当前位置: 仪器信息网 > 行业主题 > >

表型组

仪器信息网表型组专题为您整合表型组相关的最新文章,在表型组专题,您不仅可以免费浏览表型组的资讯, 同时您还可以浏览表型组的相关资料、解决方案,参与社区表型组话题讨论。

表型组相关的资讯

  • 《表型组学》开刊 共同见证人类表型组学新时代
    上海国际人类表型组研究院与施普林格自然(Springer)合作新创的同行评审国际期刊Phenomics 《表型组学》近日开刊。中科院院士、上海国际人类表型组研究院院长金力发表了开刊词。首期其余3篇文章将陆续于本月上线并正式印刷出版。  该期刊聚焦表型组学前沿研究,期望搭建全球表型组学领域专家交流的国际平台,推动该领域相关的理论创新和学科发展。  据悉,来自全球14个国家的27位科学家共同组成国际编委团队,覆盖了表型组学、代谢组学、蛋白组学、精准医学、流行病学等多个相关研究领域。金力担任主编,美国系统生物学研究所Leroy Hood院士、澳大利亚莫道克大学Jeremy Nicholson院士、德国莱布尼兹环境医学研究所Jean Krutmann院士以及复旦大学唐惠儒教授共同担任副主编,复旦大学丁琛教授担任执行主编。  附:《表型组学》期刊开刊词(中国科学院院士、复旦大学常务副校长、复旦大学上海医学院院长、上海国际人类表型组研究院院长金力教授撰写开刊词)  1996年,史蒂芬加兰(Steven Garan)博士首次提出“表型组学”一词,用以描述表型测量。表型是是由基因、表观遗传学、共生微生物、饮食和环境暴露之间复杂的相互作用而产生的一系列可测量特征,包括个体和群体的物理、化学和生物特征。通过运用高通量方法,深度表型测量已在人类和模型生物的功能基因组学、药物科学、生物医学工程、系统发育和疾病基因组学研究中引起了广泛关注。  随着表型组学研究在众多领域日益瞩目,越来越多高效一体化的综合表型测量设施和国际合作项目被投入进行系统的表型研究。这将有助于我们进一步揭示人类健康、生物技术、农业和生命科学其它领域的基本理论和功能基础。自2011年以来,与表型组学相关的文章出版数量在人类遗传学、流行病学、植物生物学等领域迅速增加。我们预测其论文数量将随着科学家不断地探索基因功能和环境反应而持续增长。然而,目前表型相关论文主要发表在相关广义的生物学相关期刊上,亟需Phenomics期刊出版平台专门服务于表型组这一科学社群。  Phenomics期刊致力于发表表型组领域的高质量文章,传播表型组学领域的最新科学进展。表型组学具跨学科特质,贯穿生命科学的基础研究和应用研究。该期刊聚焦表型各个方面的研究,包括分子水平的蛋白质组和代谢组研究,细胞水平的细胞特征及器官水平上的各种器官研究,基因组结构和调控网络机制,以及表型关联与疾病风险和干预措施等,这为探究哺乳动物健康和疾病状况提供了重要前提。Phenomics期刊为双月刊,其论文类型包括论著、综述、评论、短篇论著、读者来信等。若您希望了解更多相关信息,可访问期刊网站https://www.springer.com/journal/43657。  Phenomics期刊关注领域包括但不限于:高通量表型分析研究及技术创新 通过模型、算法数据等将基因和表型关联研究 表型关联探索及基因和环境互对表型影响的深度解析 表型在疾病风险、临床治疗、精准防控中的研究和应用 表型相关多组学研究及数据整合融合分析新技术 模式生物研究、跨学科多尺度研究等其他表型相关研究。Phenomics期刊已经建立了由领先科学家组成的国际编辑委员会,其专业研究涵盖期刊的各个关注领域,并努力做到公平公正地同行评审。附期刊网站地址:Phenomics
  • 国际表型组中心网络创立 质谱与核磁应用于疾病代谢表型研究
    由世界各地领先研究中心组成的新的全球性网络于今天推出,以应对自闭症、癌症、糖尿病和痴呆症等现如今一些最为紧迫的全球健康挑战。国际表型组中心网络 (IPCN) 将显著增强表型组学领域的全球科研能力。通过对生物体液或组织样本进行全面分析,表型组学研究我们的生活方式和我们所处的环境如何与我们的基因相互作用。它可帮助解释为何有些人会患病,而有些人就不会。该网络在卡塔尔多哈举行的世界健康创新峰会 (WISH) 特别推介会上推出。  人们普遍认为,人类基因不足以解释疾病如何发展,了解我们的基因、环境、微生物、饮食与生活方式之间的动态相互作用及它们对不同个体和人群的影响,有助于改善疾病的预防、检测和治疗。IPCN 的宗旨是更好的了解基因环境相互作用的变化如何在人的一生中对不同人群的疾病产生影响。该研究将使用代表世界不同人群的稳定、一致的数据集,为全球公共健康政策和新治疗方案的开发提供信息。  MRC-NIHR 国家表型组中心 (NPC) 负责人兼伦敦帝国学院 (Imperial College London) 外科与癌症系主任杰里米-尼科尔森 (Jeremy Nicholson) 教授表示:“在全球范围内,显著增加慢性疾病风险的环境和生活因素前所未有地融合在一起,如今构成了最大的全球公共健康挑战。IPCN 正在打造国际分析科学协调中心,专注于了解增加疾病风险的基因环境相互作用,以及重大疾病的比较生物学,并满足未被满足的保健和医疗需求。”  IPCN 由伦敦帝国学院国家表型组中心发起,由超过12家国际合作伙伴组成,这些合作伙伴在澳大利亚、加拿大、中国大陆、日本、新加坡、台湾、美国和英国设有区域多机构中心。  自2012年以来,国家表型组中心已创建表型组学领域的最佳实践实验室和研究方法论,新推出的IPCN将在全球范围内分享这一知识。如果以相同、一致的方式开展研究,数据集合并和结果比对就会变得更加简单。这意味着,以这种方式可以开展更大规模、更复杂的研究,而且与一家单独的中心独立完成相比,能够以更快的速度完成复杂性较低的研究。  英国首席医疗官莎莉-戴维斯 (Dame Sally Davies) 教授称:“事实上,表型组研究是我们新一批医疗尖端科学之一,可以增进我们对疾病和病情总体情况的了解。这一领域的研究可以彻底改变自闭症、癌症、心理健康、中风、肥胖症、代谢性疾病和2型糖尿病的治疗方式。通过国际合作找到解决方案,更快的解决我们如今所面临的最大全球公共健康挑战,这是非常好的一件事。”  南洋理工大学 (Nanyang Technological University) 李光前医学院院长詹姆士-贝斯特 (James Best) 教授说:“在新加坡,我们对国际表型组中心网络的推出表示欢迎。通过这项合作,南洋理工大学的新加坡表型组中心将有更多机会开展国际合作。通过合并一致方法论收集的数据和分享理念,我们将更好地了解有可能引发糖尿病等代谢性疾病的生化异常。”  伦敦帝国学院全球健康创新研究院院长、教授达兹勋爵 (Ara Darzi of Denham) 表示:“该世界健康创新峰会计划专注于了解全球健康需求的变化以及迫切的医疗和健康问题,并进行相关筹划。IPCN 将肩负肥胖症、糖尿病、癌症和自闭症等医疗健康挑战,并创建一项技术架构,在全球范围内对疾病的比较生物学进行研究。”  该网络的创始机构为伦敦帝国学院及其企业合作伙伴沃特斯公司 (Waters Corporation) 和布鲁克公司 (Bruker Corporation)。沃特斯和布鲁克已开发了质谱分析与核磁共振光谱技术,进而实现了高级、精准和高效的代谢表型。代谢表型涉及识别存在生物体液和组织样本中的代谢物,提供有关个人当前健康状况和生理机能的信息。反过来,这也会提供疾病和代谢病理相关信息。
  • 人类表型组国际大科学计划全面启动!
    p style=" text-indent: 2em text-align: justify " 第二届国际人类表型组研讨会(2018谈家桢国际遗传学论坛)上,“人类表型组计划国际协作组”和“中国人类表型组研究协作组”宣告成立,吹响了“人类表型组”国际大科学计划的集结号。会上传出信息:“人类表型组”国际大科学计划(一期)将在上海全面启动,并开展相关研究。 /p p style=" text-indent: 2em text-align: justify " 从基因组到表型组:力图全面解读人类生命密码 /p p style=" text-indent: 2em text-align: justify " 中国科学院院士、复旦大学副校长金力与来自澳大利亚、美国的两位科学家担任“人类表型组计划国际协作组”理事会共同主席,来自16个国家的20多位相关领域顶级专家为协作组理事会成员。理事会下设“标准与技术规范”“知识产权、数据共享与数据安全”“伦理与法律社会问题”3个专业委员会,秘书处设在复旦大学人类表型组研究院。 /p p style=" text-indent: 2em text-align: justify " 2014年,复旦大学筹备发起“人类表型组”国际大科学计划。2015年,科技部基础性工作专项支持启动全球首个大规模人类表型组研究项目《中国各民族体质人类表型特征调查》。2017年11月,“国际人类表型组计划(一期)项目”作为上海市首批市级科技重大专项予以立项,总经费5.57亿元。 /p p style=" text-indent: 2em text-align: justify " 目前,国内外都已初步形成“人类表型组”国际大科学计划协作机制。国内已经汇聚北京大学、清华大学、复旦大学、中国科学院等30家高校和科研院所,以及20家三甲医院、5家国内知名企业,拟在上海、北京、重庆、广州等地分别成立人类表型组研究中心。在国际上,美国、英国、德国、日本等15个国家的21家著名研究机构专家参与,基本完成国际布局的前期协调工作。 /p p style=" text-indent: 2em text-align: justify " 人类表型组计划国际协作组理事会主席、中国科学院院士、复旦大学副校长金力表示 /p p style=" text-indent: 2em text-align: justify " 初步计划先在上海精确测量1000个个体,每个人测量两万个指标,然后在全国范围内,精确测量1万个个体,每个人测量5万个指标;最后在全球五大洲代表性人群中进行测量,每个洲选取1万样本,每个人测量10万个指标。 /p p style=" text-indent: 2em text-align: justify " 金力院士牵头组织的人类表型组研究团队不仅10年前就在泰州建立了20万人的大型健康人群队列并持续跟踪研究,还发展了国际领先的高通量、高灵敏、高特异分子表型检测技术,并早在2015年就牵头承担了国家科技部的“中国各民族体质人类学表型特征调查”基础性工作专项,为项目的实施打下了良好的人才、技术及前期工作基础。 /p p style=" text-indent: 2em text-align: justify " 专项战略指导委员会荣誉主任杨胜利曾表示 /p p style=" text-indent: 2em text-align: justify " 全面解读人类生命健康密码,建立我们中国人自己的健康标准,不仅需要科学家们的协同努力,还需要更多公众的参与。” /p p style=" text-indent: 2em text-align: justify " 会议上,“人类表型组”国际大科学计划的实施路线图、合作机制和组织架构已基本明确,为国际大科学计划在全球范围内的正式启动实施迈出了最关键的一步。作为“人类表型组”国际大科学计划的主要发起方,中国将推动该计划与本国已有的重大科技基础设施产生联动,充分发挥出联动所产生的合力,并将其边界延伸,使中国的大科学基础设施发展成为向全世界开放的科研平台。此计划将形成全球人类表型组的参比图谱,帮助全球科学家进一步开展研究,解读出更多未知的信息。 /p
  • 作物表型组学研究技术报告会顺利召开
    2018年12月12日,作物表型组学研究技术报告会在中国农业科学院成功召开。此次报告会由中国农科院生物技术研究所、欧洲PSI植物表型研究中心和北京易科泰生态技术有限公司Ecolab实验室联合举办,来自中国农科院生物所、作科所、区划所、植保所,及中国林科院、北京林业大学等院所高校的专家老师参加了报告会并进行了交流讨论和仪器技术演示实验。 作物表型组学研究技术报告会在中国农业科学院生物技术研究所顺利召开 报告会特别邀请PSI植物表型研究中心主任、捷克科学院生物技术研究项目负责人Martin Trtilek博士系统介绍了国际最先进的作物表型研究技术及国际一流表型研究机构最新安装(或将要安装)运行的作物表型平台: 美国橡树岭国家实验室(ORNL)生物能源创新中心大型PlantScreen植物表型分析平台,该平台包括如下成像分析功能模块:1) RGB 3D成像分析单元,用于植物三维形态结构分析和颜色分析2) 3D激光扫描成像分析单元,用于植物三维形体结构测量和3D建模3) 脉冲调制(PAM)叶绿素荧光成像分析单元,用于植物生理性状及胁迫等成像分析4) 高光谱成像分析单元,用于植物生化结构组成及代谢组学研究分析5) NIR近红外成像分析单元,用于植物水分分布成像分析6) 高分辨率红外热成像分析单元,用于气孔导度动态分析 匈牙利科学院生物科学研究中心(BRC)将要安装运行的大型PlantScreen表型分析平台,该平台建设包括大型FytoScope植物生长室、紧凑型PlantScreen植物表型成像分析系统(安装在FytoScope内)、PlantScreen高通量根系表型成像分析系统(安装于FytoScope内)、大型模块式PlantScreen植物表型成像分析平台(安装在温室内)。该平台包括如下成像分析功能单元:1) 根系与地上茎叶(root and shoot)表型分析单元,包括RGB 3D成像技术和3D激光扫描技术,对植物及其根系形态结构性状和生物量等进行高通量分析测量2) 光合作用、胁迫耐受性、生理状态成像分析及GFP/YFP成像分析,采样脉冲调制(PAM)叶绿素荧光成像技术3) 生化组成及代谢成像测量,采用VNIR高光谱成像分析技术4) 气孔导度动态测量分析,采用高分辨率红外热成像技术 荷兰植物生态表型中心(NPEC)PlantScreen移动式表型分析平台,这是该中心成立后安装运行的首套植物表型分析系统,整套系统由光适应室、叶绿素荧光成像单元、RGB 3D成像单元、3D激光扫描成像单元等组成,有轮子可以方便移动,被称为“可移动的高通量表型成像分析平台”。详情链接:https://www.wur.nl/en/newsarticle/New-automated-plant-phenotyping-device-at-WUR.htm 德国植物遗传与作物研究所IPK安装运行的大型PlantScreen表型分析平台,由Shoot phenotyping(即地上植株表型分析)和Root phenotyping(根系表型分析)两个功能单元组成。 北京易科泰生态技术有限公司高级工程师李川也带来精彩报告——《叶绿素荧光成像技术及其在作物表型组学研究中的应用》。FluorCam叶绿素荧光成像技术广泛用于植物/藻类的生理、表型、育种、生态等各种研究。报告讲解了叶绿素荧光成像技术的原理、发展过程以及在表型组学研究中的重要性,同时从作物抗逆研究、病害早期检测与表型研究、转基因作物与遗传育种、建立作物快速定量评估标准与体系等4个方面介绍了FluorCam叶绿素荧光成像技术在作物表型组学研究中的文献和应用。 会后由易科泰公司带领各位专家老师参观了中科院植物所PlantScreen高通量表型系统,并做了运行演示,得到各位老师的高度关注。 PlantScreen高通量植物表型成像系统 易科泰生态技术公司为您提供植物表型组学研究全面解决方案:? 手持式(FluorPen)或便携式叶绿素荧光测量与成像技术? 手持式或便携式植物光谱与高光谱成像测量技术? 手持式或便携式红外热成像技术 ? FluorCam叶绿素荧光成像全面解决方案? FluorCam多光谱荧光成像技术全面解决方案? FKM多光谱荧光动态显微成像技术方案——细胞亚细胞水平分析植物性状? 高光谱成像技术全面解决方案? PlantScreen高通量植物表型成像分析技术? 叶绿素荧光成像、高光谱成像、红外热成像、多光谱成像、RGB成像综合集成技术方案
  • 发展准确定量技术 揭示人类代谢表型——访复旦大学人类表型组研究院唐惠儒教授
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 随着人类基因组计划工作的完成,生物医学研究进入“后基因组时代”,科研界将关注点拓展至基因型与表型的关联。随着基因组学、转录组学、蛋白质组学及代谢组学等研究方法的不断发展及相关研究的深入,“表型组及表型组学”的概念应运而生。相对于基因组学,人们对表型组学还比较陌生。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 那么,表型组学是如何诞生的?其研究对于生命科学的意义是什么?其中代谢分子表型的主要研究内容有哪些?带着这些问题,近期仪器信息网编辑特别采访了复旦大学人类表型组研究院的唐惠儒教授,与他进行了深入的交谈。 /p p style=" text-align: center line-height: 1.75em " img style=" max-width: 100% max-height: 100% width: 300px height: 363px " src=" https://img1.17img.cn/17img/images/202005/uepic/6e729c87-2c2e-49ba-b879-bad859b9228c.jpg" title=" 唐惠儒.jpg" alt=" 唐惠儒.jpg" width=" 300" height=" 363" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 复旦大学人类表型组研究院唐惠儒教授 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 表型组学与“国际人类表型组计划” /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 表型组是生物体形态、功能、行为、分子组成规律等所有生物学性状的集合,是生物体内除基因组外的另一半生命密码。表型组研究贯穿微观和宏观表型,研究基因与环境因素相互作用而影响表型形成的原理机制,寻找健康特征及疾病发生发展的表型组规律,为生物医学研究及应用提供新突破口。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 相较于其他组学,表型组学是如何诞生的呢?唐教授娓娓道来:“回顾生命科学过去上百年的研究历程,其主要目标是要回答一个问题,即基因与表型的关系。早期,人们只聚焦一个表型对应一个基因,或者一个基因对应一个表型。然而诸多研究发现,一个基因可以对应多个表型,反之,一个表型也可以与多个基因有关。因此,生命科学研究的关键问题之一,便成为‘多个基因(基因组)与多个表型(表型组)’的关联规律。表型组包括宏观与微观表型,宏观表型必定有内在的微观表型(如分子表型),而分子表型则包括蛋白质组、代谢组等信息。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 那么,基因与表型的关系受到哪些因素影响?唐教授举了个例子:人类学研究早就告诉我们人类起源于非洲。然而,前往欧洲和来到亚洲的人类却在外观上(即宏观表型)呈现显著的差别。换言之,迁徙至欧洲和亚洲并在当地繁衍生息的过程中,人类的面部结构、身体结构等都或多或少发生了改变,这是为何?“这应该与环境因素影响有关”。唐惠儒教授表示:“表型组正是由基因组和环境因素相互作用形成的,而两者具体如何相互作用,目前尚不十分清楚,也恰好是我们想要解析和搞明白的问题。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 在科学家多年反复研究论证的基础上,“国际人类表型组计划(一期)”项目于2017年正式在上海启动。该项目由复旦大学联合中科院上海生命科学研究院、上海交通大学、上海市计量测试技术研究院等共同承担,是上海首批市级科技重大专项之一,国内外百余名科学家已经投身其中。项目将针对人类表型组在物理、化学和生物功能等多个层面的跨尺度、多维度特点,建立配套研究平台,制定我国人群的表型组标准化技术体系,构建中国健康人群表型图谱及数据库。