当前位置: 仪器信息网 > 行业主题 > >

边振甲

仪器信息网边振甲专题为您整合边振甲相关的最新文章,在边振甲专题,您不仅可以免费浏览边振甲的资讯, 同时您还可以浏览边振甲的相关资料、解决方案,参与社区边振甲话题讨论。

边振甲相关的资讯

  • 边振甲会见美国食品药品管理局助理局长一行
    2013年12月12日,国家食品药品监督管理总局党组成员边振甲同志会见了美国食品药品管理局助理局长琳达托尔夫森一行。双方交流了中美两国食品安全监管情况,讨论了食品安全监管法规制修订的最新进展,并就双方互派食品药品检查员一事交换了意见。国际合作司、法制司、食品安全监管二司、食品安全监管三司有关负责人及食品安全监管一司有关同志参加了会见。
  • 我国科学家利用聚集体调控探针实现多种细胞器动态超分辨成像
    近日,中科院大连化学物理研究所研究员徐兆超团队发展了聚集体调控探针,解决了以往蛋白标签荧光探针在超分辨成像应用中缺乏对多种细胞器通用性标记的问题。相关研究成果已发表于《聚集体》。  纳米尺度下细胞器与亚细胞器动态行为的监测与解析对于生命进程的解密至关重要。徐兆超团队前期针对溶酶体内酸性微环境设计合成了溶酶体自闪染料,并借助单分子定位显微镜(SMLM)实时监测了溶酶体运动并发现4种溶酶体间相互作用模式,针对脂滴内部高度疏水环境设计了缓冲脂滴探针,实现了脂滴的稳定超分辨成像并发现脂滴融合的新模式。该团队构建的SNAP蛋白标签探针还克服了传统线粒体探针易受电位波动而脱靶的问题,实现了对线粒体的稳定标记和动态超分辨成像。  然而,蛋白标签荧光探针依然面临细胞渗透性差的问题,特别是探针在细胞内局域分布使得单一探针难以具有对多种细胞器广谱性标记的性能。对此,该团队发展了具有“单体—二聚体—聚集体”多体系动态调控的SNAP蛋白标签探针BGAN-Aze,该探针在细胞外形成荧光淬灭的纳米聚集体而具有快速穿透细胞膜和在细胞内广泛分布的能力,在细胞内以单体的形式与目标蛋白共价连接,并伴随荧光的恢复,最终实现细胞内多种细胞器选择性荧光识别与细胞器亚结构的动态超分辨成像。  此外,研究发现BGAN-Aze为不带电荷的中性分子,可保持高度的细胞渗透性与生物相容性,能够实现纳米尺度下对细胞膜、线粒体、细胞核等多种细胞器亚结构的长时间追踪。  该探针基于遗传编码技术,实现了细胞内多种细胞器选择性荧光识别的广谱应用性,并且实现了细胞器亚结构的动态超分辨成像,进而揭示了多种未见报道的细胞器结构动态变化,为进一步研究不同细胞器的功能提供工具。
  • 2150万!中国科学技术大学合肥先进光源国家重大科技基础设施项目-多尺度时空分辨共振相干散射光束线
    一、项目基本情况项目编号:ZF2023-06-1195项目名称:中国科学技术大学合肥先进光源国家重大科技基础设施项目-多尺度时空分辨共振相干散射光束线预算金额:2150.000000 万元(人民币)最高限价(如有):2150.000000 万元(人民币)采购需求:多尺度时空分辨共振相干散射光束线采购,交付内容包括1条光束线主体、配套服务、技术资料三部分。光束线主体包括除定制光学元件、部分真空标准件(详见采购需求表2 采购人供设备清单)等之外的光束线全部硬件及运动控制软硬件部分;配套服务包括工程设计、部件测试、采购人提供的光学元件的检测、软件开发、整体集成、离线安装调试、现场安装准直和同步光在线调试;技术资料包括全套设备的三维模型、设备级二维装配图纸、设计报告、测试报告及使用说明书等。具体详见采购需求。合同履行期限:合同签订后5个月内完成光束线工程设计及评审,合同签订后28个月内完成出厂测试(含关键元器件及系统集成),提交出厂测试报告,合同签订后35个月内完成光束线现场安装,合同签订后43个月内完成在线同步光调试及测试验收。保修期为自验收合格之日起不少于12个月,范围包括所有设备及软件。本项目( 不接受 )联合体投标。二、获取招标文件时间:2024年01月31日 至 2024年02月07日,每天上午8:30至12:00,下午12:00至17:00。(北京时间,法定节假日除外)地点:“优质采云采购平台”(http://www.youzhicai.com/)方式:在线下载售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:中国科学技术大学     地址:合肥市金寨路96号        联系方式:沈老师 0551-63602706      2.采购代理机构信息名 称:安徽省招标集团股份有限公司            地 址:合肥市包河大道236号            联系方式:刘志凌、张文奇(805室),0551-62220264、62220268、15209887650            3.项目联系方式项目联系人:丁老师电 话:  0551-63602055
  • 深圳“华大基因”项目遭周边居民反对 审批部门被告上法庭
    禽流感、SARS、结核菌,甚至埃博拉病毒,如果这些微生物跑出实验室,会不会对周围居民健康和环境造成重大伤害?深圳华大基因科技有限公司的一个建设项目,周边居民因担心可能受到不利的环境影响,将通过项目环评审批的当地政府部门告上法庭,希望借此阻止项目上马。而居民的一个担忧就是项目的实验室微生物逃逸风险。就此,科技日报记者采访了相关专家。   专家介绍,其实,最早担忧实验室微生物&ldquo 逃逸&rdquo 的正是一些从事基因工程研究的专业人士。早在1970年代初,科学家将DNA片段在体外拼接,制造出重组DNA,再将重组DNA送入大肠杆菌中,使得大肠杆菌产生新的性状或者制造出科学家想要的蛋白质。当时实验所用的DNA片段有不少来自于抗生素抗性基因和肿瘤病毒的基因。科学家开始担心,携带有肿瘤病毒基因的大肠杆菌会不会从实验室&ldquo 逃逸&rdquo 出去,使人患上癌症。也有人担心,一旦经过基因工程改造过的细菌出现在实验室以外,它们携带的抗生素抗性基因是否会传递给其它细菌,导致不惧怕抗生素的超级细菌出现。   1975年,旨在探讨基因工程安全性的学术会议在美国举行,包括生物学家、医生、律师、媒体工作者数百人参加。会上科学家决定开始建立一个完善的系统将研究用微生物给&ldquo 禁锢&rdquo 起来,让它们为科研服务,但不会逃出去危害人类健康和自然环境。   深圳微芯生物首席科学家鲁先平告诉记者,实验室中所用的微生物,各国根据危险程度一般划分成四个级别,从基本没有危险的一级到最危险的四级。第四级微生物以病毒居多,比如埃博拉病毒。针对这四级微生物所设立的四个实验室防护级别,从简单到最严密,分成P1、P2、P3和P4四级,这其中的P就代表物理屏障 Physical Containment。针对不同等级的微生物,物理屏障必须做到保护操作人员不受到微生物的危害,同时还要防止微生物&ldquo 逃逸&rdquo 到实验室以外。以常见的 P2级实验室为例,操作人员需要穿着实验服,戴手套,在生物安全柜中对微生物进行处理,以避免直接接触微生物。P2实验室的废弃物必须经过高压灭菌后才能丢弃,以保证微生物不会&ldquo 逃逸&rdquo 。而要求最高的P4级实验室中,从穿着正压防护服保护操作者,到完全独立的建筑及配套设施来隔离微生物,所有配置都以最危险的微生物为&ldquo 假想敌&rdquo &mdash &mdash 实验室都是负压的,连空气都出不去。   深圳疾病预防控专家介绍,深圳只有市疾病控制中心才有P3级实验室,也只有他们才可以做高致病微生物的实验,没有发生过微生物逃逸事件。而且基本控制中心就在市区,百姓完全可以放心。   美国哈佛和麻省理工联合医疗科技学院崔博士,在大洋彼岸的生物实验室里直言,&ldquo 住在华大基因旁可能比住在医院和大学周围更安全。与实验室的距离不是问题,问题是规范和管理是否严格到位&rdquo 。   崔博士告诉记者,在美国生物实验室也分为四级,从BL1到BL4对应四个等级的微生物。&ldquo 一般在医院、大学、CDC(疾控中心)会有三级以上微生物,但是这些机构不会刻意远离居民,居民也不会恐惧。&rdquo   其实,在有形的物理屏障之外,科学家还设计了另一道无形但却更加严密的屏障&mdash &mdash 生物屏障(Biological Containment),就是让实验室所用的微生物只有在人造环境中才能正常生长。即使发生意外&ldquo 逃逸&rdquo ,这些微生物也不会在自然界或者人体中&ldquo 造孽&rdquo 。因为离开了特殊的人造环境,它们会迅速死亡。   为了让生物屏障更加严密,科学家还配套开发了安全载体。在基因工程中,载体把科学家感兴趣的DNA片段带入宿主细胞内,并且帮助DNA片段在细胞内实现自我复制和指挥蛋白质合成。基因工程中,最常见的载体叫做质粒。为了满足生物屏障的要求,科学家对质粒进行了改造,开发出了安全质粒。安全质粒不具备在不同细胞间转移的能力,也就是说它自始至终只能呆在一个细胞中。安全质粒与安全菌株配合使用,就形成了一个双保险。即使发生细菌&ldquo 逃逸&rdquo ,在其短暂的存活期内,装载在安全质粒中的外源DNA也会被牢牢锁定在细胞内,直到细胞死亡。   就未来华大基因中心项目,华大答复记者:&ldquo 作为华大的全球总部,总建筑面积约34.6万平方米,包括会议、办公、住宿、实验。其中实验室规划面积约3万平方米,主要为一级实验室,部分二级实验室,二级实验室占比约5%。实验室不做活体实验,仅做各类动植物和人类来源的DNA样本,更没有SARS、禽流感等呼吸道病毒操作,安全性高于医院化验室,华大中心项目内实验室不做转基因。&rdquo (原标题:居民住在&ldquo 华大基因&rdquo 周围安全吗?)
