。此外,不同的非金属元素也影响着TMDs的稳定性,如报道了VIB族元素化合物的氧化峰电位符合WSe2& lt mose2& lt ws2 & lt MoS2的规律。因此在研究TMDs此类材料中,应着重关注电极材料的电化学稳定性。 p style=" text-align: justify "   由于石墨烯、g-C3N4、MXene等具有较高的还原电位,在ORR、HER、OER、CO2RR的电位区间都难以被氧化还原,因此这些材料具有广泛的电化学反应窗口。 /p p style=" text-align: justify "   文献信息 /p p style=" text-align: justify "   [1] Hydrogen evolution on nano-particulate transition metal sulfdes. (Faraday Discuss. 140, 219–231 (2009).) /p p style=" text-align: justify "   原文链接: /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" bonde2009.pdf" href=" https://img1.17img.cn/17img/files/201812/attachment/0f62cb46-d16a-4d4d-8df0-95918f65443e.pdf" target=" _blank" textvalue=" Hydrogen evolution on nano-particulate transition metal sulfdes" & nbsp Hydrogen evolution on nano-particulate transition metal sulfdes /a /p p style=" text-align: justify "   3. 二维材料的电子转移 /p p style=" text-align: justify "   电催化剂的电子转移强弱直接决定了催化反应的速率快慢。而电催化剂的各向异性、电子和表面特性已经被发现在电子转移(HET)中显示出重要的意义。二维材料中,如TMDs的边缘和基面具有明显的电子转移特性。以MoS2为例,如图2,以电化学探针进行检测边缘与基面的活性,发现边缘的反应速率常数远高于基面的反应速率常数,因而边缘原子的活性高于基面原子的活性。除了TMDs以外,石墨烯也显示相同的规律。如图3,氧化石墨烯表面含氧基团数量影响着石墨烯的电子转移,含氧官能团比例越高,电子转移速率越差。此外,异质元素掺杂也会改变二维材料的电子传递特性。如氮掺杂石墨烯可以提高其电子转移速率,由过渡金属掺杂的TMDs也同样能够引起电子传递变化。 /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 222222222.webp.jpg" alt=" 222222222.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/a377e54d-320a-4733-9c49-a736b1f531c6.jpg" / /p p style=" text-align: center "   图2 影响二维材料电子传递的各向异性效应. (a)MoS2的边缘和基面示意图, 插图:宏观辉钼矿晶体 MoS2(b)底面与(c)边缘面. /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 3333333333333333.webp.jpg" alt=" 3333333333333333.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/ff003f31-27f0-435f-a46d-d5d923bb6910.jpg" / /p p style=" text-align: center "   图3 影响二维材料电子传递的表面特性 /p p style=" text-align: justify "   4.二维电催化材料的研究进展 /p p style=" text-align: justify "   材料的传质效应、各向异性和本征活性决定了二维材料的电催化效率。电催化中的各向异性因子建立在二维材料不同的催化位点。电催化剂体系中材料的内在活性是通过火山图关系来评价的,火山图关系是根据Sabatie原理进行定量描述的。理想情况下,高活性的催化剂与反应中间体的结合既不应太强烈也不应太弱。催化剂载体的选择也属于催化剂的设计范围,选择一个合适的载体可以优化催化剂的活性。 /p p style=" text-align: justify "   从传质效应上看,由于界面反应物种类(H+或OH-)的快速消耗和气态产物的生成阻碍了反应速率,因此良好的传质对于高活性催化剂是至关重要的。在二维催化剂中,相邻薄片之间的间隙存在二维通道,可以有利于提高液相和气相之间的传质效果。如图4,将间隔物结合到MoS2纳米薄片中,产生了开放的通道,增大物质传达的表面积及改善离子扩散,整体增强HER的催化性能。 /p p style=" text-align: justify "   & nbsp /p p style=" text-align: center " img title=" 444444444.webp.jpg" alt=" 444444444.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/b2311091-5db0-4639-be2a-48caf0f09a83.jpg" / /p p style=" text-align: center "   图4传质效应影响二维材料的电催化性能 /p p style=" text-align: justify "   从各向异性上看,二维材料的各向异性因子对其催化性能的影响表现在活性的边缘面和惰性的基面。二维材料边缘上的原子所处的化学环境与基体平面不同,基体平面一般具有饱和配位,而基体平面具有较大的非饱和配位倾向。由于边缘位点对二维材料的催化活性起着重要作用,因此优化边缘结构以提高其性能变得至关重要。在HER电催化中,2H-TMDs的催化活性位点主要来自于边缘面原子。如合成具有双陀螺形貌的介孔MoS2结构(图5),可以获得高比例的外露边缘位置,从而增强了MoS2的HER活性。此外,也有相关报道关于通过提高边缘位点及导电性来改善1T-TMDs的HER活性。总之,提高二维材料的边缘活性位点数量,有利于提高二维材料的电催化活性。 /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 555555555555.webp.jpg" alt=" 555555555555.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/7bd7f2cf-707b-453a-8efd-35920f27f312.jpg" / /p p style=" text-align: center "   图5 各向异性效应影响二维材料的电催化性能 /p p style=" text-align: justify "   从本征活性上看,引入掺杂剂或官能团等可以最大限度地提高二维材料催化的内在活性。由于边缘是二维材料的催化活性位点,在边缘掺杂或附着官能团可以增强其催化活性。而基底位掺杂或功能化也同样可以调节惰性基底平面的内在活性。如由于吡啶氮被认为是中间COOH*形成CO的活性吸附位点,因此N掺杂石墨烯可以表现出优异的CO2RR催化活性(图6)。此外,缺陷工程是一种提高活性位点固有活性的方法。表面结构缺陷包括配位数低的边缘 所以才会出现悬空键和原子空位。如由于金属空位可以提高了邻近金属中心的原子价态,从而有利于提高OER活性,而利用等离子体技术处理CoFe-LDHs可以导致Co、Fe和O出现多个空位,这些空位是可以降低水的吸附能同时提高OER活性。 /p p style=" text-align: justify " & nbsp /p p style=" text-align: center " img title=" 66666666666.webp.jpg" alt=" 66666666666.webp.jpg" src=" https://img1.17img.cn/17img/images/201812/uepic/0ccc76a4-e8d4-4a91-a345-5066f093a19d.jpg" / /p p style=" text-align: center "   图6本征活性影响二维材料的电催化性能 /p p style=" text-align: justify "   【总结与展望】 /p p style=" text-align: justify "   二维材料丰富的电化学特性为其在能源催化中的应用提供了新的机遇。尽管二维材料具有多样性,但其最终的电催化性能和电荷转移性能取决于各向异性和表面特性。二维材料在ORR、HER、OER和CO2RR电催化中取得了巨大的成功,其中边缘面为主要的催化活性中心。 /p p style=" text-align: justify "   提高二维材料的电催化活性主要从以下几个方面进行:①改变二维纳米结构来增加活性边缘位点的密度 ②异质元素掺杂二维材料或与官能团结合、或引入缺陷增强催化活性 ③改善二维材料电子转移能力提高材料催化活性,如使用合适的催化剂基底材料。展望未来,二维纳米材料领域充满了各种可能性。通过集成两种或两种以上的材料来开发混合2D材料,可以创建新的复合结构,以显示出独特的性能和针对特定应用的定制属性。各向异性和表面特性可以作为设计不同化合物的指导原则。 /p p style=" text-align: justify "   【文献链接】 /p p style=" line-height: 16px " img style=" margin-right: 2px vertical-align: middle " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a title=" 1212121.pdf" href=" https://img1.17img.cn/17img/files/201812/attachment/4901c2e3-062f-4ae5-a435-f30cd6f2f33f.pdf" target=" _blank" textvalue=" Characteristics and performance of twodimensional materials for electrocatalysis" Characteristics and performance of twodimensional materials for electrocatalysis /a /p p & nbsp /p p & nbsp /p p & nbsp /p p & nbsp /p p /p /p
  • 福建物构所串联电催化CO2制乙烯研究取得进展
    将CO2通过电化学方法转化为高附加值的C2+产物如乙烯,不对于“碳达峰”和“碳中和”目标的顺利实现具有积极推动作用,并能减轻人类对化石燃料的过度依赖,然而,目前电催化CO2制乙烯受限于单一活性位点的多电子转移过程和缓慢的C-C耦合步骤,仍面临活性低、选择性差等问题。   近日,中国科学院福建物质结构研究所结构化学国家重点实验室研究员曹荣、黄远标设计出有效的串联催化策略来提升还原CO2制乙烯的选择性,通过将非贵金属单原子Ni高效催化CO2RR产CO和Cu纳米催化剂可以进行CO-CO耦合的优势有效结合,进行串联催化来提升CO2RR制乙烯的选择性。研究在卟啉基三嗪框架中心锚定Ni单原子(PTF-Ni)及其表面负载Cu纳米颗粒,制备出非贵金属基的串联电催化剂PTF(Ni)/Cu,催化时单原子Ni高效将CO2还原为中间体CO,生成的CO立即被临近的Cu纳米催化剂进行C-C耦合反应高效转化为乙烯。因此,与非串联催化剂PTF/Cu (卟啉中心无金属原子的三嗪框架)主要产甲烷相比,乙烯的法拉第效率提高了5倍 (-1.1V vs. RHE),由9.6% 提高到57.3%,优于目前已经报导的大多数电催化剂。此外,PTF(Ni)/Cu表现出良好的稳定性,连续电解11h后仍能保持约91%的初始活性。原位红外实验、对比实验一氧化碳电还原和理论计算表明,PTF(Ni)有利于增加Cu纳米颗粒表面的*CO活性中间体,进而提升C-C耦合的概率,并且明显降低了生产乙烯所需要的能量,因此实验通过串联催化,提升了CO2转换为乙烯的活性。该工作为进一步提升电催化CO2产附加值高的多碳产物的选择性提供了新策略。  此外,近年来该团队致力于设计多孔框架材料应用于CO2催化转化研究,取得了系列进展(Angew. Chem. Int. Ed. 2021, 60, 17108 Angew. Chem. Int. Ed. 2021, 60, 20915 Angew. Chem. Int. Ed. 2020, 59, 23641 Sci. China Chem. 2021, 64,1332;ACS Energy Lett. 2020, 5, 1005 ACS Materials Lett. 2021, 3, 454 Small 2021, 2004933 Small 2020, 2005254 CCS Chem. 2019, 1, 384 Appl. Catal. B: Environ. 2020, 271, 118929)。   相关研究成果发表在Angewandte Chemie International Edition上,并被选为Hot Paper。研究工作得到国家重点研发计划、国家自然科学基金项目、中科院青年创新促进会优秀会员项目等的资助。  论文链接
