当前位置: 仪器信息网 > 行业主题 > >

细胞

仪器信息网细胞专题为您整合细胞相关的最新文章,在细胞专题,您不仅可以免费浏览细胞的资讯, 同时您还可以浏览细胞的相关资料、解决方案,参与社区细胞话题讨论。

细胞相关的资讯

  • 单细胞测序:少量细胞和稀有细胞的解决方案
    单细胞测序:少量细胞和稀有细胞的解决方案做单细胞测序的时,您是否遇到下列情况: ü 细胞样本量较少,不够做一次高通量单细胞测序… … ü 没有简便易用的设备分选单个细胞… … ü 保护细胞的基因完整性难度大… … ü 分选到单细胞后,找不到合适的试剂进行下一步操作… … 如果这些问题曾给您带来困扰,4月28日由Namocell联合Qiagen带来的关于“少量细胞和稀有细胞的单细胞测序解决方案”的讲座,一定会让您有所收获。 近年来的单细胞研究表明,生物体由数千种独特且不可重复的细胞类型组成。由于单细胞中核酸数量有限,使用二代测序(NGS)方法进行单细胞分析(类似于低样本量测序)传统上具有挑战性。当研究群体较小时,这种限制变得更加明显,例如稀有细胞样本(阳性细胞占比0.1%以下)。高保真度(HiFi)和高质量的DNA扩增对于单细胞测序至关重要,这在很大程度上取决于分离细胞的质量。因此,用于分离单个细胞的方法对于确保细胞活力和核酸完整性至关重要。 美国Namocell公司专利的轻柔分选和细胞富集技术为您克服上述挑战,为单细胞测序提供了更高数量和质量的细胞样本,让您能够轻松获得细胞样品的完整且准确的遗传信息。 无论您是单细胞分析的初学者还是专家,相信都能在这个信息丰富的网络研讨会中有所收获。让我们一起了解和探讨少量样本和稀有单细胞测序的重要因素和新技术。 会议时间2022.4.28 16:00-17:00(注册时选择观看时间为Thursday, April 28, 2022, 10:00 AM CEST) 报名通道(点击) 主讲人介绍
  • 神奇的“万-能细胞”——干细胞
    人体内有各种各样各司其职的细胞,白细胞、淋巴细胞保护我们免受细菌及病毒的侵害,红细胞携带氧气,血小板可以凝血… … 除了这些,人体内还有一种细胞功能更复杂,那就是有“万-能细胞”之称的干细胞。要知道,人体内的细胞都是有寿命的,例如红细胞一般有120天左右的寿命,120天后全新的红细胞就会代替那些老去的红细胞。那么,新的红细胞从何而来?其实,新的红细胞就是由干细胞中的造血干细胞分化而来。这就不得不提干细胞的五个特征:一是自我更新,指细胞分裂增殖的过程,产生的子代细胞仍维持亲代细胞的原始特性,比如,肝移植供者切除3/4的肝脏,可以在两周内完全恢复成原样。二是克隆源性,即单个细胞具有创造更多相同细胞的能力,一个细胞能复制成两个完全一样的细胞。三是高度分化潜能,即能向不同的组织分化。例如我们临床上已经成熟应用的白血病治疗方法——造血干细胞移植,其实就是利用了造血干细胞的分化功能,相当于更换了正常的干细胞。四是可塑性,指干细胞具有分化为其他类型组织细胞的能力。例如骨髓造血干细胞可以在适合的环境下分化为和脑组织的神经同类型的神经细胞。五是生物学特征,干细胞要想维持自我更新和分化的特性,需要特定的干细胞微环境,在不同的微环境中,干细胞可以发挥不同的能力。干细胞还是个大家族,根据不同的标准,可有多种分类。例如,根据来源不同,干细胞可分为胚胎干细胞和成体干细胞两大类。胚胎干细胞主要来自囊胚的内细胞团,是一种高度未分化细胞;成体干细胞是对胎儿、儿童和成人组织中存在的多潜能干细胞的统称。相比于胚胎干细胞,成体干细胞来源较广,相对容易获取,并且源于患者自身的成体干细胞在应用时不存在组织相容性的问题,可避免移植排异反应和使用免疫抑制剂。按照发育潜能,干细胞又可分为全能干细胞、多能干细胞、单能干细胞三大类。全能干细胞是指能够发育成具有各种组织器官的完整个体潜能的细胞,如受精卵;多能干细胞虽然能分化出多种细胞组织,但并不能发育成完整的个体,如胚胎干细胞;单能干细胞是指只能向单一方向分化、产生一种或几种密切相关类型的细胞,如造血干细胞、神经干细胞、心脏干细胞等。当前,干细胞研究已经成为医学领域和生物医学领域的热点之一。经过多年的研究积累,我国在干细胞研究领域也已取得了诸多成就,如利用干细胞开展脊髓损伤修复已初见成效。相信不久的将来,随着干细胞理论的日臻完善和干细胞技术的不断发展,“万能细胞”将为人类健康做出更多贡献。
  • 单个活细胞&细胞器操纵新突破丨多功能单细胞显微操作技术首次实现活细胞间线粒体移植
    前所未有的全自动高精度单细胞操纵平台!多功能单细胞显微操作FluidFM技术首次将原子力系统、显微成像系统、微流控系统、活细胞培养系统融为一体的单细胞显微操作平台,其核心技术——FluidFM技术采用了纳米级别中空探针,完美实现了单个细胞水平、fL级别超高精度、全自动化的细胞及细胞器的操作。是一套超温柔,纳米级,全自动的细胞操纵方案。这项技术将传统细胞显微操作实验无法触及领域的大门彻底打开,科学家可以在单个细胞上实现前所未有的精妙操纵。其主要功能包括单细胞提取、单细胞分离、活细胞细胞器移植、单细胞注射、单细胞力谱等。图1 FluidFM技术整机外观及原理示意图在活细胞中也能进行细胞器操纵?多功能单细胞显微操作FluidFM技术首次实现活细胞间线粒体移植线粒体和复杂的内膜系统是真核细胞的重要特征。