当前位置: 仪器信息网 > 行业主题 > >

崔华获

仪器信息网崔华获专题为您整合崔华获相关的最新文章,在崔华获专题,您不仅可以免费浏览崔华获的资讯, 同时您还可以浏览崔华获的相关资料、解决方案,参与社区崔华获话题讨论。

崔华获相关的资讯

  • 吴海龙、陈义、崔华获“梁树权奖”
    仪器信息网讯 2012年10月27日,由中国化学会主办,青岛科技大学承办的“第十一届全国分析化学年会与仪器展览会”在青岛国际会展中心召开。   在开幕式上,还举行了中国化学会分析化学基础研究“梁树权奖”和《分析化学》编辑部2012年优秀论文奖颁奖仪式。中科院长春应用化学研究所汪尔康院士、湖南大学俞汝勤院士、南京大学陈洪渊院士、湖南大学姚守拙院士、中科院长春应用化学研究所董绍俊院士等为获奖嘉宾颁奖。   今年是中国化学会主办的第七届该项奖项评选,湖南大学吴海龙教授、中科院化学所陈义研究员、中国科学技术大学崔华因在分析化学领域做出的贡献而获得“梁树权奖”。 “梁树权奖”获奖嘉宾合影   中国化学会分析化学基础研究“梁树权奖”是中国分析化学领域的最高奖项,由著名分析化学家梁树权先生出资设立。该奖项自1993年开始实施,每三年评选一次,每次奖励2-3人,旨在鼓励我国中、青年分析化学工作者献身于分析化学学科的基础研究和教育事业工作,培养优秀人才,促进和推动我国分析化学学科的发展。   《分析化学》编辑部2012年优秀论文奖获奖详情如下(评选的为2009-2010年度发布的论文):   沈阳理工大学 张东 李楠 高頔    手控注射式钛酸锶钡多孔球富集器分离富集-火焰原子吸收法测定水中铅和镉   浙江大学 刘飞 方慧 张帆 金宗来 周伟军 何勇    应用光谱技术无损检测油菜叶片中乙酰乳酸合成酶   东华理工大学 杨水平 陈焕文 杨宇玲 胡斌 张燮 周瑜芬 张丽丽 顾海威    鸡蛋中三聚氰胺的表面解吸常压化学电离串联质谱法成像   江苏工业大学 赵炜 孔泳 阚锦晴 陈智栋    膨胀石墨电极的制备及用于色氨酸电化学检测的研究   同济大学 楚文海  高乃云 气相色谱-质谱法检测饮用水新生含氮消毒副产物氯代乙酰胺   附录:   吴海龙 教授 博导 湖南大学化学化工学院 化学生物传感与计量学国家重点实验室 湖南大学分析化学国家重点学科建设责任人   任化学生物传感与计量学国家重点实验室(湖南大学)建设项目主要负责人、常务副主任(2001.10-2005.03, 正处级)、主任(2005.03-2009.12)、顾问(2010.01- )。兼任中国化学会有机分析专业委员会副主任委员、计算机化学专业委员会副主任委员、分析化学学科委员会委员(2006.01-2010.12) 中国仪器仪表学会分析仪器分会常务理事兼化学传感器专业委员会主任委员、近红外光谱专业委员会委员 中国机械工程学会理化检验分会副主任委员兼化学专业委员会主任委员、湖南省化学化工学会理事兼分析测试专业委员会主任委员等。任《分析化学》等八种学术期刊编委,任多个国家级、部省级重点实验室学术委员会委员。多次担任中国化学会年会化学信息学与化学计量学分会共同主席。   30年来,一直从事化学计量学、化学生物传感技术等方面的教学和科研工作,先后主持完成国家自然科学基金面上项目3项、国家973预研项目、教育部优秀青年教师资助计划项目等课题。目前主持国家教育部创新团队建设项目、国家自然科学基金面上项目,并协作主持国家973课题等。此外,还参研国家自然科学基金重点项目3项。在液膜pH化学传感器研制,稳健统计学新应用,多元校正基础理论及应用,三维数阵分析(秩估计、三线性分解、分解唯一性等)、二阶校正和二阶标准加入法、化学多维校正及多维标准加入分析法的基础理论及应用,三维图像处理、高维联用仪器数据预处理等方面,取得系列创新性成果。在Journal of Chromatography A、Chemometrics and Intelligent Laboratory Systems、Journal of Chemometrics、Analytica Chimica Acta等期刊发表学术论文逾180篇,其中SCI论文逾130篇,被引用逾800篇次,正面他引逾600篇次。参编著学术书籍7本中8章节(约17万字)。指导培养博士研究生毕业11名、在学7名 指导培养硕士研究生毕业22名、在学22名。任俞汝勤院士学术小组组长逾10年。   曾荣获2002年度湖南省科技进步一等奖和2003年度国家自然科学二等奖(均排名第三)、第四届湖南十大杰出青年科技创新奖(2006年)等,2007年被列入湖南省新世纪“121人才工程”第一层次人选。   陈义 研究员 中国科学院化学研究所生命分析化学实验室 主任   1981年毕业于厦门大学,遂被分配进入中国医学科学院卫生研究所从事环境污染物分析研究工作,1984年考取中国科学院化学研究所研究生,先后于1987、1990年获硕士、博士学位,后留化学所工作至今。期间于1992-1994年和1996-1997年在德国马普发育生物所访问研究(洪堡、马普奖学金) 2002-2004年在美国加州大学伯克利分校访问研究。1992年晋升副研究员,1995年晋升研究员 现任化学所生命分析实验室主任 兼北京质谱中心主任,所化学生物学研究中心、所学术委员会副主任,全国色谱学会、北京色谱协会副理事长,《化学通报》、《分析化学》、《色谱》杂志副主编及J. Chromatogr. A, J. Chromatogr. B,《高等学校化学学报》、《科学通报》等12种刊物编委/顾问编委。曾获1998年度“国家杰出青年基金”资助,获中国化学会1990年度“青年化学奖”、香港求实科学基金会1999年度“杰出青年学者奖”、中国科学院 2001年度“青年科学家奖”,获分析测试协会奖一等奖2项 (2002、2003年)、二等奖1项(2003年)。   从1984年开始毛细管电泳(CE)研究,1994年开始CE-LIF/LRS方法研究,1997年开始SPR成像、RRS及各种联用方法研究,2003年开始集成芯片电泳方法、原位多光谱分析研究,2006年涉及生物质谱研究。在研究主题方面,从1984年开始细胞分析,1990年开始生物活性分子分析,1997年开始参与并在后来主持脑神经活动相关化学基础研究,2000年开始手性分离及相关问题研究。也从事过一些植物、药物相关的分析研究。已发表研究论文180余篇,出版及合作出版著作3部。   研究兴趣:1. 表面等离子体共振成像 2. 多光谱实验装置与仪器研发 3. 毛细管与芯片电泳 4. 生物质谱 5. 实验装置与仪器研制   崔华 教授 博导 中国科技大学化学系   1990年10月获中国科技大学理学博士。2000年11月入选中国科学院“引进国外杰出人才”, 2006年获得自然科学基金委员会“杰出青年基金”。现任中国科技大学教授、博士生导师,分析化学教研室主任。此外,目前还担任长春电分析化学国家重点实验室第三届学术委员会委员、中国仪器仪表学会分析仪器分会电化学分析专业委员会委员、《分析化学》和《分析科学学报》杂志编委。   主要研究方向:主要从事纳米化学发光与电致化学发光及其在免疫分析和DNA分析中的应用研究。   主要学术成果:发现电致化学发光的多通道发射现象及其对电极电位、电极材料和电极表面状态等的依赖性,开辟了电位分辨的电致化学发光这一新的研究领域,推动了电致化学发光的深入研究 率先将纳米修饰电极用于电致化学发光的研究,发现鲁米诺等传统电致化学发光体系在纳米修饰电极上具有优异的电致化学发光特性 发现金属纳米粒子可作为能量接受体、微尺度反应平台、还原剂、催化剂等参与液相化学发光反应,将液相化学发光反应的研究对象从分子、离子体系扩展到金属纳米体系,开发了一系列新的化学发光体系 率先开展了化学发光功能化的金属纳米材料的合成、化学发光特性及其在生物分析中的应用研究,发展了一系列新的、简单的一步合成法,将发光试剂在合成的过程中直接键合到纳米金属的表面,成功制备了鲁米诺等多种发光试剂功能化的金和银纳米新材料,发现其具有良好的化学发光活性,实现了发光分子的富集和信号的放大,在此基础上进一步构建了高灵敏的生物分析探针,发展了一系列基于化学发光功能化纳米探针的免疫分析和DNA分析新方法。这些研究开创了化学发光与电致化学发光新的研究领域,不仅对化学发光、电致化学发光和纳米科学的基础理论研究具有重要的意义,而且在分析化学、生命科学、环境科学领域具有广阔的应用前景。到目前为止,她所领导的课题组已在Anal. Chem.、Chem. Eur. J、 J. Phys. Chem. B & C、 Chem. Comm.、 Biosens. Bioelectron.、Analyst等国际重要化学期刊上发表SCI论文100多篇,受到同行专家的高度关注。
  • 直播预告|“光催化之父”藤岛昭:如何获得清洁能源——光催化与碳循环
    7月20日,仪器信息网(instrument.com.cn)与日本分析仪器工业会(JAIMA) 首次共同主办“中日科学家论坛之材料科学”线上科技论坛,以期为中日科学家们提供交流平台,促进两国科学技术的发展。此次在线科技论坛有幸邀请到国际著名光化学家、光催化研究的开创者、中国工程院外籍院士、诺奖热门人选、荣膺2019年度中国政府友谊奖的日本藤岛昭教授,中国科学院院士、北京大学博雅讲席教授、北京石墨烯研究院院长刘忠范教授,中国科学院大学教授,中国科学院物理研究所孟庆波研究员,北京工业大学闫鹏飞教授,国家纳米科学中心孟幻研究员,将分别围绕光催化材料、新能源、纳米材料等前瞻领域进行探讨。同时也邀请到日本电子株式会社(JEOL Ltd. )TEM应用部总经理助理大西市朗、岛津企业管理(中国)有限公司SPM产品担当陈强将分别为大家分享科学研究离不开的利器技术:最前沿的球差校正透射电镜技术、原子力显微镜技术。以下为藤岛昭教授报告预告,以飨读者:藤岛昭(Akira Fujishima)教授,东京大学特别荣誉教授、东京理科大学荣誉教授、中国工程院外籍院士。他于1972 年在Nature 上发表了二氧化钛单晶表面在紫外光照射下水的光分解现象,这一被称为“本多-藤岛效应”(Honda-Fujishima Effect)的开创性科研成果及其随后的一系列重要成果,使得藤岛昭教授 被公认为“ 光催化之父” 。报告形式:线上直播,30分钟报告+10分钟在线答疑报告时间:2021年7月20日9:40-10:20(北京时间)报告语言:英文PPT,英文报告,中文字幕报告题目:How to Get Clean Energy: Photocatalysis and Carbon Recycling如何获得清洁能源:光催化与碳循环报告摘要:Photocatalysis has been widely developed and put into practical use in the areas of antifouling and antifogging,research on artificial photosynthesis—the process of extracting hydrogen through photocatalysis—has also been garnering significant attention in recent years as a technology with the potential to contribute to a decarbonized society. Along with the shift to replace fossil fuels with renewable energies such as hydrogen ,another important measure to achieving a decarbonized society is carbon recycling, effectively using CO2 as a resource. In consideration of that viewpoint, I has proposed the following method: first, extract hydrogen through water electrolysis using the electricity produced from highly efficient solarcells. Next, combine the extracted hydrogen with the CO2 emitted from power plants and factories to produce methanol, which can be used as an energy source.报名参加:免费,点击报名扫码报名藤岛昭教授在央视《开讲啦》栏目演讲视频回顾:央视网:《开讲啦》 20191019 中国工程院外籍院士,日本著名光化学家藤岛昭教授:知之不如好之,好之不如乐之藤岛昭简介(主要摘自中国工程院)藤岛昭教授藤岛昭教授,1942年生于日本东京,致力于研究半导体电化学。2009年,藤岛昭教授当选欧洲科学院院士。不久前,他接受一项新的职位,担任东京理科大学校长。1971年获得日本东京大学应用化学专业博士学位。在东京大学,他发现水可以通过光电化学方式,经TiO2电极照射分解为氢气和氧气。他在神奈川大学任教四年,后到东京大学任教,并于1986年取得教授职称;其研究领域也扩展到更大的范围,包括光与无机材料及有机材料的相互关系。他于1990年开始研究基于二氧化钛的光催化自洁涂料。他认识到太阳光中少量的紫外线辐射可以被有效利用,通过充分氧化的以氧为基础的自由基作用,用于自洁与自消毒。藤岛昭教授对光诱导的亲水性的相关现象进行研究,在此种现象中,紫外光会导致TiO2表面具有超亲水性。藤岛昭教授依然对光催化基础研究和应用,以及光诱导亲水性保持浓厚兴趣,同时也热衷于开发新材料,包括带有光功能性质的纳米结构材料。藤岛昭教授已经发表了750多篇原始论文,440篇综述文章,拥有280项专利。主要奖项:朝日新闻朝日奖(1983)、井上春成奖(技术创新)(1998)、日本化学会奖(2000)、Heinz Gerischer奖(电化学学会欧洲分会,2003)、紫绶带勋章(2003)、日本奖(2004)、日本学院奖(2004) )、国家发明嘉奖(2006年)、神奈川文化奖(2006)、文化功勋人物(2010年)、路易吉伽伐尼奖章(2011年)、汤森路透引文奖(2012年)、文化勋章(2017年)。2003年,藤岛昭教授成为中国工程院外籍院士。2003年,藤岛昭教授从东京大学退休,担任神奈川科学与技术研究院主席一职。2005年,成为东京大学特别大学荣誉教授。2006年至2008年期间,担任日本化学会会长。高被引代表作Surface Science Reports:TiO2 光催化作用及相关的表面现象(TiO2 photocatalysis and related surfacephenomena. Surface Science Reports, 2008, 63, 515-582)光催化领域的历史可以追溯到80多年以前,主要是对二氧化钛基涂料的粉化现象的早期观察以及对与有机化合物在阳光下接触的金属氧化物变黑的研究。在过去的20 年中,由于对空气和水的修复,自清洁表面和自灭菌表面的影响,它已成为一个研究非常深入的领域。在同一时期,研究人员也一直在努力地将光催化用于光辅助生产氢气。在研究最多的光催化剂二氧化钛上光催化的基本方面仍在积极研究中,并且最近已得到相当广泛的了解。但是,某些方面(例如光致润湿现象)仍存在争议,其中一些人认为该效应是一种简单的分解有机污染物的效应,而另一些人则认为存在其他效应,其中固有的表面性质被光修饰。在过去的几年中,一些有效的工具,例如在超高真空下对单晶执行的表面光谱技术和扫描探针技术,以及超快脉冲激光光谱技术都可以解决这些问题,并且新的见解也变得可能。除此之外,量子化学计算也提供了新的见解。最近已经基于二氧化钛开发了新材料,并且对可见光的敏感度得到了提高。作者在这篇综述中提供了一些亮点的概述,在回顾一些起源的同时,并指出一些可能的新方向。
  • 化物所宽光谱响应光催化剂分解水研究获进展
