当前位置: 仪器信息网 > 行业主题 > >

表达谱

仪器信息网表达谱专题为您整合表达谱相关的最新文章,在表达谱专题,您不仅可以免费浏览表达谱的资讯, 同时您还可以浏览表达谱的相关资料、解决方案,参与社区表达谱话题讨论。

表达谱相关的论坛

  • 文字能把NMR图谱现象表达清楚吗?

    靠文字表达图谱的形状总是不太好,不然为什么有图谱学呢?NMR信号千变万化,文字是难以表达清楚的.所以讨论NMR图谱问题还是把图谱贴出来.

  • 中国葡萄酒的全新表达

    中国葡萄酒的全新表达国际葡萄酒(中国)大奖赛(IWGC)于2019年首办,在经过连续四年的成功举办后,2023年开启全新旅程,以“一瓶好葡萄酒的中国标准”作为“寻英”根基,秉承更为“公平、公正、公开”的大奖赛评选规格,遵循“国际水准、中国特色”的大赛定位,使得大奖赛在历年举办过程中风采卓然,这也为大奖赛获得了广泛的企业支持和行业肯定。

  • Nature:首次构建出人类大脑三维基因表达图谱

    一个国际研究小组利用来自两名男性捐献的全部大脑和来自第三名男性的单个脑半球构建出高分辨率的人类大脑三维基因表达图谱。相关研究结果于2012年9月19日在线刊登在《自然》期刊上。在美国西雅图市艾伦脑科学研究所(Allen Institute for Brain Science)研究员Michael Hawrylycz的领导下,研究人员将来自大约900个精确切割的大脑切片的转录数据---利用基因芯片技术收集到的---组装在一起,然后将转录数据与在切片之前对捐献的大脑的核磁共振成像扫描结果进行叠加,从而构建出人大脑三维基因表达图谱。这些图谱是免费向公众提供的,详情可参见网址:http://www.brain-map.org/,而且能够有助于科学家们测试关于大脑功能、疾病和进化方面的假设。艾伦脑科学研究所神经科学家Ed Lein说,“这些数据本身并不提供理解大脑如何工作方面的所有答案。然而,我们希望它们促进人类大脑研究以便理解大脑的复杂化学性质和细胞组成。”比如,研究特定疾病的科学家们能够利用成像技术,如功能性核磁共振成像,来评估相关的大脑区域,然后查询这些新的图谱来鉴定在这些区域表达的基因,而这可以通过一种简单的颜色编码的手册来显示基因表达的相对水平来实现。当前,研究人员还是依赖于对小鼠大脑的零碎研究。

  • 原核表达的心得

    最近2个月都在做原核表达,刚开始什么都不会,连SDS-PAGE都跑成模糊的一片,其中的辛酸只有自己知道,现在实验慢慢上正轨了,自己也积累了一些经验。很怀恋之前探索的那段时光,现在把我做蛋白表达的过程和一些问题写出来,希望能够帮助开始做蛋白表达的人少走一些弯路。1、表达载体的构建构建表达载体是比较简单的,不过也是需要对你的蛋白还有所用的载体有一个详细的认识,对于比较大的蛋白最好选用能够助溶的标签,但是也不是固定的,比如我的蛋白有65-70KD,我也用的也是HIS,上清也是有少量表达。最关键的我觉得是ORF框不要发生移码突变,比较保险的做法可以先做电子克隆预测,推荐accelrys gene,功能很强大,非常好用。转化我是分两步走的,连接产物先转化DH5α再提质粒转化BL21,虽然比较繁琐但是比较保险,一般不会出现什么问题。构建载体没有出现什么大问题,所以也没有什么经验跟你们探讨,我从引物合成到测序完成,边做边玩2周搞定。2、原核表达原核表达遇到的问题就很多了,先贴张最开始跑的图(我都不好意思拿出来),所以说开始实验做得不好没有关系,没有人天生就会,都要靠后天慢慢学习。现在开始正题,开始,图方便,晚上接菌(接的很少,5μl接到10ml中),第二天加1mM IPTG 37 °诱导3小时,SDS-PAGE图如下:(3#和5#菌是我两个测序正确的单菌落,I是有加IPTG诱导) http://img.dxycdn.com/trademd/upload/userfiles/image/2013/08/A1375685677_small.jpg实验组和对照组蛋白表达没有差异。后来拿过夜的菌液去测OD,呵呵,2点多,果断重新接菌,我一般按照1:100(园子的以前的大神说的)取过夜的菌液加到新的LB-KANA培养基,一般摇个3小时,OD=0.8,再去跑SDS-PAGE,图如下:(我的目的蛋白是65KD,红色的marker是70KD) http://img.dxycdn.com/trademd/upload/userfiles/image/2013/08/A1375685678_small.jpg 结果显然意见,信心十足往下做,这一次还是图方便,一般接菌时为了能快点让菌的OD达到0.8,我把转数提高到了220rpm,我比较懒,既然是已经调了220rpm了,诱导的时候也就索性还是220rpm,还是37°3h。这次我还顺便做了IPTG梯度,单位是mM,SDS-PAGE图如下: http://img.dxycdn.com/trademd/upload/userfiles/image/2013/08/A1375685680_small.jpg结果很郁闷,之前虽然目的蛋白也是很少,但是至少还是和上面的条带差不多大,但是这次,小的可怜(红色箭头标出)0.2mM的IPTG还不足以诱导蛋白表达,但是IPTG的浓度对蛋白表达也没上面影响。什么原因,什么原因呢,隐约记得上次蛋白量比较多好像是160rpm摇的,马上换转数,SDS-PAGE图如下: http://img.dxycdn.com/trademd/upload/userfiles/image/2013/08/A1375685681_small.jpg蛋白大小又回到原来大小了,原来转数真的影响表达啊,没有加IPTG的菌体自身蛋白比较多,说明IPTG对菌体还是有影响的,IPTG的浓度真的没有多大关系,这次0.2mM的也诱导出来了。蛋白怎么表达这么少呢,是不是诱导时间太少,我又做了6h诱导时间,结果目的蛋白没有多大变化,反而菌体蛋白增加了。那低温诱导过夜呢,试试看,我做了2个温度,16和25,均诱导过夜,160rpm,SDS-PAGE如下: http://img.dxycdn.com/trademd/upload/userfiles/image/2013/08/A1375685683_small.jpg很开心,还是先验证是目的蛋白再往下做,本来想做质谱,偏偏实验室的质谱坏了,刚好在园里看到有我这个目的蛋白的鼠单抗,哈哈,老天对我真好,果断试用,WB图如下: http://img.dxycdn.com/trademd/upload/userfiles/image/2013/08/A1375685685_small.jpg 接下来看看蛋白在上清还是沉淀表达,我是按照分子克隆指南上面的做法,100ml菌液16度和25度(感觉上次16和25差不多,所以还是做2个温度)过夜诱导,加4ml的结合缓冲液后,加溶菌酶到终浓度为1mg/ml,4°摇床20min,加tritonX-100至终浓度为1%,4°摇床20min,5000g离心20min,沉淀和上清分别上样,图如下: http://img.dxycdn.com/trademd/upload/userfiles/image/2013/08/A1375685687_small.jpg虽然上清只有一点,但是我已经很开心,今天时间比较晚,没有超声,明天超声后再去跑,感觉应该上清的目的蛋白会更多一点。等我图片出来马上跟大家分享哈。

  • 药典关于色谱专属性杂质D的表达

    药典关于色谱专属性杂质D的表达实在是看不懂:我用的是[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]1杂质:是对照物自带还是对照物分解的 2杂质含量计算:不知道杂质是什么,怎么计算杂质含量。用对照物和标样的积分对比?3:专属性杂质D在结论中怎么描述?

  • 原核表达与真核表达载体有什么区别

    区别呢 原核表达载体 在原核生物表达 ,真核的在真核表达 很像废话 呵呵呵呵。。。。 就是 原核载体可以将真核基因表达,但是表达出来的蛋白是没有活性的,因为缺少翻译后修饰系统。。。真核的表达载体呢 由于比较大 不适合大量快速扩增,所以要在其载体上构建可以在原核生物 如大肠杆菌中复制的所需的复制原件 。。。。综上 在应用的时候 要构建 穿梭质粒 可以穿梭于 原核和 真核 呵呵 还有就是 原核表达载体的基本元件和真核的有不同的地方 。。。。。总觉得不够正确答案 。。。。。有些人缘的蛋白在原核里没有蛋白翻译后修饰,表达后没有活性,这时候就得在真核里表达了原核表达做抗体,真核表达做功能研究。(1)原核载体,将克隆化基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。这种方法在蛋白纯化、定位及功能分析等方面都有应用。大肠杆菌用于表达重组蛋白有以下特点:易于生长和控制;用于细菌培养的材料不及哺乳动物细胞系统的材料昂贵;有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是,在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。 你可以就其在蛋白纯化等方面的作用进一步进行说明。(2)真核载体,要表达真核生物的蛋白质,采用真核表达系统自然应比原核系统优越,常用的酵母、昆虫、动物和哺乳类细胞等表达系统。真核表达载体的应用比较广,通过真核表达,可以研究某一基因的功能,比如把载有目标基因的载体导入到特定的哺乳动物细胞中以后,如果该基因发挥着某种功能,则可以通过其引起细胞的变化来说明问题等等。你可以搜索一下,这方面还是很多的。

  • 重组蛋白表达四大系统优缺点及推荐表达介绍

    [font=宋体][font=宋体]重组蛋白是利用[/font][font=Calibri]DNA(RNA)[/font][font=宋体]重组技术表达的蛋白重组。蛋白表达是将目的基因通过电转化或者热激等手段转入合适的宿主中,利用宿主的特定生理、生化和遗传特点进行目标蛋白大量表达及纯化的生物技术。目前,较为主流的表达宿主有大肠杆菌([/font][font=Calibri]E.coli[/font][font=宋体])、毕赤酵母([/font][font=Calibri]P.pastoris[/font][font=宋体])、昆虫[/font][font=Calibri]-[/font][font=宋体]杆状病毒([/font][font=Calibri]Bac-to-Bac[/font][font=宋体]系统)以及哺乳动物细胞系([/font][font=Calibri]CHO[/font][font=宋体]、[/font][font=Calibri]HEK293[/font][font=宋体])等。鉴于目标蛋白的应用场景和自身理化性质的差异,选择合适的表达宿主尤为关键。[/font][/font][font=宋体] [/font][b][font=宋体][font=宋体]大肠杆菌([/font][font=Calibri]E.coli[/font][font=宋体]):[/font][/font][/b][font=宋体] [/font][font=宋体]表达系统:原核[/font][font=宋体]优势:经济、快速、高产量、应用广泛[/font][font=宋体]劣势:包涵体;无翻译后修饰;大分子蛋白表达困难[/font][font=宋体]推荐表达:细菌类蛋白;抗原类蛋白;细胞因子;酶类[/font][font=宋体] [/font][b][font=宋体]酵母细胞:[/font][/b][font=宋体]表达系统:真核[/font][font=宋体]优势:经济、快速、高产量;部分翻译修饰[/font][font=宋体]劣势:非人源糖基化;高甘露糖修饰[/font][font=宋体]推荐表达:细胞因子;少分子量蛋白;酶类[/font][font=宋体] [/font][b][font=宋体][font=宋体]杆状病毒[/font][font=Calibri]-[/font][font=宋体]昆虫细胞:[/font][/font][/b][font=宋体]表达系统:真核[/font][font=宋体]优势:基因容量大;可溶蛋白;适合毒性蛋白;类似哺乳动物系统;翻译后修饰[/font][font=宋体]劣势:周期长;成本高;缺少部分糖基化[/font][font=宋体]推荐表达:细胞质蛋白;毒性蛋白;跨膜蛋白;分泌蛋白;激酶;[/font][font=宋体] [/font][b][font=宋体]哺乳动物细胞[/font][font=宋体]表达[/font][font=宋体]:[/font][/b][font=宋体]表达系统:真核[/font][font=宋体]优势:可溶蛋白;更低内毒素;更好的活性;更好的翻译后修饰;可瞬时转染与稳定转染表达[/font][font=宋体]劣势:周期长;成本高;[/font][font=宋体]推荐表达:分泌蛋白;跨膜蛋白;重组抗体;抗体等[/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州拥有原核细胞表达平台、哺乳动物瞬时表达平台、杆状病毒[/font][font=Calibri]-[/font][font=宋体]昆虫蛋白表达平台,同时提供[url=https://cn.sinobiological.com/services/e-coli-protein-expression-service][b]原核([/b][/url][/font][font=Calibri][url=https://cn.sinobiological.com/services/e-coli-protein-expression-service][b]E. coli[/b][/url][/font][font=宋体][url=https://cn.sinobiological.com/services/e-coli-protein-expression-service][b])蛋白表达服务[/b][/url]……可实现重组蛋白和重组抗体的高通量和高产量表达,可为客户提供[url=https://cn.sinobiological.com/services/recombinant-antibody-production-service][b]重组表达服务[/b][/url]及一站式定制需求。详情可以关注 大肠杆菌蛋白表达平台:[/font][font=Calibri]https://cn.sinobiological.com/services/platform/e-coli-protein-expression[/font][/font][font=宋体] [/font][font=宋体] [/font]

