当前位置: 仪器信息网 > 行业主题 > >

超材料

仪器信息网超材料专题为您整合超材料相关的最新文章,在超材料专题,您不仅可以免费浏览超材料的资讯, 同时您还可以浏览超材料的相关资料、解决方案,参与社区超材料话题讨论。

超材料相关的论坛

  • 超材料使超声波检测图像更清晰

    将声波直接转换成光学信号超材料使超声波检测图像更清晰2013年03月17日 来源: 中国科技网 作者: 刘海英 中国科技网 伦敦3月15日电(记者刘海英)超声波诊断已在医学临床上普遍应用,众所周知的B超就是其中应用最广泛和简便的一种。但受声波频段所限,目前超声波检测所得图像的清晰度还不尽如人意,会一定程度上影响诊断效果。最近,英国伦敦国王学院研究人员开发出一种新型工程材料,可有效提高超声波检测图像的清晰度,有望改进超声波技术在医疗领域的使用状况。 这种新型工程材料属于“超材料”范畴,由镶嵌在一种称为“聚吡咯”(PPy)的聚合物中的金纳米棒组成。该材料的特性在于,它可以将超声波信号转变为光学信号。目前,传统的超声诊断设备都是将超声波信号转变为电子信号,其使用受限于敏感度和声波频宽,因而在成像清晰度方面有不尽人意之处。而新型材料能够将超声波信号转变为光学信号,使得信号处理一定程度上摆脱了上述限制,进而可形成清晰度更高的图像。 研究人员指出,超声波的频率越高,其定向性和敏感度越好,其成像的清晰度也会越高。当前的超声波技术,在声波大约在50兆赫兹左右时,敏感度就会有显著的下降。而这种新型材料能够将声波转换成光学信号,不再受限于超声波段,使得超声设备在150兆赫兹内都能“看”到以前看不到的细节,在医学应用方面极具潜力。 该项目领导者、伦敦国王学院的韦恩·迪克逊教授表示,新型材料的开发具有重要意义。他指出,目前最敏感的超声波探头也会受到声波频段的限制,即使是传统的光学材料,也会因光学定位方面的严格要求而不易使用到设备当中。而新型材料则能够相对简单地配置到超声波设备当中,这意味着医学诊断和治疗领域中有可能会产生新一代超声波传感设备。 《科技日报》 2013-03-17 (二版)

  • 新型超材料可避免电磁波逆向反射

    中国科技网讯 据物理学家组织网近日报道,电脑芯片利用光来移动数据将更加节能,甚至可比现今使用的芯片速度更快。而实现这点的困难之一就是光穿过电磁波导时不发生逆向反射以干扰之后的传输,甚至中断激光的工作。 现今的光纤网络通常使用光电隔离器来阻止光的逆向反射。这种装置一般由钇铟柘榴石等特殊材料制成,同时只能在磁场的作用下开展工作,这使得它的体积十分庞大。另外,由于隔离器会吸收光子以避免它们发生反向散射,其同样会削弱向前移动的光学信号。 而麻省理工学院等校的科研人员描述了一种新型超材料,能够保持光子只沿一个方向移动,使游荡的光子改道,而不仅仅是吸收它们。研究人员表示,这十分重要,因为光子的损失会限制他们所能集成的设备数量,因而制约大规模集成光学器件的发展。虽然实验所用的原型很大,但却不需要另外施加磁场,因此其原则上能够生产出比当前的光电隔离器更小的光学元件。此外,构建芯片级别的超材料不需要比生成微处理器更特殊的金属,从而能够降低制造的成本。相关研究报告发表在本周出版的美国《国家科学院学报》上。 赋予新材料光聚集特性的正是成排嵌入的金属天线,它们看起来很像垂直和水平交错的小型螺旋桨。每根天线由电路与位于材料底部表面的反方向的天线相连,通过电路的电流方向则决定了电磁波的传播方向。 虽然科学家正尝试以诸多不同的途径获取芯片级别的波导,但新型超材料提供的光学波导对于制造能够控制光学信号的芯片上设备十分有用。在芯片生产中,这些天线能被轻易地嵌入硅中。但天线的小型化并非支持超材料在可见光甚至近红外频率中工作的主要障碍,工作频率同样会受到电流中晶体管转换速度的限制,目前还没有哪个晶体管的设计能够迎合可见光较高的转换速度,而这正是研究人员正在努力的方向。(张巍巍) 《科技日报》(2012-08-21 二版)