    近日,中国科学院大连化学物理研究所催化基础国家重点实验室及洁净能源国家实验室中科院院士李灿和&ldquo 百人计划&rdquo 学者章福祥研究员负责的宽光谱响应半导体光催化分解水研究取得新进展:通过对宽光谱捕光材料Ta3N5 (Eg: 2.1 eV,吸收带边可至600 nm)与高效氧化助催化剂CoOx之间的界面进行MgO纳米层修饰,不仅改善了CoOx与其界面接触和分散状态,而且还对半导体Ta3N5表面起到钝化保护作用,使光催化体系在可见光长波段500&minus 600 nm激发条件下的分解水放氧量子效率(AQE),由文献最高值5.2%提升至目前的11.3%。相关研究结果在线发表在《德国应用化学》期刊上。   太阳能光催化分解水制氢是实现太阳能光-化学转化的重要反应,被认为是化学领域的一个&ldquo 圣杯&rdquo 式的反应。光催化水分解反应主要涉及质子还原和水氧化两个半反应,其中水氧化是涉及多电子转移、热力学爬坡的反应,被认为是实现上述太阳能光化学转化的速控步。太阳能光催化转化涉及如何实现太阳能宽光谱利用、如何实现高效的光生电荷分离以及表面的催化转化等关键科学问题,然而随着半导体催化剂吸收带边的红移,其驱动光生电荷分离以及水分解(还原、氧化)的能力就随之变弱。因此,太阳光的充分利用与光生电荷的高效分离常常不易兼得,要实现宽光谱响应的光催化剂高效水氧化过程是一个非常具有挑战性的难题。   助催化剂可有效促进光生电荷分离和催化转化,李灿研究团队在国际上明确提出了双助催化剂策略(Acc. Chem. Res. 2013, 46, 2355)。最近几年,为了攻克宽光谱响应光催化剂上水氧化这一科学难题,他们发展了高温负载廉价助催化剂CoOx的策略,在LaTiO2N (Eg: 2.1 eV)上取得了比传统贵金属IrO2和RuO2助催化剂更高的放氧性能(J. Am. Chem. Soc. 2012, 134, 8348-8351.),随后又成功地将这种CoOx负载策略拓展到了新开发的宽光谱响应的氮掺杂氧化物Sr5Ta4O15-xNx 和MgTa2O6&minus xNx材料体系上(J. Mater. Chem. 2013, 12, 5651 Chem. Commun. 2014, 50, 14415)。   该研究进一步利用MgO纳米层调变宽光谱响应半导体Ta3N5与助催化剂CoOx之间的界面性质,通过改变半导体材料表面的亲疏水性,改善了助催化剂的纳米分散以及界面间电荷的转移,取得了目前宽光谱响应光催化剂上分解水放氧反应的最高量子效率,为发展高效的光催化体系提供了新策略。   该研究工作获得基金委重大基金、科技部&ldquo 973&rdquo 项目以及中科院&ldquo 百人计划&rdquo 人才项目资助。 宽光谱响应光催化剂分解水研究取得新进展
  • 应用 | 高效捕获和灭活生物气溶胶的仿生蜘蛛丝光催化剂
    研究背景图1 捕获和灭活空气中细菌的ASS光催化剂的示意图含有生物体的生物气溶胶,如细菌、病毒、花粉、孢子和真菌,会长时间悬浮在空气中。它们广泛存在于室内和室外环境中,这些生物气溶胶可以引起疾病的传播,捕获和灭活生物气溶胶是尤为必要的。在自然界中,蜘蛛丝可以主动捕获空气中微小的尘埃颗粒和微滴;微滴结合形成更大的液滴,将小的尘埃颗粒和水分集中在蜘蛛丝上。近日,广东工业大学环境健康与污染控制研究院、环境科学与工程学院安太成教授团队在著名综合学术期刊Nature Communications杂志上发表了相关论文。在这项工作中,作者基于蜘蛛丝捕获空气中的微尘并将雾气凝聚成微小液滴的特性,制备了具有周期性纺锤结构的亲水“仿生蜘蛛丝”光催化剂,它由尼龙纤维上TiO2的周期性纺锤体结构组成,可以有效地捕获和浓缩空气中的细菌,形成液滴光催化微反应器,并利用固液界面光照射下光催化产生的高效自由基原位实现对生物气溶胶的连续高效光催化灭活。研究发现,ASS光催化剂的捕集能力主要归因于表面粗糙度引起的亲水性、拉普拉斯压差、纺锤体结大小和表面能量梯度的协同效应。ASS光催化剂捕获的细菌在液滴内或空气/光催化剂界面被光催化灭活。这一策略为生物气溶胶净化材料的构建铺平了道路。催化剂的设计将尼龙纤维浸在TiO2/PMMA/(DMF +乙醇)溶液中,以5&minus 95cm s&minus 1的速度抽出,制备了混合TiO2/PMMA主轴结的纤维。在纤维表面形成的一种薄膜,由于瑞利不稳定性,它沿着纤维自发地分离成周期性的聚合物液滴,然后在空气中干燥。在尼龙纤维(人工蜘蛛丝称为ASS)上形成周期性的光催化剂纺锤结,TiO2 光催化剂主要集中在纺锤结构上,其几何形状与蜘蛛的湿捕获丝相似。图2 ASS光催化剂的制备仿生捕获仿生蜘蛛丝捕获生物气溶胶经过捕获、运输及浓缩三个阶段。仿生蜘蛛丝捕获生物气溶胶后,微生物随着小液滴从连接结构处浓缩运输至纺锤结构处。图3 ASS光催化剂对生物气溶胶的捕获过程捕获机理和表征仿生蜘蛛丝的亲疏水性表征,则采用配备20 pL滴定器的接触角测试仪(KRÜ SS DSA30M)测定单纤维在不同湿度下的水接触角。图4 KRÜ SS DSA30M接触角测量仪如图5所示,通过采用不同的纤维基底制备仿生蜘蛛丝,本研究发现亲水性更强的尼龙基底所制备的仿生蜘蛛丝具有更好的捕获生物气溶胶的性能。说明亲水性对仿生蜘蛛丝的捕获性能有较大影响。图5b显示,在湿度 50%时,接头的水接触角(θ)为97.5°(θ90°,疏水),而在湿度 80%时,水接触角为88.9°(θ图5.ASS光催化剂的生物气溶胶捕获机理a具有不同纤维衬底的ASS光催化剂的生物气溶胶捕获性能。b单个ASS光催化剂在不同湿度下的水接触角。c不同RH下细菌与ASS光催化剂之间的粘附力。d用ASS光催化剂用不同的β、主轴节的高度(H)和关节的长度(L)捕获的生物气溶胶的光学图像。e不同形貌的ASS光催化剂的生物气溶胶捕获性能。F ASS光催化剂的SEM图像和AFM图像。i说明了ASS光催化剂的生物气溶胶捕获和浓缩机制。结论综上所述,本文通过将二氧化钛与周期性主轴结集成,开发了一种ASS光催化剂,并详细研究了生物气溶胶的捕获和失活性能及其相应的机理。ASS光催化剂的生物气溶胶捕获性能是纯尼龙的2倍,其失活效率为99.99%。生物气溶胶首先被亲水关节捕获,然后它们向纺锤节移动,留下亲水捕获位点暴露在外,以便进一步的生物气溶胶捕获。本文有删减,详细信息见原文Peng, L., Wang, H., Li, G. et al. Bioinspired artificial spider silk photocatalyst for the high-efficiency capture and inactivation of bacteria aerosols. Nat Commun 14, 2412 (2023). https://doi.org/10.1038/s41467-023-38194-1
  • 亚纳米尺度Cu3金属团簇抗菌催化材料研究获进展
    近日,中国科学院金属研究所沈阳材料科学国家研究中心研究员刘洪阳、博士研究生孟凡池等,与北京大学教授马丁、辽宁大学教授夏立新、香港科技大学教授王宁、中科院上海应用物理研究所研究员姜政、中科院山西煤炭化学研究所研究员温晓东等合作,精准调控亚纳米尺度Cu金属团簇结构,构建出亚纳米尺度下原子级分散且全暴露Cu3团簇纳米酶,其表现出优异的模拟氧化酶活性与抗菌性能。相关研究成果在线发表在《应用催化B:环境》(Applied Catalysis B: Environmental)上。   随着现代社会发展,越来越多的病菌随之出现,威胁人类健康,寻找新型抗菌材料刻不容缓。纳米酶是一类具有模拟酶催化活性的纳米材料,因强大多样的酶催化活性而备受关注。研究发现一些纳米酶具有模拟氧化酶、过氧化物酶等催化活性,其产生的活性氧物质可以有效地灭活细菌。目前,构建具有优异模拟酶催化活性的新型纳米酶研究存在挑战。与单原子催化剂相比,亚纳米尺度原子级分散且完全暴露的金属团簇催化剂不仅能提供相邻的金属原子作为催化位点,而且能保持充分的原子利用效率,提供了多种结构可能性和催化可行性。将这种原子级分散且完全暴露的金属团簇催化剂应用于抗菌领域,可有效提升抗菌性能,保护人类健康。   刘洪阳团队致力于亚纳米尺度金属催化材料的设计与应用研究。在前期研究工作基础上,科研团队在纳米金刚石-石墨烯杂化载体上构造了亚纳米尺度完全暴露Cu金属团簇,经球差电镜(图1)分析表明,原子级分散且完全暴露的Cu3团簇(Cu3/ND@G)锚定在富缺陷石墨烯表面。密度泛函理论(DFT)计算结果表明(图2),亚纳米尺度原子级分散且完全暴露的Cu3团簇作为活性中心有利于O2的吸附,从而促进催化O-O键断裂形成活性氧物质(OH),显著提高了Cu3/ND@G纳米酶的模拟氧化酶样活性。与Cu单原子纳米酶(Cu1/ND@G)和Cu纳米颗粒纳米酶(Cu-NPs/ND@G)相比,亚纳米尺度完全暴露且原子级分散的Cu3金属团簇纳米酶表现出优异的模拟氧化酶活性(Kcat=1.474×10-1s-1)。这种完全暴露且原子级分散的Cu3金属团簇纳米酶在NaAc缓冲液(pH4.5)中具有≥99%的抗菌率(图3),其结构和优异的抗菌性能(图4)显示了在生物医学、微生物防腐等领域的潜在应用价值。   研究工作得到国家重点研发计划纳米专项青年科学家项目、国家自然科学基金委员会企业创新发展联合基金重点项目/碳基能源重大研究计划重点项目/国际合作中港联合基金项目/面上项目、辽宁省“兴英才计划”、沈阳材料科学国家研究中心青年人才项目与企业合作项目的资助,并获得上海同步辐射光源的支持。 图1.A、B:Cu纳米粒子(Cu-NPs/ND@G)的球差电镜表征;C、D:亚纳米尺度Cu3金属团簇(Cu3/ND@G)的球差电镜表征  图2.Cu3/ND@G各种中间体沿模拟氧化酶反应路径的优化吸附构型与Cu3/ND@G、Cu-NPs/ND@G模拟氧化酶机理的自由能图,灰色、棕色、红色和白色的球分别代表C、Cu、O和H原子  图3.生长抑制试验:将不同的材料和大肠杆菌菌液孵育后涂在LB琼脂平板上,用A、空白,B、ND@G,C、Cu-NPs/ND@G,D、Cu3/ND@G处理。培养条件:37℃、24小时图4.亚纳米尺度下Cu3金属团簇活性中心结构与抗菌性能示意图
  • 闵恩泽:催化剂之恩 泽被苍生——2007年度获奖人
    人物介绍:   闵恩泽,1924年2月出生于四川省成都市。中国石油化工催化剂专家。是我国炼油催化应用科学的奠基人,石油化工技术自主创新的先行者,绿色化学的开拓者。   1946年毕业于重庆中央大学化学工程系。1951年获美国俄亥俄州立大学化学工程系博士学位。1955年回国后,先后任石油化工科学研究院题目组长、研究室主任、主任工程师、副总工程师、总工程师、副院长、首席总工程师、学术委员会主任。现任中国石化石油化工科学研究院高级顾问。中国科学院院士、中国工程院院士、第三世界科学院院士、英国皇家化学会会士。   半个世纪前,石油工业部北京石油炼制研究所(中国石化石油化工科学研究院前身,以下简称石科院)办公室只有几间小平房,实验设备只有从大连石油研究所搬来的几件旧设备,试验装置要靠自己制备,没有现成可循的技术资料,放眼周围是一片麦田。   如今这里已发生了翻天覆地的变化——高楼林立,1000多名科研人员,多项石油炼制技术国际领先,被称为“中国石化的重点科技支撑机构”。   这里,就是闵恩泽半个多世纪科学人生的主战场。   结缘石油化工   闵恩泽生于四川成都,自幼受“忠厚传家远,诗书继世长”的家风熏陶,喜爱读书。1942年抗战时期,因高中会考成绩优异,闵恩泽被保送到重庆国立中央大学学习土木建筑 后来又在大二转到化工化学工程系。   1946年,闵恩泽大学毕业后,在上海第一印染厂学习、工作两年。1948年3月,到美国俄亥俄州立大学攻读学位。   1948年暑假,闵恩泽刚去美国没多久,学校组织学生暑假去参观工厂,其中就有肯塔基州阿希兰德炼油厂。当看到用流态化原理建设起来的催化裂化装置,见到那黑褐色的原油馏分在这套装置中神奇地变成清亮透明的汽油时,闵恩泽惊奇且激动不已。在返程的路上,闵恩泽思绪万千:中国不知哪一天能建成这样的装置?   1951年7月闵恩泽获得博士学位,在芝加哥纳尔科公司担任副化学工程师,生活宽松、富裕。然而闵恩泽一心想要回国,用自己的所学报效祖国。为了回到祖国,闵恩泽动用了一切可以动用的公私关系。   经过不懈的努力,1955年10月,闵恩泽夫妻历经辗转,绕道香港,最终回到了阔别8年的祖国首都北京。   当时,中美关系处于紧张时期,周恩来总理《关于知识分子问题的报告》还没发表,这些从美国回来的知识分子多数单位不敢要。闵恩泽联系了三四个地方,没人敢要。中央大学化工系的师兄武宝琛将闵恩泽引荐给石油工业部部长助理徐今强,他拍板要了。徐今强安排闵恩泽参与筹建北京石油炼制研究所,闵恩泽在借来的几间旧平房里开始了后来延续半个世纪的催化剂研究。   强调“集体智慧”   炼油催化应用科学、石油化工技术自主创新和绿色化学的开拓,是闵恩泽的三大贡献领域。闵恩泽配合着我国石化、化工产业前进的步伐,在自己的专业领域内造诣精深,成就非凡,并在每一阶段都有属于自己的标志性贡献。但闵恩泽从不自傲,而是将成绩归于“集体智慧。”   “我只是个上台领奖的代表,这成绩是属于大家的,是几代石油石化人集体智慧的结晶。”总是强调“集体智慧”的闵恩泽很看重团队精神,“我绝大部分时间是唐僧,即要有信心和决心,指导大家去完成任务 我有时候是孙悟空,要去攻关,但是孙悟空本事再大,也有许多困难解决不了,需要找土地神来了解当地情况,还要向玉皇大帝、如来佛、观世音求救。我碰到不懂的东西,给同事、朋友打个电话请教 有时候还是沙和尚,要搞后勤,去筹备资金设备器材,遇到困难,还要向中国石化总部求救”。言谈中不无四川人幽默的特质。   “看完了电视剧《长征》,他跟我们说,做成一件事要不光有信念、有方法,还要有人。”他的博士生兼秘书姚志龙说。   闵恩泽前后带了50多位学生。龙军这样概括闵恩泽的教师角色:“他的贡献,更在于他带出了一支勇于攻关、善于团结、勤谨踏实的科研队伍,为石化研究储备了一个人才库,是我国炼油催化研究的中坚力量。”   著书传经验   从事石油化工研究50多年,闵恩泽从技术革新,到局部有所创新,到原始自主创新,走过了艰辛、成果丰硕的漫长历程。闵恩泽觉得,应该把自己从1984年以来在自主创新道路上的成功经验和失败教训归纳总结出来,以促进年轻一代科技工作者少走弯路,在创新道路上走得快一些。2008年,闵恩泽撰写了创新中国丛书之一《石油化工——从案例探寻自主创新之路》。   中国科学院院士白春礼为这本书作序,他写道:“此书在形式上很新颖,旁征博引,通俗易懂,不仅有生动的讲述,也有形象的比喻,读来令人耳目一新,亲切、自然、宛若春风拂面,细雨润物。总之,不管你是科研工作者、教育工作者,还是其他行业的工作者,相信这本书都会给你教益和启发。”这本书发行后,不久就又再版了一次。   闵恩泽非常重视自主创新,他认为我国自主创新要寄希望于年轻一代。为此,80多岁的闵恩泽多次到高等院校给学生们讲课,一讲就是一个小时以上,非常劳累。但他却时时牢记自己的社会责任。虽然闵恩泽的讲座、报告总是不变的“创新”主题,但针对不同的听众,他都采用不同的内容和讲法,尽量使其能感染、激励听众。   年迈不停步,志在未来   2008年2月,中国石化总工程师曹湘洪院士和中国科学院副院长李静海院士商讨开展合作项目,邀请闵恩泽院士参加,大家从战略性、前瞻性、全局性高度出发,确定在新能源领域开发“微藻生物柴油成套技术”,决定请闵恩泽负责筹备组织。   这是个全新的领域,年迈的闵恩泽又开始了边工作、边学习的科研历程。   2008年5月,闵恩泽组织召开了微藻生物柴油技术研讨会。会后,又考察了中科院各相关院所和中国石化生物柴油中试基地,编制了微藻生物柴油成套技术研发方案。   闵恩泽虽然积极投入微藻生物柴油成套技术的开发,但是他也清醒地认识到所面临的巨大挑战。现有的微藻生物柴油技术产业链长,投资大、成本高、不经济 几万吨/年规模的生产尚未实现 发展微藻生物柴油同时需要二氧化碳、阳光、土地三个资源,具备这三个条件的地区有限。   