  • 大连化物所利用固体核磁共振精确表征分子筛中半交联骨架铝物种的辨识、演化和酸性
    近日,大连化物所催化基础国家重点实验室固体核磁共振及前沿应用研究组(510组)侯广进研究员、陈魁智研究员团队与低碳催化与工程研究部催化基础与催化新反应探索研究组(DNL1201组)徐舒涛研究员合作,利用固体核磁共振(ssNMR)及红外技术,精确表征了分子筛中部分骨架配位铝物种的辨识、演化和酸性。分子筛催化剂由于具有良好的微观孔拓扑结构和固有的酸位点,在现代工业过程中发挥着至关重要的作用,但其活性位点结构及其实际的催化性能仍存在不确定性。陈魁智等在前期工作中,利用超高场核磁共振发现了一种新型骨架部分键联的活性位点,即(SiO)4-n-Al(OH)n(简称Al(IV)-2)。该位点在C-H键活化及烷烃裂解等经典反应中发挥着独特而重要的作用,这使其结构的详细阐明变得十分重要。 本工作中,合作团队进一步以三甲基膦(TMP)作为探针分子,通过对MFI分子筛的全面NMR表征,提出31P化学位移约-58 ppm处的TMP吸附物种,实际上是TMP结合到重要的催化位点上的信号,但此前通常归属为TMP物理吸附在非活性物种上。NMR辅助的31P-27Al核间距测量和全面的二维异核相关(1H-31P, 31P-27Al和27Al-1H)核磁共振实验表明,该TMP结合位点(δ31P = -58 ppm)源于部分骨架配位的Al(IV)-2物种中的Al-OH基团,即Al-OHP(CH3)3。31P-31P同核相关实验证明,BAS与Al(IV)-2的空间距离比BAS与 LAS更近,这有助于揭示催化反应的构效关系。此外,不同合成后处理样品的FT-IR和1H NMR结果对Al(IV)-2和骨架配位Lewis位点提供了新的见解。该工作实现了对TMP-Al(IV)-2物种的全面表征,为阐明分子筛中复杂的BAS-LAS-硅羟基—铝羟基网络结构提供了依据。相关研究成果以“Identity, Evolution and Acidity of Partially Framework Coordinated Al Species in Zeolites Probed by TMP 31P-NMR and FTIR”为题,于近日发表在ACS Catalysis上。该工作的第一作者是大连化物所510组博士研究生王志利。上述工作得到国家重点研发计划、国家自然科学基金、辽宁省兴辽英才计划、大连化物所创新基金等项目的资助。
  • 核聚变实验先进诊断技术通过验收
    记者从中科院合肥物质科学研究院等离子体所了解到,近日,国家国际科技合作计划项目“稳态托卡马克等离子体的先进诊断技术”通过了科技部验收,专家指出,这些诊断技术将有利于提升我国新一代“人造太阳”实验装置EAST的物理实验研究水平。   “稳态托卡马克等离子体先进诊断技术”就是在核聚变实验中,获取等离子体温度、密度、放电时间等一系列重要参数并加以分析的科学技术及设备。   “稳态托卡马克等离子体的先进诊断技术”的研究是中科院等离子体所与美国普林斯顿等离子体物理实验室的科研人员合作完成的。科技部委托中科院国际合作局组织专家组近日全票通过项目验收。   中国是国际热核聚变实验反应堆(ITER)的参与国之一。2006年9月,中国科学家耗时8年、耗资2亿元人民币的EAST建成并投入运行。在第一轮实验中,科学家们获得了电流超过500千安、时间近5秒的圆形截面高温等离子体。EAST成为世界上第一个同时具有全超导磁体和主动冷却结构的核聚变实验装置。它的建成使我国迈入磁约束核聚变领域先进国家行列。
  • 原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析
    原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析什么是抗冻蛋白?抗冻蛋白是一种能抑制冰晶生长的蛋白质或糖蛋白质.自二十世纪发现以来,研究对象先后从极区鱼类,昆虫,转移到植物材料上。抗冻蛋白是生活在寒冷区域的生物经过长期自然选择进化产生的一类用于防止生物体内结冰而导致生物体死亡的功能性蛋白质。对于抗冻蛋白抗冻机制的研究有助于揭开冰晶成核、生长和冰晶形貌调控的分子层面的机理。抗冻蛋白生长机制的模型抗冻蛋白吸附在冰晶表面,通过EAFC3效应抑制其生长.机制的模型为:一般晶体的生长垂直于晶体的表面,假如杂质分子吸附于冰生长通途的表面,那么需要在外加一推动力(冰点下降),促使冰在杂质间生长.由于曲率增大,使边缘的表面积也增加.因表面张力的影响,增加表面积将使体系的平衡状态发生改变,从而冰点降低。通过对抗冻植物抗冻活性的研究,认为抗冻植物形成了一种特殊的控制胞外冰晶形成的机制,即抗冻蛋白和冰核聚物质的协同作用.在植物体内,热滞效应并不明显,而冰重结晶抑制效应显著.吸附抑制学说是否适应于植物有待于进一步的证实.原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析原位变温低场核磁共振系统是指可以实现在线原位改变样品温度,并在设置温度下对样品进行原位测量的低场核磁共振系统。该系统可同时实现弛豫分析和磁共振成像功能。传统的低场核磁共振系统是常温测试系统,测试过程中样品的温度保持与实验室温度(环境温度)一致,检测到的数据与样品在室温下的特性相关。而原位变温低场核磁共振系统可对样品进行程序控温(高低温),并进行原位检测,可研究不同温度下样品的特性。可对样品进行冷冻过程、干燥过程、蒸煮过程、样品冰点、食品变性过程等相关研究。 原位变温低场核磁共振系统是在常规低场核磁共振系统上加配了变温探头、控温硬件以及控温软件。系统样机如下图:
  • 中科院化学所成功研制高分辨宽带和频振动光谱仪
    p   高分辨宽带和频振动光谱(high-resolution broadband sum frequency generation vibrational spectroscopy, HR-BB-SFG-VS)是研究界面分子间相互作用的前沿光谱技术。最近,中国科学院化学研究所分子反应动力学国家重点实验室在国家自然科学基金委重大仪器研制项目的支持下,成功研制了具有亚波数分辨(& lt 1cm-1)的界面和频振动光谱系统。 br/ /p p   该仪器最终测试指标达到或优于最初的设计参数。其飞秒红外脉冲的半高宽大于250波数,可一次性覆盖400波数以上的红外区间,光谱分辨率达到0.4个波数,优于国际上已报道的同类型设备参数,比传统飞秒宽带和频光谱10-20波数的光谱分辨率有极大的提高。该仪器可用于测量气液界面、气固界面、超分子手性界面、生物膜界面的分子振动光谱、分子取向结构和动力学。 /p p   鞘脂类分子是细胞质膜的重要组成部分。Ca2+与鞘磷脂的相互作用一直是生命科学中备受关注的研究课题。研究人员使用研制成功的高分辨宽带和频振动光谱研究了气/液界面Ca2+对鞘磷脂(egg sphingomyelin, ESM)单分子膜的结构和取向的影响,提出了Ca2+与ESM相互作用的分子机理(如图),为深入理解神经细胞信号传导的分子机理及生物体内电解质对神经传导影响的机制提供了实验依据。该工作是世界上首次用高分辨宽带和频振动光谱研究磷脂体系,展示了该技术研究复杂体系的能力。相关研究成果近期发表在Biophysical Journal, Volume 112, Issue 10,2017, p2173–2183上,被编辑推荐为Featured Article。 /p p    a href=" http://www.sciencedirect.com/science/article/pii/S0006349517304423" target=" _self" title=" " 文章链接 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/c1e862e8-8e40-49ba-92ca-cdac16d2566b.jpg" title=" 1.jpg" / /p p   图:高分辨和频光谱实物图(a),高分辨和频振动光谱研究钙离子与鞘磷脂相互作用(b),钙离子与鞘磷脂之间相互作用机理图(c)。 /p p br/ /p
  • 中科院化学所成功研制高分辨宽带和频振动光谱仪
    p   高分辨宽带和频振动光谱(high-resolution broadband sum frequency generation vibrational spectroscopy, HR-BB-SFG-VS)是研究界面分子间相互作用的前沿光谱技术。最近,中科院化学所分子反应动力学国家重点实验室在国家自然科学基金委重大仪器研制项目的支持下,成功研制了具有亚波数分辨(& lt 1cm-1)的界面和频振动光谱系统。 /p p   本仪器最终测试指标达到或优于最初的设计参数。其飞秒红外脉冲的半高宽大于250波数,可一次性覆盖400波数以上的红外区间,光谱分辨率达到0.4个波数,优于国际上已报道的同类型设备参数,比传统飞秒宽带和频光谱10-20波数的光谱分辨率有极大的提高。本仪器可用于测量气液界面、气固界面、超分子手性界面、生物膜界面的分子振动光谱、分子取向结构和动力学。 /p p   鞘脂类分子是细胞质膜的重要组成部分。Ca2+与鞘磷脂的相互作用一直是生命科学中备受关注的研究课题。研究人员使用研制成功的高分辨宽带和频振动光谱研究了气/液界面Ca2+对鞘磷脂(egg sphingomyelin, ESM)单分子膜的结构和取向的影响,提出了Ca2+与ESM相互作用的分子机理(图1),为深入理解神经细胞信号传导的分子机理及生物体内电解质对神经传导影响的机制提供了实验依据。本工作是世界上首次用高分辨宽带和频振动光谱研究磷脂体系,展示了该技术研究复杂体系的能力。相关研究成果近期发表在Biophysical Journal, Volume 112, Issue 10,2017, p2173–2183上,被编辑推荐为Featured Article。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/0429659b-5694-4f57-ad4a-87772b8249f3.jpg" title=" W020170619545828640231.jpg" / /p p   图1 高分辨和频光谱实物图(a),高分辨和频振动光谱研究钙离子与鞘磷脂相互作用(b),钙离子与鞘磷脂之间相互作用机理图(c)。 /p
  • HORIBA 用户动态|中科院半导体所关于角分辨偏振拉曼光谱配置的研究