  • 绿色化工新突破!电催化一氧化氮高效合成氨
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室理论催化创新特区研究组肖建平研究员团队和碳基资源电催化转化研究组汪国雄研究员团队在电催化一氧化氮还原反应(eNORR)合成氨研究方面取得新进展,在Cu6Sn5合金催化剂上实现了96.9%的氨法拉第效率和安培级电流密度。图片来源于大连化学物理研究所氮氧化物(NOx)的转化处理是一种缓解环境和能源问题的方法。氨作为一种重要的化学物质,可用于肥料、炸药和硝酸等的制备,还可作为燃料。eNORR合成氨相较于传统的哈伯法,是一种更绿色更经济的去中心化合成氨的策略。  图片来源于大连化学物理研究所本工作中,肖建平团队基于自主开发的图论和反应相图分析算法(ACS Catal. ,2021),通过基于描述符的方法初步筛选出铜锡合金具有高eNORR合成氨活性,汪国雄团队进一步合成了Cu6Sn5合金并验证了其具有安培级的合成氨活性。NO电催化实验表明,Cu6Sn5催化剂比Cu和Sn具有更高的活性和选择性,在更广泛的电压范围内也表现出很高的合成氨选择性,在电压为-0.23V vs. RHE时,得到流动池中的氨产率达到10mmolcm-2h-1,法拉第效率为96.9%,并且在大于600mAcm-2时,保持稳定运行135小时。电化学能垒计算表明,Cu6Sn5催化剂比Cu和Sn上生成氨的能垒更低,而且证明Cu6Sn5合金上各产物决速步能垒的大小关系(NH3N2ON2H2)。合作团队基于自主研发的碱性膜电解器件技术(Nat. Nanotechnology ,2023),在总电流为400A时,Cu6Sn5合金上NO电还原产氨速率达到2.5molh-1,展现出了应用潜力。相关研究以“Electrochemical synthesis of ammonia from nitric oxide using a copper-tin alloy catalyst”为题,于近日发表在《自然—能源》(Nature Energy)上。该工作的第一作者是我所05T8组博士研究生井会娟和523组博士研究生邵加奇。以上工作得到国家重点研发计划、国家自然科学基金、中国科学院洁净能源创新研究院合作基金、中国科学院B类先导专项“功能纳米系统的精准构筑原理与测量”、榆林创新院人工智能科技专项等项目的资助。文章链接:https://doi.org/10.1038/s41560-023-01386-6 小科普:氨,化学式NH3,是一种无色、有刺激性气味的气体。氨的用途很广泛,是合成肥料、硝酸(制造炸药的原料之一)、药物的重要原料,而且它还是一种高能量密度(一定空间或质量物质中储存能量的大小)的零碳能源载体,且相对易储存。传统工业上合成氨主要通过一种叫做哈伯法的制备方法在高温高压下进行,能耗较大且产生污染。科学家一直在探索新的合成路线,用可再生能源发电作为驱动力,通过电化学催化的方式合成氨是目前较有应用前景的方式之一。
  • 岛津XPS助力湖南大学电催化与电合成实验室高影响因子文章发表:Ir单原子催化剂超低电位甲醇氧化
    Angewandte chemie影响因子:16.6设计Ir-C4单原子催化剂,实现了超低电位( 1.23V),以生产氢气和其他增值化学品,同样需要克服高过电位。近期,团队通过在高温聚合物电解质膜电解槽(HT-PEME)中将热催化与电催化相结合,开发了集成式热催化-电催化耦合反应体系,通过将醇类热化学脱氢与电化学氢泵相结合成功实现了热电耦合催化乙醇脱氢制备乙醛(PNAS., 2023, e2300625120)、热电耦合催化甲醇脱氢制备高纯氢气和CO(JACS., 2024, 146, 14, 9657-9664)以及低电位甲醇。相关研究表明,在HT-PEME中将热催化与电催化相耦合能够有效增强催化反应的速率和选择性,热电耦合能够相互协同促进。由于反应体系复杂,缺乏直接表征手段,目前缺乏直接证据证明热催化与电催化的相互协同。基于这一挑战,项目团队设计了Ir-C4单原子催化剂,实现了超低电位(图2. 热-电耦合催化甲醇氧化反应制氢体系的具体催化路径在HT-PEME中,施加电位之后甲醇在Ir-C单原子催化剂上由电促进热催化反应生成H2和CO,之后H2和CO在Ir-C单原子发生氧化反应,阴极发生氢析出反应生成H2。图3 Ir-C相关催化剂的EXAFS表征图4. Ir-C单原子催化剂、Ir颗粒催化剂XPS谱学测试通过EXAFS、XPS分析测试表明,Ir-C催化剂中的Ir主要是以单原子的形式存在,无Ir纳米颗粒。同时由于Ir原子与C载体之间的强相互作用,使Ir原子的电子结构发生了很大的变化,从而出现缺电子性质(Ir+)。特殊的几何结构和电子结构可能赋予Ir-C SACs具有优异的甲醇反应性。图5.Ir-C SACs和参比样品的甲醇氧化性能测试及在线产物分析如图5所示,当电解槽加热到80/100℃时,MOR的起始电压已低至0.4 V,随着温度的升高,MOR的起始电压逐渐降低。在160℃时,起始电压低于0.1 V,与理论平衡电位非常接近。研究结果表明,由于热和电化学耦合催化,甲醇可以被Ir单原子催化剂在超低电位( 0.1 V)下氧化。然而,同样条件下的Pt/C和Ir-C NP,其起始电位仍然很高,分别为0.3 V和0.4V。Ir-C SACs相比Pt位点和Ir颗粒位点的优异性能,证明了在热电化学耦合作用下IrC4位点独特的低电位甲醇氧化能力,表明其有巨大的Pt基催化剂替代能力。Ir(0.3)-C SACs在0.4 V(200℃)下的质量活度达到1.8 A mg-1Ir,比Ir-C NP和Pt/C分别高出约52倍和40倍。阴极HER对Ir(0.3)-C SACs(比Ir-C NP高3.3倍)的产氢率为0.2 ml min-1。质量比产氢速率最高达到18.3 mol H2h&minus 1gIr-1,与Ir-C NP和Pt/C相比,分别高出54倍和31倍。上述结果表明,得益于热学和电化学的耦合催化,Ir-C SACs的MOR和相应的产H2速率都表现出了显著的活性。阳极可以检测到CO、CO2、CH4和少量的H2证实热化学过程CH3OH → CO + 2H2,此外,超高的HOR和COOR活性证明了电化学氧化过程。本文的研究为热电耦合催化反应过程中热场-电场相互协同作用提供了直接证据,突破了以往关于MOR在Ir SACs上无活性的结论。该工作为设计高效催化反应和新型催化剂提供了指导。相关工作得到了岛津-KRATOS公司相关设备的大力支持。文献题目《Ultra-low-Potential Methanol Oxidation on Single-Ir-Atom Catalyst》使用仪器岛津AXIS SUPRA作者Liyuan Gong, Xiaorong Zhu, Ta Thi Thuy Nga, Qie Liu, Yujie Wu, Pupu Yang, Yangyang Zhou, Zhaohui Xiao, Chung-Li Dong, Xianzhu Fu, Li Tao*, Shuangyin Wang*State Key Laboratory of Chem/Bio-Sensingand Chemometrics, College of Chemistry and ChemicalEngineering, Hunan University, Changsha, Hunan 410082, P.R. China 全文链接https://onlinelibrary.wiley.com/doi/10.1002/anie.202404713
  • 尖晶石型电催化纳米材料研究成果登上《自然-化学》
    近日,南开大学化学学院教授陈军带领的课题组在尖晶石型电催化纳米材料研究方面取得了重要进展,研究成果以论文形式发表于《自然》(Nature)系列期刊的《自然-化学》杂志(Nature Chemistry)。该研究得到了科技部、教育部、国家自然科学基金委员会、天津市科委和中央高校科研基金的支持。   尖晶石类化合物广泛应用于电、磁、催化、能量储存与转化等不同领域,传统方法制备需要较高的加热温度和较长的反应时间,合成步骤复杂,并且产物粒径大、比表面积小、电化学活性低。南开大学的这项研究将理论与实验有机结合,发展了一种可控的基于还原-转晶新合成方法,在室温和常压条件下实现了锰系尖晶石纳米材料的快速制备。新合成方法步骤简单,有利于节能减排,对氧还原/氧析出反应展现出良好的电化学催化性能,在新能源的金属-空气电池、燃料电池等方面有很好的应用前景。
  • 美国麦克仪器助杂化二维超薄结构电催化还原CO2研究取得重要进展
    近日,中国科技大学合肥微尺度物质科学国家实验室谢毅教授和孙永福特任教授课题组在杂化二维超薄结构的合成及应用领域取得重要进展。该课题组设计了一种杂化模型体系用来研究金属表面氧化物对其自身金属电催化性能的影响,该结果以“Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel” 为题发表在Nature上(2016, 529, 68-72, DOI 10.1038/nature16455)。 通过电催化过程将CO2还原成碳氢燃料分子不仅有助于降低CO2的负面影响,而且还可以获得甲烷、甲酸、甲醇等燃料。然而,电还原CO2过程的一个瓶颈是如何将高稳定性的CO2活化,这往往需要非常高的过电位;而过电位的存在不仅浪费大量的能源,还往往导致还原产物选择性的降低。 已有报道显示金属电极通常具有较高的电还原CO2活性,尤为有趣的是通过金属氧化物还原得到的金属比通过其它方法制备的金属催化活性要高,甚至能将CO2的还原电位降低到热力学的最小值。但是金属表面氧化物对其自身金属电还原性能的影响机制还不清楚,这主要是因为以前制备的催化剂中含有大量的微结构如界面、缺陷等,这些微结构的存在很容易掩盖住表面金属氧化物对其自身金属催化性能的影响。 为了揭示金属表面氧化物对其自身金属电还原CO2性能的影响,谢毅教授、孙永福特任教授课题组构建了一种杂化模型材料体系, 即数原子层厚的金属/金属氧化物杂化超薄结构。以六方相Co为例,他们通过配体局限生长的方法制备了4原子层厚的Co/Co氧化物杂化结构。电化学比表面积矫正的Tafel斜率和法拉第转换效率结果揭示出局限在超薄结构中的表面Co原子比块材中的表面Co原子在低的过电位下具有更高的本征催化活性和更高的产物选择性,Co原子层的部分氧化进一步增加了其本征催化活性,进而在只有0.24 V的过电位下于40 h内获得10 mA cm-2的稳定电流和90%的甲酸选择性。本工作展示了金属原子在位于特定的排列方法和氧化价态时,可能具有更高的催化转化活性,即超薄二维结构和金属氧化物的存在提高了催化还原CO2的能力。该工作有助于让研究者重新思考如何获得高效和稳定的CO2电还原催化剂,也对推动电催化还原CO2机理研究具有重要的意义。 文中催化剂的CO2吸附性质是通过美国麦克仪器公司的经典仪器ASAP 2020获得,通过对比四种催化位点下催化剂的CO2吸附性能,有力的佐证了文中论点。全文链接:http://www.nature.com/nature/journal/v529/n7584/pdf/nature16455.pdf。
  • 大连化物所开发单原子合金材料促进电催化CO2还原的C-C偶联
    近日,中国科学院大连化学物理研究所太阳能研究部太阳能制储氢材料与催化研究组研究员章福祥团队设计合成了一种单原子铋修饰铜合金催化剂,用于电催化CO2还原。该催化剂展现出优异的C-C偶联功能,显著提高了多碳(C2+)产物的法拉第效率。太阳能光催化技术是实现太阳能至化学能转化的重要方式之一,而高效助催化剂的开发是实现高效光化学转化的重要一环。近期,章福祥团队致力于通过电催化剂的优化设计,开发高效光催化助催化剂,在电催化水氧化、电催化析氢和电催化氧还原等催化剂设计合成方面取得系列进展。 电催化还原CO2(CO2RR)制备燃料或化学品,不仅可实现CO2的资源化利用而且可用于绿色氢能的液态储存,可为太阳能光催化制储氢一体化技术奠定基础。该领域的文献调研发现,单原子合金(SAA)作为一种具有特殊电子结构的单原子催化剂,虽已被用于CO2RR制备C1产物,但尚未有实验结果证明其可用于高效制备C2+产物。 本工作设计合成了一种单原子铋修饰铜合金催化剂(BiCu-SAA)。研究发现,该催化剂具有显著的C-C耦合促进作用。与纯铜催化剂相比,BiCu-SAA催化剂显著提高了C2+产物选择性以及FE(C2+)/FE(C1)比率。一系列原位红外、XAS等表征和理论计算结果表明,单原子铋修饰可有效调节铜的电子结构,促进CO2活化和C-C偶联步骤,解释了获得较高C2+产物选择性的原因。 相关研究成果以Single Atom Bi Decorated Copper Alloy Enables C-C Coupling for Electrocatalytic Reduction of CO2 into C2+ Products为题,发表在《德国应用化学》上。研究工作得到国家重点研发计划、国家自然科学基金、中科院战略性先导科技专项(A类)“变革性洁净能源关键技术与示范”以及北京光源机时等的支持。南开大学和中国科学技术大学的研究人员参与研究。大连化物所开发单原子合金材料促进电催化CO2还原的C-C偶联
  • 仪器表征,科学家先进表征揭示电催化CO₂还原新突破!