  • 大肠杆菌表达系统和酵母表达系统:各自的优缺点

    [font=宋体]蛋白表达是指用模式生物如细菌、酵母、动物细胞或者植物细胞表达外源基因蛋白的一种分子生物学技术。蛋白表达系统是指由宿主、外源基因、载体和辅助成分组成的体系,通过这个体系可以实现外源基因在宿主中表达的目的。[/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、宿主。表达蛋白的生物体。可以为细菌、酵母、植物细胞、动物细胞等。由于各种生物的特性不同,适合表达蛋白的种类也不相同。[/font][/font][font=宋体][font=Calibri]2[/font][font=宋体]、载体。载体的种类与宿主相匹配。根据宿主不同,分为原核(细菌)表达载体、酵母表达载体、植物表达载体、哺乳动物表达载体、昆虫表达载体等。载体中含有外源基因片段。通过载体介导,外源基因可以在宿主中表达。[/font][/font][font=宋体][font=Calibri]3[/font][font=宋体]、辅助成分。有的表达系统中还包括了协助载体进入宿主的辅助成分。比如昆虫[/font][font=Calibri]-[/font][font=宋体]杆状病毒表达体系中的杆状病毒。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][b]一、大肠杆菌表达系统[/b][/font][font=宋体] [/font][font=宋体][font=宋体]在各种表达系统中,最早被采用进行研究的是大肠杆菌表达系统,也是目前掌握最为成熟的表达系统。大肠杆菌表达系统以其细胞繁殖快速产量高、[/font][font=Calibri]IPTG[/font][font=宋体]诱导表达相对简便等优点成为生产重组蛋白的最常用的系统。目前最常用的大肠杆菌表达系统为[/font][font=Calibri]BL21-PET[/font][font=宋体]表达系统,此系统目前已经商业化,并且普遍应用于各大实验室和生物技术公司。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]对于表达不同的蛋白,需要采用不同的载体。目前已知的大肠杆菌的表达载体可分为非融合型表达载体和融合型表达载体两种。非融合表达是将外源基因插到表达载体强启动子和有效核糖体结合位点序列下游,以外源基因[/font][font=Calibri]mRNA[/font][font=宋体]的[/font][font=Calibri]AUG[/font][font=宋体]为起始翻译,表达产物在序列上与天然的目的蛋白一致。融合表达是将目的蛋白或多肽与另一个蛋白质或多肽片段的[/font][font=Calibri]DNA[/font][font=宋体]序列融合并在菌体内表达。融合型表达的载体包括分泌表达载体、带纯化标签的表达载体、表面呈现表达载体、带伴侣的表达载体。[/font][/font][font=宋体] [/font][font=宋体]优点:遗传背景清楚;繁殖快、成本低、抗污染能力强;表达量高、表达产物分离纯化相对简单、稳定性好;商品化的载体和菌株种类非常齐全、适用范围广等。[/font][font=宋体] [/font][font=宋体]缺点:[/font][font=宋体][font=宋体]① 没有真核转录后加工的功能,不能进行[/font][font=Calibri]mRNA[/font][font=宋体]的剪接,所以只能表达[/font][font=Calibri]cDNA[/font][font=宋体]而不能表达真核的基因组基因;[/font][/font][font=宋体]② 没有真核翻译后加工的功能,表达产生的蛋白质,不能进行糖基化、磷酸化等修饰,难以形成正确的二硫键配对和空间构像折叠,因而产生的蛋白质常没有足够的生物学活性;[/font][font=宋体][font=宋体]③ 表达的蛋白质经常是不溶的,会在细菌内聚集成包涵体,尤其当表达目的蛋白量超过细菌体总蛋白量[/font][font=Calibri]10%[/font][font=宋体]时,就很容易形成包涵体。生成包涵体的原因可能有是蛋白质合成快速太快,多肽链相互缠绕,缺乏使多肽链正确折叠的因素,导致疏水基因外露等。细菌裂解后,包涵体的离心后的沉淀中,虽然有利于目的蛋白的初步纯化,但无生物活性的不溶性蛋白,要经过复性,使其重新散开、重新折叠成具有天然蛋白构象和良好生物活性的蛋白质,常常是一件很困难的事情。也可以设计载体使大肠杆菌分泌表达出可溶性目的蛋白,但表达量往往不高。[/font][/font][font=宋体][font=宋体]④ 可能会产生一些致热源[/font][font=Calibri]([/font][font=宋体]内毒素[/font][font=Calibri])[/font][font=宋体],并且大肠杆菌本身含有内毒素和有毒蛋白,可能混杂在终产物里。[/font][/font][font=宋体] [/font][font=宋体][b]二、酵母表达系统[/b][/font][font=宋体] [/font][font=宋体]酵母表达系统作为一种后起的外源蛋白表达系统,由于兼具原核以及真核表达系统的优点,正在基因工程领域中得到日益广泛的应用,应用此系统可高水平表达蛋白,且具有翻译后修饰功能,故被认可为一种表达大规模蛋白的强有力的工具。[/font][font=宋体] [/font][font=宋体][font=宋体]常用的酵母表达系统有酿酒酵母表达系统和甲醇营养型酵母表达系统。甲醇酵母表达系统是目前应用最广泛的酵母表达系统。目前甲醇酵母主要有汉森酵母属[/font][font=Calibri](Hansenula)[/font][font=宋体],毕赤酵母属[/font][font=Calibri](Pichia)[/font][font=宋体],球拟酵母属[/font][font=Calibri](Torulopsis)[/font][font=宋体]等,并以毕赤酵母属应用最多。[/font][/font][font=宋体] [/font][font=宋体]优点[/font][font=宋体][font=Calibri]1. [/font][font=宋体]生长方面:酵母是一种单细胞低等真核生物,培养条件普通,生长繁殖快速,能够耐受较高的流体静压,用于表达基因工程产品时有效降低了生产成本。毕赤酵母具有强烈的好氧生长偏爱性,可进行细胞高密度培养,利于大规模工业化生产。[/font][/font][font=宋体][font=Calibri]2. [/font][font=宋体]安全性方面:酿酒酵母被认为是安全无毒的,有着数十年的大规模发酵研究基础。[/font][/font][font=宋体][font=Calibri]3. [/font][font=宋体]分子生物学操作方面:酿酒酵母在重组[/font][font=Calibri]DNA[/font][font=宋体]中的广泛研究也是基于其己被人们掌握的大量分子生物学及生理学信息。外源基因一般和表达载体一起整合到了酵母染色体上,随染色体一起复制和遗传,不会发生外源基因的丢失现象。[/font][/font][font=宋体][font=Calibri]4. [/font][font=宋体]蛋白表达方面:可以进行蛋白的糖基化,而且还能分泌重组蛋白。[/font][/font][font=宋体][font=Calibri]5. [/font][font=宋体]蛋白分泌方面:由于毕赤酵母自身分泌到培养基中的蛋白很少,因此纯化方便。[/font][/font][font=宋体] [/font][font=宋体]缺点[/font][font=宋体][font=Calibri]1. [/font][font=宋体]克隆基因的表达量低,发酵时间长,不正确的蛋白糖基化及抗细胞分裂。[/font][/font][font=宋体][font=Calibri]2. [/font][font=宋体]培养上清多糖浓度高,不利于纯化。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]目前大肠杆菌蛋白表达系统是用最广泛,也是最经济实惠的蛋白表达系统。[/font][font=Calibri]E. coli[/font][font=宋体]具有遗传背景清楚、细胞增殖快、表达量高、稳定性好和抗污染能力强等特点,适用于多种属蛋白的表达,尤其对小分子蛋白的生产具有极大的优势,但也存在一些问题,如易形成包涵体和含有内毒素等。义翘神州提供从密码子优化到重组蛋白表达[/font][font=Calibri]/[/font][font=宋体]纯化的一站式服务以及内毒素去除等附加服务,以满足不同的定制需求。我们拥有丰富的[/font][font=Calibri]E. coli [/font][font=宋体]可溶性蛋白表达[/font][font=Calibri]/[/font][font=宋体]纯化及蛋白复性经验,拥有多种[/font][font=Calibri]E. coli[/font][font=宋体]细胞株和表达载体,可为客户提供优质的[url=https://cn.sinobiological.com/services/e-coli-protein-expression-service][b]原核蛋白表达服务[/b][/url]。更多关于[/font][font=宋体]大肠杆菌蛋白表达平台[/font][font=宋体]详情可以关注:[/font][/font][url=https://cn.sinobiological.com/services/platform/e-coli-protein-expression][u][font=宋体][color=#0000ff][font=Calibri]https://cn.sinobiological.com/services/platform/e-coli-protein-expression[/font][/color][/font][/u][/url][font=宋体] [/font]