    撰文:刘雪璐等众所周知,实验上已经有多种手段可以实现角分辨偏振拉曼光谱(arpr)测试,但是不同配置往往会呈现出不同的结果。常用的arpr实验配置是固定入射激光和散射信号的偏振方向,旋转样品。但是,随着低维材料的兴起,样品尺寸往往只有微米量级,而旋转样品会导致样品点移动,很难实现对微米级样品的原位角分辨拉曼光谱测试。所以重新系统地研究各种arpr配置的优缺点并且找到对于微米级晶体材料优的实验方法显得十分必要。近,中国科学院半导体研究所谭平恒研究组系统全面地分析了三种测量arpr光谱的实验配置,给出了一般形式的拉曼张量在不同配置下拉曼强度的计算方法,并具体地以高定向热解石墨(hopg)的基平面和边界面为例,研究了这些arpr配置在二维材料拉曼光谱方面的应用。该工作使用了horiba公司labram hr evolution型全自动高分辨拉曼光谱仪,分析软件为labspec 6.0。全自动拉曼光谱仪快速的数据采集和强大的数据处理功能,为本工作的顺利完成提供了技术保障。今天在本文中,你将读到: 三种测量arpr光谱的实验配置及优缺点分析 高定向热解石墨的基平面和边界面arpr光谱测量及结果分析三种测量arpr光谱实验配置及优缺点分析图1. 三种测量arpr光谱的实验配置示意图:(a)αlvr和αlhr,(b)vlvr和vlhr以及(c)θlvr和θlhr。其中光路中偏振镜(polarizer)的使用是为了保证入射激光保持竖直偏振。单色仪入口的检偏镜(analyzer)用于选择沿竖直或水平偏振的拉曼信号。半波片用于改变入射激光或者散射光的偏振态。实验室坐标系(xyz)用黑色的箭头表示,而晶体坐标系(x’y’z’)用灰色的箭头表示。红色的双向箭头代表了照射到样品上的入射激光的偏振方向,蓝色的双向箭头代表了由竖直或水平检偏镜选择出的拉曼散射光的偏振方向。测量arpr光谱的实验配置如图1,三种配置的优缺点分别为:(a)αlvr和αlhr:改变入射激光的偏振方向,固定散射信号的偏振方向,而样品固定不动。这种偏振配置在测试过程中只需要通过旋转入射光路上半波片的快轴方向来改变入射激光的偏振方向。其优点在于便于操作,且保证了arpr光谱的原位测试。目前商业化的拉曼光谱仪,如labram hr evolution型拉曼光谱仪集成了自动化控制的半波片,这相比于手动旋转入射光路上半波片快轴方向的操作更为方便,测量结果更准确。(b)vlvr和vlhr:固定入射激光和散射信号的偏振方向,旋转样品。这种偏振配置被广泛应用于研究晶体材料拉曼光谱的各向异性,分别对应于常说的平行偏振(通常记为vv或yy)和交叉偏振(通常记为vh或yx)。其优点在于光路简单,而缺点为在旋转样品过程中不可避免地会导致样品点的移动,很难实现对微米级样品的原位角分辨拉曼光谱测试,使得测试技术难度增加。(c)θlvr和θlhr:在入射激光和散射信号的共同光路上设置半波片,通过旋转半波片的快轴-方向,同时改变入射激光及散射信号的偏振方向,而样品固定不动。这种偏振配置的优点同样是保证了arpr光谱的原位测试,但在低维材料的arpr光谱测量中尚未得到广泛的应用。上述三种arpr光谱的实验配置中,种配置(a)αlvr和αlhr可以借助自动化控制的半波片实现快速测量,是一种快速有效地测量arpr光谱的实验配置。第二种(b)vlvr和vlhr和第三种配置(c)θlvr和θlhr是等价的,这可以通过计算一般形式的拉曼张量在这两种配置下拉曼强度证实, 而后一种配置以其简便性和准确性等优势可以作为前一种的替代,从而可以更为高效地测量诸多微米级样品的arpr光谱。高定向热解石墨的基平面 & 边界面arpr光谱测量及结果分析二维层状晶体材料以其独特的物理、机械、化学和电学特性等迅速成为过去十余年国际科学研究的热点。近报道的一些垂直排列的二维层状晶体材料以及它们的异质结构,它们在边界面上能呈现出某些优于基平面的性质。这些各向异性材料的诸多性能随晶向而变,使其在纳米器件方面有着非常广阔的应用前景。hopg是石墨烯的母体材料,其由单层碳原子层即石墨烯依靠层间范德华力有序地堆垛而成,所以hopg可以作为二维层状晶体材料的代表。为了展示了不同arpr光谱的实验配置在二维层状晶体材料拉曼光谱测量以及各向异性研究方面的应用,研究人员对高定向热解石墨hopg的基平面(如图2)和边界面(如图3)分别进行了arpr光谱的测量。通过研究hopg基平面以及边界面上g模的拉曼强度对不同arpr光谱实验配置的依赖性,进一步证实了旋转样品的偏振测试技术(图1(b)vlvr和vlhr)和在入射激光及散射信号共同光路上放置半波片的偏振测试技术(图1(c)θlvr和θlhr)的等价性。后一种偏振测试技术可以作为前一种的替代,使得平面内各向异性材料的arpr光谱测量更为简便和准确。图2.(a)hopg基平面上的拉曼光谱。插图为晶体坐标系相对于激光入射方向的示意图。(b)偏振配置αlvr和αlhr,hopg基平面的g模拉曼强度igb(g)随α变化的坐标图。(c)偏振配置vlvr和vlhr下,hopg基平面的g模拉曼强度igb(g)随变化的坐标图。(d)偏振配置θlvr和θlhr下,hopg基平面的g模拉曼强度igb(g)随θ变化的坐标图。图3.(a)hopg边界面上的拉曼光谱。插图为晶体坐标系相对于激光入射方向的示意图。(b)偏振配置αlvr和αlhr下,hopg边界面的g模拉曼强度ige(g)随α变化的坐标图。(c)偏振配置vlvr和vlhr下,hopg边界面的g模拉曼强度ige(g)随β变化的坐标图。(d) 偏振配置θlvr和θlhr下,hopg边界面的g模拉曼强度ige(g)随θ变化的坐标图。对于垂直排列的二维层状晶体材料,单层厚度仅有亚纳米的级别,无法用光学显微镜对它们的晶向进行准确判断,目前急需一种快速、无损的鉴别方法。中国科学院半导体研究所谭平恒研究组进一步发现,当入射激光偏振方向与hopg碳平面取向平行时,其g模强度达到大值。基于这一特征,研究人员利用arpr光谱对hopg的边界面进行了晶向指认。这种方法还将有望推广到其他垂直排列的层状材料晶向的无损快速鉴别。图4. (a)hopg的边界面的光学图像,hopg边界面碳平面的方向y’与实验室坐标系y轴的夹角为β0=0o,20o和40o。(b)偏振配置αlvr下,β0=0o,20o和40o时hopg 边界面的g模拉曼强度ige(g)随α变化的坐标图。(c)偏振配置αlhr下,β0=0o,20o和40o时hopg边界面的g模拉曼强度ige(g)随α变化的坐标图。以上工作得到了国家重点研发计划和国家自然科学基金委的大力支持,并于近期以highlights文章发表于中国物理b《chinese physics b》上:liu xue-lu, zhang xin, lin miao-ling, tan ping-heng. different angle-resolved polarization configurations of raman spectroscopy: a case on the basal and edge plane of two-dimensional materials. chinese physics b, 2017, 26(6): 067802horiba科学仪器事业部结合旗下具有近 200 多年发展历史的 jobin yvon 光学光谱技术,horiba scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天horiba 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 布鲁克公布1.2 GHz高分辨率蛋白质核磁共振(NMR)数据
    德国柏林——2019年8月26日——布鲁克公司(纳斯达克代码:BRKR)在Euroismar 2019(https://conference.euroismar2019.org)上公布了1.2GHz高分辨率蛋白质核磁共振(NMR)数据。布鲁克2台1.2GHz超导磁体已在布鲁克瑞士磁体工厂达到目标场强,创造了稳定、均匀的NMR磁体的世界纪录,可用于高分辨率和固态蛋白质NMR在结构生物学中的应用,以及用于研究固有无序蛋白质(IDPs)。在EUROISMAR 2019上,布鲁克及其科学合作者展示了1.2 GHz高分辨率NMR数据,这些数据是使用新的1.2 GHz 3 mm三通道反向TCI低温探头获得的。布鲁克独特的1.2GHz超高场核NMR磁体采用了一种新的混合设计,高温超导体(HTS)在里层,低温超导体(LTS)在外层,这两者一起为高分辨率蛋白质NMR提供了极其苛刻的稳定性和均匀性。一旦进一步的系统开发和工厂测试完成,意大利佛罗伦萨大学的Lucia Banci教授和Claudio Luchinat教授有望成为第一批获得1.2 GHz NMR谱仪的客户,这一过程预计还需要几个月的时间。在1.2 GHz系统上对CERM测试样本进行初始数据采集后,他们表示:“在布鲁克瑞士超高场设备上,已经获得了突触核蛋白的高分辨率谱图数据,突触核蛋白是一种与阿尔茨海默氏症和帕金森氏症等疾病相关的固有无序蛋白质。此外,我们还能对与多种癌症相关的蛋白质的第一个1.2 GHz NMR谱图数据进行了审查。毫无疑问,1.2 GHz仪器分辨率的提高——由于在高磁场中色散的增加而成为可能——将有助于推动结构生物学等重要研究领域的研究。一旦最终开发和工厂评估完成,我们期待在实验室收到1.2 GHz NMR谱仪。"布鲁克 BioSpin集团总裁Falko Busse博士表示:“新的1.2 GHz系统是一场技术革命,将使新的分子和细胞生物学发现成为可能。我们非常重视我们的超高场NMR客户对我们的信任,并且我们为在1.2 GHz频率下生成世界上第一个高分辨率蛋白质核磁共振(NMR)数据而感到自豪。虽然我们尚未完全完成新1.2 GHz系统的所有开发,但我们最近的快速进展证明了我们致力于创新,并致力于与客户合作开发有利的科学能力。”与先前宣布的Ascend 1.1 GHz磁体类似,Ascend 1.2 GHz混合HTS/LTS磁体是一个标准孔(54 mm)的双层磁体系统,其漂移和均匀性规格与布鲁克现有的900 MHz和1 GHz超高场NMR磁体相似,确保与一系列NMR探头类型和谱仪附件兼容。布鲁克公司的Ascend™ 1.2 GHz NMR磁体利用了先进的导体和磁体技术,用于绕组、连接、力管理、淬火保护、低漂移和高均匀性,这些技术是为ENC 2019宣布作为产品的Ascend 1.1 GHz磁体成功开发的。1.2GHz 1H-15N 2D BEST-TROSY(左)和1.2GHz 3D 15N编辑的NOESY-HSQC 2D平面,500μM泛素样品,13C/15N标记,溶解在90%H2O和10%D2O溶液中。两个实验均使用3mm TCI低温探头进行记录。
  • 受激拉曼散射技术可无创诊断细胞癌变程度
    p style=" TEXT-ALIGN: center" img title=" sss_55f7c78f7a458.jpg" src=" http://img1.17img.cn/17img/images/201509/insimg/0ea9e597-6c66-4b99-a961-aadbc4690184.jpg" / /p p   美国哈佛大学的科学家在最新研究中利用受激 a title=" " href=" http://www.instrument.com.cn/news/20150918/172905.shtml" target=" _self" 拉曼 /a 散射(SRS)显微镜技术,在无需荧光标记的情况下,观察到活体皮肤癌细胞分裂过程中DNA分子动力活动机理。新技术是一种不用着色的非标记技术,可在不干扰细胞正常进程的条件下了解细胞癌变程度。 /p p   现有方法中的DNA检测技术需要对其进行荧光标记,病理诊断也要对活检组织染色,这些方法均有可能改变细胞的原生环境。受激拉曼散射能在活细胞研究中实时快速获得样本数据,并可观察到化学键的振动频率。通过观察细胞内碳氢键的振动区间,并对图像进行线性分解,可观察到细胞内DNA、蛋白质和脂类及其分布,以及细胞分裂过程。 /p p   研究人员发表在《美国国家科学院院刊》上的报告称,他们利用受激拉曼散射技术观察了海拉细胞的细胞分裂全过程。在有丝分裂前期,他们构建出三维DNA、脂类、蛋白质分布 在有丝分裂间期,辨别出细胞核的染色质结构。延时受激拉曼散射技术还观察到细胞分裂中期到后期过渡期的变化。 /p p   研究人员对使用苯二甲酸(TPA,可促进细胞分裂)的老鼠皮肤进行了活体研究。除了同样观察到上述细胞周期的每个阶段,他们还观察到癌细胞中染色体的迁移,发现细胞有丝分裂活动高达18个小时,24小时后下降。这是首次细胞有丝分裂率在活体内以量化方式记录。 /p p   他们还检测了该技术在诊断人类肿瘤中的可行性。实验采用三位鳞状细胞癌患者的皮肤癌组织作为样本。他们发现,癌变细胞的有丝分裂在不断增加,从而增加细胞分裂和细胞增殖。这表明新方法可与传统染色病理诊断相提并论。此外,新技术还能让研究人员对肿瘤细胞有丝分裂动力学进行量化研究。研究人员表示,该技术可用来计算体内有丝分裂速度,有助于皮肤癌诊断。 /p p   研究人员表示,该技术提供了自然环境下细胞和细胞核的高分辨率影像,对于无创皮肤癌诊断和癌细胞快速评估具有较好的应用前景。 /p