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 解答基因和表型的内在机制 聚焦代谢分子表型解析 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " “我们目前的核心任务是研究分子表型,通过与其它微观表型组及宏观表型组的相关性定量分析,解析内在机制,深入认识宏观表型由哪些分子表型导致,也用分子表型预测未来将有怎样的宏观表型。”唐惠儒教授说到,复旦大学十多年来逐步建立了20余万人的泰州纵向人群队列并持续跟踪研究,发展了人类表型测量的系列技术方法与表型检测技术。事实上,研究院相关的研究还在继续进行着。”唐惠儒教授告诉编辑,一期计划的第一个目标就是要明确“健康人”的定义。如何定义“健康”,我们首先需要“测量健康”,通过大队列获得健康人群的分子表型图谱。为实现这个目标,需要建立2万个以上表型组相关的可定量检测指标,便于更精确地描绘人体的整体状态。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " “我的团队主要研究对象是代谢表型组,也就是小分子代谢物的定量组成及变化规律。通过结合核磁共振波谱、质谱及量子化学计算等多种技术,我们能够准确测量人类血液、尿液和唾液等样品中代谢物的绝对结构,定量它们的浓度及其变化规律。”唐惠儒教授透露其目标是定量测量2000-3000种小分子代谢物,当然该种类数还有望进一步突破。显而易见,新技术方法体系是实现目标的基础。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" color: rgb(0, 112, 192) " strong 量体裁衣 打造精准测量质谱平台 /strong /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 由于不同的分析技术各有利弊,且代谢组异常复杂,单一工具并不能满足绝对定性和绝对定量的要求。因此,发展建立适合该研究目标的代谢表型组定量测量和分析新技术体系,极具挑战但必不可少。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 不久前,Nature杂志发表了唐惠儒教授课题组与徐国良院士团队等的合作研究成果。他们建立了准确鉴定微量完全未知代谢物绝对结构的新技术,并使用该技术确定了两个完全未知的微量物质绝对结构,发现了一种全新的核酸修饰,进而阐明了修饰机制与可能的功能。该技术大大降低了准确鉴定小分子物质绝对结构的所需样品量,突破了10微克瓶颈,解决了代谢表型组精准分析面临的其中一个挑战。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 为满足代谢分子表型精准定量的需求,研究院“量身定制”了代谢组分析的专用质谱平台。唐惠儒教授表示:“就代谢组精密测量而言,我们的核心目标是方法的稳、准、敏、快、简。质谱仪器的灵敏度、稳定性是我们优先考虑的关键指标。超灵敏、超高通量的测量方法更是我们工作的‘刚需’。我们的研究涉及数十万份样本,任何分析时间的节约、效率的提高、成本的降低都是十万分重要的。基于这一系列考虑并通过实际样品的系统而严苛实验评判,我们设计并引进了多台套质谱仪建成了硬件平台。” /p p style=" text-align: center line-height: 1.75em " img style=" max-width: 100% max-height: 100% width: 600px height: 258px " src=" https://img1.17img.cn/17img/images/202005/uepic/aaae9239-a256-4a8a-890f-9b22ffc389db.jpg" title=" 实验室.jpg" alt=" 实验室.jpg" width=" 600" height=" 258" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em " span style=" text-align: justify text-indent: 2em " 复旦大学人类表型组研究院精准定量质谱平台 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " “在这个平台上,我们研发所需技术和方法。譬如,我们开发的方法在10分钟内能够测得2000多种代谢物的绝对浓度(单位为微摩尔每升),所有代谢物的定量灵敏度达到亚飞摩尔量级。这些技术的突破,也能够在更为广泛的领域推广应用。”唐惠儒教授说。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " “我们研发的技术必将挑战当今最优秀仪器的性能极限,对仪器提出全新要求并倒逼仪器硬件能力的提升,进而推动我们研究的深入,使仪器技术与分析方法再出现‘质的飞跃’。”唐惠儒说,“上述两方面的相互促进与推动,也是中国科学家团队和仪器公司合作的现实需求与潜在方向,我们期待着这样的深入合作携手与共同发展。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong span style=" color: rgb(0, 112, 192) " 代谢组学发展“日新月异” 光明未来值得期待 /span /strong /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 唐惠儒教授深耕代谢研究领域三十余年,他认为,“代谢组学从1999年诞生至今,经历了21个春秋。这个依然朝气蓬勃的学科发展迅猛。虽然我国的代谢组学研究略晚于国际同行,但经过全国一批优秀科学家们的勤勉努力,发展迅速且成绩卓著。目前的我国的代谢组学研究水平已经在很大程度上‘比肩’国际水平。当然,我国的代谢组学事业任重而道远,前景看好而任务艰巨。目前我们依然存在从业人员体量整体偏少、整体研究水平亟待提高、国家层面重视不够、经费支持严重不足等问题。”唐惠儒教授感叹道。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 因此,唐教授认为人才培养依然是科研院所及相关学会的责任。成立于2018年的中国生物物理学会代谢组学分会,将重点关注行业的人才培养、研究水平提高、规范化、标准化等问题,通过定期举办学术会议、讲习培训班、陆续推出行业标准等一系列举措,促进我国代谢组学领域的进一步深入发展。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " & nbsp “对我国的代谢组学而言,发展才是硬道理。当行业经过蓬勃发展后,则更加需要重视发展的质量,重视长久的可持续协调发展。”唐惠儒告诉编辑,“代谢组学是新兴学科,各层面具有战略规划的前瞻性支持面与力度还有待改善。有史以来的科学实践不断表明,任何学科的大发展均始于新技术的重大突破,代谢组学也绝不会例外;新技术体系的建立与深入发展显然是从业者的一个核心任务。这个新技术体系自然包括仪器新技术的研发突破。” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 唐惠儒认为,代谢组学的应用前景广阔,潜力可期。无论是生命过程的分子基础、病理生理的机制、药理与毒理的生物化学基础,还是环境健康与环境毒理,或者复杂体系的变化规律与质量控制等,都是代谢组学的应用领域。代谢组学在疾病的临床诊断、预后及有效干预等方面也必将为精准医学的实践提供重要关键技术。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " br/ /p p style=" text-align: right text-indent: 2em line-height: 1.75em " 采访编辑:万鑫 /p
  • 表型组研究:中国后发先至——专访中国科学院院士金力
    金力院士简介:金力,中国科学院院士,现任复旦大学常务副校长、复旦大学上海医学院院长。“十三五”国家精准医学研究重点专项专家组组长。国际人类表型组研究协作组共同发起人,上海国际人类表型组研究院与复旦大学人类表型组研究院院长。  《瞭望东方周刊》:中国的人类表型组研究目前在全球处于什么样的地位?如此之规模体量的生命科学尤其是表型组学研究,全球还有哪些国家有能力进行?  金力:目前,中国在人类表型组学领域处于国际前列位置。尽管美国、英国等发达国家在部分领域内布局时间较早,进展较快,涌现出一批前沿成果,但与其对比,中国在科研理念、设施能力、科研规划、大科学计划组织实施等方面,已处于国际前列。  比如从科研理念上看,中国是第一个基于对人体系统精密测量,全面获取各尺度表型基础上开展研究的国家,也是最早系统全面启动布局人类表型组计划的国家。在多尺度(特别是宏观尺度)覆盖、集成度等方面,中国的工作已优于其他国家的相关团队。  同时,中国正在推进的人类表型组研究,把发现宏观表型与微观表型之间的跨尺度关联,继而探究基因和环境如何通过影响微观表型作用于宏观表型作为主要任务,是真正“以表型组为中心”的研究。  从设施集成能力看,在国家和上海市的支持下,以“中国人类表型组研究协作组”为代表的中国科学界已在张江建成了世界上首个跨尺度的人类表型组集成研究平台,能够实现跨尺度、系统集成的人类表型精密测量和数据汇算。  全球范围内,尽管美、英、欧盟、日本等国也能够开展较大规模的人群队列表型研究,但是它们已建成的设施和平台(由于建成时间较早)主要集中于分子尺度,不是像张江平台这样的跨尺度精密测量平台,尚不具备覆盖从宏观到微观各尺度、全景式的表型精密测量与分析能力。  从这个意义上说,中国在表型组研究的设施建设方面有着“后发优势”。  同时,通过生命科学与航空航天学科、环境学科的融合创新,中国还预研开发了一些具备更强功能、打破科研空白的表型组学科研设施与设备,国外尚无同类设施。  在西方发达国家发展多年的代谢组、蛋白质组等领域,中国也正在迎头赶上,在某些方面实现了赶超和领跑。比如在在蛋白质表型组方面,我们初步建立了国际领先的蛋白质组快速扫描模块,其分析效率远高于国际主流水平,同时建有高性能蛋白质组数据分析系统,可完成海量蛋白数据在线分析和知识挖掘。  在组织实施国际大科学计划中,中国也发挥了引领作用。分子表型蛋白质组平台实验室(复旦大学人类表型组研究院供图)  《瞭望东方周刊》:“国际人表型组计划(一期)”进行的“上海自然人群健康表型测量”和1万人的“特定人群应用示范测量”目前进展如何?  金力:“上海自然人群健康表型测量”目标是建立包含1000位20-60周岁常住上海的健康人的自然人群队列。  所谓“自然人群”,就是来源要尽量随机。所谓“健康人”,就是没有高血压、糖尿病等常见的基础性慢性病。常住上海,则是要求至少未来三年以上时间不会移居其他地方。我们希望通过研究,最终绘制出第一版的上海自然人群全表型组参比图谱。  截至2021年1月7日,已有近1600位志愿者报名参加检测,300余名志愿者则已经完成了在张江平台两天一夜的全流程表型检测。  另一个项目是 “特定人群应用示范测量”。所谓“特定人群”,是指儿童、中老年人群等特殊人群,糖尿病、癫痫、冠心病等重大疾病人群,高原习服等特定生理能力人群。在选取其代谢物和蛋白质等具有代表性的分子表型进行检测后,再通过表型组学研究发现新的标志物。  目前这项任务的表型检测已完成近90%,进入了跨尺度表型数据分析攻关阶段,有望产生一批前沿的创新性研究成果。  最终,所有科研产生的表型数据均会被汇总到“国际人表型组计划(一期)”的表型组大数据库。这个数据库目前管理的表型数据体量约为2PB(拍字节,数据存储量单位,1PB=1024TB=104856GB)。随着任务的持续深入开展,数据量还将不断攀升。  《瞭望东方周刊》:在全球协同测量方面,是否也制定了相关计划?  金力:目前,我们正在积极与国际合作伙伴加强联络与沟通,扎扎实实为将来实现全球协同推进国际大科学计划作好前期的基础工作。  生命科学的学科特点,是对规范化、标准化、可参比以及结果的连续性要求较高。因此,国际大科学计划主要以“分布式”模式组织,即在统一的标准和规范下,各参与方分别建设技术平台、协同开展相关研究,再对研究成果进行共享、汇算与集成。  这其中最重要的,是就“测什么”、“怎么测”、“怎么算”等核心科研实操问题达成国际科学共识,建立国际性的表型组学研究标准操作程序(SOPs)。  目前,中国科学界已率先较为系统地厘定了人类表型组相关的指标范围和表型测量的标准规程(SOPs),并建立了多组学质量控制体系,相关工作已具备国际领先水平。  2019年,复旦大学、上海国际人类表型组研究院、国家计量院联合向国际标准组织(ISO)递交了成立“人类表型组技术委员会”的申请,获得了较大范围的国际响应。目前,三家单位正在积极准备,将继续全力推动人类表型组相关国际标准的建立。  在此基础上,我们推动了各方协商“路线图”,即人类表型组大科学计划初期的重点主攻方向。  2020年的10月24-26日,我们在线上主办了第三届国际人类表型组研讨会。经过讨论,科学家们初步达成共识,提出人类表型组大科学计划在近期应优先聚焦“新冠肺炎和其他重大疾病的表型组学研究”、“表型组研究技术体系与科研基础设施构建”以及“表型组学研究中的标准操作程序(SOPs)”三大主攻方向。  各国科学家高度认同,应把聚焦新冠肺炎疫情开展表型组学研究作为人类表型组大科学计划启动后实质推进的首要优先主题之一。除了新冠,其他重大疾病的表型组研究也是大科学计划的重要“落脚点”。
  • 易科泰表型组学研究技术亮相亚洲动植物基因组学大会
    亚洲动植物基因组学大会 PAG ASIA 2024于6月5-7日在深圳成功举办。数百位中国、日本、韩国等亚洲基因组学研究的专家学者参加了本次大会,围绕最前沿的研究课题进行了深入探讨。 表型组学与基因组学互为表里,一方面表型组分析能够验证基因的实际功能及其与环境的关系,两者结合才能完整解释特定基因的作用以及如何发挥作用;另一方面,通过表型组筛选出优良品种,则可能发掘出发挥作用的关键基因。北京易科泰生态技术公司作为大会唯一动植物表型组学仪器与技术方案供应商参加了本次会议。易科泰表型组学研究技术在植物光合、抗逆、发育、次生代谢;大小鼠、家禽家畜、昆虫、水生动物以及人体能量代谢等研究方向上均可提供专业的技术方案,在本次会议期间,受到了参会专家的极大关注。 除草剂表型组学鉴定技术方案: 植物病理组学技术方案: 植物气候变化响应表型组学技术方案: 家禽能量代谢技术方案: 易科泰生态技术公司提供动植物表型组学研究检测全面解决方案:w 高通量、非接触、非损伤、数字化、可视化w FluorCam叶绿素荧光成像与PlantScreen高通量植物表型成像分析平台w PhenoTron® 系列植物表型成像分析平台,自动传送版、XYZ三维自动扫描成像版,或其它定制系统w FluorTron® 多功能高光谱成像分析系统、FluorTron® 光合表型成像分析系统w PhenoTron® 一体式智能LED培养与表型在线检测复式平台,适于组织培养、种子萌发及种苗表型分析、光生物学研究,为植物提供最佳光配方w PhenoTron® -SR,From shoots to roots,植物根系与种苗(土壤以上部分)高通量表型成像分析w PhenoPlot® 作物表型成像分析平台,基于易科泰近地遥感技术,轻便型或大型双轨平台,适于大田或温室作物原位表型成像分析w RhizoTron® 植物根系多功能高光谱成像分析系统w 大田机器人表型成像分析系统 w 便携式多功能能量代谢测量技术w 大鼠、小鼠等实验动物能量代谢测量技术w 灵长类能量代谢测量技术w 畜禽能量代谢测量技术方案w 果蝇能量代谢测量技术w 斑马鱼能量代谢测量技术w 人体能量代谢测量技术w 动物活动与生理指标(体温、心率等)监测技术
  • 2020年人类表型组学研究进展回顾:相关技术助力新冠诊断
    人类表型组概念的诞生  过去十多年,基因组学的飞速发展带动人类对表型组学的关注。学术界逐渐认识到:更加准确、系统、高效地对表型进行定量化研究将成为未来生物学、医学及相关交叉学科领域的前沿方向。对于从高度浓缩的基因信息如何演化为最终复杂的表现形式,目前的研究还处于不断探究阶段。国际科学界发现需全面研究人类表型组,补充所需信息的另一半,并对基因、环境、表型之间的多层次的关联、整合以及三者的整体性进行研究。解决基因-表型之间的关联问题,将有助于实现疾病预防,提出针对性的健康维护方案,这将为医学带来进步动力,并支撑人口健康这一国家重大需求。  自2001年“人类基因组计划”完成,生命科学和医学研究进入“后基因组时代”。同时,随着对基因组、转录组、蛋白组及代谢组等的深入研究,相应组学研究应用而生,使得人们对生命科学有了全局、系统化的认知。表型的反映是最终生命动态变化的集合,是一个极端复杂的动态过程。人类表型组定义  基因和环境相互作用决定人体特征,人体特征即表型。表型组(Phenome)最初被定义为某一生物体的全部性状特征。随着人类表型组研究不断深入,表型组目前被定义为生物体从宏观到微观(即分子组成)、从胚胎发育到出生、成长、衰老乃至死亡过程中,形态特征、功能、行为、分子组成规律等所有生物、物理和化学特征的集合。  后基因组时代的战略制高点  众多专家研判,人类表型组将接棒人类基因组,成为后基因组时代的战略制高点。精密测量人体表型,全景解析人类表型组,将系统解构表型之间强关联,构建表型网络,打通宏观表型与微观表型间多维度、跨尺度关联,明确表型间跨尺度关联,是解析生命科技的重要线索,推动人类真正实现精准健康管理。人体多维度、跨尺度、高精度全面测量,将绘制大数据时代的生命科学“导航图”,探索人体小宇宙,为人类健康保驾护航。  人类表型组研究加速布局  美国、英国、德国等欧美发达国家已加速对人类表型组研究的科研持,近年来相关科研计划逐渐增加。美国人类表型组研究计划启动较早,2006年,美国加州大学戴维斯分校 MIND 研究所(MIND Institute at the University of California, Davis)已开展自闭症表型组研究计划(Autism Phenome Project)。此后,美国国家癌症研究所(NCI)组织成立临床蛋白质组肿瘤分析协作组(CPTAC),综合蛋白 - 基因组学的分析进一步阐明驱动疾病表型的基因突变,阐明肿瘤病理生理学以探索个性化、精准临床治疗 美国国家科学基金会 NSF 生物科学部(BIO)2015 财年预算将“根据 DNA 序列预测个体特性(基因组到表型组)”作为核心项目之一进行重点支持 美国国立心脏、肺和血液研究所 NHLBI 也推出 Trans-Omics(TOPMed)项目,收集全基因组测序和其他组学数据,并将组学数据与分子、行为、成像、环境和临床数据相结合,以改善对心脏、肺、血液和睡眠障碍的预防和治疗 美国 NIH 启动 TGAC 试点项目利用 ExAC 等项目的数据库,研究基因、基因变异对表型的影响 NSF 与 Simons 基金会合作,新建 4 个数学生物学中心,将数学观点引入到生物研究中,实现对生命规律的搜寻 NIH 下属国家人类基因组研究中心(NHGRI)最新建立的精准健康研究计划,重点对基因组数据进行向工程,使用“反向表型”(Reverse Phenotyping)即以基因型确定表型的手段分析基因大数据,利用前沿基因组和信息工具,开发和评估下一代健康护理方法,实现疾病诊断、治疗和预防的改进。与表型相关的健康科研项目在近年来也被不断推出,谷歌于 2017 年启动大型健康项目基线计划(Project Baseline),利用各种健康新工具,通过连续跟踪志愿者的微生物群、睡眠、锻炼和精神状态等多维度来搜集海量健康数据,从而绘制出人体“标准健康地图”,为疾病预测提供线索 美国国家医学院也于 2019 年启动健康长寿全球项目(Healthy Longevity Global Competition),寻求突破性创新以延长人类健康和改善晚年功能。  欧洲也相继出台人类表型相关科研计划。德国柏林查理特医科大学于2008年成立人类表型本体项目(Human Phenotype Ontology,HPO),采用本体工程学、计算机科学对来自医学文献的表型信息进行结构化归纳,提供了人类疾病中表型异常的标准词汇,并对表型相关词汇建立分层关系。英国作为最早兴建人类表型组研究平台的国家,也将人类表型组研究作为优先资助项目。2019 年 4 月,英国健康数据研究所发布一体化战略及 2019-2020 年度计划,将人类表型组计划列入优先行动,并启动国家表型组资源项目 MRC 2019 年度实施计划也将人类表型组作为推进基础科研探索的重点发展方向。  