  • 优化基因表达的关键因素

    在基因表达研究中,研究者比较注意选择合适的表达载体和宿主系统,而往往忽视基因本身是否与载体和宿主系统为最佳匹配这样一个实质性问题。基因的最佳化表达可以通过对基因的重新设计和合成来实现,如消除稀有密码子而利用最佳化密码子,二级结构最小化,调整GC含量等。以下就密码子最佳化、翻译终止效率和真核细胞中异源蛋白表达的问题加以说明。密码子最佳化(codon optimization)遗传密码有64种,但是绝大多数生物倾向于利用这些密码子中的一部分。那些被最频繁利用的称为最佳密码子(optimal codons),那些不被经常利用的称为稀有或利用率低的密码子(rare or low-usage codons)。实际上用做蛋白表达或生产的每种生物(包括大肠杆菌,酵母 ,哺乳动物细胞,Pichia,植物细胞和昆虫细胞)都表现出某种程度的密码子利用的差异或偏爱。大肠杆菌、酵母 、果蝇、灵长类等每种生物都有独特的8个密码子极少被利用。有趣的是,灵长类和酵母 有6个同样的利用率低的密码子。大肠杆菌、酵母 和果蝇中编码丰度高的蛋白质的基因明显避免低利用率的密码子。因此,重组蛋白的表达可能受密码子利用的影响(尤其在异源表达系统中)的事实并不很奇怪。你的基因利用的密码子可能不是你正在利用的蛋白生产系统进行高水平表达所偏爱的密码子,这种情况是可能的。利用偏爱密码子(preferred codons)并避免利用率低的或稀有的密码子可以合成基因,基因的这种重新设计叫密码子最佳化。在同源表达系统中,同较低水平表达的基因相比,较高表达的基因可能有很不同的密码子偏爱。通过对密码子利用的归类分析,人们可以真正预测任何基因在酵母 中的表达水平。在诸如Zea mays的其他生物中,大量高表达基因强烈偏爱以G或C结尾的密码子。而且,在Dictyostelium中,同低水平表达的基因比较,高表达基因有较大数目的偏爱密码子。在大肠杆菌中表达哺乳动物基因是不可预测和具有挑战的。例如直到最近才实现了人血红蛋白的过表达。为了达到血红蛋白的好的表达水平,Alpha-球蛋白cDNA不得不用大肠杆菌偏爱的密码子进行重新合成。在异源宿主中实现象血红蛋白这样复杂的蛋白质的过表达可能需要最佳化密码子,这些研究者为此提供了令人信服的资料。成簇的低利用率的密码子抑制了核糖体的运动,这是基因不能以合适水平表达的一个明显机制。核糖体翻译由九个密码子组成的信使(含几个低利用率密码子或全部为低利用率密码子)时的运动速度要比翻译不含低利用率密码子的同样长的信使的速度慢。即使低利用率密码子簇位于3'端,信使最后也会被核糖体”拥挤”而损害,核糖体又回到5'端。3'端低利用率密码子簇的抑制效应可以和全部信使都由低利用率密码子组成的抑制效应一样大。如果低利用率密码子簇位于5'端,其效应是起始核糖体数目的全面减少,导致蛋白合成中信使的低效率。散在分布的稀有密码子对翻译的效应还未很好地研究,但是有证据表明这种情况的确对翻译效率有负面效应。其他因素也可以影响蛋白表达,包括使mRNA去稳定的序列。重新设计合成基因可以去除或改变这些序列,导致高水平表达。消除稀有密码子、去除任何去稳定序列和利用最佳密码子的基因的重新设计都可能增加蛋白产量,使的蛋白生产更有效和经济。翻译终止效率蛋白表达水平受许多不同因素和过程影响。蛋白稳定性、mRNA稳定性和翻译效率在蛋白生产和积累中起主要作用。翻译过程分为起始、延伸和终止三个期。对于翻译的起始,原核mRNA需要5'端非翻译前导序列中有一段叫Shine-Dalgarno序列的特异核糖体结合序列。在真核细胞,有效的起始依赖于围绕在起始密码子ATG上下游的一段叫Kozak序列的序列。密码子利用或偏爱对延伸有深刻的影响。例如,如果mRNA有很多成簇的稀有密码子,这可能对核糖体的运动速度造成负面影响,大大减低了蛋白表达水平。翻译终止是蛋白生产必须的一步,但其对蛋白表达水平的影响还没有被研究清楚。但是最近的科学研究表明终止对蛋白表达水平有很大的影响。总的来说,更有效的翻译终止导致更好的蛋白表达。绝大多数生物都有偏爱的围绕终止密码子的序列框架。酵母 和哺乳动物偏爱的终止密码子分别是UAA和UGA。单子叶植物最常利用UGA,而昆虫和大肠杆菌倾向于用UAA。翻译终止效率可能受紧接着终止密码子的下游碱基和紧靠终止密码子的上游序列影响。在酵母 中通过改变围绕终止密码子的局部序列框架,翻译终止效率可能被减低几个100倍。对于UGA和UAA,紧接着终止密码子的下游碱基对有效终止的影响力大小次序为GU,AC;对于UAG是U、ACG。对于大肠杆菌,翻译终止效率可因终止密码子及临近的下游碱基的不同而显著不同,从80%(UAAU)到7%(UGAC)。对于UAAN和UAGN系列,终止密码子下游碱基对翻译的有效终止的影响力大小次序为UGA、C。UAG极少被大肠杆菌利用,相比UAAN和UGAN,UAG表现了有效的终止,但其后的碱基对有效终止的影响力为GU,AC。对于哺乳动物,偏爱的终止密码子为UGA,其后的碱基可以对in vivo翻译终止有8倍的影响(A、GC、U)。对于UAAN系列,in vivo终止效率可以有70倍的差别,UGAN系列为8倍。如果终止密码子附近序列没有最佳化,可能发生明显增加的翻译通读,因此减少了蛋白表达。例如,在兔网状细胞无细胞翻译系统里,UGAC的翻译通读可以高达10%,而第四个碱基如果为A,G或C,翻译通读为1%。总的来说,翻译起始框架、翻译终止序列框架和密码子利用应该仔细选择,以利于蛋白的最高水平表达。翻译终止序列框架能几倍地改变蛋白生产水平。真核细胞中的异源蛋白表达异源蛋白质在细菌中表达是目前使用的主要的蛋白生产系统。大肠杆菌一直是最经济的系统之一。然而为了生产需要特异修饰、胞外分泌或有特异折叠需要的蛋白质,其他表达系统也是需要的。真核细胞在表达原核来源的基因、真核基因的cDNA拷贝或其他无内含子的基因时可能表现很多特异问题。富含AT的基因在很多真核细胞中表达时会遭遇很剧烈的障碍。主要的真核信号序列如 加poly-A的位点、酵母 转录终止位点和真核mRNA去稳定序列都是富含AT的。内含子序列也趋向于富含AT,尽管他们有参与剪切过程的很特异的识别序列。虽然绝大多数原核基因没有剪切或聚腺苷过程,但这些真核过程需要的保守序列可能存在于原核基因中,因此当这些基因在真核细胞中表达时可能引起特异的问题。而且诸如哺乳动物和单子叶植物细胞的特异真核表达系统可能不能有效地表达无内含子的基因。 真核mRNA在离开细胞核进而在胞浆的核糖体上被翻译前需要特异的处理和修饰。这些过程包括去除内含子、5'端甲基化帽子形成和3'端加poly-A。内含子去除需要5'剪切位点、G75/G100U100A65AG65U保守序列、3'剪切位点、富含密啶NC66A100G100/G56保守序列和C72T98R77A100Y75保守序列。有效的加poly-A和mRNA剪切需要一个由两个部分组成的信号:加poly-A保守序列AAUAAA和在切割位点内的50个碱基的富含GT的序列。酵母 真核转录终止序列(几个不同的富含AT序列,如含TTTTTATA,TATATA,TACATA,TAGTAGTA的一个38bp区域)被研究的最清楚。这些结果来自对酵母 突变体CYCI mRNA的mRNA水平和相对长度的确定的实验。近期用in vivo质粒稳定性分析的研究结果证明:TATATA似乎和原始的38bp野生型区域一样有效地终止转录,而TAGATATATATGTAA和TACATA效率差些,TTTTTTTATA几乎没有效率。所有这些序列在反方向时没有终止转录功能。不幸的是几乎没有其他真核表达系统转录终止序列方面的信息。内含子对几个哺乳动物基因的正常表达是必需的,包括Beta-球蛋白、SV40 late mRNA和二氢叶酸还原酶基因。单子叶植物细胞充分表达乙醇脱氢酶的cDNA拷贝、报告基因氯霉素乙酰转移酶、Beta葡萄糖苷酸酶和其他缺乏内含子的基因时也依赖内含子。转录区域内引入内含子可以通过未确定的转录后机制增强表达。(免疫球蛋白基因)内含子可能也包含转录增强子,因此通过转录机制增强表达。 总的来讲,如果存在某些DNA序列,真核异源蛋白表达可能是个难题。为避免剧烈的表达减少,需要对基因进行扫描,确认是否含上述提及的富含AT的序列。而且,在几个真核系统表达无内含子基因可能需要引入内含子以实现外源蛋白的充分表达。

  • 【求助】未检出如何表达

    txm我现在有个问题哦,过去我们一些污染物比如苯在色谱上检不出来,那在报告上该如何表达?可以用N.D么?还是限量值?

  • 毕赤酵母蛋白不表达的原因

    很多朋友问这样一个问题:为什么毕赤酵母表达困难?他们自己也很纳闷,重组酵母pcr检测也证明目的基因重组了,但是诱导之后就是在表达上清中检测不到目的蛋白,仔细研究操作手册后仍然不知道原因。本人,根据自己的经验,采用倒推的方法,按实验过程从后向前分析,供大家参考:1、诱导之后表达上清中检测不到目的蛋白:分析1:检测的方法是否有问题,要考虑是不是蛋白表达量低而没有检测到? 如果是蛋白表达低,可以选择浓缩蛋白,具体的方法很多,有TCA、丙酮、浓缩柱等等方法,之前在本版已经发过帖,在此不赘述。 2、如果蛋白浓缩N倍之后仍然检测不到,那基本可以确证蛋白并不在上清中。那么蛋白到哪里去了,考虑是否没有分泌出来,而是在胞内,那就需要通过裂解酵母来检 测胞内蛋白,具体的方法很多,在此也不赘述,曾整理过相关破碎的帖子。 3、如果胞内也没有目的蛋白表达,那么基本可以确定蛋白并没有表达。 4、为什么没有表达呢?倒推回来就是诱导的过程了,诱导体系是什么?甲醇浓度是多少?培养问题是多少,转速是多少?这些都要注意。甲醇一般是0.5%-1.0%,本人用的 是0.5%,也有很多人也用1.0%,曾见过一个帖子,说超过1.5%反而会抑制表达,没有验证过,供大家参考。培养问题28-30度比较合适,转速250rpm比较合适,诱导 体系没有固定的体系,说明书上推荐的是BMGY到OD600 2~6,换到BMMY中OD600 为1左右。 5、如果诱导的过程也没有问题,那问题就复杂了,特别是重组酵母PCR检测证明目的基因确实已经发生了重组。这个时候是最郁闷的了,但是郁闷怎么办,还是要找原 因,在此我给的建议是先做RT-PCR证明mRNA水平的情况,也就是说有没有转录。如果转录了,后续的操作也没有问题(本帖的1、2、3、4项),那么只有重新设计实 验,比如换酵母株,有文章上说:用GS115表达不出蛋白,换KM71H后,大部分克隆能表达。 6、有个帖子说的很好,在此和大家分享一下。 1、 菌株:用GS115表达不出蛋白,换KM71H后,大部分克隆能表达。 2、温度: 在28度和室温下诱导表达,表达水平可能都不低。 3、pH:手册上用6.0,pH提高到6.8,不表达的蛋白可能就表达出来。BMMY的pH7.0-7.5比较合适。国内外做的最好的rHSA,最适pH大概5-6左右。pH3的时 候yeast和peptone好像会沉淀的,可以用磷酸和磷酸二氢钾调,具体比例自己去试试。 4、偏爱密码子: codon bias一般不是主要的问题,你要表达的蛋白特性才是主要问题,酵母对分子量大(30KD以上),结构复杂(如一些蛋白酶),二硫键含量多的 蛋白往往不能有效表达,尤其是分泌表达。密码子改造对一些较小的而且结构简单的蛋白表达量的提高可能有一些作用。比如一位战友用Pichia酵母表达一个单链 抗体,29KD,含有2对二硫键,表达量约几毫克每升,选用酵母偏好密码子全基因合成后,表达量没有什么提高。 5、表达时间与空质粒转化对照:诱导时间长了以后,是会有很多蛋白分泌出来的,时间越长杂蛋白就越多,且分子量都比较大。最好做一个空质粒转化的对照, 这样就会比较肯定到底是不是自身的蛋白分泌的结果。 6、污染:每个样品从G418板上挑10个左右单克隆于2ml BMGY摇菌(30ml玻璃管,比LB管大一点),纱布一般用8层,一天左右看着比较浑离心,留样1ml,余 1ml换2ml BMMY诱导表达,3,4层纱布足够了。 污染一般都是跟瓶口覆盖有关的原因造成的,只盖纱布肯定会污染。加盖报纸后,就再没遇到过污染。如果只用6层纱布,污染的可能当然很大,100ml三角瓶, 装量10ml培养液,用橡筋把8层纱布和2层报纸拴紧封口,空气浴摇床。 7、不表达:蛋白有没有表达就要看你的运气了,一般重复2-3次实验都没有表达菌株,这个蛋白就放弃表达了。 8、表达量: 30KD,10mg/L表达量已经很高,最直接的方法是发酵,一般提高5-10倍。大肠杆菌一样出现大团的超表达蛋白。 9、糖基化:酵母分泌表达的N糖基化是可以预测的,有如下序列:N X S/T就是潜在的糖基化位点,X为任意氨基酸,1个糖基化位点会加上1-3KD左右的糖基。另外可 能还有O糖基化话,但是无法预测其位点,不过很少听说表达蛋白有O糖基化的。如果胞内表达,不存在糖基化的问题。 10、表型与表达:重组SalI和BglII酶切产生单交换和双交换,结果就是产生Mut+和Muts表型的菌株;前者在甲醇诱导表达时生长快,消耗的甲醇多,后者生长慢,消耗 的甲醇少,所以诱导表达时Muts表型要求更高的菌体浓度。一般用Mut+表型的较多,但是对某些蛋白Muts菌株可能表达的更好,只有试试才知道你的蛋白用那种菌 株表达较好。 11、培养基 YPD:最基本的培养用;BMGY:诱导表达前培养用;BMMY:诱导表达用;MD:电转化后筛选his+用。 YEPD是不能代替BMGY的,因为有葡萄糖,这样残留的葡萄糖会影响下一步的诱导表达。不过有一种方法是可行的,就是用YPG培养基代替,只是把YEPD中的葡萄糖 用3%的甘油代替,也可以降低成本。摇瓶毕竟不能和发酵罐比,甘油残余会抑制甲醇利用。 BMGY、BMMY灭菌后才能加甲醇、磷酸钾、生物素。配制BMMY时也没必要用5%过滤除菌的甲醇,在灭菌后使用前加100%甲醇至你要的浓度。 YNB可以高压灭菌,没问题的,也可以0.22um过滤处理,天冬氨酸和苏氨酸要待培养基高压灭菌后加入;配YPD时可以加入YPD一起灭菌,但时间不能太长,温度不能 太高,一般121-125度12-15分钟足够了。若时间过长,温度过高,可能导致YPD焦化。glucose和含氮化合物在一起容易产生美拉德反应,这是配制培养基中的禁忌。 颜色很深的话,基本不能使用了。或者含有葡萄糖和/或YNB的培养基108度35min高压灭菌。 小量发酵其实可以把培养基成分中的YNB和生物素去除,培养基价格便宜,操作又方便,可以直接灭菌,效果也很好(效果不比含YNB的差)。 如果是用自己配置的培养基,如玉米浸提液、麦芽浸提液、麦麸浸提液等等,可以不用换液,采取添料来维持酵母对培养基的营养需要。 用无机盐进行大规模发酵,更省钱。更多有关蛋白表达纯化的相关资料,请点击:资料专区

