当前位置: 仪器信息网 > 行业主题 > >

病原菌

仪器信息网病原菌专题为您整合病原菌相关的最新文章,在病原菌专题,您不仅可以免费浏览病原菌的资讯, 同时您还可以浏览病原菌的相关资料、解决方案,参与社区病原菌话题讨论。

病原菌相关的资讯

  • 西安光机所在病原菌快速识别领域获进展
    近日,中国科学院西安光学精密机械研究所博士张周锋带领的研究团队,在光谱医学诊断领域取得新进展,将高光谱显微成像技术与深度学习理论相结合,实现了临床多类病原菌的快速识别。相关研究成果以A deep-learning based system for rapid genus identification of pathogens under hyperspectral microscopic images为题,发表在Cells Topical Collection Computational Imaging for Biophotonics and Biomedicine上。本研究与多家医疗单位合作,利用自研高光谱病原菌快速分析系统,捕获到单细菌尺度的高分辨高光谱图谱数据;利用深度学习网络对临床上万例样本数据进行分析,最终实现了多类临床病原菌类别的高效、准确识别。该成果可使临床医生在较短时间内掌握患者的病原菌感染信息,对于诊疗方案的快速制定具有重要的临床指导意义。该工作为光谱成像技术研究室、西安市生物医学光谱学重点实验室在医工交叉领域的研究开辟了新方向,同时,将推进癌变组织快速诊断、数字病理、手术引导等研究的发展。
  • 广东东莞在国际货物首次检出青霉属病原菌
    中新网东莞5月4日电 记者今天从广东东莞检验检疫局获悉,日前东莞检验检疫局太平口岸在近半个月时间内连续两次从国际航行船舶食品舱检出青霉属,这也是东莞检验检疫部门首次从国际航行船舶食品舱检出青霉属病原菌。   据东莞检验检疫局官员介绍,东莞检验检疫局太平办事处船检人员在3月18日和3月30日,分别对来自印度尼西亚的“嘉畅”轮、澳大利亚的“粤电81”两艘货轮进行检疫查验时,在蔬菜库的存放架上均发现有表面已开始霉烂的马铃薯和茄子,遂采样送东莞检验检疫局植检实验室检测,并督促船方对余下霉烂的马铃薯和茄子进行销毁处理。   经实验室检测,该两种食物中均检出青霉属病原菌,此病原菌可使许多农副产品腐烂,也有少数种类可使人或动物致死。这是太平口岸首次从入境船舶食品中截获该有害病原菌。   “五一”节日期间,为了保障出入境安全,东莞检验检疫局各旅检口岸人员严阵以待,在做好出入境货物检验检疫同时,积极落实人感染H7N9禽流感疫情防控各项工作,保证人员充足、仪器设备运转良好。一方面,及时与客运公司沟通,在柜台张贴疫情提醒告示,加强对出入境旅客的宣传 另一方面,充分发挥联防联控工作机制,加强对出入境人员的体温监测及医学巡查,及时发现可疑病例。   据了解,4月29日至5月1日,太平办事处旅检口岸共查验出境旅客2017人次,同比增长31.7% 入境旅客566人次,同比增长7.4% 截获旅客禁止携带物肉丸及鸡肉1批次 未发现发热旅客。常平办事处旅检口岸共查验出境旅客1920人次,同比增长16.7% 入境旅客1636人次,同比下降2.9% 截获旅客禁止携带入境动植物2批次 发现发热旅客1人。
  • 西安光机所利用高光谱显微成像技术在病原菌快速识别领域获进展
    近期, 西安光机所张周锋博士带领研究团队在光谱医学诊断领域取得新进展,将高光谱显微成像技术与深度学习理论相结合,实现了临床多类病原菌的快速识别。   研究成果以“A deep-learning based system for rapid genus identification of pathogens under hyperspectral microscopic images”为题发表于国际著名学术期刊《Cells》的Topical Collection 《Computational Imaging for Biophotonics and Biomedicine》,IF:7.7。该Collection在显微成像、光谱学、机器学习和AI领域具有较高的影响力。论文第一作者为中国科学院大学2020级博士研究生陶成龙,合作者为杜剑助理研究员,通讯作者为胡炳樑研究员与张周锋博士。  高光谱病原菌数据分析流程   本次研究通过与多家医疗单位合作,利用自研高光谱病原菌快速分析系统成功捕获到单细菌尺度的高分辨高光谱图谱数据,利用深度学习网络对临床上万例样本数据进行分析,最终实现了多类临床病原菌类别的高效、准确识别。该研究成果可使临床医生在较短时间内掌握患者的病原菌感染信息,对于诊疗方案的快速制定具有非常重要的临床指导意义。   本次研究为光谱成像技术研究室、西安市生物医学光谱学重点实验室在医工交叉领域的研究开辟了新方向,预期未来将在癌变组织快速诊断、数字病理、手术引导等应用领域取得更多的研究成果。
  • 化学发光探针检测技术速查病原菌
    吉林检验检疫局建立的金标法检测单核细胞增生性李斯特氏菌技术作为当今检测病原体和诊断疾病方面最为敏感的免疫学技术之一,不仅操作简便、快速、特异,更为重要的是适用于广大基层食品监管部门的现场检测和诊断,这些特点都是其他免疫学方法所无法比拟的。   该技术不仅具有巨大的发展潜力,而且还具有广阔的市场和应用前景,如可适用于医疗卫生行业,出入境食品口岸抽查和鉴定、流通领域卫生监督和工商行政部门和质监部门的食品企业监管等,甚至可以走进餐馆、家庭进行简易的食品自控和检测等。   由吉林出入境检验检疫局承担的国家质检总局科研课题《应用化学发光探针及免疫金标法检测食品中多种致病菌的研究》在2011年获得了国家质检总局“科技兴检”三等奖。该课题建立的化学发光探针检测技术能够快速检测食品中常见的四种病原菌:空肠弯曲菌、单核细胞增生性李斯特氏菌、大肠杆菌O157和金黄色葡萄球菌。其中对单核细胞增生性李斯特氏菌还建立了应用免疫胶体金试纸条的快速检测方法。   急需速测技术   我国的食品生产加工企业数量多,规模小,较分散,而且为数较多企业过分追求利润法律意识淡薄,社会责任心不强导致其产品质量良莠不齐。   据报道,我国45万个食品生产企业中,员工人数10人以下的食品生产加工小作坊就有35万家,约占80%,因而导致食品安全事故时有发生,给社会和消费者的健康造成了巨大危害。   而目前的食品卫生监管的检测手段主要依据国家标准或行业标准规定方法进行,虽然这些方法准确可靠,但这些方法一般都需要建设专门的微生物检测实验室,配备专业的检测技术人员,需要较长的检测周期,由此造成的检测成本过高,缺乏时效性等问题,使一些突发的食品安全事件不能迅速得以解决。因此发展和建立一种快速、简便、灵敏准确的检测技术,作为标准检测方法的初筛技术,是解决上述问题的有效手段之一。   食品检验新兵   化学发光探针技术的原理是互补的核酸单链会特异性识别并结合成稳定的双链复合物。这一检测系统利用一个标记有化学发光物的单链DNA探针,可以特异性的识别和结合目标微生物的核糖体RNA。微生物中的核糖体RNA释放出来后,化学发光标记的DNA探针就与之结合形成稳定的DNA-RNA杂合体。标记的DNA-RNA杂合体会与非杂交探针分离,并在化学发光检测仪中进行测量。样本的检测结果通过计算与阴性对照进行比较得出结果。利用化学发光剂标记和检测核酸使得许多非放射性标记检测的灵敏度达到甚至超过了同位素标记测定。   在众多的化学发光体系中,应用最多的化学发光体主要有三类:增强鲁米诺发光体系、吖啶类化合物发光体系和碱性磷酸酶催化的1,2-二氧环己烷发光体系。吉林检验检疫局建立的化学发光技术使用吖啶酯标记核酸探针。   利用化学发光杂交保护分析的原理检测空肠弯曲菌、单核细胞增生性李斯特氏菌、大肠杆菌O157和金黄色葡萄球菌4种致病菌特异性RNA序列,这种方法无需物理分离,利用吖啶酯标记DNA探针,通过核酸杂交保护分析法,即应用人工合成的靶DNA保守区的寡核苷酸,在合成时引入一个烷氨基的手臂,经活化后接上吖啶酯,制成化学发光探针。   杂交后无需分离步骤,而是利用差分水解来鉴别,即加入碱性溶液,游离的发光探针遇碱水解失去发光特性,而与特异性目的片段结合的探针形成DNA-RNA杂交体,由于吖啶酯是平面结构很容易进入双螺旋的内部而获得杂交保护,水解速度缓慢(半衰期达10分钟以上),仍有发光性能,可以在发光仪上显示化学发光信号,从而实现对病原菌的检测。   应用前景广阔   该项目利用胶体金技术研制了胶体金检测试纸条,用于单核细胞增生性李斯特氏菌的快速检测,该检测试纸条的灵敏度高,具有很强的特异性,不同批次生产的免疫胶体金具有良好的检测重现性,稳定性好,操作简单,检测时间只需10至20min即可报告结果,胶体金法无污染,不会危害操作者以及环境。胶体金抗体复合物在冻干状态下室温储存相当稳定,有效期长 此外胶体金技术还具有检测迅速、灵敏、不需要复杂仪器设备、产品永不褪色等优点,适合于食品中单核细胞增生性李斯特氏菌的初筛检验。   吉林检验检疫局建立的基因探针化学发光检测方法可在30分钟内快速确定病原体,并可直接于固体或液体培养基上鉴定目标微生物。该方法可直接应用于国外生产的LEADER 50i检测仪上,仪器自动注入检测试剂,立刻测量标记物所产生化学反应的化学发光强度,并自动计算结果及打印报告,该检测方法敏感性高,特异性强,检测成本低,操作简便、快速,对我国食品安全快速检测和监控工作具有重要意义,具有广泛的推广前景。 胶体金快速检测试纸
  • Biolog鉴定方法列入一个植物病原菌国标鉴定方法
    由厦门出入境检验检疫局、福建出入境检验检疫局和浙江出入境检验检疫局承担的植物病原菌标准制定项目&ldquo 马铃薯环腐病菌检疫鉴定方法&rdquo ,从2008年立项,到最终下达标准号,前后历时五年多的时间,于2012年12月31日发布,2013年6月1日,标准号及名称为:GB/T 28978-2012马铃薯环腐病菌检疫鉴定方法, 标准中将美国Biolog公司的Gen III Microstation鉴定方法作为马铃薯环腐病菌首选鉴定方法,是对Biolog鉴定方法的极大肯定。 美国Biolog公司开发的Microstation微生物鉴定系统,从近两千多种表型中为每一大类微生物优化筛选出95种表型反应,开发出Gen III, AN, YT和FF鉴定板和相应的数据库,可鉴定超过2650种微生物,几乎涵盖所有环境中常见的微生物,是微生物研究、开发和检测的必备工具,在中国已经有超过350个用户。 植物病原菌的鉴定是Biolog鉴定系统的优势项目,它有别于其它定位于临床微生物鉴定产品,Biolog鉴定系统除可以鉴定大量临床微生物以外,还可以鉴定近千种常见的植物病原细菌和真菌。 国家质检总局系统已经有将近三十多个用户拥有Biolog微生物鉴定系统,尤其是在植物检疫室,此次国标项目发布后,Biolog鉴定方法成为马铃薯环腐病菌国标检测方法之一,将极大的推动该技术在国家质检总局系统、农业系统及相关的食品行业的推广和应用。 华粤企业集团作为美国Biolog公司中国总代理,衷心感谢厦门、福建和浙江出入境对Biolog鉴定方法的认可,Biolog鉴定方法列入国标意义重大,从此将结束Biolog产品没有国标的历史,我们将借此机会,努力开拓进取,为广大客户提供更优质的产品和服务。 (注:如需标准原件,可在&ldquo 标准图书网&rdquo 或其它相关网站订购)