  • 中科院微观磁共振重点实验室成功实现高分辨电阻抗医学成像
    p   记者从中国科学技术大学获悉:该校杜江峰院士领导的中科院微观磁共振重点实验室在医学电阻抗成像方面取得重要进展,他们利用参数化水平集方法实现了高分辨的电阻抗图像重建。该成果发表在医学成像领域国际顶级期刊《医学影像》上。 /p p   电阻抗成像技术是根据生物体内不同组织在不同功能状态下具有不同电阻抗的原理,通过在生物体体表注入安全激励电流,测量体表响应电压,重建生物体内部的电阻抗分布,从而反映体内结构及功能的新型医学成像技术。由于电阻抗成像具有功能成像的特点,而且对人体无害、使用方便、设备价格相对低廉,成为近年来国内外研究的热点。但电阻抗重建图像通常分辨率较低且对模型误差极为敏感,因此开发高效、稳定且具有高分辨能力的成像算法是电阻抗技术的关键和难点。 /p p   杜江峰院士团队通过利用近年来发展起来的参数化水平集方法及临床医学上现有信息,设计了新的电阻抗成像算法,成功实现高分辨的电阻抗图像重建,并通过大量仿真实验验证了算法的有效性和可行性,结果表明该算法不仅具有高分辨图像重建能力,而且对医学电阻抗成像中普遍存在的模型误差、参数优化设置方式等具有很好的稳定性。 /p p   据介绍,该研究成果有望推动电阻抗成像技术向更为实用的应用方向发展,例如肺部临床电阻抗成像等。 /p
  • 1460万!深圳医学科学院超高分辨共聚焦显微镜和快速高分辨共聚焦显微镜采购项目
    一、项目基本情况: 1.项目编号:SZCG2024001054 项目名称:深圳医学科学院超高分辨共聚焦显微镜采购项目 预算金额(单位:元):9700000.00 最高限价(如有):无 采购需求:标的名称数量单位简要技术需求(服务需求)备注深圳医学科学院超高分辨共聚焦显微镜采购项目1套详见招标文件 合同履行期限:详见招标文件用户需求书。 本项目不接受联合体投标,详见“申请人的资格要求”。2.项目编号:SZCG2024001055 项目名称:深圳医学科学院快速高分辨共聚焦显微镜采购项目 预算金额(单位:元):4900000.00 最高限价(如有):无 采购需求:标的名称数量单位简要技术需求(服务需求)备注深圳医学科学院快速高分辨共聚焦显微镜采购项目1套详见招标文件合同履行期限:详见招标文件用户需求书。 本项目不接受联合体投标,详见“申请人的资格要求”。二、获取招标文件 时间:2024年08月31日至2024年09月11日(北京时间)。 地点:登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的招标文件。 方式:在线下载。 售价:免费。 凡已注册的深圳市网上政府采购供应商,按照授予的操作权限,可于2024年08月31日至2024年09月11日13:30 期间登录深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)下载本项目的采购文件。投标人如确定参加投标,首先要在深圳政府采购智慧平台网上办事子系统(http://zfcg.szggzy.com:8081/TPBidder/memberLogin)网上报名投标,方法为在网上办事子系统后点击“【招标公告】→【我要报名】”;如果网上报名后上传了投标文件,又不参加投标,应再到【我的项目】→【项目流程】→【递交投标(应答)文件】功能点中进行“【撤回本次投标】”操作;如果是未注册为深圳政府采购智慧平台(http://zfcg.szggzy.com:8081/)的供应商,请先办理密钥(请点击),并前往深圳市南山区沙河西路3185号南山智谷A座(深圳交易集团总部大楼)3楼前台(咨询电话:0755-83948165、0755-83938966、4008301330)绑定深圳政府采购智慧平台用户,再进行投标报名。在网上报名后,点击“【我的项目】→【项目流程】→【采购文件下载】”进行招标文件的下载。三、对本次招标提出询问,请按以下方式联系 1.采购人信息 名称:深圳医学科学院 地址:广东省深圳市光明区新湖街道光明生命科学园A栋17层 联系方式:0755-66650028 2.政府集中采购机构 名称:深圳公共资源交易中心,具体由深圳公共资源交易中心(深圳交易集团有限公司政府采购业务分公司)组织实施 地址:深圳市南山区沙河西路3185号南山智谷A座(深圳交易集团总部大楼)27楼 联系方式:0755-86580001、0755-86580002 3.项目联系方式 项目联系人:龚工 电话:0755-86580002
  • 深圳先进院高分辨率超声成像研究获系列进展
    p   近期,中国科学院深圳先进技术研究院劳特伯医学成像研究中心郑海荣团队在高分辨率超声成像研究中取得一系列进展。 /p p   高分辨率超声主要采用大于15MHz的超声频率进行成像,可获得几十微米量级的成像分辨率。在临床中主要应用于浅表、内窥和眼科等方面的疾病检测。高频超声换能器是成像系统的关键部件,主要基于压电材料进行设计加工。但传统压电材料介电常数较小(夹持介电常数小于1500),造成压电阵元尺寸小的高频换能器的电阻抗会大幅度提升,进而导致换能器成像性能不佳。郑海荣团队邱维宝课题组利用新开发的一种高介电常数、高压电性能的改性PMN-PT陶瓷(夹持介电常数为3500)设计制备了性能优异的40MHz高频超声换能器(阵元尺寸可为0.4mm× 0.4mm),使得制备的高频超声换能器的电阻抗大幅度降低,更容易与电子系统的阻抗相匹配,实现较高的成像灵敏度(-13dB)。此外,该研究中设计制备的超声换能器具有较高的成像带宽(80%)和信噪比,并在高分辨率医学成像领域中展现出应用潜力。相关研究成果已被IEEE Trans Ultrason Ferroelectr Freq Control接收。 /p p   邱维宝课题组在高分辨率超声成像方法和电子系统方面也取得了研究进展。高频超声获得高分辨率医学图像存在衰减系数增大导致成像穿透深度降低的问题。据此,课题组提出了基于编码超声的高频超声成像方法,在激励换能器时,采用带有一定编码的超声信号进行激励,回波接收时通过算法解码恢复出高分辨率图像,使得在成像中既可以维持图像的分辨率,也可以提升超声成像的穿透深度。该技术在浅表和内窥等成像中具有应用潜力。相关研究成果发表于IEEE Trans Biomed Eng。 /p p   在进行高分辨率超声成像时,电子系统需要具有较高的数据采样率,以获取超声回波的原始数据信息,因此需要大幅度提高模数转换器(ADC)的采样频率。然而,传统超声成像系统的ADC采样频率通常为60MHz或者更低,不能满足大于30MHz的高频成像需要。据此,邱维宝课题组提出了一种延迟激励方法,通过将激励波束的时序进行规律性调整,在多次发送后获取多个数据图像,通过延迟复合处理,即可以获得高采样率的图像。该方法有望使临床用的超声设备,在不改动主要电子器件模数转换器的前提下,实现高分辨率超声成像的功能。相关研究成果发表于IEEE Trans Biomed Eng。 /p p   高分辨率超声成像技术在内窥镜领域具有重要的应用潜力,邱维宝课题组在推进血管内超声成像技术的同时,也在尝试新型内窥成像技术。胶囊内窥镜(capsule endoscopy)是一种胶囊形状的内窥镜,它是用来检查人体肠胃的医疗仪器。胶囊内窥镜体积仅有普通胶囊大小,消除了传统检查耐受性差的缺点,能够拍摄食道、胃、小肠、大肠等,从而完成对人体整个消化道的检查。然而目前该技术是采用光学成像方法,仅能观测组织表层的病变信息,不能获得深层次的组织情况。由于超声成像技术的穿透性较好,因此课题组拟尝试进行超声胶囊内窥镜的设计验证,提出了基于高分辨率超声的内窥成像控制方案,采用40MHz的超声频率获得了小于60微米的肠道组织成像分辨率。相关研究成果发表于IEEE Trans Med Imaging。 /p p   以上研究得到了国家自然科学基金、中科院前沿科学重点研究计划、广东省杰出青年基金、深圳市孔雀计划等项目的资助,以及美国南加州大学、宾夕法尼亚州立大学,英国格拉斯哥大学,东北大学等高校的支持与合作。 /p p   论文题目:High Performance Ultrasound Needle Transducer Based on Modified PMN-PT Ceramic with Ultrahigh Clamped Dielectric Permittivity /p p style=" text-align: center " img title=" 01.png" src=" http://img1.17img.cn/17img/images/201712/insimg/76653693-b0cd-480d-ab1c-d835a6a2f035.jpg" / /p p style=" text-align: center " strong 图1.(a)高频超声换能器技术参数对比 (b)高频超声换能器结构示意图和实物图 (c)成像性能测试图 /strong /p p style=" text-align: center " img title=" 02.png" src=" http://img1.17img.cn/17img/images/201712/insimg/c0246a6c-4345-4ee5-b1a2-fe74a5030a04.jpg" / /p p style=" text-align: center " strong 图2.(a-c)编码成像原理示意图 (d)编码成像技术可以大幅度提高血管内超声成像的穿透深度 /strong /p p style=" text-align: center " img title=" 03.png" src=" http://img1.17img.cn/17img/images/201712/insimg/86bdbf66-cabb-484d-92d3-d2dc22d62b25.jpg" / /p p style=" text-align: center " strong 图3.左:延迟激励成像原理示意图 右:眼睛组织超声成像图 /strong /p p style=" text-align: center " img title=" 04.png" src=" http://img1.17img.cn/17img/images/201712/insimg/90b38fc1-6ef0-4192-83b1-723cacb12d4c.jpg" / /p p style=" text-align: center " strong 图4.(a-b)胶囊超声内窥镜设想方案示意图 (b)高分辨率肠道组织超声成像图 /strong /p p & nbsp /p