    【科学背景】电化学还原一氧化碳(CORR)作为一种无碳酸盐的潜在方法,利用可再生电力生产乙烯引起了广泛关注。乙烯作为重要的化工中间体,其制备过程一直受到选择性和能效的限制。传统的碳-碳偶联反应在碱性条件下虽然有效,但同时也伴随着碳酸盐形成导致的CO2利用效率低问题。而在酸性电解质中进行CO2RR虽然能一定程度上解决了碳酸盐生成问题,但却面临能量效率不高的挑战,特别是在乙烯选择性方面表现不佳。为了解决这些问题,科学家们致力于减弱水解离过程,目的是抑制竞争的氢析出反应,进而提高CO2RR的选择性和能效。然而,初步的实验结果表明,减缓水解离过程并非一劳永逸的解决方案,因为使用重水代替普通水反而导致对乙烯的选择性进一步降低,这引发了新的思考和探索方向。有鉴于此,悉尼大学化学与生物分子工程学院李逢旺教授, 中国科学技术大学,合肥微尺度物质科学国家研究中心及化学物理系曾杰教授(国家杰青)联合多伦多大学David Sinton 和 Edward H. Sargent院士合作探索了促进水吸附并降低水解离能量壁垒的新方法。通过将强电子受体7,7,8,8-四氰基喹啉二甲烷(TCNQ)引入铜催化剂表面进行分子修饰,研究团队实现了显著的乙烯产率提升。修饰后的催化剂表现出75%的乙烯法拉第效率,比未修饰的铜催化剂高出1.3倍。在膜电极组件系统中,实现了32%的全电池能量效率,对应乙烯电合成的能量成本为154 GJ t-1。关键的创新在于,TCNQ修饰不仅增强了铜与水分子的相互作用,促进了水解离过程,还降低了CO到乙烯途径中关键中间体的氢化能量壁垒,从而显著提高了乙烯的选择性。通过一系列原位表征和密度泛函理论(DFT)计算,研究进一步揭示了修饰催化剂的作用机制。【科学亮点】(1)实验首次探索了使用7,7,8,8-四氰基喹啉二甲烷(TCNQ)对铜催化剂进行分子修饰,以提高CO电还原产乙烯的效率和选择性。(2)实验通过在流动电池中测试修饰后的催化剂,发现其乙烯法拉第效率达到75%,比未修饰的铜催化剂高出1.3倍。此外,在膜电极组件(MEA)系统中,实现了32%的全电池能量效率,对应的乙烯电合成能量成本为154 GJ t-1。(3)通过一系列原位表征和密度泛函理论(DFT)计算,揭示了TCNQ修饰如何增强铜与水分子的相互作用,降低了关键中间体*CHCOH到*CCH的氢化能垒,从而提高了CO到C2H4的选择性。【科学图文】图1:水解离对CORR产品分布的影响。图2. Cu-100TCNQ催化剂的表征。图3. TCNQ修饰铜电催化剂的CORR性能。图 4:TCNQ修饰铜催化剂促进C2H4形成的机理研究。【科学结论】本文探索利用强电子受体修饰铜催化剂以激活水解离过程,从而提升CO到C2H4途径的效率和选择性。通过这一设计原则,研究展示了铜与7,7,8,8-四氰基喹啉二甲烷(TCNQ)的相互作用如何增强水分子的吸附和解离能力,进而降低了关键中间体*CHCOH到*CCH的氢化反应能垒。这些发现不仅在实验层面证实了修饰催化剂在电化学还原反应中的潜力,而且通过密度泛函理论(DFT)计算提供了理论支持。此外,通过流动电池和膜电极组件系统的实际性能评估,显示出高达75%的C2H4法拉第效率和32%的能量效率,这为碳中和和可持续化学品生产提供了有前景的路径。这项工作不仅拓展了催化剂设计的思路,还为实现高选择性和能效的多碳产品生产提供了新的理论和实验基础。原文详情:Liang, Y., Li, F., Miao, R.K. et al. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00568-8
  • 湖南大学化学化工学院——岛津合作实验室电催化研究相关研讨会成功举办
    2022年3月9日,由湖南大学化学化工学院与岛津企业管理(中国)有限公司(以下简称:岛津)共同组织开展的电催化研究相关研讨会顺利召开,电催化相关研究是湖南大学化学化工学院的传统重点领域,2022年5月,本着合作发展与协作共赢的理念,“湖南大学化学化工学院--岛津合作实验室” 正式挂牌成立。本次研讨会旨在加强双方在该领域的交流与合作,共同推进国内科研事业的发展。研讨会邀请了国内催化相关领域的顶尖专家一起进行高水平技术交流。湖南大学为第二轮“双一流”建设高校,化学学科为第二轮“双一流”建设学科,是“985工程”一类科技创新平台和国家“211工程”重点学科建设项目。化学学院建有“化学生物传感与计量学”国家重点实验室、先进催化教育部工程研究中心、化石能源低碳化高效利用湖南省重点实验室、湖南省新能源重点实验室、石墨烯材料与器件湖南省重点实验室等重要研究机构。根据国际ESI统计,湖南大学化学与化工学科处于国际同类学科先进行列,进入全球前1‰和TOP100。会议由湖南大学邹雨芹教授主持湖南大学化工学院王双印书记进行致辞湖南大学陶李博士发表了题目为《高温电催化》的报告岛津分析计测事业部市场部龚沿东发表了题目为《X射线光电子能谱技术在催化材料研究中的应用》 的报告湖南大学陈晨发表题目为《电催化尿素合成》的报告岛津分析计测事业部市场部石欲容发表题目为《质子交换膜燃料电池岛津解决方案》的报告报告结束后,与会嘉宾移步实验室,在仪器上对XPS进行了进一步的了解,并参观了实验室。与会嘉宾合影本文内容非商业广告,仅供专业人士参考。
  • 文献解读丨八面体SnO₂单晶在宽电化学窗口内高效电催化还原CO₂制甲酸
    本文由天津大学一碳化工课题组所作,第一作者为刘海博士,文章发表于Journal of Materials Chemistry A(J. Mater. Chem. A, 2021, 9, 7848–7856)。 将CO2作为一种资源,通过电化学方法利用可再生能源产生的电能将其转化为化工原料与高附加值产品具有巨大的应用前景,有助于实现“碳中和”的长远目标。CO2电化学还原产物有多种,其中两电子还原产物甲酸的路线具有100%的原子经济性和较高的技术经济价值。锡基材料由于价格低廉、无毒和高甲酸选择性等特点而被广泛用作CO2电催化还原制甲酸的催化剂。其存在的一个重要问题是仅能在特定的操作电位下实现高的甲酸选择性,这显然不利于实际CO2电解到甲酸的生产过程,阻碍了该技术的工业化应用。 CO2还原产物的准确定量检测对于催化剂的性能评价至关重要,连续在线检测技术的发展为开发高效的CO2还原电催化剂提供了有效的检测手段。利用岛津在线监测气相色谱系统,通过搭建密封CO2电催化还原电解系统,可实时、准确检测反应过程中气相还原产物的浓度,快速评价催化剂的性能,为设计合成高效的CO2转化电催化剂提供了重要依据。 GC-2014C 在线监测色谱系统 文献解析图一. 扫描电镜(a, b)和HAADF-STEM (c-f)电镜图 首先通过改性水热法合成了暴露(111)和(332)高能晶面的八面体单晶SnO₂纳米粒子。从图一可以看出,两种SnO₂纳米粒子形貌和尺寸均一,且表面由不同的台阶位和平台位等缺陷位组成。 图二. 电催化还原CO2性能表征:(a, b) H-cell (c, d) Flow cell. 图二表明暴露高能晶面的SnO₂呈现出了高的CO₂催化活性和选择性。在流动性电解池(Flow cell)测试中,暴露(111)晶面的SnO₂更是实现了超过500 mA cm-2的甲酸分电流密度以及87.8%的甲酸法拉第效率,超过了工业化指标要求。 图三. DFT计算结果: (a) SnO₂不同晶面组成示意图;(b-c) 反应中间体自由能和吸附能。 DFT计算(图三)和原位Raman光谱(图四)的表征结果表明在高能晶面上有利于*OCHO中间体(生成甲酸的关键中间体)的吸附,而不利于*HCOOH生成物的吸附,从而打破了SnO₂中普通 (110)晶面上固有的中间产物在催化剂表面吸附的尺度依赖关系(Scaling relationship),从而促进了甲酸的生成。图四. 原位Raman表征: (a) 原位Raman示意图;(b-d)不同电位下的原位Raman光谱。 图五. CO₂电化学转化与氯碱工业的耦合技术: (a) 电解装置示意图;(b-d) 电解产物分布图。 在传统的CO₂电催化还原过程中,阳极反应为氧析出反应(OER),该反应需要较高的过电位且产物为低价值的氧气。为了解决这一问题,作者利用廉价的海水作为电解液,与工业上成熟的氯碱技术相结合,将阳极的OER反应替换为氯析出反应(CER),从而大大提高了实际工业应用经济性。图五表明在CO₂还原-耦合CER的电解池中,SnO₂(111)催化剂在宽的电流密度范围下实现了80%的甲酸选择性和接近60%的Cl₂选择性,并表现出了较长时间的操作稳定性。这一重要结果为CO₂还原到甲酸的工业化提供了应用前景。 对上述实验进行总结,本工作通过水热法合成了暴露(332)和(111)高能晶面的的八面体SnO2单晶。它们在~500 mV的电化学窗口内表现出了很高的CO2催化活性和80%以上的高甲酸选择性。结合气体扩散电极,可以实现超过500 mA cm-2的高甲酸分电流密度。密度泛函理论(DFT)计算和原位拉曼光谱研究表明,在高能晶面上有利于*OCHO物种的吸附而不利于HCOOH*的结合,从而有利于在宽的电势范围内生成甲酸。同时,这些八面体的SnO2与氯碱电解槽实现了耦合,可同时高效地生产甲酸和Cl2。而应用自动在线进样分析检测产物的Shimadzu GC-2014C设备,为以上实验中产物的检测提供有效助力。 关联仪器:GC-2014C 文献题目《Highly efficient CO2 electrolysis within a wide operation window using octahedral tin oxide single crystals》 使用仪器GC-2014C 作者Hai Liu, a Yaqiong Su,b, c Siyu Kuang,a Emiel J. M. Hensen,b Sheng Zhang,*a Xinbin Ma*aa Key Laboratory for Green Chemical Technology of Ministry of Education,Collaborative Innovation Centre of Chemical Science and Engineering, School ofChemical Engineering and Technology, Tianjin University, Tianjin 300072, China.E-mail: xbma@tju.edu.cn sheng.zhang@tju.edu.cnb Laboratory of Inorganic Materials and Catalysis, Department of ChemicalEngineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlandsc School of Chemistry, Xi' an Key Laboratory of Sustainable Energy Materials Chemistry,MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of CondensedMatter, State Key Laboratory of Electrical Insulation and Power Equipment, Xi' anJiaotong University, Xi' an 710049, China 声明 1、本文不提供文献原文。2、所引用文献仅供读者研究和学习参考,不得用于其他营利性活动。3. 文中涉及最优,最佳类描述,限于实验组别对比结果。4. 本文内容非商业广告,仅供专业人士参考。