  • 守护食品安全,杭州大微提供高效病原菌检测方案
    夏秋季气温高、湿度大,加之近期长江流域进入梅雨季节,气候潮湿闷热,有利于肠道致病菌和霉菌的生长繁殖,若食物加工贮存不当、生熟交叉污染,或未完全加热,致病菌都在食物上大肆生长繁殖,不仅会造成食物变质,还会引起食物中毒。常见的食物中毒可分为四类:细菌性食物中毒、霉菌毒素与霉变食品中毒、化学性食物中毒与有毒动植物中毒。其中细菌性食物中毒是我国食物中毒事件的最主要原因。数据显示,2018年全国25个省通过突发公共卫生事件信息报告管理系统报告食物中毒事件共291起,中毒人数7856人,其中细菌性食物中毒事件107起,中毒人数4958人。在细菌性食物中毒中,常见的病原菌为沙门氏菌、副溶血性弧菌、蜡样芽孢杆菌、致泻大肠埃希菌等,其中我国近年来较为常见和高发的是沙门氏菌引起的食物中毒。在食品安全领域,国家颁布了多项法律法规文件,如《中华人民共和国食品安全法》、 GB 29921-2021《食品安全国家标准预包装食品致病菌限量》、GB 4789《食品安全国家标准 微生物检测方法》、卫生行业标准等,其中对病原菌具体的检测方法主要参照GB 4789食品安全国家标准。《WS/T 81-1996 副溶血性弧菌食物中毒诊断标准及处理原则》《GB 4789.7-2013 食品安全国家标准 食品微生物学检验 副溶血性弧菌检验》在对病原菌进行检测时多采用传统培养法,存在大量人工操作,费时费力。检测时间往往需要两天以上,而对食物中毒事件的处理需要快速、高效地完成,这让微生物检测领域的自动化设备成为一种更优选择。【杭州大微食物中毒快速检测】DW-ES800型 微生物实时检测系统DW-BT100型 快速微生物定量检测系统食物中毒检测流程【杭州大微食物中毒解决方案】第一步:样本采集DW-28系列 水中微生物膜过滤装置仪器是对“包含少量微生物污染”水样进行微生物检测的新一代仪器,用于食品、化妆品、环境监测等水中微生物质量控制。第二步:重量稀释DW-JURAY系列 微生物样品自动重量稀释仪仪器用于食品、药品、化妆品等含微生物样品的前处理自动稀释,仪器可自动计算并完成对任意重量样品的准确稀释,使工作简易化,提高效率。第三步:样品均质DW-4型 拍击式均质器仪器是微生物实验室进行“样品匀液”制备的最佳工具,可对样品进行均质处理,独有的静音设计可使您摆脱噪音困扰。第四步:螺旋接种DW-L2000型 全自动微生物平皿螺旋接种仪仪器是依据阿基米德螺旋,以递减比率自动接种样本,可实现标准化生成大量单颗菌落,方便后续菌落计数、分离纯化等需求,广泛用于食品、化妆品、药学实验等微生物实验室。第五步:培养DW-100A-K系列 智能厌氧微生物培养系统仪器服务于食品安全国家标准所需的厌氧菌和微需氧菌培养,可根据需要选择特定氧气浓度(1%-15%可选)和CO2浓度(5%-15%可选),能够快速生成环境,微需氧最快约2min,厌氧最快约4min,仪器稳定可靠,确保重现性100%。第六步:生化鉴定/药敏分析DW-M80型 自动微生物生化鉴定系统仪器通过生化反应原理捕获细菌生化表型特征,对微生物进行鉴定,可用于食源性致病菌的分离鉴定和耐药分析,可鉴定550种以上常见微生物,广泛运用于食品安全、市场监督管理部门、疾控等微生物实验室。【如何预防细菌性食物中毒?】养成良好的卫生习惯,用餐前应洗手,改变生食等不良饮食习惯。选用新鲜食材,对食物进行彻底清洁、加热熟透后才能食用。食物加工环节保持清洁,定期做好食具、加工工具以及容器的消毒。加工后的食物应尽快食用,或低温储存,并尽可能缩短储存时间,再次食用前应彻底加热。生熟食物应分开保存,防止交叉污染。
  • 与病原菌“斗智斗勇” 我国科学家最新发现水稻“聪明的生存之道”
    与病原菌“斗智斗勇” 我国科学家最新发现水稻“聪明的生存之道”2021-10-01 16:57:21 来源: 新华网  新华社上海10月1日电(记者张建松)水稻是我国重要的粮食作物,有效控制水稻病虫害是保障我国粮食高产稳产的一个关键,但抗病性强的水稻品种往往生长发育受到限制,难以高产。  为了既能有效控制水稻病虫害、又能保障高产稳产,中国科学院分子植物科学卓越创新中心何祖华研究团队经过15年不懈追踪,最新发现水稻与病原菌“斗智斗勇”的聪明生存之道。这一重要发现为设计新的抗病基因、开发高产抗病水稻提供了新的思路。9月30日,国际权威学术期刊《细胞》在线发表了相关论文。  据何祖华研究员介绍,这一研究最新发现水稻的“钙离子感应子ROD1”,是一个新的植物免疫抑制中枢。当没有病原菌侵染时,ROD1可将水稻的基础免疫维持在较低水平,以有利于水稻生长,提高产量。但当遭遇病原菌侵染时,水稻就进化出免疫激发新途径:通过降解ROD1,减弱其功能,从而保证植物在抵御病原菌时,产生有效的防卫反应,不至于迅速发病枯死,并能繁殖后代。  研究还发现,病原菌和水稻长期处于“斗智斗勇”的协调进化过程中。稻瘟病菌是一个高明的“伪装者”,能进化出模拟ROD1结构的毒性蛋白,在植物体内“盗用”ROD1的免疫抑制途径,达到侵染水稻的目的。而水稻由于无法逃避病原菌的侵染,进化出“带菌共存”的策略:通过适当减弱抗病能力,来保证自己继续生长繁殖,将抗病性与繁殖力维持在相对平衡的水平。  目前,何祖华研究团队正进一步挖掘ROD1的育种应用价值。他们通过对3000多种不同水稻品种的基因序列分析,发现ROD1单个氨基酸的改变,可以影响其抗性和地理分布,地理不同,抗病性也不一样。此外,还发现ROD1的功能在禾谷类作物中是保守的,从而提出通过编辑或操纵这类新的感病基因,可以实现广谱抗病的新策略。  业内专家认为,这一最新研究不仅为设计新的抗病基因、开发高产抗病作物品种提供了新的研发思路,也拓宽了人们对于作物抗病性基础理论的认知,对促进我国“绿色育种”等农业科学发展、提升国际前沿研究水平具有重要的意义。
  • 思念水饺被检出含病原菌 可引发肺炎甚至败血病
    名牌水饺查出金黄色葡萄球菌 可引发肺炎甚至败血病 带菌思念水饺被下架   在市食品办公布的新一期下架名单中,知名品牌思念三鲜水饺被检出可引起肺炎的金黄色葡萄球菌,现该批次水饺已经被全市停止销售。   金黄色葡萄球菌在食品安全检查中为不得检出物质,该菌是人类化脓感染中最常见的病原菌,可引起局部化脓感染,也可引起肺炎、伪膜性肠炎、心包炎等,甚至败血症、脓毒症等全身感染。金黄色葡萄球菌的致病力强弱主要取决于其产生的毒素和侵袭性酶。   记者了解到,北京市工商局在近期对本市食品流通领域抽检中共发现不合格食品18个,除思念水饺被检出金黄色葡萄球菌外,甜蜜素过度和二氧化硫仍是食品抽检不合格的主因。   北京市工商局提醒,凡已购买上述不合格食品的消费者可凭购物小票和食品外包装向销售单位要求退货。
  • 国家微生物科学数据中心与国家病原微生物资源库合作 共推病原微生物领域大数据管理与挖掘
    2021年5月21日,病原微生物领域大数据合作研讨会在北京召开,会议由中国科学院微生物研究所、中国疾病预防控制中心、中国疾病预防控制中心传染病预防控制所(传染病所)和中国疾病预防控制中心病毒病预防控制所(病毒病所)联合主办。科技部基础司二级巡视员傅小锋,科技部国家科技基础条件平台中心副主任王瑞丹,中国科学院办公厅副主任王树志,中国疾控中心主任高福院士、传染病所所长阚飙,病毒病所所长许文波、中国科学院微生物研究所所长钱韦等领导和专家出席了本次会议。  会上,国家微生物科学数据中心和传染病所、病毒病所分别签署合作协议,正式成立国家微生物科学数据中心病原菌分中心和病毒分中心,未来合作各方将充分利用各自优势,通过大数据整合与分析,对海量病原微生物数据进行系统管理和深度挖掘,开展病原微生物科技资源共享和应用,以及以大数据为核心的基础性和前瞻性研究,支撑国家致病菌和病毒全基因组监测网络建设,为维护国家生物安全提供科学数据资源与技术支撑。  国家科学数据中心和国家资源库作为科技创新的重要支撑,是我国科技创新能力建设的重要战略科技力量。在当今大数据时代,科技创新越来越依赖于对科学数据的分析挖掘和综合利用。自科技部、财政部2019年首批成立了20个国家科学数据中心以来,各数据中心在推动不同学科领域科学数据汇交采集、存储管理、处理加工、分析挖掘与开放共享工作都取得了重要的进展。国家微生物科学数据中心在数据标准体系建设,科学数据汇交与管理、数据资源共享与服务平台建设和基于大数据的领域应用等方面,都取得了突出的成绩。尤其是在抗击新冠肺炎疫情期间,国家微生物科学数据中心与国家病原微生物资源库合作,发挥各自优势,建立了新型冠状病毒国家科技资源服务系统,获得了世界互联网大会先进成果的奖励,也成为国家数据中心与国家资源库合作一个成功的尝试。  此次合作旨在围绕国家重大传染病防控需求,加强国家科学数据中心和国家种质资源库的有序衔接,构建国家战略科技力量,进一步完善微生物领域的科学数据资源体系建设,为科技创新和经济社会发展提供高质量的支撑服务。
  • 不培养直接鉴定,这样的病原体鉴定方法是怎么回事