到目前为止,对活细胞内的细胞器进行操纵仍然十分困难。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。近期,Julia A. Vorholt课题组使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪,作者发现与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。该篇文章以” Mitochondria transplantation between living cells.”为题,发表在BioRxiv.上。1从活细胞中提取线粒体在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构最终被拉断,并在悬臂中呈现为球状线粒体(图2)。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生独立的球形线粒体,而管状结构的其余部分放松并恢复。图2 提取线粒体后的FluidFM悬臂探针的显微图像及示意图2线粒体移植至新细胞研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了最佳的两步走方案:第一步,用FluidFM技术直接提取线粒体,第二步,将提取的线粒体注入到新的宿主细胞中。该方案的成功率高达95%,而且保持了细胞活力,其优点是细胞器在细胞外停留的时间短(作者标记供体细胞的线粒体(su9-mCherry)和受体细胞的线粒体(su9- BFP),能够观察移植细胞线粒体网络的实时状态(图3)。实验跟踪了22个细胞的移植命运:18个细胞显示移植的线粒体完全融合,4个细胞的线粒体发生降解。多数细胞样本(18个细胞中的14个)在移植后30分钟内首次观察到融合事件而后扩展到线粒体网络。综上所述,作者建立了将线粒体转移到单个培养细胞的方法。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。图3 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。本文使用的FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是独一无二的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。单个线粒体移植视频该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。
  • 活细胞也能进行细胞器操纵?多功能单细胞显微操作FluidFM技术首次实现活细胞间线粒体移植
    摘要:线粒体和复杂的内膜系统是真核细胞的重要特征。到目前为止,对活细胞内的细胞器进行操纵仍然十分困难。多功能单细胞显微操作FluidFM技术能够从活细胞中提取、注射细胞器,将定量的线粒体移植到细胞中,同时保持它们的活力。近期,Julia A. Vorholt课题组使用多功能单细胞显微操作FluidFM技术,将线粒体移植至培养的细胞中,并实时跟踪线粒体注射后的情况,监测它们在新宿主细胞中的命运。通过跟踪,作者发现与受体细胞线粒体网络融合发生在移植后20分钟,持续16小时以上。活细胞之间移植线粒体不仅为细胞器生理学的研究开辟了新的前景,也为机械生物学、合成生物学和疾病治疗开辟了新的前景。该篇文章以” Mitochondria transplantation between living cells.”为题,发表在BioRxiv.上。 结果:1. 从活细胞中提取线粒体为了检测FluidFM探针对单细胞细胞器采样的能力。作者使用了两种探针,分别是锥型探针(A=1.2 um2)和圆柱型探针(A=1.6 um2)(图1B)。实验结果表明,使用这两种探针都可以对线粒体及单个线粒体进行提取或大量抽提。作者对内质网(ER)和线粒体提取后的细胞活力进行了检测,发现细胞仍保持较高的细胞活力 (95%)。为了进一步确保FluidFM提取方案在探针插入时不会破坏细胞质膜,作者使用荧光探针(mito-R-GECO1)监测细胞培养基中可能发生的Ca2+内流。实验显示,在操作过程中和操作后都没有Ca2+流入,表明细胞器提取过程中细胞质膜的完整性。本研究还发现暴露在FluidFM负压下的线粒体小体会经历形状的转变,类似于“串上珍珠”的形态。 其特征是离散的线粒体基质球体状,并且通过细长的膜结构相互连接,在进一步负压拉力的作用下,这些球状结构终被拉断,并在悬臂中呈现为球状线粒体(图2E)。进一步探究显示,施加FluidFM负压后,力诱导的形状转变沿线粒体小管在毫秒到秒的范围内传播了数十微米。形状转变沿这一方向均匀传播,而外层线粒体膜(OMM)保持了初的完整性。当牵引力保持数秒后,OMM在先前形成的“珍珠”之间的一个或多个收缩点分离,从而产生立的球形线粒体,而管状结构的其余部分放松并恢复。结合线粒体牵引实验和线粒体定位的钙流实验,结果证明线粒体的串上珍珠表型的形状转变以及随后细胞质内的线粒体裂变是不依赖钙的。 图1:(A) 示意图:使用FluidFM技术进行细胞器提取。通过调整悬臂探针中的负压(-Δp)进行提取。(B) 通过调节孔径大小和流体作用力的适用范围,选择性地提取不同的细胞器成分。