我国率先启动人类表型组研究计划,系统布局人类表型组研究。2015 年科技部基础性工作专项《中国各民族体质人类表型特征调查》布局了采集56个民族体质表型特征的基础工作 同年 5 月,上海市委、市政府发布的《关于加快建设具有全球影响力的科技创新中心的意见》,将“国际人类表型组”列入重大科技基础前沿布局。2016 年 4 月,国务院批准《上海系统推进全面创新改革试验加快建设具有全球影响力科技创新中心方案》,国际人类表型组被列入需布局的重大科学基础工程 同月,上海张江高科技园区启动“分子表型组国际联合中心”项目,成为上海张江综合性国家科学中心的重要组成部分 同年 6 月,上海市科委基础重大项目“人类表型跨尺度关联及其遗传机制研究”启动,聚焦基因—环境—表型的互作机制,系统测量中国自然人群的全表型谱特征,刻画健康和疾病人群的表型特征,阐明人类表型跨尺度关联的遗传机制,为全面推动人类表型组计划聚集力量并提供重要的预研成果 同年 8 月,上海市科技创新“十三五”规划将“国际人类表型组”列为推进原始创新重大突破的战略方向。2017 年 12 月,复旦大学联合中科院上海生命科学研究院、上海交通大学、上海市计量测试技术研究院申请的“国际人类表型组计划(一期)”项目被批准获得上海市首批市级科技重大专项资助。  “人类表型组”国际大科学计划  在国家、地区重点布局的同时,以复旦大学金力院士为代表的科学家团队也积极组织和布局“人类表型组”国际大科学计划。在上海市首批市级科技重大专项资助下,包含 20,000 个检测指标的自然人群表型测量已经开始,计划在上海实现示范人群 1,000 人全景测量,10,000 人应用示范测量。未来期望精密测量全球代表人群 5 万人,应用示范测量 50 万人。在同一技术标准,共享数据资源的分布型国际大科学计划模式下,绘制人类表型组“导航图”。  引领新一轮生命科学与生物产业革命  作为生命科学研究新范式,人类表型组研究必将通过策动原始创新、支撑精准医学、引领国际合作及激发产业变革等多方面引领新一轮生命科学与生物产业革命。  第一部分 人类表型组研究“奇点初露”  人类表型组研究进入高速发展期  人类表型组研究在近十年进入了高速发展期。人类表型组论文数量增速明显,2020 年人类表型组研究热度明显提升。以美国人类遗传学年会报告为例,围绕“表型组”、“基因组 - 表型组”、“全表型组关联分析”的报告在 2017 年仅有 15 篇,2019 年跃增至 59 篇,整合表型组学、基因组学的多组学方法对疾病进行综合分析,开展个性化治疗已成为学科关注热点。  表型组计划成为学界共识  2003 年,Nelson Freimer 和 Chiara Sabatti 在 Nature Genetics 上撰文倡议发起“人类表型组计划(The Human Phenome Project,HPP)”,倡议集合更强大、标准化及多样性的人类表型数据库,集成一系列科学学科,同时带动诸如美国国立卫生研究院(NIH)和英国维康基金会(WellcomeTrust)等公共机构、非营利机构以及生物制药与其他行业之间的合作。自人类表型组计划提出后,表型组研究的重要性逐渐成为学界共识。  2005 年 Science 杂志创刊 125 周年之际,公布了当代 125 个最具挑战性的科学问题,其中“遗传变异与健康关联”、“人的基因为何如此之少”、“什么基因改变造成了人类的独特性”等遗传与发育问题位居前列,这些问题的核心和瓶颈在于无法将基因、环境因素与表型进行关联。2010 年英国New Scientist 杂志盘点可能改变科学的 50 个想法,其中表型组(phenome)位列第 13 位,该文认为表型组是现阶段的科学研究重点之一,将带来巨大突破。2013 年,Nature 杂志评述探讨了蓬勃发展的各种组学的必要性,认为表型组对疾病相关表型信息进行系统梳理,可对医疗健康大数据起到“点石成金”的作用,前景非常光明。2016 年,美国国家科学基金会(NSF)在 Science 杂志发表文章为 NSF 未来几十年的发展描绘蓝图,提出六大科研前沿和三大机制改革建议,“理解生命的规律:预测表型”位列第三。2018 年,Nature 杂志技术展望,“连接基因型和表型(Linking genotypeand phenotype)”被列为 2018 年度可改变生命科学研究的技术领域之一。2019 年 Science 杂志以“从基因型到表型”为题出版特刊,对基因型与表型的关系进行了分析与总结。2020 年Nature Review Genetics 杂志以“遗传学和基因组学的未来之路”为题刊登述评,美国科学院院士、国家医学科学院院士、印度国立科学院院士 Aravinda Chakravarti 将“解码多因素表型”列为未来方向之一。  除了以上学界述评反复强调表型组重要性,各学科也纷纷认识到表型组研究的重要性。2012 年,全球最大的人类遗传学会议——美国人类遗传学年会 ASHG 上召开了为人类表型组计划做准备(Getting ready for the Human Phenome Project)主题的人类变异组计划论坛(The 2012 Forum of the Human Variome Project),明确了建立人类表型组计划的必要性和可行性。此后,ASHG 年会上基于表型组学、基因组 - 表型组和全表型组关联分析(PheWAS)的研究逐年增加。2019 年 Nature 杂志刊发人类疾病遗传学简史综述,系统回顾了人类疾病遗传学发展的里程碑事件,提出:要充分发挥基因组学的潜力,需要在多个方面进行持续的协作努力,以确保基因突变与表型图谱更为详细,全面地了解疾病,为将来临床治疗转化提供依据和靶点。2020 年心血管领域顶级杂志 Circulation 刊登专家意见,提出流行病学仅能对于心血管疾病风险进行中度预测,而表型,如影像学的加入可系统确定其风险,表型测量对心血管疾病风险预测更有意义。  各国加速投资人类表型组研究平台设施  1996 年欧洲启动了罕见疾病及相关药物等信息的 Orphanet 知识库建设,对 1000~2000 个罕见疾病表型标准术语达成统一,并于 2000 年启动建设了 Orpha.net,以其详实权威的罕见病资料,成为患者、医院、各大研究机构和制药公司的首选信息提供者和合作对象。  英国对于表型研究的布局较早,早在 1999 年就提议建设英国生物样本库(UK Biobank)并于 2007 年启动。该样本库向研究人员提供其所采集的包括人类表型在内的材料,是英国迄今以来规模最大的健康研究项目之一。2012 年,英国医学研究理事会(MRC)宣布与英国国家健康研究所(NIHR)合作建立 MRC-NIHR 表型组研究中心(MRC-NIHR Phenome Centre)。这是世界首个表型组中心,使用 2012 年伦敦奥运会药物代谢检测实验室设施,为研究人员探索疾病特征,开发新药和治疗方案创造了良好条件。用于人类、动植物表型筛选的英国国家表型筛查中心(National phenotypic screening center, NPSC)为生物学家提供了验证表型分析的机会。  2012 年 11 月,美国国立卫生研究院(NIH)下属国家生物技术信息中心(NCBI)宣布启动一项名为 ClinVar 的公共免费数据库,用于支持开展人类基因型 - 医学重要表型关系的研究。  2014年,德国建立结构系统生物学中心(CSSB),通过使用“超级显微镜”,如正负电子储存环 PETRA III 期设施(PETRA III)和未来 X 射线自由电子激光试验装置(XFEL),研究生物样本的微观表型进而分析疾病的表型和分子基础。  澳大利亚也于 2019 年布局了澳大利亚国家表型组中心(ANPC),由默多克大学(Murdoch University)领导,研究基因、环境和生活方式对人类和动物健康的复杂相互作用和影响。  各国纷纷布局作为基础的战略性大队列  大队列是人类表型组研究的基础。目前,基于大型队列研究系统采集人类表型,研究环境与基因共同作用下人类疾病的发生、发展情况已被学界广泛接受。过去十年,世界各国对大型队列研究高度重视,多个国家将其作为重要战略性科研方向投入大量资金。英国和美国的精准医学计划都将其作为主要资助方向。我国队列研究启动较早,于 2007 年成立的泰州队列是我国最大的人群队列之一,队列规模 20 万人,持续跟踪 13 年,基于表型组研究搜集了 150 万份生物样本。  进展一 大型队列研究成果斐然  英国大型前瞻性队列研究 UK Biobank(UKB)于 2006 年 3 月启动,是迄今世界上已建成的最大规模人类信息资源库,共收集了五十万人的健康数据和生物样本。从 2010 年开始,UKB 陆续对参与者进行了多项数据采集,并于 2016-2017 年先后开展生物标记物分析、医学影像研究及大规模基因测序计划,皆已取得较大进展。截至 2020 年,基于该队列数据库的成果显著,已发表科学论文1500 余篇,其中有 131 篇发表在顶级科学刊物上 在人群健康监测方面,基于 UKB 数据已发表《UKB 癌症数量报告》、《UKB 恶性肿瘤概要报告》和《UKB 死亡概要报告》,并利用数据分析为英国公共卫生提供了多项政策建议。  成立于 2007 年的泰州队列是以我国泰州市 500 万居民为框架人群建设的大型自然人群队列,旨在研究遗传因素、环境因素及其交互作用与重大慢性疾病的关系。该队列由多学科参与,兼顾流行病学基本要素,系统采集生物样本,注重各种临床表型的采集。截至 2020 年泰州队列基线人群已达 20万例,参与者每人采集 1000 多个表型、上百种暴露资料,持续跟踪 13 年,收集了 150 万份生物样本。泰州队列作为我国最大的单一地区生物样本库,累积了 PB 级的健康医疗大数据资源,是国际领先的高质量、高标准的人群资源。基于泰州队列的研究发现,对于结直肠癌、食管癌、肝癌、肺癌和胃癌等 5 种常见恶性肿瘤,在达到现有临床确诊金标准之前,甚至在病人出现自觉症状前,早期的癌症信号——微量肿瘤甲基化就可被无创检测。“泰州队列”框架下系统设计的子队列——“泰州脑影像队列 (Taizhou Imaging Study)” 近年来已开展了农村社区无症状脑小血管病 (cerebral small vessel disease, CSVD) 患病情况、危险因素,及其与认知障碍、步态异常等疾病表型的关联研究,为相关疾病提供临床干预策略。基于泰州人群的队列调查,阐明了饮酒与食管鳞状细胞癌高风险的关联机制,并证实了老年人、女性、不吸烟不饮酒者口腔卫生指标较差,食管鳞状细胞癌发病风险增高。  进展二 深度表型测量的系统医学成为健康医疗新范式  随着现代医学的发展进步,疾病谱发生了巨大改变,导致死亡、残疾和生活质量下降的全球慢性病成为医疗保健系统的沉重负担。系统生物学创始人 Leory Hood 院士及合作团队提出一种预测性、预防性、个性化和参与性(P4)的医学新方法,包括“量化健康”和“阐明疾病”两个基本概念,即 P4 医疗模式。多位专家呼吁将应用深度表型测量(Deep Phenotyping)的系统医学作为医疗保健新模式,即把人体看作一个多层次网络,利用整体方法破译人体健康和疾病的复杂生理状况。颠覆范式的系统医学利用大数据深入、密集和动态的人类表型分析可为个人提供“科学健康”支持。深度表型及系统医学已应用于胃肠道肿瘤、多发性骨髓瘤、妊娠期新生儿及孕产妇2 型糖尿病代谢综合征预防以及个人健康管理等方面。  进展三 人类表型多组学分析已应用于个性化医疗与健康管理  动态的个体化多组学整合分析(Integrated Personal Omics Profiling,iPOP),主要包括基因组学、转录组学、蛋白质组学、代谢组学和自身抗体等多种组学,精准测量和描述人体临床表型和分子表型,由斯坦福大学 Snyder 教授提出。健康和疾病状态下的各种分子成分和生物学途径存在广泛动态变化,iPOP 可以用于解释个体的健康和疾病状态,对不同个体进行精准诊断和分析,实现精准医疗。相关的便携式生物传感器在管理健康、诊断和分析疾病方面有积极的作用,摆脱了传统社区保健服务的地理限制。iPOP 提出近十年,有妊娠、糖尿病、太空飞行健康风险、个体健康管理等多个研究方向,并被证明在个体健康管理和疾病预防、早期诊断等方面有重要的参考价值。  利用大数据方法长期追踪表型多组学数据,综合基因测序和表型多组学数据进行个性化综合分析,可及时发现临床可诉性健康问题。2019 年 Nature Medicine 杂志报道了斯坦福大学先锋队列研究,在长期跟踪 109 位参与者(2-8 年不等),绘制每位参与者个体生物学基线后,发现了超过 67 项可述健康问题(如代谢紊乱、心血管问题、传染病、炎症、癌症症状等),为个人提供潜在健康问题的可治或可控建议。该研究证实,长期持续收集人类表型组数据并应用人类表型多组学分析,可比当前医疗保健建议的年度性健康检查更全面、及时地揭示健康问题并改善健康状况。  第二部分 人类表型组计划加速迈进  我国率先启动人类表型组研究计划,同步启动人类表型组平台建设。2017 年在“国际人类表型组计划(一期)”框架支持下,复旦大学成立人类表型组研究院,研究院位于复旦大学张江校区,总面积达 4000 平方米。目前复旦大学已预研建设了全世界首个跨尺度、多维度人类表型精密测量平台,覆盖 15 个领域 2 万个表型检测指标,包括国内一流、国际领先的蛋白质组与代谢组等分子表型分析平台以及包含 3D 成像和 fMRI 研究设施的体质、结构功能表型平台,可一站式集成测量从微观到宏观多个尺度的人类表型。中科院马普计算生物学所建立了一系列整合功能性组学数据及生物网络分析的计算分析平台,为表型组学相关研究提供了数据整合、疾病相关网络分析、数据预测推断等系统及分析工具。上海国际人类表型组研究院正自主开发表型组信息数据共享与处理云平台,该平台已经通过初步测试,将尽快完成并向全球科学界开放试用。  在平台建设的同时,我国科学家也致力于推进人类表型组国际大科学计划。2015 年 5 月,复旦大学金力院士倡议发起并组织召开了“国际人类表型组研究”香山科学会议,提议发起国际人类表型组计划。2016 年 5 月,在国际遗传工程和生物技术中心(ICGEB)的资助下,复旦大学在上海组织召开“2016 年度谈家桢遗传学国际论坛暨首届国际人类表型组大会”,复旦大学金力院士、美国系统生物学研究所 Leroy Hood 院士、英国帝国理工 Jeremy Nicholson 院士三位科学家共同发起了启动“国际人类表型组研究计划”的倡议,奠定了我国在国际人类表型组研究中的话语权。2018 年 10 月,复旦大学牵头举办第二届国际人类表型组研讨会,“人类表型组计划国际协作组”和“中国人类表型组研究协作组”宣告成立,初步明确“人类表型组”国际大科学计划的实施路线图、合作机制和组织架构,为国际人类表型组大科学计划在全球范围正式启动实施迈出了最关键的一步。2018 年 12 月,“中国人类表型组研究协作组标准与技术规范工作组”在复旦大学正式成立,来自复旦大学、中国计量科学研究院(简称“中国计量院”)、中国电子技术标准化研究院、上海计量测试技术研究院和中电集团等单位的二十三位计量和标准化领域专家担任工作组成员,工作组此后努力推动国际组学大数据质量控制学会 (MAQC Society) 中国分会成立,并向 ISO 申请成立“人类表型组技术委员会”。2018 年 11 月 1 日,复旦大学获批了上海市科委“一带一路”国际联合实验室项目——“丝路人类学”国际联合实验室,为推动人类表型组国际大科学计划打下基石。“2019 年金砖国家大学联盟首届全体大会”上金力院士做了主旨演讲,通过开展人类表型组国际合作,倡议金砖国家人类健康共同体,标志着“人类表型组”国际大科学计划进入一个新的里程碑。  复旦大学于 2019 年牵头成立的新型研发机构上海国际人类表型组研究院,是组织实施人类表型组国际大科学计划的战略科技力量与核心研究平台,致力于建成推进人类表型组大科学计划的国内外协调机构、战略性科研力量和高质量转化平台。目前,中国人类表型组研究协作组(HPCC)共吸纳 77 名协作组委员,其中院士 26 位,联合国内 33 家高校科研院所、22 家三甲医院和 5 家国内知名企业 国际人类表型组研究协作组(IHPC)联合来自 17 个国家、21 家科研机构的相关领域顶级专家,理事中含各国院士 10 位。  2020 年 10 月 24-26 日,第三届国际人类表型组研讨会第二届中国人类表型组大会暨中国生物物理学会表型组学分会年会在上海举行,会议以“表型组时代的人类健康”为主题,多位国内外院士、专家等重量级学者应邀出席大会并发表演讲。国际人类表型组研究协作组全体理事会议上与会科学家达成重要共识:人类表型组大科学计划在近期应优先聚焦“新冠肺炎和其他重大疾病的表型组学研究”、“表型组研究技术体系与科研基础设施构建”以及“表型组学研究中的标准操作程序(SOPs)”三大方向稳步推进,指出人类表型组研究优先发展方向。  第三部分 对新冠防护做出重要贡献  揭示新冠肺炎临床特征  2020 年 1 月 24 日新冠疫情早期,王辰院士、高福院士等人联名在The Lancet(柳叶刀)杂志在线发表评论文章,系统总结新型冠状病毒疫情的进展情况,同时指出将来临床和基础科学研究的方向。同期柳叶刀杂志上曹彬教授及王健伟教授团队报道了首批 41 名因 2019-nCoV 感染转入武汉定点
  • 中美科学家联手打造“四大支柱” 加速推动人类表型组计划
    中新社记者近日获悉,中美两国科学家团队将在数据分析、技术平台、标准化和队列研究四大关键领域开展深入合作与协同,为人类表型组大科学计划迈向新阶段打造“四大支柱”。人类表型组国际大科学计划的两位共同发起人——中国科学院院士、上海国际人类表型组研究院院长、复旦大学校长金力与美国国家科学院、医学科学院、文理科学院院士,“拉斯克奖”获得者、“系统生物学之父”胡德(Leroy Hood),5日率领中美科学家团队,围绕人类表型组大科学计划的最新进展举行双边交流会。胡德希望,未来人类表型组计划将通过云数据平台创建国际表型健康数据生态系统,进一步使用超大规模人工智能分析与集成新知识、新疗法,催化创新,带来人类健康的新机遇。经过4个多小时的深入交流,中美两国的20余位专家学者密集探讨了人类表型组学的前沿进展,并就进一步加快推进人类表型组国际大科学计划的重点合作领域达成了新的共识。据金力院士介绍,中国科学家团队已在上海实现对20余类超过3万种人类表型进行精密测量,引领了人类表型组学标准化进程,建立了表型组大数据云计算最佳实践解决方案,在新冠肺炎预后、阿尔兹海默症预警、癌症极早期筛查、中国人群肾透明细胞癌蛋白-基因组学图谱绘制、肤纹与肢体发育关联等多个领域取得多项国际领先成果。中方团队于2021年绘制的全球首张人类表型组图谱已经发现数万个全新的强关联,将有力策动生物医学新一轮前沿研究,助力破解各种表型和人类健康与疾病的关系,有望成为生命科学未来的原始创新策源地,引领新一轮生物科技与产业变革。胡德院士介绍,人类表型组学的发展开启了有史以来医疗健康领域最重大的“范式转换”。美国科学家团队的相关计划名为“超越人类基因组计划”(Beyond Human Genome Project,简称“BHG”)。BHG的长期目标是通过百万人群研究计划创造健康与疾病预防科学,短期目标是将精准人群健康应用于如二型糖尿病、新冠肺炎等长期疾病和严重威胁人类健康的主要疾病。胡德院士领导的项目组生成了5000余人的健康数据云,并尝试了通过基因组、表型组及二者的整合从而影响人类健康的可能性。这种通过数据云驱动的科学健康模式对传统健康模式产生了深远的影响。据了解,中美两国科学家分别围绕数据计算与分析、技术平台建设与应用、标准化创制和表型组学队列研究等四大关键领域进行了全面交流。会议认为,双方团队对表型组研究的理念高度一致,研究工作各有侧重,高度互补,并一致同意将加快在上述四大领域的深度协同,加速推动人类表型组国际大科学计划。
  • 博普特成功参展2024植物表型组学青年科学家论坛