  • 回潮率是表示纺织材料吸湿程度的指标

    回潮率是表示纺织材料吸湿程度的指标。 1.回潮率W1:纺织材料中所含水分的重量占纺织材料干重的百分数。2.标准回潮率:在统一的标准大气条件下,吸湿过程达到平衡时的回潮率。相同的材料在不同的大气条件下的回潮率是不同的,国际标准ISO139:2005《纺织品调湿和试验用标准大针对这种状态做出了规定,我国也制订了相应标准GB/T6529-2008 《纺织品调湿和试验用标准大气》,标准中明确规定:标准大气应是温度为20.0℃,相对湿度为65.0%;温度的容差为2.0℃,相对湿度的容差为65.0%。标准中的这一规定使异地试验具有了可比性。通常在标准大气条件下调湿24h以上,合成纤维调湿4h以上。3. 公定回潮率W2:贸易上为了计量和核价的需要,由国家统一规定的各种纺织材料的回潮率。——以标准回潮率为依据,但不等于标准回潮率。 4.公定重量:纺织材料在公定回潮率时的重量(G),是交付结算的依据。 在实际应用时,利用实际回潮率W1、公定回潮率W2和纺织材料的称见重量G1,可以计算出纺织材料的公定重量G2 温湿度对纺织加工的影响很大,主要是由纤维吸湿后机械性能的变化引起。回潮率太低,则纤维或纱线的刚性变大,加工中易断裂;回潮率太高,则纤维中的杂质难于清除,易于相互纠缠成结或绕在机件上,影响加工的正常进行。 纤维的刚性和弹性还影响到纤维的相互抱合,使纱线的结构和质量受到影响;吸湿性对纤维变形的影响,在加工成品如纱线和织物上则表现为尺寸的不稳定。

  • ICP-MS测超痕量元素用哪种材质的塑料瓶?

    ICP-MS测超痕量元素用哪种材质的塑料瓶?LUPI牌,PTFE,FEP,PFA,PP,PE或PVC等,我想买FEP或PFA,最好是那种透明的, 呵呵,现有的PE好不好呢?在使用前,大家是怎么预处理的呀?LUPI牌子的感觉时间长了容易变黄,这个牌子用的是什么材质的呢?但是别的材质的瓶子小口 的比较多,用起来也不太方便。

  • ICP-MS测超痕量元素用哪种材质的塑料瓶?

    ICP-MS测超痕量元素用哪种材质的塑料瓶?LUPI牌,PTFE,FEP,PFA,PP,PE或PVC等,我想买FEP或PFA,最好是那种透明的,呵呵,现有的PE好不好呢?在使用前,大家是怎么预处理的呀?LUPI牌子的感觉时间长了容易变黄,这个牌子用的是什么材质的呢?但是别的材质的瓶子小口的比较多,用起来也不太方便。

  • 【分享】超材料制成隐声斗篷 掩盖波长可令水下物体遁形

    美国的科学家设计出两维圆柱形隐声斗篷,它由16个声学线圈同心环构成,可以用来控制声波。每个环的折射率各不相同,这意味着声波从最外面的环向最内侧的环传播时,速度会发生改变。这种新发明可使声呐和其他超声波无法探测到水下物体。  这个隐声斗篷是用超材料制成。超材料是一种人造材料,具有天然材料所不具有的一些奇特性质。这个隐声斗篷上有一排排通过凹槽连接在一起的空穴。声音会在这些凹槽里传播,空穴可以减慢声波速度。由于加速需要能量,声波不能在隐声斗篷外环周围传播,而是沿凹槽进入线圈。结构特殊的声学线圈起到了弯曲声波的作用,令其环绕在隐声斗篷最外层。  声学斗篷的一大优势,是它能掩盖波长范围很广的声音。这种斗篷能使频率40到80千赫的超声波“遁形”。研究人员对这种斗篷隐藏钢筒的能力进行了检测。他们把一个钢筒放进一个水箱里,水箱的一头放的是超声波源,另一头是一个传感器阵列。然后把钢筒放进隐声斗篷里,钢筒就从声呐中消失,探测不到它了。 (四川新闻网)

  • 特殊及新兴材料的金相制备技术与案例分享——超软、涂渗层、增材制造材料及EBSD样品

    [align=center][size=18px][b]特殊及新兴材料的金相制备技术与案例分享——超软、涂渗层、[/b][/size][size=18px][b]增材制造[/b][/size][size=18px][b]材料及[/b][/size][size=18px][b]EBSD样品[/b][/size][/align][align=center][size=14px]会议时间[/size][size=14px]:[/size][size=14px]2020年[/size][size=14px]5[/size][size=14px]月[/size][size=14px]21[/size][size=14px]日1[/size][size=14px]0[/size][size=14px]:00[/size][/align][align=left][size=16px][b]内容[/b][/size][size=16px][b]介绍:[/b][/size][/align][align=left]金相分析是材料研究和检测领域比较常见的分析测试方法之一,具有悠久的应用历史。随着现代科技和工业的进步,与金相制样相关的理论、技术和设备均有了较快的发展;同时,制备的材料也日新月异,带来了制备效果、效率等方面的挑战。本次报告将基于QATM(原德国ATM)多年的先进制样理论和实践经验,分享较难制备的超软材料、涂层渗层以及新兴的增材制造材料和EBSD分析用样品的金相制备要点,包括切割、镶嵌、磨抛和耗材选择的注意事项以及推荐的制备方案,助力您实现高质高效的金相制备。[/align][align=left][size=16px][b]讲师[/b][/size][size=16px][b]介绍:[/b][/size][/align][align=left][size=14px][b]王波[/b][/size][size=14px][b]:[/b][/size][size=14px]为天津大学材料学专业博士毕业,曾在摩托罗拉-实验室(亚洲)担任高级失效分析工程师及资深实验室经理。2013年起先后担任知名美国金相品牌亚太区应用主管及德国ATM品牌中国区应用及市场经理,并在国内进行过多场金相制[/size][size=14px]样技术[/size][size=14px]讲座,分享现代制[/size][size=14px]样理论[/size][size=14px]和实践,深受好评[/size][size=14px]。[/size][/align][align=left]报名地址:[url]https://www.instrument.com.cn/webinar/meeting_13746.html[/url][/align]