在闵恩泽主持下,到2011年12月中期检查时,该项目已取得了下列进展:建成了适应不同地区的微藻资源库 掌握了一种新的转基因方法来改造微藻 开发了多种光反应器 研究了稀微藻的回收方法 简化了微藻饼的加工流程。为规划建立万吨/年的户外装置奠定了基础。   2011年4月,在中国石化第三期青年骨干人才提高创新能力研修班上,闵恩泽作了“从原始创新到转变经济增长方式之路的探索”的讲话,重点介绍了中国炼油工业未来发展面临的挑战和对策,鼓励青年一代要努力创新,为承担这一光荣任务而奋斗。   生活中的闵恩泽   少小离家的闵恩泽,至今故乡情结深厚。哪怕到了国家最高科学技术奖的领奖台上,还是一口纯正的四川话。2004年,闵恩泽个人出资10万元捐赠给母校——北京师大成都实验中学,建立“闵恩泽奖学金”,资助优秀的在读学生。“只要回了成都,老先生都要抽出休息时间回母校,和小校友们交流。”姚志龙说。   而在学生眼里,他既是严师,又是关心自己的好老师。   “有一次我女儿钢琴比赛得了奖,老先生知道了还给她订了一个蛋糕。”姚志龙说,“去年12月31日,我带女儿去拜访老先生,老先生还给我女儿唱了3个版本的《上海滩》,9岁的小孩从没见过这么可爱的老头,很高兴,结下了忘年交。他还给我女儿题字,‘震岚小友:诚信宽容、勤奋学习、劳逸结合、加强锻炼’。我女儿回去就把这幅字和与闵先生夫妇的合影装在镜框里,挂在墙上,激励自己。”   闵恩泽唯一的女儿闵之琴在美国。在她看来,爸爸闵恩泽在生活中就是一个快乐、颇具幽默感的老小孩。她常听爸爸说要“管住嘴,迈开腿,保持心态平和”,但闵恩泽又常说自己既管不住嘴,又迈不开腿,但能做到心态平和!闵之琴认为这是他能经几次病魔折磨,在80多岁仍能保持这样健康状态的关键。   闵之琴曾这样描写自己的父亲:   “爸爸不是那类工作时工作、休息时就休息的人。他是工作与休息不分,他的头脑很单纯,满脑想的都是催化剂,因为催化剂对他不仅是工作,也带来快乐,对他也是一种休息。同时,他也成天在想如何去原始创新,有了新想法,他也高兴!   “他有自己的休闲方式。他喜欢听京剧,特别是京剧大师言菊朋唱的“卧龙吊孝”,唱腔的宽窄高低、抑扬顿挫,他听得津津有味。   “他还喜欢看网球,特别是瑞士天王费德勒的比赛,成为他的忠实粉丝。只要有大师赛,如奥网、美网、温布尔顿网球公开赛,他一定坐在电视机旁,从第一轮、第二轮,直到最后决赛。   “爸爸还是一位‘歌唱家’。在石科院的春节联欢会上,他唱《上海滩》,还有自己的特点,广东话与四川话、新老上海滩歌词混唱。他在作报告时,讲到科技上要有成就,就需要各尽所能的团队精神和坚持到底的精神,就像《西游记》主题歌中的‘你挑着担,我牵着马,迎来日出,送走晚霞,踏平坎坷成大道,斗罢艰险又出发’。他会在讲台上带领大家一起唱《西游记》主题歌。   “爸爸由于‘管不住嘴’也成了一位美食家,北京的川菜、粤菜、鲁菜、湘菜,法国、意大利、俄罗斯西餐馆等等的招牌菜,特别是每家好吃价廉的菜是什么,他都清楚!正是这种对生活的每一份乐趣的热爱,对工作的每一点进展的兴奋,爸爸永远像一个年轻人”。   2010年,闵恩泽86岁生日时,闵之琴连续写了两张贺卡,祝老爸爸生日快乐。一封贺卡上这样写:   “时间在快乐地流淌,年纪在轻轻地增长……   “老爸爸的创新本领继续向高峰挺进——生姜还是老的辣!   “老爸爸的粉丝团队犹如雨后春笋般扩大——中石化竟有了个吸引青年学子的老头!   “老爸爸的演唱才华证明了“大器晚成”的道理——怎么还没有制碟的给川音《西游记》主题歌出CD?   “老爸爸的美食体验在日新月异——牙口好还能跟得上繁荣富强的餐饮业!  “任随世上事万变,老爸爸本色不变……   “虽然名利堆在面前,老爸爸还是夜里起来读原始期刊——奠基者的看家本事!   “86岁老爸其实还是那个成都小康家庭走出的孩子:忠厚、善良、勤奋、天真,没新花样啰!   “祝我的老爸爸在无忧无虑中欢度生日,您是我才气的源泉”。   闵恩泽读了这些贺卡后,感叹道:“知我者,女儿也!”   揭秘闵恩泽爱情故事:伉俪院士佳偶天成——记中国科学院院士闵恩泽、陆婉珍夫妇    闵恩泽夫人陆婉珍为丈夫庆祝生日   2008年元月8日上午,北京人民大会堂大礼堂里鲜花吐艳,灯火辉煌,洋溢着喜庆的气氛,国家科技奖励大会在这里召开。在欢快的乐曲声中,中国科学院院士、中国工程院院士、中国石油化工股份有限公司石油化工科学研究院高级顾问、84岁高龄的闵恩泽稳健地走上主席台,庄重地从面带微笑的胡锦涛总书记手中接过“2007年度国家最高科学技术奖”大红证书。   此时,北京西郊石油化工科学研究院宿舍区一幢普通的住宅楼里,同为中国科学院院士的闵恩泽的夫人陆婉珍正全神贯注地收看中央电视台国家科技奖励大会实况,老人的眼里噙着泪花,脸上洋溢着幸福的笑容。   闵恩泽、陆婉珍这对鹤发童颜的伉俪院士,用他俩辉煌的人生谱写了一曲科坛佳偶的爱情乐章。   (一)求学成才 一路相伴   1942年,正是中华民族蒙受日本军国主义侵略奴役的苦难岁月,江山破碎,民不聊生。   这一年秋天,闵恩泽和陆婉珍这两个年方18、素不相识的青年男女,怀着科学救国的共同理想,从不同的地方不约而同地来到位于陪都重庆的中央大学求学。闵恩泽来自素有“天府”之称的成都,而陆家大小姐婉珍则从母亲河长江的入海口上海迢迢千里而来。两人是同一个专业又在同一个班级。   也许是一见钟情,秀丽的江南女子陆婉珍第一眼看到十分英俊的四川小伙子闵恩泽便怦然心动。   闵恩泽的课堂笔记既工整又详细,陆婉珍常以对照笔记为借口与闵恩泽亲密接触。天长日久,闵恩泽也喜欢上这个上海姑娘。每次上完课,便主动把笔记递给陆婉珍,引起同班几位女生对陆婉珍的“妒忌”。   毕业的那天晚上,陆婉珍约闵恩泽一块去上海找工作,这让闵恩泽犯了难。他的父亲要求他回家乡支撑门户,父命难违,一对刚刚开始交往的男女青年只好各奔前程。   两人依依惜别。陆婉珍在家乡上海一家印染厂谋了一份技术员的工作。闵恩泽则回到家乡成都,在一家自来水厂做分析化验工。   没多久,闵恩泽听说当时的中国纺织建设公司要招收一批印染技术人员,经过培训,有出国的机会,这让闵恩泽眼前一亮,他很想到外面的世界去闯一闯。通过考试,闵恩泽得了第一名。于是在1946年10月,闵恩泽到了当时中国最大的印染厂——上海第一印染厂当上了漂染车间的技术员。   也许是命运的安排,这家印染厂正是陆婉珍工作的工厂。两人在上海不期而遇,旧情复炽,不到一个月,闵恩泽和陆婉珍已经是一对热恋中的情人,如影随形,黄埔江边、上海滩头,时常徜徉着他俩甜蜜相偎的身影。   可追求幸福的冲动并没有让他俩沉湎于爱情的缠绵之中。1947年初,陆婉珍作出了一个让家人十分震惊的抉择,这位大家闺秀只身一人带着外婆给她的一枚金戒指作为盘缠赴美求学。一年后,闵恩泽循着陆婉珍的足迹,也赴美留学。   他俩第三次相聚,再度成为同窗。1948年春,闵恩泽在美国俄亥俄州立大学化学工程系攻读研究生,当年就拿到了硕士学位,又继续攻读博士 这时陆婉珍也拿到硕士学位,考入俄亥俄州立大学化学工程系攻读博士。   1950年6月,闵恩泽和陆婉珍双双通过博士论文答辩。一个良辰吉日,在神圣悠扬的婚礼进行曲中,英俊儒雅的闵恩泽挽着身披洁白婚纱的新娘陆婉珍款款步入了婚姻的殿堂。   (二)报效祖国 共赴国难   上世纪50年代初,新中国成立伊始,百废待举,以钱学森为代表的中国留美学者不顾个人安危纷纷踏上返回祖国的旅程。   闵恩泽、陆婉珍夫妇也打点行装,准备启程回国,他们的恩师和朋友都来挽留他们。是啊,论生活条件,在美国,他们什么都有了,可金钱、地位、洋房、汽车对他们来说,只是过眼烟云,他们更执着于报国的情结。虽说祖国还是一穷二白,可那是他们的根。闵恩泽、陆婉珍夫妇去意已定。   1955年底,闵恩泽和陆婉珍绕道香港,辗转回到祖国,当他们踏上祖国大地的那一刻,泪水夺眶而出。   可迎接他们的并没有鲜花和掌声,一切都是那么平淡。回国之初,很多单位都不敢接收从美国回来的人,他们接连吃了几次闭门羹。   后来闵恩泽、陆婉珍来到刚刚组建的石油化工科学研究院,待遇微薄,条件简陋。还没等他们大显身手,接踵而至的就是没完没了的政治运动。莫须有的帽子让他们寒心,凭空飞来的棍子打得他们晕头转向,痛苦万分。   1957年反右斗争,无休止的会议,检举与被检举,攻讦与被攻讦……心直口快的陆婉珍看不下去了,“人家国外在搞研究,你们在这里整天开会,怎么会赶得上人家?”领导正愁从哪里开刀呢,这女博士胆子够大,自己撞到枪口上来了。更何况,还是留过美的,有海外背景,父亲又是旧上海的资本家。在石油化工科学研究院,陆婉珍当然第一个被揪了出来。但她不是党员,够不上“右派”的条件,单位只好教育一番了事。亲友们都为她捏着一把汗:“婉珍哪,典型的幼稚病!”时年,陆婉珍33岁。   “文革”伊始,陆婉珍带着7岁的女儿被下放到湖北潜江干校。种棉花、玉米,还要挑煤和修厕所,女儿偏又营养不良得了肝炎。挑煤不只是力气活,挑着百十斤沉的担子从一条窄窄的舷板上稳稳当当地走下来,可不是那么容易。别说女同志,就是很多男人也干不来。可陆婉珍挺了过来。   一向循规蹈矩、老实本分的闵恩泽在“文革”中也没有逃脱噩运。1969年,姚文元发表了题为《上海机床厂道路——从工人中间培养知识分子》的文章。第二天,闵恩泽就被拉出来批斗了,因为他说过“搞科研还得靠专家学者”的话。   此后,打扫厕所、运煤渣、烧煤、关禁闭、写揭发材料、老实交代“罪行”成了闵恩泽数年中生活的主要内容。这是那个年代科学家们共同的遭遇。   然而,这一切不公正的待遇对于闵恩泽和陆婉珍来说,都无怨无悔。“祖国”二字在他们心目中依然是神圣的、沉甸甸的。他们说,做父母的一时错怪了儿女,而儿女爱父母的心是永远不会变的。共赴国难,义无反顾,这就是当年海外归来的知识分子的心路。   折腾了一阵子,造反派把闵恩泽当成“死老虎”扔在一旁。无人过问,闵恩泽难得“清闲”,利用“闭门思过”的机会,偷偷地回忆石油催化剂的实验过程。   而在干校劳动的陆婉珍则忙里偷闲地复习她的石油分析专业,蛰伏一隅,等待时机,期望有朝一日重新开始她的科研项目。   于是,当他俩被宣布审查结束获得“解放”后,揩干委屈的泪水,又双双扎到实验室中,就像回到久别的情人怀抱里一样幸福。   (三)科研攻关 比翼双飞   早在“文革”前的10年中,闵恩泽和陆婉珍就分别在各自的研究领域内,取得了丰硕的科研成果,与世界水平接近。   上世纪60年代初,苏联背信弃义,在撤走专家的同时,还带走全套炼油催化剂技术资料。没有催化剂,石油就等于废料,无法提炼出航空汽油。闵恩泽临危受命,几十天吃住都在现场,关键时刻与工人们一起钻进高温炙烤的干燥室里查找原因,有时接连二十几个小时不合眼。经过数百次试验,终于研制出我国一向依赖别国的、生产航空汽油所必须的小球硅铝裂化催化剂,而且质量还优于国外同类产品。接着,他又研制出我国炼油工业急需的磷酸迭合催化剂、铂重整催化剂和微球硅铝催化剂。   而陆婉珍也有不菲的成果。在上世纪60年代初,世界上色谱技术刚一露头,陆婉珍便拿出了中国人自己的色谱仪。接着,根据科研生产发展的需要,在分析科技领域里她继续开拓,在石油化工科学研究院逐步建立了光谱、质谱、电子显微镜、差热、发射光谱、电化学、红外光谱、紫外光谱、核磁共振、x-射线衍射光谱、x-射线荧光光谱、原子吸收光谱、色-质联用、电子能谱、激光拉曼等各种化学、物理分析技术和手段,全都达到了当时的世界水平。并且,由于她的努力,科研成果很快在大企业孵化,在石油化工生产建设中发挥着特殊作用。   10年浩劫,惚若隔世,中国石油化工科技与西方列强相比,已经落后了一大截。   1978年,全国科学大会在北京召开。会上,闵恩泽获得了“在我国科学技术工作中做出重大贡献的先进工作者”称号。陆婉珍的科研成果也获得了大会的奖励。年逾花甲的闵恩泽、陆婉珍夫妇倍受鼓舞。   1980年以后,闵恩泽指导开展新催化材料和新化学反应工程的导向性基础研究,其中新催化材料有层柱黏土、非晶态合金、负载杂多酸、纳米分子筛等,新化学反应工程有磁稳定床、悬浮催化蒸馏。在这些研究的基础上,已开发成功己内酰胺磁稳定床加氢、烯烃与苯烷基化的悬浮催化蒸馏等新工艺。近年来,他又进入绿色化学的研究领域,曾任国家自然科学基金委员会“九五”重大基础研究项目“环境友好石油化工催化化学和反应工程”的主持人。他还扩展至开发化纤单体己内酰胺的制造技术,正开发新的工艺,并取得长足进展。   这期间,闵思泽先是担任石油化工科学研究院副院长兼总工程师,后又被任命为石油化工科学研究院首席总工程师。他曾两次当选为全国先进工作者 于1980年当选为中国科学院院士 1994年当选中国工程院院士 同年,他又当选为第三世界科学院院士 还是这一年,中国石化总公司党组做出《广泛开展向闵恩泽同志学习的决定》。于是,在全国石化系统掀起了学习闵恩泽的热潮。1995年,他又荣获了首届“何梁何利”基金科学与技术进步奖。   陆婉珍的科研也是硕果累累。上世纪80年代,随着科研和生产技术的不断发展,对分析测试的要求在样品数量、分析周期、分析项目和数据准确性等方面都有了更高的标准。国际上相关实验室已开始朝网络化管理的方向发展。陆婉珍敏锐地意识到了这一问题,积极呼吁实验室的信息化管理。   陆婉珍是我国实验室信息管理系统(LIMS)学术界公认的领袖人物,LIMS引发了实验室的一场革命,带动了一批产业,也带出了一批人。目前国内几家产品基本是在这一基础上发展起来的,现在很火的ERP管理,也是这一管理思想的延续。   1995年,陆婉珍将工作重心转向了近红外光谱分析的研究,该技术省时、省钱又省人力。   这一技术的广泛应用,是一场分析化学的革命。引导这场革命的,正是陆婉珍。   这期间,陆婉珍一直担任着石油化工科学研究院总工程师。曾当选为全国“三八红旗手”和全国妇联执行委员。1991年,她当选为中国科学院院士。   闵恩泽当之无愧地被中外科技界公认为我国炼油催化应用科学奠基人,陆婉珍也被公认为我国分析技术领域的学术带头人。夫妻俩在石油化工科技领域比翼齐飞,美誉共播。   (四)恩爱体贴 相濡以沫   54个春秋,54个年轮,闵恩泽陆婉珍夫妇走过了银婚,又走过了金婚,如今都是耄耋之年,满头银发见证了二位老人的沧桑人生,也演绎着他俩恩爱的婚姻,他们相濡以沫,一路走来,始终如一。   两位院士看起来精神矍铄,没想到,他们都是曾与病魔做过搏斗的人。闵恩泽数年来动过3次大手术。1964年他患肺癌,被切除部分肺叶,同时摘除了一根肋骨。1989年又患胆囊结石,把胆切除了。最厉害的是1999年春节期间,因胆管堵塞,引起了胰腺炎,生命垂危,又做了一次手术。而陆婉珍多年前曾患肾癌,一侧肾被摘除。   夫妇俩患难与共,相依为命。闵恩泽手术住院期间,陆婉珍日夜守候在病榻前,忙前忙后。陆婉珍病了,闵恩泽也是汤药伺候,无微不至。   两位院士唯一的女儿目前在美国工作,彼此照顾已经成为他们的生活习惯。有一次两位老人一同在石油化工科学院机关二楼开完会后,陆婉珍去洗手间,闵恩泽一直站在楼梯口,等老伴到跟前后,才和她一起相互搀扶着走下楼。那情景让在场的人为之动容。   而平时两位老人在科研之余也沉醉于中西文化交融之中。每当闲暇时,一段京剧余派的须生唱腔,一曲贝多芬的《英雄交响曲》,都会使闵恩泽深深陶醉 而中国女革命家秋瑾的诗篇和法国居里夫人的传记,是陆婉珍自幼至今都痴迷的书。   有时候,他俩会合唱一首美国19世纪的乡间小曲,也会共同朗诵一段《古文观止》中的名篇,陶冶情操,愉悦生活。   他们的家里时常是高朋满座,胜友如云。他们特别喜欢与年轻人交流,从世界杯到奥运会,从亚洲金融危机到伊拉克战争,从当代影视明星到于丹、易中天等百家讲坛学术明星,无所不谈。每到这时,老人和大家你争我辩,笑声朗朗,其乐融融。
  • 上海有机所在PdH催化的不对称迁移烯丙基取代研究中获进展