    5月24日—26日,由南京农业大学前沿交叉研究院、《植物表型组学》(Plant Phenomics)期刊、植物表型教育部工程中心联合主办的“2024植物表型组学青年科学家论坛”在南京召开。来自全国各地植物表型组学领域专家、青年学者及学生代表200余人参加了论坛。南京农业大学副校长王源超教授回顾了学校植物表型组学发展历程和取得的新进展,期待参会的代表通过本次论坛深入交流,共同推动我国表型组学和智慧农业的发展。南京农业大学程宗明教授代表期刊欢迎广大参会者参加会议,感谢参会者对期刊的支持。向《植物表型组学》期刊2023年度优秀青年编委、优秀审稿人颁发了证书,同时,公布了入选期刊第二届青年编委的学者名单。北京市农林科学院信息技术研究中心王开义研究员、中国农业科学院重大任务局副局长柴秀娟研究员、南京林业大学曹林教授和浙江大学岑海燕教授分别围绕“作物智能育种系统与算法”“植物表型视觉识别技术探索与应用”“面向智慧林业的林木表型组学研究与应用”和“植物表型三维可见/近红外光谱成像的探索与思考”进行了论坛特邀报告。来自中国科学院分子植物科学卓越创新中心的杨箫主任、高乐旋编辑分别介绍了《分子植物》《植物通讯》期刊的情况,程宗明教授介绍了《植物表型组学》和《园艺研究》期刊的情况。来自全国22所大学、科研院所的27位青年学者围绕植物表型组学领域前沿研究做青年学者论坛报告,并与现场参会者交流讨论。会议还组织了研究生论坛,经遴选,7所大学、科研院所的14位同学汇报了自己的科研进展。北京博普特科技有限公司隆重参展本次会议,展示系列植物表型组学研究产品和解决方案,受到了与会专家的高度评价。
  • 国际表型组中心全球网络创立,沃特世任创始合作伙伴
    美国马萨诸塞州米尔福德市,2016年12月8日 – 近日,来自六个国家和地区的多家一流研究中心齐聚卡塔尔多哈,于2016年世界健康创新峰会(WISH)上隆重宣布国际表型组中心全球网络(International Phenome Centre Network, IPCN)正式成立。作为一个全球性的联盟,IPCN旨在协调和统一代谢表型分析方法,以应对当前最为紧迫的全球性医疗难题,如自闭症、癌症、糖尿病、痴呆症以及肥胖症等。沃特世公司(纽约证券交易所代码:WAT)作为IPCN的创始合作伙伴之一,在色谱、质谱及其它专业技术方面为该网络提供了大力支持。  代谢表型分析是精准医疗研究的前沿领域,主要研究人类基因、环境、微生物组、饮食和生活方式之间的动态相互作用,以及其对人类所患疾病的影响,而这些研究都离不开诸如质谱等先进的分析科学技术。  作为质谱技术及分析方法的全球领导者,沃特世致力于与全球的IPCN机构开展合作,运用最前沿的分析方法和数学方法,对稳定、统一的代表全球多样化人口的数据进行研究。研究结果将有助于揭示疾病分子基础,推动新型疗法开发,并促进全球公共卫生策略发展。  沃特世公司应用技术高级副总裁Rohit Khanna表示:“国际表型组中心网络具有颠覆性的巨大潜力,能有效协调和统一全球科研人员在代谢表型分析中采集和评估数据的方法。我们十分荣幸能够与世界顶尖研究机构携手进行技术开发与应用研究,共同攻克最棘手的全球性医疗难题。”  IPCN由伦敦帝国理工学院的MRC-NIHR国家表型组中心(NPC)发起,并由十几家国际合作伙伴共同组成,在澳大利亚、加拿大、中国、日本、新加坡、中国台湾、美国和英国均设有区域性的多机构合作研究中心。  长期以来,沃特世通过与各个行业、政府机构、学术中心以及医疗系统合作,为不同地域之间研究技术和研究标准的统一及合作提供支持。此外,沃特世还为多个代谢分析培训中心提供资金支持,其中就包括帝国理工学院国际表型组培训中心(Imperial International Phenome Training Centre)。  伦敦帝国理工学院外科与肿瘤学系系主任兼NPC负责人Jeremy Nicholson表示:“为创建全球统一的分析科学研究中心,沃特世始终不遗余力地积极开展各项合作,对此我们深表感激。这些研究中心将重点探索增加患病风险的基因环境相互作用、开展重大疾病的比较生物学研究,并努力解决目前未能满足的医疗保健需求。沃特世是质谱和分析科学领域的国际领导者,拥有丰富的相关专业知识和技术,这对国际表型组中心网络的成功起到了莫大的推动作用。”  关于沃特世公司(www.waters.com)  沃特世公司(纽约证券交易所代码:WAT)专注于为实验室相关机构开发和生产先进的分析和材料科学技术。50多年来,公司开发出一系列分离科学、实验室信息管理、质谱分析和热分析技术。相关新闻: 国际表型组中心网络创立 质谱与核磁应用于疾病代谢表型研究
  • 沃特世公司全力支持MRC-NIHR表型组研究中心
    &mdash &mdash 2012伦敦奥运会的重大遗产 英国医学研究理事会(MRC)(www.mrc.ac.uk): 2012伦敦反兴奋剂机构在继奥运会和残奥会之后将成为世界级的资源,协助进行医疗保健革新。MRC-NIHR表型组研究中心(MRC-NIHR Phenome Centre)将使用为2012伦敦奥运会配备的世界顶级仪器设备为病人提供更好更有效的治疗手段。 MRC-NIHR表型组学研究中心属世界首创,有助于研究人员探索疾病特征,并开发新的药物和治疗方案。 表型组是对于个人的化学构成&mdash &mdash 人体中血液、尿液或组织中的化学分子的描述,这是个人基因组和生活型态共同作用的结果。这种混合分子组成时刻都在变化,并受到饮食、环境甚至是承受的压力水平等因素的影响。这关乎到一个人对疾病或药物等治疗方式的反应。 该中心的研究人员将通过对患者和志愿者的血液和尿液样本进行高精度的快速分析以研究其基因表型模式。这有助于发现新的&ldquo 生物标志物&rdquo ,进而解释某个人或某个群体可能比其他的个人或群体更易患某种疾病的原因。科学家们将利用这些信息探索新的更加安全有效的治疗方案。表型组的分析已经用于&ldquo 设计&rdquo 个体化癌症治疗方案,比如用于治疗结肠癌的可以减轻毒副作用、加强疗效的药物。 医学研究理事会(MRC)和英国卫生部的国家健康研究所(NIHR)将在未来5年内向新成立的中心每年投资500万英镑。葛兰素史克(GSK)提供并由伦敦大学国王学院运作的2012伦敦反兴奋剂机构将为新中心的成立提供最领先的设备和专业知识。 英国的MRC-NIHR表型组研究中心将为研究人员和生命科学行业提供世界级的表现型分类技术和专门知识,促进医学上的新发现并更好地运用到卫生保健中去。新中心将由学术合作伙伴联盟、伦敦大学帝国理工学院以及核磁共振和质谱设备的供应商德国布鲁克和沃特世公司共同领导。 MRC的首席执行官John Savill教授表示: &ldquo 英国具备极其强大的生命科学研究能力和在该研究领域的世界顶尖专业知识。葛兰素史克位于Harlow的药检机构接受了此类研究的一项重要挑战&mdash &mdash 在法医质量控制的条件下实现高通量筛选,以达到史无前例的新水平。为了不在奥运会一结束就失去这笔投资,所有合作伙伴包括医学研究理事会、英国国家健康研究所、英国大学、英国国民健康保险体系、英国国家健康研究所生物医学研究中心以及该领域的行业领袖将为此提供独特的资源,并最终为患者带来效益。这将是伦敦奥运会留下的一份重大遗产。&rdquo 卫生部长Andrew Lansley表示: &ldquo 这是我们首次投资此类健康中心,该项目必将为患者提供更好的治疗,涵盖了更广泛的常见病,诸如糖尿病、心脏病和痴呆症等。在我们更好地了解到疾病特征并发现新的疾病子类型情况下,患者也必将从快速精确的诊断中受益,研究人员也将研发出新型药物及治疗方案。在投资基因组和基因中心的同时,我们还将在未来几年内开发出世界领先的医疗诊断能力。&rdquo 首席医务官Dame Sally Davies表示: &ldquo 本研究中心将转变我们对人类体质特征和疾病的传统看法,并通过这些新的发现为患者带来切实的利益。研究人员取得的这些新进展将有助于研发出新的治疗方案,尤其是针对个人设计的治疗方案。这有可能改革我们治疗大范围疾病的传统方法。&rdquo 本中心的合作伙伴医学研究理事会(MRC)和英国国家健康研究所(NIHR): 德国布鲁克:布鲁克公司核磁共振业务开发总监Manfred Spraul博士表示:&ldquo 基于长期以来和帝国理工学院的Jeremy Nicholson教授非常成功的合作(见下),布鲁克公司非常乐意为MRC-NIHR表型组研究中心贡献自己的一份力量,并彻底改变人们对疾病病因和发病机制的传统看法。使用自上而下的系统生物学工具以及传统的临床诊断方法及患者信息,核磁共振和联用技术联合改良的体液和人体组织数据分析将呈现出个性化的表现型分类。我们认为新中心将是未来世界表型组研究中心体系中的一个亮点。&rdquo 葛兰素史克(GSK):2012伦敦奥运会和残奥会的官方实验室服务供应商。通过与伦敦大学国王学院的开创性合作伙伴关系,2012伦敦奥运会期间,葛兰素史克将为国王学院的专家分析师提供设备和设施方便其独立操作世界反兴奋剂机构(WADA)公认实验室。设在Harlow的实验室将进行更多的检测,涉及的范围比以往任何比赛都要广,每一位登上领奖台的获奖运动员和超过50%的运动员中都接受了检测。 葛兰素史克的药物研发副总裁Patrick Vallance称:&ldquo 将我们的实验室设备提供给此次合作研究,这让葛兰素史克为世界前沿研究贡献了自己的力量。作为一个在英国深深扎根的全球制药公司,我们将致力于保持英国在生命科学领域的领先地位。MRC-NIHR表型组研究中心将通过研究所、学术界和工业之间的合作向人们传输世界顶尖的科学知识,这也是葛兰素史克认为推动科学创新的关键所在。&rdquo 伦敦帝国理工学院:基于在代谢谱分析方法和系统医学中具备的专业的世界领先技术,伦敦帝国理工学院最先提议并建立起了MRC-NIHR表型组研究中心,为研究复杂的代谢谱分析方法培养人才。同时,帝国理工学院还将开发新一代代谢分析方法,创建新的信息学和计算分析方法用于数据分析,并将与设备制造商合作培训新一代的表型组研究人员,进一步开发新技术。 伦敦帝国理工学院的肿瘤及外科主任兼MRC-NIHR表型组研究中心总监的Jeremy Nicholson教授称:&ldquo 新中心具有开拓性的发展潜力,因为它将提供决定患病风险的人类基因和生活环境之间复杂反应的新的解释。&rdquo &ldquo 代谢谱分析方法将给我们提供有关疾病发生因素看法的全新视角,以及预测单个患者对治疗可能的反应方式的关键信息。新中心的成立是建立在国王学院大量世界级表现型分类研究专门知识的基础之上,我们期望通过与中心的公共以及私人合作伙伴之间的合作强化这一优势。&rdquo 伦敦国王学院:新中心的国王学院研究人员在引领世界的分析方法领域中占有一席之地,他们将关注具有针对性的代谢物质谱分析法。通过分析研究工具、传感技术、&ldquo 组学(Omics)&rdquo 平台和生物资讯,国王学院研究小组将提供有关&ldquo 表型组&rdquo 的更深入的解释,即表型特征的总和可以描绘出一个人。通过建立世界领先研究中心,旨在为整个英国生物医学团体创利。伦敦国王学院负责科研创新的副校长Chris Mottershead称:&ldquo 了解到环境会影响我们的健康并引发疾病是非常重要的,NIHR生物医学研究中心很高兴能够在MRC-NIHR表型组研究中心的发展过程中扮演着一个不可或缺的角色。与其一起合作开发振奋人心的新的诊断和治疗方法。&rdquo &ldquo 新中心的建立基于我们为奥运会和残奥会引进的反兴奋剂检测实验室的先进分析技术、知识和技能。我们很乐意继续在这份持久遗产的推进和建立过程中贡献一份力量。&rdquo 沃特世公司:沃特世公司全球市场营销部副总裁Rohit Khanna博士表示:&ldquo 沃特世作为此类世界顶级研究中心的一部分并与如此杰出的合作伙伴共同向我们的目标奋斗:开发新的技术、让科学解决我们面对的问题和挑战而感到自豪。该中心的成立是表型分类科学的一个重大进步,并通过与世界领先的学术机构、政府部门以及像我们一样提供最新创新技术的公司的强大合作而促进该目标的实现。我们深切期望该中心能让我们对疾病有更多的了解,帮助改善世界各地人民的健康状况。&rdquo 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,这些分析技术广泛的用于化学、物理及生物学材料组成等行业。
  • 莫道克大学和布鲁克达成战略联盟支持国际代谢表型组学中心
    2019年9月20日,莫道克大学(Murdoch University)和布鲁克(Nasdaq: BRKR)联合宣布了一项战略合作计划。据悉,此次合作将为澳大利亚国家表型组研究中心(Australian National Phenome Centre,以下简称ANPC)的代谢表型组学研究,乃至世界各地的疾病预防、诊断以及个性化健康的研究发挥重要积极作用。ANPC在2018年由莫道克大学负责健康科学的副校长和国际表型组学先驱Jeremy Nicholson教授,以及以及于2018年在表型组学研究领域被授予西澳大利亚杰出研究员的Elaine Holmes教授的领导下成立。图:ANPC拥有南半球最多的布鲁克质谱仪目前,ANPC配备了多种布鲁克核磁共振(NMR)和质谱(MS),布鲁克先进的仪器和全面的解决方案为研究人员探索人类代谢健康中基因、环境和生活方式之间复杂的相互作用带来了极大便利。ANPC将成为西澳大利亚卫生转化网络(WAHTN)的关键平台,并且与各大医院、高校、医学研究机构密切合作,同时也是由Nicholson教授领导的国际表型组中心全球网络(IPCN)的重要分支机构。莫道克大学负责研究和创新工作的副校长David Morrison教授表示:“我们对莫道克大学与布鲁克结成联盟感到非常高兴。ANPC的成立是多年来努力的成果,我们认为在表型组学领域建立一个国际专业中心是非常重要的,同时这也是莫道克大学领导人的战略远见。” Nicholson教授补充说:“布鲁克作为世界领先的仪器设备制造商,我们很高兴布鲁克能利用其先进技术和专业知识来帮助我们改善世界各地人群的健康状况。表型组学的研究将大大拓展我们对人类健康、疾病起因和预防的认识。通过布鲁克与莫道克大学全面的战略合作,我们可以将业内最为先进的仪器和经验丰富的研究人员带来西澳大利亚并增加ANPC的相关经验。双方的合作不仅反映了亚太地区对精准医学研究日益增长的关注和投入,同时将帮助我们改变人们的寿命和生活水平,这不仅仅限于澳大利亚,而是面向全世界的。”莫道克大学目前拥有多种布鲁克在表型组学领域最先进的系统和解决方案,包括7台AVANCE® IVDr 600 MHz NMR、1台NMR FoodScreener™ 、1台用于高通量流动注射分析(FIA)的ESI & MALDI MRMS(磁共振质谱)系统、12台impact-II QTOF质谱和2套timsTOF™ 质谱系统。布鲁克为ANPC提供广泛的应用、服务和研发支持,以帮助其进行分析方法和工具的开发、培训、beta测试和验证。图:莫道克大学基于核磁共振的表型组学AVANCE IVD系统AVANCE IVDr系统是应用于血浆和尿液定量分析的临床研究软件。利用该系统,莫道克大学可以用布鲁克标准的自动化流程进行液体质控、定量和定性分析,这对大规模流行病学研究至关重要。此外,布鲁克的IVDr脂蛋白亚类分析(B.I.LISA)和B.I. Quant-PS 2.0将在区分健康和疾病状态、监测各种治疗或饮食干预影响研究方面发挥重要作用。布鲁克的核磁共振FoodScreener可用于检测食品质量、真伪和营养稳定性。它配有参考数据库,涵盖了各种食物基质的靶标、非靶标测试,这些将作为与ANPC合作的一部分再次进行扩展。质谱获得的数据将使用MetaboScape™ 客户端软件进行分析,该软件无缝集成了流动注射分析(FIA)的超高分辨率MRMS工作流程,以及impact-II QTOF质谱上的定量分析。此外,建立在timsTOF平台上,利用机器学习算法预测分子特异性的碰撞截面积的功能(CCSPridictTM),适用于4D脂质组学,也被整合在MetaboScape软件中。布鲁克负责应用、工业及临床的磁共振部首席技术官Manfred Spraul博士表示:“表型组学研究的持续发展,为疾病的检测提供了更完善的见解。凭借布鲁克在质谱和核磁共振领域的专业知识,我们能够利用每种技术的独特、差异化潜力,开发出适合代谢组学研究人员所需的最佳工具。”布鲁克生命科学质谱执行副总裁Rohan Thakur博士补充说:“将高通量质谱数据与最新的碰撞截面数据(CCS)结合在一起,在timsTOF Pro平台上进行4D脂质组学和4D代谢组学研究,为表型组学的研究和发展带来积极作用,我们很高兴ANPC评估了我们的‘表型组学workhorse’-- impact II QTOF质谱系统,并证明了它在大队列研究中的超高灵敏度和稳定的定量能力。最后,我们非常高兴,莫道克大学将进一步开发高通量的FIA-MRMS分析方法,我们可以期待未来FIA-MRMS可以不借助色谱的帮助,在短短几分钟内就能识别一千多种代谢物。
  • 全新MRC-NIHR表型组研究中心将解读人类健康的先天与后天因素
    伦敦-2013年6月5日 一所国家级研究中心将于今日投入运营,该中心将助力英国跻身全球健康和医疗研究领域的改革前沿。 MRC-NIHR表型组研究中心每年都会对大约十万个血液和尿液样本进行检验。通过分析表型组&mdash 人类基因和环境因素共同作用所带来的生物学结果,帮助确定疾病成因并提供指导信息,以便有针对性地治疗每位患者。 该中心可以让科学家们更好地了解和应对各种由环境诱发或是遗传原因所导致的疾病,并且有助于开发预防和治疗方法。 基因组学研究能帮助科学家理解为何有些人会患上相关疾病,但最常见的疾病是同时受到遗传以及诸如饮食和生活方式等环境因素的影响。通过表型组研究,可以确定环境和基因如何共同对生化过程产生影响,最终导致疾病。 新中心由伦敦帝国理工学院、伦敦国王学院以及沃特世公司和布鲁克等分析技术公司合作组建,并得到英国医学研究理事会(MRC)和英国国家健康研究所(NIHR)的资助。该中心位于帝国理工学院,由肿瘤外科主任Jeremy Nicholson教授出任总监。 Nicholson教授表示:&ldquo 人类基因组测序让很多科学家和公众为之振奋,但目前对癌症、糖尿病和心脏病等常见疾病的基因研究结果还达不到我们的期望。通过研究表型组,我们可以对基因、生活方式和环境产生的影响进行分析。而在疾病成因方面的研究将有助于我们更好地进行医疗保健。&rdquo MRC-NIHR表型组研究中心拥有价值数百万英镑的核磁共振和质谱设备,可以对人类血液和尿液的化学组成进行最为先进和准确的解读。这些设备可以检测由人体自身产生的、来自饮食和药物以及通过空气吸入的各种化学物质,例如脂肪、糖类、维生素和激素;甚至还能检测到天然存在于肠道中的不同类型细菌,这些细菌可能会对我们的健康造成影响。 新中心将会为全英国范围内的研究人员服务,提供快速、高效和高质量的人类表型组分析。 &ldquo 这项技术已被应用于医疗研究中,但仅限于小规模的研究。随着新中心的建立,我们将能够完整准确地获得多达几千人的生物分析结果,&rdquo 伦敦国王学院分析和环境科学系主任兼中心合作研究员Frank Kelly教授说道。 &ldquo 大规模开展表型组研究意味着我们可以将导致癌症、糖尿病和心脏病等疾病的遗传和环境因素一一分离开来。&rdquo 伦敦帝国理工学院流行病学和生物统计学系主任兼中心合作研究员Paul Elliott教授说道:&ldquo MRC-NIHR表型组研究中心为我们带来了前所未有的机遇,通过大规模应用核磁共振和质谱技术,可以对数千名接受长期健康状况监测的人士的血液和尿液样本进行分析,从而揭开其中潜藏的基因、环境和生活方式信息。&rdquo Nicholson教授补充道:&ldquo 这项技术还能让我们预测:随着时间推移,不同患者会对不同疗法产生怎样的反应。例如,我们可以快速辨别一位癌症患者的化疗是否有效果,如果无效,我们就换成另一种疗法,避免浪费宝贵的时间。我们收集到的数据表明,最终我们将能够根据表型组预测出哪种疗法会对哪些患者有效。&rdquo 受益于这项技术的第一批项目之一是对血压进行的一项研究,高血压是心脏疾病的主要风险因素。这项名为GRAPHIC的研究由莱斯特大学Nilesh Samani教授带领开展,旨在探索高血压的遗传学机制。该研究已经采集了2000名志愿者的血液和尿液样本,将会在MRC-NIHR表型组研究中心进行检测。 Samani教授将与中心工作人员一同检测样本中各种化学物质的类型和含量,然后再将结果与志愿者的血压、基因构成以及生活方式信息等已知数据进行比对。研究人员希望通过探索哪些化学物质与高血压或低血压相关,从而深入地了解这一复杂问题。 &ldquo 这个项目让我们感到十分欣喜。我们已经了解高血压部分由基因导致,部分由生活方式和环境因素导致,但却不清楚这些因素是如何在蛋白质和分子水平上相互作用,从而致使血压升高的。这项研究可以确定表型组与血压相关的重要变化,这样我们就能针对这些作用机制制定更好的疗法,&rdquo 英国心脏病基金会主席、莱斯特大学心脏病学教授兼NIHR莱斯特心血管生物医学研究组主任Samani教授表示。 该中心已经获得来自MRC和NIHR提供的一千万英镑经费供最初的五年内使用。 首席医疗官Dame Sally C. Davies教授表示:&ldquo 该中心空前强大的处理能力将为医疗研究人员打开一扇全新的窗口,让他们得以了解基因与环境之间的相互作用,从而促进诊断、治疗和个性化医疗保健的发展。这家在全球范围内独一无二的研究中心还将促进生命科学行业的研究合作,进而有望为国家的发展作出贡献。这对我们所有人而言会是一个双赢的局面。&rdquo 在最初的五年里,该中心还会对NIHR生物医学研究中心和部门研究人员已经收集的数千个样本进行检测。NIHR生物医学研究中心和部门在一流的NHS医院和大学之间展开了合作,致力于确保患者能够受益于时下最具前景的医学研究。 MRC首席执行官、英国皇家学会会员John Savill爵士教授表示:&ldquo 英国在生命科学领域拥有极其强大的研究能力和世界顶尖的专业知识,能够应用最新技术对患者和受试组等宝贵资源进行人体化学物质检测。MRC-NIHR表型组研究中心是一个珍贵的国家资源,它与行业建立了强大的合作关系,充分发挥英国生物科学领域的巨大潜力,最终为患者创造巨大利益。&rdquo 借助沃特世公司和布鲁克公司捐赠的设备,该中心还将建立一个先进的国际培训机构,可以让世界各地的学生、科学家和医生获得研究人类表型组所必需的分析技术实践经验。 沃特世公司总裁Art Caputo表示:&ldquo 能够参与这家一流的研究中心,有机会与这些杰出的合作伙伴共事,沃特世公司深感自豪。沃特世公司的使命就是推动科学发展,不断突破极限。我们深切期望该中心能让我们对疾病有更多的了解,为这一研究领域建立标准,并持续帮助我们改善世界各地人群的健康状况。在NIHR-MRC表型组研究中心,医疗健康创新永远没有极限。我们希望在不久的将来,在世界各地的附属中心也会呈现如此欣欣向荣的局面。&rdquo 布鲁克公司应用NMR业务开发总监Manfred Spraul博士表示:&ldquo 我们很高兴布鲁克尖端NMR解决方案的全自动分析功能可以帮助该中心推动这项大型筛查项目的进行。建立高通量系统是将NMR引入医疗保健环境的第一步,同时还能执行大规模的流行病学筛查。如今看到我们的技术可以对更为宽广的领域产生影响,这让我们感到十分振奋。由此实现的个性化分型将有助于进行更为准确的诊断,还将推动新药研发和靶向治疗取得进展。&rdquo