  • 韩国研发超高分辨率单次测定“核磁共振分析法”
    韩国科学技术研究院(KIST)开发出仅需单次测量就可获得超高分辨率碳原子核磁共振信息的分析法,可用于分析分子结构复杂的天然物质结构。研究结果刊登在《Angebante Chemi》上。  这种“超选择性异种核分极传达法(UHPT)”可在短时间内选择性分析碳、氢原子及它们之间的连接信息,仅需一次测量即可在碳原子核NMR信号中找出与特定氢原子核连接的碳,实现数赫兹(Hz)水平分辨率的碳原子信号。与传统分析法相比,该分析法具有快速、准确和经济性。与超高磁场NMR设备相比,仅用约为五分之一的检测时间,即可获得同等水平的NMR信号解析能力。在天然物质生物产业领域,该技术可用作查明新材料有效成分及规格化的标准分析技术。  本文摘自国外相关研究报道,文章内容不代表本网站观点和立场,仅供参考。
  • 沙琪玛被曝违规加硼砂 车间旁边就是狗窝
    外表鲜亮 真相如何   如此沙琪玛 谁能吃得下   绵软、蓬松、香甜、可口……也许这几个词还不能完全概括沙琪玛的特点,但是不管怎样,在品种繁多的点心里,沙琪玛是相当受欢迎的一种,市场大,厂家多,你知道自己买来的沙琪玛到底是在什么样的环境里生产出来的吗?在它的香甜可口背后藏着什么样的奥秘呢?请看今天的追踪调查。   在河南省郑州市万客来食品批发市场,记者看到许多商户都在卖沙琪玛,而且品牌、种类繁多。   批发商:(你这一箱怎么卖?)36元,10斤的,合每斤3元6角。   这些沙琪玛不但便宜,而且外表看起来都很鲜亮,生产厂家、地址以及食品质量安全QS标致等也一应俱全。   实际情况果真如此吗?这些沙琪玛又是怎么生产出来的呢?   熬糖大锅的旁边就是狗窝   从外包装上看,这些沙琪玛的生产厂家大都位于河南省郑州市或者新乡市。按照一位批发商指点的路线,记者首先来到了郑州市管城区十里河镇柴郭村。   村民1:那边挨门,全部都是做食品的,不过这段时间查得严,他们白天都不敢做。   村民2:(您好,问一下,这边有做沙琪玛的吗?)这条道后边,(那条街过去是吗?)嗯。   循着村民的指引,记者在柴郭村找到了一个小食品生产厂家。工厂大门紧闭,门外没有挂牌子,在外面记者就闻到了浓郁的味道,能听到里面机器轰鸣。   记者又找到了另外一个小食品生产厂家。这家工厂同样是大门紧闭,没有悬挂厂名。   工人:(有人吗?)干嘛?(咱们老板在吗?)不在。   在被细细盘问一番之后,记者终于得以进入。   走进屋子记者看到,几名工人正在忙碌着,一条狗在里面到处溜达。   工厂负责人陈老板告诉记者,虽然产品包装上写着喜羊羊,但他们的沙琪玛是特美牌。这里的沙琪玛是怎么生产出来的呢?   陈老板说,做沙琪玛相当简单,将面粉、鸡蛋等调配在一起,放在机器里做成短条状,经过烘烤,然后再和糖稀搅拌,切割,就算完成。在院子里,记者看到一口大黑锅。   陈老板:(这锅是干什么用的?)熬糖的。(白糖?)对。   这就是陈老板用来熬糖的大黑锅,锅的旁边紧挨着一个狗窝。   陈老板:(你这小狗产崽了,产了几个?)四个。   在这口大黑锅里熬好糖稀后,接下来就是将已经拉成条的沙琪玛半成品和糖稀搅拌在一起。   陈老板:(这是弄好的,在这转一下是吗?)对,(为什么要转一下?)这都要转一下,(转完之后怎么办?)转完之后就是压。   半成品经过搅拌,被放在一个铁盘里。压制后,就到了切割环节。   陈老板:(你这是这么横切一下、竖切一下是吗?)对。   切成块之后,经过包装、装箱,标注为“特美牌”的沙琪玛就算制作完成了。   让记者感到奇怪的是,沙琪玛外包装上所印的生产地址并不是郑州市管城区十里河镇柴郭村,而是长沙市雨花区黎托乡川河潘家湾组。生产商是:长沙市雨花区杰运食品厂。明明是在郑州生产的沙琪玛,生产地址怎么变成长沙了呢?   陈老板:(你这个厂址标的是长沙吗?)对,是我姐夫在那边做,我用他的牌子在这边做,(在郑州生产的能标长沙的吗?)可以,像我们这个,又不说是正规的,我们套他的牌子在这边做,如果是正规的话,我们自己正规的,也要装修,也得要办证那样子的。   在这家工厂的整个生产区域内,记者看不到任何消毒设施,墙壁上到处是灰尘,在生产沙琪玛的整个过程中,工人都不戴手套、口罩,也不穿工服,而是穿着又黑又油的衣服。就是这样生产出来的沙琪玛,外包装上居然还印有表示符合食品质量安全的QS标志。   陈老板:(你这QS是你的还是?)QS是正宗的,什么都是正宗的,(QS是你郑州这个厂的,还是长沙的?)也是长沙的,条码也是长沙的,(你郑州这个厂子有QS吗?)没有。   原来,这家工厂是一个根本就没有食品生产资格的黑作坊。   陈老板:我们这个货,无论去超市也好,去哪里也好,都是可以的,在万客来(批发市场),如果万客来查,都没事的,万客来查,证件一拿出来,给他看一下就行了,因为我们厂址也是真的,名字也是真的,QS是真的,条码也是真的,只是说我们套他的牌子在这边做,郑州、河南这边都是这样子的,十家里面有两家有证件,剩下都是这样子的,他如果查,查到这个厂子里面也没事。   污垢遍地苍蝇乱飞   离开郑州管城区,记者又来到了河南省新乡市,这里也有一些沙琪玛加工厂。瑞嘉琪食品厂位于新乡市郊区的乔谢村,工厂的名字起得非常漂亮,但厂房门口却是一片臭水沟,里面堆着垃圾,散发出难闻的气味。   陈老二:(你这做食品的,这水这么臭?)夏天,天热都是这,(影响卫生啊,招苍蝇什么的。)   走进瑞嘉琪食品厂的车间,记者看到工人正在徒手将一颗颗蜜枣放在沙琪玛上,地上、墙上到处是黑乎乎的污垢。   工人:(你这儿养的苍蝇挺多?)啊。   记者看到,这里生产的沙琪玛名叫瑞嘉琪牌。就是这样的环境,陈老板还声称自己有食品安全QS的认证。   陈老二:(QS证呢?)QS证现在都快验收了,(快验收了?)嗯,找不着了。   真是找不到了吗?经过查询,记者发现,这个条码为QS410724010176的QS认证已经过期。陈老板告诉记者,没有食品加工许可证,并不止他一家。新乡卫辉市的这位吴老板同样没有食品加工许可证。   吴老大:我们这个小作坊没有这个QS认证,不让对外流通,我们这小作坊,卫辉工商所来了,他就讲你只能在卫辉这个范围销售,不能对外销售,对外销售万一查出来了,没有QS,你在卫辉这儿也不能卖啊。   没有食品加工许可证,生产出来的沙琪玛怎么销售呢?   吴老大:咱用的包装箱是人家的,给人代做的。   吴老板告诉记者,他们这几天没有做沙琪玛,而是在做另一种叫做“猫耳朵”的食品。吴老板带领记者参观了他的加工作坊。   二十多平方米的工棚里,几名工人正热火朝天地工作着。用来制作食品的面上落满了苍蝇。   吴老板又带记者来到了他存放食品的仓库,一间不足二十平方的房间里,放着三张床,地上脏乱不堪,看得出来,这里也是吴老板一家人的卧室。制作出来的小食品,就堆放在房间的一角。   所谓诀窍就是硼砂   在河南省郑州市、新乡市,大大小小十多家沙琪玛加工厂走访下来记者发现,他们生产的沙琪玛有几个特点——   一是价格相当便宜,二是保质期都很长。   厂家1:(咱们这沙琪玛现在什么价位?)现在出厂价是3元7角一斤。   厂家2:现在最低的价位,给你讲实心话,得合到3元7角一斤,3元6角一斤。   厂家3:它一年不会出毛,不会坏。   厂家4:(常温存放能存放多久?)8个月没问题,你要真放一年也没事。   如此便宜、外表鲜亮,长时间还不会变质的沙琪玛,在制作过程中究竟有什么奥秘呢?一些厂家负责人告诉记者,秘密就在于配料,但是如何配料,在这个行业是不外传的,所以一般人也不可能知道。   朱老板:配料方面肯定不会让你看的,(配料为什么不让看?)那都是诀窍,我姑父那儿还不让我看呢。   做沙琪玛的秘密,被这些老板说得神乎其神,然而新乡市的一位内幕人士告诉记者,对于一些生产沙琪玛的小厂家来说,秘密其实就是硼砂。   内幕人士:他生产沙琪玛,然后添加工业化工原料,硼砂那类东西,(他们怎么添加硼砂呢?)就是在初期配料的时候直接放到原材料里面,然后往食品里面添加,目前来讲,应该是所有的,都在使用这个东西,(他们为什么要用硼砂呢?)因为硼砂在食品这一块,可以起到加速膨化和色泽改变,让色泽显得更加艳一点那种效果。   证照齐全照样加硼砂   硼砂,化学名四硼酸钠,是一种有毒化工原料,长期摄入会对人体的肝脏、肾脏及神经系统造成伤害,已被国家明令禁止在食品生产中添加。一些厂家做沙琪玛的秘密,真的就是在制作过程中加入硼砂吗?   位于郑州市十八里河镇柴郭村的这家润龙食品厂,在当地制作沙琪玛的行业里规模不算小,而且证照齐全,他们生产的是名为“许富记”的牌沙琪玛。   润龙食品厂负责人:(你们做现在放硼砂吗?)放,(它这个不放硼砂不行吗?)你叫我怎么跟你说呢,对不对?我没办法给你说这个,配料都是厂里面的,这你也知道,这是厂里面的机密,对不对?有些机密我可以给你说,有些机密我不可以给你说。   关于硼砂,润龙食品厂负责人不愿意多说。但在陈老板的这家小厂子,用过的硼砂袋子却是坦然地放在配料的地方。   而在一个角落,还放着两袋共100斤等待使用的硼砂。   陈老板:(要用那个硼砂吗?)要用一点,不然膨胀没有那么好,光靠鸡蛋没有那么好,(硼砂是在和面的时候往面里面加?)对,(你现在那个硼砂的量一般放多少?)硼砂那个放得比较少,(一般能放多少?)那个放得不多,一包(面粉)放个四、五两。   河南省新乡市美佳食品有限公司的康经理也告诉记者,做沙琪玛时在原料里加入硼砂,是非常必要的。   新乡市美佳食品有限公司康经理:(现在做沙琪玛不放硼砂行吗?)不行。不放硼砂也行,但是蓬松度没那么大,必须现做,不需要发酵,但是那个面和得比较烂,比较烂那个发起来就,那个成本,那个怎么说呢,那个越是膨化大的,它的成本(越低),(你们硼砂一般是在做的过程中放,还是在做之前调好?)做之前调好。   这些小厂子究竟在沙琪玛中加了多少硼砂呢?记者带着一些沙琪玛来到了北京市理化分析测试中心,经过检测,这些沙琪玛中均含有国家命令禁止添加的硼砂,最多的每公斤沙琪玛中硼砂含量竟达到了4.62克!而在正常情况下,成人一次摄入1至3克硼砂即可中毒。   记者在河南郑州、新乡等地调查发现,做沙琪玛的厂家数量不少。这些厂家有的是证照齐全的小工厂,有的则是连食品加工许可证都没有的黑窝点。虽然规模不大,但是他们的产量却不低。通过当地物流或者郑州万客来这样的食品批发城,这些沙琪玛流向了全国各地。   陈老板:(你这现在主要卖到哪里?)主要兰州、北京那边,兰州卖得非常好。   润龙食品厂负责人:(那你现在主要发到哪儿?)我发到外面的广了,我外面广,我主要南昌发得多。   批发商1:(你们现在都发到哪儿?)发到像河北,郑州周边。   批发商2:哪儿都有,山西、湖北、山东。   大狗在生产车间里悠然散步,刚出生的小狗呢,在熬糖的大锅旁边安然入睡,苍蝇飞舞,垃圾遍地……用脏、乱、差来形容节目里这几个沙琪玛车间的环境毫不过分,也许有人会说眼不见为净,只是,这些沙琪玛上面所存在的远不止是卫生问题——不管是黑作坊,还是证照合格的工厂,都在明目张胆地添加硼砂,而这种有毒的化工原料,早已被国家明令禁止在食品生产中添加。有形的脏乱差我们可以看见,硼砂带来的无形伤害我们又该怎样去察觉?我们更想问——从车间到批发市场再到消费者手中,这些不合格的沙琪玛究竟是怎样一路过关的呢?