  • 生物芯片入门:基因表达谱芯片实验操作

    待检测样品制备生物样品往往是非常复杂的生物分子混合体,除少数特殊样品外,一般不能直接与芯片反应,必须将样品进行生物处理。从血液或活组织中获取的DNA/mRNA样品在标记成为探针以前必须扩增以提高阅读灵敏度,但这一过程操作起来却有一定的难度。比如在一个癌细胞中有成千上万个正常基因的干扰,杂合癌基因的检测和对它的高效、特异地扩增就不是一件容易的事。因为在一般溶液中PCR扩增时,靶片段太少且不易被凝胶分离,故存在其它不同的DNA片段与其竞争引物的情况。美国Mosaic Technology公司发展了一种固相PCR系统。此系统包含两套引物,每套都可以从靶基因两头延伸。当引物和DNA样品及PCR试剂相混时,如果样品包含靶序列,DNA就从引物两头开始合成,并在引物之间形成双链DNA环或“桥”。由于上述反应在固相中产生,因而避免了引物竞争现象,并可减少残留物污染和重复引发。根据样品来源、基因含量、检测方法和分析目的不同,采用的基因分离、扩增及标记方法各异。为了获得基因的杂交信号必须对目的基因进行标记。标记方法有荧光标记法、生物素标记法、同位素标记法等。目前采用的最普遍的荧光标记方法与传统方法如体外转录、PCR、逆转录等原理上并无多大差异,只是采用的荧光素种类更多,这可以满足不同来源样品的平行分析。样品制备的常用试剂:对于检测表达的芯片,样品制备通常涉及mRNA的纯化,cDNA的合成,体外转录或者PCR,标记等步骤。而对于SNP或者突变检测,则往往涉及Genomic DNA纯化和PCR标记等步骤。1. RNA纯化:从样品中分离纯化高质量的RNA是非常重要的第一步。由于RNA样品中的DNA碎片会影响后继的PCR反应,所以要彻底除去样品中的DNA。通常用mRNA纯化的方法可以除去DNA片断,或者用RNase-Free的DNase处理RNA样品。在这里我们介绍一些常用的RNA纯化试剂盒,特别是由Affymetrix公司推荐的QIAGEN RNA纯化系列。* RNeasy Protect Kit:一旦生物样品被收集分离,它的RNA会立刻变得非常不稳定,极易被降解。由于特异及非特异的RNA降解,或者由于应激反应产生新的RNA都会引起RNA状态的改变。对于生物芯片、基因表达矩阵分析(Array Analysis)、定量RT-PCR等实验来说,采样后立即稳定样品里的RNA以保存当时RNA的表达状态,是精确/定量研究基因表达分析的重要前提。为了达到这个目的,往往需要将液氮或者干冰带到采样现场,采样后立即抽提RNA或者运回实验室保存。对于实验者来说非常不方便。著名的QIAGEN公司最近新推出一种RNA抽提试剂:RNeasy Protect Kit,提供一整套RNA保护和分离试剂,从样品的制备到RNA的抽提,只需一个试剂盒即可解决所有问题。保证样品的表达信息不受破坏,确保得到可信的基因表达分析结果。试剂盒里提供一种RNAlater RNA Stabilization Reagent,只要在采样后立即将新鲜样品浸入这种液体试剂,RNA保护剂可以迅速渗透到组织或其他生物样本中,稳定并保护RNA完整而不被降解,确保下游分析得到的数据真实反应样品的表达信息。保存在RNAlater中的样品RNA可以在37度下稳定保存1天,或者在18~25度保存7天,2~8度稳定4周,或者在-20度永久保存。这种技术为在不同温度下采样,运输和保存样品提供了极大的方便,特别适用于各种动物组织、培养细胞、细菌、白细胞,但必须说明的是它不适用于全血或体液中RNA的保存。RNAlater的用法非常简单,只要在采样后立即将样品完全浸入适量(10ul/1mg组织)的RNAlater中即可。取样的动作要尽量快速利索,组织样品的大小以不超过0.5公分厚为宜,对于一些小的组织如小鼠的脾、肾等器官则可以整个取出浸入溶液中,较大的则应切开为厚度小于0.5公分的小块,以确保RNAlater 能迅速扩散渗透入组织块中的所有细胞中。采样的容器应该足够大以容纳10倍于组织重量的溶液,避免组织块挤在一起,同时建议将溶液加满容器以避免在运输过程中组织块露出液面。注意本试剂只适用于新鲜样品,对于冷藏和包埋的样品直接抽提RNA即可。另外对于RNA已经降解的样品,RNAlater只能保护剩下的样品RNA,不能修复已破坏的RNA。保存后的样品可以直接用于RNA或者mRNA的抽提。RNAlater不会影响组织块的结构,可以在室温下切出适量的组织块用于称量和抽提RNA,剩下的部分可用于继续保存样品。-20度冻存的样品可以取出在室温下进行称量等操作而无需干冰。在-20度冻存的样品反复冻融20次RNA依然保持完好无损。RNAlater处理的样品比新鲜组织稍微硬一点,但不会影响匀浆过程。取出适量的样品即可开始加RLT缓冲液进行匀浆化。和传统的RNeasy Kit一样,RNeasy Protect Kits采用QIAGEN著名的硅胶膜纯化柱技术,迅速特异地吸附样品裂解液中的RNA,无需酚氯仿抽提,不用乙醇沉淀或LiCl沉淀,也不用CsCl超离,只要洗脱即可得到纯的RNA。通常情况下RNeasy的纯化技术足以除去绝大部分的DNA,而无需额外进行DNaes处理,但是对于一些对痕量DNA非常敏感的实验,用RNase-Free DNase Set(QIAGEN cat.no. 79254)可以直接在纯化柱上消化DNA残留,在随后的洗涤步骤中除去DNase,最后洗脱得到不含DNA的纯RNA。试剂盒具有以下优点:●迅速稳定并保护RNA,确保基因完整、基因表达信息可靠。   ●由于RNA Stabilization试剂,您可以放心地在室温下操作,方便、安全——无须液氮和干冰。   ●确保RNA不受降解——即使多次冻溶也不受影响。   ●简单、快速和可靠RNA分离——使用于所有下游分析的即用型RNA。货号 品名(规格) 价格(RMB)74124 RNeasy Protect Mini Kit(50) 3181.00  75152 RNeasy Protect Midi Kit(10) 1313.00  75182 RNeasy Protect Maxi Kit(12) 4140.00  76104 RNAlater RNA Stabilizationeagent 682.00http://www.biomart.cn/upload/asset/2008/07/28/1216791379.gif

  • 真核蛋白表达及纯化步骤有哪些?

    [font=宋体][font=宋体]真核蛋白表达系统是一种广泛应用的蛋白表达方式,通常利用酵母、昆虫或哺乳动物细胞作为宿主。这种表达系统所生成的蛋白与目标[/font][font=Calibri]DNA[/font][font=宋体]具有极高的相似性,能诱导高效蛋白表达。那么,在实施真核蛋白表达时,有哪些关键的纯化步骤呢?接下来,我们将详细解析这一过程。[/font][/font][font=宋体] [/font][font=宋体]首先,我们要明确真核蛋白表达的纯化步骤是至关重要的环节。这些步骤不仅关系到最终产品的纯度和产量,还直接影响其生物活性和应用价值。因此,选择合适的纯化方法对于整个实验的成功至关重要。[/font][font=宋体] [/font][b][font=宋体]真核蛋白表达及纯化步骤主要有以下几个方面:[/font][/b][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、重组质粒构建:将目的基因克隆进表达载体,常见的方法包括限制性切酶切割,基因合成等,根据连接酶说明,进行线性载体和目的基因片段的酶联,最后对质粒测序做好验证;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、蛋白诱导表达:普适条件下查看蛋白是否表达,若不表达,更换载体,表达菌株等方法查看是否表达,如果表达,继续实验;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、蛋白表达部位分析:分析蛋白是可溶性还是不溶性的表达,即在超声后上清表达还是沉淀表达;是否与你的目标蛋白表达部位相同,相同进行后续蛋白表达条件优化;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体]、蛋白表达优化:优化诱导[/font][font=Calibri]IPTG[/font][font=宋体]浓度、诱导温度,进行放大培养;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5[/font][font=宋体]、蛋白纯化:根据目标蛋白的性质进行样本处理,然后进行亲和纯化,获取目的蛋白。[/font][/font][font=宋体] [/font][font=宋体][b]真核表达系统的选择与应用[/b][/font][font=宋体]酵母蛋白表达系统[/font][font=宋体]酵母真核蛋白表达系统有甲醇酵母表达系统,酿酒酵母表达系统,裂殖酵母表达系统以及克鲁维酸酵母表达系统等,其中最早应用于基因工程的酵母是酿酒酵母,但现在运用最广泛的酵母表达系统还是甲醇酵母表达系统中的毕赤酵母真核蛋白表达系统。[/font][font=宋体] [/font][font=宋体]哺乳动物细胞表达系统[/font][font=宋体][font=宋体]哺乳动物细胞表达系统是真核表达系统中唯一可以表达复杂蛋白的系统,它能够指导真核表达蛋白进行正确折叠,提供复杂的[/font][font=Calibri]N[/font][font=宋体]型糖基化和准确的[/font][font=Calibri]O[/font][font=宋体]型糖基化等多种翻译后加工功能,所以它和昆虫酵母系统比较更具有发展潜力,哺乳动物细胞真核表达的蛋白与天然真核表达蛋白的结构、糖基化类型和方式几乎相同且能正确组装成多亚基蛋白[/font][font=Calibri],[/font][font=宋体]但成本较高也一定程度上减缓了它的发展速度。哺乳动物细胞表达系统主要是通过改造宿主细胞来提高外源蛋白的表达效率,常用的宿主细胞有[/font][font=Calibri]CHO[/font][font=宋体]、[/font][font=Calibri]COS[/font][font=宋体]、[/font][font=Calibri]BHK[/font][font=宋体]、[/font][font=Calibri]SP2 /0N[/font][font=宋体]等,哺乳动物转染方法[/font][font=Calibri]*[/font][font=宋体]有脂质体转染法,电穿孔法以及病毒转染等。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州[url=https://cn.sinobiological.com/resource/protein-review/protein-purification-techniques][b]蛋白纯化技术[/b][/url]:[/font][font=Calibri]https://cn.sinobiological.com/resource/protein-review/protein-purification-techniques[/font][/font][font=Calibri] [/font]