  • 晶泰科技联手北大舒绍坤课题组,CRISPR+细胞表型+深度学习驱动肿瘤研究
    近日,晶泰创新中心与北京大学国际癌症研究院舒绍坤课题组宣布建立合作,双方将基于舒老师课题组的高通量 CRISPR 技术,整合晶泰科技的细胞高内涵 Cell Painting 成像技术与深度学习方法,通过多模态数据融合,共同开展疾病机理及药物作用机制研究。药物发现是理性设计与实验探索相结合的工作,其成功极大依赖于科学家对于疾病机理的深刻理解。随着人工智能和大数据技术的快速发展,已有多家研究机构和公司利用多种维度的生物大数据与机器学习结合,实现多模态数据融合(Multimodal data fusion),并取得长足的发展。该技术能从多个维度对疾病及药物在复杂生物体系内的作用机理进行深入的研究,特别是在靶点发现、苗头化合物发现、药物重定向、活性与毒性评估等领域,拥有巨大的应用前景。然而生物大数据维度与复杂度的提高,使得其对模型的数据处理能力要求也更高。数据采集和处理中的噪音问题,限制了数据利用效率和模型表现,为多模态数据融合的应用带来挑战。本次合作中,北大舒绍坤课题组与晶泰科技将利用各自的技术优势,将多模态数据融合与深度学习算法高效结合。舒绍坤老师及其带领的课题组在肿瘤药物机制研究领域有丰富的经验与独到的见解,可通过高通量的 CRISPR 技术对细胞形成大规模的基因编辑扰动;而晶泰科技自主建立的细胞研发平台 X-Map,能够大规模收集细胞扰动后的高内涵图像数据和转录组数据。两者结合,能基于真实世界的多维度数据获得细胞水平的精确观测,从而建立起不同生理学变化与基因、药物调控之间的对应相关性。这一研究方法相较于动物模型,通量更高、成本更低,可以针对特定的研究体系,快速获得包含更大信息量的高质量研究数据,进一步提高药物研发的效率和成功率。算法方面,晶泰科技在深度学习算法与流程开发、图像分析领域具备独到的优势。配合其全新建立的细胞表型平台,晶泰创新中心自主研发了一套基于 Transformer 架构的 X-Profiler 算法,能针对特定的下游任务进行有效信息的提取,良好应对例如高内涵成像中因为孔板边缘高度变化导致的失焦模糊等问题,剔除数据噪音对模型的影响,提高信噪比(signal-to-noise ratio, SNR),并根据任务自适应调节数据质量控制策略,从而显著提高模型性能。X-Profiler在药物机理研究、毒性评估等多项下游任务中取得突破性结果,相关研究成果的预印版已发表在 BioRxiv 上。双方合作的第一阶段将聚焦于肿瘤治疗新靶点及肿瘤耐药机制的研究,目前已经取得了初步的进展。下一步,相关成果将应用于抗肿瘤耐药性药物的研发,以期为癌症患者带来更加有效的治疗选择。晶泰创新中心聚焦前瞻性核心技术的开发与应用落地,目前已建立 X-Map 细胞研发平台,整合了包括 Cell Painting 在内的细胞影像、转录组建库、自主研发的 X-Profiler 深度学习建模算法等技术。晶泰创新中心将基于 X-Map 细胞研发平台,持续在机理研究、药物筛选、临床前药物评价等领域与药企、科研机构合作,共同开展课题研究与研发合作。晶泰科技联合创始人、首席创新官赖力鹏博士表示,“高质量数据与人工智能技术的结合将成为驱动药物创新的主要力量之一。舒绍坤老师课题组在基于 CRISPR 高通量基因编辑和多组学实验技术的肿瘤机理研究方面有丰富的经验。这些技术和经验将为合作提供宝贵的知识及数据。结合晶泰自身的 X-Map 细胞表型研发平台,我们期待基因编辑、细胞高内涵技术、深度学习方法能在本次合作中展现出突破性价值,带来更好的创新肿瘤治疗方案。”北京大学国际癌症研究院研究员、博士生导师舒绍坤博士表示,“通过高通量CRISPR技术、细胞表型 Cell Painting 平台技术、多组学技术和深度学习多模态融合技术相结合,解析药物靶点功能和机制,能够充分发挥生物大数据和深度学习大模型的优势,是我们课题组和晶泰创新中心十分看好的方向。晶泰创新中心具有开放的合作模式与明确的算法技术优势,深刻理解现有表型技术的优点和瓶颈,为项目提供了高质量的细胞 Cell Painting 图像数据与建模解决方案,为项目推进提供了重要保障。期待两支团队能够在肿瘤药物作用机理的研究合作中获得更多有价值的成果。”● 关于晶泰科技创新中心 ●晶泰创新中心(XtalPi Innovatioin Center) 依托晶泰科技在人工智能、科学计算、自动化方面的技术积累,致力于通过前沿计算与实验技术的融合,推动更多从0到1的行业革新,持续发展AI和自动化实验技术在生命科学、生物材料、农业、能源等相关领域的应用。同时,晶泰创新中心将坚持推动底层科学探索和应用技术突破,加速产学研联合下的商业转化,不断为行业与社会创造价值。
  • 1300万!中国科学院分子植物科学卓越创新中心单细胞原位空间蛋白组表型分析系统采购项目
    一、项目基本情况项目编号:OITC-G230302470项目名称:中国科学院分子植物科学卓越创新中心单细胞原位空间蛋白组表型分析系统采购项目预算金额:1300.000000 万元(人民币)最高限价(如有):1300.000000 万元(人民币)采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(人民币)1单细胞原位空间蛋白组表型分析系统1套是 1300万元合同履行期限:详见采购需求本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月01日 至 2023年12月08日,每天上午9:00至11:00,下午13:00至17:00。(北京时间,法定节假日除外)地点:www.oitccas.com方式:登录“东方招标”平台www.oitccas.com注册并购买售价:¥600.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学院分子植物科学卓越创新中心     地址:上海市枫林路300号        联系方式:021-64318161/010-68290551      2.采购代理机构信息名 称:东方国际招标有限责任公司            地 址:北京市海淀区丹棱街1号互联网金融中心20层            联系方式:杨帆 陈小舫 赵倩,021-64318161/010-68290551            3.项目联系方式项目联系人:杨帆 陈小舫 赵倩电 话:  021-64318161/010-68290551
  • Resonon | WinRoots:用于土壤胁迫下植物表型研究的高通量栽培和表型分析系统
    土壤是重要的自然资源,地球上95%的食物来源于土壤,土壤保存了至少四分之一的全球生物多样性,不仅是粮食安全、水安全和更广泛的生态系统安全的基础,更是为人类提供多种服务、帮助抵御和适应气候变化的重要因素。由土壤组成造成的胁迫,例如盐、重金属和养分亏缺是作物减产的主要原因。作物土壤耐逆性是一种复杂性状,涉及植物形态、代谢和基因调控网络等多种遗传和非遗传因素的调控。传统的作物表型研究通常在田间进行,费事费力、劳动密集、低通量、且受研究人员无法控制的自然环境因素的影响。在此情形下,难以获得高精度的表型数据以满足表型组学的研究需求。在过去几十年,已经开发了几种HTP(高通量表型)平台在现场或可控条件下使用,但其运维成本极高。此外,作物表型相关研究通常只关注植物地上部分,而对根系形态数据的获取有限。然而,根系是植物吸收水分和养分的主要途径,也是碳水化合物的储存器官和土壤胁迫的直接感知器官。因此,根系表型是土壤胁迫条件下植物表型研究的重要组成部分。就通量、环境可控性和根系表型获取而言,现有的植物表型平台无法完全满足植物对土壤胁迫响应的表型组学研究的特定需求。基于此,在本文中,来自山东大学生命科学学院和潍坊农科院的一组研究团队描述了其最近开发的高通量植物栽培和表型系统—WinRoots平台。以大豆植物为研究对象,将其暴露在盐胁迫中,证明了土壤盐胁迫条件的一致性和可控性以及WinRoots系统的高通量。他们开发了优化的盐胁迫条件,以及适用于大豆耐盐性的高通量表型指数。此外,高通量多表型分析表明,子叶特征可作为大豆全苗耐盐性的非破坏性指标。在本研究中,Canon EOS 700D数码相机和Resonon Pika L高光谱成像仪分别用于获取RGB和高光谱图像。相机位于植物材料上方1.5 m的可滑动水平导轨上。每天收集大豆冠层和整株幼苗的图像。栽培第九天,获取离体叶片图像,每个品种重复3次。WinRoots系统:高通量根系和整株植物表型平台。系统使用示意图。【结果】盐胁迫相关性状之间的相关分析。(A)盐胁迫相关性状之间的相关矩阵。(B)预测值和观测值之间的回归曲线。大豆盐胁迫相关性状的合成聚类。(A)大豆盐胁迫相关性状的合成聚类剖面图。(B)聚类1和聚类2代表性栽培品种表型。(C)聚类1和聚类2指标比较。【结论】WinRoots系统为幼苗生长提供了均一可控的土壤胁迫条件,可用于土壤胁迫下高通量栽培和表型分析,有助于提供准确多样的土壤胁迫相关的表型数据。因此,WinRoots提供了一种分析诸如土壤胁迫之类的复杂性状的改进方法。HPPA(Hyperimager Plant Phenomics Analysis)高光谱植物表型成像系统由北京依锐思遥感技术有限公司与美国RESONON公司联合研制生产,整合了高光谱成像测量分析、RGB真彩色图像、无线自动化控制系统、线性均匀光源系统等多项先进技术;最优化方式实现大量植物样品的数据采集工作,可用于高通量植物表型成像分析测量、植物胁迫响应成像分析测量、植物生长分析测量、遗传组学与表型组学、遗传育种、生态毒理学研究、性状识别及植物生理生态分析研究等。请点击以下链接,阅读原文:https://mp.weixin.qq.com/s?__biz=MjM5NjE1ODg2NA==&mid=2650311205&idx=3&sn=ffe393bdf01d664cab05b92572691916&chksm=bee1a6da89962fccef8eae610681ac22d2239e59d016db96cd911d103186c3459c4061ca30bf&token=1489736406&lang=zh_CN#rd
  • 基于Perturb-seq技术,绘制首个全基因组范围的人类细胞基因型-表型综合图谱
    近日,美国加州大学旧金山分校与纪念斯隆凯特琳癌症中心等单位的研究人团队合作Cell期刊发表了题为“Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq”的研究性文章。研究团队利用一种紧凑的、多路CRISPR干扰文库(CRISPRi),结合单细胞转录组测序、Perturb-seq技术等分析了数千个功能缺失的基因扰动在不同细胞类型中的作用,揭示了细胞表型、基因功能和调控网络的多维信息,绘制了第一个全面的人类细胞基因型-表型综合图谱。文章发表在Cell研究概要图,来源:Cell新基因功能数据可供其他科学家使用。图片来源:Jen Cook-Chrysos/Whitehead Institute建立遗传变化和表型之间的关联对于理解基因和细胞功能至关重要。经典的研究方式主要包括以表型为中心的“正向遗传”,即揭示驱动表型的基因变化;以及以基因为中心的“反向遗传”,即对确定的遗传变化引起的不同表型进行解析。近年来,基因技术的革新也推动了表观遗传遗传研究的进展。其中,CRISPR-Cas9基因编辑技术可以轻松地对基因进行编辑,进而抑制或激活基因,在揭示基本细胞机制、分化因子和遗传疾病相关基因以及识别癌症驱动基因等层面提供了有力工具。单细胞技术的发展也使在单细胞层面读取表观遗传学、转录组学、蛋白质组学和成像信息等成为可能,同时单细胞维度的研究也可以深入分析选择性遗传扰动影响的具体细胞类型和细胞状态。因此,单细胞CRISPR筛选可以同时分析单细胞的遗传干扰和高维表型,从而将正向遗传学的基因与反向遗传学丰富的表型相结合。虽然单细胞CRISPR筛选技术前景广阔,但其应用仅限于最多几百个基因扰动研究,并且这些基因扰动研究也通常被用来解决预先确定的生物学问题。目前,高通量、无偏颇的单细胞CRISPR筛选研究仍然缺失。主要研究内容全基因组Perturb-seq的多路CRISPRi策略Perturb-seq是指利用CRISPR-Cas9技术将基因变化引入细胞内,然后使用单细胞转录组测序捕获特定基因变化导致的转录组信息变化,能够研究给定细胞类型的全面遗传扰动影响,可以以前所未有的深度跟踪打开或关闭基因的影响。基于Perturb-seq,研究团队探究了可以提高可扩展性和数据质量的关键参数,例如遗传扰动模式和sgRNA库,并最终设计了一种包含多个时间点和细胞类型的Perturb-seq筛选方法,并可利用10x Genomics的液滴法单细胞转录组测序技术对所有筛选策略下的细胞状态进行解析。图1. 基因组尺度Perturb-seq的多路CRISPRi策略示意图,来源:Cell为了揭示基因扰动的功能后果和基因型-表型关系,研究团队使用人类血癌细胞系以及来自视网膜的非癌细胞,对超过250万个细胞进行了Perturb-seq,并使用这些数据构建了一个基因型-表型综合图谱。研究团队根据基因的共同调控将其聚类到特定表达程序中,并计算每个扰动簇中每个基因表达程序的平均活性。分析结果包含多个与基因干扰相关的已知表达程序,包括蛋白酶体功能障碍导致的蛋白酶体亚基上调、 ESCRT蛋白缺失时NF-kB信号通路的激活,以及胆固醇生物合成上调对囊泡运输缺陷的反应等。有趣的是,聚类分析发现了许多驱动红系或髓系分化的基因扰动,与K562细胞的多系潜能也是一致的。正如预期的那样,红细胞生成的关键调控因子(GATA1、LDB1、LMO2和KDM1A)的缺失导致了髓系分化增强,BCR-ABL及其适配体GAB2的抑制则促进了红细胞的分化。接下来,研究团队分析了选择性必需基因的分化作用,因为这些基因可能是颇具前景的治疗靶点。研究发现,在K562细胞中必需的酪氨酸磷酸酶PTPN1的缺失驱动了髓细胞分化。此外,在靶向实验中,联合敲除PTPN1和KDM1与单独敲除任意一个基因相比,导致分化和生长缺陷的表型会显著增加,表明这些靶点是通过不同的细胞机制发挥作用。以上结果强调了表型在了解细胞分化和治疗靶点方面的效用。图2. 基于Perturb-seq的基因型与表型关系汇总,来源:Cell单细胞中非整倍体的基因驱动和影响探索单细胞异质性可以揭示在整体或平均检测中被遗漏的机制。为了评估基因扰动诱导表型的外显率,研究团队采用SVD评分作为单细胞表型大小的衡量标准,通过单细胞SVD分数的变化对基因扰动进行表型影响评估。SVD评分是量化每个受扰动细胞的转录组相对于对照细胞的离群程度。分析结果表明,许多与染色体分离有关的基因都是细胞异质性的主要驱动因素,包括TTK、SPC25、DSN1,这些遗传干扰导致的极端转录变化可能是由于有丝分裂错误分离导致的染色体拷贝数的急性变化。为了探究这一点,研究人员使用inferCNV估算了基因组中单细胞DNA拷贝数变异。与预期一致,干扰纺锤体装配检查点的核心组成部分TTK,可以导致非整倍体和近整倍体细胞的染色体拷贝数发生显著变化。此外,干扰TTK的细胞中有76%发生了核型改变,未受干扰的细胞中只有2%发生了核型改变。值得注意的是,由于染色体的随机增加或减少,TTK敲除细胞具有高度可变的核型,这也是其表型异质性的原因。同时,该分析还揭示了单细胞CRISPR筛选可以用来解析表型,而不是预先定义的实验终点。图3. 单细胞中非整倍体的基因驱动和后果,来源:Cell发现线粒体基因组的应激特异性调控因子当前,领域内一个关键的科学问题是如何理解细胞核和线粒体基因组的表达来应对线粒体压力。该最新研究的实验设计为探究这一问题提供了可能。为了确定基因扰动引起的差异表达模式,研究团队检测了单细胞转录组测序数据在线粒体基因组中的分布。为了验证这种基于位置的分析的有效性,首先证实了已知线粒体转录调控因子(TEFM)和RNA降解(PNPT1) 的敲除会导致线粒体基因组位置发生重大变化。相比之下,研究发现许多基因扰动似乎导致了mRNA相对丰度的变化,而不是位置排列的总体变化。鉴于观察到的反应的复杂性,研究人员提出可能有多种机制影响不同线粒体编码转录本的水平,以应对不同的压力。图4. 解析压力应激下线粒体基因组的调控机制,来源:Cell结 语 单细胞CRISPR筛选代表了一种新兴的工具,可用于生成丰富的基因型-表现型图谱。但目前单细胞CRISPR筛选研究仅限于预先选择的基因,研究重点也是预先确定的生物学问题。在该最新研究中,研究团队进行了全基因组规模的单细胞CRISPR筛选,并展示了这些筛选策略是如何使用数据驱动的分析来解剖广泛的生物学现象,强调了关键的基因功能和衍生原则,同时绘制了丰富的基因型-表型图谱以指导未来的研究。该研究为系统探索遗传和细胞功能提供了源动力,同时也为领域提供了宝贵的数据资源。在未来,研究人员希望将Perturb-seq用于癌细胞系之外的不同类型细胞研究,也希望继续探索基因功能图谱。文章共同通讯作者Thomas M. Norman博士表示:“该研究是多个科研团队多年合作工作的结晶,很高兴看到它继续取得成功和扩展,我认为这个数据集甚至将使来自生物医学以外领域的研究团队进行各种分析成为可能。”参考文献:1. Replogle et al., Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq, Cell (2022).2. Fianu, I., et al., (2021). Structural basis of Integrator-mediated transcription regulation. Science 374, 883–887.3. Kummer, E., and Ban, N. (2021). Mechanisms and regulation of protein synthesis in mitochondria. Nat. Rev. Mol. Cell Biol. 22, 307–325.