  • 【分享】美国研制出一种新型合金材料 强韧度超已知材料

    新一期英国《自然·材料》杂志刊登报告说,美国研究人员制出一种新型合金材料,且是迄今在强度和韧度两方面综合性能最好的材料。  在材料学中,强度指材料在不出现永久变形情况下承受压力的能力,而韧度是抗碎裂的能力。玻璃是强度好过韧度的典型,而铁等金属则相反。  美国加州理工学院的马里奥斯·季米特里里乌等人以金属钯为主要材料,加入少量银和其他元素,在融化状态下将其快速冷却,从而获得一种具有类似玻璃内部结构的全新合金材料。实验显示,这种新材料在强度和韧度两方面的综合性能超过其他任何已知材料。  据介绍,这种使合金具备类似玻璃结构的技术以前就有,但过去使用其他金属得到的合金性能不理想。本次研究的成功之处是找对了“配方”。季米特里里乌说,钯、银等金属混合后能产生既强且韧合金的深层原因目前还不清楚,将就此进行更深入的研究。  由于钯是一种昂贵的金属,这种新材料暂时还难以大规模应用。研究人员认为目前最适合的用途是制造对强度和韧度要求都较高的牙科用品等。不过,他们也在探索用便宜的铜、铁或铝等金属来制造类似的合金材料。

  • 公定回潮率 GB/T 9994-2018《纺织材料公定回潮率》新标准

    公定回潮率 GB/T 9994-2018《纺织材料公定回潮率》新标准

    [b] 公定回潮GB/T 9994-2018《纺织材料公定回潮率》新标准国家标准[color=#cc0000]GB/T 9994-2018《纺织材料公定回潮率》[/color]将于[color=#cc0000]2018年10月1日[/color]实施。[/b][align=left]本标准代替GB/T 9994-2008《纺织材料公定回潮率》。与GB/T 9994-2008相比,[color=#cc0000][b]主要技术变化如下[/b][/color][b]:[/b][/align][align=left][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img] 将“混纺产品”改为“多组分产品”,删除范围中的注;[/align][align=left][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img] 修改了棉织物、毛机织物、莫代尔纤维、菜赛尔纤维和芳纶的公定回潮率 [/align][align=left][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img] 增加了壳聚糖纤维、聚对苯二甲酸丙二酯纤维、聚对苯二甲酸丁二酯纤维、超高分子量聚乙烯纤维、聚烯烃弹性纤维、聚苯硫醚纤维、聚酰亚胺纤维和碳纤维的公定回潮率 [img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img] 删除了碳氟纤维及其公定回潮率。[/align][align=left]该标准第5章节:对于新型的或未知公定回潮率的其他纤维及其成品,可以采用纤维状态的[b][color=#cc0000]标准回潮率[/color][/b]代替公定回潮率。[/align][color=#ffffff][b][color=#ffffff]主要变化的公定回潮率/%:[/color][/b][/color][table][tr][td=1,1,202][align=center][b][color=red]2018[/color][color=red]版[/color][/b][/align][/td][td=1,1,180][align=center]2008版[/align][/td][/tr][tr][td=1,1,202][align=center][color=red]棉织物:[b]8.5[/b][/color][/align][/td][td=1,1,180][align=center]棉织物:8.0[/align][/td][/tr][tr][td=1,1,202][align=center][color=red]毛织物:[b]15.0[/b][/color][/align][/td][td=1,1,180][align=center]毛织物:14.0[/align][/td][/tr][tr][td=1,1,202][align=center][color=red]莫代尔纤维:[b]13.0[/b][/color][/align][/td][td=1,1,180][align=center]莫代尔纤维:11.0[/align][/td][/tr][tr][td=1,1,202][align=center][color=red]莱赛尔纤维:[b]13.0[/b][/color][/align][/td][td=1,1,180][align=center]莱赛尔纤维:10.0[/align][/td][/tr][tr][td=1,1,202][align=center][color=red]芳纶1313:5.0[/color][/align][align=center][color=red]芳纶1414(高模量):3.5芳纶1414(其他):7.0[/color][/align][/td][td=1,1,180][align=center]芳纶(高模量):3.5[/align][align=center]芳纶(普通):7.0[/align][/td][/tr][/table][b][color=#ffffff]2018版新标准中增加的部分:[/color][/b][table][tr][td=1,1,202][align=center]壳聚糖纤维[/align][/td][td=1,1,180][align=center]17.5[/align][/td][/tr][tr][td=1,1,202][align=center]聚对苯二甲酸丙二酯纤维[/align][/td][td=1,1,180][align=center]0.4[/align][/td][/tr][tr][td=1,1,202][align=center]聚对苯二甲酸丁二酯纤维[/align][/td][td=1,1,180][align=center]0.4[/align][/td][/tr][tr][td=1,1,202][align=center]超高分子量聚乙烯纤维[/align][/td][td=1,1,180][align=center]0.0[/align][/td][/tr][tr][td=1,1,202][align=center]聚烯烃弹性纤维[/align][/td][td=1,1,180][align=center]0.0[/align][/td][/tr][tr][td=1,1,202][align=center]聚苯硫醚纤维[/align][/td][td=1,1,180][align=center]0.1[/align][/td][/tr][tr][td=1,1,202][align=center]聚酰亚胺纤维[/align][/td][td=1,1,180][align=center]1.5[/align][/td][/tr][tr][td=1,1,202][align=center]碳纤维[/align][align=center] 海藻纤维 [/align][/td][td=1,1,180][align=center]0.0[/align][align=center]20.7%。[/align][align=center][/align][/td][/tr][/table][b][/b]