  • 1060万!上海交通大学500兆核磁共振波谱仪和快速超分辨激光共聚焦显微镜采购项目
    一、项目基本情况1.项目编号:1069-234Z20234352(项目编号:招设2023A00172)项目名称:上海交通大学500兆核磁共振波谱仪采购项目预算金额:630.000000 万元(人民币)最高限价(如有):599.000000 万元(人民币)采购需求:序号货物名称数量简要技术规格交货期1500兆核磁共振波谱仪1套超导磁体装置1.具有低液氦与液氮消耗、高稳定性、高均匀性、抗干扰超超屏蔽超导磁体。2.磁场强度:≥11.74特斯拉合同生效后10个月内合同履行期限:合同生效后10个月内本项目( 不接受 )联合体投标。2.项目编号:0773-2341SHHW0109/校内编号:招设2023A00174项目名称:上海交通大学快速超分辨激光共聚焦显微镜预算金额:430.000000 万元(人民币)最高限价(如有):430.000000 万元(人民币)采购需求:设备名称:快速超分辨激光共聚焦显微镜 数量:1套简要技术参数:2.6 * 可灵活地向所选通道内进行光谱分光,最小光谱检测范围(光谱分辨率)≤2 nm。其余详见“第八章 货物需求一览表及技术规格”设备用途:该设备用于获取清晰的、高质量的以及超高分辨率的共聚焦荧光图像,可用于观测固定细胞,活细胞,类器官,动植物组织的深层结构,得到清晰锐利的二维及三维结构,利用时间序列得到动态图像,利用拼图成像得到大视野整体结构并进行量化分析。结合先进的硬件超高分辨率技术实现快速高分辨率成像,同步提升图像分辨率、信噪比和成像速度。交货期:签订合同后6个月内交付地点:上海交通大学用户指定地点合同履行期限:签订合同后6个月内本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月14日 至 2023年11月21日,每天上午9:00至11:00,下午13:00至16:00。(北京时间,法定节假日除外)地点:上海市普陀区曹杨路528弄35号中世办公楼5楼或微信公众号报名方式:见其它补充事宜售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:上海交通大学     地址:中国上海市东川路800号        联系方式:王老师/021-54747300      2.采购代理机构信息名 称:上海中世建设咨询有限公司            地 址:上海市曹杨路528弄35号            联系方式:沈思骏 陈沁雯 陈奕远 021-52555817            3.项目联系方式项目联系人:沈思骏 陈沁雯 陈奕远电 话:  021-52555817
  • 中科院成功研制“防震”原子分辨率显微镜
    p style=" text-indent: 2em " 对物质进行原子级别的观测,是很多前沿性科研的基础。然而,在追踪单个原子时,轻微的抖动也会让追踪变得困难,让追踪原子消失在视野中。 /p p style=" text-indent: 2em " 近期,中科院合肥物质科学研究院陆轻铀研究员团队使用新技术,在国际上首次研制出混合磁体极端条件下的原子分辨率扫描隧道显微镜,可在强震动环境中获取高质量的原子分辨率图像。 br/ /p p style=" text-indent: 2em " 强磁场是探索科学前沿的一种极端实验条件,在发现新现象、催生新技术方面具有不可替代的作用,自1913年以来在高温超导、量子材料、生命科学等领域屡有重大发现,已有19项相关成果获得诺贝尔奖。 /p p style=" text-indent: 2em " 2017年我国在合肥建成重大科技基础设施“稳态强磁场实验装置”,该装置拥有3台场强创世界纪录的水冷磁体,以及场强排名全球第二的混合磁体。但由于混合磁体运行过程中产生的强震动干扰,只能用其开展宏观尺度的观测,难以实现微观尺度的观测。 /p p style=" text-indent: 2em " “追踪一个原子,要求观测仪器极其稳定,稍微晃动一下,原子就会在茫茫的微观世界中消失难觅。”陆轻铀说。 /p p style=" text-indent: 2em " 近期,陆轻铀团队基于小尺寸的“蜘蛛马达”,用新方法设计出一种新型原子分辨率扫描隧道显微镜。它采用蓝宝石绝缘材料加工,外径仅8.8毫米,可直接插入到混合磁体的孔径中并真空密封。经测试,他们成功地在混合磁体30特斯拉的超强磁场下,获得了石墨的高品质原子分辨率图像。 /p p style=" text-indent: 2em " 以上技术方案是在真空环境下实现的,难以对活性生物体进行观测。为此,陆轻铀团队进一步深入研究,又成功搭建出一套室温大气环境下的抗恶劣条件扫描隧道显微镜。经测试,可在27.5特斯拉的混合磁体超强磁场下实现原子分辨率成像。 /p p style=" text-indent: 2em " 日前,国际知名学术期刊《超显微术》和《科学仪器评论》分别发表了这两项研究成果。 /p
  • EAST软X射线-极紫外高分辨光谱诊断系统通过验收
    5月22日,中科院计划财务局组织专家组对中科院合肥物质科学研究院等离子体所承担的中国科学院科研装备研制项目“EAST软X射线——极紫外高分辨率光谱诊断系统”进行了现场验收。 验收会现场   “EAST软X射线——极紫外高分辨率光谱诊断系统”研制项目由等离子体所承担,中国科技大学作为合作单位参与。该项目采用软X射线-极紫外波段平场分光技术,实现宽波段、高光谱分辨和空间分辨测量,同时获得高质量的杂质辐射数据,填补了EAST该波段诊断的空白,为EAST等离子体芯部杂质辐射和杂质输运研究提供必要的装备条件,建成后可对等离子体芯部杂质辐射和杂质输运进行研究。   验收专家组听取了项目组的工作报告、财务报告、使用报告和测试组的测试报告,审核了文件档案及财务账目,并现场检查了装备运行情况。验收专家认为项目组圆满地完成了研制任务,系统运行正常,各项技术指标达到实施方案规定的要求,其中光谱分辨率指标达到国际先进水平,同意通过验收。
  • 布鲁克宣布世界上首个1.2 GHz高分辨率蛋白质核磁共振数据
    p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 8月26日,布鲁克公布世界上第一个1.2 GHz高分辨率蛋白质核磁共振(NMR)数据。两块1.2千兆赫的超导磁体现已在布鲁克的瑞士磁体厂达到全磁场,创造了稳定、均匀的核磁共振磁体的世界纪录,用于高分辨率和固态蛋白质核磁共振在结构生物学中的应用,以及用于研究本质无序蛋白质。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 在Euroismar 2019上,Bruker及其科学合作者展示了1.2 GHz高分辨率核磁共振数据,这些数据是使用新的1.2 GHz 3 mm三反TCI低温探针获得的。Bruker独特的1.2 GHz超高场核磁共振磁体采用了一种新型的混合设计,在先进的低温超导体(LTS)外插入高温超导体(HTS),这一设计共同为高分辨率蛋白质提供了极其苛刻的稳定性和均匀性。核磁共振1.2 GHz 1h-15n 2d Best-Troy和1.2 GHz 3d 15n的2d平面编辑了500μm泛素样品的noesy-hsqc,13c/15n标记于H2O:d2o 90%:10%。两个实验都是用3毫米TCI低温探针记录的。 /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 意大利佛罗伦萨大学的Lucia Banci教授和Claudio Luchinat教授预计将成为第一批接收1.2 GHz核磁共振波谱仪的客户,一旦进一步的系统开发和工厂测试完成,这一过程将需要几个月的时间。在对1.2 GHz系统中的一个进行了CERM测试样品的初始数据采集后,他们说:“在瑞士的Bruker的超高频设施中,已经在α-突触核蛋白上获得了高分辨率光谱,这是一种与阿尔茨海默病(alzheime)等疾病相关的固有紊乱蛋白质。此外,我们还能够回顾与几种癌症相关的蛋白质的第一个1.2 GHz核磁共振波谱。毫无疑问,1.2千兆赫仪器的分辨率的提高——通过在高磁场中增加分散度而得以实现——将有助于推进重要的研究领域,如结构生物学。我们期待在完成最终开发和工厂评估后,在实验室接收1.2 GHz核磁共振波谱仪。” /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " Bruker Biospin集团总裁Falko Busse博士说:“新的1.2 GHz系统是一场技术革命,将使新的分子和细胞生物学发现成为可能。我们非常重视我们的超高场核磁共振客户对我们的信任,并且我们很自豪地实现了在1.2 GHz下生成世界上第一个高分辨率蛋白质核磁共振数据的进一步里程碑。虽然我们还没有完全完成新1.2 GHz系统的所有开发工作,但我们最近的快速进展证明了我们对创新的承诺,以及与客户合作开发使人信服的科学能力。” /p p style=" line-height: 1.5em text-indent: 2em margin-bottom: 10px " 与先前宣布的Ascend 1.1 GHz磁铁类似,Ascend 1.2 GHz混合HTS/LTS磁铁是一个标准孔(54 mm),两层磁铁系统,具有与Bruker现有900 MHz和1 GHz超高场NMR磁铁类似的漂移和均匀性规格,确保与一系列核磁共振探针类型和光谱仪附件。Bruker的Ascend& #8482 1.2 GHz核磁共振磁体采用了与在ENC 2019上宣布为产品的Ascend 1.1 GHz磁体相同的先进导体和磁体技术,用于绕组、连接、力管理、淬火保护、低漂移和高均匀性。 /p
  • 科学岛团队研制高性能金属减振器助力“陆地探测四号01星”实现高分辨探测
    8月13日,长征三号乙运载火箭携载“陆地探测四号 01星”成功发射。中国科学院合肥物质院固体所研制的高阻尼孪晶型金属减振器作为关键减振件应用于“陆地探测四号 01星”,助力对陆资源调查监测。 此前,该减振器已应用在 “高分七号”卫星和“ 5米光学卫星 02星”上。 “陆地探测四号01星”是《国家民用空间基础设施中长期发展规划(2015-2025年)》中陆地探测四号星座计划中的首颗星,是全球首颗全天候、高时间分辨率、宽视场的高轨、高分辨率地球同步轨道遥感卫星。与传统低轨SAR卫星、光学卫星相比,“陆地探测四号01星”可将高轨观测重访周期短、成像幅宽大等优势与微波观测不受气候限制(全天候)、不受光照限制(全天时)的优势结合起来,实现对我国本土及周边区域进行全天候、全天时的观测,满足防灾、减灾与地震监测、国土资源勘察以及海洋、水利、气象、农业、环保、林业等行业的应用需求。   针对“陆地探测四号01星”中高精度定轨加速度计在轨服役中遭受的低频、微振动干扰问题,固体所高阻尼材料研究团队在葛庭燧院士发现并提出的晶界内耗研究基础上,基于“高密度孪晶界面运动耗能”的高阻尼材料设计原理,研制了兼有金属刚性和橡胶高阻尼特性的微振动抑制敏感型减振合金,并与航天五院总体部合作,成功将其研制为高精密加速度计用低频、微振动抑制敏感的减振构件,实现对低频振动能的抑制高于99%,创新性地拓展了高阻尼合金的航天应用范围。   2015年1月,固体所同航天五院总体部合作开展了高分卫星微振动减振效应研究。2018年1月,“陆地探测四号01星”用高阻尼减振构件研制任务正式启动。近5年来,经过多次的方案论证、优化,研究团队突破了材料减振性能、高低温适应性、表面防腐处理等关键指标及工艺技术难题,最终研制出各项性能指标及空间环境适应性均优于技术要求的材料及产品。在项目执行过程中,研制测试材料、阻尼构件共计300余件,实现产品初样、正样一次性交付,建立了完善的材料工艺体系和质量控制体系,有效地保证了减振器服役性能的可靠性、稳定性和一致性,保障了航天任务的顺利完成。   未来,研究团队还将在轻质、高强韧、极低温、宽温域、宽频谱等方面开展新型高阻尼材料的基础理论和工程应用研究,持续为我国航天及民用减振降噪领域做出努力和贡献。交付的高性能金属减振器