  • 人类表型测量领域3项团体标准通过技术审查
    日前,在上海市遗传学会组织召开的人类表型测量团体标准技术审查会议上,上海市计量测试技术研究院牵头编写的《单克隆抗体与Fc受体的结合力检测 生物膜层干涉法》《细菌多粘菌素耐药基因微滴数字PCR检测方法》、上海交通大学医学院附属仁济医院牵头编写的《CDK12蛋白质检测方法 酶联免疫分析法》3项团体标准送审稿通过了技术审查。上海市计量测试技术研究院作为第一起草单位制定的《单克隆抗体与Fc受体的结合力检测 生物膜层干涉法》,通过非标记实时检测生物分子间相互作用过程,精密测定抗体药物与Fc受体亲和力,准确反映结合与解离的过程以及活性浓度的高低,对Fc受体结合力检测、药物药效、安全性、批次一致性以及类似药相似性水平评价等抗体类药物开发过程至关重要。   上海市计量测试技术研究院作为第一起草单位制定的《细菌多粘菌素耐药基因微滴数字PCR检测方法》,作为高灵敏性、高特异性、可溯源的数字PCR快速检测方法团体标准,可应用于食品安全、临床诊断、畜牧养殖等领域多粘菌素抗生素耐药性的监测和防控,有助于推动我国抗菌药物耐药性监测工程的完善。   此次通过技术审查3项团体标准,将为医疗健康、生物制药、人类表型测量等领域的研究提供一致性、规范性的测量和操作方法,对于加快人类表型组基础科学研究,推动精准医疗、生物医药等产业的标准化工作具有重要意义,亦将有力支撑“人类表型组国际大科学计划”战略布局。   复旦大学、上海市预防医学会卫生检验专委会、上海市医疗器械化妆品审评核查中心、中国科学院上海微系统与信息技术研究所、同济大学的7位专家组成专家组,从生命科学、医疗卫生、生物计量、生物信息等角度对3项团体标准进行了技术审查。下一步,各标准起草组按照审查专家组意见对送审稿进行修改完善后,形成报批稿上报学会审批发布。
  • 复旦团队发表多表型自然人群队列建设成果
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " strong 仪器信息网讯 /strong 北京时间2020年8月11日,复旦大学人类表型组研究院陈兴栋青年研究员团队在痴呆研究领域的国际权威学术期刊《阿尔茨海默病与痴呆》(Alzheimer’s & amp Dementia,影响因子: 17.127)上在线发表了最新研究成果:“中国人群生活方式、多组学特征与临床前痴呆研究 (Lifestyle, multi-omics features, and preclinical dementia among Chinese: The Taizhou Imaging Study)”。该论文详细介绍了团队基于表型组学方法,在复旦大学领衔建设的我国最大自然人群队列之一“泰州队列”框架下系统设计的子队列——“泰州脑影像队列(Taizhou Imaging Study)”的建设及进展情况,包括该子队列的建设目标、研究设计、表型采集内容、可支撑的研究方向、已取得的初步研究成果、未来规划等等。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " span style=" text-indent: 2em " 据悉,队列研究(Cohort Study)是目前国际公认的慢性病病因研究的首选设计之一,也是表型组学信息和生物样本的重要来源。慢性病的发病机制复杂,由环境因素、生活方式和遗传变异等综合作用所致。基于前瞻性的研究设计,通过对大规模队列人群的健康状况进行持续追踪调查,利用人群的生物样本和表型组学数据,有望阐明慢性病发病机制,最终实现“精准医疗”。对我国居民来说,脑血管病与认知障碍已成为影响健康最重要的慢性病之一,特别是认知障碍尚缺乏有效的长期干预措施。以人群为基础的队列研究可为慢性病的干预和治疗措施研发究提供宝贵的资源和基础支撑。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2013年始,复旦大学联合多家单位在“泰州队列”人群中选择3个农村社区约1000名全部55-65岁的健康志愿者构建“泰州脑影像队列”,进行认知衰老和早期脑动脉硬化性疾病研究。“泰州脑影像队列”从流行病学和临床干预的角度设计,收集了上述研究对象的基线流行病学资料、多种类型生物样本及多组学数据,进行了详细的体格、认知功能、步态、嗅觉评估、高解析多模态脑核磁共振成像、颈动脉超声、动脉硬化、骨密度等方面的临床检测并定期随访调查,为脑血管病与认知障碍的危险因素、生物标志物、发病机制、干预和治疗措施等研究提供了珍贵的资源及系统的研究框架(详见图1)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/c6e1fffd-4091-4a05-be7e-56f1cb7be707.jpg" title=" 1111111111111111111.jpg" alt=" 1111111111111111111.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图1. 泰州脑影像队列研究设计框架图& nbsp /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 陈兴栋研究团队基于“泰州脑影像队列”构建了农村社区人群高解析脑核磁共振分析、宏基因组采集与分析、认知功能评估、步态与平衡功能评估等技术体系,近年来已开展了农村社区无症状脑小血管病(cerebral small vessel disease, CSVD)患病情况(Sci Rep& nbsp 2019)、危险因素(Cardiology& nbsp 2018 & nbsp J Atheroscler Thromb& nbsp 2020 & nbsp Ann Transl Med& nbsp 2020 & nbsp Aging& nbsp 2020a),及其与认知障碍(J Alzheimers Dis& nbsp 2019 & nbsp Neuroimage Clin, 2019)、步态异常(Aging& nbsp 2020b)等疾病表型的关联研究。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 例如,采用多模态高解析脑核磁共振成像技术,研究团队发现“泰州脑影像队列”所覆盖的中老年农村自然人群中,近半数(49.0%)志愿者检出无症状脑小血管病(Sci Rep& nbsp 2019 & nbsp Alzheimers Dement& nbsp 2020)。证实了老龄、高血压和糖尿病是该病的重要危险因素(Sci Rep& nbsp 2019)。而无症状脑小血管病是认知障碍发生的危险因素,特别是脑白质病变可使认知障碍的发生风险增加16%,且无症状脑小血管病负担越重痴呆发生的风险越高(J Alzheimers Dis& nbsp 2019 & nbsp Neuroimage Clin, 2019)。利用影像组学数据,研究者还发现深部脑微出血与脑萎缩相关,特别是丘脑体积的萎缩;而脑室扩大、丘脑体积萎缩等可增加认知障碍的发生风险,且深部微出血常合并丘脑白质纤维束完整性受损。这提示,丘脑萎缩及其连接受损可能在深部脑微出血引发认知障碍的过程中起重要作用(图2,Neuroimage Clin, 2019)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 355px " src=" https://img1.17img.cn/17img/images/202008/uepic/73f22f7b-f13d-429b-8cfe-e25e896aadf1.jpg" title=" 22222222222222222.png" alt=" 22222222222222222.png" width=" 600" height=" 355" border=" 0" vspace=" 0" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图2. 脑微出血引发认知障碍的可能机制 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 陈兴栋青年研究员表示,“泰州脑影像队列”为监测自然人群脑动脉硬化与认知衰老进程、评估生活方式、多组学特征改变等与疾病进展的关联、探索血管病变在认知障碍中的机制、开展临床干预实验等提供了资源支撑与研究现场。此外,“泰州脑影像队列”基于表型组学的系统思维设计,跨尺度、多维度的信息采集可支持全表型关联分析(phenome-wide association studies, PheWAS),从而促进精准医学的发展。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 据介绍,“泰州脑影像队列”建设是多团队、多学科共同合作努力的成果,参建单位包括复旦大学、复旦大学泰州健康科学研究院、瑞典卡罗林斯卡医学院、复旦大学附属华山医院、山东大学、泰州市人民医院、泰州市和泰兴市疾病预防控制中心等。队列建设获得了国家“精准医学”重点研发计划、国际科技合作专项项目、上海市市级科技重大专项“国际人类表型组计划(一期)”、江苏省重点研发计划等项目的支持。陈兴栋青年研究员为论文的通讯作者,人类表型组研究院蒋艳峰博士和华山医院崔梅副教授为共同第一作者,金力院士与瑞典卡罗林斯卡医学院叶为民教授为共同资深作者。该研究还得到了生命科学学院王久存教授、华山医院董强教授、山东大学齐鲁医院吕明教授、公共卫生学院张铁军教授、索晨青年副研究员、泰州市人民医院田为中副院长等专家学者的指导支持。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 背景知识: /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 中国最大规模自然人群队列之一“泰州队列” /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2007年,中国科学院院士、复旦大学生命科学学院金力教授与复旦大学公共卫生学院俞顺章教授领衔在江苏泰州启动了“泰州人群健康跟踪调查(Taizhou Longitudinal Study, 下称‘泰州队列’)”项目。“泰州队列”是以泰州市全市居民(500余万人)为框架人群建设的大型自然人群队列及生物资源库,建设目标及定位主要包括:1) 探索中国经济转型期重大慢性病流行病学队列研究需要解决的关键共性问题;2) 阐明若干环境和遗传因素与重大慢性病发生、发展、治疗和转归的关系;3) 为制定慢性病预防和控制对策,开发新的治疗和干预手段提供科学证据。经过十余年的建设和运维,“泰州队列”提升了大型队列标准化、规范化和系统化水平,加强了队列的科学管理、质量控制和资源共享,形成了系列技术规程和操作指南。队列也建立了实时、高效的随访系统,采集人群多时点的生物样本和健康数据。目前,“泰州队列”已形成了约20万人的社区健康人群队列,拥有150万份的生物样本及数据信息,是目前国内最大的自然人群队列之一。为了更好的推进队列建设、提高队列质量,并承载队列资源,在队列建设伊始复旦大学与泰州市政府中国医药城共同筹建了复旦大学泰州健康科学研究院,定位于大型前瞻性人群队列建设,同时致力于打造医学研究的公益性平台。“泰州队列”在建设过程中,围绕不同常见慢性病也发展了一批具有特色的子队列。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 原文链接: a href=" https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.12171" target=" _blank" span style=" text-indent: 2em " https://alz-journals.onlinelibrary.wiley.com/doi/full/10.1002/alz.12171 /span /a /p p br/ /p
  • 布鲁克分子表型组学研究工具推动新冠肺炎长期症状(Long COVID)和急性期后代谢异常的研究进展
    澳大利亚国家表型组学中心定量核磁共振和质谱分析平台,对急性新冠肺炎后期综合征(PACS)进行风险评估和纵向监测 澳大利亚珀斯,2021年5月20日报道。一项关于新冠肺炎表型和后续表型转换的临床研究合作发现,在急性新冠肺炎阶段三个月后,患者血液样本中的分子特征出现了短暂和持续的系统性变化。通过结合核磁共振(NMR)波谱和质谱(MS检测平台,对上述生化异常进行了非标记的定量检测,发现其与持续的新冠肺炎长期症状(Long COVID)有关。长期症状在急性感染后持续存在,即使是在感染6个月以后,也可能影响超过一半的新冠肺炎康复患者。默多克大学的澳大利亚国家表型组学中心(ANPC)与其他学术医疗中心合作,以布鲁克(Nasdaq: BRKR)为主要技术合作伙伴,近期宣布并发表了一系列关于患者血浆中急性疾病和急性新冠肺炎后期综合征的分子表型组学研究的开创性论文(原文链接)。 定量核磁共振和质谱检测的综合平台(仅供研究使用),揭示了急性新冠肺炎引起的代谢异常、代谢标志物与细胞因子的相互作用,以及脂蛋白与炎症标志物的相互作用。该平台能够创建表型转换标志物的多检测方法,这些标志物在疾病发展过程中发生显著变化。该分子表型组学检测方法可以衡量患者康复的程度,或新出现的慢性PACS风险,例如新发糖尿病或新发动脉粥样硬化,以及其它持续或重新出现的症状,包括慢性疲劳、"脑雾(brain fog)"和许多其它已被报道的新冠肺炎长期症状。对新冠肺炎非住院和轻症患者进行的急性期后随访研究表明,大多数的受访患者在三个月后并没有恢复到正常的健康或正常的生化状态。 PACS,也被称为“新冠肺炎长期症状(Long COVID)“持续存在,其特点是急性感染后出现持续的症状和功能性健康障碍。超过57%的受访患者在急性期后六个月内出现一种或多种症状,而基于核磁共振和质谱的表型转换检测方法揭示其中许多患者存在代谢异常。默多克大学健康未来研究所副校长兼ANPC主任,Jeremy Nicholson 教授解释说:“对血浆进行先进的核磁共振和质谱筛查为复杂的新冠肺炎系统模式提供了补充见解。在随访的病人中,我们发现他们有多种部分恢复表型,还有多种、不同的生化异常。我们还注意到,大多数随访的新冠肺炎患者无论是否仍有症状,都存在代谢异常,但有症状的患者在统计上更有可能出现生化异常”。 他继续说道:”这是一种极其危险的疾病,它不仅夺去了许多生命,而且正如我们所发现的那样,即使对于症状相对较轻的初始病例,新冠肺炎可能在未来很长一段时间内对部分病人产生严重的健康后果。“大多数患者在急性期后的三个月都有各种血液代谢异常,在六个月时有症状的和无症状的代谢情况仍有不同。研究人员发现,新冠肺炎患者血液中的血浆脂蛋白在感染期间发生了变化,更接近于通常在糖尿病和动脉硬化患者中发现的模式。一些异常情况在随访的病人中有所减少,并且是可逆的,而与肝脏、能量代谢和神经病变有关的标志物往往不能完全逆转。配备有布鲁克 Avance™ IVDr 核磁共振代谢分析系统的 ANPC 核磁共振实验室 最新的研究与ANPC早期研究结果一致,显示出新冠肺炎是一种具有多器官影响的系统性疾病。基于血浆的脂蛋白和代谢图谱上的表型转换而建立的分子表型生物标志物,可以对疾病的进展、严重程度和治疗进行评估。这突出了对康复患者进行PACS影响和长期健康风险的纵向研究的重要性。 ANPC设计了一种新型的弛豫和扩散编辑核磁共振方法,完善了信号的选择性,并因此发现了来自超分子团块的新型磷脂信号。Nicholson 教授补充道:"这是对复杂的血浆谱图进行动力学编辑,以提高诊断程序选择性的首个例子,并为其它核磁共振方法以分子的动力学和浓度为基础开发诊断程序打开了大门。”布鲁克应用、工业和临床部门的首席技术官 Manfred Spraul 博士评论道:”这些发现凸显了核磁共振和质谱分析的综合平台在PACS风险筛选方面的潜力。我们的研究方法对于个性化分子表型的表征是强健且可转移的,因而为理解新冠肺炎的长期影响提供了更好的途径。这些分子表型的见解有望支持更好的新冠肺炎急性期后的患者管理,以加快患者的康复速度,并减少医疗成本。”新冠肺炎表型转换和表型恢复的特征是由核磁共振和质谱联合分析的,它们为为心脏病、代谢性疾病、糖尿病、肾病、肝功能、神经系统影响和炎症的潜在生物标志物提供了补充见解。布鲁克正在欧洲开展对这套集成的核磁共振+质谱临床研究测定方法的验证,旨在开发PACS个性化风险筛查和纵向患者监测的临床诊断方法。ANPC 的 impact II QTOF-MS 实验室 位于西班牙 Bilbao的 CIC bioGUNE 首席研究员 Óscar Millet 博士评论道:”作为欧洲精准医疗的主要临床研究实验室之一,我们认为,借助于高性能核磁共振和质谱技术的PACS研究具有巨大潜力。我们是ANPC领导的国际新冠肺炎研究网络的活跃成员。使用ANPC和布鲁克开发的标准化操作程序和统一的研究方法,我们能够对西班牙患者队列进行PACS研究,并在分析和生物学水平上与ANPC的数据进行交叉验证。“ 这些研究使用集成在ANPC二级生物安全实验室的 Avance™ IVDr 核磁共振代谢分析系统,以及布鲁克和 CIC bioGUNE 体外诊断核磁共振研究(IVDr)技术方法进行。ANPC 还为其分子表征实验室配备了最先进的质谱仪,包括布鲁克Impact II和TimsTOF™ Pro QTOF-MS,以及一个solariX™ MRMS系统。 关于澳大利亚国家表型组学中心(ANPC)由默多克大学领导的澳大利亚国家表型组学中心(ANPC)将不仅在澳大利亚,而且在全球改变人们的寿命和生活质量。