  • 吉林大学材料学院能源化学研究综述:MOFs衍生的过渡金属单原子电催化剂用于高效氧还原反应
    电化学储存与转换系统主要包括金属离子电池、双离子电池、超级电容器、金属-空气电池和燃料电池等。后两种是清洁、安全、可靠的能源装置,具有环境友好、能量密度高、原料来源丰富、工作时间长等优点。氧还原反应(ORR)作为燃料电池的阴极反应,具有缓慢的反应动力学。因此,需要电催化剂来增强反应过程。近年来,过渡金属单原子电催化剂(TM-SACs)因其优异的催化活性(FeCoMnCuNi)、低成本和优异的稳定性而蓬勃发展。由于单原子在制备过程中容易团聚,因此载体材料的选择对于TM-SACs的形成尤为重要。载体也会影响催化反应中的电子输运和物质输运过程。MOFs具有结构可调、改性方法多样等优点,在TM-SACs的制备方面具有很大的潜力。图1. 基于MOFs的TM-SACs的制备策略和表征方法02成果展示金属有机骨架材料(Metal-organic frameworks, MOFs)由于其独特的结构和组成,在燃料电池和金属-空气电池的氧还原反应中得到了广泛的应用。近年来,以MOFs为前驱体或模板制备过渡金属单原子电催化剂(TM-SACs)的研究取得了很大进展。近期,吉林大学材料科学与工程学院郑伟涛团队对MOFs衍生的TM-SACs的制备方法和表征手段进行概述,并在此基础上归纳了TM-SACs的结构与性能的关系 (图1)。该综述旨在阐明大量的最新研究进展,来指导高活性、高负载量、高稳定性的TM-SACs的实现。第一作者为吉林大学材料科学与工程学院硕士生宋可心,通讯作者为张伟教授和郑伟涛教授。03图文导读1.ORR反应机制与优化原则ORR的反应过程如图2所示。由于反应条件的不同,导致酸性和碱性条件下的反应机制存在一定的差异。研究表明,酸性条件下较差的ORR性能主要是由于反应过程中吡啶-N质子化为吡啶-N-H结构,所以可以通过以下方式改善酸性条件下的ORR性能:1)防止质子和吡啶-N在酸性环境中快速结合;2) 增加本征活性和活性位点的数量。然而,在碱性条件下,大多数研究证明吡啶-N在催化过程中起着积极的作用。因此,增加吡啶-N的含量和增加金属活性中心数量是改善碱性条件下ORR性能的重要手段。此外,O2分子在活性位点上的吸附方式主要分为以下三种:Griffiths模式、Pauling模式和Yeager模式。不同的吸附模式也对催化机制产生一定的影响。图2.(a)酸性条件下ORR反应示意图。(b)碱性条件下ORR反应示意图。(c)O2在金属活性位点的三种吸附模式示意图2. 单原子催化剂的表征手段由于SACs的金属的尺寸很小,对表征技术提出了更高的要求。电镜技术和谱学技术的有效结合可以实现SACs的定性和定量分析。球差电镜利用其超高的空间分辨率可以直接观察到单原子的存在。结合EELS和EDS可以准确地确定材料的元素分布,有利于结构分析和物相识别。谱学技术,如(原位)X射线精细结构分析、穆斯堡尔光谱、红外光谱、原位拉曼光谱和原位漫反射红外傅里叶变换光谱(DRIFTS),有助于准确表征SACs并探究催化机理。这些表征技术从不同角度证实了SACs的存在,形成了完整的SACs表征体系。表征技术如图所示:图3.(a)FeSAC@FeSAC-N-C的不同放大倍数的像差校正STEM图像和EDS图像。(b)Co-pyridinic N-C的不同放大倍率的像差校正STEM图像和EELS光谱。(c) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像。(d) Co(mIm)-NC(1.0)催化剂的亮场STEM图像、HAADF-STEM图像和相应的EELS光谱图像图4.(a)不同电位下Au L3边和Cu K边的XANES光谱和EXAFS拟合分析.(b)不同电位下的Pt1-N/C的XANES光谱和EXAFS拟合分析3. 基于MOFs制备TM-SACs的五大策略由于MOFs独特的空间结构,是制备TM-SACs的良好前驱体。在这一部分中,详细总结了使用MOFs制备TM-SACs的五种策略,并探讨了TM-SACs的结构特征和性能之间的相关性。所有这些策略都集中于如何保护过渡金属原子在热解过程中不发生团聚。由于MOFs后处理的方式不同,保护机制也存在一些差异。根据保护机制的不同,本部分将其分为以下五种策略:1) 表面限域策略:由于MOFs提供高度分散的金属位点,是制备TM-SACs的理想前驱体或模板。通过使用牺牲金属(SMs)的“空间栅栏”效应,可以调整过渡金属之间的距离,从而有效地避免高温下过渡金属原子的聚集。因为SMs的熔点相对较低,它们在热解过程中挥发。根据过渡金属的掺杂数量,主要可分为以下几类:1)单金属掺杂;2) 双/多金属掺杂。图5.(a)Fe掺杂ZIF-8衍生催化剂的合成过程示意图和不同粒径的Fe掺杂ZIF-8的SEM图像。(b)ZIF-8前驱体中Fe掺杂量对催化剂结构和活性影响示意图。(c)NC吸附铁离子的模型催化剂示意图及反应路径图。(d)通过调节Zn/Co的摩尔比制备Co-SAC/N-C的示意图。(e)负压热解法制备三维石墨烯骨架上的SACs示意图2) 空腔限域策略:利用MOFs独特的空腔结构优势,对金属前驱体进行封装。这种封装效应可以最大程度地减少热解过程中金属前驱体的聚集。对于ZIF结构,ZIF-8是一个具有菱形十二面体结构的三维空间纳米笼,由锌离子和二甲基咪唑配体组装而成。其具有孔径为3.4Å、空腔直径为11Å的空腔结构,金属前驱体可封装在里面来实现金属前驱体的空间隔离。高温碳化后,ZIF-8变成氮掺杂碳骨架,为金属位点的负载提供了载体。常见的金属前驱体可分为以下几类:1)金属无机化合物,如金属盐和金属氢氧化物;2) 金属有机化合物,如乙酰丙酮化合物和二茂铁;3) 金属大环化合物,如酞菁、卟啉和菲咯啉。图6.(a)Mn-SAS/CN催化剂的制备示意图和原位XANES光谱。(b)基于Kirkendall效应制备的(Fe,Co)/N-C催化剂示意图。(c)基于ZIF-8前驱体制备C-Cu(OH)2@ZIF-8-10%-1000的原理图。(d)Fe-ISA/CN催化剂制备示意图。(e)微孔限制和配体交换法制备Co(mIm)-NC催化剂示意图3) 外层保护策略:对MOFs的外层采取一些保护措施,以避免在热解过程中结构坍塌和金属原子的聚集。未热解MOFs表面的金属离子呈现高度分散的单原子态。但是在热解后由于单个原子的高比表面能,会发生团聚,这大大降低了金属活性位点的利用效率。此外,高温热解后,MOFs的孔结构坍塌,不利于催化剂传质过程和更多活性位点的暴露。因此,应采取措施对MOFs的外层进行保护,以促进高密度TM-SACs的形成,并保持热解后结构的稳定性。常用的保护策略主要分为以下两类:1)有机化合物(如表面活性剂、酶和聚合物)的保护策略;2) 主客体策略。图7. (a)原位约束热解法制备核壳结构的Co-N-C@surfactants催化剂示意图。CoN2+2活性位点构型和反应自由能演化图。(b)酚醛树脂辅助策略制备核壳结构1.0-ZIF-67@AF催化剂示意图。(c) CoNi-SAs/NC催化剂制备示意图。(d)配体交换策略制备C-AFC© ZIF-8催化剂示意图。(e) Fe-SAs/NPS-HC催化剂制备示意图4)相扩散策略:湿化学合成法通常用于制备以MOFs为前驱体的TM-SACs,即金属前驱体的合成在溶剂中完成。此外,由于单原子与其载体之间的弱相互作用,单原子在随后的制备和催化反应过程中不可避免地会团聚。如果使用MOFs衍生的碳载体作为前驱体,金属原子在高温下的扩散特性将被捕获并在碳载体上还原。这种强烈的相互作用可以提高催化剂的高温稳定性,也为TM-SACs的制备提供了一条新的途径。相扩散策略主要分为以下两种方法:1)球磨法(固相扩散法);2) 气相扩散法。图8.(a)固相合成法制备Fe掺杂ZIF-8的原理图。(b) M15-FeNC-NH3催化剂制备示意图。(c) Fe-N/C催化剂制备的示意图及ORR性能曲线。(d)气相扩散法制备Cu-SAs /N-C催化剂示意图。(e)金属氧化物热扩散法制备Cu ISA/NC催化剂原理图和Cu-N3-C、Cu-N3-V自由能演化图5)双模板策略:模板策略可以通过模板本身的空间约束效应来控制合成材料的形态、结构和几何尺寸。MOFs是合成TM-SACs的最佳前驱体或模板。外来模板的引入可以对MOFs的形态和尺寸进行一定的限制。三维骨架上的金属原子可以得到很好的保护,有效地避免了热解过程中单个原子的团聚。根据热解后是否需要额外繁琐的步骤去除外来模板,这种双模板策略主要分为以下两类:1)一步模板法:PS和盐模板法;2) 多步骤模板法:介孔SiO2、SiOX和有序介孔硅。图 9.(a)利用KCl模板制备了SCoNC催化剂的制备图和不同放大率的HAADF-STEM图像。(b)PS模板法制备具有分级多孔结构的FeN4/HOPC催化剂的制备示意图。(c)PS模板法制备Fe/Ni-NX-OC催化剂示意图04小结MOFs材料的优异特性为高负载量、高稳定性、高催化活性的单原子催化剂的制备提供了丰富的平台。目前还有许多需要解决的问题,主要包括以下几个方面:1)充分发挥MOF材料的结构多样性的优势,探索一些新的策略来制备TM-SACs。目前主要以ZIF结构为主来制备TM-SACs,可以充分挖掘其他结构的MOF材料来进行制备。2)TM-SACs的单原子活性位点通常以TM-N4为主,这种配位结构被认为具有良好的ORR活性。对活性中心的配位结构进行调整,可以使得它们的活性得到进一步提高。目前已有的调整方式主要包括构建双原子活性中心、引入非金属(S,P,B)、纳米粒子与单原子协同催化、构建客体基团等。3)提高过渡金属单原子的负载量。催化剂的活性与催化位点数目和本征活性息息相关。对于TM-SACs,在合成过程中最大程度地避免单原子的聚集,提高过渡金属的利用效率,将MOF前驱体中的金属位点最大程度地转变为TM-NX结构。 4)实现TM-SACs的大规模制备和通用策略制备。金属浓度过高会导致单原子催化剂在制备过程中极易发生团聚, 并且由于不同种类的金属的配位环境和物理化学性质不同,难以实现制备策略的通用化。因此,开发一种新的策略去实现TM-SACs的大规模制备和通用化制备显得尤为重要。5)利用先进的表征手段和原位技术,在原子水平上对催化剂的结构进行剖析,从而探究结构与性能的关系。这些技术为MOF材料为目标明确的TM-SACs的设计提供了指导。6)结合理论计算去探究TM-SACs的氧还原反应动力学和最佳反应路径,确定催化剂的真实活性位点和反应过程的决速步。这为催化剂的结构设计提供了理论支撑,从而更好地提高TM-SACs的性能。