  • 【原创大赛】【欧波同材料分析研究中心】从荷叶效应到超疏水表面——从自然到人工合成

    【原创大赛】【欧波同材料分析研究中心】从荷叶效应到超疏水表面——从自然到人工合成

    [b][b]前言:[/b][/b]在盛夏时节安静的池塘边,正是观赏荷花的好时候。在红花绿叶的点缀下,夏日仿佛多了一丝清凉舒缓。每当提到荷花(莲花),总能想起周敦颐在《爱莲说》中 “予独爱莲之出淤泥而不染,濯清涟而不妖”的诗句。[color=#333333]荷花历来被佛教尊为神圣净洁之花,并且极力宣传并倡导学习荷花的这种清白、圣洁的精神。另外,李白的诗句“清水出芙蓉,天然去雕饰”,也表明荷花具有天然之美。荷花即青莲,青莲与“清廉”谐音,因此荷花也被用以比喻为官清正,不与人同流合污,这主要是指在仕途中。比如,有一幅由青莲和白鹭组成的名为“一路清廉”的图画,就被很多文人置于自己的书房中。[/color][color=#333333]可是,莲为什么可以出淤泥而不染呢?这就要讲到莲花的“自清洁”和“不沾湿”特性了。[/color][align=center][color=#333333][img=,690,459]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111012069537_964_2516543_3.png!w690x459.jpg[/img][/color][/align][color=#333333][/color][b][b]荷叶响应:[/b][/b][align=left][color=#333333]如果留心观察莲花的叶子,你就会发现荷叶上总是干干净净的,好似不留一点灰尘。这是因为荷叶表面的特殊结构有自我清洁的功能,即荷叶的“自清洁”特性。此外,我们经常会看到这样的场景:当水滴在荷叶上时,水并没有完全铺展开,而是以水珠的形式停留在荷叶上,而且只要叶面稍微倾斜,水珠就会滚离叶面。这就是荷叶的“不沾湿”特性。荷叶的“自清洁”和“不沾湿”特性被统称为“荷叶效应”。这一概念最早是由德国波恩大学的植物学家巴特洛特提出的。[/color][/align][align=center][img=,540,304]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111012430687_6323_2516543_3.png!w540x304.jpg[/img][/align][align=center]图1荷叶效应[/align][b][b]超疏水特性:[/b][/b][color=#333333]其实,荷叶的“不沾湿”特性也被称为“超疏水”特性。那么,如何界定“超疏水”这一概念呢?在明确“超疏水”这一概念前,我们要先了解表面化学中的一个概念——接触角。如下图所示,接触角指的是“液-固”界面的水平线与“气-液”界面切线之间通过液体内部的夹角θ。有了这一概念,我们可以很方便地表示液体对固体的润湿情况。当夹角θ小于90°[/color]时,我们称该液体可以湿润固体。当[color=#333333]θ大于90°时,该液体不能湿润固体。当θ大于150°时,该固体表面具有超疏水特性。通俗地讲,我们可以认为这种固体表面有很强的排斥水的能力。[/color][align=center][img=,650,225]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111012556307_6626_2516543_3.png!w650x225.jpg[/img][/align][align=center]图2 浸润与不浸润的特征[/align][align=left][color=#333333]在自然界中,奇异的性质往往是其独特的结构决定的。那么,你肯定会问:“荷叶的特性是否与它的结构有关呢?”答案是肯定的。扫描电子显微镜的发展给我们的科学研究带来了更多的可能,也使得我们能够观察到荷叶的微观结构。通过电子显微镜的成像结果,我们可以清晰地看到荷叶表面有许多突起的“小山包”(这类结构被称为“乳突”如图3(a))。这些乳突的尺寸通常在6微米左右,这些乳突的平均间距在12微米左右。而这些乳突是由许多直径在100纳米左右的纳米蜡质晶体组成。由此可见,荷叶表面存在复杂的“微米-纳米”双重结构,正是这些结构使得荷叶产生了“超疏水”和“自清洁”的双重特性。[/color][/align][align=center][img=,690,516]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111013077477_9002_2516543_3.png!w690x516.jpg[/img][/align][align=center]图3 荷花叶片的SEM图像 (a)低倍图像(b)[color=#333333] “乳突”高倍图像(c)叶片底部高倍图像(d)“乳突”尺寸对应的接触角曲线分布[/color][/align][align=center] [/align][b][b]由荷叶到仿生技术:[/b][/b][color=#333333]自然界的生物都经历了漫长的演化过程,在物竞天择下,生物自身的结构和功能都经过了长期的筛选、发展和优化,具有极高的效能。