    细菌必须经过培养之后才能进行物种鉴定,这是一直以来我们的认知。法国马赛地中海感染研究所的研究可能会改变我们的看法。尿样是临床实验室中处理最多的样品之一。以作者所在的马赛大学医院为例,细菌学实验室每年能收到大约62050份尿样,约占所有分析生物样品的17%(中国医院的尿样肯定比这个数字多得多)。而事实上,尿路感染在细菌感染中很普遍。快速鉴定引起尿路感染的病原体十分重要,可以避免感染性休克等致命并发症。由于细菌需要培养后才能进行鉴定,常规方法需要24至48小时才能准确识别存在于尿样中的病原体。在这个时差内,患者通常会接受不必要的广谱治疗,显然,这会影响微生物群和细菌耐药性。减少接收样本和诊断之间的延迟时间,可以帮助患者更快地使用上恰当的药物,从而防止细菌耐药的发生。基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)目前已经成为临床实验室病原体鉴定的重要工具,它能对细菌进行快速而可靠的鉴定,有潜力成为尿液病原体直接鉴定的工具。研究团队使用被感染的尿液样本创建了MALDI-TOF质谱参考数据库,建立了使用该数据库来直接识别尿液中病原体的新方法。该方法使用少量样品(1mL)和低细菌计数,即可快速鉴定多种尿路病原体,且无需事先培养。研究人员收集了1000个感染尿样的MALDI-TOF质谱,用于创建参考数据库。并将使用参考数据库的鉴定结果与标准数据库进行比较,对参考数据库进行评估。结果显示,使用参考数据库可以正确诊断500个受感染的单杆菌样本中的近90%,而使用标准数据库可以正确诊断50%。对肠杆菌科、金黄色葡萄球菌、腐生葡萄球菌、铜绿假单胞菌、粪肠球菌和屎肠球菌的鉴定有了很大的提高,但对表皮葡萄球菌的鉴定却没有得到很大的改善。显而易见地,创建适合特定类型临床样本的数据库对于提高病原体鉴定的准确率和速度具有非常重要的意义。总之,研究人员开发的方法能够快速鉴定尿液中的病原菌,方案可以用于需要快速诊断的特定患者群体,例如肾移植患者或新生儿。目前,临床上所用的病原鉴定方法仍然需要先培养,然后进行微生物质谱鉴定。虽然病原体直接鉴定距离真正临床应用还有很远的距离,但是这项研究给临床病原体鉴定带来了新思路。融智生物QuanTOF新一代宽谱定量飞行时间质谱平台,集核糖体蛋白与核酸(RNA、DNA)检测于一机,新一代的MALDI-TOF MS(QuanTOF)不仅能鉴定细菌、真菌,对于病毒鉴定也游刃有余,同样可以为临床病原体鉴定提供新的思路。QuanTOF新一代宽谱定量飞行时间质谱平台参考文献:Direct identification of pathogens in urine using a specific MALDI-TOF spectra database. doi:10.1128/JCM.01678-18
  • 自动化拉曼病原药敏快检新系统研发问世
    多重耐药菌(MDR)和其耐药性的传播已成为全球公共卫生问题,MDR引起的血流感染往往病情较重,快速完成药敏检测并采取有针对性的治疗措施,对于降低患者的死亡率至关重要。但是,目前病原药敏试验耗时很长,导致临床医生主要依赖经验进行治疗。开发一种简单、快速、准确,而且临床广谱适用的药敏表型试验方法一直是临床上的迫切任务。针对这一难题,中科院青岛生物能源与过程研究所单细胞中心与北京协和医院、青岛大学附属医院和青岛星赛生物等单位合作,以替加环素治疗败血症为模型,利用重水标记单细胞拉曼光谱技术(D2O-SCRS),建立了自动化版本的拉曼病原体药敏快检系统(CAST-R),将常见病原体(血液感染阳性培养瓶内)的药物敏感性实验(AST)的时长缩短至3小时,实现了十倍加速,可在培养瓶报阳当天得出药敏结果。该研究成果于近日发表在《微生物》杂志。该工作由北京协和医院检验科教授杨启文和该所单细胞中心研究员徐健共同主持完成。败血症是指病原菌侵入血液循环而引发的急性全身性感染。在引起血流感染的病原体中,鲍曼不动杆菌是最常见的病原体之一。目前,针对多重耐药或泛耐药病原体感染,比如鲍曼不动杆菌或碳青酶烯类耐药肠杆菌目等细菌感染,替加环素往往是针对抗感染治疗的最后一道防线。然而,临床检测病原体对替加环素的药敏性面临诸多难点。首先,替加环素理化性质不稳定,易氧化分解,而且培养基的类型、配制时间、检测方法、不同的菌种以及折点的选择等因素,都对替加环素的体外药敏结果有影响。其次,目前的药敏方法存在较多的难点和操作误区,也不易标准化。在中科院青岛能源所单细胞中心,记者看到,以年轻党员为骨干的“薛鸣球单细胞药敏快检技术攻关突击队”攻坚克难,展开了数轮技术攻关。由生物能源第一党支部单细胞中心的朱鹏飞、任立辉、戴靖以及北京协和医院朱盈等带领的攻关小组,联合青岛星赛生物公司和青岛大学附属医院的研究人员,从血培养阳性培养瓶中样本开始,使用CAST-R中自动化液体处理工作站(PLS)一站式完成样品D2O孵育、自动清洗和芯片定位;然后,利用仪器内置的软件(自主研发的算法)实现细胞精准定位与高通量拉曼光谱采集;最后,结合机器学习实现了光谱采集过程的自动化和智能化以及光谱的质量控制,得出准确药敏结果。CAST-R可针对血培养阳性培养瓶中的病原体直接进行自动化的药敏试验,速度提高了10倍。此前,单细胞中心科研团队提出了“最小代谢活性抑制浓度(MIC-MA)”这一测量药物敏感性的新概念,在此基础上,新的科研工作引入了“eMIC-MA”概念,以有效排除菌株起始状态和仪器改变对检测结果的影响。通过CAST-R测试了100株鲍曼不动杆菌临床分离株对替加环素药敏性,与临床金标准(微量肉汤稀释法;BMD)相比较的基本一致率和分类一致率分别为99%和93%,从而验证了CAST-R的准确性和可靠性。进而,针对26例患者血培养阳性培养瓶,测定了常见血流感染菌对替加环素、美罗培南、头孢他啶和氨苄西林/舒巴坦等8种抗生素的药物敏感性,并与BMD结果相比,分类一致率达到93%,验证了CAST-R在血流感染用药上的广谱适用性。这些结果验证了CAST-R自动化系统的快速、准确和可靠性以及临床适用性,加速了其临床应用。此外,利用单细胞中心前期发明的拉曼分选和测序技术(RACS-Seq)技术(Xu, et al., Small, 2020),CAST-R有望在单细胞精度建立耐药表型和基因型的联系,从而跟踪超级细菌的出现与耐药性的传播。该工作得到了北京协和医院检验科教授徐英春、青岛大学附属医院检验科教授朱元祺和单细胞中心研究员马波等的支持。获得了中科院先导专项、基金委国家重大科学仪器研制项目、中科院STS区域重点项目、广州生物岛实验室等的资助。
  • 融智生物亮相2021年病原检测与传染病监测学术交流大会
    5月29-30日,2021年病原检测与传染病监测学术交流大会在山城重庆隆重启幕。本次会议由中华医学会杂志社、北京协和医学院群医学及公共卫生学院主办,数十位来自疾控、临床的专家分享了在病原检测方面的技术经验,吸引了300余专业观众到场。大会现场融智生物携手战略合作伙伴硕世诊断亮相此次大会,并展出了QuanID微生物质谱系统。目前,更新后的QuanID微生物质谱数据库拥有超过1800属、6600种、44000个菌株的微生物,独有的二级菌库可对基因型相近的难分辨微生物做出准确鉴定。展台另外在此次大会上,融智生物合作单位江西省疾病预防控制中心营养与食品安全所副所长刘道峰博士还进行了主题演讲,报告题目是《质谱技术在沙门氏菌检测与分型领域的应用》。江西省疾病预防控制中心营养与食品安全所副所长 刘道峰博士沙门氏菌是世界上食源性腹泻最常见的病原菌之一。全球每年估计发生13亿因沙门氏菌导致的急性肠胃炎病例,其中300万患者死亡。2016年起,沙门氏菌引起的食源性疾病病例数超过了诺如病毒,成为了我国食源性疾病的“头号元凶”。迄今为止世界上已鉴定出2500多个不同的沙门氏菌血清型,血清型的正确鉴定对确定人和动物沙门氏菌病的感染源和控制减少发病率具有重要意义。为此,许多国家和地区采取了众多措施以正确鉴定来自不同国家和地区、不同动物和外环境的沙门菌血清型。报告重点介绍了基于MALDI-TOF MS技术的“网鱼式”检测方法。该方法操作简单、鉴定速度快、鉴定概率高、结果准确,尤为适合医院、卫生防疫系统。沙门氏菌致病性、毒力、传播途径、耐药性在不同型别间有较大差异,因此,除沙门氏菌的检测外,沙门氏菌的致病菌分型是病原体溯源的关键环节。江西省疾病预防控制中心营养与食品安全所通过扩大采集范围,改变培养条件等,比对核糖体蛋白和非核糖体蛋白,寻找出某些血清型区别于其他沙门氏菌的特征蛋白进行建库,用于鉴定部分沙门氏菌血清型,完善沙门氏菌血清型质谱数据库。目前,共采集了285株不同血清型的沙门氏菌,经过血清型和测序验证,包含28种血清型;已成功鉴别至少三类沙门氏菌(肠炎沙门氏菌、鼠伤寒沙门氏菌、鼠伤寒沙门氏菌变种);已发现若干可以区分沙门氏菌血清型的核糖体蛋白特征峰。沙门氏菌数据库的建立得益于QuanID微生物质谱系统对每个靶孔都进行了大量Shots数的采集,保证了靶孔间质谱图的重复性,尤其是沙门氏菌不同血清型之间的差异更多的是来源于丰度很低的蛋白多肽,只有保证了质谱图的重复性以及对于低丰度蛋白的检测灵敏度才能够实现对于沙门氏菌血清型的鉴定。
  • 基于表面增强拉曼光谱的便携式双层过滤装置对多种水源性病原体同时测定
    文献分享-基于表面增强拉曼光谱的便携式双层过滤装置对多种水源性病原体同时测定一、研究背景近些年来,由感染食源性致病菌所引发的重大安全事件时有发生,不断报道的食品中致病菌的残留问题使得人们对食品中致病菌的检测越发关注,各类致病菌的检测方法也层出不穷。该研究设计了一款带有SERS-Tag作为拉曼信号报告装置的便携式双层过滤设备可以快速识别、分离、浓缩和鉴定湖水中大肠杆菌0157:H7、金黄色葡萄球菌和单核细胞增生李斯特菌等多种水生病原体。每个SERS-Tag(与抗体结合的AuTag @ Ag)均由Au @ Ag纳米颗粒作为拉曼增强底物,吸附的拉曼报告染料(CVa, R6G和MB)产生特征性SERS信号以及特异性的抗体针对目标细菌。该过滤装置对注射器进行了一定的改造,使得其具有上孔过滤膜(孔径为30μm)(拦截膜)和下层过滤膜(孔径为200 nm(浓缩膜)。使用时推动受污染的湖水样品流通过双层过滤设备。在此过程中,沙粒,浮游生物和植物叶片等大物体被截留膜截留,而三种目标病原体可以被浓缩膜捕获并浓缩。从便携式设备上卸下浓缩膜后,通过上海如海光电便携式拉曼光谱仪可以同时对多个目标病原体进行测试。实验方法本文采用上海如海光电生产的SEED3000便携式拉曼光谱仪进行数据采集,通过上海如海光电提供的预处理算法进行光谱预处理。研究内容3.1 研究拉曼光谱和拉曼增强效应要检测多个目标,必须选择一组没有光谱间干扰的拉曼报告分子。由图4.2可知,AuCVa@Ag、AuR6G@Ag、AuMB@Ag信号强度分别比CVa、R6G、MB强的多,表明SERS-Tag具有强大的拉曼增强效果。3.2 浓缩膜的SEM表征为了验证浓缩膜的富集能力,在图4.4中通过SEM对湖水处理前后的浓缩膜进行了表征。在图4.4D中可以看到,许多小型SERS-TagCVa通过抗原抗体识别紧密紧密地分布在大肠杆菌0157:H7的表面上。该表征是有力证据证明该过滤装置可用于分离和浓缩目标病原体。3.3对单种细菌的测定性能调查经过以上研究和表征,我们首先用三种目标病原菌中的一种来测试过滤装置的细菌检测能力。测试结果表明,随着湖水中细菌浓度的增大,被吸附在浓缩上的细菌也越来越多,呈现明显的线性关系,结果如图4.6所示。随着大肠杆菌0157:H7浓度增加,在特征拉曼峰586cm-1、1501cm-1和1614cm-1处,定量检测1×101至1×106cfu的大肠杆菌0157:H7、金黄色葡萄球菌和单核细胞增生李斯特菌呈现较好线性关系,R2分别为0.9929、0.9942、0.9854,表明可以将被污染湖水与空白样品区分开来的最低浓度为1×101 cfu/mL,这足以检测实际生活时水中的水生细菌。3.4 对三种细菌的测定性能调查使用三种细菌共同污染了湖水样品,对污染后样品测试结果如图4.8所示,我们发现仍然可以检测到对应于三种目标细菌的特征性SERS峰。通过跟踪586cm-1、 1501cm-1和1613cm-1处的峰值强度,拉曼响应与已知的三种细菌的浓度成正比,表4.4中推导的细菌浓度与已知浓度的加标浓度进行比较得出的回收率也在可接受的范围内。同时也使用经典的基于MNPs的方法进行对比验证,电泳结果也验证了大肠杆菌0157:H7 (101 bp),金黄色葡萄球菌(132 by)和单增李斯特氏菌(261 by)的PCR扩增,证明拉曼信号确实是由结合的纳米颗粒产生的在三种细菌的表面上。表明该设备可以耐受湖水环境,并同时进行多种水生病原体检测的SERS解码测定。文献来源SEED3000便携式拉曼光谱仪SEED3000广泛应用于食品安全、国防安全、珠宝鉴定、医药等需对原材料快速筛选、现场快速检测及物质分析鉴定等行业。结构简单,快速检测,可满足实验室、野外以及工业现场等多种实验场景。预留USB和串口通信, 方便多功能系统集成。SEED3000便携式拉曼光谱仪是一款高性价比的785nm小型拉曼光谱仪;结构简单,快速检测,可满足实验室、野外以及工业现场等多种实验场景。预留USB和串口通信, 方便多功能系统集成。便携式拉曼光谱仪广泛应用于食品安全、国防安全、珠宝鉴定、医药等需对原材料快速筛选、现场快速检测及物质分析鉴定等行业。产品特点◆ 高度集成,应用灵活,轻巧便捷,方便携带;◆ 可适配光谱范围在200cm-1~3000cm-1 ◆ 高稳定性,光谱响应稳定性2% @2hrs ◆ 高分辨率,分辨率最佳可达4 cm-1。