1行:用悬梁臂探针提取单细胞细胞器的示意图。2行:不同孔径的悬臂扫描电镜图。3行:FluidFM悬臂探针孔径与对应的流体力范围。(C) 示意图:使用FluidFM技术进行细胞器注射。通过调整悬臂探针中的正压(+Δp)进行将探针中的细胞器注射到受体细胞内。 图2:(A) FluidFM悬臂探针的扫描电子显微镜图像。具体尺寸参数是:L = 200 μm, W = 35 μm, H = 1 μm。Scale bar= 5 μm。(B) 提取线粒体后的FluidFM悬臂的荧光显微镜图像。由于折射率不同,可以看到提取物和悬臂探针填充物之间的边界。Scale bar = 10 μm。(C) 是图(B)的示意图,提取物的体积是1170 fL。(D- F) 活细胞器提取的延时图像和提取后金字塔悬臂图像。黄框表示细胞内的悬臂的位置。(D) 对表达su9-BFP(线粒体)和Sec61-GFP (ER) 的U2OS细胞进行提取。箭头表示ER区域。使用孔径为0.5µm2的悬臂梁探针。Scale bar = 10 μm。(E) 从表达su9-BFP的U2OS细胞中提取单个线粒体。使用1µm2孔径的悬臂梁探针。Scale bar = 10 μm。(F) 从表达su9-BFP的U2OS细胞中提取数个线粒体。使用1µm2孔径的悬臂梁探针。Scale bar = 10 μm。 2. 线粒体移植至新细胞研究人员的下一个目标是将线粒体移植到新的宿主细胞中,并保持细胞活性。FluidFM技术为线粒体转移提供了两种可能性方案:方案一、用FluidFM技术直接提取线粒体而后注入到新的宿主细胞中;方案二、将从细胞中分离纯化的线粒体回充入FluidFM探针,然后注射(图3A-D)。作者比较了两种方法,为了实现可视化的线粒体的转移,作者在供体和受体细胞中分别对线粒体进行了差异化标记 (图3E-F 供体细胞线粒体su9-mCherry和受体细胞线粒体su9-BFP)。当使用FluidFM直接将线粒体从一个细胞移植到另一个细胞时,成功率高达95%,而且保持了细胞活力(图3G, 41个移植细胞中有39个)。在注射纯化线粒体后,作者观察到46%的样本(19/41)发生了线粒体转移且保持了细胞活力(图3G)。移植的定量结果显示,这些实验中移植的线粒体数量从3到15个线粒体每个细胞不等(图3H)。两种替代方案的不同成功率可以由线粒体分离获取的条件差异来解释。在评估线粒体提取方案时,作者观察到部分提取的线粒体外膜发生破裂。线粒体的不可逆损伤导致细胞内降解,细胞色素C释放可能导致细胞凋亡。虽然线粒体的细胞间移植降低了通量,但它的优点是细胞外时间短(如上所述,细胞间移植即方案一的效率高,并可以直接观察单个移植线粒体的命运。为了展示这一点,作者将标记好的线粒体(su9-mCherry)从HeLa细胞移植到差异标记的U2OS细胞(su9-BFP)中,这种细胞通常用于研究动态线粒体行为。高灵敏度相机可以用于追踪受体细胞内的单个线粒体(图3L)。作者观察到荧光线粒体基质标签在移植后23分钟的发生初始融合而后扩展到线粒体网络。综上所述,作者建立了两种将线粒体转移到单个培养细胞的方法。 一种方法是活细胞间移植。该方案显示移植后细胞活力高,允许观察移植后线粒体的动态行为,是一种高效方案。二种方法是大量纯化线粒体并将其注射到受体细胞中。 注射速度相当快,但不可避免地损害线粒体和细胞功能。图3:(A) 方案一示意图(活细胞间线粒体移植):通过FluidFM吸入法提取线粒体。 随后,将带有提取物的悬臂探针移至受体细胞插入并注入提取物。(B) 方案一预填充C8F18的FluidFM悬臂梁的图像,被移植线粒体通过su9-mCherry标记,提取量~0.8 pL。Scale bar = 10 μm。(C) 方案二示意图(纯化线粒体注入细胞):使用标准线粒体纯化方案纯化的线粒体进行线粒体移植的方案。 将纯化的线粒体重悬在HEPES-2缓冲液中,直接填充到FluidFM探针中并对细胞进行注射。(D) 方案二由su9-mCherry标记的FluidFM悬臂充满线粒体的图像。Scale bar = 10 μm。(E) 通过方案一(活细胞间线粒体移植)进行线粒体移植后的宿主细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(F) 通过方案二(纯化线粒体注入细胞)进行线粒体移植后的受体细胞图像。宿主细胞的线粒体通过su9-BFP标记,移植细胞线粒体通过su9-mCherry标记。Scale bar = 10 μm。(G) 通过光学成像对两种方案注射的细胞进行评估。每种方法评估了40个细胞。(H) 两种方案的线粒体的计数评估。每种方法评估了22个细胞。(I) 方案一移植线粒体后,对移植线粒体(su9-mCherry)和宿主线粒体网络(su9-BFP)使用不同的荧光标记进行成像,融合。Scale bar = 5μm。(J) 方案二注入纯化线粒体后移的融合状态,标记方案同(I)。Scale bar = 5 μm。(K) 移植线粒体发生降解,分裂成多个更小的荧光囊泡(su9-mCherry),荧光与标记的宿主细胞线粒体网络(su9-BFP)没有重叠。Scale bar=5 μm。 (L) 单个移植线粒体的延时图像序列(su9-mCherry)。