  • 重要成果!1000 mA/cm²高活性OER,easyXAFS台式X射线吸收精细结构谱仪解析电催化剂
    电化学分解水是一种将间歇性能源(如风能,太阳能)转化为氢能的有效途径,有利于推动碳中和。开发廉价高活性的氧析出(OER)电催化剂是该技术走向实际应用的关键之一。研究表明,过渡金属催化剂在OER过程中可重构形成具有更高活性的羟基氧化物,且杂原子的加入可促进这一表面重构反应。基于此,太原理工大学与新南威尔士大学合作提出一种原位重构策略,以FeB包覆的NiMoO作为预催化剂进行表面重构,获得了高活性的OER催化剂。作者利用美国easyXAFS公司研发的台式X射线吸收光谱仪XES150解析了催化剂的精细结构,并结合多种其他表征技术及理论计算,证明重构过程形成的稳定高价态Ni4+物种可促进晶格氧活化进而提升OER反应。该项工作揭示了催化活性的提升机理,并实现了1000mA/cm2级别的超高反应电流,以“Stable tetravalent Ni species generated by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efficient water oxidation at large current densities”为题发表于期刊Applied Catalysis B: Environmental。 本文中使用的台式X射线吸收光谱仪XES150无需同步辐射光源,可以在实验室内测试XAFS和XES数据,谱图数据与同步辐射光源谱图数据完全一致。仪器推出至今,已在全球拥有100+用户群体,市场份额遥遥领先,久经时间考验,细节打磨更完善,稳定性可靠性更高。设备还可实现图1. 台式X射线吸收精细结构谱仪-XAFS/XES 图一展示了催化剂的合成示意图,NiMoO/FeB 预催化剂通过原位重构形成NiFeOOH,其中的准金属硼诱导形成纳米片/纳米棒结构。所得的催化剂的OER活性高于纯NiOOH和贵金属RuO2(图2a)。该催化剂仅需1.545 V vs. RHE即可驱动1000 mA/cm2电流,性能优于其他文献报道(图2b)。作者利用台式XES150 system (Easy XAFS LLC, USA)测试了样品X射线吸收谱。通过Ni-K边 X射线吸收近边结构 (XANES) 光谱分析Ni的电子态。白线峰与 1 s 到 4p 跃迁相关。在 NiFeOOH 的 XANES 光谱中白线峰峰值位于 8352.66 eV,高于 NiOOH(图 2c),这表明NiFeOOH中Ni的平均氧化态高于NiOOH中的平均氧化态,并且NiFeOOH中形成了更多的Ni4+物种。 同时,由于金属 4p 轨道的离域,NiFeOOH吸收边向较低能量移动,峰展宽且边缘跃迁强度增加(即 1 s→4p),这些对配体-金属共价性敏感的特征性变化表明Ni-O 共价键增加(图 2d)。作者进一步分析拟合了Ni K-边的傅立叶变换扩展X射线吸收精细结构(EXAFS)的k3χ数据,以探究局部原子结构(图2e-2h)。与NiOOH 相比,NiFeOOH 的 Ni-O 散射路径原子间距离从 1.98 &angst 减小到 1.85 &angst ,证明 Ni-O 键的共价性质的增加。 Ni-O 散射路径的偏移归因于NiOOH 和 NiFeOOH 中不同的局部配位环境,这是由于其中NiOOH 和 NiO2物相的比例不同。 上述结果表明,NiFeOOH 中的稳定态物种主要是 Fe 掺杂的 NiO2 物质,这是由 Fe 掺杂和重构过程(即中等高电位下的电化学极化)引起的。 Ni4+生成量的增加导致Ni-O共价性增大,从而促进晶格氧的活化,提升OER催化反应活性。图1. NiMoO/FeB 预催化剂与NiFeOOH 催化剂的合成示意图。图2. (a) 催化剂的LSV曲线。(b)本文催化剂过电势与其他文献报道对比图。(c)(d)Ni-K边XANES谱图。(e)Ni-K边EXAFS谱图。(f)NiO, (g) NiOOH,及 (h) NiFeOOH的EXAFS拟合结果。参考文献:[1]. Yijie Zhang et al., Stable tetravalent Ni species generated by reconstruction of FeB-wrapped NiMoO pre-catalysts enable efficient water oxidation at large current densities, Applied Catalysis B: Environmental, Volume 341, February 2024, 123297.相关产品1、台式X射线吸收精细结构谱仪-XAFS/XEShttps://www.instrument.com.cn/netshow/SH100980/C327753.htm
  • 电弧等离子体沉积,登上Nature子刊!原子级控制高熵合金表面的电催化研究取得突破性进展
    文章名称:Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces期刊和影响因子:Nature Communications IF=17.7DOI:https://doi.org/10.1038/s41467-023-40246-5研究背景: 高熵合金由于出色的热动力学和化学性能,使其在电催化领域受到了学术界的广泛关注。制备原子级可控合金对于提高表面催化性能和设计新型催化剂至关重要。尽管已有的研究对合金组分,元素构成和原子分布等问题对催化性能的影响做了相关的研究,然而对于Pt基合金在催化前和催化后合金表面原子结构变化的原子级透射电镜表征相关工作尚显不足。对于合金表面原子的排布和在空位处合金成分的表征尚属空白。 2023年7月,日本东北大学课题组利用Advance Riko公司的电弧等离子体沉积系统-APD制备了原子级可控的高熵合金,研究了电催化对合金表面原子的影响。得益于APD系统可多靶位同时进行精准等离子溅射的功能,课题组实现了同一种高熵合金不同晶向结构的制备,对多组分合金表面微观结构与其催化性能之间的详细关系进行了深入研究。同时,APD系统的真空传输配件避免了制备样品在传递过程中受到空气的影响。相关研究结果以《Experimental study platform for electrocatalysis of atomic-level controlled high-entropy alloy surfaces 》为题,在SCI期刊Nature Communications上发表。 文中使用的电弧等离子体沉积系统-APD可以在 1.5 nm 到 6 nm 范围内精确控制纳米颗粒的直径,具有活性好,产量高等优势。只要靶材是导电材料,系统就可以将其等离子体化。金属/半导体制备同时控制腔体气氛,可以产生氧化物和氮化物薄膜。高能量等离子体可以沉积碳和相关单质体如非晶碳,纳米钻石,碳纳米管等形成新的纳米颗粒催化剂。电弧等离子体沉积系统-APD图文导读: 图1. 利用Advance Riko公司的APD系统为电催化研究所准备的不同高熵合金示意图。为了实现制备不同高熵合金成分的需求,APD系统可以溅射合金靶材或者同时溅射多个靶材来实现。通过XPS的研究表明,通过APD系统所制备的高熵合金表面成分高度可控。图2. 通过上述方法制备的Pt/Cr-Mn-Fe-Co-Ni/Pt合金不同晶向的表征结果。(a, c, e)为样品横截面的通过STEM获得的HAADF表征结果。(b, d, f)为对应样品的EDS Mapping结果。图3. APD系统所制备的Pt/Cr-Mn-Fe-Co-Ni/Pt合金的循环伏安曲线(CV)和氧化还原反应(ORR)在电位循环中的变化。(a, c, e)为在0.05V-1.0V 的范围内CV曲线随可逆氢电极电位的变化关系。(b, d, f)为Pt/Cr-Mn-Fe-Co-Ni/Pt的ORR随着电位循环的变化,循环电压为0.6V-1V。图4. APD系统所制备的Pt/Cr-Mn-Fe-Co-Ni/Pt合金在电位循环后的退化情况。(a, d, g)分别为合金样品的(111),(110)和(100)方向的低倍HAADF表征结果。(b, e, h)分别为(a, d, g)中所对应的黄色方框区域的高分辨HAADF图像。(c, f, i)分别为在电位循环前和经过5000次循环后所对应的(b, e, h)区域的EDS结果的对比图。文章结论: 日本东北大学课题组使用APD系统制备了原子级可控的Pt高熵合金,通过高分辨透射电镜表征,从原子级的尺度上研究了电催化对合金表面的影响。通过与Pt-Co二元表面相比,高熵合金表面的氧还原反应性能优于 Pt-Co 二元表面,证明了该平台的有用性。该研究填补了高熵合金用于电催化领域原子级机理上的空白,为该领域的研究提供了理论基础!