  • 小麦苗期旱胁迫表达问题

    老板给了小弟这样一个课题:小麦苗期旱胁迫差异表达分析。当前考虑的大致方向就是寻找表达的差异基因,关于差异基因的寻找,跟朋友交流期间,总结了以下几条建议,选取样品进行:1. 转录组测序;2. 表达谱测定;3. 建个cDNA文库或SSH文库。由于之前对分子领域知之甚少,听别人给说的很好,自己听不太明白,想问问以上几种方法都有什么特点呢?适于进行什么类型的试验呢?老板的意思是我负责寻找并克隆几个差异基因并进行功能验证,基于这样的目的,以上的那种方法比较好呢?或者有其他更好的办法,请详细一讲解下,不胜感激呢,快憋屈死了

  • 美好一天从“会表达”开始!

    愤怒本身是正常的情绪,是我们的一部分,它没有好坏对错。学会区分“情绪的表达”和“情绪化的表达”二者之间的区别。愤怒不等于咄咄逼人的敌对行为,更不是骂人、摔东西等任性妄为。感到愤怒的时候,学会温和地表达自我,既是争取自身利益,又是对自我价值的肯定。美好一天从“会表达”开始!

  • 外源基因的诱导表达

    1.目的了解外源基因在原核细胞中表达的特点和方法。2.原理外源基因克隆在含有lac启动子的表达系统中。先让宿主菌生长,lac I产生的阻遏蛋白与lac操纵基因结合抑制下游的外源基因转录。向培养基中加入诱导物IPTG(异丙基硫代-b-D-半乳糖),解除抑制使外源基因大量表达。表达的蛋白可经SDS-PAGE或Western-blotting检测。3.器材旋涡混合器,微量移液取样器,移液器吸头,50ml 微量离心管,1.5ml 微量离心管,双面微量离心管架,台式冷冻离心机,制冰机,恒温摇床,分光光度计,超净工作台,恒温培养箱,摇菌试管,三角烧瓶,接种环。4.试剂LB培养基(加抗菌素),100mg/ml IPTG,20%葡萄糖。5.实验准备无菌ddH2O,1.5ml离心管装入铝制饭盒(灭菌)、移液器吸头装入相应的吸头盒(灭菌),牙签(灭菌),摇菌管(灭菌),100mg/ml IPTG (过滤灭菌)(100ml分装,-20°C保存),100mg/ml氨苄青霉素(过滤灭菌)(100ml分装,-20°C保存),配制20%葡萄糖(8磅灭菌20分钟,添加至上述LB中,终浓度为0.2%)。6.操作步骤(1) 晚上9:00接种。在超净工作台中接种含有Pinpoint™xa-3-CHI重组载体的菌株,培养于两个三角烧瓶各20ml LB-葡萄糖培养基(含抗菌素Amp 120μg/ml)的摇菌管中,慢速70~90转/分钟30°C摇菌过夜。(2) 至第二天上午8:30 OD600约为0.5,加IPTG至 100μg/ml,150~170转/分钟37°C诱导1.5-3h。同时做不加IPTG诱导和非转化的空菌诱导的对照培养。(3) 4000rpm离心15min弃掉上清液,收获菌体,用SDS-PAGE电泳分析(表达蛋白分子量为30kDa)。菌体也可放在-20°C以下保存备用。(4) 在被细菌污染的桌面上喷洒70%乙醇,擦干桌面。

  • 关于样品未检出的表达

    比如氰化物的测定 HJ 484-2009异烟酸-吡唑啉酮分光光度法此法检出限为0.004mg/L,检出下限为0.016mg/L一般我们对于样品未检出的表达是<0.004mg/L但今年复审时,某市监测站专家说他们的表达是<0.016mg/L不知道大家实验室是如何表达的呢?

  • 采购员的表达能力

    采购员无论是用语言还是用文字与供应商沟通,都必须能正确、清晰表达采购的各种条件,例如规格、数量、价格、交货期限、付款方式等,避免语意含混,滋生误解。面对忙碌的采购工作,必须使采购人员具备“长话短说,言简意赅”的表达能力,以免浪费时间。“晓之以理,动之以情”来争取采购条件,更是采购人员必须锻炼的表达技巧。

  • 平行样品和报告结果表达方式

    请教各位老师,1、平行样品:实验室的质控手段之一就是做样品平行。有的分析标准明确说了报出结果为平行样品的平均值,有的分析标准没有说明。那我们实验室出具报告的时候,平行样品结果是出平均值呢还是分别出呢?有什么依据吗。2、检出结果表达:同样的,有的分析标准明确规定了,当结果未检出或小余检出限时,结果表达为“未检出”或者检出限,但是如果一份报告上同时出现这两种表达方式就会容易让客户产生疑问。请问各位老师这种情况怎么处理呢?可不可以统一表达,依据是什么?谢谢

  • 【讨论】龙永图言论考验公共表达环境

    龙永图言论考验公共表达环境17日,南京“对话中国”高层论坛上,龙永图在谈到中国房地产问题说道,“中国的老百姓没有改变观念,每个人都想买房,其实这种观念是非常错误的,大部分中国人应该解决租房问题。”龙永图并不新鲜的租房论引起了论坛的轩然大波,网友纷纷质疑其身在福中不知民生的冷漠,甚至各种讥讽和责骂也接踵而来。(6月18日中新网)龙永图的说法并非是空穴来风:美国三成人群买房,六成人群租房,实际拥有住房的人并不多。虽然,中国的国情与美国不同,但是在城市建设普遍适用的规律面前,同类现象还是具有借鉴的意义的。同时,龙永图的言论也并非是石破惊天:在其之前,早有吴敬琏等学者普及过“人人有房住”的双重理解。按理说,如此有理有据的论调,如此“步人后尘”的观点应该失去引起舆论关注的热度,可奇怪的是,龙永图的表达还是造成了网民的激愤。 与龙永图的理性表达不同,网友的意见更像是打抱不平的“哄客”:他们在揶揄龙永图的冷漠:自己处于良好的住房环境中,竟然好意思劝大家不买房,他为什么不租房?他们在怀疑龙永图的立场:那个曾经为民争利的龙永图终于变得庸俗了。总而言之,在面对龙永图与己不同的观点时,网友们已经接受其举重若轻的洒脱,已经站在道德的制高点上对其进行回击。在他们看来,这种回击是一种维护,是对龙永图的一种警告。 从网友的激动中,我们可以发现一个值得警惕的问题:公共领域的表达问题。从本质上说,网友的判断并不是事实判断,他们根本就不去探究和思考龙永图的质疑是否有其逻辑上的合理性,有其充分的事实依据。他们的判断是带有感情色彩的价值判断,他们思考的是龙永图道德的问题,质疑的是龙永图表达的莽撞,似乎这种违背“民意”的表达应该闭嘴。显然,这种态度是与公共领域的理性交往是相违背的,在公共领域中,表达应当是自由的,只有自由的表达才能促成公共领域的理性和包容。而一旦人们的价值判断充满偏见或者趋于一律,那么舆论的压力和群体的压力就会让一些人丧失发言的勇气或热情。其结果可能是表面的步调一致,但真正的问题可能被掩藏,真相也可能在沉默中被装扮。此时,表面的整齐划一有什么意义呢?真相不会因为被装扮就成为任人打扮的小姑娘,它的本来面目总会被人们知晓。而问题也不会在掩藏中自然地解决,在发展到一定程度,它总会通过激烈的方式表达出来。可以说,失去自由发言的公共领域是名不副实的,所谓公共就是指向公众。 因此,在龙永图引起的争论中,需要对网友的过激意见进行重视和引导。龙永图的遭遇反映了舆论领袖与公众之间的断裂。从某种意义上说,一些类似的事件正是检验公共领域成色的“试纸”,通过这些具有代表性的事件,我们可以发现,在价值判断中多元观点的缺失,可以发现,在公共表达中宽容环境的缺少。而一个和谐的社会是需要多元价值观和宽容表达环境的。没有了这些要件的保证,和而不同就无法实现。