细胞器供体为HeLa细胞,受体细胞为U2OS细胞,带有荧光标记线粒体网络(su9-BFP)。Scale bar = 10 μm。 讨论单细胞的操纵一直是细胞生物学领域的热点和难点,尤其是在不损害细胞活力的情况下从细胞中提取细胞器或将外源物质直接导入到细胞中。截止到目前,尽管单细胞技术有了较大的发展,但要实现将细胞器从一个细胞移植到另一个细胞,除了更大的卵母细胞外,几乎是不可能实现的。线粒体是细胞中的能量转换的核心,与细胞代谢和信号通路以及细胞命运紧密联系在一起。线粒体含有自身的遗传成分(mtDNA),通常是严格垂直遗传给子细胞的。目前将线粒体地转移到细胞的手段有限,对于线粒体移植后的剂量-反应关系分析更是十分困难,这样我们就很难从机制上了解健康或疾病细胞的线粒体移植后的生物学效应。本文使用的FluidFM技术采用微型探针,可以在微环境中以高时空分辨率操纵单细胞或者对单个细胞进行采样,并与组学方法相结合,使细胞器的研究成为可能。FluidFM技术将原子力显微镜的高精度力学调节手段与光学检测下的纳米尺度微流控系统相结合,提供与单细胞操作相关的力学和定量的体积控制。这些特性在现有微型探针中是的,在本研究中,作者将FluidFM单细胞技术用于活细胞真核内和细胞间的细胞器微操作。成功实现了活细胞之间的线粒体移植。该研究将启发人们将FluidFM技术应用于更多领域,例如,干细胞治疗中低代谢活性细胞的再生,作为线粒体替代治疗方法的一种备选方案等。此外,FluidFM技术为解决细胞生物学、生物力学和细胞工程等问题提供了新的视角。 多功能单细胞显微操作系统- FluidFM OMNIUM参考文献[1].C. Gäbelein, Q. Feng, E. Sarajlic, T. Zambelli, O. Guillaume-Gentil, B. Kornmann & J. Vorholt. Mitochondria transplantation between living cells. (2021). BioRxiv.
  • 单细胞组学研究的里程碑式进展——活细胞单细胞测序技术
    单细胞测序在疾病诊断和细胞异质性研究中发挥着重要作用。然而目前的单细胞测序手段需要将细胞消化并裂解才能够进行,而细胞状态在这一操作中不可避免的会发生改变,因此很难掌握细胞真实的基因表达情况,尤其对于基因通路上表达变化的检测为不利。近期苏伊士理工大学使用FluidFM创建了一种原位活细胞基因测序方法,这种方法能够在不杀死细胞的情况下完成对细胞的测序工作。通过这种技术该团队成功完成单细胞RNA基因测序,并通过这种方法检测到了细胞的基因表达和细胞周期状态变化。下面本文就这项工作的具体内容进行阐述。1. Live-Seq测序技术简述由于单个细胞的RNA总量仅有10 pg。为了实现无损的单细胞测序,该团队先使用FluidFM对现有的scRNA-Seq单细胞测序的方法进行了优化。为了尽可能的接近Smart-Seq的测试条件,该团队采用了先将缓冲液吸入探针,然后再进行细胞提取的操作。这样可以确保所提取的RNA能够很快与缓冲液混合,从而避免RNA的降解。通过这一方法,该团队成功实现了IBA细胞的测序,证明了这种方法的可行性(图1)。图1. Live-Seq技术a. Live-Seq技术的示意图和代表图片,黑色箭头指代液面;b. IBA细胞测序的质量控制图(n=10)。2. Live-Seq技术分析细胞系和细胞状态为了证实Live-Seq的有效性,该团队对多种细胞系进行了测序,这其中包括IBA细胞、小鼠脂肪干细胞和祖细胞(ASPCs)以及脂多糖处理的RAW264.7细胞和Mock处理的RAW264.7细胞。通过对这些细胞系进行测序发现,该方法能够区分上述细胞系,并且在特征基因检测中能够找到每种细胞所对应的特征基因,证明了Live-Seq方法的有效性(图2)。图2. Live-Seq单细胞测序区分细胞型及细胞状态a. 实验方法示意图,使用LPS和PBS对RAW细胞进行处理;b. 前500个高度易变基因的tSNE图;c. 前十的细胞型、细胞状态差别基因的热图;d. 小鼠基因图谱预测,使用前100个标记基因的团簇;e. Live-Seq对比scRNA-Seq的锚点分析,显示两者没有显著差异。3. Live-Seq技术对细胞的活力基本没有影响Live-Seq技术的显著优势在于提取过程中不会破坏细胞。通过对提取前后的测序对比可以发现,提取组与空白组之间的团簇没有显著性差异。并且通过对细胞形态的观察,发现细胞的形态基本没有改变,并且多数细胞仍然能够正常分裂(图3)。图3. Live-Seq对细胞活力的影响a. 细胞实验的示意图;b. Live-Seq测序后不同时间点(1h,4h)的scRNA-Seq的tSNE图;c.不同时间点scRNA-Seq所有能够发现差异的基因(共12个);d.不同时间点的细胞形态图片。4. Live-Seq技术能够记录细胞下游分子表型事件由于Live-Seq对细胞生理状态影响小,因此能够监测在细胞代谢过程中的基因变化。通过对比LPS处理的巨噬细胞周期实验发现,Live-seq技术与对照组的细胞代谢水平相比没有明显变化,因此这种方法测量的数据十分接近细胞代谢中基因表达的真实水平。通过测序对比LPS处理与空白的测序结果发现Nfkbia与Tnf的表达为相关。这一结果也验证这种测序方法在检测细胞下游表型时的优势。