  • 布鲁克带您体验拥有超过两千万的极限分辨率的全新scimaX磁共振质谱仪
    圣地亚哥,加利福尼亚州,美国-2018年6月3日,布鲁克于第66届ASMS大会上隆重发布创新质谱产品和多个突破性的生命科学研究工作流程,涵盖临床表型组学和蛋白质组学研究和大规模样本验证、生物制药应用、应用毒理学和法医学。布鲁克总裁兼首席执行官Frank H. Laukien博士表示:“在本届ASMS上,我们推出的新的质谱产品和工作流程将从根本上推动生命科学研究的发展。全新scimaX系统是拥有极限分辨率的磁共振质谱仪,专为高通量表型组学研究而设计。创新性的timsTOF™ Pro捕集离子淌度质谱系统配有在线平行累积连续碎裂(Parallel Accumulation Serial Fragmentation,PASEF)技术,已经在超高灵敏度和超高通量蛋白组学研究上开启了新的研究视野。我相信这两项技术将在临床表型组学和临床蛋白学上发挥重要作用,并且随着时间的推移,未来也将会在新一代测序等医学实践中发挥重要影响。”改变游戏规则的scimaX™ 磁共振质谱仪(MRMS)布鲁克推出改变游戏规则的scimaX™ 磁共振质谱仪(MRMS)。scimaX MRMS以更小的占地面积提供超过两千万(R 20,000,000)的行业领先质量分辨率,无需任何液态致冷剂。布鲁克的新型超导冷却Maxwell™ 磁体技术实质上使磁体“缩水”,并允许在标准质谱实验室中使用最高性能的MRMS。这种极端的MRMS分辨率允许同位素精细结构(IFS)分析,轻松确定复杂混合物中精确的元素组成,无需任何色谱分析。利用这种独特的功能,scimaX实现了全分子组成的流动注射分析(FIA-MRMS)的新型工作流程,每天可完成多达200个样本的高通量表型研究。生物制药用户可以使用MRMS进行高级天然蛋白质和基于片段的药物发现研究,MRMS在最近的科学文献中被称为天然蛋白质分析的“写实”平台。凭借可选的MALDI源,制药客户已经证明了MRMS用于药物开发中PK / PD研究的无标记质谱成像的卓越功能。威尔康奈尔医学院教授Steve Gross说:“布鲁克的新型scimaX MRMS系统改变了超高分辨率质谱仪的游戏规则。由于不再使用液体制冷剂降低了运行成本负担,仪器安装不再受场地限制而要求对实验室改造,scimaX可用于任何需要最高质量分辨率的质谱实验室来解决高影响力的科学问题。”
  • Science:透射电镜新突破!电子叠层衍射成像实现晶格振动原子分辨率极限
    透射电子显微镜(TEM)在物理、化学、结构生物学和材料科学等领域的微纳结构研究中发挥着重要作用。电子显微镜像差校正光学的进展极大地提高了成像系统的质量,将空间分辨率提高到了低于50pm的水平。然而,在实际样品中,只有在极端条件下才能达到这个分辨率极限,其中一个主要的障碍是,在比单层更厚的样品中,多电子散射是不可避免的(由于电子束与原子静电势之间的强库仑相互作用)。多次散射改变了样品内部的光束形状,并导致探测器平面上复杂的光强分布。当对厚度超过几十个原子的样品进行成像时,样品的对比度与厚度之间存在非线性甚至非单调的依赖关系,这阻碍了通过相位对比成像方式直接确定样品的结构。定量结构图像解释通常依赖于密集的图像模拟和建模。直接修正样品势需要解决多重散射的非线性反函数问题。尽管已经通过不同的方法对晶体样品的不同布拉格光束进行相位调整(其中大部分是基于布洛赫波理论),但对于具有大晶胞或非周期结构的一般样品来说,这些方法变得极其困难,因为需要确定大量未知的结构因子。Ptychography(叠层衍射成像)是另一种相位修正方法,可以追溯到20世纪60年代Hoppe的工作。现代成熟的装置使用多重强度测量——通常是通过小探针扫描广大的样品收集的一系列衍射图案。这种方法已广泛应用于可见光成像和X射线成像领域。直到最近,电子叠层衍射成像技术还受到样品厚度和电子显微镜中探测器性能的限制。二维(2D)材料和直接电子探测器的发展引起了更广泛的新兴趣。用于薄样品(如2D材料)的电子叠层衍射成像已达到透镜衍射极限的2.5倍的成像分辨率,降至39μm阿贝分辨率。然而,这种超分辨率方法只能可靠地应用于小于几纳米的样品,而较厚样品的分辨率与传统方法的分辨率没有实质性差异。对于许多大块材料来说,这样的薄样品实际上很难实现,这使得目前的应用局限于类2D系统(例如扭曲的双层)。对于比探针聚焦深度更厚的样品,多层叠层衍射成像方法提出了使用多个切片来表示样品的多层成像。所有切片的结构可以分别恢复。目前,利用可见光成像或X射线成像都成功地演示了多层叠层衍射成像。然而,由于实验上的挑战,只有少数的多层电子叠层衍射成像证据的报道,并且这些报道在分辨率或稳定性方面受到限制。透射电子显微镜使用波长为几皮米的电子,有可能以原子的固有尺寸最终确定的固体中的单个原子成像。然而,由于透镜像差和电子在样品中的多次散射,图像分辨率降低了3到10倍。康奈尔大学研究人员通过逆向解决多次散射问题,并利用电子叠层衍射成像技术克服电子探针像差,证明了厚样品中不到20皮米的仪器(图像)模糊以及线性相位响应;原子柱的测量宽度受到原子热涨落的限制,新的研究方法也能够在所有三维亚纳米尺度的精度从单一的投影测量定位嵌入原子的掺杂原子。相关研究工作以“Electron ptychography achieves atomic-resolution limits set by lattice vibrations”为题发表在《Science》上。图1 多层电子叠层衍射成像原理图2 PrScO3的多层电子叠层衍射重建图3 多层电子叠层衍射成像的空间分辨率和测量精度图4 多层电子叠层衍射的深度切片
  • 如何看得细又看得深 深圳先进院Nature Methods发布超分辨光学显微成像新成果
    p   近日,中国科学院深圳先进技术研究院研究员郑炜与美国国立卫生研究院教授Hari Shroff合作,成功研发出新型双光子激发的超分辨光学显微成像系统,该系统同时具备超分辨光学显微成像功能和大深度三维成像能力,使光学超分辨成像深度推进至破纪录的250微米,相应研究成果Adaptive optics improves multiphoton super-resolution imaging(《自适应光学提升超分辨显微成像》)最近发表在《自然-方法》(Nature Methods)上,郑炜是该文的第一作者兼通讯作者。 /p p   “看得细”和“看得深”是光学显微成像领域面临的两大挑战,经过科研人员几十年来的不懈努力,无论是在“看得细”还是“看得深”方面,都涌现了一批创新技术,取得了巨大成功,但是同时具备“看得细”和“看得深”这两项功能的光学显微成像技术却并不多见。 /p p   在该项研究中,郑炜等人把具备深层生物组织成像能力的双光子显微成像技术(Two-Photon Microscopy, TPM)和具备超分辨成像功能的瞬时结构光照明显微成像技术(InstantStructuredIllumination Microscopy, ISIM) 有机结合起来,实现双光子激发的超分辨显微成像功能。同时,研究人员又利用自适应光学(Adaptive Optics, AO)技术成功克服了由生物组织引起的波前相位畸变问题,最终实现176纳米的横向分辨率、729纳米的纵向分辨率及250微米的探测深度的成像效果。利用该技术,可以对细胞、线虫胚胎及幼虫、果蝇脑片和斑马鱼胚胎开展高清晰三维成像研究,成像效果显著优于传统双光子成像质量。值得一提的是,由于该技术提高了光子利用效率,从而降低了所需激光功率,可以对线虫胚胎的发育过程开展长时间、高清晰的三维动态观测。在长达1个小时的连续三维成像过程中未对线虫胚胎发育造成任何影响,该技术对胚胎发育研究具有重要作用。 /p p   该研究得到了国家自然科学基金、国家重点基础研究发展(“973”)计划和深圳市海外高层次人才创新创业孔雀计划的项目支持。 /p p   论文链接 /p p style=" text-align: center " img width=" 550" height=" 335" title=" W020170620699568004819.jpg" style=" width: 550px height: 335px " src=" http://img1.17img.cn/17img/images/201706/noimg/1642339d-b807-493a-b486-12fd9a26cd26.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   左图为果蝇脑片在传统双光子成像(2P WF)、双光子超分辨成像(2P ISIM)和结合有自适应光学的双光子超分辨(2P ISIM AO)显微成像结果对比,右上图为位于胶原凝胶150微米深处细胞三维成像对比,可见无论是横向还是纵向,新技术的分辨率都有显著提升。右下图为线虫胚胎发育过程中连续1小时的三维观测,细胞正常分裂进程证明了该技术可用于胚胎发育动态研究。 /p p & nbsp /p p & nbsp /p
  • 深圳先进院郑炜团队提出可突破物镜标定视场极限的大视场高分辨双光子成像技术
    双光子成像具备较强的组织穿透能力、较高的分辨率和固有的光学层析能力,适用于深层组织的活体研究。传统的双光子成像能维持细胞分辨率的视场直径往往小于1 mm,限制了在大规模生物成像中的应用,如横跨多个脑区神经环路的结构与功能成像。近年来,一些新型技术通过设计特殊物镜和相应光学元件,实现可支持数毫米视场范围且保持细胞分辨率的双光子成像。但这些物镜并不是常规的商用光学元件,加工设计复杂,且使用时有较高的光学知识门槛,无法在生物成像研究中得到广泛应用。针对这一问题,中国科学院深圳先进技术研究院研究员郑炜团队提出一种有效的自适应光学方法,可矫正在大扫描角度时(大视场成像)的离轴像差,从而突破物镜的标定视场限制,在仅集成商用光学元件的基础上即实现视场直径可达3.5 mm且维持着800 nm横向分辨率的双光子成像。物镜是显微成像系统的核心部件,而物镜标定视场是一个由物镜制造商提供的数值,反映了该物镜光学像差得到有效校准的最大成像视野范围。在标定视场外的区域虽然仍能探测到光信号,只是将这部分信号用于成像时,图像模糊且存在明显畸变。为利用这一特性,团队提出一种分割矫正的无波前自适应光学补偿方法,该方法能高效且稳定地恢复标定视场外的图像质量。利用这一方法,研究人员能清晰观测到几乎覆盖了1/4小鼠大脑的神经环路成像,也能在活体小鼠大脑上监测大规模分布的小胶质细胞和微血管。该技术无需特殊光学元件,可集成到任一标准的点扫描式光学显微镜中。相关成果以Exploiting the potential of commercial objectives to extend the field-of-view of two-photon microscopy by adaptive optics为题,发表在Optics Letters上。研究由深圳先进院、香港理工大学联合完成,得到国家自然科学基金委、广东省重点实验室等项目支持。论文链接 技术原理及Thy1-GFP-M小鼠脑片大视场成像结果
  • 蛋白质靶向探针有望应用于超分辨率显微成像