  • 免费参会!10.25环境催化材料主题会议
    免费参会!10月25日环境催化材料进展与应用随着工业化的迅猛发展,工业生产和能源消耗产生的废气种类越来越多,排放量也越来越大,由此产生的酸雨、光化学烟雾、温室效应等导致大气环境日益恶化。以发展源头治污防污、减少生产过程中污染物排放和实现废物资源化为使命的环境催化技术成为全球关注的热点。仪器信息网将于2022年10月25日举办“环境催化材料进展与应用”主题网络会议,为环境催化领域的研发应用与检测分析搭建交流平台,促进催化领域科研人员间的互动交流,促进我国环境催化及环境材料领域的发展。会议日程报告时间演讲题目报告人14:00-14:30半导体复合材料的设计、制备及提升光电催化性能研究王其召长安大学/西北师范大学 教授14:30-15:00岛津epma技术特点及其在汽车尾气催化材料中的应用廖鑫岛津企业管理(中国)有限公司 EPMA产品专员15:00-15:30尖晶石衍生化功能材料的构建机器催化转化特性研究李新勇大连理工大学 教授15:30-16:00利用赤泥制备催化材料及用于废水有机物处理的研究徐东彦青岛科技大学 教授/博士生导师参会方式报名链接:https://insevent.instrument.com.cn/t/kLa 或扫描下方二维码扫码参会赞助参会请扫码联系
  • 新型铜催化剂助力二氧化碳变燃料
    中国科学技术大学教授高敏锐课题组合成一系列暴露不同铜(100)和铜(111)晶面比例的铜催化剂,发现铜(100)/铜(111)的界面位点相比于单一的晶面展现了显著增强催化碳—碳电化学耦联的性能,对于利用二氧化碳制备多碳燃料具有重要意义。相关成果日前发表于《美国化学会志》。  电催化二氧化碳还原制备高附加值化学品,是二氧化碳资源化利用的有效手段。近年来,科学界通过电催化二氧化碳制备能量密度高、应用前景广阔的多碳燃料取得很大进展,但其选择性和转化效率仍不尽人意。这主要由于二氧化碳转化为多碳燃料需经历动力学缓慢的碳—碳耦联过程。因此,设计并创制能高效促进碳—碳电化学耦联的催化剂至关重要。  研究人员利用电化学测试表明,与其他铜催化剂相比,这种新型铜催化剂在电流密度为每平方厘米100毫安至400毫安时,均有利于催化二氧化碳到多碳产物的转化。多碳产物的选择性与铜(100)/铜(111)界面的长度呈现线性相关,证明该界面为催化碳—碳耦联的活性位点。原位拉曼和红外实验证明,在铜(100)/铜(111)界面处,能更好吸附中间体,展现更强的碳—碳耦联能力。理论计算进一步表明,铜(100)/铜(111)界面处电子结构被优化,促进了碳—碳耦联动力学。  该项研究发现了铜原子排列变化形成的特定界面结构能更高效地催化碳—碳耦联,降低多碳产物形成过程中的关键步骤能垒,这一成果对于二氧化碳制备多碳燃料的电化学升级利用具有重要意义。  相关论文信息:https://doi.org/10.1021/jacs.1c09508
  • 大连化物所-岛津首届能源催化青年专家论坛成功举办
    5月23日,“中科院大连化物所-岛津第一届能源催化青年专家论坛”在大连化物所能源基础楼揭开帷幕。本次论坛是双方在能源催化研究领域携手举办的首届全国性论坛,旨在为能源催化研究的专家们搭建一个良好的沟通交流平台,助力能源催化研究的持续发展。数十位能源催化领域的杰出青年专家从全国各地齐聚本次论坛。论坛由岛津公司分析测试仪器市场部李言主持 合作实验室揭幕仪式结束后,论坛正式进入报告环节。大连化物所邓德会研究员率先发表了题为《二维材料表界面调控与能源小分子转化》的报告,他在报告中披露了其研究团队开展的以石墨烯为代表的2D材料在催化领域应用研究的设计思路以及研究过程与成果。随后,北京大学谢景林教授做了题为《光电子能谱在材料研究中的应用》的报告,他的报告内容涉及XPS原理与技术介绍、材料表面分析与XPS、XPS应用简介、XPS(准)原位分析以及光电子能谱技术的完善和发展。大连化物所邓德会研究员做报告北京大学谢景林教授做报告 大连化物所章福祥研究员做了题为《宽光谱捕光催化剂全分解水制氢》的报告,他在报告中讲述了其研究团队从合成新型材料、使用助催化剂、促进电荷分离这三方面入手,应对捕光催化剂全分解水制氢研究的挑战所获得的成果。接着,大连化物所刘健研究员做了题为《纳米反应器的构筑:从纳米催化到体外诊断》的报告,他在报告中介绍其研究的背景、纳米反应器的构筑、纳米反应器在纳米催化中的应用、纳米反应器在体外诊断中的应用等内容,并展望了此研究的未来发展。随后,岛津公司分析测试仪器市场部技术专家李言做了题为《岛津系统气相在能源催化分析领域的应用》的报告,他在报告中介绍了岛津光解水、光催化CO2还原产物分析的成熟成套解决方案,以及CO2电催化等近年来的研究热点对应的成熟分析方案,并以多个科研领域创新方案为实例,讲解了其创新性和在化工项目的应用潜力。大连化物所章福祥研究员做报告大连化物所刘健研究员做报告岛津公司分析测试仪器市场部技术专家李言做报告 在论坛的后半部分,沈阳金属所刘洪阳副研究员做了题为《纳米碳基材料在烷烃活化中的应用》的报告;大连化物所侯广进研究员做了题为《固体NMR技术的发展及其在材料结构和动力学研究中的应用》的报告;嘉兴学院“南湖学者”特聘教授王慧研究员做了题为《CoMo催化剂生物油加氢脱氧失活机理剖析》的报告;大连理工大学精细化工国家重点实验室张培立副教授做了题为《以水为氢氧源的电催化有机物同步氧化与氢化反应》的报告;吉林大学邹晓新教授做了题为《水裂解催化材料的结构化学》的报告。沈阳金属所刘洪阳副研究员做报告大连化物所侯广进研究员做报告嘉兴学院“南湖学者”特聘教授王慧研究员做报告大连理工大学精细化工国家重点实验室张培立副教授做报告吉林大学邹晓新教授做报告 本次论坛是岛津公司在能源催化研究领域举办的首届全国性论坛,期待未来连续举办下去,并不断地提高会议的深度和广度,能够为能源催化研究的专家们搭建一个很好的沟通交流的平台,助力能源催化研究水平的快速提升。
  • 【综述】电化学催化剂的透射电子显微学研究综述
    p    span style=" color: rgb(112, 48, 160) " strong 前言 /strong /span /p p   能源问题一直是困扰人类生存发展的终极问题之一,随着时代的进步,不断革新的科学技术为解决这一问题带来了曙光。其中电催化是目前有效的手段之一,涉及诸多新能源和环境保护的研究方向,包括燃料电池、水裂解、制氢、二氧化碳资源化利用等。其中,研究电化学催化剂的微观结构,并监测电催化剂在电催化反应过程中的结构演变规律,对于设计新材料、开发新能源具有重要的意义。 /p p   电子显微镜作为研究学者的“电子眼”,不但可以直接观察固体催化剂的形貌,而且可以在原子尺度提供催化剂的精细结构、化学信息和电子信息,对新型高效催化剂的发现、反应过程中催化剂结构演变及结构和性能之间关系的研究起到了重要作用。因此,电子显微学方法作为一种重要的表征技术在催化化学的发展中扮演着至关重要的角色。在过去20年中,电子显微学在电催化领域内也得到了广泛的应用。最近中国科学院金属研究所张炳森研究员课题组对电化学催化剂的透射电子显微学研究进行了总结,并指出了存在的挑战和未来发展方向。 /p p   strong   span style=" color: rgb(112, 48, 160) " 1. 透射电子显微学方法对电化学催化剂的基本表征 /span /strong /p p   与材料研究中其它表征技术(如:X射线衍射、X射线光电子能谱、Raman光谱等)相比,透射电子显微镜具有很高的空间分辨率,可以在纳米尺度甚至是原子尺度下对催化材料结构进行研究,极大地促进了催化化学的发展。透射电镜目前已经发展为综合型分析电镜,从催化剂的微观结构,到化学组成,以及电子结构等信息都可以利用透射电镜分析获得。 /p p   strong  1.1电化学催化剂微观结构表征 /strong /p p   电化学催化剂的微观结构,如:颗粒形貌、尺寸、暴露晶面、表界面结构等,对催化剂的性能有非常重要的影响,利用高分辨电子显微术(HRTEM)可以获得这些信息。值得注意的是,在负载型金属催化剂中,很多情况中会有很小的纳米颗粒和原子团簇存在,利用高分辨透射电子显微术(相位衬度成像)观察时可能会忽略这些信息,而利用高角环形暗场-扫描透射电子显微术(HAADF-STEM,Z衬度像)可以很容易地观察到这些颗粒的存在。目前,亚埃尺度分辨的球差校正透射电子显微镜的发展,实现了更好地在原子尺度下观察催化剂表界面结构,同时也促进了单原子电催化剂的发展。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/f0f6b75a-dca5-4054-932d-4946fad9e0f5.jpg" title=" 1.jpg" / /p p style=" text-align: center "    strong 图1. 纳米颗粒的HRTEM图片:(a)多面体 /strong /p p strong PtNix单晶纳米颗粒,(b,c)多晶PtNix纳米颗粒,(d)核壳结构Pt/NiO纳米线,(e)PtNi合金纳米线,(f)锯齿状的Pt纳米线。(a,c)图中右下角插图分别是对应PtNix纳米颗粒的形状模型图和原子模型图,(a-c,f)图中右上角插图为对应纳米颗粒的傅立叶变换图。 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/da1074c4-9a68-49ef-ad5c-007b7e4e4f96.jpg" title=" 2.jpg" / /p p    strong 图2.(a)Pt/[TaOPO4/VC]-NHT的TEM图片,(b)相同区域的HAADF-STEM图片 (c,d)球差校正透射电子显微镜获得的高分辨HAADF-STEM图片:(c)核壳结构PtPb/Pt纳米片和(d)MoS2负载单原子Pt(左下角插图是相应的构型模拟图)。 /strong /p p   strong  1.2电化学催化剂的化学成分及电子结构表征 /strong /p p   双金属及多元金属催化剂是电催化中常用的催化剂,其化学组成及元素的分布对于催化剂的性能也有着至关重要的影响。X射线能谱(EDS)分析不仅可以对电催化剂的化学成分进行半定量分析,同时利用面扫和线扫,也可以得到相应元素在催化剂颗粒中的分布情况。