    中国科学院上海有机化学研究所天然产物有机合成化学重点实验室研究员何智涛课题组在Nature Communications上,在线发表了题为Palladium-Catalyzed Regio- and Enantioselective Migratory Allylic C(sp3)-H Functionalization的研究论文。该工作利用链行走的策略为惰性烯丙位C-H键的不对称官能团化提供了新思路,揭示出亲核试剂的pKa值对迁移和取代历程的影响,并通过机理研究阐释和验证了反应的基本历程。  相较于传统带有离去基的烯丙基取代反应,不对称烯丙基C-H键的直接官能团化更为直接和步骤经济。目前,该领域的研究仍面临诸多问题。大部分相关催化工作要求烯丙位C-H被相邻的杂原子或sp2碳单元进一步活化,对非活化的烯丙位C-H键的不对称官能团化的研究相对局限。过渡金属催化的链行走策略已被证实可以有效活化远程的惰性C-H键。基于此,科研人员设想利用过渡金属参与的链行走策略来定位烯丙位的C-H金属化,由此产生的稳定烯丙基金属中间体再被分子间的亲核试剂捕获,从而实现非活化的烯丙位C-H键的高效不对称官能团化(图1)。  该反应对于不同的链长度和取代基均有较为突出的结果,兼容复杂迁移体系的同时也能实现了手性控制(图2)。此外,亲核试剂的pKa值与反应的活性密切相关。只有当亲核试剂的pKa值处于13-18间时才有相对较高的反应活性。pKa值高的亲核试剂往往无法促进开始的烯烃迁移的发生,而pKa值低的亲核试剂虽能有效实现金属迁移,但却具有相对较弱的亲核取代能力。  进一步探究反应机理(图3)并结合传统的迁移反应和烯丙基取代过程,研究推测,反应可能首先由二价钯在亲核试剂作用下还原形成零价钯启动,随后在碱的作用下被质子氧化形成二价PdH物种,与末端烯烃配位继而发生快速链行走过程得到烯丙基钯中间体,再接受亲核试剂的进攻,从而得到烯丙位C-H官能团化的产物,同时再生零价钯完成催化循环历程。研究发现,反应初期存在诱导期,为初始零价钯形成过程。该串联过程对于催化剂和亲核试剂均呈现出一级反应,而对二烯底物的动力学符合Micheaelis-Menten模型,即饱和动力学关系,由此推断反应决速步为亲核取代过程。   研究工作得到国家自然科学基金委员会、上海市科学技术委员会、中科院等的资助。
  • 中科院青岛能源所石墨炔作为催化剂应用研究获进展
    p style=" text-align: center " img title=" 001.jpg" src=" http://img1.17img.cn/17img/images/201711/insimg/60d0cd7a-7ebb-4aef-90aa-cec1436c2dc8.jpg" / /p p   中科院青岛生物能源与过程研究所新型能源碳素材料团队研发了一种氮掺杂的石墨炔材料,用作氧还原反应,表现出优异的催化性能,相关工作近日发表于《应用材料与界面》。 /p p   石墨炔是一种新型碳材料,由炔键和苯环连接而成,具有特殊的sp杂化(一种较常见的杂化方式)碳原子,已被报道在光催化、电催化以及生物方面均表现出优异特性。研究利用石墨炔材料独特的炔键引起碳骨架中部分碳原子带正电的特性,进一步通过氮修饰,将石墨炔材料成功应用于氧还原电催化反应,表现出优异的氧还原催化性能。 /p p   石墨炔中碳原子被氮取代后,其电荷结构将被调控,与氮相邻的碳原子表现出更强的正电性,可作为氧还原反应的活性中心。由于石墨炔材料具有不同于常规碳材料(石墨烯、碳纳米管、石墨、无定形碳等)的特殊sp杂化碳原子,氮原子可以通过取代sp杂化碳,得到新的氮掺杂方式,理论和实验结果表明这种新的掺杂方式可以有效提高碳材料的催化性能。所制得的氮取代的石墨炔材料的氧还原催化性能与商业碳载铂催化剂相当。该工作显示石墨炔在电催化材料和燃料电池中的巨大应用前景,也为解决氧还原反应中铂等贵金属催化剂高昂的成本和储量有限的问题,提供了重要的途径。 /p
  • 崔屹荣获国际材料界大奖:2020年美国材料学会奖章(MRS Medal)
    p   12月2日,美国材料学会(MRS)奖励委员会宣布,斯坦福大学材料科学系教授崔屹荣获2020年美国材料学会奖章(MRS Medal)。崔屹荣膺此项殊荣的理由是:在先进材料设计、合成和能源存储特性方面的杰出贡献,特别是锂电池技术。 /p p style=" text-align: center "    img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/3fc41768-9178-4e87-972d-e1e141faf68e.jpg" title=" CuiYi.JPG" alt=" CuiYi.JPG" / /p p    strong 崔屹简介 /strong /p p   崔屹,男,纳米材料科学家,斯坦福大学教授。1998年崔屹获得中国科学技术大学理学学士学位 2002年在哈佛大学获得博士学位 2003年在加州大学伯克利分校从事博士后研究 2004年入选世界顶尖100名青年发明家 2005年进入斯坦福大学材料科学与工程系任教,先后担任助理教授、副教授、教授 2014年获得首届纳米能源奖 2017年获得布拉瓦尼克青年科学大奖之物质科学与工程技术奖 。研究领域崔屹的主要研究领域包括:纳米材料的设计,合成和性能研究以及应用在能源存储,太阳能电池,催化,水和空气净化 二维层状材料 拓扑绝缘体 纳米生物学。截止到2016年,崔屹在纳米材料研究领域取得了开创性研究成果,在先后在包括Science、Nature、Nature Nanotechnology 、Nature Materials、Nature Communication、JACS等世界顶级期刊发表高水平科技论文330多篇,其研究团队致力于纳米、新材料、新能源、环境保护和生物科学的研究,在科技创新与成果转化方面拥有丰富经验,其创新性的研究成果和发明亦引起了工业界的关注。 /p p br/ /p
  • 崔琦:1998年度诺贝尔物理学奖获得者
    瑞典皇家科学院九八年十月十三日宣布,把一九九八年诺贝尔物理学奖授予德国科学家霍斯特斯托尔默、美籍华人科学家崔琦和美国科学家罗伯特劳克林,以表彰他们为量子物理学研究做出的重大贡献。崔琦是香港培正中学的毕业生。   瑞典皇家科学院十三日在斯德哥尔摩发表的新闻公报说,斯托尔默教授和崔琦教授在一九八二年对在强磁场和超低温实验条件下的电子进行了研究。他们发现,在这种条件下大量相互作用的电子可以形成一种新的量子流体,这种量子流体具有一些特异性质。一年之后,劳克林教授对他们的实验结果做出了解释。在这一发现的基础上,科学家又陆续作出一些重大发现。公报强调说,这三位科学家的成果是量子物理学领域内的重大突破,它为现代物理学许多分支中新的理论发展做出了重要贡献。   崔琦和斯托尔默在一九八二年对在强磁场和超低温实验条件下的电子进行了研究。他们将两种半导体晶片砷化镓和砷氯化镓压在一起,这样大量电子就在这两种晶片交界处聚集。他们将这种晶片结合体放置在仅比绝对零度高十分之一摄氏度(约摄氏零下二百七十三度)的超低温环境中,然后加以相当于地球磁场强度一百万倍的超强磁场。他们发现,在这种条件下大量相互作用的电子可以形成一种新的量子流体,这种量子流体具有一些特异性质,比如阻力消失、出现几分之一电子电荷的奇特现象等。一年之后,劳克林教授对他们的实验结果做出了解释。在这一发现的基础上,科学家又陆续作出一些重大发现。   电子量子流体现象的发现是量子物理学领域内的重大突破,它为现代物理学许多分支中新的理论发展做出了重要贡献。今年四月,崔琦因此获得美国著名的弗兰克林奖。   崔琦在互联网自己开设的网址上称,他的主要学术兴趣是研究金属和半导体中电子的性质。他的这些研究将可应用于研制功能更强大的电脑和更先进的通信设备。   诺贝尔物理学奖得主之一的崔琦,一九三九年生于中国河南省,五十年代到香港接受教育,一九五七年在培正中学毕业,随后到美国继续深造,一九六七年在美国芝加哥大学获物理学博士学位,此后到贝尔实验室工作,一九八二年至今任美国普林斯顿大学教授,目前他从事电子材料基本性质等领域的研究。崔琦的妻子是美国人,他们有两个女儿。   在美国,据新华社引述崔琦教授来自中国的学生李济群等人介绍,崔琦为人随和,但对学生要求非常严格。他思维敏锐,在师生中威望很高。十三日清晨崔琦像往常一样来到学校,当大家向他表示祝贺时,他像平常那样微微一笑,只说了句“谢谢”就躲了起来。据介绍,崔琦非常关心祖国,经常与中国学生谈论祖国的发展情况。
  • 宁波材料所等在二维石墨烯限域MOFs催化水裂解析氧方面获进展
    开发高效电催化剂进行水的电化学转化,以生产环保、可持续的氢能源,是备受关注的热点问题。阳极处的析氧反应(OER)在水裂解中发挥关键作用。而OER反应需要相对较大的热力学电位(超过1.23V vs. RHE)以克服因四个“电子-质子”转移过程导致的缓慢动力学。近年来,金属有机骨架(MOFs)因大比表面积、孔隙可调以及多样的成分和金属中心而成为高效OER电催化剂的理想材料,但MOFs固有的低电导率严重阻碍了其催化活性。 中国科学院宁波材料技术与工程研究所界面功能高分子材料团队研究员张涛、浙江大学研究员侯阳、中科院大连化学物理研究所研究员肖建平合作,开发出二维纳米限域策略,即通过双电极电化学系统将导电性差的MOFs限域在石墨烯层间(图1),进而提高其OER催化活性。该研究所获得的NiFe-MOF//G催化剂仅需106mV的极低过电位即可达到10 mA cm-2电流密度,优于原始NiFe-MOF及此前报道的多数MOFs及其衍生物的催化活性(图2)。同时,NiFe-MOF//G表现出优异的OER催化稳定性,在10 mA cm-2电流密度下可稳定运行超过150h(图2)。 科研人员在进一步的表征及理论计算中发现,石墨烯多层纳米限域不仅可在MOF结构中形成高活性NiO6-FeO5畸变八面体物种,优化MOF材料的电子结构和催化中心(图3),而且能够降低水氧化反应的极限电位(图4)。该工作还证明了该策略能够扩展至其他不同结构的MOFs,并提高它们的电催化活性。该成果对原始MOFs作为惰性催化剂的普遍概念提出了挑战,揭示了低导电性甚至绝缘MOFs在电催化中的应用潜力。 相关研究成果以Exceptional catalytic activity of oxygen evolution reaction via two-dimensional graphene multilayer confined metal-organic frameworks为题,发表在《自然-通讯》(Nature Communications)上。研究得到中科院海洋新材料与应用技术重点实验室开放课题等的支持。   论文链接 图1.NiFe-BTC//G的合成过程与结构表征 图2.NiFe-BTC//G在碱性条件下的电化学析氧催化性能 图3.NiFe-BTC//G的局部原子配位环境和电子结构分析 图4.OER活性的密度泛函理论计算二维材料是指电子仅可在两个维度的纳米尺度(1-100nm)上自由运动的材料,拥有独特的物理、化学、电学、光学等特性,在半导体、电子器件以及复合材料等领域有具有重要的应用价值,已成为国内外学者的研究热点。为促进二维材料的研究与应用,仪器信息网将于2022年11月15日组织召开 “二维材料的表征与评价”主题网络研讨会。邀请业内专家以及厂商技术人员就二维材料最新应用研究进展、检测技术及标准化等分享精彩报告,为广大用户搭建一个即时、高效的交流平台。点击图片直达会议页面
  • 万惠霖院士获中国催化成就奖
    11月29日,第十五届全国催化学术会议在广州开幕,会议颁发了第三届中国催化奖。国际催化协会理事会主席、中国化学会催化委员会主任李灿院士,中国工程院副院长谢克昌院士,华南理工大学校长李元元、副校长章熙春,国家自然科学基金委、中国化学会催化委员会、广东省科协领导等出席大会开幕式。   厦门大学万惠霖院士获中国催化成就奖(冠名张大煜奖)、中国科学院大连化学物理研究所申文杰研究员、厦门大学王野教授分获中国催化青年奖。“中国催化成就奖”每两年评选一次,是我国催化领域的最高学术奖励,奖励在催化科学和技术研究中突出的原始创新性或创造性成果、对中国催化科学的发展或对我国催化重大应用方面做出突出贡献的中国催化科学工作者。“中国催化青年奖”是奖励在催化科学和技术研究做出创造性成果、为催化科学和催化作用的发展做出突出成绩的中国青年催化科学工作者。   第十五届全国催化学术会议由中国化学会催化专业委员会主办,华南理工大学化学与化工学院承办。催化既是一门基础学科,又是应用性非常强的工程科学,其在石油化工及基础化学品的合成过程中扮演了非常重要的角色,结合当今催化学科的发展趋势及经济社会可持续发展的理念,本次大会的主题是“低碳经济中的催化科学与技术”。会议为期5天,来自全国200余个高等院校与研究院所的参会代表共计1500多人会聚羊城,听取由国际催化协会前任主席、Journal of Catalysis期刊主编Johannes Lercher教授,赵东元、何鸣元院士等主讲的4个大会报告,以及32个主题报告,220余个邀请口头报告和口头报告,同时,会议尚有1400余篇墙报展出。
  • 麦克仪器提供全套催化剂表征仪器加速催化剂开发
    Loyola大学研究人员考察麦克仪器的气体吸附仪和催化剂评价装置。 材料表征技术全球领导者麦克仪器(micromeritics),扩展了其用于多相催化剂测试的仪器组合,因此客户现在可以很容易地选择多个高效协同工作的系统来加速催化剂开发。麦克仪器的研究级气体吸附仪ASAP2020和全自动实验室催化剂评价装置Microactivity Effi,为目前流行且强大的组合。ASAP2020用于定量活性催化剂和载体的主要物性,Effi可用于相关条件过程的催化剂评价,来自Universidad Loyola (Seville, Spain)的Dr Manuel Antonio Díaz Pérez是使用这一双仪器解决方案进行高效催化剂研究的最新客户之一。 “当谈到建立我们的新实验室时,我毫不犹豫地直接去麦克仪器公司复制了一套在以前的工作中证明对我有价值的测试设备,” Díaz Pérez博士 表示,“EFFI是非常有效和高度可靠的。硬件稳定,软件直观,如果您需要,更换部件非常容易。我对ASAP 2020的体验主要是为了物理吸附来研究表面积和孔隙率,这是任何多相催化剂都需要的性能表征。展望未来,我希望投资于Micromeritics的更多设备,以进一步增强我们的研究能力。他们提供的一系列设备可得到丰富的相关和有用的数据,可加快催化剂的开发。” Díaz Pérez博士在University of Loyola工程系内建立一个新的实验室,以开发解决特定环境问题的新材料。研究课题包括将生物燃料转化为大宗化学构件的催化剂和二氧化碳的吸附剂。ASAP2020气体吸附仪为物理吸附加化学吸附配置,采用体积法分析催化剂的表面积,孔容和孔径分布,这些参数定义了反应物和产品进出活性催化剂位点的难易程度,帮助研究者在分子级别优化反应环境。Effi催化剂评价装置可用于研究催化剂活性、选择性、产率和典型条件下的失活,可得到动力学数据和合适的催化剂再生条件。 “高质量、可靠的分析设备是一项值得投资的项目,” Díaz Pérez博士表示 “这对实验室的日常运行和生产力有很大影响。麦克仪器的产品非常好用,该公司在具体分析和应用方面提供快速有效的帮助。我相信我们购买的新仪器将对我们正在进行的研究做出重要贡献。” Micromeritics Microactivity Effi 催化剂评价装置 Micromeritics ASAP 2020 Plus 气体吸附仪关于麦克仪器麦克仪器公司是提供材料表征解决方案的全球领先厂商,在密度、比表面积及孔隙度、粒度及粒形、粉体表征、催化剂表征及工艺开发等五个核心领域拥有一流的仪器和应用技术。麦克仪器公司成立于1962年,总部位于美国佐治亚州诺克罗斯,在全球拥有400多名员工。同时具备丰富的科学知识库和一流内部生产制造, 麦克仪器公司产品覆盖了石油加工、石化产品和催化剂、食品和制药等多个行业,以及为下一代材料例如石墨烯、MOF材料、纳米催化剂和沸石等提供最前沿的表征技术。在Particulate Systems旗下,麦克仪器公司发现并商业化独特和创新的材料表征技术,对核心产品线进行补充。商业测试实验室–Particle Testing Authority (PTA)实验室可提供表征分析测试服务。战略收购富瑞曼科技有限公司(Freeman Technology Ltd)和PID公司(PID Eng & Tech),也反映公司一直致力于在粉体和催化等工业关键领域提供优化、集成的解决方案。仪器咨询:400-860-5168转0677
  • 上海甄准生物进口品牌贵金属催化剂现货促销了!