荷叶的“自清洁”性能,并不是简单的美观功效,清洁程度直接影响叶片的光合作用效率。那么不仅仅是荷叶,在自然界中具有自清洁功能的生物还有很多种,比如蝴蝶的翅膀具有的超疏水结构,保证蝴蝶翅膀不会粘连露水影响飞行。水黾的脚具有绒毛结构,确保了水黾在水面上能以每秒钟滑行100倍于自身长度的距离,这都由于水黾腿部上有数千根按同一方向排列的多层微米尺寸的刚毛。而这些像针一样的微米刚毛的直径不足3微米,表面上形成螺旋状纳米结构的构槽,吸附在构槽中的气泡形成气垫,从而让水黾能够在水面上自由地穿梭滑行,却不会将腿弄湿。还有蚊子的复眼,它是由许多尺寸均一的微米半球组成,其表面还覆盖有无数精细的纳米乳突结构,这种纳米乳突结构的尖端与雾滴接触的面积无限小,具有理想的超疏水特性,从而确保了蚊子的复眼具有理想的超疏水防雾性能。[/color][align=center][img=,517,405]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111015091396_319_2516543_3.png!w517x405.jpg[/img][/align][align=center]图4 蝴蝶翅膀,水黾足,蚊子复眼的超疏水结构[/align][align=center] [/align]那么面对自然界演化生成的超疏水结构,科学家也进行了进一步的研究,其超疏水表面的制备方法有多种:溶胶-凝胶法、相分离法、模板法、蚀刻法、化学[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]沉积法、自组装法等等,下图为具有独特形状的表面微米阵列(如图5)纳米阵列(如图6),使得它们具有很好的疏水特性。[align=center][img=,690,408]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111015259467_5266_2516543_3.png!w690x408.jpg[/img][/align][align=center]图5不同形态的人工合成的超疏水结构[/align][align=center][/align][align=center][img=,690,940]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111015517337_7606_2516543_3.png!w690x940.jpg[/img][/align][align=center]图6 超疏水结构碳纳米管阵列[/align]经过先进结构材料的表面改性,我们常见的水也可以变得很有趣,比如我们可以用手切割水珠(图7),利用涂有超疏水材料的刀片对水滴进行切割(图8)。日常生活上,通过先进疏水材料的应用我们可以使得衣物不再被水或者油污污染,减少洗涤衣物的麻烦。在军事上,由于疏水材料的使用使得水的阻力明显下降,有效的提升了舰载的行驶速度。[align=center] [/align][align=center][img=,396,213]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111016242856_7728_2516543_3.png!w396x213.jpg[/img][/align][align=center]图7超疏水表面上流动的水珠[/align][align=center][/align][align=center][img=,400,285]https://ng1.17img.cn/bbsfiles/images/2018/09/201809111016390737_7536_2516543_3.png!w400x285.jpg[/img][/align][align=center]图8超疏水表面涂层的刀片切割水滴[/align][b][b]结束语:[/b][/b][align=left][color=#333333]从荷叶效应到超疏水结构材料的合成制备,实际上是一个仿生学研究的过程。它将生物的结构、功能和行为应用于现代工程系统和技术设计中,解决人类所遇到的科学技术问题。仿生不是对自然模型的简单复制,而是对大自然中生物的理解、升华和具有创新价值的“重塑”。在这“重塑”的过程中,电子显微科学技术对其发展与促进的是十分巨大的。[/color][/align]