图4. Live-Seq技术的单细胞纵向分析a. 实验示意图;b. 不同处理细胞的mCherry强度变化;c. 3~7.5h之间mCherry强度变化;d.Tnf-mCherry强度变化的线性回归模型;e. Nfkbia与Tnf在Live-Seq测序中的表达关系;f. Nfkbia与Tnf在scRNA-Seq测序中的表达关系;g. Live-Seq测序中细胞处于S期的评分;h. Live-Seq测序中细胞周期的mTnf-mCherry强度变化;i.Tnf-mCherry的荧光强度增量(3~7.5h)。5. Live-Seq技术对同一细胞多次测序Live-Seq技术的无损性甚至能够实现对单个细胞的多次测序。通过对单个细胞两次提取后细胞活力变化的观察中发现,细胞的活力即使在2次提取后仍没有发生明显的变化,基因型分析也没有发现明显的基因表型改变。图5. Live-Seq对细胞的多次提取j.连续测序的示意图和代表图像;k.Live-Seq的tSNE图;l.整合Live-Seq和scRNA-Seq的tSNE图。 6. 总结Live-Seq是一种十分具有前景的单细胞测序的新方法,得益于FluidFM技术的无损提取的优势,Live-Seq技术除了能够实现传统测序的功能外,还降低了细胞的损伤,能够提供更加原生和真实的测序信息。这种特点甚至让单细胞的基因表达动力学研究成为可能。相信随着这种技术自动化的提高,将为单细胞测序技术带来更多可能。 参考文献:[1]. Genome-wide molecular recording using Live-seq, Wanze Chen, Orane Guillaume-Gentil, Riccardo Dainese, Pernille Yde Rainer, Magda Zachara, Christoph G. Gäbelein, Julia A. Vorholt, Bart Deplancke, bioRxiv 2021.03.24.436752 DOI: https://doi.org/10.1101/2021.03.24.436752
  • 原能细胞发布原能细胞全自动细胞复苏仪CR-100新品
    原能细胞全自动细胞复苏仪CR-100自动加水 精准控温操作简单 语音提醒系统预设+自定义复苏 一、产品简介CR-100是一款针对实验室和医院细胞复苏专门开发的,具有手动设置复苏水位和温度、细胞复苏信息追溯,语音和文字提醒等功能,能够精准控制复苏温度和水位。其选择运动结构采用曲柄连杆机构,稳定可靠。 二、产品特色l 自动加水 通过传感器检测,精准设置不同水位,自动加水,复苏时可以设置不能浸泡水位l 自定义操作 后台参数可设定(复苏温度、时间、转速、水位),复苏过程可暂停或终止l 系统预设操作 系统可预存常用细胞复苏种类,操作时直接选择一键复苏,节省时间l 数据传导绑定 可通过USB导出样本复苏信息,复苏参数与样本信息可进行有效绑定l 精准控温 PID算法控制的水温加热程序,水温精准可控l 语音提示 细胞复苏开始和结束具有语音提醒功能l 操作方便 触摸屏操作,菜单化页面,简单易上手l 排水功能 细胞复苏完成后,可视情况手动排水 三、产品参数设备尺寸(W*D*H)350*430*690 mm设备重量≤40kg水温调节范围25~70℃温度控制精度±1℃转速调节范围10~300RPM水位调节0~50mm额定功率1200W加热额定功率1000W1米外噪音<45dB创新点:原能细胞全自动细胞复苏仪CR-100 将实验室传统的水浴锅工作模式进行了自动化、程序化控制的改变,将手工作业设备提升为产业化、规模化专用细胞复苏仪器。 原能细胞全自动细胞复苏仪CR-100
  • 细胞坏死与细胞凋亡的区别
    细胞程序性死亡 概念:细胞程序死亡(programmed cell death,PCD)也常常被称为细胞凋亡,是生物体发育过程中普遍存在的,是一个由基因决定的细胞主主动的有序的死亡方式。具体指细胞遇到内、外环境因子刺激时,受基因调控启动的自-杀保护措施,包括一些分子机制的诱导激活和基因编程,通过这种方式去除体内非必需细胞或即将发生特化的细胞。而细胞发生程序性死亡时,就像树叶或花的自然凋落一样,凋亡的细胞散在于正常组织细胞中,无炎症反应,不遗留瘢痕。死亡的细胞碎片很快被巨噬细胞或邻近细胞清除,不影响其他细胞的正常功能。 凋亡细胞的主要特征是(参见表15-2):①染色质聚集、分块、位于核膜上,胞质凝缩,最后核断裂,细胞通过出芽的方式形成许多凋亡小体 ②凋亡小体内有结构完整的细胞器,还有凝缩的染色体,可被邻近细胞吞噬消化,因始终有膜封闭,没有内溶物释放,故不会引起炎症 ③凋亡细胞中仍需要合成一些蛋白质,但是在坏死细胞中ATP和蛋白质合成受阻或终止 ④核酸内切酶活化,导致染色质DNA在核小体连接部位断裂,形成约200bp整数倍的核酸片段,凝胶电泳图谱呈梯状 ⑤凋亡通常是生理性变化,而细胞坏死是病理性变化。理论意义:程序性细胞死亡在生物发育和维持正常生理活动过程中非常重要.在发育过程中,细胞不但要恰当地诞生,而且也要恰当地死亡。例如,人在胚胎阶段是有尾巴的,正因为组成尾巴的细胞恰当地死亡,才使我们在出生后没有尾巴.如果这些细胞没有恰当地死亡,就会出现长尾巴的新生儿.从胚胎、新生儿、婴儿、儿童到青少年,在这一系列人体发育成熟之前的阶段,总体来说细胞诞生得多,死亡得少,所以身体才能发育.