ANPC的工作几乎支持所有的生物科学领域。它跨越了传统的研究领域并培养了一种新的、更具协作性的科学研究方法。长远来看,ANPC希望搭建人类疾病研究的“全球地图集”,从而洞察将惠及全球每一个人的未来健康风险。作为南半球唯一的此类研究机构,ANPC汇集了5所西澳大利亚高校和前沿的健康医学研究机构。它还与国际表型组学中心网络相连接,在农业和环境科学也有着广泛应用。ANPC将珀斯和西澳大利亚定位为精密医学领域的国际领导者,并在疾病预测、诊断和治疗上实现重大飞跃。它也是默多克大学健康未来研究所的一部分。 关于 CIC bioGUNE位于西班牙Bizkaia科技园的bioGUNE研究中心是一家生物医学研究机构,专注于发展尖端结构、分子和细胞生物学相关研究,特别是疾病的分子基础研究,以用于开发新的诊断方法和先进疗法。CIC bioGUNE被认定为"Severo Ochoa卓越中心",这是西班牙对卓越中心的最高认可。CIC bioGUNE配备了最先进的代谢组学分析设备,包括两台布鲁克IVDr NMR波谱仪和一台Impact II质谱仪。CIC bioGUNE正在主导一个宏大的精准医疗项目(Akribea),以开发改进的个性化诊断方法。Akribea项目将在几年内针对巴斯克地区的部分人口(10.000名受试者)建立一个样本/数据库、附属的生物样本库以及数据挖掘能力。 关于布鲁克(Nasdaq: BRKR)布鲁克致力于支持科学家取得突破性的科学发现并开发新的应用以提升人类的生活质量。布鲁克的高性能科技仪器以及高价值分析和诊断解决方案,让科学家能够在分子、细胞和微观层面上探索生命和材料的奥秘。通过和用户的紧密合作,布鲁克致力于科技创新、提升生产力并实现用户的成功。我们的业务领域包括生命科学分子研究、应用和药物应用、显微镜和纳米分析、工业应用、细胞生物学、临床前成像、临床表型组学、蛋白质组学研究以及临床微生物学等。 参考文献1. Kimhofer T, Lodge S, Whiley L et al. Integrative Modeling of Quantitative Plasma Lipoprotein, Metabolic, and Amino Acid Data Reveals a Multiorgan Pathological Signature of SARS-CoV‑2 Infection, J Proteome Res 2020 Nov 6 19(11):4442-44542. Lodge S, Nitschke P, Kimhofer T, et al. NMR Spectroscopic Windows on the Systemic Effects of SARS-CoV-2 Infection on Plasma Lipoproteins and Metabolites in Relation to Circulating Cytokines. Journal of Proteome Research, 2020. 20 1382-1396. https://pubs.acs.org/doi/10.1021/acs.jproteome.0c008763. Lodge S, Nitschke P, Kimhofer T, et al. Diffusion- and Relaxation-Edited Proton NMR Spectroscopy of 2 Plasma Reveals a High-Fidelity Supramolecular BiomarkerSignature 3 of SARS-CoV‐2 Infection Analytical Chemistry, 2021. https://dx.doi.org/10.1021/acs.analchem.0c049524. Nathan G. Lawler et al. Systemic Perturbations in Amine and Kynurenine Metabolism Associated with Acute SARS-CoV-2 Infection and Inflammatory Cytokine Responses, Journal of Proteome Research (March 16, 2021). DOI: 10.1021/acs.jproteome.1c000525. Elaine Holmes, Julien Wist, et al. Incomplete Systemic Recovery and Metabolic Phenoreversion in Post-Acute-Phase Nonhospitalized COVID-19 Patients: Implications for Assessment of Post-Acute COVID-19 Syndrome, Journal of Proteome Research (May 19, 2021). https://pubs.acs.org/doi/10.1021/acs.jproteome.1c00224本研究由Spinnaker健康研究基金会、McCusker基金会和西澳大利亚州政府赞助。
  • PlantScreen植物表型成像分析技术全球快讯
    北京易科泰代理的PlantScreen植物表型分析平台在荷兰植物生态表型中心(NPEC)安装运行,这是该中心成立后安装运行的首套植物表型分析系统,整套系统由光适应室、叶绿素荧光成像单元、RGB 3D成像单元、3D激光扫描成像单元等组成,有轮子可以方便移动,被称为“可移动的高通量表型成像分析平台”。 美国橡树岭国家实验室(ORNL)生物能源创新中心设计安装大型PlantScreen植物表型分析平台,包括如下成像分析功能模块:1)RGB 3D成像分析单元,用于植物三维形态结构分析和颜色分析2)3D激光扫描成像分析单元,用于植物三维形体结构测量和3D建模3)脉冲调制(PAM)叶绿素荧光成像分析单元,用于植物生理性状及胁迫等成像分析4)高光谱成像分析单元,用于植物生化结构组成及代谢组学研究分析5)NIR近红外成像分析单元,用于植物水分分布成像分析6)高分辨率红外热成像分析单元,用于气孔导度动态分析该大型平台计划于2019年6月安装完毕并运行。 另一大型PlantScreen植物表型平台将于2019年上半年在匈牙利科学院生物科学研究中心(BRC)安装运行,该平台建设包括大型FytoScope植物生长室、紧凑型PlantScreen植物表型成像分析系统(安装在FytoScope内)、PlantScreen高通量根系表型成像分析系统(安装于FytoScope内)、大型模块式PlantScreen植物表型成像分析平台(安装在温室内)。该平台包括如下成像分析功能单元:1)根系与地上茎叶(root and shoot)表型分析单元,包括RGB 3D成像技术和3D激光扫描技术,对植物及其根系形态结构性状和生物量等进行高通量分析测量2)光合作用、胁迫耐受性、生理状态成像分析及GFP/YFP成像分析,采样脉冲调制(PAM)叶绿素荧光成像技术3)生化组成及代谢成像测量,采用VNIR高光谱成像分析技术4)气孔导度动态测量分析,采用高分辨率红外热成像技术 易科泰生态技术公司为您提供植物表型分析全面解决方案:?手持式或便携式叶绿素荧光测量与成像技术?手持式或便携式植物光谱与高光谱成像测量技术?手持式或便携式红外热成像技术 ?FluorCam叶绿素荧光成像全面解决方案?FluorCam多光谱荧光成像技术全面解决方案?FKM多光谱荧光动态显微成像技术方案——细胞亚细胞水平分析植物性状?Specim高光谱成像技术全面解决方案?PlantScreen高通量植物表型成像分析技术?叶绿素荧光成像、高光谱成像、红外热成像、多光谱成像、RGB成像综合集成技术方案
  • 2018泽泉植物生理生态及表型育种研讨会圆满成功
    2018年4月12-13日和4月19-20日,由上海泽泉科技股份有限公司主办的2018泽泉植物生理生态及表型育种研讨会分别在北京和成都胜利召开。来自北京林业大学、中科院植物所、中国农业大学、北京市植物园、天津师范大学、山西农业大学、河北农业大学、衡水学院、山西农科院、毕节市中药研究所、成都大学、成都理工大学、成都中医药大学、贵州省烟草科学研究院、黑龙江大学、辽宁师范大学、绵阳师范学院、南充市农科院、青海大学、山西省农科院、石河子大学、四川农业大学、四川省农科院、四川省原子能研究院、四川师范大学、西南科技大学、西南民族大学、云南农业大学、云南省热带作物科学研究所、中科院成都生物所、中国热带农业科学院品资所、中科院成都山地所等50多家科研单位和科技公司的近200位专家学者参加了此次研讨会。本次会议旨在更好地服务全国科研用户,促进植物表型育种、生理生态领域的研究,整合有效资源,同时促进相关研究设施和平台的建设。 北京会场,4月12-13日成都会场,4月19-20日来自中科院植物所、中科院地理所、中科院遗传所、中医科学院中药研究所、四川农业大学、四川省农科院、九宇金泰的多位专家学者围绕植物生理生态、植物表型、种子质量分析、农业物联网等内容作了主题报告,与参会嘉宾进行了深入的沟通和交流。 中科院植物所吴芳芳老师《近地面遥感在农林生态中的应用》中科院地理所寇亮老师《氮沉降对根系动态过程的影响》中医科学院中药研究所孙伟老师《基于质谱成像的分子可视化技术及其在植物组织空间代谢组学研究中的应用》中科院遗传所胡伟娟老师《Imaging-based phenotyping to dissect complex traits in crops》北京九宇金泰周旭珍老师《智能化数字植物平台》四川农业大学吴楠老师《Biomonitoring heavy metal contaminations by chlorophyllfluorescence parameters in mosses》四川省农业科学院王建辉老师《留树保鲜柑橘品质分子调控研究》德国WALZ公司Oliver Meyerhoff博士《WALZ devices and technique overview 2018》作为本次研讨会主办方,泽泉科技也展示了不俗的实力。泽泉科技技术专家带来的 “光合荧光联用技术及其应用”,“植物表型分析最新技术与应用介绍”,“花粉活性与种子质量分析解决方案”,“植物培养解决方案”,“植物叶片和根系功能属性研究:方法追溯”、“调制叶绿素荧光和P700的原理及应用”等报告内容,不仅专业,而且贴近实际,完美的解决了与会老师遇到的各种科研问题。 泽泉科技技术专家讲座本次研讨会第二天,北京会场和成都会场都安排了全天的分组讨论,以加强知识消化与沟通交流。"调制叶绿素荧光及P700的原理及应用","光合仪测量光合作用,光响应曲线,CO2响应曲线","根系监测系统使用技巧及根系分析软件操作演示"等3个讨论组分次同时进行,与会嘉宾根据自己的需求自行选择轮流参加。每个讨论组主讲人专业、详细的讲解获得了老师的交口称赞,许多老师表示研讨会这种新颖的交流模式对加深技术原理及应用的理解非常管用。 分组讨论现场2018泽泉植物生理生态及表型育种研讨会受到全国科研单位老师同学的大力支持,获得圆满成功,上海泽泉科技股份有限公司在此表示衷心的感谢!通过研讨会,泽泉科技进一步加强了与广大专家学者的合作,我们将一如既往的为广大客户提供优质的产品和完善的服务。
  • Cancers:当脑脊液研究邂逅外泌体表型分析技术
    脑脊液为无色透明的液体,存在于各脑室、蛛网膜下腔和脊髓中央管内,由脑室中的脉络丛产生,平均每日产生量大约500mL,终被吸收在蛛网膜颗粒中。脑脊液充当大脑的缓冲,为颅骨内的大脑提供基本的机械和免疫保护。近几年来,随着对脑脊液的研究愈发深入,脑脊液中的某些物质与肿瘤的治疗预后间的关系也不断被发现。其中,脑脊液分泌的外泌体已成为研究的热点。单个外泌体表型分析是将免疫学与光学结合的一种新技术[1]。该技术先利用免疫识别将特定的外泌体进行捕获分离,然后再对目标外泌体的表面标志物及内容物(如携带的蛋白质、RNA、DNA及细胞因子)进行定量分析,从而更加全面地反映外泌体的特性。该技术在短短两年时间,备受广大科研工作者的关注。本文收集了单个外泌体表型分析技术在脑脊液领域的相关应用,以供参考。 Cancers:脑脊液中的外泌体浓度和miR-21表达的变化可作为软脑膜转移病的生物标记物 软脑膜转移病(LM)是通过脑脊液发展到整个神经系统的晚期癌症的临床表现。研究显示LM患者的总生存期约为6-8周,除脑脊液内化学疗法外,没有明确的LM治疗方法,但由于低反应率和神经毒性,脑脊液内化学疗法的效果值得商榷。同时由于癌细胞量非常少,暂时还没有比较常规的生物标志物来监测其进展或治疗效果。Kyue-Yim Lee等检测了472名患者和对照组的脑脊液外泌体浓度以及miRNA-21的表达,结果表明外泌体浓度升高的患者的生存期比其他患者长。此外,在预后良好组miRNA-21表达升高。因此,外泌体浓度变化结合microRNA-21表达可能会作为监测LM患者颅内化疗疗效的生物标志物。值得注意的是,研究人员使用单个外泌体表型分析技术检测了脑脊液外泌体增加组和外泌体减少组化疗前后外泌体浓度变化,结果表明在脑脊液外泌体降低组中,经过颅内化疗后的每种外泌体浓度(CD9 / CD63 / CD81)均显著降低,而脑脊液外泌体增加组的外泌体浓度没有显著改变(图C和D)。Exoview检测脑脊液外泌体增加组和减少组的化疗前后外泌体的荧光强度和数量Cancers:脑脊液分泌的外泌体非编码RNA是潜在治疗软脑膜转移病的靶标 软脑膜转移病(LM)是一种致命的癌症并发症,其中癌症通过脑脊液扩散到大脑和脊髓周围的脑膜,因此脑脊液被认为是诊断LM细胞的新的生物标记物。研究显示microRNA-21被证实能在细胞间转移后维持基因调控功能,是癌症中有效的预后标志物和关键治疗靶标。Kyue-Yim Lee等通过无偏向多腺苷酸化smRNA文库的构建和NGS分析得到了来自LM患者脑脊液外泌体的全面smRNA谱,并验证了smRNA亚群偏向性表达的重要性。此外,作者使用了一种新的基于多功能慢病毒的microRNA-21监测系统和基于生理细胞的方法验证了microRNA-21的功能在与LM患者的脑脊液外泌体相关的smRNA中是重要的。其中,研究人员使用单个外泌体表型分析技术检测了来自LM患者和健康志愿者(HC)脑脊液外泌体,结果显示CD9 / CD63 / CD81抗体捕获的外泌体的荧光成像以及每个抗体结合外泌体的数量相似(图B),判断出外泌体存在于LM患者和HC的脑脊液中。Exoview检测LM患者和HS的脑脊液外泌体的荧光强度、数量在以上的研究中,ExoView系统以高的灵敏度和特异性地检测了脑脊液外泌体的含量并对其表面蛋白marker进行了准确表征,为脑脊液外泌体的研究提供了新的思路。外泌体对疾病的诊断和治疗显示出了深厚的潜力,具有高的研究价值。在今后的研究中,ExoView的表征,将帮助科学家更深入地了解各种疾病,助力疾病诊断和治疗方法的开发。全自动外泌体荧光检测分析系统(ExoViewR100)简介Nanoview所开发的全自动外泌体荧光检测分析系统(ExoView R100)采用单粒子干涉反射成像传感器(SP-IRIS)技术,是一款无需纯化的全自动的新型外泌体表征设备。该设备能够提供全方位的外泌体表征信息,包括颗粒大小、计数、表型与生物标志物共定位等,提供多层次和全面的外泌体测量解决方案。ExoView R100允许研究者直接分析特定群体的外泌体或外囊泡。通过ExoView芯片,客户能够直接多分析9个不同的样本,节省成本、时间,并减少纯化所带来的偏差。为了更好的服务您的科研工作,Quantum Design中国也建立了样机演示实验室,可以为您提供为专业的售前、销售、售后技术支持,欢迎老师您通过拨打电话010-85120280参观试用!参考文献:[1] Scherr, S. M., Daaboul, G. G., Trueb, J., Sevenler, D., Fawcett, H., Goldberg, B., ... & Ünlü, M. S. (2016). Real-time capture and visualization of individual viruses in complex media. ACS nano, 10(2), 2827-2833.[2] Lee, K. Y., Im J. H, Lin W.W...&Lee C.J.Nanoparticles in 472 Human Cerebrospinal Fluid: Changes in Extracellular Vesicle Concentration and miR-21 Expression as a Biomarker for Leptomeningeal Metastasis during pregnancy. Cancers, 2020, 12(10):2745.[3] Lee, K. Y., Seo, Y., Im, J. H., Rhim, J., Baek, W., Kim, S., ... & Kim, J. H. Molecular Signature of Extracellular Vesicular Small Non-Coding RNAs Derived from Cerebrospinal Fluid of Leptomeningeal Metastasis Patients: Functional Implication of miR-21 and Other Small RNAs in Cancer Malignancy. Cancers, 2021, 13(2), 209.