  • 远慕教你怎么把菌种培养成菌液
    把菌种培养成菌液的处理方法⒈光合菌群: EM菌液中的光合菌群(好氧性和厌氧性)属于独立营养微生物,它能利用土壤接受太阳热能或以紫外线为能源,将土壤中的硫化氢和碳氢化合物中的氢分离出来,变有害物质为无害物质,并以植物根部的分泌物、有机物、有害气体(硫化氢等)及二氧化碳、氮等为基质,合成糖类、氨基酸、维生素类、氮素化合物和生理活性物质等,是肥沃土壤和促进动植物生长的主力部队。光合菌的代谢物质或者被植物直接吸收,或者成为其它微生物繁殖的养分,光合细菌如果能够增殖,其它的有益微生物也会增殖。⒉乳酸菌群: 乳酸菌(厌氧型) , 它以摄取光合细菌酵母菌产生的糖类等物质为基础,产生乳酸。乳酸具有很强的杀菌能力,能有效抑制有害微生物的活动,以及有机物的急剧fu败分解。乳酸菌能够使常态下不易分解的木质素和纤维素等变得容易分解,并且消除未分解有机物产生的种种弊端,在有机物发酵分解上发挥突击队的重要作用,它将未腐熟的有机物质转化成对动植物有效的养分。乳酸菌还能有效抑制连作障碍产生的致病菌增殖。⒊酵母菌群: 酵母菌(好氧型)利用氨基酸、糖类及其它有机物质,通过发酵,产生出促进细胞分裂的活性化物质。酵母菌在 EM 集团军中对于促进其它的有效微生物增殖所需要的基质(食物)的生产提供重要的营养保障。此外,酵母菌生产的单细胞蛋白是动物不ke缺少的有效养分。⒋革兰氏阳性放线菌群(好气性)。 它从光合细菌中获取氨基酸、氮素等作为基质,产生出各种抗生物质、 维生素及酶,可以直接抑制病原菌。它提前获取有害霉菌和细菌增殖所需要的基质,从而抑制它们的增殖,并创造出其它有益微生物增殖的生存环境。放线菌和光合细菌混合后的净菌作用比放线菌单兵作战的杀伤力要大得多。它对难分解的物质,如木质素、纤维素、甲壳素等具有降解作用,并容易被动植物吸收,增强动植物对各种病害的抵抗力和免疫力。放线菌也会促进固氮菌和 VA 菌根菌增殖。⒌发酵系的丝状菌群(嫌气性)。 以发酵酒精时使用的曲霉菌属为主体,它能和其他微生物共存,尤其对土壤中酯的生成有良好效果。因为酒精生成力强,能防止蛆和其他害虫的发生,并可以消除恶臭。由上可见,各类微生物都各自发挥着重要作用,核心作用是光合细菌和嗜酸性乳杆菌为主导,其合成能力支撑着其他微生物的活动,同时也利用其他微生物产生的物质,形成共生共荣的关系,保证 EM菌液状态稳定,功能齐全 ,发挥出集团军作战的强大能量。 EM菌液的主要功能是造就良性生态。只要施用恰当,它就会与所到之处的良性力量迅速结合,产生抗氧化物质,清除氧化物质,消除fu败,抑制病原菌,形成适于动植物生长的良好环境,同时,它还产生大量易为动植物吸收的有益物质,如氨基酸、有机酸、多醣类、各种维生素、各种生化酶、促生长因子、抗生素和抗病毒物质等,提高动植物的免疫功能,促进健康生长,从而在减轻劳动、降低成本、提高产量、改善品质,提前上市,使人们吃(用)上无污染的高质量产品的前提下,提高全社会的生产水平和生活质量,保护地球环境和人类美好的家园。
  • 微生物所合作发现结核抵抗人群抵御结核分枝杆菌感染的固有免疫机制
    结核病(TB)是由结核分枝杆菌(Mtb)引起的一类重大传染性疾病。据世卫组织发布的最新报告,在2020年,全球有近990万结核病患者,并有约151万人因结核感染导致死亡。中国科学院微生物研究所刘翠华课题组长期致力于研究Mtb等重要病原菌与宿主相互作用的分子机制,近年来发表系列研究工作,在病原菌与宿主相互作用机制方面取得重要成果,为抗结核治疗及药物研发提供了多种新思路和潜在新靶点。  以往认为,健康个体受到Mtb感染时,往往会发展成为潜伏感染者或活动性TB患者。有趣的是,近年来临床上发现有一部分与TB患者持续密切接触的个体,既不发展为活动性TB患者并显示出相关症状,也未表现出潜伏感染者的免疫学诊断特征。这类长期密切接触病原菌的健康个体被称作TB抵抗者。  目前对于这类TB抵抗者的抗感染免疫机制所知甚少,深入揭示相关机制有望为TB的预防和治疗提供新线索和新策略。近日,刘翠华课题组与首都医科大学附属北京胸科医院教授逄宇团队合作,揭示了TB抵抗者人群在应对Mtb感染时的固有免疫应答特征。该合作研究发现:与对照组、潜伏感染者及活动性TB患者相比,TB抵抗者的外周血单核巨噬细胞在受到Mtb侵染时,可产生更高水平的TNF-α、IL-1β及IL-6等细胞因子,并且其清除胞内病原菌的能力更强。  随后的一系列筛选及功能验证实验结果表明:在Mtb感染过程中,组蛋白去乙酰化酶6(HDAC6)仅在TB抵抗者来源的巨噬细胞中维持稳定的表达水平及酶活性,而在其他实验组人群中出现显著下降。同时,进一步抑制或沉默HDAC6可阻抑TB抵抗者来源巨噬细胞中细胞因子的分泌以及其中含Mtb的囊泡的酸化能力。这些结果提示,TB抵抗者来源的巨噬细胞高效清除Mtb感染的能力依赖于HDAC6,后者可能是一个促进细胞因子产生以及自噬流畅通进而加速Mtb清除的关键宿主因子。综上,该研究揭示了TB抵抗者人群依赖HDAC6清除Mtb感染的固有免疫新机制,为临床上TB患者密切接触者的TB感染和发病风险预测提供了重要新标识,并为靶向宿主的TB治疗提供了新思路。  目前,相关结果已在线发表于The FASEB Journal。该工作得到国家重点研发计划、国家自然科学基金及北京市医院管理中心“扬帆”项目的支持。  论文链接
  • 出口肉及肉制品企业应重视李氏菌控制
    春天是单核细胞增生李斯特氏菌比较活跃的季节,肉及肉制品最容易受其污染。日前,检验检疫部门从两批冻猪肉样品中检出单核细胞增生李斯特氏菌,提请广大出口肉及肉制品生产企业引起高度重视。   单核细胞增生李斯特氏菌(以下简称李氏菌)是一种人畜共患病的病原菌,它广泛存在于自然界中,食品中存在的李氏菌对人类的安全具有危险性,该菌在4℃的环境中仍可生长繁殖,是冷藏食品威胁人类健康的主要病原菌之一。   环境是李氏菌的一般孳生场所,李氏菌的存在反映了一个典型的环境卫生问题,有关企业应对环境加以全面的分析,以识别污染的主要区域,采取比控制其他致病菌更严格的措施来控制李氏菌,以保证产品的质量安全:加强对原料的控制,严把食品加工原料入厂关,严格控制加工原料的安全卫生,原料和成品操作严格分离 加强对从业人员的卫生控制,提高其安全卫生意识,养成良好自觉的卫生习惯,确保严格按照食品安全卫生要求组织生产 加强环境卫生控制,确保厂区环境卫生达到要求,扩大需检测的区域,提高检测频率,密切关注车间内外环境控制,有效隔离不相容区域,避免交叉污染,保持区域干燥,以防细菌生长和减少微生物的扩散 提高自检自控能力,同时注重加大实验室投入,重视人员培训,有效激励检测人员,努力提高检测水平。   附:   食品安全快速检测技术   食品致病菌快速筛选检验国标实施
  • 北京大学王初课题组发展沙门氏菌中的衣康酸修饰组学鉴定新方法
    近日,北京大学化学与分子工程学院、北大-清华生命科学联合中心王初课题组在Chemical Science上杂志上发表了题为“Chemoproteomicprofiling of itaconations in Salmonella”的论文,并且被选为“Pick of the week”文章。在这项工作中,研究学者发展了新型衣康酸修饰化学探针工具,并结合定量化学蛋白质组学技术,首次实现了在病原微生物沙门氏菌中衣康酸修饰位点的大规模直接鉴定,并且进一步揭示了衣康酸通过共价修饰关键代谢蛋白从而对细菌生长过程的抑制作用。  衣康酸是近些年来被发现具有显著抗炎抗菌活性的代谢物分子,它在病原菌侵染或者脂多糖刺激的炎症巨噬细胞中会大量产生,浓度可达到毫摩级别,并广泛参与到抗炎信号通路中。由于衣康酸具有共轭不饱和双键结构,它可以通过迈克尔加成反应共价修饰蛋白质中的半胱氨酸残基,通过影响底物蛋白的活性和功能从而调节宿主炎症反应过程。因此衣康酸修饰蛋白的大规模鉴定对理解其炎症和抗菌调节机理具有重要的意义。在宿主巨噬细胞层面,此前王初课题组分别发展了基于非天然糖的竞争性探针和生物正交的衣康酸探针,并结合定量化学蛋白质组学技术对炎症巨噬细胞中的衣康酸修饰进行系统的分析,揭示了衣康酸可以修饰ALDOA,LDHA、GAPDH和RIPK3等蛋白,调节糖酵解和细胞坏死等通路。这些研究为理解衣康酸在巨噬细胞炎症反应中的作用机制提供了丰富的数据支持。然而,在病原菌层面,衣康酸对于细菌的调控机制还不是特别清楚。目前普遍认为衣康酸可以竞争性抑制细菌中某些特有的代谢酶(例如异柠檬酸裂解酶、丙酰辅酶A羧化酶等),来影响细菌代谢。近些年也有研究发现衣康酸可以通过与鸟苷三磷酸酶GTP酶Rab32作用,限制囊泡内病原菌复制,协助宿主防御沙门氏菌。细菌还会适应宿主产生的衣康酸,通过改变自身代谢,促进细菌表面生物膜的形成增强自身的耐受能力。衣康酸和病原菌之间具有复杂的作用,而衣康酸对细菌中蛋白的共价修饰和功能影响还研究甚少。在本工作中,作者结合新型衣康酸修饰探针和定量化学蛋白质组学技术,首次在病原菌中对衣康酸修饰的蛋白进行了鉴定。  作者首先发现此前在巨噬细胞中表现良好的生物正交探针ITalk并不能在沙门氏菌中产生明显的标记,因此本工作设计并合成了几种不同结构的衣康酸生物正交探针,并评估筛选了它们在沙门氏菌蛋白质组中标记的效果。