除EDS表征手段,电子能量损失谱(EELS)对催化剂中的元素组分进行定性、定量和元素分布分析等也具有独特的优势,尤其在分析B、O、N等轻元素时,与EDS分析相比,会得到更精确的信息。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/45b9bfc5-c80a-4c25-b99d-f4a411601a16.jpg" title=" 3.jpg" / /p p    br/ /p p   strong  图3.(a)PtNix纳米颗粒的HAADF-STEM图和EDS面扫图,(b)核壳结构Pt/NiO、PtNi合金、锯齿状Pt纳米线的EDS线扫曲线(插图中绿线代表对应的线扫轨迹),(c)100 ?C水热条件下得到的B/P共掺杂有序介孔碳的TEM图片和B、C、O、P元素的能量过滤TEM图片。 /strong /p p   影响电化学催化剂催化性能的另一个重要因素是催化剂中原子的电子结构。EELS除了可以进行成分分析,其另一个重要且常用的功能是分析催化剂中原子的电子结构,从而可以得到相应元素的价态、配位情况等,进而获取相关信息,例如:负载型金属催化剂中金属-载体间电子相互作用,纳米碳材料中掺杂原子的种类及电子结构等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/bcafabc9-8776-44d7-b3c5-0e6e40886088.jpg" title=" 4.jpg" / /p p    strong 图4.(a,b)Pt-CeOx样品中Ce-M45边和O-K边的电子能量损失谱,(c,d)N-掺杂石墨烯样品中N-K边和C-K边的电子能量损失谱,(e,f)三种B-掺杂类洋葱碳样品中B-K边和C-K边的电子能量损失谱。 /strong /p p   span style=" color: rgb(112, 48, 160) " strong  2. “相同位置-电子显微学”方法(IL-TEM)用于电化学测试条件下电催化剂的结构演变研究 /strong /span /p p strong   2.1 IL-TEM方法简介以及其在商业Pt/C电催化剂稳定性研究中的应用 /strong /p p   该方法通过将电催化剂分散在坐标微栅上,在透射电镜下准确记录反应前某一具体位置催化剂的微结构信息 随后将携带样品的微栅放到工作电极上,保证接触良好的前提下,将该工作电极置于反应环境中 待反应结束,将坐标微栅从反应体系中取出,并在透射电镜中根据具体的坐标定位追踪反应前记录的位置。通过反应前后、或反应中各个阶段相同位置催化剂结构对比和统计分析,揭示催化剂在反应条件下的结构演变规律,并结合性能测试结果精确阐述构效关系。IL-TEM方法最初应用于电化学反应体系,例如:德国马普Mayrhofer组和西班牙Feliu组等利用此方法研究了铂基催化剂在电化学处理过程中的微结构演变,如负载铂纳米颗粒的脱落、溶解、迁移、团聚长大以及碳载体的腐蚀等特征行为。通过对负载活性组分(纳米颗粒)以及载体(活性炭)结构演变的同时观察,并关联其性能,揭示了不同反应条件下催化剂的失活机制问题。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/571bfe7a-296b-4eef-a73c-e9eb15528350.jpg" title=" 5.jpg" / /p p    strong 图5.(a, b)IL-TEM方法在电化学三电极测试体系中的应用示意图,(c-f)利用坐标微栅在透射电镜下通过依次放大追踪相同位置催化剂的微结构信息。 /strong /p p strong   2.2 IL-TEM方法在电化学新材料体系中的应用 /strong /p p   各类新型纳米碳材料,如纳米碳球、碳纳米管、石墨烯等,具有优异的导电性、耐酸碱性以及较高的比表面积和丰富的孔结构等特点在能源转化领域得到了广泛关注。其本身通过杂原子改性作为氧还原和二氧化碳还原反应电催化剂被大量研究。除此以外,利用表面改性纳米碳作为电催化剂载体调控活性组分与碳载体间相互作用也是近几年新兴的研究热点之一,通过使用IL-TEM方法跟踪负载纳米粒子在改性碳载体表面的迁移、团聚和溶解等行为直观揭示不同表面修饰对电催化剂的稳定作用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/f57af8d7-c227-4571-8e0c-ed72ae77f569.jpg" title=" 6.jpg" / /p p    strong 图6. IL-TEM方法用于氮掺杂碳纳米球负载Pt催化剂在氧还原反应(左上)、氧官能团化和氮掺杂改性碳纳米管负载Pt催化剂在甲醇电氧化反应(左下)、及化学接枝法改性石墨烯负载Pt催化剂在氧还原反应(右)中的稳定性研究。 /strong /p p strong   2.3 IL-TEM方法拓展应用于传统液相催化反应 /strong /p p   目前,IL-TEM方法已成功应用于电化学体系,直观揭示了不同反应条件中催化剂结构演变,以及碳材料载体表面性质对于负载金属电催化剂的稳定性影响及失活机制。而在环境电镜或原位透射样品杆中难以实现的传统液相催化反应体系中,IL-TEM方法也具有独特的优势。金属研究所张炳森、苏党生课题组在2016年底报道了此方法在液相催化反应(芳硝基化合物选择性加氢)中的应用,也是此方法第一次应用在传统液相催化反应体系中,通过研究反应条件下相同位置催化剂的结构演变过程,直观证明了氮物种的引入对负载的铂纳米颗粒的稳定性起重要作用,实现了铂-碳相互作用调节提升碳基负载型催化剂催化性能。该方法为精确研究液相催化反应中催化剂的构效关系,尤其是复杂液相催化反应体系,如固液、气液固等三相共存反应体系,探索复杂液相环境中催化反应活性中心的诱导产生、演变等行为规律提供了很好的手段,并更好地为新型高效催化剂的开发提供指导。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/64e15822-6ae3-433a-be3c-a0a0ff5988f2.jpg" title=" 7.jpg" / /p p   strong  图7. IL-TEM方法在液相反应体系中的应用示意图(左上) 氧官能团化以及氮掺杂改性碳纳米管负载高分散铂纳米粒子催化剂相同位置在反应前后的透射电镜对比图(左下) 氮掺杂碳纳米管负载高分散铂纳米粒子催化剂相同位置在不同反应时间的HAADF-STEM图(右图)。 /strong /p p strong    /strong span style=" color: rgb(112, 48, 160) " strong 3. 原位电化学样品杆的应用前景 /strong /span /p p   常规透射电镜表征,样品所处的环境是真空和室温,与实际电催化剂所处的液体环境差距较大,并且是对反应前后进行随机取样表征,不够直观准确且存在严重的滞后效应,因此需要开展原位表征。电化学原位透射样品台的出现为实时观察服役环境下电催化剂的微结构以及结构演变提供了有效研究手段,并通过与电化学工作站联用可以得到实时性能数据,为揭示电催化反应黑匣子提供重要参考依据。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/9dc78db6-8ef1-4d37-b32f-52ad3873eddb.jpg" title=" 8.jpg" / /p p    strong 图8.(a, b)电化学原位透射样品杆示意图,(c, d)电化学测试实时数据。 /strong /p p strong   /strong span style=" color: rgb(112, 48, 160) " strong  4. 总结与展望 /strong /span /p p   先进电子显微方法(分析型电子显微方法和高分辨电子显微方法)的发展提供了从微观尺度认识和理解电化学纳米催化剂结构特征的有效手段。该文通过大量研究工作全面系统地综述了透射电子显微术在揭示电催化剂纳米尺度形貌、原子尺度精细结构、化学组成以及电子结构等信息方面的重要作用,对新型高效电催化剂的设计研发、反应过程中的催化剂结构演变及结构性能间关系等的研究具有指导意义。“相同位置-电子显微学”方法的引入对于研究真实反应条件下催化剂的结构动态行为特征,揭示其稳定性和失活机理等方面提供了更直观准确的研究手段。同时,前沿性研究中电化学原位透射样品台的介绍,展望了将常规透射电镜对电催化剂的表征转变为在线可视化的电化学微型实验室的研究趋势 通过在电子显微镜中建立微纳米反应室,获取真实反应条件下催化剂活性位结构特征,使其成为电化学催化剂的创新工具。 /p p style=" text-align: center " --------------------------------------------------------------------- br/ /p p   Liyun Zhang,Wen Shi,Bingsen Zhang, A review of electrocatalyst characterization by transmission electron microscopy, Journal of Energy Chemistry,DOI:10.1016/j.jechem.2017.10.016 /p
  • Nature:电化学原位电镜表征OER催化剂