    北京大学化学与分子工程学院教授陈鹏正在实验中。  作为生物体内含量最多的一类生物大分子,蛋白质是生物功能的主要执行者,在各种生命活动中扮演着关键角色。科学家一直在探索适用于活体环境的蛋白质操纵工具,以实现对目标蛋白质结构和功能的深入研究,这已经成为当今化学生物学领域的前沿热点之一。  在国家自然科学基金委“基于化学小分子探针的信号转导过程研究”重大研究计划的资助下,科学家们围绕“蛋白质靶向探针的发现及其在信号转导研究中的应用”取得了多项进展。  据北京大学化学与分子工程学院教授陈鹏介绍,国内多个课题组通过化学脱笼技术、双光子和近红外调控技术以及靶向小分子探针等策略,实现了细胞内蛋白质的特异激活,并研究了细胞信号转导过程的分子机制。  在化学脱笼技术方面,陈鹏课题组将非天然氨基酸定点插入技术与生物正交的“化学脱笼”反应相结合,提出了一种理性设计小分子激活剂的全新策略。例如,由蛋白激酶介导的磷酸化是细胞信号转导的关键过程,对绝大多数生理活动都有重要影响,但很多激酶在正常生理及病理条件下的分子机理还不明确。利用小分子激活剂可以在激酶的信号转导研究中获得新的信息。“我们在活细胞内激活‘效应蛋白OspF’,发现这种蛋白使细胞核内的‘磷酸化Erk蛋白’发生了由不可逆去磷酸化介导的‘核质转运’现象。”陈鹏表示。  近年来,蛋白质光控技术成为研究细胞信号转导的又一有力工具。其中,与紫外光激发探针相比,利用双光子激发的探针可以极大地降低细胞毒性,具有广阔的应用前景。清华大学刘磊课题组以蛋白质化学合成为核心技术,发展了靶向免疫蛋白的光控探针,并使用新发展的蛋白质探针研究了免疫细胞在精确的时空刺激下的定向运动。该探针将为理解和控制活体组织中细胞定位及与定位相关的细胞生命活动提供理想的分子工具。北京大学陈兴课题组则发展了利用近红外光激活并调控细胞信号转导通路的新方法。  在靶向蛋白质生成与降解方面,华东理工大学杨弋课题组利用天然光敏元件,构建了方便使用的光控基因表达系统。实验中,研究人员利用光对活细胞或活体动物的蛋白质生成水平进行了时间、空间上的精确调控,成功地控制了糖尿病小鼠体内胰岛素的生成与血糖浓度。  清华大学李艳梅课题组则利用蛋白质可调降解策略,实现了细胞内靶标蛋白质水平的降低,以达到降低其活性的目的。研究人员针对阿尔茨海默氏症相关重要“非酶蛋白Tau”在病人脑中含量异常升高的现象,采用“识别—切割”策略,对细胞内这类蛋白的含量进行调控。  在超高亮度光激活荧光蛋白质方面,研究人员围绕发展具有更高亮度及转化效率的荧光蛋白突变体这一难点,开展了诸多工作。中科院生物物理所徐涛课题组设计了新型单体光活化荧光蛋白,并成功应用于活细胞的超分辨率显微成像。实验中,研究人员解析了一种目前具有最高光子输出信号的荧光蛋白晶体结构,并发现其在亮度、稳定性、光子负荷等方面具有最佳整体性能,有望作为新的探针应用于超分辨率显微成像中。
  • 赛默飞质谱助您辨别真羊肉,定量肉类掺假比例
    2015年6月29日,上海——科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日发布了基于全方位质谱平台的肉类检测解决方案,建立了从掺假发现,到定量多肽选择,以及定量实现的完整流程,并对发现的部分多肽进行了掺假实验与定量能力考察。目前最常用的肉类检测方法有:基于核酸的聚合酶链式反应技术(PCR)和基于抗体抗原结合的酶联免疫法(ELISA)。前者受到DNA降解,复杂基质的干扰和样品提取与扩增方法的影响,会对定性和定量的准确性造成干扰。后者往往受制于抗体制备,加工过程中蛋白变性,复杂基质和近亲缘种属之间同源干扰导致的假阳性影响。随着生物质谱技术的发展,大规模定性和定量研究蛋白表达谱的技术已经非常成熟。因此,利用质谱技术寻找不同肉类样品特征性蛋白或者多肽,并进行定量,能够避免现在最常用的PCR技术和ELISA所面临的种种问题,质谱技术不受食品加工的过程影响,因为氨基酸序列比核酸序列在加工过程中更容易保存;同时实现定性与定量,避免假阳性且定量结果更加准确可靠;能够同时监测多种添假。赛默飞基于Thermo ScientificTM超高分辨Q Exactive质谱平台,研究了五种常见肉类彼此之间的特征性专属多肽, 各自找到了数百条相对于其他四个物种的特征性多肽。选取其中找到的部分多肽,通过人为将几种不同的肉类进行混合研究,模拟现实中掺假的情况,通过利用Thermo ScientificTM TSQ QuantivaTM三重四极杆质谱仪建立了基于SRM(Selected Reaction Monitoring)的掺假比例定量方法。基于实验结果,对于每一个物种,为避免假阴性的结果,赛默飞研究人员同时选取鸡和鸭的六条特征性多肽,分别对两种禽类肉掺假进行了监测,并确定了最低的掺假监测限。考虑到掺假比例的经济性与可操作性,远远超过了实际监测的需求。与传统基于PCR和抗体的检测方法相比,质谱具有大致相当的灵敏度,拥有更好的避免假阴性与假阳性结果的能力,且能够避免由于加工所带来的PCR或者抗体相关空间结构破坏所带来的影响。与上述掺假相比,还有一种相对来说更为严重,性质更恶劣的掺假——病死肉的掺假。基于上述的方法,通过进一步系统研究,质谱也能够成为一种监测病死肉的手段,斩断病死肉流上餐桌的魔爪,与我们全方位的农残筛查与检测手段一起,为食品安全提供全方位的保障。同时,利用这种研究方法,我们还能助力有机肉类产品生产商,提供从肉类良种选择依据到肉类质量标准建立的可能性。产品链接:超高分辨Q Exactive质谱http://www.thermoscientific.cn/product/q-exactive-hybrid-quadrupole-orbitrap-mass-spectrometer.html TSQ QuantivaTM三重四极杆质谱仪http://www.thermoscientific.cn/product/tsq-quantiva-triple-quadrupole-mass-spectrometer.html解决方案下载链接:http://www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LCMS/documents/meat%20adulteration%20by%20TSQ%20Quantiva.pdf------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站www.thermofisher.cn
  • 国内首套高精度变温铁磁共振设备Cyro-FMR在三峡大学成功安装
    近日,国内套低温铁磁共振仪设备(Cyro-FMR)在三峡大学潘礼庆教授课题组成功安装。潘礼庆教授主要从事磁性物理、低维物理以及相关功能材料的基础与应用研究,发表研究论文百余篇,其中SCI收录论文70余篇,SCI论文引用300余次申报中国发明13项(已授权9项)和实用新型2项(已授权2项)。这套Cyro-FMR设备的安装,将继续助力潘礼庆教授的科研研究。国内套Cyro-FMR在三峡大学成功安装 铁磁共振(FMR)是一种利用磁性物质从微波磁场中强烈吸收能量的现象,是研究物质宏观性能和微观结构的重要实验手段,已经成为研究磁性材料动态磁性和测量饱和磁化强度、磁晶各向异性常数的有力工具,为磁动力学测量提供了的解决方案。在磁性纳米结构中,多种自旋波模式可能起主导作用,所以完全掌握这些模式对终的器件设计和稳定性非常重要。铁磁共振仪可对这些模式进行随磁场变化的测量。配合Monttna公司恒温器使用的FMR 瑞典NanOsc Instruments AB公司和美国Quantum Design公司不断探索,在常规的FMR基础上不断更新探索,研发出可配合Montana恒温器和PPMS和VersaLab使用的变温Cyro-FMR,实现了高精度和即插即用。系统不仅提供所有微波发生和探测的硬件,而且自带测量和分析软件,方便地满足了客户的测试需求。此次潘教授课题组安装的正是这套变温Cryo-FMR,我们祝愿潘教授的科研在此基础上更上一层楼。相关产品链接:高精度铁磁共振仪(FMR):http://www.instrument.com.cn/netshow/SH100980/C221410.htmPPMS 综合物性测量系统:http://www.instrument.com.cn/netshow/SH100980/C17086.htm美国Montana无液氦超低振动低温光学恒温器:http://www.instrument.com.cn/netshow/SH100980/C122418.htm
  • 精密测量院在高分辨率高精度油气勘探地震成像方面取得新进展
    近日,精密测量院毛伟建研究团队在高分辨率油气勘探地震保幅成像方面取得一系列新进展。团队借助人工智能、散射波场和点扩散函数等多学科理论和方法,开展交叉学科研究,创新提出高精度人工智能速度建模、逆散射保幅成像条件以及点扩散函数深度域反演技术,为解决长期以来困扰深层复杂地质条件下的油储特征反演和预测难题给出了新的思路。该系列研究成果2022年在国际著名地学Q1区学术期刊上发表5篇论文,其中2篇发表在《IEEE地球科学和遥感汇刊》 (《IEEE TGRS》), 3篇发表在《IEEE 地球科学和遥感快报》(《IEEE GRSL》)上。准确的速度模型在高精度地震成像中起着关键作用。作为一个非线性逆问题,传统速度建模方法由于数据中缺少低频分量、计算效率低等问题在实际地震勘探中受到限制。团队借助深度学习方法逼近不同数据域之间的非线性映射函数的强大能力,来解决原始地震数据高效速度建模问题。在这项工作中,该团队开发了一种数据驱动反演方法,该方法基于具有编码器-解码器结构的多尺度深度卷积神经网络,以直接从原始地震数据中解决具有不同尺度速度模型的反演问题。通过设计压缩矩阵压缩输入数据,网络可以获得任意尺度的预测。三种不同尺度的测试数据的反演结果随着地震勘探进入更精细的岩性成像阶段(如:深水、深层、复杂储存、非常规储存等),如何正确理解地震成像结果,成为极为关键的问题。传统的地震成像以求取地震反射率为目标,在深层成像阶段会出现成像数值不准确等问题。该团队以地震波散射理论为基础,提出各向异性逆散射反演成像条件,并将此成像条件用于逆时偏移。该方法能够有效计算地层参数扰动值,为超深层保幅地震成像提供了有效的方法。各向同性逆散射反演成像(左)与各向异性逆散射反演成像(右)的对比地震勘探经历了从二维走向三维,从叠后走向叠前,从时间域成像走向深度域成像的发展过程。然而,目前在工业界,仍缺乏在深度域直接进行反演的有效技术。现有方法无法满足精细储层解释的需要并计算量很大。针对上述问题,该团队发展了一种基于点扩散函数的深度域最小二乘反演方法,避免了“时深转换”的过程,大幅提高了反演效率。该方法可以有效地均衡照明,清晰刻画断层面,明显提升空间分辨率。并且计算量只有传统数据域最小二乘方法的1/10。标准高斯束偏移及其波数谱(左)与PSF处理结果及波数谱(右)的对比该系列研究分别以“Deep Learning Based Seismic Variable-size Velocity Model Building”、“Amplitude-Preserving Imaging Condition for Scattering-Based RTM in Acoustic VTI Media”、“Elastic Least-Squares Gaussian Beam Imaging With Point Spread Functions”为题发表在《IEEE Geoscience and Remote Sensing Letters》上;以“Multi-Parameter True-Amplitude Generalized Radon Transform Inversion for Acoustic Transversely Isotropic Media With a Vertical Symmetry Axis”、“Born Scattering Integral, Scattering Radiation Pattern, and Generalized Radon Transform Inversion in Acoustic Tilted Transversely Isotropic Media” 为题发表在《IEEE Transaction on Geoscience and Remote Sensing》上 五篇论文的第一作者分别是博士研究生杜蒙、孙史磊、段伟国,副研究员欧阳威,博士后梁全,通讯作者均为毛伟建,博士后石星辰和程时俊是合作作者。上述研究由国家自然科学基金重点和面上项目、中石油科技重大专项和中石油科学研究与技术开发项目联合资助。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制