  • 原核表达研究者关心的10个问题

    pET 是目前应用最为广泛的原核表达系统,已经成功地在大肠杆菌中表达了各种各样的异源蛋白。经pET系统过与使用过和正在使用这个系统的科学家的交流,我们发现了一些在使用pET系统的过程中以及原核表达中的一些常见问题。在此,我们选取了其中一些比较有代表性的问题,附上我们的建议改进方案,并期待和你一起分享成功的喜悦。1.目的蛋白总是以不可溶的形式出现真是令人烦恼在大肠杆菌中表达的异源蛋白经常发生错误的折叠,并聚集成为包涵体。经过诱导,目的蛋白通常可达细胞总蛋白的50%以上。虽然有一定比例的蛋白以可溶的单体形式存在,而多达95%(甚至更多)的蛋白则在包涵体中。实践中,有很多实验室采取降低诱导温度,例如25–30°C(Burtonetal.(1991)Prot.Exp.Purif.2,432-441),或降低IPTG浓度(0.01–0.1mM)并延长诱导时间,还有采用特别的培养基(BlackwellandHorgan(1991)FEBSLett.295,10-12)等方法获得更多的可溶蛋白。随着越来越多的蛋白折叠途径被阐明,相信会出现更多有效的增加可溶性目的蛋白的实验方法。然而,让目的蛋白以包涵体形式聚集也并非总是坏事。不溶态在某些情况下非常有利:a.形成包涵体是目的蛋白表达量很高的表现。b.作为初步分离,将目的蛋白的包涵体纯化出来非常简便。用核酸酶处理,并经简单洗涤,通常可以获得纯度达75–95%的目的蛋白。c.存在于包涵体中的目的蛋白通常可以免于蛋白酶的水解破坏作用。纯化的包涵体可以用多种方法重新溶解,以便进一步进行纯化和重折叠操作。如果目的蛋白是用于制备抗原,经PBS悬浮和适当的佐剂乳化处理后,就可以直接用于注射了(参见Fischeretal1992)Science257,1392-1395)。如果目的蛋白融合了His?Tag(r)序列,则可以在变性条件下用His?Bind(r)树脂亲和纯化。经纯化的蛋白用变性条件从树脂洗脱,再行重折叠。溶解和重折叠常常要用到离液剂、助溶剂和去污剂等(MarstonandHartley1990)Meth.Enzymol.182,264-276)。研究者采用下述方法加强蛋白重折叠的效果,并在很多蛋白上取得了好结果,可以尝试以下:当蛋白还结合在树脂上时,使用6M–0M梯度盐酸胍、1mM还原型及0.2mM氧化型谷胱甘肽处理,继而用咪唑正常洗脱。有些实验室在透析去除变性剂的过程中加入底物或类似物,也有帮助酶折叠的效果(Zhietal.(1992)Prot.Sci1,522-529;Tayloretal.(1992)Prot.Engin5,455-459)。2.是否所有的位点特异性蛋白酶都有一样的酶切特性,而仅仅只是识别位点有所不同呢?位点特异性蛋白酶(例如凝血酶、肠激酶和Xa因子)通常被用来切割融合蛋白。这些酶的活性和第二点酶切倾向性很不相同。凝血酶在这三种中是特异性活性最高的,能够有效切质量比仅为1:2000的蛋白。Xa因子似乎对于切点周围的序列很敏感,经常会出现特异性位点切割不理想却发生别的位点被切割的情况。肠激酶的专一性是上述三种中最好的,但由于切割效率低(通常要求质量比达到1:10)而显得比较昂贵。另一个需要考虑的问题是:切割完成之后,是否需要去除蛋白酶。在质量比比较高的酶切反应进行完后,通常要通过色谱法处理。比较方便可行的方法是采用生物素化凝血酶(货号69672)结合链亲和素琼脂糖(货号69203)一起使用。尽管没有一种蛋白酶完美无缺,凝血酶还算的上是活性高、专一性好的典型。3.必须去除融合多肽或蛋白才能使目的蛋白获得活性吗?大多数情况下目的蛋白带有His?Tag,S?Tag?,11个氨基酸的T7?Tag?或HSV?Tag?等小肽时仍能表现出完全的活性。这些肽段相对都较为亲水,而理论上这样不会干扰蛋白的三维结构。我们建议首先测试蛋白活性,再看是否一定要去除前导序列才能适合特定的应用要求。4.如果目的蛋白包含信号序列,它会不会被运至细胞周质并以可溶、活性形式存在?抑或目的蛋白甚至可以被分泌到生长培养基中?N-端如果带有ompT或pelB这样的前导序列是使目的蛋白进入细胞周质的必要非充分条件。如果在生长培养基中发现目的蛋白的话,多半是因为细胞壁收到破坏,而并不代表蛋白是被分泌到培养基里的(StaderandSilhavy(1990)Meth.Enzymol.185,166-187)。穿过大肠杆菌内膜的机制还不甚了了(综述见Wickneretal.(1991)Ann.Rev.Biochem.60,101-124)。已经清楚了蛋白的成熟区对转运也有影响。虽然根据紧跟在信号肽序列后的目的蛋白序列可以对其输出的可能作个大概判断;但是由于蛋白的输出效率依赖于目的蛋白的特性,还是不能仅仅根据其序列来预测输出的实际情况(BoydandBeckwith(1990)Cell62,1031-1033;YamaneandMizushima(1988)J.Biol.Chem.263,19690-19696)。因此,实验中,在细胞质中发现目的蛋白(仍然带着未被切除的信号序列)或在细胞周质中有被部分加工的蛋白,在细胞周质及其它区域发现经过其它加工的蛋白,都不足为奇。某些情况下,降低诱导时的培养温度至25–30°C,可能提高输出蛋白的比率。5.如果我的蛋白大于100kd或含有多个亚基,还能用细菌表达吗?在细菌中已经非常成功底表达了很多大蛋白(Aukhiletal.1993)J.Biol.Chem.268,2542-2553)。多亚基复合物则可以通过分别表达各亚基,然后在有尿素的溶液中,将各组分以适当比例混和,再透析去除变性剂(Youngetal.(1994)Cell76,39-50;Garboczietal.(1992)Proc.Natl.Acad.Sci.USA89,3429-3433)。但是,自从Novagen的pETDuet和pACYDuet多表达载体被开发出来后,同时表达2-8个蛋白(亚基)变得十分容易了。6.我的基因对大肠杆菌有毒吗?某个蛋白不是所谓“毒素”并不意味它就不会杀死大肠杆菌或显著降低其生长水平。虽然有些种类的蛋白由于显而易见的原因很容易被认为是毒素(例如,可以与DNA或干扰电子转移);而其它的蛋白(例如一些重组抗体)有毒则并不明显或不易预期。如果试图在一个有“渗漏”表达的系统中克隆和表达蛋白而遭遇失败,基本可以认为目的蛋白对大肠杆菌有毒性。因此,对于一种新的基因的研究,基本的原则之一即是尝试多种pET载体/宿主菌组合,以期掌握最佳表达途径。7. 如果IPTG诱导后细胞停止了生长,是不是表示细胞死了?T7 RNA聚合酶非常活跃,T7转录和翻译信号极强,因此,一旦诱导,细胞的主要生理活动都向着目的蛋白表达的方面转化。在通常情况下,细胞将停止生长,形成克隆的能力大大降低,但并未死亡。菌落形成试验可以用来检测表达系统的性能。也有一些例外情况,例如特别的目的基因以及一些极为严紧的载体/宿主菌组合 (比如含有pLysE的宿主菌)等,这时在诱导后菌落还是会继续生长。8. E. coli会去除成熟蛋白N-端的甲硫氨酸吗?这种加工对目的蛋白的稳定性有何影响?N-端fMet是否被去除受倒数第二个氨基酸影响。这个加工过程由甲硫氨酸氨基肽酶催化,并受以下关系支配:去除的困难程度随倒数第二位氨基酸的支链大小的增加而降低(Hirel et al (1989)Proc. Natl. Acad. Sci. USA 86, 8247-8251; Lathrop, B.K. et al. (1992) Prot. Exp. Purif.3, 512-517)。上述研究者在实验中发现以下氨基酸种类出现在倒数第二的位置上时,此加工过程极少发生或根本没有发生:His, Gln, Glu, Phe, Met, Lys, Tyr, Trp, Arg。而当倒数第二位上是其它种类的氨基酸时,加工过程发生的可能从16%到97%,Tobias等人(Science 254, 1374-1377,1991) 确定了在大肠杆菌中蛋白氨基末端氨基酸与其稳定性之间的关系,也即“N-端原则”。具他们报导:如果下列氨基酸位于氨基端时蛋白的半衰期仅为2分钟:Arg, Lys, Phe, Leu, Trp和Tyr。相反,其它氨基酸位于氨基端时可以使受检蛋白的半衰期长达1

  • 经典蓝表达的是持久与自信。

    色彩研究机构发布2020年度代表色:经典蓝(Classic Blue),色号PANTONE 19-4052。因为“生活在一个需要信任和信念的时代,经典蓝表达的是持久与自信。

  • 引用 在发酵工艺角度看蛋白表达

    本文引用自发酵《在发酵工艺角度看蛋白表达》引用发酵 的 在发酵工艺角度看蛋白表达在分子生物学角度讲,找到或合成外源蛋白基因,构建质粒,并导入细胞以表达具有生物活性的折叠正确的蛋白,是一种成熟的常规技术。目前,包括酶,抗原,抗体,激素,其他小分子调节蛋白在内的很多蛋白,都已经用这种技术实现了工业化生产。在具体的工艺选择上,历史沿袭习惯和表达体系的选择,对工艺稳定性,成本,有巨大的影响。 目前,常用的蛋白表达系,有3个类别:1,大肠杆菌表达系。大肠杆菌的遗传背景十分清楚,代谢相对简单,发酵副产物少,在不是很严格的情况下,是表达蛋白的首选。通过按经验选择合适的菌株及合适的质粒,既可以以包涵体的形式得到大量的目标蛋白,又可以在细胞外得到可溶性蛋白,是常见的一种表达系。2,酵母菌表达系。用酵母做表达系,理由之一,也是遗传背景清楚,而且,当蛋白分子量过小,不能形成包涵体时,或蛋白的二硫键过多,不易体外复性时,酵母菌就成了合适的选择。另外,酵母对蛋白也会有一个简单的修饰,近似于高等动物的蛋白糖基化过程。这样,在合成在体液中发挥作用的蛋白,而且,又不能(技术水平限制)用动物细胞时,就可以退而求其次的选用酵母菌表达。一般是用信号肽把蛋白导出细胞,在发酵液中以可溶性蛋白的形式存在。这也是一个常见的表达系。3,动物(或说,人的)细胞表达系。这种情况,在纯度或毒性方面有较高要求的产品应用。一般国外产品应用较多,国内还没有用动物细胞表达蛋白实现商业化生产的报道。由于技术限制,国内工业化生产用这个方法目前还有较大难度。这3种表达系,各自有自己的优缺点。首先,在潜在的毒性影像方面讲,由于和真核生物亲缘关系太远,大肠杆菌就最不合适。其次是酵母菌。而在表达量和代谢控制成本上来讲,酵母菌和动物细胞又是差强人意的。现在,很多蛋白习惯性的选用酵母菌做表达系,就是因为早期提取蛋白技术低下,而动物细胞培养技术又不过关的原因所致。目前,虽然提取工艺提高了,但作为蛋白这种高附加值产品,运作成本集中在销售而不是生产,所以,降低生产成本的诉求很低。站在降低开发难度的角度讲,一方面,质粒构建和质粒与菌株的匹配方面依赖大量经验,另一方面,发酵工艺策略选择与发酵工艺优化又需要很大的投入,所以,技术开发部门沿用自己熟悉的,已经积累了大量经验的表达系,是合理的。不过,随着分子技术进一步的发展,分子技术进入低附加值的产品领域又是必然的,降低生产成本就变的越来越必要了。 大肠杆菌表达系有两种得到外源蛋白的方法:1,缓慢的表达,得到可溶性蛋白,这种方法产量和酵母菌表达类似,与酵母菌比,不具有明显的优势,一般是有做大肠杆菌传统的研究机构生产小分子蛋白的一种沿袭性做法。2,使用T7启动子表达蛋白,这样,高速的蛋白表达速率使蛋白来不及折叠,在细胞内形成非水溶性的包涵体。最后目标蛋白可以达到总细胞质量的15%-25%,这样,就为降低成本提供了一种可能。不过,在使用T7启动子表达时,也存在两个难点:1,蛋白的复性技术,如果形成可溶性蛋白,那利用(使用分子技术加载在目标蛋白上)信号肽,只要过一遍柱子就能分离得到纯度非常高的,具有生物活性的产品,而形成包涵体,对提取,复性就有较高的要求,特别是二硫键的存在,会对复性产生很大的影响。在目前国内和国际流行技术看,并不是所有的蛋白都能在预定成本下复性的。2,任何情况下,高产都是代谢网络互相依赖与作用的结果。在如此高的表达量下,甚至细胞的形态都已经发生很大变化,正常代谢受到严重干扰,以至于放大时,摇瓶工艺对发酵工艺几乎没有任何参考价值。发酵工艺策略的选择将直接依赖于工程人员在生化,生理水平对菌株的理解,而匮乏可资参考的数据资料。发酵工艺的优化要离开摇瓶经验在发酵罐上逐步进行,这样,整个发酵工艺的确立就需要比想象中要大得多的人员与时间的投入。另外,再说一下糖基化的问题。在动物细胞内合成的折叠正确的蛋白,在分泌入体液前会有一个糖基化的过程,加上一个糖链就不会很快被蛋白酶当做折叠错误的蛋白水解掉。但是以微生物为表达系表达的蛋白,不具有动物细胞的修饰过程,用大肠杆菌表达的目标蛋白,很快会在血液中被降解。解决或回避这个问题,有两种方法:1,用动物细胞表达,一般,是用癌化的人类细胞。由于动物细胞培养技术要求过高,在国外比较昂贵的医药中有应用,国内不常见。2,由于酵母菌也有一个对蛋白的粗略的修饰过程,可以用酵母菌表达目标蛋白。这个技术,国内国外都在用,可以是一个权宜之计。主要难点集中在对合适菌株的分子水平的改造,以达到尽可能接近满意的修饰效果。这样,就可以在不同目标蛋白上表达系和发酵工艺上做出选择。如果是小分子,无糖基化修饰或不在体液中发挥作用的蛋白,可以选择大肠杆菌和酵母菌表达系,得到可溶性蛋白,然后提取。如果分子量合适,并对生产成本有诉求,而且可以比较方便的复性,则选用大肠杆菌表达系,得到包涵体,然后复性。如果是需要在体液中发挥活性并有糖基化要求的 蛋白,则选用经过分子生物学改造的酵母菌表达系。当然,并不是任何一个实验室都同时拥有或擅长所有的方向的。而难点,往往集中在以下3个方面:1,大肠杆菌蛋白包涵体复性。2,糖基化修饰。3,发酵工艺(工程菌株的工业水平)的确定。做工程一般是理科实验室的弱项,而工科实验室做基础又很少,在把工科和理科结合方面,我们实验室还是有经验和成功先例的。下面,以溶菌酶为例,阐述一下蛋白表达系的选择和工艺的确定。溶菌酶是一类具有种属差异的非特异性免疫物质,在动物界中普遍存在,种类繁多,其实,在植物和微生物中也有发现。但研究最多的还是动物。开发兽用溶菌酶,主要是想作为抗生素的替代物,作为添加剂使用。因此是一个低附加值的产品。下面一切的工作,都会围绕“兽用”和“低附加值”展开。首先,比较几种常见和认为有效的溶菌酶,杀菌效果最好的是人的溶菌酶,但考虑到潜在的危险(具有对人溶菌酶产生抗性,并使抗性基因扩散),舍尔求其次,用了鸟类蛋清溶菌酶,作为表达对象。然后,在得到溶菌酶蛋白的一级结构后,对此进行了分析。此蛋白不会用于体液内,故没有糖链修饰的问题。分子量不是很大,但也不太小,130左右的氨基酸构成,足以形成包涵体,这就为用大肠杆菌表达系高效表达提供了可能。讨厌的是有4个二硫键,其中有两个在结构复杂区域,折叠正确有一定的困难。但是,如果用酵母菌做,可能没法解决成本问题,即便优化工艺现在过去了,也不会是最终版本----肯定会有人用大肠杆菌做。所以,结论就是必须知难而进,拿下复性工艺。另外,由于是低附加值产品,发酵吨位就不能太小。以往分子生物学流行的50升,100升小罐发酵,肯定是不行的。发酵罐的放大,除了溶氧,剪切力发生变化,更重要的是搅拌线速度改变了胞外酶以及包括细胞本身的代谢方式和速度。在胞内体现就是氧化还原电势的改变,这在工艺上会带来很多麻烦。虽然说,一般是放大后产量往往提高,但放大过程中,小罐的经验就不能照搬了。同时,也因为是低附加值产品,发酵过程中诸如质粒丢失等稳定性要求,就很高了,应为只有稳定,才能控制成本。这样,工艺就成了第二个难点。明白这些之后,按照大肠杆菌的喜好,合成了溶菌酶的基因。然后构建质粒,导入细胞。在摇瓶水平表达溶菌酶。在筛选复性条件的同时,就同时在发酵罐水平对工艺稳定性进行了优化。首先,为了进一步提高质粒稳定性,对初始培养基进行了重新设计。并改动发酵工艺策略,由于是胞内产物,我们应用高细胞密度发酵控制法延长限制性生长时间(不能用经典发酵的延长对数期生长时间的办法,对工程菌不适合,会造成质粒丢失,代谢紊乱等一系列问题),提高细胞量,并改变了诱导时机,得到了稳定的高产,具体数据比较枯燥,就不在此展开了。提取方面,经过不懈的努力,我们也掌握了比较成功的复性条件(具体由另外人员负责,也不做详细介绍了)。这样,工艺才基本拼凑好。进一步优化,在试生产多次重复时在进行。以上,是外源蛋白表达的粗略的技术和工艺的过程。