  • 【求助】材料内部的离子如何测试

    昨天客户到我们公司参观,问了一个问题:粉体材料内部的氯离子如何测试得到?一般我们测试粉体材料中的氯离子,都是水溶后超声过滤测试,只是表面吸附的离子。到底如何测到材料内部的呢?[em09511]

  • 超细中药材的应用及其制备技术

    一 、 超细中药材的应用超细粉体技术在中药方面的应用是新近发展起来的应用领域。“中药”虽然是中国之国药,然而超细粉体技术在中药领域中的应用是日本人最先开创的,这对中国科技工作者无疑是一种鞭策。中药材自古至今一直沿用传统饿饮片、煎煮服用模式,日本日呢研究发现,饮片煎煮服用的方法只能将中药材中一部分有效成分被利用,而大量的有效成分被抛弃。这不仅造成了大量的中药资源被浪费,而且服用极不方便,不能适应现代化节奏生活的需要。中国医药学在防病治病,保障人民身体健康方面发挥了重要作用。中药是中医临床防治疾病的重要手段。我国有着丰富的重要资源,以往中药粗放的加工手段已不能适应当前人们的要求,近年来随着我国超细粉体技术的发展和延伸,开发疗效更突出.品质更优的超细中药粉体将形成良好的发展态势,这对提高人民的健康水平,防治疾病必将产生推动作用。中药作为中医临床治病的物质基础,其临床用药形式众多,中药材直接粉碎入药的也不少,但普通粉的颗粒粒径大小均在150~180μm之间,粉末中的有效成分,大部分被包裹在尚未被击破的细胞内,这些成分在容出前,首先要透过细胞壁,逐渐扩散到粉末表面,再经湿润、渗透、解吸、溶解等过程,才能被机体吸收与利用。对于一些外用散剂,引入超细粉碎技术将增加药物的分散性,有利于药物的涂布.附着。透皮吸收,并可减少药物对皮肤的刺激性。在冲剂、胶囊剂、片剂、膜剂等固体制剂中,根据处方性质,在制备工艺的某些环节引入超细粉体技术,亦有可能在溶解度、崩解度,吸收率、附着力及生物利用度方面改善其品质。为了更好地促进机体对药物的吸收和利用,借助于超细粉体技术。对中药材进一步加工,经超细化后,不仅可提高吸收率、疗效和利用率,而且还可使服用方便,避免了传统繁杂的饮片煎煮服用。中药材超细化后内服外用时,细胞内的有效成分不必再需通过细胞壁和细胞膜建立的屏障才能被给药部位吸收,而是直接和药部位接触吸收;同时,中药超细粉体的比表面积很大,与给药部位接触面积大,而且其黏附性能使药物在吸收部位的时间延长,因此可大大提高有效成分的吸收速度和吸收程度,从而达到速效、高效、长效的治疗效果。此外,由于超细粉体技术采用超音速气流粉碎、冷冻粉碎等方法,与以往的纯机械粉碎方法不同,在粉碎过程中不产生局部过热,且在低温状态下进行,粉碎速度快,可最大程度地保留中药中生物活性物质及各种营养成分。因此,中药超细粉体对提高中药疗效,降低毒副作用减少服用剂量具有重要意义。中药经超西粉碎后,对药效学的影响目前国内也有少量报道,山东省医药工业研究所的杜晓敏曾对中药复方桂附地黄丸及超细粉桂附地黄丸进行了药效学的对比研究,结果发现采用超细粉碎技术制成桂附地黄丸在药效上与原存在较明显的差异,相同剂量时,前者的药效作用更加明显。而且,他们对超细粉体中药的外用进行了药效学方面的研究,通过对一种外用治疗妇女痛经及人工流产的外用贴脐剂的镇痛及活血昨用的研究,发现在相同剂量时,超细粉体制成的贴剂药效明显强于普通贴剂,而小剂量的超细粉体贴剂作用与大量剂量的普通粉贴剂的作用相当,提示利用超细粉体制面的制剂可增加药物在体内的吸收,提高药物的疗效,降低药物的服用量。第三军医大学也对超细粉体技术应用于贝壳类中药进行了研究,结果发现鳖甲经超西分数后,可直接被人体吸收利用,具有很好的免疫调节作用,而且鳖甲中钙元素的含量比较高,经超细粉碎后,也有利于钙的吸收和利用,又可丰富鳖甲的功效作用。南京中医药大学郭立玮等用生物药剂学和药物动力学的方法对马钱子等有毒中药的超细粉体和普通分体进行了对比研究,发现两种分体的药物动力学参数有显著差别,这种差别具有重要的临床治疗学意义。对于一些含挥发油成分的药物,由于超细粉碎可以在常温或低温状态下进行,因此可以保留药物的活性成分,保证药物的疗效发挥。对于动物类的药材可以在不需要任何处理的条件下进行粉碎。而且一些生物活性物质也不会被破坏。采用超细粉体后,一般不再需要用浸提、煎煮等办法来提取有效成分,减少了有效成分的损失,最大限度地利用原药材。特别对于一些贵重药材和毒剧药尤其适宜。同时也减少了生产环节,可直接用于制剂,减少后继工艺设备的投资,降低了成本。另外,还可将一些药食兼用的且有滋补保健功能的中药加工成超细粉体,既可减少资源的浪费、增加吸收、改善口感,有可作为添加入饮料、面包、饼干等食品制成各种保健食品。将具有消除色斑、座疮、滋养皮肤等功效的中药进行超细粉碎,与其他原料调配成各种疗效型化妆品,可提高其疗效和品质。目前,利用超细粉体技术开发的中药品种较少,主要局限于一些作用独特的传统名贵中药,如西洋参、人参、灵芝、珍珠等保健3滋补药品及食品。而中药品种繁多,其物理特性和化学成分各异,如何应用超细粉体技术的特点与优势,形成中药的新材料.新剂型,是我国超细粉体工作者及中医药科研工作者面临的又一重大课题。

  • 季铵盐化甲壳素基材料超广谱抗菌性能及在感染性创面修复中的应用研究

    【序号】:1【作者】: 夏天【题名】:季铵盐化甲壳素基材料超广谱抗菌性能及在感染性创面修复中的应用研究【期刊】:武汉大学【年、卷、期、起止页码】:2021【全文链接】:[url]https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFDTEMP&filename=1021657821.nh&uniplatform=NZKPT&v=CIlkdiZzBi_B7gLC8OgQAuy-x1C-eK0U-gpPqbl-lkb2MoimJJIsl1aROP9TY_UK[/url]