作者发现,带有酰胺连接的短链C3A探针标记效果更好,并且和衣康酸具有明显的竞争。在进一步的小分子水平反应、蛋白组水平标记和抗菌功能验证后,作者确认了C3A能模拟衣康酸的作用效果。  结合基于还原二甲基化标记的定量化学蛋白质组学技术,作者利用C3A探针在沙门氏菌蛋白质组中大规模鉴定了衣康酸修饰蛋白,作者设置了三组标记样品,得到两个比值,一个为扣除非特异性吸附,另外一个为衣康酸竞争组,一共鉴定到1230个蛋白,其中扣背景比值大于10、竞争比值大于1.5的高置信衣康酸修饰靶标蛋白有197个,这些蛋白被定义为衣康酸修饰蛋白。这些蛋白中包括很多在沙门氏菌中参与重要代谢过程的功能蛋白酶,其中最为显著的一个蛋白是异柠檬酸裂解酶 (ICL)。  结合TOP-ABPP技术,作者进一步对衣康酸修饰位点进行大规模直接鉴定,通过两次生物学重复实验,鉴定到781个蛋白上的1319个修饰位点,通过与修饰蛋白进行比对,作者发现其中129个蛋白被鉴定到位点,其中61个蛋白含有一个以上修饰位点,35个蛋白含有两个以上修饰位点。作者选取了一些具有重要功能的蛋白进行了位点突变实验,通过突变后探针标记信号的消失证实了这些修饰位点的可靠性。  作者在异柠檬酸裂解酶ICL,共鉴定到5个修饰位点,而突变实验显示主要标记位点在该蛋白的活性位点Cys195上。作者进一步对ICL上存在的衣康酸修饰进行了深入的生化实验验证,通过基因敲除回补实验以及纯蛋白酶活实验,验证了衣康酸是通过对ICL活性位点195位半胱氨酸上的共价修饰影响酶活,产生的抑菌作用。有趣的是,作者还发现了ICL中第318位半胱氨酸也会被衣康酸修饰,而该位点的突变会影响ICL的热稳定性和活性。  总之,本工作首次报道了适用于沙门氏菌标记的衣康酸生物正交探针,并结合化学蛋白质组策略实现了衣康酸修饰位点的直接鉴定,不仅在沙门氏菌中提供了一个丰富的衣康酸修饰蛋白的数据库,还揭示了衣康酸通过共价修饰从而抑菌的新机制,这对于进一步理解衣康酸的抗菌功能有着重要意义。本文的通讯作者为北京大学化学与分子工程学院、北大-清华生命科学联合中心的王初教授,其指导的前沿交叉研究院北大清华生命联合中心2016级博士研究生张艳玲为本文的第一作者。王初课题组博士毕业生秦为,研究生刘东阳和博士后刘源等合作者为本课题做出了贡献。该工作受到科技部蛋白质重点专项、基金委国家杰出青年基金、重大研究计划培育项目等项目经费的支持。  原文链接:  https://pubs.rsc.org/en/content/articlelanding/2021/sc/d1sc00660f  文献引用:DOI: 10.1039/d1sc00660f
  • 基于“拉曼组”的最快“细菌耐药性”快检技术诞生
    p   日前,中科院青岛生物能源与过程研究所对外发布,该所单细胞中心提出了基于“拉曼组”的耐药性快检技术,通常能够在一个小时内完成细菌耐药性测量和机制区分,相对于原先需要24至48小时的检测方法大为提速。 /p p   众所周知,抗生素的滥用导致了耐药性的广泛传播。据青能所单细胞中心功能基因组团队徐健研究员介绍,自细菌发现至今,培养法仍是病原菌药敏试验的主流通用标准,但对于临床常见致病菌,培养法耗时长达24至48小时,难以揭示耐药机制,且对于难培养或生长缓慢的细菌无能为力。临床实践上为了指导“精准用药”,急需细菌耐药性及其耐药机制的直接、快速测量技术。 /p p   青能所单细胞中心提出了基于“拉曼组”的耐药性快检技术,证明通过高通量单细胞拉曼成像,能够不经培养、快速、定性、定量地表征细菌的药物应激性并区分其应激机制。据徐健介绍,“拉曼组”是特定条件和时间点下,一个细菌细胞群体之单细胞拉曼光谱的集合。对于任一细菌群体,一个拉曼组的变化可直接反映和表征其针对特定抗生素的敏感性和耐受性。研究人员以大肠杆菌为模式,通过单细胞拉曼光谱的高通量采集,结合多变量分析方法的创新,定量考察了抗生素、醇类、重金属等三类共六种不同类型化学药物在多个剂量、给药时间、细胞抗性条件下的拉曼组变化,证明了拉曼组能够快速区分抗性细菌与非抗性细菌,因此它在抑菌药物筛选或耐药细菌筛选这两方面均具备成为一种新式平台技术的潜力。由于拉曼组基于单细胞成像,不依赖于细菌的繁殖,因此通常能够在一个小时内完成细菌耐药性测量和机制区分。通过系统构建各种主要病原菌和常用抗生素的拉曼组参照数据库,将能建立一个新型细菌耐药性表型组学技术平台,以服务耐药性快检,支撑临床精准用药。 /p p   据了解,上述工作由单细胞中心徐健实验室和英国牛津大学黄巍等合作完成,获得了科技部、基金委、中科院生物高通量检测分析服务网络(STS)项目的支持。 /p
  • 研究揭示新型抗化脓链球菌感染免疫应答机制
    2月3日,中国科学院上海巴斯德研究所刘星课题组在Nature上,发表题为Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis的研究论文。该研究首次发现并报道化脓链球菌GAS毒力因子SpeB通过切割激活GSDMA触发皮肤上皮细胞焦亡并抑制其系统性感染。  A族链球菌(Group A streptococcus,GAS),又称化脓链球菌(Streptococcus pyogenes),是自然界广泛存在的一种强毒力致病菌,可通过宿主皮肤及呼吸道黏膜感染并引发多种疾病,包括猩红热、丹毒、致命坏死性筋膜炎、中毒性休克及脓毒症等。全球每年约有7亿人受其感染(50多万死于中重度感染)。GAS的皮肤定植及侵袭能力与其分泌的毒力因子密切相关,其中关键毒力因子之一是链球菌热原外毒素B(streptococcal pyrogenic exotoxin B,SpeB)。GAS感染后临床严重程度与其SpeB表达量呈显著负相关,而具体分子机理尚不清晰。  为探究SpeB在GAS侵袭性感染中功能,研究利用GAS小鼠皮肤感染模型,比较野生型及不同毒力因子缺失GAS菌株致病能力。结果显示,相比于野生型及其他毒力因子缺失菌株感染后出现的严重化脓和坏死性病变,SpeB缺失GAS菌株感染后感染部位未观察明显皮肤溃烂且中性粒细胞明显减少;同时,小鼠表现出更严重的系统性感染和死亡。通过原代皮肤角质细胞GAS感染实验发现,相比于其他菌株,GAS SpeB的缺失使其丧失诱导细胞焦亡样细胞死亡的功能,并促进其系统性感染。在此基础上,研究运用CRISPR/Cas9全基因组敲除筛选平台,筛选鉴定出SpeB诱发皮肤上皮细胞焦亡的关键蛋白:GSDMA——炎性细胞死亡(焦亡)关键执行者Gasdermins家族成员之一。进一步,研究从分子层面详细解析了SpeB激活GSDMA机制:SpeB特异性剪切GSDMA(而非Gasdermins家族其他成员),产生约27kDa的N-末端片段并诱导细胞焦亡;Edman测序和质谱分析发现SpeB切割GSDMA第246位氨基酸;胞内导入体外纯化的GSDMA 1-246aa片段可直接诱导细胞焦亡;脂膜试纸条和脂质体结合实验揭示GSDMA 1-246aa能够与细胞膜磷脂以及含有相应磷脂的脂质体结合;脂质体泄漏实验证明GSDMA 1-246aa能够在特定脂质体上成孔;序列比对结果显示该剪切位点在小鼠Gsdma1中保守;SpeB诱导的Gsdma1切割可诱发小鼠上皮细胞焦亡;小鼠GAS感染部位可检测到Gsdma1剪切;相比于野生型小鼠,Gsdma1的敲除使其对GAS感染更加敏感。  该研究首次发现并报道皮肤上皮细胞(KCs,“宝船”)表达的GSDMA分子(“火炮”)既作为外源病原感受器识别化脓链球菌(GAS,“海盗船”)毒力因子SpeB(“钩锁”),同时作为免疫效应器在细胞膜上打孔(“炮筒”),释放炎性因子(“炮火”)引起细胞焦亡及皮肤化脓坏死性病变,以控制病原菌进一步系统性感染。该研究揭示了机体免疫防御应答中的新型机制——单一蛋白(GSDMA)同时作为病原菌感受器和宿主效应因子,并为由如化脓链球菌等致病菌感染引起的相关疾病的临床治疗提供了新靶点和新思路。  论文链接
  • FDA首次批准MALDI-TOF方法鉴定新型致病菌耳念珠菌
    p   2018年4月20日美国食品及药物管理局(FDA)发布重要新闻,批准首个鉴定新型致病菌耳念珠菌 (C.auris) 新方法 -- Bruker MALDI Biotyper CA系统。 /p p style=" text-align: center " img width=" 500" height=" 400" title=" 1.jpg" style=" width: 500px height: 400px " src=" http://img1.17img.cn/17img/images/201805/insimg/5cd41583-a716-46e4-9cc9-6863c8489cb5.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong Bruker & nbsp MALDI Biotyper CA系统 /strong /p p   耳念珠菌(C.auris)是一种近年来新出现的致病性真菌,可引起侵袭性感染,往往导致严重的院内感染,如血流感染、心包炎、泌尿道感染和肺炎等。耳念珠菌容易对治疗念珠菌感染的多种抗真菌药物呈现多重耐药性,感染患者具有较高的死亡率,所以耐药的耳念珠菌堪称“超级病菌”。美国疾控中心把它列为“对人类健康有重大威胁”的致病菌。 /p p style=" text-align: center " img width=" 500" height=" 485" title=" 2.jpg" style=" width: 500px height: 485px " src=" http://img1.17img.cn/17img/images/201805/insimg/9c3b7d37-ab67-44aa-857d-258f91af9fa6.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p style=" text-align: center " strong 耳念珠菌平板培养 /strong /p p   FDA在新闻发布中指出:今年,FDA综合评估了耳念珠菌录入Bruker MALDI Biotyper CA数据库的标准流程,严格考察了Bruker MALDI Biotyper CA鉴定28个耳念珠菌样品的鉴定结果。这些耳念珠菌样品来自不同实验室,其中包括美国疾控中心和FDA抗生素耐药菌株库。试验结果表明Bruker MALDI Biotyper CA系统能够可靠地鉴定耳念珠菌,正确鉴定率为100%。为此,2018年4月20日FDA特别批准将耳念珠菌添加到Bruker MALDI Biotyper CA数据库中,用于耳念珠菌 (C.auris) 的鉴定。 /p p   因此,继2017年10月Bruker MALDI Biotyper CA更新升级的数据库获得FDA认证,数据库在包括333个菌种或菌群,覆盖424个临床相关菌种的基础上,又新增一位新成员 -- 耳念珠菌 (C. auris) 。 /p p   Bruker MALDI Biotyper CA系统采用MALDI-TOF质谱与微生物数据库相结合的技术。用患者样本培养的菌落,经过MALDI-TOF质谱仪测定,获得微生物独特的质谱图,与数据库里的谱峰比对,最终得到种水平可靠的鉴定结果。Bruker MALDI Biotyper CA系统能够可靠地、大范围地鉴定病原菌,快速鉴定引起院感爆发的病原体,提高实验室常规检测大批样本的能力,改进治疗方案和对病人的有效护理。 /p p   美国FDA医疗器械和辐射健康中心办公室执行主任Donald St. Pierre在新闻发布中指出:“虽然20世纪80年代以来质谱技术就已经成为有效的科学工具,但是仅在近五年之内,质谱才真正有效地用于微生物鉴定。现在微生物质谱鉴定技术已经成为临床微生物实验室广泛认可的标准方法。” Donald St. Pierre主任进一步阐明:“FDA不仅对这项技术有充分的信心,且意识到必须通过快速识别和准确鉴定新型感染病原菌,才能及时应对耳念珠菌和其他致病菌的疫情爆发,从而有效保护民众的健康。” /p p   编者的说明:除了美国以外,Bruker IVD MALDI Biotyper已经在全球多个国家和地区获得医疗器械许可证,并且配备的数据库均已包含耳念珠菌(C. auris),其中包括已获得中国国家食品药品监督管理总局(CFDA)批准的IVD MALDI Biotyper数据库。 /p
  • 亮点回顾:"质”同道“禾” 上下求索 多学科抗感染论坛-真菌专场
    8月23日,由中山大学附属第一医院医学检验科、广东省真菌病监测网、广州禾信仪器股份有限公司联合举办,以“‘质’同道‘禾’”,上下求索”为主题的多学科抗感染论坛-真菌专场交流会圆满落幕。点击图片跳转观看精彩回放温馨提示此次论坛干货满满,特意准备了汇集6位教授学术精华的真菌专场知识地图,8月26日17:00后,在本公众号后台回复 CMI-1600 便可获取。本次论坛大咖云集,北京协和医院徐英春教授、张丽教授,浙江大学医学院附属邵逸夫医院俞云松教授,中山大学附属第一医院谢灿茂教授、廖康教授、郭鹏豪教授齐聚一堂,以线上主题演讲的形式聚焦真菌感染的诊疗与检测,为大家呈现了一场饕餮学术盛宴。左右滑动查看更多《念珠菌感染诊治现状》浙江大学医学院附属邵逸夫医院 俞云松教授俞云松教授分享了从侵袭性真菌病趋势、易感高危人群类型、IFD诊断困惑、抗真菌治疗策略、念珠菌定植与感染、念珠菌病原学检测方法和治疗方案、抗真菌药物的选择等方面,进行了多维度、全面系统地论述。俞云松教授指出:侵袭性真菌病的临床管理面临诸多挑战,突破重点仍在于诊断技术的不断改进与升级。《真菌感染实验室诊断操作规范》中国医学科学院北京协和医院 张丽教授张丽教授从真菌概况、国内真菌检测能力、真菌实验室诊断相关指南、真菌实验室仪器设备基本配置、各种标本的采集和处理、真菌培养基接种选择和方式、真菌培养条件和时间等方面展开细致讲解。在培养后菌株鉴定方法板块中,张丽教授提到,在酵母菌的鉴定中,MALDI TOF-MS的准确性能达到90%以上,其在丝状真菌的鉴定上也有相关应用。《"重"中之"重"一例血流感染案例分享》中山大学附属第一医院 郭鹏豪教授郭鹏豪教授以一例血流感染的案例抛砖引玉,在对患者惊险起跌的病情进行了详细介绍后,不断抛出问题,并由俞云松教授和张丽教授针对性地给予详细专业点评及解答。最后郭鹏豪教授对该案例进行总结:真菌性心内膜炎是一种死亡率极高的感染病,不明原因发热的患者,需关注心内膜炎的可能性,实验室可借助MALDI TOF-MS技术缩短病原体鉴定的时间。最后名家论道环节,教授们就“真菌病诊疗的困难与挑战”发表见解,多学科精彩思维齐碰撞,直将热度推向最高峰,评论区内大家直呼“内容丰富,精彩纷呈,值得回看”。本次论坛展示了多学科合作模式在真菌病诊疗中的价值,各专家共同为真菌病诊疗事业贡献了一份力量。温馨提示此次论坛干货满满,特意准备了汇集6位教授学术精华的真菌专场知识地图,8月26日17:00后,在本公众号后台回复 CMI-1600 便可获取。MALDI-TOF MS检测是近年发展起来的一种快速准确、经济可靠的病原微生物鉴定方法。通过绘制具有保守特征的微生物核糖体蛋白指纹图谱并与标准数据库进行比对,实现对病原菌的快速鉴定。全自动微生物质谱检测系统CMI-1600禾信仪器在此方面,已自主研发出全自动微生物质谱检测系统CMI-1600,目前已获得发明专利15项,实用新型专利14项,是国内唯一在核心期刊上以封面论文形式介绍该仪器研制的国产仪器。01关联案例:马尔尼菲篮状菌采用全自动微生物质谱检测系统CMI-1600,利用甲酸-乙腈蛋白提取法分别对酵母相和丝状真菌相的数十株临床分离的马尔尼菲篮状菌进行检测,并批量采集高质量图谱,使用禾信仪器自主研发的MicroCreate软件进行特征峰提取建立专项子谱库。部分马尔尼菲篮状菌质谱图马尔尼菲篮状菌特征谱初步验证表明,6株从病患样本分离的马尔尼菲篮状菌种级鉴定准确率达到100%。因此,马尔尼菲篮状菌自建库可实现相关样本的快速准确鉴定,CMI-1600对临床少见疑难菌株有良好的鉴定潜力。02关联案例:109种1710菌株采用全自动微生物质谱检测系统CMI-1600对临床即时分离的109种1710菌株进行鉴定,包括肺炎克雷伯菌、金黄色葡萄球菌、鲍曼不动杆菌、大肠埃希菌、无乳链球菌、头状葡萄球菌、流感嗜血杆菌、产吲哚金黄杆菌、新型隐球菌、阿莎丝孢酵母、成团泛菌、小孢根霉菌、白色假丝酵母、热带假丝酵母、光滑假丝酵母等临床病原菌。鉴定结果与医院LIS系统最终诊断结果(某进口质谱及生物鉴定结果为主)进行比对显示:CMI-1600种水平鉴定一致率为99.18%(1669/1710),属水平鉴定一致率为99.88%(1708/1710),表明对临床微生物鉴定结果与医院检验科鉴定结果具有高度的一致性。
  • ELISA试剂盒研制细菌快速检测成功
    杨州大学生物科学与技术学院人畜共患病与免疫学研究室焦新安教授领导的课题组采用现代分子生物学方法,研制成功一种ELISA试剂盒研制细菌快速检测成功,该试剂盒能同时检测沙门氏菌、产单核细胞李斯特菌两种病原菌,并且整个检测过程只需两天,远比国标法快速,且敏感性高、特异性强,结果分析简单。 产单核细胞李斯特菌经过扩增后出现的不同特异性条带,ELISA试剂盒来达到检测目的。整个检测过程24小时左右,并做到随时随地取样,定性检测出食品中的沙门氏菌、产单核细胞李斯特菌。 该ELISA试剂盒具有高度的特异性、敏感性、快速简便、费用较低等优点,既可保证样品检测的准确性和可靠性,ELISA试剂盒又可节省大量的人力、物力和财力,有巨大的社会经济效益,极具推广应用价值。可广泛应用于食品加工、市场检疫、出入境检验检疫、医院临床检测等行业和机构。
  • 蔓延全美的鼠沙门氏菌疫情源自实验室
    国际在线消息:美国疾病控制和预防中心29日宣布,目前在全美35个州蔓延的鼠伤寒沙门氏菌疫情不是因食品污染,而是因微生物实验室中的鼠伤寒沙门氏菌传染引发的。   美疾控中心的官员说,自去年8月以来,美国35个州相继发生鼠伤寒沙门氏菌疫情,迄今已造成至少73人染病,其中1人死亡。有关部门经过数月调查后,将源头锁定在遍布全美多个地区的微生物实验室。实验室中的鼠伤寒沙门氏菌可通过衣物、笔记本、钥匙和其他物品传播。而本次疫情中被感染的人既有学生,也有实验室的工作人员及其家人。   目前,美国相关部门正在展开联合调查,并对全美各地的微生物实验室进行整顿。   鼠伤寒沙门氏菌是引起急性肠胃炎的主要病原菌,患者染病后的症状主要包括头痛、恶心、腹痛、呕吐、腹泻和发热等。
  • 首次发现!细胞竟能自产“洗涤剂”,让细菌无处遁逃
    现如今,各类杀菌清洗剂逐渐走进寻常百姓家,因去污快、使用方便备受人们的青睐。近日,霍华德休斯医学研究所的科研人员发现细胞,像很多人一样,竟然也会用“洗涤剂”来抵御细菌。  这是人类首次发现了人体细胞内具有“洗涤剂”功效的保护性蛋白。相关研究以A human apolipoprotein L with detergent-like activity kills intracellular pathogens为题发表在顶级期刊《Science》杂志。文章指出,科研人员发现了一种名为“ APOL3 ”蛋白质,可以通过溶解细菌膜阻止细胞感染,从而实现细胞自主免疫。  人体的免疫系统是由特化细胞组成的复杂网络,它们就像一群“保镖”,可以保护人体健康,抵御外来病原微生物,如各种细菌、病毒、寄生虫等,甚至可以预防癌症的形成。但当这些特化细胞被动员的同时,警报信号也会惊扰到正常细胞,身为正义的一方,面对外来入侵者,正常细胞固然不会坐以待毙,可它们到底是如何抵抗病原菌的呢?  众所周知,沙门氏菌是一种常见的食源性致病菌,据统计在世界各国的种类细菌性食物中毒中,沙门氏菌引起的食物中毒常列榜首。而干扰素是时当机体感染病毒时, 宿主细胞通过抗病毒应答产生的一组结构类似、功能相近的低分子糖蛋白, 是抗病毒感染最重要的一种免疫因子。沙门氏菌(绿色)等微生物感染人类细胞  因此,研究人员利用沙门氏菌菌株感染了人体内的非免疫细胞,发现警报信号“干扰素 γ(IFN-γ)”会促进非免疫细胞分泌一种蛋白质,以阻止沙门氏菌“接管”人体细胞,为了揭开这种蛋白质的神秘面纱,该研究团队基于CRISPR-Cas9技术筛选了19000多种人类细胞基因,最终锁定了“ APOL3 ”!  人载脂蛋白L3(APOL3)是一种关键的效应蛋白,遍布于人体的全身,其杀菌机理与清洗剂中的表面活性剂使油性污垢乳化类似,一部分被水吸引,一部分被油脂吸引。APOL3的负染色电子显微镜检查  当然,APOL3去除的不是衣物上的污垢,而是由脂质分子组成的细菌内膜,当 APOL3 靶向 IFN-γ激活细胞内的病原体时,APOL3会对细菌内膜 (IM) 造成致命的伤害。  研究指出,当APOL3与干扰素刺激基因 (ISG)编码的蛋白质协同作用时,鸟苷酸结合蛋白 1 (GBP1)会扰乱外膜(OM)抗原的通透性屏障,使APOL3进入细菌内膜,并对细菌进行致命一击。APOL3 通过外膜 (OM) 到达内膜 (IM)  该研究的通讯作者之一、John D. MacMicking博士表示:“整个除菌过程是高度选择性的,APOL3 避开了细胞膜的主要成分胆固醇,而是针对细菌喜爱的独特脂质。”  面对外来入侵者,免疫系统变得日渐强大,逐渐进化出了多种途径抵御外敌,未来,期待这项研究会为人类细胞抵御感染提供新的见解。