    上海甄准生物进口品牌贵金属催化剂现货促销了! 上海甄准生物科技有限公司是一家专业经营标准物质、标准品、化学试剂及相关技术服务创新型高科技企业,坐落于人才荟萃的上海张江高科技园区。 自公司成立以来,一直以"客户满意"为公司核心价值观,产品主要应用于制药、生物、食品、环境、材料和农业等领域。凭借世界一流的产品和服务,甄准生物与广大客户建立了长期稳定的战略合作关系,被众多企业和科研机构认定为&ldquo 指定供应商&rdquo ,得到了政府部门的关怀和有力支持。本着始终拥有的创业激情和服务热忱,甄准生物已成长为我国重要的标准物质和标准品领域集成服务的领导者、中国最大的标准物质/标准品供应商之一。 甄准生物集后发优势与众多国际一流品牌合作,并陆续成为他们在中国区的总代理或者一级代理,现合作的优质供应商有:美国AccuStandard、APSC、MPBio、Sigma-Aldrich、NIST,爱尔兰Reagecon、Megazyme,英国LGC、Ultra,Iduron、日本和光(WAKO)、Shodex,德国Dr.E、PSS 等。同时,还提供美国USP标准物质、欧洲药典标准物质EDQM、加拿大TRC标准物质等。 现货产品: 品名 Item CAS # Purity 规格 产地 (1,5-环辛二烯)氯铑(I)二聚体 Chloro(1,5-cyclooctadiene)rhodium(I), dimer 12092-47-6 98% 500mg USA氯化铑(III) 水合物 Rhodium(III) chloride hydrate 20765-98-4 38% Rh 1g GB窗体顶端 窗体底端 三氯化钌 水合物 Ruthenium(III) chloride hydrate 14898-67-0 Reagent Plus 5g USA 1,3,5-三氮杂-7-磷杂金刚烷 1,3,5-Triaza-7-phosphaadamantane 53597-69-6 97% 2g USA 三苯基膦氯化铑 Wilkinson' s catalyst14694-95-2 Metal Content 11.10% 5g Germany 更多产品,更多优惠!请联系我们! 上海甄准生物科技有限公司 免费热线:400-002-3832
  • 过程工程所在液液萃取技术研究中获进展
    p style=" text-align: justify text-indent: 2em " 液液萃取分离是过程工业中重要的单元操作,传统的箱式混合澄清槽密封性能差,有机相挥发极易带来溶剂损失和严重的火灾隐患。近日,中国科学院过程工程研究所自主设计的5套新型密闭管式萃取器在河北兰润植保科技有限公司除草剂原药生产车间替换原有全部间歇釜式生产装置,并实现稳定连续运行1个月,运行后该车间产能由20吨/月提高至104吨/月,有机相挥发损失大大减少。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 新装置的成功应用,降低了液液溶剂萃取过程中的溶剂损失和火灾风险,同时也突破了化学制药生产过程中部分特殊液液萃取体系无法连续化生产的瓶颈,提高了生产能力,具有进一步推广至湿法冶金、废水处理、精细化工、石油化工等众多液液萃取领域的示范作用,对提升相关企业绿色化、安全化生产有重要意义。 /span /p p style=" text-align: justify text-indent: 2em " 化学制药过程(如农药)中的液液萃取分离涉及的物系性质较为复杂,如有机相溶剂性、挥发性强;水相酸性强且常含氯离子;待萃物浓度高,萃取前后两相物性差变化大;两相乳化随pH敏感等。采用传统箱式混合澄清槽进行连续生产困难,原有生产过程只能采用釜式间歇操作,产量低且产品质量不稳定。间歇操作过程有机相挥发严重,带来溶剂损失的同时,恶化了工人操作环境,存在严重的火灾隐患。 /p p style=" text-align: justify text-indent: 2em " 过程工程所资源与环境研究部湿法冶金与先进材料课题组长期从事液液萃取工艺及装备的研究。研究团队根据化学制药过程中两相物系的特殊物理化学特性,采用先进在线测量手段原位获取了两相混合行为和传质数据,结合CFD(计算流体力学)与PBM(群体平衡)模型计算,揭示了液液萃取装备几何结构对两相间微观传质、宏观流动和液滴“破碎-聚并”的相互作用规律,进一步设计出新型高效管式萃取器。据项目负责人、研究员王勇介绍,该新型萃取器具有较高的单级效率和更低的两相夹带量;密闭性好、不易泄漏,便于VOC(挥发性有机物)的集中收集处理;适用于强有机溶剂和强腐蚀性体系;特殊的轻相、重相界面调节系统,实现了两相界面的稳定控制;界面污物可在线连续采出、分离,提高了系统连续运行能力。 /p p style=" text-align: justify text-indent: 2em " 该项装备技术获得科技部重点研发计划(2019YFC1907700)支持,并已申请国家发明专利。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/3be854e5-41c7-407d-9dcb-01ec9772db32.jpg" title=" 管式混合萃取器应用现场.png" alt=" 管式混合萃取器应用现场.png" / /p p style=" text-align: center text-indent: 0em " 管式混合萃取器应用现场 /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/a11872b4-35d1-4375-a05c-42a174b3765c.jpg" title=" 管式萃取器流体力学计算.png" alt=" 管式萃取器流体力学计算.png" / /p p style=" text-align: center text-indent: 0em " 管式萃取器流体力学计算 /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/ba102d80-70ab-4efa-857a-eced0d6a7e45.jpg" title=" 管式萃取器模型.png" alt=" 管式萃取器模型.png" / /p p style=" text-align: center text-indent: 2em " 管式萃取器模型 /p
  • 华裔女科学家崔景荣获美国年度国家发明奖
    记者12月15日从中国科学技术大学获悉,该校毕业生、华裔女科学家崔景荣领衔的美国辉瑞公司团队,因发明治疗肺癌新药“克里唑蒂尼”(Xalkori),近日荣获美国第38届年度国家发明奖。   美国年度国家发明奖由美国知识产权所有者协会设立,每年美国各行业中只有一个专利可获此荣誉。崔景荣是新药“克里唑蒂尼”的主导发明人,该药品于今年8月获得美国食品药品管理局(FDA)批准,是6年来该局批准通过的第一个治疗肺癌新药,也是第一个对间变性淋巴瘤激酶进行靶向治疗的药品。通过“克里唑蒂尼”注册临床试验的靶向治疗,在晚期ALK阳性非小细胞肺癌患者中,客观缓解率达到50%至61%,为全球此类型肺癌患者带来了新的治疗可能。   崔景荣于1980年进入中国科大应用化学系学习,1988年获得硕士学位。后在美国俄亥俄州立大学取得博士学位,并前往美国劳伦斯伯克利国家实验室从事博士后研究,现任美国辉瑞公司拉霍亚研发中心资深研究员,此前曾获得辉瑞公司全球研发杰出成就奖。
  • 用户之声丨光催化水氧化过程的分解机理研究
    韩国西江大学Kyung Byung Yoon教授 岛津拜访了韩国西江大学的Kyung Byung Yoon教授。他是人工合成领域的顶尖研究人员之一。Yoon团队曾在《Science》上报道了一种不怕水的CO2捕获新材料,为低成本捕获CO2并再利用研究提供了方向。他的实验室配备许多分析仪器,包括Tracera GC-BID系统和QYM-01光反应量子产率评价系统*,QYM-01系统可实现对吸收光子准确而快速的定量测量。 * QYM-01 为岛津今年6月刚发布的Lightway PQY-01光反应评价系统的前序机型。 Q 请介绍一下您的研究内容。 这个广泛用于均相光催化水氧化过程的系统包含作为光泵的水氧化催化剂RuⅡ(bpy)32+和作为电子牺牲受体的S2O82?。但是,因为RuⅡ(bpy)32+会发生非常快速的分解,导致在所有S2O82?消耗完之前,反应过程就停止,所以该系统还远不够理想。就这一点而言,如果能研究清楚RuⅡ(bpy)32+的分解途径和产物,就可以设计出更高效的光催化水氧化系统。 我们发现,在光-RuⅡ(bpy)32+-S2O82?系统中存在两种RuⅡ(bpy)32+分解途径。第一种是通过黑暗环境中,在pH>6条件下,RuⅢ(bpy)33+氧化OH?而下形成OH• 自由基,OH• 自由基攻击RuⅡ(bpy)32+的bpy配体。这个在黑暗中分解的途径是次要的。在辐照过程中,RuⅡ(bpy)32+和RuⅢ(bpy)33+都受到光激发,并且光激发的RuⅢ(bpy)33+与S2O82?反应生成一种中间体。当中间体浓度较低时,中间体分解为催化活性的钌μ-氧代二聚体,当中间体浓度较高时,中间体分解为催化惰性的寡聚钌μ-氧代物。光诱导分解途径是主要途径。当RuⅡ(bpy)32+浓度较低时,即使在没有任何添加催化剂的情况下,光-RuⅡ(bpy)32+-S2O82?系统也会通过类似在黑暗中生成氧气的途径产生氧气。当RuⅡ(bpy)32+浓度较高时,由于光诱导分解途径的总速率比生成氧气的暗途径的总速率要快得多,因此系统中不会生成氧气。 Q “QYM-01”和“Tracera(GC+BID检测器)”是否正高效地用于您的研究?它们有多大用处? QYM-01可以在每分钟或更短的时间内获得紫外-可见光谱。这使我们能够监测光反应过程中物质的反应速度有多快。QYM-01还可以测量光敏剂吸收的光子数量。当我们检测到产物时,通过绘制吸收光子数量与生成产物的关系曲线来计算反应的量子产率。Tracera可高效检测液体产物,检测灵敏度较高。几乎检测到了柱内所有物质。 Q 您认为“QYM-01”和“Tracera(GC+BID检测器)”有哪些优点? 我们可以在光解过程中获得紫外-可见光谱,无需改变任何其他反应系统。我们可以测量我们正在使用的激发光的功率,这就是QYM-01的优点。至于Tracera,检出限很好。 Q 请告诉我们您对“岛津”的印象。 你们提供前所未有的产品和优质服务。 我们与Kyung Byung Yoon教授的交谈很愉快,通过这次采访,我们了解了Yoon教授对我们仪器和我们公司的看法。我们必须努力,争取越来越好。也非常感谢Yoon教授接受岛津的采访! 关于采访的评论 采访之后,Yoon教授说:“虽然QYM-01还有一些地方有待改进,但是岛津拥有QYM-01等前所未有的独特性创新技术,这令我印象深刻,我也期待这些技术的未来发展。”
  • 【HORIBA学术简讯】催化剂、电催化、光催化、陶瓷 领域 | 2021年第38期
    “学术简讯”栏目旨在帮助光谱技术使用者时时掌握新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等。帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。如您对本栏目有任何建议,欢迎留言。本周我们推荐5篇前沿学术成果,针对催化剂、电催化、光催化、陶瓷领域,涉及拉曼、荧光技术。催化剂电催化光催化陶瓷更多光学光谱文献,欢迎访问Wikispectra 文献库。
  • 述催化 促发展,天津大学-岛津高端催化学术论坛成功举办
    近年来,催化已经成为时下火热的领域。随着人们对自然资源、环境气候的重视,低碳、绿色已经成为发展不可回避的主题,而催化也是这进程中最为关键的核心技术。为推动催化研究交流、化学化工学科建设,天津大学化工学院和岛津企业管理(中国)有限公司于2023年3月25日共同举办“第二届天津大学-岛津高端催化学术论坛”,邀请国内催化相关领域的顶尖专家进行学术交流及学科建设讨论。大会现场天津大学副校长/化工学院院长 马新宾教授致辞天津大学副校长/化工学院院长马新宾教授首先对参会的催化领域专家的到来表示感谢。天津大学和岛津一起举办高端催化论坛,希望通过这种形式,催化领域的专家、学者能进行更多、更充分的交流、沟通。马新宾教授也希望通过这种交流,逐渐扩大“天津大学-岛津高端催化学术论坛”的广度和深度。岛津分析计测事业部营业部副部长马景辉致辞马景辉副部长表示,现代化学工业中有90%的产品是借助催化过程生产实现,生产总值约为工业生产总值的25%。没有催化科学的发展和催化剂的应用,就没有现代化学工艺。天津大学化工学院化学工程与技术一级学科,在领域内享有盛誉。岛津希望借助本次论坛能与行业的专家深入探讨,进一步加深相互沟通和了解;同时也希望凭借自身140年的历史积淀为催化研究提供稳定可靠的分析仪器解决方案。主题报告报告题目:生物质醇高效转化的催化基础报告人:北京化工大学 何静教授何静教授表示,人类已经进入“第四次工业革 命”即绿色工业。生物质能源产业主要有生物柴油和生物乙醇两类,全球生物柴油市场需求已经超过4000万吨/年,生物乙醇超过400万吨/年。在双碳目标导向下,能源行业也将发展重点由石油能源转向生物质能源。何静教授团队主要研究了乙醇化学中乙醇化学键的定点活化与定向转化,构建了金属-酸-碱多中心接力协同体系,大幅提升反应选择性。设计了MgAl-LDO、Ni-Li-LDO、Fe@GCN、Cu2O-SrTiCuO3-x等催化体系。此外何静教授也在甘油化学中甘油伯仲位定点活化与高效定向氧化方面有研究。报告题目:自适应催化位点调控CO2定向转化报告人:天津工业大学 仲崇立教授二氧化碳作为温室气体随着人类生产生活等活动,在近几十年内急剧增加。仲崇立教授团队基于在沸石催化体系长期积累,构建了柔性多金属单原子位点催化剂制备的平台技术,利用EDTA取代MOF材料特定位点,通过EDTA与金属的相互作用,得到了高度分散的多金属单原子催化剂。并以Cu-Ni催化体系为例,利用球差电镜、原位电子自旋共振等方法明确催化剂结构,同时说明了柔性多金属单原子催化剂在二氧化碳转化方面展现了优异的性能。报告题目:离子液体强化CO2电催化过程报告人:中国石油大学 张香平教授二氧化碳电化学还原是极具潜力的领域。离子液体不挥发、稳定、有催化、导电等特殊的性质。张香平教授团队针对离子液体的特性,在其稳定性好的基础上引入碱性官能团和多个活性位点,制备了[Bmim][Triz]等碱性离子液体和[P444][4-MF-PhO]等 芳香脂类的双位点离子液体,并对离子液体在微环境的表现以及在电极秒面的性质进行了考量。张香平教授还利用离子热法制备硫化铟催化剂和利用电沉积法制备改性Pd和Ag催化剂,以及对离子液体中二氧化碳还原过程中产生的纳米气泡的生成原理进行了探究。此外,张香平还在电化学催化的成本方面,对之前做的研究应用前景进行考量与分析。报告题目:碳基硝基加氢催化剂的设计报告人:中南大学 刘又年教授芳香胺是关键基础化学品,广泛应用于染料、医药、农药和光电材料等,对工业生产具有重要支撑作用。非贵金属由于其含量大、成本低、催化性能好,通常为硝基催化加氢的理想催化剂,但相比于贵金属催化剂也在稳定性等方面存在缺点。刘又年教授利用金属中心调节-多金属位点的方法,构建了基于Co和Zi双活性中心的金属催化剂,其性能优于已有报道的纳米粒子中心催化剂,并可以在常温下对硝基苯类化合物催化加氢有较好的选择性和催化效率。此外,在金属中心合金化方面合成了Ni-Cu合金催化剂;在金属中心单原子化方面合成了N、S共配位的Co催化剂。报告题目:烷烃芳构化研究报告人:中科院山西煤炭化学研究所 樊卫斌研究员芳烃制备传统工艺的原料通常来源于石油化工的裂解和石油馏分的重整。樊卫斌研究员通过Ga/ZSM-5分子筛催化剂实现了丙烷芳构化,BTX收率约为60%。跟据核磁共振分析,对这种Ga催化剂的结构和配位状态进行研究,明确了高度分散的Ga是实现反应高活性和高稳定性的关键。樊卫斌研究员团队通过DFT计算和原位表征技术深入分析并明确了丙烷芳构化的反应机理,解决了长期以来在反应机理方面的争议。在费托尾气芳构化方面,樊卫斌构建了两段流化床的新工艺,增加了芳构化效率;在长链烷烃芳构化方面,以beta-分子筛为基础构建了一些列催化体系,增加长链烷烃如庚烷芳构化的效率及收率。