  • 【原创大赛】纺织材料成分定量分析中公定回潮率的使用探讨

    纺织材料成分定量分析中公定回潮率的使用探讨纺织品纤维成分定量分析中,一般情况下混纺纤维都是净干重量结合公定回潮率进行出具报告的,但在实际的测试过程中,本人发现很多的测试结果就是因为加上公定回潮率,反而是不合格,造成很多的纠纷和质疑有这么一个样品,标准的成分含量是35%聚酯纤维,65%粘胶纤维,下面是测试过程1.检验依据2.1、FZ/T01057.3-2007《纺织品纤维鉴别方法 显微镜观察方法》2.2、GB/T2910-2009 《纺织品二组分纤维混纺产品定量化学分析方法》 2.原理混纺产品的组分经定性鉴定后,选择适当试剂溶解去除一组组分,将不溶解的纤维烘干、称重、从而计算出各组分纤维的百分含量3.试剂和设备3.1索氏萃取器3.2恒温振荡器3.3分析天平,精度0.0002g3.4电热鼓风烘箱3.5干燥器:装有变色硅胶3.6有塞三角烧瓶4.试样准备4.1试样应对全体具有代表性,注意每个试样应包含组成织物的各种纤维组成,每个试样至少两份,每份试样不少于1g5.试验步棸5.1烘干:将试样放入烘箱内,在105±3℃温度下烘4~16h,如果烘干时间达不到要求时间,则需烘至恒重5.1.1试样的烘干:把试样放入称量瓶内,瓶盖放在旁边,烘干后,盖上瓶盖迅速移入干燥器中冷却,称重,直至恒重.5.1.2玻璃砂芯坩埚与不溶纤维烘干:玻璃砂芯坩埚连同盖子,放入烘箱内烘干后,盖上盖子迅速移入干燥器内冷却,称重,直至恒重.5.2称重冷却后,从干燥器中取出称量瓶、玻璃砂芯坩埚等,在2min内称完,精确至0.0002g5.3净干重量百分率的计算P1=100m1d/m。P2=100-P1 式中:P1----不溶解纤维的净干含量百分率% P2----溶解纤维净干含量百分率% m。---预处理后试样干重g m1----剩余的不溶纤维干重g d-----不溶纤维在试剂处理时的重量修正系数6.取样每个2克,共两个试样,经甲酸-氯化锌方法溶解粘胶、剩余聚酯纤维,然后烘箱烘干,恒重后,两个试样剩余重量分别为为0.63克,0.61克,取平均值为0.62克,根据计算,粘胶纤维的值为1.38克,根据成分的标示规定,除棉麻外,一般是要结合公定回潮率进行出报告粘胶纤维的公定回潮率是13%, 计算: 1.38*=1.5594聚酯纤维的公定回潮率是0.4%,计算: 0.62*=0.6225总量计算: 1.5594+0.6225=2.1819粘胶纤维含量:1.5594/2.1819*100%=71.47%聚酯纤维含量:%=28.53%根据GBT 29862-2013纺织品 纤维含量的标识的要求,面料的这个纤维成分含量偏差最大不能大于±5%,然而此面料的纤维成分含量偏差大于标示值的±5%,其结果可以判定纤维成分含量不合格按净干重量来算成分含量如下:粘胶纤维含量:1.38/2.0*100%=69%聚酯纤维含量:%=31%根据GBT 29862-2013纺织品 纤维含量的标识的要求,面料的这个成分偏差最大不能大于±5%,其结果可以判定成分含量合格小结:实际上这样的情况在检测中经常发

  • 【讨论】辉钼有望成下一代半导体材料 部分性能超石墨烯

    新一期英国《自然·纳米技术》杂志日前刊登报告说,单层的辉钼材料显示出良好的半导体特性,有些性能超过现在广泛使用的硅和研究热门石墨烯,可望成为下一代半导体材料。  辉钼是钼的二硫化物。瑞士洛桑联邦高等理工学院的研究人员报告说,辉钼在自然界中含量丰富,常用于冶炼合金等领域,但之前对它电学性能的研究却不多,而实际上单层辉钼材料具有良好的半导体特性。  与现在广泛使用的硅材料相比,辉钼具有两个主要优点:一是达到同等效用的体积更小。只有0.65纳米厚的辉钼材料,电子在其中能像在2纳米厚的硅材料中那样自如移动,同时,现有技术还无法将硅材料制作得跟辉钼材料一样薄;二是能耗更低。据估计,辉钼制成的晶体管在待机状态下消耗的能量只是硅晶体管的约十万分之一。  本次研究关注的是只有一层二硫化钼分子的辉钼材料,它与现在的研究热门石墨烯类似,后者是只有一层碳原子的超薄材料,也被看做是下一代半导体的热门材料,有关它的研究成果获得2010年诺贝尔物理学奖。  但报告说,半导体材料的一个重要特征是具有“能隙”,以便制作半导体开关。辉钼能隙的值非常理想,而石墨烯的能隙为零。如何为石墨烯加上合适的能隙是困扰相关研究的一个难题,这使得辉钼与石墨烯相比也具有优势。  领导研究的安德拉斯·基什教授表示,辉钼是良好的下一代半导体材料,在制造超小型晶体管、发光二极管和太阳能电池方面具有很广阔的前景。(新华网记者黄堃)