    过渡金属(氧)氢氧化物是一种很有前途的析氧反应电催化剂。通过离子插入氧化还原反应,这些材料的性质随外加电压动态非均匀地变化,将开路条件下不活跃的材料转化为反应过程中的活性电催化剂。因此,催化状态始终就是非平衡态,这就使得直接观察催化剂的形貌变得异常复杂。析氧反应被认为是电解水制氢工艺的效率瓶颈,因为它需要相当大的应用过电位。因而提高OER的效率对于实现基于氢气生成和存储的闭环清洁能源基础设施至关重要。这将需要开发改进的过渡金属基电催化剂,直接确定材料性能的变化如何影响操作中的反应性。有鉴于此,斯坦福大学的J. Tyler Mefford和William C. Chueh教授等利用一套相关的扫描探针和X射线显微镜技术,建立了β-Co(OH)2单晶片状材料的化学物理性质、纳米级电子结构与析氧活性之间的联系。在预催化电压下,钴的氧化态为+2.5,氢氧根插层形成类似α-CoO2H1.50.5 H2O结构。在增加电压驱动氧进化,层间水和质子脱插形成收缩的β-CoOOH粒子,包含Co3+物种。虽然这些转变表现出非均匀的粒子的大部分,电化学电流主要限制在他们的边缘面位。观察到的Tafel行为与这些反应边缘位置的Co3+的局部浓度相关,表明了大块离子插入和表面催化活性之间的联系。原位电镜表征OER催化剂图1.β-Co(OH)2的质量负荷和扫描速率依赖的电化学研究作者发展了一套扫描探针和X射线显微镜联合技术,深入研究了β-Co(OH)2单晶片状材料与析氧活性之间的构效关系,单晶片的基面{0001}面约为1~2 μm宽,边缘{1010}面约为50~75 nm厚,图b~c展现了其形貌特征,这些粒子表现出两个典型的部分氧化还原特征—阳极电压的增加(E1=1.20 V,E2=1.55 V),分别对应于Co(OH)2 到CoOOH和CoOOH到CoO2的动态转化。在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5 H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。观察到的Tafel行为与这些反应性边缘位点处Co3+的局部浓度相关,这说明了大量离子插入与表面催化活性之间的联系。图2.扫描电化学电池显微镜表征β-Co(OH)2颗粒体氧化还原转化和OER活性研究者使用扫描电化学电池显微镜(SECCM)直接绘制了OER电流图,其空间分辨率由纳米移液器吸头的直径确定(dtip = 440 nm)。扫描模式下,在1.87 V下进行计时电流分析,同时对移液器进行线性连续扫描(横向平移速率= 30 nm s-1)。通过保持弯液面和表面之间的恒定接触,可以同时进行形貌(高度)和电化学活性(电流)测量。结果表明,颗粒边缘面主导着整个系统的电化学反应性。仅当移液器在粒子的边缘面时才观察到电流,而当移液器位于基面内时未观察到电流。跳跃模式下观察到的结果与扫描模式类似。在该催化体系中,不同面的催化活性可以通过离子(去)插层反应特性来合理化解释。可移动的电荷补偿离子被限制在CoO2层间的夹层通道中。在层状β-Co(OH)2的逐步氧化过程中,离子(去)插层反应在边缘平面处(与电解质接触的区域)变得容易。相反,在CoO2层中不存在扩展缺陷的情况下,离子在方向上的移动受到限制,这阻止了基面充当大量氧化还原转化反应的反应位点。这也解释了内部Co原子缺乏活性的原因。图3 原位电化学原子力显微镜表征β-Co(OH)2粒子使用电化学原子力显微镜(EC-AFM)在0.1 M KOH中在约10 nm的空间分辨率下测量了颗粒形态随电压的变化。并利用原位扫描透射X射线显微镜(STXM)在约50 nm分辨率下表征了β-Co(OH)2粒子Co的氧化态。研究表明,在催化初始电压下,粒子膨胀形成α-CoO2H1.50.5H2O状结构(通过氢氧根插层产生),其中钴的氧化态为+2.5。在增加电压驱动氧的析出时,层间水和质子脱插,形成含有Co3+的收缩状β-CoOOH粒子。尽管这些转变在大部分粒子中均表现出不均匀性,但电化学电流主要受限于其边缘面。图4 原位扫描透射X射线显微镜表征β-Co(OH)2粒子原位扫描透射X射线显微镜实验结果表明,XAS反应的可逆电压, n1 = 0.54 ± 0.04 e−at E 1′ = 1.14 ± 0.03 V and n2 = 0.46 ± 0.04 e− at E′2= 1.58 ± 0.03 V。推导出的可逆电压与STXM电池中的氧化还原峰(图4d)、RDE实验(图1d)、EC-AFM和EQCM结果6(图3c)非常一致;此外,各反应过程中转移的电子数与我们的EQCM结果相吻合。研究发现了Tafel行为与这些反应性边缘位点处Co3+的局部浓度密切相关。综合上述表征结果,可以证实,Co3+(β-CoOOH)是OER的真正活性位点(或限速步骤的反应物状态)。研究意义1、原位电镜揭示催化剂构效关系:使用相关原位电镜来揭示了能量转换材料的局部物理化学特性和电子结构如何控制其电化学响应。2、揭示边缘位Co3+活性位点浓度的重要性:在CoOxHy系统中,氢氧根离子(去)插层反应通过控制OER过电位和反应边面上电压依赖的Co3+活性位点浓度之间的关系来影响表面催化活性。3、启示如何提高层状氧化物OER活性:调整离子插入的热力学的策略以及通过表面吸附能的方法。电化学原位实验电化学控制在EC-AFM, EQCM和操作STXM期间使用SP-300恒电位器(BioLogic)进行。旋转圆盘电化学(RDE)和紫外-可见光谱电化学使用VSP-300恒电位仪(Biologic)。使用如下所述的自制仪器进行SECCM电化学操作。所有电压都参考了可逆氢电极(RHE),其中每个实验的参考电极的RHE电位在测试前在0.1 M KOH中与大块RHE电极(Hydroflex氢参考电极,eDAQ)进行了标准化。底物电极的制备是通过滴注3 ml的β-Co(OH)2油墨,其中含有2mg的β-Co(OH)2粒子在2ml四氢呋喃中,在新清洁的GC板上(HTWGermany)。让油墨在GC表面干燥后,用干净的PDMS块轻轻压印dropcast区域,以去除聚集的颗粒。然后,在制备的衬底上覆盖一层薄薄的十二烷。使用FE-SEM(GeminiSEM, ZEISS)进行表征。探针(针尖)具有~400 nm的扫描模和~440 nm的跳模,同时确保足够的空间分辨率,在如上所述制备微管后,两通道均充满0.1 M KOH,并配备准参比对电极(QRCE 例如,镀有AgCl的银线)。用于询问S5衬底工作电极的半月板(液滴)细胞在充满的微管探针的末端自然形成。将制备的微移液管和基板分别安装在z-压电定位器上,用于三维空间的纳米级移位。在整个扫描过程中,离子被持续监测(使用自制的电流放大器),并作为反馈信号来精确地将半月板(液滴)电池定位到衬底电极上。参考文献:J. Tyler Mefford et al. Correlative operando microscopy ofoxygenevolution electrocatalysts. Nature, 2021, 593, 67-73DOI: 10.1038/s41586-021-03454-xhttps://doi.org/10.1038/s41586-021-03454-x
  • 中科院青岛能源所石墨炔作为催化剂应用研究获进展
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201711/insimg/60d0cd7a-7ebb-4aef-90aa-cec1436c2dc8.jpg" / /p p   中科院青岛生物能源与过程研究所新型能源碳素材料团队研发了一种氮掺杂的石墨炔材料,用作氧还原反应,表现出优异的催化性能,相关工作近日发表于《应用材料与界面》。 /p p   石墨炔是一种新型碳材料,由炔键和苯环连接而成,具有特殊的sp杂化(一种较常见的杂化方式)碳原子,已被报道在光催化、电催化以及生物方面均表现出优异特性。研究利用石墨炔材料独特的炔键引起碳骨架中部分碳原子带正电的特性,进一步通过氮修饰,将石墨炔材料成功应用于氧还原电催化反应,表现出优异的氧还原催化性能。 /p p   石墨炔中碳原子被氮取代后,其电荷结构将被调控,与氮相邻的碳原子表现出更强的正电性,可作为氧还原反应的活性中心。由于石墨炔材料具有不同于常规碳材料(石墨烯、碳纳米管、石墨、无定形碳等)的特殊sp杂化碳原子,氮原子可以通过取代sp杂化碳,得到新的氮掺杂方式,理论和实验结果表明这种新的掺杂方式可以有效提高碳材料的催化性能。所制得的氮取代的石墨炔材料的氧还原催化性能与商业碳载铂催化剂相当。该工作显示石墨炔在电催化材料和燃料电池中的巨大应用前景,也为解决氧还原反应中铂等贵金属催化剂高昂的成本和储量有限的问题,提供了重要的途径。 /p
  • 第四届能源与环境催化会议在长沙正式召开
    第四届能源与环境催化会议”重新启动,会议于2022年8月15-16日召开,我们在长沙等待与您相聚! 中教金源展品一览: 一、GPPCM微型光热催化微反系统;二、CEL-PECRS2000全自动光电催化流动反应系统;三、PCRD300-12光化学反应仪及气体分配仪;四、CEL-PF300-T9氙灯光源系统(高端一体);五、GC7920全自动系统气相色谱;六、HPRS-PEC250光催化光电反应釜;七、CEL-NP2000-2(10)A强光光功率计;八、CEL-GPRT100鼎式光催化反应釜;
  • 全球催化领域“奥运会”ICC 2016在京举行(组图)
    仪器信息网讯 2016年7月3-8日,第十六届国际催化大会(ICC 2016)在北京国家会议中心举行,来自50多个国家的近3000人出席了本次会议。本次大会主题为“可持续发展的催化科学研究与技术”(“Catalysis for the Sustainable Development of the World”),大会主席由中国科学院大连化学物理研究所李灿院士担任。火爆现场  国际催化大会(International Congress on Catalysis, ICC)起始于1956年的美国费城,每四年举行一次,因与奥运会同步,国际学术界誉之为催化领域的奥运会。六十年来,国际催化大会在催化领域产生了巨大 影响,有力推动了世界催化科学和技术的发展,已成为催化领域规模最大、水平最高、影响最广的国际学术会议。本次会议是国际催化大会在我国的首次亮相,将有助于提升我国催化领域的国际知名度,加速我国催化科技的发展。分会场现场  本次会议包括5个大会报告、2个获奖报告、18个主题报告、81个邀请报告和200余个口头报告,另外还有约1800篇的墙报展示。会议分为6个平行会场,会议内容主要涉及能源催化、催化材料、催化理论、环境催化、工业催化、光电催化、催化化学合成、生物质转化、氧化反应、碳催化等相关领域。  本次国际催化大会涉及到了许多催化相关的科学分析仪器,包括化学吸附仪、激光粒度仪、比表面积分析仪等,许多相关国内外知名仪器厂商也借此契机在大会展区纷纷亮相,向广大客户展示其新产品、新服务和新想法。这些厂商包括:麦克仪器、大昌华嘉、精微高博、美国康塔、赛默飞、贝士德、美国ALTAMIRA等。美国麦克仪器公司大昌华嘉商业(中国)有限公司北京精微高博科学技术有限公司美国康塔仪器公司 赛默飞世尔科技(中国)有限公司贝士德仪器科技(北京)有限公司美国ALTAMIRA INSTRUMENTS公司
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制