报告题目:CO2电化学转化与过程强化报告人:天津大学 张生教授张生教授团队在二氧化碳电化学多层次转化上以绿色化学为基础,构建了从催化剂到电极,到反应器再到工业点解槽的研究模式。在催化剂理性设计上设计了二氧化碳电化学制备甲酸反应途径,合成并表征了CeO2/SnO2催化剂,并在静电纺丝表面构建成异质界面纳米纤维。在电化学过程强化上,张生教授引入刚性四氟乙烯和柔性离聚物分别构建了反应物二氧化碳和质子传输通道,协同强化二者传递过程。此外尝试用其他多种材料增强点解反应过程中电子传输效率。张生教授在报告的最后,介绍了团队在二氧化碳工业化方面取得的进展。报告题目:催化剂评价系统-微型反应器搭档气质联用仪报告人:岛津分析计测事业部市场部GCMS产品专员 王子君催化已经渗入了生活的方方面面。岛津公司开发了一套适用于实验室催化剂快速筛选的系统,可以帮助催化领域的研究者加速对催化剂的研究。微型反应器μ-Reactor是简便的分析系统,可以对气体、液体和固体样品进行分析检测;高性能微型反应炉可以实现高精度温度控制和快速升降温;产物快速分析支持在线MS检测,并且可以在8个温区GC/MS分析。报告题目:单原子催化剂的配位环境和动态演化行为研究报告人:中科院大连化物所 王爱琴研究员催化自提出开始便不断受到化学家的重视。单原子催化剂是一类仅含相互孤立的个体原子作为催化活性中心的负载型催化剂。王爱琴研究员首先介绍了单原子催化剂的发展过程,标准研究规范,并将其概念进行拓展,以及单位点催化剂和单原子催化剂的区别与共通部分。这种催化剂的已经不适用于传统界面化学的定义,其带来的新概念也带来新的思考。介绍了单原子活性中心微配位环境的多样性研究、微配位环境的精细调控的研究、Ru-N-C单原子催化中心微配位环境调控研究、Ru-N-C第二壳层配位环境的研究、Co-N-C单原子催化中心微配位环境调控研究等。在报告的最后,以铜基催化剂为例,介绍了在原位表征技术的辅助下,活性位点在反应条件下由单原子到纳米颗粒再到单原子的结构动态变化。报告题目:冷等离子增强作用下CO2在碳化钼表面的定向活化与转化报告人:大连理工大学 石川教授冷等离子有能打破原有热力学平衡,低温、快速高效,但也有定向性差等特点。石川教授借助冷等离子体构建了冷等离子体-催化耦合CO2加氢催化制取CO体系。在温和条件下,冷等离子体-催化耦合表现出的催化效率是TOF颗粒催化剂的2倍。通过等离子体系的使用,避免了反应过程积碳的问题,提高了反应稳定性,解决了工程长期存在的问题。课题组进一步研究了等离子体-催化协同机制的特点,并用该方法研究了CH4-CO2重整反应的催化研究。报告题目:铁基催化材料的理论设计基础报告人: 中科院山西煤炭化学研究所 温晓东研究员催化科学是借助数据科学与量子力学之间的学科,涉及材料化学、化学工程、分析测试、配位化学、表面科学、物理化学等诸多领域。计算化学作为理论工具已经成为一种“微观层面分析的手段”。以费托合成为多相催化技术研究的典型范例,课题组研究了工业铁基催化剂的活性、选择性和稳定性。基于DFT优化模型为基础,对铁-碳催化剂形成的活性物相进行了辨析和调控研究,并对并针对新一代工业铁基催化材料的预测和开发进行了讨论。此外,温晓东研究员团队在煤炭间接液化制备油品技术方面,发明了260~290费托反应催化剂活性的碳化/氧化动态稳定化技术。报告题目:沸石分子筛上活性位与催化反应机制的固体核磁共振研究报告人:中科院武汉物理与数学研究所 徐君研究员核磁共振在固体核磁、材料科学、表面化学、生物科学等领域有诸多应用。沸石分子筛的物理化学性质特殊,在催化领域中有重要应用前景。徐君对ZSM-5分子筛骨架用借助固体NMR,对其Lewis酸性位活性进行评估。此外也用NMR观测了Zn、Mo、Ga改性后的分子筛金属活性中心,并且定了新的活性位点。徐君研究员也构建了简述协同活性中心的方法,利用NMR、IR等检测手段,跟踪了Mo/ZSM-5分子筛催化剂甲烷无氧芳构化反应、研究了Sn-分子筛Sn活性位点的醛酮交换反应。位进介绍了分子筛不同T位点区分与反应活性。此外,核磁共振也可以用于观测分子筛中相互作用研究,例如:分子筛孔道与酸性影响双分子反应、非共价键相互总用对反应活性影响等。报告题目:同步辐射X射线谱学在能源小分子催化转化中的应用报告人:中国科学技术大学 姜政教授姜政教授介绍了X射线吸收能谱,以及SRXS方法与材料结构关联的信息。目前X射线朴学表征方法学利用原位该分辨XANES、模拟计算、Δ-μXANES和亚秒/秒级时间分辨+大数据分析。在小波变换方面首次通过原位XAF研究了Co2C的形成过程;在高分辨X射线发射谱方面,借助差谱特征判断Co和Mn相关催化剂的结构变化;通过原位发射谱研究Cu基催化剂还原CO2等。同步辐射光源谱学平台已经在北京、上海、合肥等多地完成建设。其中上海光源谱学平台已经有动力学线站、能源材料线站、稀有元素线站等多条分析线。报告题目:数据驱动的工业催化剂设计报告人:天津大学 赵志坚教授催化反应工程从最远处的试错法,再到人为计算,再到如今的人工智能背景下的大数据计算,已经取得了质的飞跃。赵志坚教授介绍了其团队开发的催化剂模型的算法,对合金特征进行模拟,并在此基础上开发了CuZu纳米催化剂。其催化剂与预测理论活性有较高的相似性,为设计新一代高效催化剂提供了理论基础。此外,课题组也借助DFT计算了CuCo热还原CO2反应机理并进行了实际的实验测试。在复杂反应网络方面,利用机械学习和人工智能抽提描述符提出普适性设计准则,完成对催化剂的快速筛选等功能。在耦合多尺度计算方法上,实现跨尺度按耦合模拟。报告题目:超临界流体色谱分离技术在油品分析中的应用报告人:岛津中国创新中心高级专家 郭彦丽超临界流体是指二氧化碳流体在低超临界温度和压力下呈现的一种特殊的状态。其密度与液体接近,有良好的溶剂化能力,同时粘度和扩散能力接近气体,物质交换效率,由于二氧化碳无毒无害因此也更加环保,且其和油脂互溶性好,适合油脂样品分析。岛津SFC可以在原本GC-FID系统基础上进行合并,完成从气相色谱到超临界流体色谱仪的升级。介绍了SFC-GC-FID柴油中芳烃快速定量、汽油中烯烃分析、油脂样品在线净化实现多环芳烃检测的案例。除此超临界色谱还可以与液相色谱联用对食物油中成分进行分析测定。岛津杯学术报告后,进行了第二届“岛津杯”天津大学化工学院优秀博士生论文颁奖活动,通过post展示、现场答疑,参会的专家无记名投票选出了10篇优秀论文,岛津市场部陈志凌高级经理对10位获奖的优秀论文作者进行了颁奖。岛津为墙报获奖人员颁奖同期也举办了学科建设研讨会,天津大学化工学院的领导与部分参会学校化学和化工学院的院长/副院长一起参加了研讨,就学科建设中学科设立、人才引进、管理、考核等等各方方面进行了非常坦诚、充分的交流,与会者均表示收获颇多。高端催化学术研讨会现场参加论坛人员合影本文内容非商业广告,仅供专业人士参考。
  • 文献解读丨基于铁基催化剂的CO₂高效转化制备烯烃:Na,Mn催化助剂协同作用探究
    本文由北京大学分析测试中心电子能谱实验室所作,第一作者为徐尧老师,文章发表于Angewandte Chemie International Edition(Angew. Chem. Int. Ed. 2020, 59, 21736–21744)。 多相催化剂活性和选择性的优化常需借助多种组分(或助剂)来实现,充分理解这些不同组分(或助剂)在催化反应中所起到的作用机制,特别是各组分(或助剂)之间的相互影响及协同效应,对于理性设计多相催化剂具有重要的指导意义。CO2的有效转化是实现当下碳中和目标下的主要途径,Na和Mn常被用作助剂添加到铁基催化剂中以改善CO2加氢转化制备烯烃过程的活性和选择性。此前的研究通常将Na、Mn助剂作为独立的变量来考察,而对两者共存时Na、Mn助剂之间的相互作用及其对催化性能的影响尚缺乏系统性认识。 由于催化反应往往在催化剂的表面发生,XPS表征技术的发展为我们研究助剂对催化剂表面结构的影响提供了有利的检测手段。利用岛津X射线光电子能谱仪(XPS),通过设计准原位XPS实验,对不同助剂影响下铁基催化剂表面的元素组成和化学态变化进行了深入研究,明确了助剂在实现CO2高效转化过程中的关键作用,为设计合成高效CO2转化到烯烃催化剂提供了重要依据。 Axis Supra文献解析图一. Na、Mn助剂促进铁基催化剂上CO2高效转化制备烯烃示意图 表一. 不同铁基催化剂催化CO2加氢性能的比较aaReaction conditions: 100 mg catalyst, 340˚C, 2.0 MPa, CO2/H2/Ar = 24/72/4, 20 mL min-1. bThe carbon ratio of olefin to paraffin. cThe approach to equilibrium factor for the RWGS step (Eq. 1). dThe net rate of the RWGS step (i.e. the net CO2 conversion rate Eq. S1 of SI). eThe forward rate of the RWGS step (Eq. 2). fThe rate of the FTS step (Eq. S2 of SI).gCannot be calculated accurately due to the established equilibrium of the RWGS step. 通过动力学分析分别获得RWGS和FTS的本征速率,发现Mn的加入会同时抑制两步反应的活性,而Na则是调控烃类产物分布的关键因素。当两种助剂同时加入时,Na的介入使Fe和Mn的相互作用减弱,使更多的活性位得以暴露,在两种助剂的协同作用下催化剂表现出最高的反应活性和烯烃选择性。 对催化剂的准原位XAFS和XPS表征表明,Mn可以促进Fe5C2相的形成和稳定,而Na的加入减弱了Fe和Mn之间的相互作用,一定程度上抑制了部分Fe5C2相的生成。该影响使得FeMnNa催化剂中Fe5C2活性相的比例相比于FeMn催化剂明显减少,而体系中Fe3O4相的含量则相对增加。正是两种助剂的协同作用使催化剂中Fe5C2和Fe3O4相的比例达到了最优状态,从而使得该催化剂在获得高CO2加氢活性的同时也表现出最优的烯烃选择性。 图二. 反应3 h后催化剂的a)Fe k-边XANES谱图和b)Fe k-边 EXAFS 谱图反应条件:340˚C, 2.0 MPa CO2/H2/Ar = 24/72/4 图三. 反应3 h后催化剂的a)Fe 2p XPS谱图和b)C 1s XPS谱图反应条件:340˚C, 2.0 MPa CO2/H2/Ar = 24/72/4 通过上述实验,可发现对于使用共沉淀方法制备的铁基催化剂,Mn的添加可以有效地促进Fe的分散,但Fe和Mn之间的强相互作用在CO2加氢转化过程中却表现出了负面效应。这种负面效应包括对RWGS反应活性的抑制和烯烃产物生成速率的降低。造成前者的原因是Mn的加入促进了RWGS的活性相Fe3O4向FTS反应活性相Fe5C2的转变,而造成后者的原因则与Mn增加了Fe5C2活性相上FTS反应的空间位阻有关。而第三组分Na的加入不仅提高了CO2的加氢活性和烯烃的选择性,还减弱了Fe与Mn之间的强相互作用,使Mn转变成为对CO2加氢转化有利的助剂。 以上结果表明,对于类似的复杂多相催化体系,在设计催化剂时,关注多种助剂之间的相互作用(而非孤立地关注各助剂对于催化活性位的影响)或许能够为构筑高性能催化剂提供一种更为有效的策略。而应用具备特殊样品杆和配气装置的Axis Supra X射线光电子能谱仪,为以上实验的表征提供有效助力。 文献题目《Highly Selective Olefin Production from CO2 Hydrogenation on Iron Catalysts: A Subtle Synergy between Manganese and Sodium Additives》 使用仪器Axis Supra X射线光电子能谱仪 作者Yao Xua, Peng Zhaia, Yuchen Denga, Jinglin Xiea, Xi Liuc, Shuai Wang*,b and Ding Ma*,a a. Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University. Beijing 100871 (P. R. China) b. State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University. Xiamen 36100 (P. R. China) c. State Key Laboratory of Coal Conversion, Institute of Coal Chemistry Chinese Academy of Sciences P.O. Box 165, Taiyuan, Shanxi 030001 (P. R. China), and Synfuels China. Beijing 100195 (P. R. China)
  • TOC分析的在线高温燃烧法比较:催化燃烧与非催化燃烧
    简介工业用水和废水的工艺监测技术必须长时间运行,且维护要求低,才能提供稳定可靠的监测数据来帮助决策者做出正确的工艺决策。采用高温燃烧法的总有机碳(TOC,Total Organic Carbon)分析技术具有处理多种样品类型所需的稳健性。就燃烧氧化技术来说,催化燃烧和非催化燃烧有所差别,主要体现在工艺监测的运行时长、维护要求、使用成本等方面。本文概述了在线催化与非催化高温燃烧TOC之间的主要差别。为了方便起见,下文将这些燃烧技术分别简称“高温催化燃烧(HTCC,High Temperature Catalytic Combustion)”或“催化法”,和“高温非催化燃烧(HTNCC,High Temperature Non-Catalytic Combustion)”或“非催化法”。本文中的比较只适用于在线技术和高温燃烧TOC技术。想了解更多?燃烧法检测TOC主要用于监测含有废水、工艺水、工业废水中常见的高分子化合物和难氧化有机化合物的样品。催化燃烧包括在一个炉子中加热样品,使用铂金催化剂支持氧化。添加催化剂的目的是为了确保样品中所有的有机碳都被完全氧化。催化燃烧法的炉温不够高,无法仅通过温度来彻底氧化样品中的有机碳。非催化高温燃烧法将炉管中的样品加热到更高温度,能够确保彻底氧化样品中的有机碳。非催化法无需使用催化剂,从而减少了诸多干扰因素。为了防止频繁出现维护问题,必须充分考虑高温非催化燃烧和高温催化燃烧中的盐含量。高温催化燃烧的温度比高温非催化燃烧低。采用高温催化燃烧时,未燃烧的盐会“毒害”催化剂,甚至“毒害”燃烧管。虽然替换燃烧管和催化剂,可以帮助催化燃烧装置在含盐的环境中运行,但会限制分析仪的测量范围和性能,还会增加维护工作量。如果采用高温非催化燃烧,所有的盐都会在更高的温度下彻底燃烧。无需催化剂意味着减少维护工作量。催化燃烧和非催化燃烧之间的最大区别在于工艺设备的维护要求、运行时间、使用成本。Sievers® TOC-R3非催化在线型TOC分析仪Sievers TOC-R3采用非催化高温燃烧法,具有维护简单、使用成本低、运行时间长等优点。Sievers TOC-R3使用光电离检测器(PID,Photoionization Detector)来直接监测挥发性有机化合物(VOC,Volatile Organic Compound),或使用电化学检测器(ECD,Electrochemical Detector)来监测总氮(TN,Total Nitrogen),因而具有满足任何应用需求的灵活性。即使对于挑战性样品基质,此款分析仪的自动稀释、冲洗、标准品检查等功能,都能大大延长仪器的运行时间。此款分析仪采用稳健的模块化设计,能够对样品基质变化做出快速响应。此款分析仪还具有预测诊断功能,提供无与伦比的可靠性。结论与催化燃烧法相比,非催化燃烧法要求更少的耗材和更低的维护要求,这意味着仪器的使用成本更低、运行时间更长。有了更长的运行时间和更可靠的监测数据,非催化燃烧法就能更好地帮助决策者做出正确的工艺决策。Sievers TOC-R3采用非催化高温燃烧法,功能稳健且灵活,能够满足所有应用需求。◆◆◆联系我们,了解更多!