  • 【求助】关于介孔材料的TEM制样

    其实以前问过类似的问题。我做的介孔材料是很细小的粉体,模在手里很柔和,所以在制TEM样品的时候,没有进过研磨直接超声分散滴在铜网里,TEM观察的时候发现很多地方很难透过去。记得ustb说过,介孔材料最好研磨,但是我担心研磨会不会破坏其介孔结构,如果研磨,什么研磨方式比较好,研磨多长时间为宜。此外,在电镜观测时,老是看到一个面,比如二维六方介孔材料,总是看到条纹,很少看到六方结构,是不是需要样品倾转,还是有别的好的办法。,请各位大师相助。

  • 高低温试验箱保温层用的是什么材料

    高低温试验箱广泛的用于科研、工业生产、航天、军工等行业,主要对试验样品或材料进行高温、低温的老化性测试,用以研究试验物品在温度变化时发生的热胀冷缩效应是否对物品性能造成影响。[url=http://www.dongguanruili.com/product/36.html][color=#333333]高低温试验箱[/color][/url]可以进行-70℃到100℃或150℃的温度范围测试,其温度控制精确,常用于科研试验。  高低温试验箱的温度能够稳定的保持,一是得益于其灵敏的温度传感器P.I.D自动调控系统,二是得益于其保温材料。高低温试验箱的保温层使用的材料一般有两种:一种是聚氨酯硬质发泡,一种是超细玻璃纤维棉(石棉)。两种保温材料的保温性能都非常好,但根据其材料特性,在不同的情况下选择不同的材料。下面我们来详细分析一下这两种材料。[align=center][img=聚氨酯硬质发泡,500,305]http://www.dongguanruili.com/d/file/6b182b01b05a3a7049e60fb29105c53e.jpg[/img][/align]  聚氨酯硬质发泡简称聚氨酯硬泡,呈海绵泡沫状,其绝热效果好、重量轻、强度高的特点使得在隔热材料的应用上广泛应用,在进行施工安装的时候比较容易,广泛用于冰箱、冰柜、烤箱、冷库、冷藏车等等,以及建筑物、传输管道的隔热等等。高密度的聚氨酯硬泡可以用于仿制木材,结构较硬。硬质聚氨酯硬泡能够承受的温度范围在-40℃~80℃,超过温度会出现结板状况,会使保温效果减弱,对于更高温的设备来说,这种材料不可采用。[align=center][img=超细玻璃纤维棉,500,280]http://www.dongguanruili.com/d/file/87c58f9d2d043cef9793d7b6c0dc4466.jpg[/img][/align]  超细玻璃纤维棉的隔热性能好,在很多防火材料中都添加有超细玻璃纤维棉,超细玻璃纤维棉具有极高的耐热、绝热性,通常用于试验环境保温材料。在制作高低温试验箱的保温隔热层时,超细玻璃纤维棉的填充过程比较繁琐且有一定难度。这种材料可以阻隔高温和低温,适应的温度范围较广,也是现在制作环境温度试验箱采用最多、效果最好的材料。

  • 超声可以透过塑料么?

    实验中为了方便,直接使用塑料离心管(当一次性的用)进行超声萃取,回收率试验效果挺好的。但有工程师说超声是透不过塑料的,必须得用玻璃容器。不知有没有这种说法,这种说法是否科学?

  • 海绵EVA材料的沉淀问题

    海绵EVA材料,加入25ml的有机溶剂二氯甲烷超声,样品漂浮在上面,如何解决样品超声萃取的漂浮问题?[img]http://ng1.17img.cn/bbsfiles/images/2018/01/201801022207_1134_2140715_3.jpeg[/img]

  • 【特稿】浅谈纳米材料的应用

    有人曾经预测在21世纪纳米技术将成为超过网络技术和基因技术的“决定性技术”,由此纳米材料将成为最有前途的材料。世界各国相继投入巨资进行研究,美国从2000年启动了国家纳米计划,国际纳米结构材料会议自1992年以来每两年召开一次,与纳米技术有关的国际期刊也很多。纳米材料的特殊性质 纳米材料高度的弥散性和大量的界面为原子提供了短程扩散途径,导致了高扩散率,它对蠕变,超塑性有显著影响,并使有限固溶体的固溶性增强、烧结温度降低、化学活性增大、耐腐蚀性增强。因此纳米材料所表现的力、热、声、光、电磁等性质,往往不同于该物质在粗晶状态时表现出的性质。与传统晶体材料相比,纳米材料具有高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量、高电阻、高比热、高热膨胀系数、低热导率、强软磁性能。这些特殊性能使纳米材料可广泛地用于高力学性能环境、光热吸收、非线性光学、磁记录、特殊导体、分子筛、超微复合材料、催化剂、热交换材料、敏感元件、烧结助剂、润滑剂等领域。  1 力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制