  • 抗药性菌株可视化检测新技术获国家发明专利
    近日,中国农业科学院植物保护研究所智慧植保创新团队的“检测炭疽病菌对甲氧基丙烯酸(QOI)类杀菌剂抗药性的组合物及其应用”获得国家发明专利授权。 该团队克服了传统植物病原菌抗药性检测方法中存在的检测周期长、操作繁琐、效率低等诸多缺点,建立了一种炭疽病菌对QOI类杀菌剂抗药性的田间快速检测方法,可用于田间抗性菌株快速检测、早期预警和快速选药,为构建药剂智能筛选和药效智能评价提供了技术手段。 据介绍,该技术成果操作简单,结果准确、判断直观,通过荧光染色或胶体金检测技术,实现了结果可视化,可指导用户田间地头科学智能选药,实现了精准选药和精准用药。
  • 西北农林科技大学单卫星教授团队发现负调控植物对寄生疫霉菌抗性新机制
    近日,西北农林科技大学旱区作物逆境生物学国家重点实验室单卫星教授团队在国际权威学术期刊《Molecular Plant Pathology》(Q1,IF=5.663)在线发表了题为《The Raf-like kinase Raf36 negatively regulates plant resistance against the oomycete pathogen Phytophthora parasitica by targeting MKK2》的研究论文,该研究发现了一种新的负调控植物对寄生疫霉菌抗性的类Raf激酶基因,为植物病虫害防控提供新的策略。卵菌是一类独特的植物病原菌,虽然其在系统发育上与真正的真菌相距甚远,但仍然会造成严重的作物减产和环境破坏。为了获得抗病性,植物已经形成了两种方法:动员抗病蛋白和抑制易感因子。研究植物对卵菌病原体易感性的遗传基础是开发新的抗病策略的有效途径之一。寄生疫霉菌(Phytophthora parasitica)在植物中引起破坏性疾病,从作物到树木都有广泛的宿主,已成为卵菌研究的模式病原体。通过使用拟南芥–寄生疫霉菌致病系统(已被证明涉及水杨酸(SA)、茉莉酸(JA)和乙烯(ET)信号通路),科学家们最近又发现了几种植物对寄生疫霉菌的易感因子。例如,与结瘤蛋白相关的MtN21家族基因AtRTP1(拟南芥对寄生疫霉菌1的抗性)通过调节活性氧(ROS)产生、细胞死亡进程和PR1表达来介导植物对寄生疫霉菌的敏感性。然而含有拟南芥VQ基序的蛋白VQ29已经被证明介导植物对寄生疫霉菌的抗性,而不依赖于已知的SA、JA和ET信号通路、亚麻荠素(Camalexin)生物合成和PTI信号。这种差别可以用拟南芥和寄生疫霉菌之间复杂的相互作用来解释。因此,有必要进一步研究植物对该病原菌的防御机制和敏感性。丝裂原活化蛋白激酶(MAPK)级联反应通常由MAPK激酶激酶(MAPKKK)、MAPK激酶(MAPKK)和MAPK组成,是植物免疫信号网络中的重要节点,传递来自不同刺激物的信号以调节下游防御反应。植物MAPKKKs由三个家族组成:MEKK家族、类Raf家族和ZIK家族。MEKK激酶通常在上游发挥作用,激活MAPKK-MAPK级联,但类Raf激酶与不同的底物相互作用,参与多种生命活动。与此同时,类Raf激酶也在植物与多种病原体的相互作用中发挥作用。然而,类Raf激酶是否参与植物与疫霉菌的相互作用及其机制仍基本未知。在这项研究中,作者鉴定了一个拟南芥T-DNA突变体,该突变体通过在MAPKKK中插入类Raf基因Raf36而增强了对寄生疫霉菌的抗性。随后作者通过CRISPR/Cas9技术构建raf36突变体,并同时构建了Raf36互补株和过表达转化株,感染实验结果一致表明,Raf36介导了拟南芥对寄生疫霉菌的敏感性。利用病毒诱导的基因沉默实验,作者沉默了烟草中的Raf36同源基因,并通过感染实验证明了Raf36的保守免疫功能。突变分析表明,Raf36的激酶活性对其免疫功能以及与MKK2的相互作用非常重要。作者接着通过构建和分析mkk2突变体、MKK2互补株和过表达转化株,发现MKK2是对寄生疫霉菌感染的反应中的一种阳性免疫调节因子。此外,对mkk2-raf36双突变株的感染实验表明,MKK2是raf36对寄生疫霉菌产生抗性所必需的。综上所述,作者发现一种类Raf激酶Raf36是一种新的植物敏感因子,在MKK2上游发挥作用,并直接以其为靶点,对植物对寄生疫霉菌的抗性进行负性调节。在使用萤火虫荧光素酶互补测定AtRaf36与AtMKK2的相互作用实验中,使用PlantView100植物活体成像系统进行拍摄。论文链接 https://doi.org/10.1111/mpp.13176广州博鹭腾博鹭腾作为一家集生命科学仪器设备的研发、生产、服务于一体的国家高新技术企业,目前已开发并上市了多款具有自主知识产权的产品,形成了分子影像、蛋白凝胶预制及印迹处理系统、发光检测、活体成像四个系列,用户包括清华大学、中山大学、西北农林科技大学等上百家高校及科研单位。
  • 基于拉曼光谱和机器学习算法的沙门氏菌快速鉴定
    近日,中国人民公安大学侦查学院姜红课题组采用拉曼光谱结合卷积神经网络实现了对沙门氏菌的快速鉴定。相关研究成果以题为“Rapid identification of salmonella serovars by using Raman spectroscopy and machine learning algorithm”发表在国际学术期刊Talanta(IF=6.556)上。食源性疾病是世界范围内一个普遍存在且日益严重的公共健康问题,而食源性沙门氏菌感染是人类最常见的患病原因之一。本研究针对三种最具致病性的沙门氏菌血清型,使用拉曼光谱获取其光谱数据,选择适合解决多分类问题的卷积神经网络(CNN)对拉曼光谱数据进行深入挖掘和分析。比较了五种光谱预处理方法,Savitzky-Golay平滑(SG),多元散射校正(MSC),标准正态变量(SNV)和希尔伯特变换(HT)对CNN模型预测能力的影响。采用准确度(ACC)、精度、召回率和F1得分 4种机器学习评价指标来评估不同预处理方法下的模型性能。结果表明,拉曼光谱与CNN模型结合使用,能在单细胞水平上快速鉴定三种沙门氏菌血清型。此外,该模型在区分不同血清型的病原菌和密切相关的细菌种类方面具有很大潜力。图1. 针对激光波长优化的拉曼光谱的三维瀑布图(A)和曲面图(B)图2. 基于拉曼光谱的沙门氏菌的CNN分析示意图图3. 肠炎沙门氏菌、鼠伤寒沙门氏菌和德比沙门氏菌的平均拉曼光谱图4. 三种沙门氏菌血清型的原始光谱和处理后的光谱图5. (A)CNN模型训练集的识别精度;(B)CNN模型训练集的损失率;(C)CNN模型测试集的识别精度(D)CNN模型的测试集的损失率图6. 测试集中机器学习的四个评估指标图7. 不同预处理条件下CNN模型的混淆矩阵本研究评估了五种光谱预处理方法下CNN模型的预测能力,并得出结论,SG结合SNV是利用拉曼光谱预测沙门氏菌血清型的最准确的光谱预处理方法,在CNN模型中训练集的准确率达到98.7%,测试集的准确率超过98.5%。使用这种方法预处理光谱数据比其他方法具有更高的准确率。该研究进一步丰富了沙门氏菌血清型的拉曼光谱数据库。拉曼光谱结合机器学习算法在鉴定致病菌血清型方面的巨大潜力,这对于临床快速诊断食源性疾病以及预防食源性疾病至关重要。
  • 新型酵母生物传感器有望高效检测病原真菌
    “生物传感器的广泛开发与应用,主要归功于生物元件对于其敏感的分析物具有很强的特异性,不会识别其他分析物。利用生物传感器,可以快速、实时获得有关分析物准确可靠的信息。”袁吉锋说。合成生物学的发展推动了细胞生物传感器的开发。这种生物传感器以活细胞为生物元件,基于活细胞受体检测细胞内外的微环境状况和生理参数的变化,并通过两者之间的相互作用产生细胞信号转导,进一步激活不同的信号输出模块,从而产生不同的信号。袁吉锋介绍,从本质上讲,其他类型的生物传感器使用的是从生物中提取出的生物元件。而基于活细胞的细胞生物传感器是一种独特的生物传感器,它可以通过模拟细胞正常的生理生化变化来检测信号。目前,这种生物传感器已成为医疗诊断、环境分析、食品质量控制、化学制药工业和药物检测领域的新兴工具。“用于构建细胞生物传感器的生物元件包括细菌细胞、真菌细胞以及哺乳动物细胞。我们这次所构建的工程化酵母生物传感器,正是基于酿酒酵母细胞所构建的真菌细胞传感器。”袁吉锋说,酿酒酵母细胞用于生物传感器的构建,在细胞性能上具有优势。作为一种真核生物,酿酒酵母细胞与哺乳动物细胞的大多数细胞特征和分子机制一致,特别是与感知和响应环境刺激密切相关的GPCR信号通路具有极高的相似性;酿酒酵母是酵母物种中第一个基因组已完全测序的真核生物,并且遗传修饰工具非常完备;酿酒酵母的培养条件简易、培养成本低、生长速度快、温度耐受范围宽,可以通过冷冻或脱水等方式进行储存和运输,具有生物安全性。可进一步设计改造成检测试纸基于工程化酵母细胞构建生物传感器多年来一直是研究热点。袁吉锋团队此次通过人工转录因子,将GPCR信号通路与高效基因转录模块——半乳糖调控模块进行耦合,在酵母生物传感器中引入了一个额外的正反馈回路,以此来增强酵母生物传感器的灵敏度和信号输出强度。袁吉锋解释说:“我们相当于设计了一种正反馈放大器,让酿酒酵母细胞中GPCR在识别到白色念珠菌的信息素信号之后,不仅能通过人工转录因子激活下游信号报告模块的表达,同时还能驱动半乳糖调控模块自身的转录因子Gal4表达。两个转录因子协同作用,就能持续激活和放大报告基因的输出信号。”数据显示,相比于初始传感器的性能,改造后的酵母生物传感器的检测限提升了4000倍,激活浓度提升了9700倍,信号输出强度提升了近3倍,尤其是信号输出的持续时间得到了明显提升。初始传感器在检测使用2小时后就出现荧光信号的衰退,而改造后的传感器在使用12小时后仍可产生明显的荧光信号。“此次构建的酵母生物传感器,可以设计成一种简单、低成本的检测试纸,用于检测医疗样本或环境样本中的病原真菌。”袁吉锋介绍,只需将试纸浸入待检测液体样本中,即可实现对该样本快速灵敏和可视化的检测。
  • 核酸质谱下一站:病原体检测——访中国医学科学院病原生物学研究所彭俊平研究员