  • TOC分析的在线高温燃烧法比较:催化燃烧与非催化燃烧
    简介 工业用水和废水的工艺监测技术必须长时间运行,且维护要求低,才能提供稳定可靠的监测数据来帮助决策者做出正确的工艺决策。采用高温燃烧法的总有机碳(TOC,Total Organic Carbon)分析技术具有处理多种样品类型所需的稳健性。就燃烧氧化技术来说,催化燃烧和非催化燃烧有所差别,主要体现在工艺监测的运行时长、维护要求、使用成本等方面。本文概述了在线催化与非催化高温燃烧TOC之间的主要差别。为了方便起见,下文将这些燃烧技术分别简称“高温催化燃烧(HTCC,High Temperature Catalytic Combustion)”或“催化法”,和“高温非催化燃烧(HTNCC,High Temperature Non-Catalytic Combustion)”或“非催化法”。本文中的比较只适用于在线技术和高温燃烧TOC技术。想了解更多? 燃烧法检测TOC主要用于监测含有废水、工艺水、工业废水中常见的高分子化合物和难氧化有机化合物的样品。催化燃烧包括在一个炉子中加热样品,使用铂金催化剂支持氧化。添加催化剂的目的是为了确保样品中所有的有机碳都被完全氧化。催化燃烧法的炉温不够高,无法仅通过温度来彻底氧化样品中的有机碳。非催化高温燃烧法将炉管中的样品加热到更高温度,能够确保彻底氧化样品中的有机碳。非催化法无需使用催化剂,从而减少了诸多干扰因素。为了防止频繁出现维护问题,必须充分考虑高温非催化燃烧和高温催化燃烧中的盐含量。高温催化燃烧的温度比高温非催化燃烧低。采用高温催化燃烧时,未燃烧的盐会“毒害”催化剂,甚至“毒害”燃烧管。虽然替换燃烧管和催化剂,可以帮助催化燃烧装置在含盐的环境中运行,但会限制分析仪的测量范围和性能,还会增加维护工作量。如果采用高温非催化燃烧,所有的盐都会在更高的温度下彻底燃烧。无需催化剂意味着减少维护工作量。催化燃烧和非催化燃烧之间的最大区别在于工艺设备的维护要求、运行时间、使用成本。Sievers® TOC-R3非催化在线型TOC分析仪Sievers TOC-R3采用非催化高温燃烧法,具有维护简单、使用成本低、运行时间长等优点。Sievers TOC-R3使用光电离检测器(PID,Photoionization Detector)来直接监测挥发性有机化合物(VOC,Volatile Organic Compound),或使用电化学检测器(ECD,Electrochemical Detector)来监测总氮(TN,Total Nitrogen),因而具有满足任何应用需求的灵活性。即使对于挑战性样品基质,此款分析仪的自动稀释、冲洗、标准品检查等功能,都能大大延长仪器的运行时间。此款分析仪采用稳健的模块化设计,能够对样品基质变化做出快速响应。此款分析仪还具有预测诊断功能,提供无与伦比的可靠性。结论与催化燃烧法相比,非催化燃烧法要求更少的耗材和更低的维护要求,这意味着仪器的使用成本更低、运行时间更长。有了更长的运行时间和更可靠的监测数据,非催化燃烧法就能更好地帮助决策者做出正确的工艺决策。Sievers TOC-R3采用非催化高温燃烧法,功能稳健且灵活,能够满足所有应用需求。◆ ◆ ◆联系我们,了解更多!
  • 国内首台纳米光催化空气净化器问世
    本报讯(记者李禾)记者7月3日从华东理工大学获悉,我国首台具有自主知识产权的多功能纳米光催化空气净化器在该校国家超细粉末工程研究中心研制成功。该净化器对室内空气中病菌杀菌效果可达99.9%,双重光催化对甲醛、苯等去除率达90%,除尘率达95%以上,并可有效控制甲型H1N1流感病菌在空气中的传播。   据悉,目前市场上销售的一般空气净化器为物理吸附型,没有从根本上去除污染物或处理不干净;由于大部分净化器采用活性炭,时间一长会产生吸附饱和,造成污染物的脱落,产生二次污染。   据上海市环境保护产品质量监督检验总站的报告,多功能纳米光催化空气净化器采用纳米材质,核心模块不需更新;具有光催化、紫外线和除尘系统三重杀菌功能,采用纳米光催化的机理和大比表面积、高吸附性能的载体来负载纳米二氧化钛制备光催化网,可发挥高效物理吸附和光催化分解的协同效应,实现对甲醛、苯等有机污染物的持久分解和对甲型H1N1流感等病菌的及时杀灭,并把有机污染物快速分解成二氧化碳和水,消除了物理吸附饱和及二次污染的缺陷。   此外,该净化器设计了人性化的液晶显示板,能自动检测室内空气质量,并根据空气质量优劣,液晶显示板自动呈现不同颜色:“红色”提示当前室内空气质量差,“蓝色”为中等,“绿色”为优良;而智能控制系统,可根据室内空气质量的不同自动调节出风量,实现节能,又能让空气时时保持清净状态;其负氧离子释放功能,每秒可释放出过百万负氧离子,将空气中极小微尘净化,营造清新气息。
  • 飞纳电镜在催化剂观察中的应用
    飞纳电镜近期通过福州大学的验收。福州大学石油化工学院主要研究清洁燃料生产催化剂和工艺研究、多级孔道催化材料的制备以及负载型催化剂纳微结构调变方法和应用。为了保护环境,人们对车用燃料的质量要求越来越高,燃料中芳烃含量的高低不仅直接影响其燃烧性能,而且对大气质量会产生不同程度的影响,因此利用性能优良的催化剂改善燃料质量具有十分重要的意义。 福州大学石油化工学院主要研究催化剂在石油化工中的应用,其中催化剂表面形貌、表面微区成分及分散状态会对催化剂性能及活性产生很大的影响。 配备有能谱的扫描电镜是一种重要的表面分析手段,能够观察催化剂表面形貌和检测催化剂表面微区成分,对催化剂的研发具有十分重要的意义。飞纳台式扫描电镜能谱一体机 ProX 既能观察样品表面形貌,还可以利用能谱对催化剂表面成分和元素分布进行分析。 从催化剂的微观观点上看,催化剂表面形貌和组成对催化行为具有重要的影响,飞纳电镜配置二次电子和背散射电子探头,能够充分发掘样品表面信息。催化剂中活性成分的分散状态与催化剂活性及使用寿命有着密切的关系,采用能谱分析可以对催化剂表面进行元素分析,从而判断活性成分的分布。同时,利用飞纳台式电镜也可以用于分析催化剂活性下降或失活的原因。 扫描电镜下的催化剂晶体颗粒扫描电镜下的球形催化剂颗粒 用户认真学习电镜操作利用飞纳电镜的形貌和成分分析,可以直观地获得催化剂的形态和活性成分分布信息,再结合宏观分析结果,可以大致预测催化剂的活性及性能,筛选掉性能较差的样品,大大节约研究和后期测试时间。
  • 光催化领域新文章,水作为还原剂将氮气进行光催化固定
    1. 文章信息标题:stable ti3+ sites derived from the tixoy-pz layer boost cubic fe2o3 for enhanced photocatalytic n2 reductiondoi:https://doi.org/10.1021/acssuschemeng.1c058902. 文章链接https://pubs.acs.org/doi/10.1021/acssuschemeng.1c058903. 期刊信息期刊名:acs sustainable chemistry & engineeringissn:2168-04852021年影响因子:8.198分区信息:中科院1区top;jcr分区(q1)涉及研究方向:光催化4. 作者信息:第一作者是广州大学博士张文生。通讯作者为广州大学韩冬雪教授、广州大学何颖实验员。5. 正文中标记了“the photochemical reactor was installed on the cel-gppcl system (beijing china education au-light company) with a 300 w xe lamp.”.文中所述设备由北京中教金源科技有限公司提供,设备型号:cel-gppcl the photochemical reactor was installed on the cel-gppcl system (beijing china education au-light company) with a 300 w xe lamp. 利用水作为还原剂将氮气(n2)进行光催化固定是一种令人鼓舞的未来氨合成策略,这有助于人们开发高效的光催化剂,以提高太阳光利用率,并提高固定n2的催化效率。赤铁矿(α-fe2o3)是一种稳定性高、成本低廉、天然丰度高的半导体光催化剂,从经济效益上讲是可见光驱动n2-nh3转化的理想催化剂,但相关研究报道较少。这是因为单一组分fe2o3光催化剂的光生电子还原能力普遍较低、具有严重的电子空穴重组现象和有限的表面活性位点,限制了其在光催化固氮领域的发展。为克服这一问题,本文构建了表面磷掺杂含稳定ti3+位点的锐钛矿tio2(tixoy-pz)层,来增强α-fe2o3立方体的光催化n2还原反应(pnrr)性能。通过ph3处理,在tixoy-pz层上诱导不饱和ti3+物种来作为活性位点,实现对n2分子的高吸附和活化。同时,磷掺杂形成的部分金属钛缺陷使催化剂的结构更加稳定。此外,通过程序升温氮气吸脱附(tpd)和瞬态荧光衰变曲线证明了fe2o3@tixoy-pz的ti3+物种是n2化学吸附和活化的活性位点。fe2o3@tixoy-pz纳米杂化催化剂利用tixoy-pz层表面的ti3+位点和界面耦合的优势,实现了在环境条件下有效地将n2光还原为nh3;这为设计和开发具有优异光催化固氮性能的纳米催化剂提供了一种新的视角。文章doi : https://doi.org/10.1021/acssuschemeng.1c05890,原文链接:https://pubs.acs.org/doi/10.1021/acssuschemeng.1c05890原文下载:online acssuschemeng.1c05890.pdf:,。视频小程序赞,轻点两下取消赞在看,轻点两下取消在看
  • 著名催化剂专家魏可镁院士逝世
    中国共产党的优秀党员、中国工程院院士、福建省人民政府顾问、原福州大学校长、化肥催化剂国家工程研究中心主任、我国著名的催化剂专家魏可镁先生,因劳累过度,突发脑梗塞、心脏骤停,经抢救无效,于2014年10月23日凌晨1时30分不幸逝世,享年75岁。   魏可镁院士,1939年8月出生,福建福清人。1965年毕业于福州大学化学系,师从著名科学家卢嘉锡教授。1997年当选中国工程院院士,曾任第九届、第十届全国人民代表大会代表,中共福建省第七届委员会委员,先后荣获&ldquo 全国首届杰出专业技术人才奖章&rdquo 、 &ldquo 全国先进工作者&rdquo 、&ldquo 全国优秀科技工作者&rdquo 、&ldquo 全国侨界十杰&rdquo 等荣誉称号。   魏可镁院士是我国著名的催化剂专家,主要从事化肥催化剂、汽车尾气催化剂和净化器的研发。他先后研发成功并产业化四个系列十二个化肥催化剂,在全国上百家合成氨厂推广应用并取得巨大经济和社会效益 完成了FD汽车尾气催化净化器的研发,并已达到欧Ⅴ排放限值,成为外企在国内的主要竞争对手,并已实现年产销量15万套,为我国净化器产业的国产化打下坚实的基础。魏可镁院士曾先后获得国家发明奖3项,国家科技进步奖2项,省部级奖6项,为我国化学化工科学技术的发展和应用做出了杰出贡献。   魏可镁院士教书育人四十余载,培养了大批优秀人才,为党的教育事业、科技事业呕心沥血,奉献了毕生精力。他严谨求实的治学态度,勇于创新的科学精神,不求索取、只知奉献的催化剂品格,是我国科技教育界的光辉典范。以魏可镁院士为代表的勇于拼搏的奉献精神被列入福州大学的&ldquo 三种精神&rdquo 之一,将激励和泽及一代又一代的学子。   魏可镁院士的逝世,是我国化学化工科学与教育界、福州大学的重大损失。敬爱的魏可镁院士永远活在我们心中!