发育成熟后,人体内细胞的诞生和死亡处于一个动态平衡阶段,一个成年人体内每天都有上万亿细胞诞生,同时又有上万亿细胞“程序性死亡”.两者处于一种动态平衡中,使人体器官维持合适的细胞数量得以正常运作的,正是“程序性细胞死亡”机制。(又如蝌蚪尾的消失,骨髓和肠的细生物发育过程中及成体组织中正常的细胞凋亡有助于保证细胞只在需要它们的时候和需要它们活的地方存活。这对于多细胞生物个体发育的正常进行,自稳平衡的保持以及抵御外界各种因素的干扰方面都起着非常关键的作用。)实践意义:如果调节细胞“自-杀”的基因出了问题,该死亡的细胞没有死亡,反而继续分裂繁殖,便会导致有问题或恶性细胞不受控制地增长,比如癌症 如果基因错向不该死的细胞发出“自-杀令”,不让之分裂繁殖,使不该死亡的淋巴细胞大批死亡,便破坏了人体的组织或免疫系统,比如艾滋病。控制“程序性细胞死亡”的基因有两类:一类是抑制细胞死亡的 另一类是启动或促进细胞死亡的。两类基因相互作用控制细胞正常死亡。如果能发现所有的调控基因,分析其功能,研究出能发挥或抑制这些基因功能的药物,那么人类就能够敲响癌症和艾滋病的丧钟。当然,这个过程需经过一番艰苦努力,因为线虫只有959个细胞,而人体则有大约1000万亿个细胞。
  • PNAS:单细胞测序绘制大脑的细胞图谱
    斯坦福大学的著名学者Stephen Quake及其同事本周在《美国科学院院刊》(PNAS)上发表文章,介绍了人类脑细胞的单细胞转录组测序研究成果。   研究小组对近500个成人或胎儿脑细胞进行了单细胞RNA测序。利用这种方法,他们能够鉴定出大脑中所有主要的细胞类型,并确定神经元的亚型。他们还观察了神经元从早期发育到后期分化阶段的变化。   &ldquo 这些结果为构建人类大脑的细胞图谱奠定了基础,&rdquo 作者在文中写道。&ldquo 这种图谱将有助于我们确定神经元、胶质细胞和血管细胞的特定标志物,并将其与其他信息相关联,以便完全阐明人类大脑的细胞复杂性。&rdquo   人类大脑是极其复杂的。它含有许多种类的细胞,它们的基因表达模式存在差异。因标志物相对较少,传统的细胞分类方法存在限制,因此只能提供特定细胞类型的有限分子鉴定。   在这项研究中,研究人员使用了健康的神经元。它们是在癫痫的外科手术治疗过程中从人体中取得的。除了从8名成人中获得的样本,研究人员也研究了4个胎儿大脑样本中的细胞。他们总共对466个细胞进行单细胞RNA测序,以捕获成人和胎儿大脑中的细胞复杂性。   这些细胞的转录特征确定了10种类型的细胞,包括小神经胶质细胞、星形胶质细胞、少突胶质细胞、神经元、前体细胞,以及之前没有明确定义的细胞。同时,当研究人员通过特异表达的基因来分类细胞时,细胞的分类稍微少了一些。   在更精细的水平上,研究人员发现113个成体神经元细胞可分成7个子类,包括5类抑制性神经元和2类兴奋性神经元。   最后,研究人员还利用单细胞转录组学来区分小鼠和人类脑细胞的基因表达特征,以及区分成体神经元和胎儿大脑中新生的神经细胞的转录模式。例如,单个神经元的转录模式表明,胎儿大脑中的神经元细胞明显不同于成人大脑中的那些。   另一方面,一些成体神经元表达了主要组织相容性复合体I类的免疫相关基因,这些神经元因此可能有能力引起免疫应答,驳斥了神经元缺乏免疫活性的观点。   作者认为,这项工作证明了单细胞RNA测序适用于人类大脑的研究,也向构建人类大脑的全面细胞图谱迈出了第一步。
  • 细胞治疗干货|免疫细胞杀伤经典案例
    在细胞治疗过程中,评价免疫细胞的增殖能力,以其对靶细胞的杀伤能力是细胞治疗过程中非常关键的环节。其中DELFIA® EuTDA细胞毒法和DELFIA® BrdU细胞增殖方法,凭借其高灵敏度、易操作性性等诸多优势,已逐渐成为主流的检测技术。在此,通过以下一系列的应用案例,我们将向大家展示DELFIA® EuTDA、DELFIA® BrdU、活体影像及放射性检测等方法如何助力免疫细胞杀伤研究。 一,CAR-T细胞杀伤毫无疑问,CAR-T疗法已成为当下最火的肿瘤细胞疗法之一。同样作为CAR-T大国,中国多数CAR-T疗法已进入临床研究,并且产业化发展迅速,而美国则还集中在临床前研发[1]。安全性是CAR-T疗法的一大挑战。除了细胞因子风暴外,CAR-T疗法还会诱发移植物抗宿主反应 (graft versus host disease GVHD)等安全隐患。鉴于选择性去除CD45RA阳性细胞能有效抑制GVHD发生[2],研究利用CD45RA阴性T细胞群体开展靶向CD19的 CAR-T疗法,来提高治疗安全性。结合DELFIA的细胞杀伤检测法和基于Calcein-AM标记的流式法,研究证明CD45RA阴性 CAR-T细胞能有效杀伤CD19阳性肿瘤细胞系,并能作用于原代NK细胞杀伤耐受的MLL重排白血病原始细胞SJ4-11(K562为敏感细胞对照,RS4 11为耐受细胞对照)[3]。由于CD45RA-细胞主要为CD3+CD45O+记忆T细胞,因此针对常见的病原体和疫苗应有更好的回忆应答(Recall response)。通过使用DELFIA Cell Proliferation Assay 检测掺入的BrdU,研究确认CD45RA- T细胞对人CMV、Epstein–Barr 病毒、 herpes simplex 病毒和tetanustoxoid有更为显著的免疫反应(下图a,增殖指标)。