    由于传播途径多样、影响范围广泛,症状发展迅速,传染病仍然是世界范围内引起人类大量死亡的重要原因。21世纪以来多次严重疫情给我们留下深刻印象:一是2003年的“非典”(SARS),二是2009年的甲型H1N1流感(人感染猪流感),再有就是现在席卷全球的新型冠状病毒肺炎疫情。因此,传染病的防控一直是医学科学工作者面临的巨大挑战。其中,对病原体进行快速准确的鉴定是传染病精准防控的基础。中国医学科学院病原生物学研究所彭俊平研究员自2000年起即深耕于病原体检测技术方法及基因组学、耐药机制相关的研究工作。近日,仪器信息网特别采访了彭俊平研究员,与他就核酸质谱技术在病原体检测领域的应用现状及前景进行了深入交谈。中国医学科学院病原生物学研究所 彭俊平研究员“国内最早开展核酸质谱病原体检测研究的团队之一”随着各项科学技术的进步,病原体检测技术也在不断发展,由病原分离、电镜观察、免疫学检测等传统生物学方法发展到PCR技术、芯片技术、测序技术、质谱技术等分子生物学方法。“因为引起疾病的病原体种类繁多,单一的平台技术不能解决所有问题,所以,我们的主要工作是利用各种平台技术对病原体进行筛查。”彭俊平介绍到,“多年来我们课题组一直致力于搭建一个病原体组合筛查技术体系,这也是我国在传染病防控领域的一个重要工作。另外,我们利用多重PCR反应结合飞行时间质谱技术(以下简称:核酸质谱)在病原体检测领域开展了10多年的工作,这也是我们多年来的一个重点发展方向。”核酸质谱是什么?彭俊平为笔者解答到,核酸质谱其实是基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)在核酸水平的应用,是一种将多重PCR反应与质谱结合的复合技术。此前,MALDI-TOF主要应用于蛋白质水平的微生物鉴定研究,应用发展不过30多年,而MALDI-TOF在核酸水平的相关应用则是近些年提出的概念,应用发展时间就更短。最初,MALDI-TOF在核酸研究领域开展的应用是SNP基因分型,其首先通过PCR扩增含有SNP的基因组片段,再通过检测核酸分子在真空管中的飞行时间而获得样品分析物的精确分子量,从而检测出SNP位点信息。因为MALDI-TOF本身的高灵敏度和高通量等特点,使其非常适合应用于SNP多位点的筛查。而MALDI-TOF在病原体检测领域的研究则鲜少有报道。彭俊平课题组是国内最早开展核酸质谱病原体检测研究的团队之一。“我们是在2009年引进的这个技术平台,正好是H1N1全球大流行的时候,当时核酸质谱的技术水平还不足以帮助我们开展相关工作,因此我们就开始自己开发方法。”核酸质谱病原体检测的原理是利用MALDI-TOF检测多重PCR反应的产物,即单碱基延伸的产物质量大小,来判定检测靶基因的有无,从而进一步判定样本中目标病原体的有无。与传统的病原体检测技术相比,核酸质谱在灵敏度、检测通量以及操作简便性等方面均有一定优势。此外,核酸质谱检测的核酸序列均来源于公共数据库,不需要依赖其他的数据库。 “开发了7种人冠状病毒的检测方法,成功申请专利”经过多年的技术摸索,彭俊平团队利用核酸质谱在病原体检测领域做出了很多成果。最近其团队开发了7种人冠状病毒的检测方法,并申请了发明专利。目前,已知可以感染人的冠状病毒共有7种,其中包括2003年的“非典”SARS冠状病毒、2012年在中东地区出现的MERS冠状病毒以及2019年12月爆发的严重性呼吸系统综合征冠状病毒SARS-Cov-2。彭俊平介绍到,课题组是从2012年开始开展人冠状病毒的检测技术研究,其中一部分工作内容就是利用核酸质谱进行检测应用。该部分成果是与岛津公司合作开发的,利用一步法多重反应PCR与MALDI-TOF质谱联用鉴定7种人冠状病毒与新型冠状病毒的重要突变位点。“本次合作中我们将多重PCR反应从两步法改进为一步法,既缩短了实验时间,又减少了人为操作的工作。而且我们改进的方法适用于所有的RNA病毒,可以说是摸索出了一种通用的解决方案。”彭俊平介绍到,“和岛津合作成果的应用价值很明确,我非常期待未来该方法的推广。接下来我们也将继续和岛津合作在MALDI-TOF平台上开发出更多病原体检测解决方案,并合力推动核酸质谱在临床领域的应用。”笔者追问到目前国际上核酸质谱在病原体检测领域的应用现状如何?彭俊平坦言道,国际上相关的成果并不多,而团队于2009年就开展了相关研究,可以说是走在了国际前列。不过,目前核酸质谱病原体检测的应用还以科研阶段为主,临床应用正处于拓展阶段。此外,彭俊平也谈到他认为核酸质谱走向临床所面临的瓶颈,一是MALDI-TOF本身的硬件设备比较贵;其次,基于MALDI-TOF平台提供给临床应用的成熟方法不多。因此,核酸质谱这样的技术平台想要真正推广到临床,首先需要提供“一揽子”的解决方案,这样应用场景就会被打开。不过,彭俊平也观察到,无论国内还是国外,越来越多的团队和厂商开始关注这一领域,相信核酸质谱的临床应用情况将在短短几年之内得到很大的改变。最后彭俊平表示,未来核酸质谱病原体检测值得重点关注的方向有呼吸道感染疾病、腹泻性疾病和性传播疾病等,其涉及的病原体种类繁多,是核酸质谱可以“大展身手”的方向。后记:采访中彭俊平反复提到“病原体的组合筛查技术体系”,他也为笔者解释到,为了获取更全面的生物信息,往往需要多种技术平台共同解决问题,而不是希望用一个技术平台去解决所有的问题。回到MALDI-TOF这一技术来说,总有人拿质谱与NGS测序相比较,其实它们的应用场景和目标都不一样,发展核酸质谱也并不是为了替代测序技术。事实上,核酸质谱只需要在中高通量的检测中建立并巩固其“王者地位”,在此基础上能够再提升灵敏度和分辨率等性能,就为自身的发展开辟了新天地。
  • 延禧攻略:高贵妃究竟死于哪种细菌感染?
    有没有人在追《延禧攻略》?该古装剧一改往日女主纯良无辜小白兔的人设,一路打怪升级,战斗力爆表。成了这段时间大家热议的头号大剧!在剧中,高贵妃就是嚣张跋扈的代名词,明明只是一个贵妃,却演出了皇太后的气势,屡屡将毒手伸向皇子......比如,泥萌最爱的“五阿哥”~战斗女主终于按捺不住,在某次高贵妃在与皇上观看打铁花表演时,借着“万紫千红”的戏用铁水烫伤了高贵妃的后背,更惨的是铁水被有心之人混进了金汁,使得高贵妃的病情日渐恶化,最后自杀领盒饭走人......看到这里,很多人要问:金汁为何物?为什么这么厉害?金汁名字看似很高大上,实质却是最原始污秽,它是最肮脏的粪便和尿液熬成的金色浓稠汤汁。那么,问题来了,粪便有这么大的杀伤力吗?铁的熔点有1535℃,虽然粪便中含有大量细菌,但高温不是能灭菌吗?按照铁水的高温,往铁水里加入粪水,那些细菌命再硬也早就被杀死了,还有什么能力害人? 对,实际上,金汁的作用很纯粹,就是想恶心你,心理上膈应你。高贵妃真正死因是烫伤创面细菌感染,和有没有混入金汁关系不大。人一但被烧伤,皮肤屏障功能受损,创面渗出的体液及坏死组织会成为细菌的良好培养基,很容易造成感染,在那个没有抗生素的时代,这都是分分钟要命的。也有网友感叹了,高贵妃要是活在现代,就不会被感染了,一定能活到全剧终。那么,一定是这样吗? 像高贵妃被超高温度的铁水大面积烫伤,往往导致全层皮肤的深度烧伤(医学上称为Ⅲ度烧伤),非常严重,救治难度很高。就算高贵妃活在现代,医院各种有创检查和治疗(如气管切开、留置导尿、动静脉置管等)、血液制品的输入、和抗菌素长时间全身应用都是会可引发或导致感染,如果不幸的再感染“超级细菌”,再加上像高贵妃这样“不配合”的病人,高贵妃还是有可能会全身感染而亡! 那么被烫伤的高贵妃最可能感染的病菌有哪些呢? 1.铜绿假单胞菌大面积烧伤创面感染最常见的细菌是铜绿假单胞菌,本菌属于非发酵革兰氏阴性杆菌。菌体细长且长短不一,菌体的一端有单鞭毛,在暗视野显微镜或相差显微镜下观察可见细菌运动活泼。 本菌为专性需氧菌,生长温度范围25~42℃,最适生长温度为25~30℃,该菌有4℃不生长而在42℃可以生长的特点。在普通培养基上可以生存并能产生水溶性的色素,如绿脓素(pyocynin)与带荧光的水溶性荧光素(pyoverdin)等,在血平板上会有透明溶血环。铜绿假单胞菌能产生多种致病物质,主要是内毒素、外毒素、蛋白分解酶和杀白组胞素等。其致病特点是引起继发感染,多发生在机体抵抗力降低时,如大面积烧伤,长期使用免疫抑制剂等。临床上常见的有皮肤和皮下组织感染,中耳炎、脑膜炎、呼吸道感染、尿道感染、败血症等。铜绿假单胞菌具有多重耐药的特性,能天然抵抗多种抗生素,对抗生素耐药有多种耐药机制,如产生的多种β内酰胺酶、产氨基糖苷类钝化酶、细菌细胞外膜蛋白改变使抗菌药进入菌体的量减少、细菌细胞膜上存在多种外排泵以及细菌旋转酶或拓扑异构酶发生改变等,在治疗铜绿假单胞菌的感染过程中,一方面充分考虑其耐药机制,选用耐药率低的药物,避免诱导铜绿假单胞菌产生β内酰胺酶而对抗菌药物广泛耐药。另一方面,由于长期的各种抗生素治疗,分离菌株可能发生耐药性的改变,因此,初次分离的敏感菌株在治疗3~4 d 后应重新培养做药敏试验。 2.金黄色葡萄球菌 金黄色葡萄球菌为革兰染色阳性球菌,直径约1μm,排列成葡萄串状,无芽胞,无鞭毛,不能运动。大多数无荚膜。平板上菌落厚、有光泽、圆形凸起,直径0.5~1.0mm。血平板菌落周围形成透明的溶血环。常引起皮肤组织化脓性感染,金黄色葡萄球菌产生的多种外毒素也可引起败血症及脓毒血症,是医院感染的主要病原菌。随着抗生素的广泛滥用,耐药的金黄色葡萄球菌开始出现并逐年增多,现已遍及全球,其中耐甲氧西林金黄色葡萄球菌(MRSA),也称超级细菌。除甲氧西林外,MRSA对其他所有与甲氧西林结构相似的β-内酰胺类抗生素以及氨基糖苷类、四环素类、氟喹诺酮类等药物均有不同程度耐药,使得抗感染的难度大大增加。 3.大肠埃希菌 大肠埃希菌为革兰氏阴性短杆菌,大小0.5×1~3微米。周生鞭毛,能运动,无芽孢。目前,大肠埃希菌已成为医院感染的重要机会致病菌之一,当机体抵抗力下降时可引起人体各部位内源性感染。比如大面积烧伤的人,大肠杆菌侵入血流,会引起败血症。近年来,随着抗生素应用的日益增多,特别是许多广谱抗生素及新型抗生素的广泛应用,细菌的耐药性日益严重,多重耐药的肠杆科细菌对全球健康的威胁与日俱增。产超广谱β内酰胺酶(ESBL)和碳青霉烯酶是菌株耐药的常见原因。 4.鲍曼不动杆菌 鲍曼不动杆菌为革兰阴性球杆菌,单个或成双排列,有时呈丝状或链状。无芽胞,无鞭毛,革兰染色不易脱色。在血琼脂平板上35C 培养18~24 h ,形成直径2~3 mm 、圆形、灰白色、光滑、边缘整齐的菌落,部分菌落呈黠液状。在麦康凯琼脂等平板上35℃培养18~24 h ,形成粉红色菌落, 48 h后菌落呈深红色,部分菌株呈黠液型菌落。鲍曼不动杆菌是条件致病菌,广泛存在于自然界。该菌对湿热紫外线及化学消毒剂有较强抵抗力,常规消毒只能抑制其生长而不能杀灭,因此,在医院,患者机体抵抗力下降加上各种侵入性操作和长期使用广谱抗生素治疗,一些不动杆菌伺机而动,趁机占领“阵地”且产生了耐药性,逐步成为医院感染的重要病原菌,主要引起呼吸道感染,也可引发败血症、泌尿系感染、继发性脑膜炎等,对危重患者威胁很大。特别是耐碳青霉烯类的鲍曼不动杆菌,发展迅猛,甚至出现“全耐药”的鲍曼不动杆菌,已引起临床和微生物学者的严重关注。 抗生素的出现如奇迹一样帮人类解决了无数的问题,使人类在与众多疾病的战斗中能够占主导地位。但近几年,抗生素的错误及过度使用,病毒和病菌的抗药性越来越强,对人类构成的威胁也越来越大。因此,即便是活在现代,高贵妃依然难逃厄运。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制