  • 粉体测试促进催化剂生产
    测试结果有助于设计方案和原料的选择。工业催化剂作为一种复杂材料,需要不断精制提高加工效率同时减少对环境产生的影响。催化剂能够提高原料灵活性,降低能耗,增加选择性和延长使用寿命,对石油化工可持续性的提升发挥了重要的作用。对于商业化非均相催化剂,添加粘合剂、填料、致孔剂和增塑剂等,将活性相和载体转化为特定几何形状和性能稳定的产品。由于大多数催化剂成分为粉料,因此有效的粉体加工是催化剂高效生产的先决条件。托普索公司位于丹麦灵比,作为化工、炼油行业中高性能催化剂和专利技术的全球领导者,提供超过150种催化剂。该公司应用粉体表征技术,如ft4粉体流变仪,对催化剂生产设备的设计方案进行优化,改进原料的选择。确定与粉体传输过程密切相关的特性,从而制定设备选型的标准,最大限度降低新工厂的运行成本。此外,辅助筛选原料,降低意外停工的风险,有助于加快粉体加工效率。催化剂生产非均相催化剂加工简单,生产高效,在炼油和化工行业中尤为普遍。这种催化剂是多元络合物,结构为毫米尺度,化学性能和机械性能优异[1]。化学性能取决于活性相的有效分散和传质、传热的精确控制。催化剂寿命,即维持反应和选择性的时间,是关键的商业因素。控制机械性确保整个催化剂床层产生的压力降可控,维持稳定、长效反应所需的机械强度。机械摩擦也会破坏催化剂性能。从活性相和载体的结合开始,配方开发人员通过一系列添加剂的组合,实现催化剂工业化并满足工艺需求。添加剂包括炭黑或淀粉等致孔剂——热处理分解,形成颗粒内孔隙,以及增强机械成型的增塑剂和润滑剂[2]。催化剂的生产取决于这些成分的有效组合和重现。作为一个复杂、多步骤过程,主要涉及[2,3]:• 粉料原料的准备;• 通过喷雾干燥、球化、压实、湿法造粒、挤出等过程形成的预混物和团聚“中间体”;• 硬化和精制,例如还原,洗涤涂层或离子交换。粉体传输和可控定量,作为众多加工过程的基本要素,要求设计方案和操作实践的效率最大化。除了特定的单元操作,还需表征粉体,理解、解释并控制催化剂整个生产过程的表现。托普索公司通常使用激光衍射法测试粒径分布,振实密度评价原料和中间体。但凭这些数据去选择和确定加工设备仍不可靠。此外,这些测试并未充分评估原料的替代品是否匹配特定工艺。单凭这些测量技术,工艺方法的开发无法达到最优,包含一定程度的错误,引入新物料或更换供应商时停机的风险增大。托普索公司还加入了罗格斯大学催化剂制造联盟。这一小组汇集了不同学科的研究学者,从事催化剂生产改进项目。成果之一是基于动态、剪切和整体粉体特性的测试[4],开发出更好的方法选择催化剂组分的失重(liw)进料器。托普索公司运用此项工作的成果来设计、选择和优化liw进料器;现有粉体测试在实践过程中极具潜力,同时也提高了公司对这一收益的认知。托普索公司使用ft4粉体流变仪进行内部评估,获得75种原料的动态、剪切和整体特性数据(总计超过25个特性)。在此成功试验的基础上,公司于2012年购买仪器成为用户。确定设计方案为了优化新仪器的应用,托普索公司进行深入评估,包括运用主成分分析(pca),建立原料特性数据库,确定能否减少常规测量的次数,最大程度地减少成本,这也是一个重要的商业考虑。公司还进行了不同粉体传输设备性能与特定粉体特性相关性的研究。这项工作确定了粉体传输应用中三个关键的属性:可压性,透气性和粘结应力。可压性量化粉体受到固结应力时的体积变化,通过测量整体密度与所施加正应力的函数(图1左、中)得到。虽然粘性较强的粉体相比自由流动的材料更可压,pca分析说明可压性是独立变量,与其他参数无关。关键粉体整体特性图1.测量可压性(左、中)和透气性(右)有助于理解粉体行为。透气性测量了粉体对于气流的阻力,通过测量特定固结压力下粉床压力降与气流速度的函数(图1右)得到。空气不易夹带,能够轻松穿过透气性较好的粉体,与之相比,透气性较差的粉体容易滞留空气。透气性与传输过程极其相关,例如气动传输和料斗下料。粘结应力由剪切盒确定,该测试测量了固结粉层相对另一粉层剪切所需的应力。剪切盒主要量化固结粉体从静止到流动变化的难易程度。因此,粘结应力与固结的粉体、低流速工艺操作最为相关,尤其是料斗下料过程。通过评估这三个特性,托普索公司能够选择最佳的传输方式,使用气动传输或者流体隔膜泵。由于气动传输设备的造价较高,需要适合的排气系统来清除粉体夹带的空气,因此这一决定具有重大的成本影响。通常流体隔膜泵的安装成本仅为气动传输系统的10-30%。已有的设计方案,需要大约一年的时间开发并获得批准,原则如下:• 如果可压性小于36%,适合流体隔膜泵。• 如果可压性大于38%,需要气动传输系统。• 如果可压性介于36-38%,选择取决于透气性和粘结应力的值。由此确定两种方式的抉择标准。作为可压性测试的结果之一,粉体的松装密度也很重要,由此决定所选系统的传输能力。量化选用这一方式累积节省的成本也非常容易。一套全新气动传输系统成本约为80000美元,而流体隔膜泵系统通常少花费约55000美元。根据现有的设计标准确定传输系统,托普索公司自2012年底起成功安装了六套流体隔膜泵系统,并且从2015年起更换了两个现有的气动传输系统。假设每个流体隔膜泵系统的成本为气动传输系统的30%,仅根据新安装系统的保守估计,对于整体造价约34万美元的项目而言,使用粉体流变仪进行成本缩减也很可观。这说明对仪器的明智投资获得了巨大回报。优化原料的选择此外,深入的粉体表征也优化了原料选择。这项工作的目的是筛选粉体特性,可靠预测催化剂生产过程中新材料的性能,也无需投入实际工厂试验,更具体地说,确认新材料与现有材料的性能可比。这种评估在更换供应商或使用替代原料时十分关键,特别是选用价格较低的替代材料缩减成本。粉体测试仪器可以获得:• 剪切特性,包括壁面摩擦角,尤其是研究料斗性能,与连续粉体流动相关的料斗倾角和下料口尺寸;• 可压性和松装密度;• 动态特性包括基本流动能(bfe)和稳定性指数(si)用于评估粉体动态流动性。动态粉体性能通过测量桨叶旋转穿过样品时阻力和扭矩(图2)得到[5]。向下行径穿过预处理后的样品产生bfe值,这是一个高度灵敏的流动性参数,量化了低应力条件下受约束流动的行为。重复bfe测试还可以量化粉体的稳定性,结果为si,该值的定义是多次测试前后bfe值的比值。si接近于1说明粉体物理性能稳定;该值高于或低于1通常与分层、摩擦或团聚等现象有关,这些都可能导致性能变差。动态粉体特性图2.动态特性非常敏感,与不同工艺性能相关。这一测试可以确定粉料在投入工厂前,不同供应商或原料替代品的表现是否良好。粉体加工过程是否会发生间歇传输或堵塞,导致意外停机,从而影响生产效率。因此,能够在不中断工厂生产的情况下找出潜在问题是一大收获。公司现在定期参考上述指标筛选材料,同时全面分析新材料,增补原始数据库,逐步优化实践并扩展粉体测试仪器所提供的价值。强力工具设计和运行粉体处理设备,对工艺工程师来说是一场持久挑战,优化和测试替代设备仍然重要。幸运的是,理解不同工艺与原料之间的相容性,以及选用合适的粉体测试确定这一相关性,近年来已有长足进步。托普索公司的经验验证了粉体测试在催化剂生产中的可行性,其实相关工艺对于大多数生产部门也很常见。通过测量动态、剪切和整体性能,托普索公司强化了liw进料器选型的过程。基于粉体的可压性、透气性和粘结应力数据,为粉体传输确定了可靠的设计方案,确定选用经济型设备的条件。此外,现在公司也能无需工厂试验,可靠评估是否选用新料或更换供应商。粉体测试仪器都提供了关键的数据和丰厚的投资回报。参考文献1.“catalysts for optimal performance,” haldor topsøe, lyngby, denmark, viewable via: www.topsoe.com/products/catalysts2.mitchell, s., et al., “from powder to technical body: the undervalued science of catalyst scale-up,” chem. soc. rev. (feb. 2013).3.catalyst manufacturing center, rutgers university, homepage, https://cbe.rutgers.edu/catalyst-manufacturing-center.4.wang, y., et al., “predicting feeder performance based on material flow properties,” powder tech. (dec. 2016).5.freeman, r., “measuring the flow properties of consolidated, conditioned and aerated powders — a comparative study using a powder rheometer and a rotational shear cell,” powder tech (oct. 2006).
  • 将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化
    1. 文章信息标题:Selective photocatalytic aerobic oxidation of methane into carbon monoxide over Ag/ AgCl@SiO2DOI: 10.1039/d2sc01140a2. 文章链接https://pubs.rsc.org/en/content/articlelanding/2022/SC/D2SC01140A3. 期刊信息期刊名:Chemical ScienceISSN:2041-65202020年影响因子:9.825分区信息:中科院1区Top;JCR分区(Q1)涉及研究方向:化学4. 作者信息:翟建新(首要作者),周宝文(首要通讯作者);吴海虹(第二通讯);何鸣元(第三通讯作者)韩布兴(第四通讯作者)5. 光源型号:北京中教金源CEL HXF300(300 W氙灯,300-800范围)、NP2000、CEL-SPS1000、CEL-TPV2000文章简介:设计一种能够在温和条件下利用甲烷的光催化剂具有重要意义,我们制备了一种Ag/AgCl@SiO2 光催化剂,其可以高选择性将甲烷光氧化为一氧化碳,一氧化碳产量为2.3 为μmol/h,选择性为73%。基于半原位红外光谱学、电子顺磁共振等一系列表征研究,二氧化硅的引入可以增加光生载流子的寿命,并且揭示了甲烷通过原位形成的单线态氧转化为COOH*中间体从而氧化为CO的中间过程。同时Ag/AgCl@SiO2催化剂也能在环境条件下使用真实的阳光进行甲烷的转化。 我们一致认为本文的创新之处有以下几点:1. 首次将Ag/AgCl@SiO2 光催化剂用于光催化甲烷转化2. 通过一系列表征表明二氧化硅的引入可以增加载流子的寿命3. 在真实太阳光下也能发生图1 催化机理图
  • 相约青年催化会,关注麦克领奖品
    2016年10月21-25日,全国青年催化会议将在湖南长沙举行,本届会议将围绕“助力经济结构快速转型的催化科技”的主题进行深入交流, 来自国内外高校和科研院所以及工业部门的900多位青年催化工作者将参加会议并就催化反应化学/工业催化、领域的最新研究成果与发展动向进行学术交流与研讨。美国麦克仪器公司作为赞助商参加了此次会议。会议期间,麦克仪器同期举行“关注麦克领奖品“活动”,只需扫扫二维码,即可领取麦克精美礼品一份,另有麦克专著《Analytical methods in fine particle technology》以及wifi移动电源等礼品送出,欢迎各地朋友莅临参观!高性能全自动化学吸附仪Autochem系列 Autochem为采用动态技术(流动气体)的全自动程序升温和化学吸附分析仪,能进行全自动脉冲化学吸附和程序升温技术,如tpr、tpd、tpo和tprx等。 标配高精度的质量流量计 抗腐蚀性检测器灯丝可分析大多数腐蚀性气体,减少灯丝氧化 可选Kwikcool冷却炉,可快速降温 可选低温Cryocooler ii 配件,可进行低温吸附 可选蒸汽发生器,进行蒸汽吸附 质谱仪端口和集成软件可同时在TCD和质谱仪上进行检测 强大的峰编辑和数据处理软件 Microactivity effi系列-催化剂评价整体方案 Microactivity effi系列是一款可定制的高端实验室反应器,适用于催化剂表征及活性、选择性的测试。这款全自动、紧凑型、具备创新控制技术的系统能够提供催化测试所需的多种配置与选项。并通过电脑控制进行一系列的实验,实现全自动无需看管的实验状态。 近零死体积,真正的实时获取气体/液体产物200℃封闭控温热箱系统,避免冷凝 专利电容式测微液面传感器,自动测试液体产物体积 专利高精度测微伺服阀,精确控制压力和液面 高达1050℃的低热惯性效应陶瓷纤维反应炉 具备远程自动控制与程序化的反应系统 可升级为双站、8站或16站独立反应系统 可进行各种催化反应及催化剂表征(程序升温技术、脉冲技术等) 配备专用接口,可外接GC、MS 、HPLC等设备,并实现软件统一控制 美国麦克仪器成立于1962年,是材料特性实验室分析仪器和服务的领导者。公司致力于生产分析粉末/固体材料物理化学性质的全自动化仪器,能够进行比表面积、孔容、孔径、孔径分布、密度、催化剂性质表征、催化剂活性测试以及粒度粒形分析,可广泛用于基础研究、产品开发及质量控制等各个阶段。 美国麦克仪器公司早在1979年就进入中国市场,是中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司.,专业为中国市场提供美国麦克仪器公司的产品和服务。2014年8月,公司在上海成立大型分析服务中心,提供全面的分析测试服务。 更多详情欢迎访问美国麦克仪器公司中国官方网站:http://www.micromeritics.com.cn
  • 喜迎政策催化!固相萃取仪市场风云再起
    近日,国务院印发《关于开展第三次全国土壤普查的通知》(以下简称《通知》),决定自2022年起开展第三次全国土壤普查,利用四年时间全面查清农用地土壤质量家底。《通知》明确了普查总体要求、对象与内容、时间安排、组织实施、经费保障和工作要求。该政策一出,环保行业企业一片欢呼雀跃,相关仪器市场更是风起云涌,固相萃取仪作为环境检测领域的重要前处理仪器,市场发展潜力巨大。固相萃取(Solid Phase Extraction,简称SPE)是从20世纪80年代中期发展起来的一项样品前处理技术,由液固萃取和液相色谱技术相结合发展而来,主要用于样品的分离,净化和浓缩。与传统的液液萃取法相比较,固相萃取具有选择性强、分离时间短、回收率高、不易乳化、有机溶剂用量少及易于自动化等优点,被广泛地应用在水质检测、制药、环境分析、食品分析及烟草分析等领域。国内固相萃取仪行业产品发展历史较短,是近十几年才发展起来的,特别是2005年以后,国内食品安全、疾病传染、环境污染等问题频发,从而推动国内安全检测工作的展开,固相萃取仪作为安全检测重要配套产品得到了快速发展。市场品牌云集,国产仪器后来居上目前国内固相萃取仪市场品牌云集,其中市场排名相对靠前的品牌主要有睿科、莱伯泰科、安捷伦、赛默飞、Supelco、Gilson、Biotage、GL Science、LC Tech等。在手动固相萃取装置及半自动固相萃取仪方面,进口品牌占据绝对优势,市场份额主要集中在赛默飞、安捷伦、沃特世、Supelco、艾杰尔-飞诺美等进口品牌上。在全自动固相萃取仪方面,国产品牌近年来发展迅速,如莱伯泰科、睿科等国产先进品牌已经逐步取代Gilson、J2、LC Tech等进口品牌,成为市场主流,一些国产新兴品牌如屹尧、谱育科技、宝德仪器等也开始逐步崛起。固相萃取仪主要品牌市场份额 全自动固相萃取仪主要品牌市场份额 主要发展方向:更高效、高选择性值得注意的是,尽管目前固相萃取技术越来越成熟,但其仍然面临样品局限、结构局限、填料问题等问题。发展高选择、高效率的吸附剂,拓宽样品的应用范围,以及继续完善柱构型等是未来固相萃取仪的重要发展方向。而从处理效率和自动化程度来看,大部分现有的自动固相萃取仪还有很多地方需要改进。因此,进一步提高自动化程度,提升样品处理效率,以及发挥多种仪器联用功能等是未来全自动固相萃取仪的主要发展方向。未来,市场机会何在?各品牌市场份额如何?竞争对手在不同细分市场表现如何 ?各地区采购情况如何?哪些省市、机构采购需求旺盛?用户反馈如何?未来的市场机会主要在哪里?… … … … 仪器信息网为了解近年来固相萃取仪的技术发展趋势、市场发展行情、各主要品牌市场占有率、重点应用领域以及未来采购需求等内容,以为相关从业者进行市场分析和业务决策提供参考,特组织了“固相萃取仪市场调研”活动,并在调研结果的基础上撰写了《中国固相萃取仪市场研究报告(2022版)》。本报告包含国内固相萃取仪市场综合分析、全自动固相萃取仪市场综合分析、竞争情况、采购机构画像、采购行为分析、使用情况反馈等内容。报告链接:https://www.instrument.com.cn/survey/Report_Census.aspx?id=262欢迎感兴趣的网友联系购买报告事宜,电话:010-51654077转销售部报告目录第一章 概述 1.1 固相萃取技术原理 1.2 固相萃取装置构成 1.3 手动固相萃取 1.4 自动固相萃取仪 1.4.1 自动固相萃取仪的特点及优势 1.4.2 自动固相萃取仪的分类 1.5 固相萃取应用进展 第二章 固相萃取仪市场综合分析 2.1 固相萃取仪市场概况 2.2 固相萃取仪市场部分主流厂商 2.3 固相萃取仪市场成交价分析 2.4 固相萃取仪市场规模预测 第三章 全自动固相萃取仪市场综合分析3.1 全自动固相萃取仪市场概况 3.2 全自动固相萃取仪主要品牌市场占比分析 3.2.1 2021年全自动固相萃取仪主要品牌销售额市场占比 3.2.2 2021年全自动固相萃取仪主要品牌销售台数市场占比 3.2.3 2021年全自动固相萃取仪主要品牌细分市场竞争情况 3.3 全自动固相萃取仪市场部分主流仪器情况统计 第四章 固相萃取仪参调用户来源分析 4.1 固相萃取仪主要使用单位 4.2 固相萃取仪用户单位类型分布 4.3 固相萃取仪用户所在行业分布 4.4 固相萃取仪用户所在地区分布 第五章 固相萃取仪专场仪器访问数据分析 5.1 2019、2020、2021年固相萃取仪专场PV、UV 5.2 2021年固相萃取仪专场PV、UV品牌排行 5.3 2021年固相萃取仪专场PV、UV前十仪器 第六章 2021年公开发布固相萃取仪招标采购情况分析 6.1 2021年固相萃取仪公开招标采购数量分析 6.2 2021年固相萃取仪公开招标采购金额分析 6.3 2021年固相萃取仪公开招标采购用户分布6.4 2020年固相萃取仪公开招标采购品牌分布第七章 固相萃取仪用户使用及采购现状分析 7.1 不同类型固相萃取仪分布 7.2 不同通道固相萃取仪分布 7.3 使用频率现状 7.4 使用问题反馈 7.5 用户采购关注点 7.6 用户采购需求 第八章 总结评述
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制