  • 【分享】数、符号、公式、图形的英文表达

    【分享】数、符号、公式、图形的英文表达

    [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=78449]杅﹜睫疡﹜鼠宒﹜芞倛腔荎恅桶湛 [/url][center]数、符号、公式、图形的英文表达 [img]http://ng1.17img.cn/bbsfiles/images/2008/02/200802021629_78450_1795123_3.jpg[/img][/center]本书主要介绍了如何用英语正确、科学、规范地表达数、符号、公式和图形。书中给出了大量应用实例、便于科技工作者查阅、参考和引证。本书可作为理工科专业的本科生、研究生、高校教师、各类专业技术人员,以及出国访问进修人员、留学人员和参加国际学术交流人员的参考书目和工具书。第一章 数的的表达1.1 整数一、整数的表达二、基数和序数三、整数的四舍五入1.2 小数和分数一、小数二、分数第二章 符号的表达2.1 一般数学符号一、基本运算符号二、括号三、符号和不等号2.2 初等代数符号一、分析符号二、乘方和开方三、虚数和2个常用无理数2.3 简单函数与区间一、函数二、区间2.4 微分与积分一、微分二、积分2.5 指数和对数一、指数函数二、对数函数2.6 三角函数、反三角函数、双曲函数和反曲函数一、三角函数二、反三角函数三、双曲函数四、反双曲函数2.7 集合一、集合二、空集、子集、交集、并集、补集第三章 初等代数公式的表达3.1 有理数的运算一、加法二、减法三、乘法四、除法五、乘方六、混合运算次序七、运算律……第四章 方程和不等式的表达第五章 三角形的图形表达第七章 四边形的图形表达第八章 圆的图形表达第九章 空间图表的表达参考文献[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=78449]数、符号、公式、图形的英文表达 [/url]

  • 原子吸收的结果表达方法

    假设测定某元素的原子吸收曲线如下:http://ng1.17img.cn/bbsfiles/images/2012/02/201202031904_347681_1766615_3.gif应用这条曲线测定样品的吸光度如下:0.090和0.150根据计算样品的浓度应该为0.09和0.15ug/ml前些天一些参加过计量认证的单位人来说样品浓度应表达为=0.1和0.15ug/ml现在我也不太清楚应如何表达,希望大家给予帮助。

  • Cell:鉴定出全基因表达分析标准方法存在重大缺陷

    来自美国麻省理工学院怀海德研究所的研究人员报道,在当前许多各种不同的生物学研究中,用于产生和理解全局基因表达分析数据的常见假设能够导致关于基因活性和细胞行为方面严重缺陷性的结论。相关研究结果刊登在Cell期刊上。怀海德研究所研究员Richard Young说,“表达分析是当代生物学最经常用到的方法之一。因此,我们担心存在缺陷的假设可能影响对很多生物学研究的理解。”今天对基因表达数据的大多数理解都依赖于一种假设:用来分析的所有细胞拥有类似的mRNA总量,其中mRNA大约占细胞RNA中的10%,作为蛋白合成的蓝图发挥作用。然而,一些细胞,包括恶性癌细胞,要比其他细胞产生几倍多的mRNA。传统的全局基因表达分析通常忽略这些差别。Young实验室研究员和论文共同通讯作者Tony Lee说,“我们着重研究了基因表达分析的这种常见性的假设,它潜在影响了很多研究人员。我们提供一种具体的问题例子和一种研究人员能够执行的解决方法。”Young实验室的成员们最近在研究表达高水平c-Myc的癌细胞的基因表达时揭示出这种缺陷。已知c-My是一种基因调节物,在恶性癌细胞中高度表达。当比较表达高水平c-Myc的细胞和表达低水平c-Myc的细胞时,他们吃惊地发现不同的基因表达分析方法能够产生显著性的不同结果。进一步的研究揭示出在含有高水平c-Myc的和低水平c-Myc的细胞中存在显著性的不同,不过这些不同利用常见使用的实验方法和分析方法来掩盖掉。论文共同作者Jakob Lovén说,“我们从不同的基因表达分析方法中观察到的不同结果是令人震惊的,而且导致我们在几种平台上重新研究了这整个过程。我们然后意识到细胞含有类似mRNA水平的常见假设存在严重缺陷,能够导致严重性的误解,特别是对拥有非常不同RNA含量的癌细胞而言,尤其如此。”除了描绘出这种问题之外,研究人员也描述了一种补救方法。通过利用被称作RNA spike-in的人工合成mRNA作为标准对照,他们能够比较实验数据并且能够消除关于细胞RNA总量方面的假设。他们将这种补救方法应用到他们研究的所有三种基因表达分析平台。尽管研究人员相信使用RNA spike-in应当成为全局基因表达分析的新标准,但是理解很多之前的研究时产生的问题可能持续存在。(生物谷Bioon.com)http://www.bioon.com/biology/UploadFiles/201210/2012102722451179.gifdoi: 10.1016/j.cell.2012.10.012PMC:PMID:Revisiting Global Gene Expression AnalysisJakob Lovén, David A. Orlando, Alla A. Sigova, Charles Y. Lin, Peter B. Rahl, Christopher B. Burge, David L. Levens, Tong Ihn Lee, Richard A. YoungGene expression analysis is a widely used and powerful method for investigating the transcriptional behavior of biological systems, for classifying cell states in disease, and for many other purposes. Recent studies indicate that common assumptions currently embedded in experimental and analytical practices can lead to misinterpretation of global gene expression data. We discuss these assumptions and describe solutions that should minimize erroneous interpretation of gene expression data from multiple analysis platforms.

  • 原核蛋白表达常见5大技术性问题解析:

    [font=宋体][font=Calibri]E. coli[/font][font=宋体]具有遗传背景清楚、细胞增殖快、表达量高、稳定性好和抗污染能力强等特点,适用于多种属蛋白的表达,尤其对小分子蛋白的生产具有极大的优势,但也存在一些问题,如易形成包涵体和含有内毒素等。义翘神州提供从密码子优化到重组蛋白表达[/font][font=Calibri]/[/font][font=宋体]纯化的一站式服务以及内毒素去除等附加服务,以满足不同的定制需求。我们拥有丰富的[/font][font=Calibri]E. coli [/font][font=宋体]可溶性蛋白表达[/font][font=Calibri]/[/font][font=宋体]纯化及蛋白复性经验,拥有多种[/font][font=Calibri]E. coli[/font][font=宋体]细胞株和表达载体,可为客户提供优质的[url=https://cn.sinobiological.com/services/e-coli-protein-expression-service][b]原核蛋白表达服务[/b][/url]。下面是在原核蛋白表达实验中常遇见的几大问题,为大家一一讲解:详情关注:[/font][font=Calibri]https://cn.sinobiological.com/services/e-coli-protein-expression-service[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、我不知道我的蛋白它有什么特性及其结构?[/font][/font][font=宋体] [/font][font=宋体]首先,你要确定一件事,那就是这几个蛋白质有人研究过没有?还是最新发现的蛋白质?如果没有人研究过,那就得用先测部分氨基酸,然后设计引物克隆了。如果有人研究过,那就好了可以根据软件来预测。[/font][font=宋体] [/font][font=宋体][font=宋体]如有[/font][font=Calibri]swiss[/font][font=宋体]—[/font][font=Calibri]pdb[/font][font=宋体]软件,但这个是要有氨基酸序列,知道基因序列,可以在[/font][font=Calibri]ncbi[/font][font=宋体]上进行[/font][font=Calibri]blastx[/font][font=宋体],得到蛋白。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、如何选择蛋白表达宿主菌?[/font][/font][font=宋体] [/font][font=宋体]原核系统和真核细胞偏爱的密码子有不同,因此,在用原核系统表达真核基因的时候,真核基因中的一些密码子对于原核细胞来说可能是稀有密码子,从而导致表达效率和表达水平很低。[/font][font=宋体] [/font][font=宋体]原核表达现象:[/font][font=宋体]一、蛋白不表达[/font][font=宋体]①蛋白为毒蛋白[/font][font=宋体]②序列含有稀有密码子[/font][font=宋体] [/font][font=宋体]二、蛋白表达不理想[/font][font=宋体]①蛋白明显降解[/font][font=宋体]②蛋白表达为包涵体[/font][font=宋体]③二硫键错误折叠[/font][font=宋体]④过高的本底表达[/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、质粒测序正确,蛋白无法表达怎么办?[/font][/font][font=宋体] [/font][font=宋体][font=宋体]①分析一下稀有密码子,如果比较多,可以尝试[/font][font=Calibri]rosetta[/font][font=宋体]([/font][font=Calibri]DE3[/font][font=宋体]);[/font][/font][font=宋体][font=宋体]②可能是基因本身的问题。[/font][font=Calibri]RNA3[/font][font=宋体]’的特殊结构可能导致转录出现问题,这种情况可以尝试融合表达,譬如[/font][font=Calibri]pET-32a[/font][font=宋体]。[/font][/font][font=宋体][font=宋体]③也许是表达量太低,也可以试一下[/font][font=Calibri]westernblot[/font][font=宋体],定性的检测一下。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体]、如果[/font][font=Calibri]IPTG[/font][font=宋体]诱导后细胞停止了生长,是不是表示细胞死了?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]T7RNA[/font][font=宋体]聚合酶非常活跃,[/font][font=Calibri]T7[/font][font=宋体]转录和翻译信号极强,因此,一旦诱导,细胞的主要生理活动都向着目的蛋白表达的方面转化。在通常情况下,细胞将停止生长,形成克隆的能力大大降低,但并未死亡。菌落形成试验可以用来检测表达系统的性能。也有一些例外情况,例如特别的目的基因以及一些极为严紧的载体[/font][font=Calibri]/[/font][font=宋体]宿主菌组合(比如含有[/font][font=Calibri]pLysE[/font][font=宋体]的宿主菌)等,这时在诱导后菌落还是会继续生长。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]5[/font][font=宋体]、如何提高重组蛋白在原核细胞里的表达水平,特别是可溶性表达?[/font][/font][font=宋体] [/font][font=宋体]这个问题是最困扰做原核蛋白表达纯化的人的。比如大肠杆菌表达蛋白本身表达量就大,但是表达的大都是包涵体,想要获得可溶性蛋白,就需要做复性,或是再设计实验时就想办法让其在上清中表达。一般就要通过基因优化,载体宿主优化筛选,表达条件优化,诱导条件优化等等。[/font][font=宋体] [/font][font=宋体]①降低重组蛋白合成的速率[/font][font=宋体]可溶性蛋白的产率取决于蛋白的合成速率,蛋白的折叠速率,以及聚集的速率。高水平表达时,肽链聚集的速率一旦超过折叠速率,就会形成包涵体。因此,降低重组蛋白合成的速率有利于提高重组蛋白的可溶性表达。[/font][font=宋体] [/font][font=宋体]②密码子优化[/font][font=宋体][font=宋体]密码子优化就是根据表达系统对密码子的偏好性进行优化筛选。经过优化的基因序列往往能提高[/font][font=Calibri]mRNA[/font][font=宋体]二级结构的稳定性,有利于新生肽段的正确折叠,提高外源活性蛋白的表达。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]③表达温度的选择大肠杆菌的最适生长温度在[/font][font=Calibri]37[/font][font=宋体]~[/font][font=Calibri]39[/font][font=宋体]℃之间,但此温度下极易生成包涵体蛋白,降低可溶性蛋白的表达,而低温培养条件下表达外源蛋白能有效地增加可溶蛋白的比例。[/font][/font][font=宋体] [/font][font=宋体]④诱导条件优化[/font][font=宋体]摇瓶培养时,应选用低菌体浓度诱导,因为在低菌浓度下菌体处于对数生长期,生长活跃,有利于表达可溶性蛋白。然而,如果能保证合理的补料与充分的通气,在较高菌浓度下诱导也同样可能获得可溶蛋白的高效表达。在某些情况下,诱导剂的流加能显著提高可溶蛋白的表达水平。[/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=Calibri]6[/font][font=宋体]、义翘神州提供标签去除服务吗?[/font][/font][font=宋体] [/font][font=宋体]是的。我们构建载体时可以在标签蛋白和目的蛋白之间加上蛋白酶的酶切位点,这样纯化后就可以利用蛋白酶去除标签,得到完整的目的蛋白。蛋白酶的切割效率受目的蛋白的影响,具体由实验结果而定。[/font][font=Calibri] [/font]

  • 无细胞表达系统FAQ详解

    [font=宋体]无细胞表达系统是一种在生物制药和基因疗法领域广泛应用的生物技术。尽管它带来了许多优势,如高表达水平和翻译后修饰,但无细胞表达系统也存在一些常见问题和挑战。本文将详细解答这些问题,并提供相应的解决方案。[/font][font=宋体] [/font][font=宋体][font=Calibri]Q1:[/font][font=宋体]无细胞合成([/font][font=Calibri]CFPS[/font][font=宋体])体系相对于细胞体系有哪些优势?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A1: [/font][font=宋体]无细胞表达系统的优势主要体现在:[/font][/font][font=宋体][font=宋体]? 可自动化操作简便、快捷——成本低(无需培养细胞和细菌相关的场地设施)、表达时间短([/font][font=Calibri]3h[/font][font=宋体])、单位表达量高。[/font][/font][font=宋体][font=宋体]? 蛋白表达工程化([/font][font=Calibri]Cell-free protein engineering[/font][font=宋体])——无细胞合成系统作为一个开放式的系统,可以向体系中自由添加所需的成分以调控蛋白的正确合成。例如可以向系统中加入[/font][font=Calibri]Fe2+[/font][font=宋体]、[/font][font=Calibri]Mn2+[/font][font=宋体]和[/font][font=Calibri]Cu2+[/font][font=宋体]等金属离子促进含有对应离子蛋白的正确合成;可以有效表达抗菌肽等毒性蛋白并实现规模化目的蛋白的生产。[/font][/font][font=宋体][font=宋体]? 适合原型研究([/font][font=Calibri]cell-free prototyping[/font][font=宋体]),整体原料均为外加,活性物质之间发生的化学酶促反应使整个过程相对可控。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q2:[/font][font=宋体]真核来源的蛋白是否必须用真核表达系统?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A2:[/font][font=宋体]并非如此,真核来源的蛋白除了传统的哺乳动物表达系统,还可以利用无细胞蛋白合成。无细胞系统是一套酶促级联反应,可以添加很多其他组分甚至是真核来源的提取物来实现真核蛋白的表达。如果某些目标蛋白(比如抗体功能性片段[/font][font=Calibri]scFv[/font][font=宋体]和[/font][font=Calibri]VHH[/font][font=宋体])的功能不依赖翻译后修饰,在这种情况下,不管是无细胞系统还是[/font][font=Calibri]HEK293[/font][font=宋体]系统,两者表达的活性无明显差异。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q3:[/font][font=宋体]无细胞合成系统是否适用于高通量,表达量如何?少量蛋白的检测是否也适用?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A3:[/font][font=宋体]无细胞表达系统非常适合高通量表达,其产量最高可到 [/font][font=Calibri]mg/mL [/font][font=宋体]级别,抗体和抗体功能性片段是 [/font][font=Calibri]100 [/font][font=宋体]μ[/font][font=Calibri]g/mL [/font][font=宋体]级别。对于少量蛋白的检测需要建立相应的检测方法,如您想进一步了解,我们可以协助进行方法学的设计。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q4:[/font][font=宋体]对于原核体系难以表达的真核来源蛋白,无细胞表达体系有什么优势吗?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A4:[/font][font=宋体]因为其开放式系统可以添加很多其他组分甚至是真核来源的提取物来实现真核蛋白的正确合成。例如我们聚焦的[/font][font=Calibri]VHH[/font][font=宋体]、[/font][font=Calibri]VHH-Fc[/font][font=宋体]等都可以实现无细胞系统中上清表达,但是这些蛋白在原核表达中往往以错误的形式存在。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q5: [/font][font=宋体]我在无细胞表达系统中进行表达,但蛋白总是以低表达水平出现,如何解决?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A5: [/font][font=宋体]低表达可能是由于反应条件不当或蛋白的折叠不完整。您可以尝试优化反应条件,如调整温度、[/font][font=Calibri]pH[/font][font=宋体]值和反应时间,以提高蛋白的表达水平。同时,添加适当的蛋白辅助因子或分子伴侣,有助于促进蛋白的正确折叠和表达。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q6: [/font][font=宋体]以不溶性形式表达,该怎么解决?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A6: [/font][font=宋体]蛋白不溶性表达可能是由于蛋白的折叠不正确或缺乏正确的蛋白折叠因子。您可以尝试添加蛋白折叠辅助因子,如小麦胚芽提取物,有助于促进蛋白的正确折叠和溶解性。此外,优化反应条件和表达条件,如调整温度和反应时间,也可能有助于提高蛋白的溶解性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q7: [/font][font=宋体]形成夹杂物,导致纯化困难,有什么解决办法?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A7: [/font][font=宋体]夹杂物的产生可能是由于蛋白的折叠不正确或反应条件不适合。您可以尝试添加蛋白辅助因子或分子伴侣,如[/font][font=Calibri]chaperonin[/font][font=宋体],来帮助蛋白的正确折叠和防止夹杂物的形成。同时,优化反应条件和表达条件,如调整温度和反应时间,也可能有助于减少夹杂物的产生。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q8: [/font][font=宋体]出现部分降解,如何解决?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A8: [/font][font=宋体]蛋白降解可能是由于蛋白的不稳定性或存在蛋白酶的活性。您可以尝试添加蛋白酶抑制剂,如苯甲酸,来减少蛋白的降解。同时,优化反应条件和表达条件,如调整温度和反应时间,也可能有助于提高蛋白的稳定性。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q9: [/font][font=宋体]出现异常修饰,如何解决这个问题?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A9: [/font][font=宋体]蛋白异常修饰可能是由于无细胞表达系统中存在的特定修饰酶。您可以尝试选择不同的表达系统或添加特定的修饰酶抑制剂,来减少蛋白的异常修饰。同时,优化反应条件和表达条件,如调整温度和反应时间,也可能有助于减少蛋白的异常修饰。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]Q10: [/font][font=宋体]形成聚集体,导致纯化困难,如何解决?[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A10: [/font][font=宋体]蛋白聚集体的形成可能是由于蛋白的折叠不正确或反应条件不合适。您可以尝试添加蛋白折叠辅助因子或分子伴侣,如小麦胚芽提取物,有助于促进蛋白的正确折叠和防止聚集体的形成。同时,优化反应条件和表达条件,如调整温度和反应时间,也可能有助于减少聚集体的产生。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]A10: [/font][font=宋体]高背景信号可能是由于蛋白的非特异性结合或存在夹杂物。您可以尝试优化反应条件和表达条件,如调整温度和反应时间,来减少非特异性结合。同时,使用适当的纯化方法,如亲和层析或凝胶过滤,可以帮助减少背景信号。另外,您还可以使用合适的对照实验来验证蛋白的特异性结合,以确保蛋白表达的准确性和可靠性。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州自主研发的[url=https://cn.sinobiological.com/services/cell-free-protein-synthesis-service][b]无细胞表达系统[/b][/url],经过充分验证,可为您提供优质的[/font][font=Calibri]VHH[/font][font=宋体]及[/font][font=Calibri]scFv[/font][font=宋体]快速表达服务,加速您的研发进程。有需求可以来义翘神州网咨询详情[/font][font=Calibri]https://cn.sinobiological.com/services/cell-free-protein-synthesis-service[/font][/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制