基于同样的增殖检测平台,研究利用PBMC开展Mixed lymphocyte reaction (MLR),对比不同细胞亚群的同种异体反应。相较于CDRA-效应细胞群体,CD45RA+细胞在MLR实验中具有更高的增殖能力(下图b)和IFN-γ分泌能力(下图c)[3]。 进一步的体内实验研究继续利用了PerkinElmer IVIS活体成像平台,在白血病小鼠模型的基础上,研究证明CD45RA-的 CAR-T疗法在不诱导GVHD的同时,发挥强效的抗癌效果[3]。借助活体成像的优势,研究追踪CD19+ SEM细胞在小鼠体内的扩增情况,确认在接种18天后肿瘤的信号强度足以模拟顽固性白血病小鼠模型。在此模型的基础上CD45RA-的 CAR-T疗法同样能迅速发挥作用,两周内强力抑制生物发光信号至检测限以下。最后,基于同样的检测平台结合重复接种肿瘤细胞,研究证明CD45RA-的 CAR-T疗法还能作用于复发白血病小鼠模型。 二,CAR-NK细胞杀伤CAR-T细胞疗法的成功和兴起也推动了其他类型的CAR研究,其中就包括针对实体瘤的CAR-NK疗法。相较于T细胞,NK细胞可以在没有抗体和MHC的帮助下靶向疾病细胞,因此能发动更为快速的免疫反应并能有效针对无MHC I表达的肿瘤细胞。同时, NK细胞更为安全,支持“Off-the-Shelf”的大规模生产和直接异体治疗。目前在国内已有多家医疗企业推动CAR-NK治疗,如博生吉的CD7 CAR-NK。在6月份的Molecular Therapy期刊上,广州医科大学附属第三医院的研究向我们展示了最新的CAR-NK临床应用。为了特异靶向肿瘤细胞表面抗原NKG2DLs,研究在NKG2D受体的胞外结构域基础上融合参与NK细胞活化的核心分子DAP12,并进一步通过RNA转染途径提升CAR-NK安全性。基于DELFIA的细胞杀伤检测法,研究证明NKG2D-DAP12 (NKG2Dp)能有效的裂解多种肿瘤细胞系,优于对照NK和NKG2D-CD3z(NKG2Dz)[4]。借助Perkinelmer提供的HCT116-luc报告细胞系,研究通过活体成像方法,在体内水平证明CAR-NK能有效控制肿瘤发展。进一步的临床研究证明CAR-NK的引入能迅速引起肿瘤退缩和肿瘤细胞减少,强调NKG2D CAR是一种很有前景的细胞治疗方案[4]。 三,T细胞杀伤T细胞不仅是免疫系统的核心成员,也是适应性免疫反应的基石。因此,T细胞功能的全面评价在肿瘤免疫疗法的开发过程中至关重要,其中就包括肿瘤疫苗的研发。早期基于经典肿瘤相关抗原gp100的研究证明细胞因子RANTES的引入能显著提升小鼠脾脏细胞的杀伤能力。同时,RANTES表达的时间点非常关键。疫苗引入前12和24小时表达RANTES能有效提升T细胞的杀伤能力,而48小时则没有这个现象。基于动物实验,研究推测多种细胞参与杀伤,包括CD8+,NK细胞和CD4+细胞群体。进一步基于DELFIA细胞毒法研究证明TRAIL和FasL参与了杀伤过程[5]。 除了传统T细胞杀伤外,DELFIA细胞毒法还可以被用于检测靶向T细胞的新型免疫治疗分子,如双特异抗体(BiTE)等的细胞杀伤功能[6]。 四,NK细胞杀伤鉴于NK细胞在天然免疫系统的重要性,其活力检测也是免疫检查点抑制剂研发过程中的核心项目。此外,NK细胞活力检测还可以用于衡量用于免疫疗法开发的新型小鼠模型。在2016年发表的一份研究中,基于DELFIA的细胞杀伤检测法证明PD-1抗体可以显著提升NOG-MHC Double Knockout小鼠脾中NK细胞靶向K562的杀伤活力。靶向免疫治疗的新小鼠模型不仅能加速新型免疫检查点药物(组合)研发,同时可以协助发现新的标志物预测疗效[7]。 除了直接杀伤靶细胞外,抗体依赖的细胞介导的细胞毒性作用(Antibody-dependent cell-mediated cytotoxicity,ADCC)也是评价NK细胞功能的一个关键指标。在今年的一份研究中,DELFIA细胞毒法被用于衡量静脉注射免疫球蛋白( intravenous immunoglobulin, IVIG)对NK细胞功能的影响。从结果可以看出,除了阻断NK细胞的直接杀伤能力外,IVIG几乎完全抑制ADCC活力(下图上)[8]。在该研究中,除了ADCC检测外,Perkinelmer的放射检测解决方案(3 [H]-Thymidine和MicroBeta 2)也被用于衡量IVIG和免疫抑制药物对NK细胞增殖的影响。H3-掺入法证明相较于IVIG,免疫抑制药物能有效抑制NK细胞增殖(下图下),而IVIG则特异作用于T细胞活力。鉴于ADCC是单抗药物发挥临床效果的核心机制之一,其活力检测也成为大分子药物研发的必须环节[9]。 欢迎扫码登录珀金埃尔默生命科学试剂耗材平台,点击进入car-t细胞治疗应用专题关注二维码:进入试剂耗材平台:参考资料:[1] Jia Xin Yu, et al. The global pipeline of cell therapies for cancer. https://www.nature.com/articles/d41573-019-00090-z[2] Triplett BM, et al. Rapid Memory T-cell Reconstitution Recapitulating CD45RA-depleted Haploidentical Transplant Graft Content in Patients with Hematologic Malignancies. Bone Marrow Transplant. 