  • 泽泉科技2016植物生理生态及表型技术研讨会成功举办
    2016年11月21日至11月25日,由上海泽泉科技股份有限公司主办的“2016植物生理生态及表型技术研讨会”分别在北京和上海成功召开。来自全国各地90多家科研单位以及公司的近200位专家学者出席此次研讨会。本次会议旨在更好地服务全国的科研用户,为全国高校、研究所的科研工作提供技术保障,让植物科研领域研究人员更深入地了解最新的产品及测量技术。 北京会场 研讨会期间恰逢年度最强寒潮来袭,但严寒阻挡不了求知的欲望!北京上海两地会场,首日皆有百人与会。多位植物生理生态及表型研究领域的中外专家与参会嘉宾围绕叶绿素荧光测量技术、CID产品技术、气体交换光合仪的原理及实验技巧、植物表型测量技术等内容,进行了深入的沟通和交流。德国WALZ公司应用科学家Oliver Meyerhoff以“植物3D荧光成像技术介绍及样机演示”为题,专业地阐述了3D荧光成像技术的原理、使用技巧及最新应用。果实采后生理是目前研究热点之一,美国CID公司总裁Leonard Felix报告的“美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用”就引起了与会嘉宾的极大关注,由产品公司总裁亲自讲解不仅保证了报告的专业性、可靠性,而且更体现了泽泉科技对技术提供与售后保障的负责态度。上海慧算生物技术有限公司的张国斌博士带来的讲座“从分子到表型——高通量测序与表型关联分析”,则将与会嘉宾的目光从生理生态研究成功转移到了表型研究上,深入浅出的讲解,让基因研究与表型研究的关系变得更加直观明了。 北京会场参会嘉宾 作为东道主,泽泉科技的技术专家也实力不俗。本次研讨会上,泽泉科技技术专家带来的“CT等新技术在根系研究中的应用”,“种子选育技术”,“CONVIRON植物培养解决方案”,“调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术”,“LemnaTec最新植物表型测量技术”,“气体交换光合仪基本原理、实验技巧及日常维护”等报告内容,不仅专业,而且贴近实际,完美的解决了与会嘉宾遇到的各种科研问题。 上海会场 研讨会期间,泽泉科技在两个会场都设置了展台,不仅展示WALZ、LemnaTec、CID等公司的产品,还为与会嘉宾提供现场仪器体验、讲解与维护保养服务。不论新老客户都得其所需,疑问与困惑由公司技术与国外专程远道而来的专家讲解答疑,已购买的仪器也可以现场调试安装,泽泉科技完美的客户服务受到一致好评。 上海会场 研讨会的最后一项活动是亚洲第一个开放式高通量植物基因型-表型-育种平台——AgriPheno的参观考察。50多位老师在AgriPheno平台专业团队的带领下兴致勃勃地参观了德国LemnaTec植物表型平台(Scanalyzer 3D、HTS、PL)、植物生理生态测量平台、农业云物联网监测平台、荷兰Priva温室精准灌溉系统、专业的数据库平台、步入式培养箱和人工气候室等。一系列的参观项目引起了老师的强烈兴趣,原定的参观时间不得不一次次的延长。AgriPheno平台科研人员专业、详细的讲解获得了老师的交口称赞,许多老师表示平台这种服务模式先进化、人性化,对科研的推动具有不可或缺的价值! 与会嘉宾参观AgriPheno平台 上海会场参会嘉宾 本次研讨会受到全国科研单位老师同学的大力支持,会议获得圆满成功。通过本次植物生理生态及表型技术研讨会,泽泉科技进一步加强了与广大专家学者的合作,将一如既往的为广大客户提供优质的产品和完善的服务。
  • 2016植物生理生态及表型技术研讨会(上海)开幕 座无虚席
    2016年11月24日,继北京会场成功举办后,2016植物生理生态及表型技术研讨会移师上海举行。会议期间的上海正遭受年度最强寒潮的蹂躏,但严寒阻挡不了求知的欲望!上海会场参会嘉宾对新知识、新技术的热情不输北京,研讨会首日,100多人的会场即座无虚席。 与北京一样,上海会场的内容包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养等。多位植物生理生态及表型研究领域的中外专家与参会嘉宾现场面对面,专家讲嘉宾听,嘉宾问专家答,频繁的互动极大的活跃了会场交流的气氛。 为了让参会嘉宾对会上讲到的新技术及应用有更深的认识,泽泉科技在会场设置了展台,展示了WALZ公司、LemnaTec公司、CID公司等公司的产品,演示了部分产品的的操作和应用技巧,吸引了大量嘉宾的关注。 11月25日还将有7场报告,亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察也将在25日进行,精彩不容错过(请见后文研讨会日程)。泽泉科技携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,欢迎随时与我们交流。 上海会场会议日程:上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-9:45 Phyto-PAM-II 藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家)9:45-10:15 从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司)10:30-12:00 气体交换光合仪基本原理、实验技巧与日常维护 (主讲人:郭峰,上海泽泉科技股份有限公司) 午餐(青松城大酒店四楼 紫罗兰厅)13:00-14:00 超高通量园艺物流与 LemnaTec 最新植物表型测量技术介绍 (主讲人:李涛,上海泽泉科技股份有限公司)14:15-15:30 CID生理生态仪器介绍、实验技巧及日常维护 (主讲人:陈彦昌,上海泽泉科技股份有限公司)15:30-17:30 植物生理仪器使用现场交流,样机演示14:00-16:00 参观行程 AgriPheno™ 植物基因型-表型-育种平台参观注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 相关信息:?2016植物生理生态及表型技术研讨会开幕 首日百人参会?2016植物生理生态及表型技术研讨会第三轮通知
  • 使用Ghost cytometry进行高通量细胞表型的池式CRISPR筛选
    CRISPR基因编辑池式筛选是一种使用CRISPR基因编辑技术进行高通量基因筛选的方法。该方法灵活且高效,能够在单次实验中同时对成千上万的基因进行编辑,为研究者在生物医学研究领域提供了强大的工具。 CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats),是细菌或古菌的一种免疫机制,能够帮助它们抵抗病毒等外源遗传物质的入侵。在2012年,科学家发现了其在基因编辑上的潜力,他们利用CRISPR关联蛋白(Cas)能够被引导至任何DNA序列并精确剪切,实现了目标基因的定向编辑。 池式筛选,即在一个大的“池子”里,每个细胞携带一个不同的基因编辑工具-指导RNA(gRNA)。这种编辑工具可以引导Cas蛋白至特定的基因进行编辑。在CRISPR池式筛选中,研究者可以使用含有数以千计不同gRNA的质粒库对大量细胞进行转染,使每个细胞内接收到一个随机的gRNA。 传统的基因筛选方法通常会对单个基因或一小组基因进行逐个测试,这种做法比较耗时且效率较低。某些筛选方法,例如通过微生物菌落挑选或表达差异分析等,虽然可以同时处理多个样品,但是每个基因通常都需要单独处理和分析。而“池式筛选”方法则是一种高通量筛选技术。在一个“池子”中,每个细胞被赋予一个特定的基因编辑工具,比如CRISPR的gRNA,就形成了一个大规模基因编辑池。然后,通过对整个细胞池进行外部压力处理,可以一次性筛选出许多对生存或生长有影响的基因。这样就可以在单个实验中对全基因组进行筛选,大大提高了筛选效率。文章的介绍部分详述了基于CRISPR的池式筛选方法的几个优势,包括提高通量,降低成本,减少了不同筛选中出现的批次效应。在池式的表型筛选中,细胞和细胞内分子被标记为荧光染料、报告基因或荧光免疫抗体。因为需要量化明确定义的特征,所以基于荧光的标记由于其对目标分子的高特异性和高灵敏度具有明显的优势。例如,在荧光激活细胞分类(FACS)中,从时间信号中测量的代表性值,如总荧光,或从光学显微图像中评估的更详细的特性,如分子定位和形态参数。 然而,当适用的生物标志物或染色方法不可用,能否在用识别特征的图像分析评估细胞表型变得具有挑战性。为了解决这个挑战,基于机器学习的无标记高内容细胞表型分析成为一个有希望的替代方案。 在这项研究中,作者展示了一种用于大规模池化CRISPR筛选的多功能方法,包括荧光和无标记高内容细胞表型,利用基于荧光和无标签Ghost Cytometry(GC)技术的细胞分类器。 首先,细胞表达Cas9蛋白被用池化CRISPR逆转录病毒库转导以实现功能丧失基因集,并选出稳定病毒整合。随后,经化合物或试剂处理的池化敲除细胞库显示出多种表型。如有必要,可以进行额外的试验,例如免疫染色。在GC-based的细胞分选中,预训练的机器学习模型可以选择性地丰富显示目标高内容表型的细胞。最后,可以将筛选的细胞进行各种生物学试验,包括基因分析如基因组测序,蛋白质试验以及基于细胞的功能性分析。在标准CRISPR扰动筛选中,从筛选细胞中提取基因组DNA,并由PCR扩增sgRNA区域,然后利用商业上可得的下一代测序平台阅读,以确定导致目标表型的基因。当筛选活细胞时,单细胞RNA测序的转录组学分析和基于细胞的功能试验是广泛适用的。 所以,整体来看,这种方法结合了CRISPR基因编辑技术,无标签高内容筛选和机器学习,进一步提高了我们对基因功能和表型的理解,以及我们在生物医学研究中的筛选能力。
  • 2017泽泉植物表型育种及生理生态研讨会第一轮通知
    上海泽泉科技股份有限公司多年来秉承推进中国生态环境改善、农业兴国的理念,服务涉及植物表型育种,植物生理生态,水文水利,农业工程等领域的科研和技术支持。为更好地服务全国科研用户,促进植物表型育种、生理生态领域的研究,整合有效资源,同时促进相关研究设施和平台的建设,上海泽泉科技股份有限公司将于2017年12月7日至12月9日在上海举办2017泽泉植物表型育种及生理生态研讨会。 研讨会内容包括植物表型与分子育种、植物生理生态环境研究、农业物联网等。邀请的演讲嘉宾有国家重点高校、科研院所,植物遗传育种、基因表型等领域专家;世界先进植物生理生态、植物培养等仪器制造商科学家团队;泽泉公司资深科研技术团队。结合讲座内容,会议期间将安排实地参观考察,亚洲第一个开放式高通量植物基因型-表型-育种服务平台——AgriPheno™ 。另外,为了感谢广大客户长久以来的支持和合作,本次研讨会特别设置,生理生态设备的免费检测与保养服务。 上海泽泉科技股份有限公司现向各单位植物研究、农业建设领域科研人员发出诚挚邀请,欢迎您出席本次会议与参会者交流领域内的科研进展,期待您的光临。 一、主办单位:上海泽泉科技股份有限公司 二、会议时间与地点时间:2017年12月7日至12月9日,7日早上报道,7日全天研讨会,8日上午研讨会,下午参观,9日离会地点:上海青松城大酒店(黄山厅),上海市徐汇区肇嘉浜路777号 三、会议主题主题1. 植物表型与分子育种主题2. 植物生理生态环境研究主题3. 农业物联网 四、参会须知1、参会回执:请参会人员于10月31日前回传参会回执,我们将根据参会回执协助推荐住宿和安排参会事宜。2、参观考察回执:本次会议将安排于2017年12月8日下午前往位于上海浦东孙桥现代农业产业园区的AgriPheno™ 高通量植物基因型-表型-育种平台参观考察,如您需参加,请在参观考察回执中填写参观人数,我们会根据您的回执租赁车辆负责接送。 3、会议费用:参会免费。交通、食宿自理。会议期间提供工作午餐。 4、仪器维护:本次会议期间将提供生理生态仪器的免费检测与保养,请需要仪器检测的参会人员在参会回执中注明是否携带仪器参会并填写“仪器设备维修服务单”,与参会回执一同发至会务组;如不方便随身携带仪器参会,可提前将仪器寄至我司上海总部,邮寄前请填写并打印“仪器设备维修服务单”随仪器寄出,并请提前与会务组联系确认。仪器维护工作如无法在会议期间全部完成,我司将在仪器全面维护完成后将其寄回。如涉及更换配件,视仪器质保情况,可能收取配件成本费用。 五、会务组联系人徐静萍 六、会议日程12月7日8:00-8:30现场注册、报到8:30-12:00研讨会12:00-13:30午餐13:30-17:30研讨会12月8日9:00-12:00研讨会12:00-13:30午餐13:30-17:30高通量植物基因型-表型-育种服务平台AgriPheno™ 参观或者会议室生理生态设备的免费检测与保养12月9日离会
  • PlantScreen高通量植物表型系统火热安装中”系列报道(一)
    癸卯春节 安装启动! 2023年农历春节,各地沉浸在轻松欢快的节日氛围,而在中国农科院作科所的温室里,中国农科院的研究人员、PSI公司和北京易科泰公司的工程师投身于PlantScreen高通量植物表型系统——作物高光效高效筛查与鉴定表型平台的安装工作中,现场一片火热繁忙的景象。 从正月的初三到十四,短短的两周时间里,PlantScreen高通量植物表型系统平地而起。庞大的规模、现代感十足的外观、火热的安装场面,吸引假期期间仍在温室里辛苦劳作的研究人员纷纷驻足观看,询问安装进度,热切表达了希望未来能够使用这套系统开展实验的愿望。 PlantScreen高通量植物表型系统由国际知名的表型系统制造厂商PSI研发,整合了LED植物智能培养、自动化植物传送、多种光学成像传感器(FluorCam叶绿素荧光成像、多光谱荧光成像、可见光近红外及短波红外高光谱成像、植物热成像、RGB真彩3D成像、激光雷达3D成像、根系成像等)、自动条码识别管理、自动称重与浇灌、电脑自动控制及数据处理等多项先进技术,能够以最优化的方式对大量植物样品的生理状态、生化组分、形态结构的进行自动成像分析。 系统有效解决了传统植物表型分析技术中存在的精度低、费时费力、适用性差等问题,具备高效准确的特点,并可实现全生育期的无损动态监测;被广泛用于研究不同环境因子及基因型对植物生长、产量、质量的影响,揭示可控环境下基因组与环境等因素互作进而调控作物表型的分子机理。截止2020年底,PlantScreen在全球累积销售/装机量超过50台。主要用户有荷兰瓦格宁根大学、德国莱布尼茨植物遗传和作物研究所、芬兰赫尔辛基大学、澳大利亚国立大学等全球知名的农业学府和顶级研究机构(下图中的PlantScreen系统于2020年安装在都柏林大学),也不乏杜邦先锋、孟山都、巴斯夫等农业企业巨头。 作为PSI公司的合作伙伴和大中华区技术服务中心,成立20年来北京易科泰生态技术有限公司致力于精密、高端植物和藻类实验设备和技术的引进推广及自主研发,迄今为止已为中科院植物所、中国农科院、中科院水生所、中国农业大学、西北农林科技大学等国内知名农业院校和机构提供了大量仪器设备及技术支持。此次安装的PlantScreen高通量植物表型系统通量为4000株种苗/200株成体,配备FluorCam叶绿素荧光成像、RGB真彩3D成像、激光雷达3D成像、植物热成像和高光谱成像等传感器,具备自动称重与浇灌功能,将主要用于水稻等作物高光效高效筛查与鉴定、作物高光效机理研究及新材料创制。 立春已过,农耕将始。今年春天,除了位于北京的中国农科院生物技术研究所,中国水稻研究所(杭州)和东北地理与农业生态研究所(长春)也正在或者即将紧张有序地进行PlantScreen系统的安装。高通量作物表型监测被称为育种的加速器。毫无疑问,PlantScreen高通量植物表型系统的安装运行能够帮助中国作物遗传育种学家深入剖析与产量和胁迫耐受性相关的遗传学数量性状,必将为具有国家战略意义的分子设计育种和种质资源开发应用提供强有力的技术支撑。截止发稿前,农科院生物所PlantScreen系统的安装工作已基本完成,即将进入调试和试运行环节,并将合作举办培训研讨。
  • 2016植物生理生态及表型技术研讨会主讲人公布(第三轮通知 )
    尊敬的老师: 您好! 为更好地服务全国的科研用户,为全国高校、研究所的科研工作提供技术保障,为植物科研领域研究人员更深入地了解最新的产品及测量技术,上海泽泉科技股份有限公司将于2016年11月21日至11月25日分别在北京和上海两地举办2016植物生理生态及表型技术研讨会。会议内容包括叶绿素荧光测量技术的深入培训及现场演示、CID系列设备的介绍与演示、气体交换光合仪的原理及实验技巧、植物表型测量技术介绍、生理生态设备的免费检测与保养以及亚洲第一个开放式植物高通量表型平台——AgriPheno™ 的介绍和参观考察等。 现向全国高校、研究所科研人员发出诚挚邀请,期待您的光临!上海泽泉科技股份有限公司携手WALZ公司、LemnaTec公司、CID公司等,竭诚为您服务,期待与您的交流与合作。 此致 敬礼! 上海泽泉科技股份有限公司 2016年11月04日 北京:2016年11月21日至11月22日 地点:北京市海淀区增光路55号北京紫玉饭店 上海:2016年11月24日至11月25日 地点:上海市徐汇区肇嘉浜路777号青松城大酒店 ? 强强联合的魅力——WALZ不同生理测量技术的联用 ? CID生理生态测量技术的介绍和应用 ? 土壤测量技术解决方案 ? 调制叶绿素荧光和P700测量技术原理、PAM实验技巧及样机操作演示 ? 高通量植物表型技术介绍 ? 先进种子选育技术介绍 ? 气体交换光合仪原理、实验技巧、日常维护及样机操作演示 ? 根系测量技术解决方案 ? 藻类光合测量的核武器——Phyto-PAM-II介绍 ? AgriPheno™ 高通量植物基因型-表型-育种平台介绍及参观考察 北京紫玉饭店(玉澜楼二层多功能厅)(11月21日至11月22日)11月21日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示(主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店正门) 午餐(紫玉饭店一层自助餐厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术(主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(紫玉饭店一层自助餐厅)11月22日9:00-10:00 Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00 LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型) (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)11:10-12:00 CID生理生态仪器介绍、实验技巧及日常维护(主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究) 午餐(紫玉饭店一层自助餐厅)13:30-14:00 超高通量园艺物流与植物表型系统 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 从分子到表型——高通量测序与表型关联分析(主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50 气体交换光合仪基本原理、实验技巧及日常维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 光合仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)11月23日 泽泉科技北京分公司办公地址现场答疑及仪器免费维护上海青松城大酒店(劲松厅)(11月24日至11月25日)11月24日8:00-9:00 现场注册、报到9:00-9:50 植物3D荧光成像技术介绍及样机演示 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:00-10:50 美国CID及Felix仪器在植物生理生态及果实采后生理研究中的应用 (主讲人:Leonard Felix,美国CID公司总裁)11:00-12:00 CT等新技术在根系研究中的应用 (主讲人:袁媛,上海泽泉科技种业事业部项目经理 ,擅长领域:植物生理生态及表型) 合影(酒店一楼6号门) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00 种子选育技术介绍 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 CONVIRON植物培养解决方案介绍 (主讲人:吕中贤,上海泽泉科技项目经理 ,擅长领域:植物生理生态及表型)14:50-15:50 调制叶绿素荧光和P700测量技术原理及Dual/KLAS-NIR光系统I供体侧、受体侧活性同步测量新技术 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 PAM叶绿素荧光仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郑宝刚,上海泽泉科技技术部主管,擅长领域:植物光合作用测量,生理生态仪器使用)18:30-20:30 晚餐(青松城大酒店四楼 牡丹厅)11月25日9:00-10:00 Phyto-PAM-II藻类分类叶绿素荧光测量技术原理与应用 (主讲人:Oliver Meyerhoff,德国WALZ公司应用科学家,擅长领域:植物藻类光合作用及电子电路)10:10-11:00 LemnaTec最新植物表型测量技术介绍(实验室、温室及田间型)(主讲人:张弘,上海泽泉科技应用科学家,擅长领域:植物表型测量,分子生物学)11:10-12:00 CID生理生态仪器介绍、实验技巧及日常维护 (主讲人:陈彦昌,上海泽泉科技CID技术总监,擅长领域:CID仪器应用及维护,植物根系研究) 午餐(青松城大酒店四楼 牡丹厅)13:30-14:00超高通量园艺物流与植物表型系统 (主讲人:李涛,上海泽泉科技种业部项目主管,擅长领域:分子育种,植物表型测量)14:10-14:40 从分子到表型——高通量测序与表型关联分析 (主讲人:张国斌博士,上海慧算生物技术有限公司,擅长领域:生物信息学)14:50-15:50 气体交换光合仪基本原理、实验技巧及日常维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)15:50-16:10 讨论、休息16:10-17:30 光合仪操作演示、数据分析示例及生理生态设备现场维护 (主讲人:郭峰,上海泽泉科技技术部经理,擅长领域:植物光合作用测量,生理生态仪器使用)14:00-16:00 参观行程 AgriPheno™ 植物基因型-表型-育种平台参观 注:当天下午13:30有车辆于青松城大酒店正门口出发前往浦东孙桥,返回青松城大酒店途中只停靠2号线广兰路站。有需要维修和技术答疑的用户可留在酒店会场。 会议注册费全免,交通、食宿、旅游费用自理。会议期间免费提供工作午餐及晚餐。参会即可获赠价值9998元的Agripheno表型测试包。 1、参会方式: 请参会人员于2016年11月20日前将参会回执(附件1)通过电子邮件发送至邮箱:qinglu.wei@zealquest.com,或传真发至021-32555117。我们将根据参会回执协助推荐住宿和安排参会事宜;扫描以下二维码,提交信息直接参会。参会二维码 2、参观考察回执:本次会议将安排于2016年11月25日下午前往位于上海浦东孙桥现代农业产业园区的AgriPheno™ 高通量植物基因型-表型-育种平台参观考察,本次考察仅限于上海会场参会人员,如您需参加,请前往上海会场参会,并在参观考察回执中填写参观人数,我们会根据您的回执租赁车辆负责接送。 3、仪器维护:本次会议期间将提供生理生态仪器的免费检测与保养,请需要仪器检测的参会人员在参会回执中注明是否携带仪器参会并填写“仪器设备维修服务单”(附件2),与参会回执一同发至会务组;如不方便随身携带仪器参会,可提前将仪器寄至我司上海总部或北京分公司,邮寄前请填写并打印“仪器设备维修服务单”随仪器寄出,并请提前与会务组联系确认。仪器维护工作如无法在会议期间全部完成,我司将在仪器全面维护完成后将其寄回。如涉及更换配件,视仪器质保情况,可能收取配件成本费用。 美国CID德国LemnaTec 德国WALZ 加拿大Conviron 北京会场会务联系人 李俊艳:tracy.li@zealquest.com 电话:010-88824075转618 传真:010-88824075 仪器邮寄地址:北京市海淀区北三环西路43号青云当代大厦1907室(100086) 上海会场会务联系人 魏庆璐:qinglu.wei@zealquest.com 电话:021-32555118转8048 传真:021-32555117 仪器邮寄地址:上海市普陀区金沙江路1038号华东师大科技园2号楼8层(200062) 附件1:2016植物生理生态及表型技术研讨会参会回执.doc 附件2:2016植物生理生态及表型技术研讨会维修服务单.doc
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制