2015 Jul 50(7): 968–977.[3] Chan WK, et al. Chimeric antigen receptor-redirected CD45RA-negative T cells have potent antileukemia and pathogen memory responsewithout graft-versus-host activity. Leukemia. 2015 Feb 29(2):387-95.[4] Xiao L, et al. Adoptive Transfer of NKG2D CAR mRNA-Engineered Natural Killer Cells in Colorectal Cancer Patients. Mol Ther. 2019 Jun 5 27(6):1114-1125.[5] Aravindaram K, et al. Transgenic expression of human gp100 and RANTES at specific time points for suppression of melanoma. Gene Ther. 2009 Nov 16(11):1329-39.[6] Lewis SM, et al. Generation of bispecific igG antibodies by structure-based design of an orthogonal Fab interface. Nat Biotechnol. 2014 Feb 32(2):191-8.[7] Ashizawa T, et al. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse. Clin Cancer Res. 2017 Jan 1 23(1):149-158.[8] Pradier A, et al. Small-Molecule Immunosuppressive Drugs and Therapeutic Immunoglobulins Differentially Inhibit NK Cell Effector Functions in vitro. Front Immunol. 2019 Mar 27 10:556. [9] DELFIA经典技术应用于单抗研发及细胞治疗——AD0116细胞杀伤专题之ADCC https://mp.weixin.qq.com/s/0lkBdDHL5MFIyoeoFV4wWQ关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 利用iPS细胞高效制造造血干细胞技术问世
    日本研究人员日前宣布,他们开发出了利用实验鼠的诱导多功能干细胞(iPS细胞)高效制造造血干细胞的技术。医生未来在治疗白血病时,有望利用这种技术制造大量造血干细胞,从而代替骨髓移植。   造血干细胞位于骨髓中,可以分化为红细胞和白细胞。东京都临床医学综合研究所与大阪大学的研究人员利用iPS细胞先制作出了中胚层细胞。这种细胞可以发育为血管和肌肉等组织。随后研究人员向中胚层细胞植入LhX2基因,最终生成了大量的造血干细胞。   研究人员接下来用放射线照射实验鼠,使其失去造血功能,再将用上述方法得到的造血干细胞移植到一部分实验鼠体内。结果显示,和没有接受造血干细胞移植的实验鼠相比,接受移植的实验鼠寿命大幅延长,生存了4个月。   研究人员指出,此前利用iPS细胞培养造血干细胞时,难以单纯生成造血干细胞,还会混杂其他细胞,而这次开发出的新技术使造血干细胞的生成效率达到了原有方法的四五倍。   目前在对白血病患者进行治疗时,主要是移植与患者血液类型接近的正常人骨髓,以利用其中的造血干细胞,帮助患者恢复。研究人员希望在确认安全性后,将这种新技术用于人类的白血病治疗。相关论文已刊登在新一期美国《血液》杂志网络版上。
  • 追踪单个活细胞 细胞条码完胜荧光标记
    p style=" TEXT-ALIGN: center" img style=" WIDTH: 500px HEIGHT: 404px" title=" 2015812530441140.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201508/uepic/28a495d3-f847-4968-980e-a818f89bc0ae.jpg" width=" 500" height=" 404" / /p p style=" TEXT-ALIGN: center" strong 活细胞中的塑料球能发出激光。图片来源:M. SCHUBERT /strong /p p   两组研究人员分别将微小激光器放置在了活细胞内。这听上去可能有点像蚂蚁侠的下一代武器,但这个“小玩意”将极大提高生物学家追踪单个细胞活动的能力——这可能惠及从发育生物学到癌症研究的诸多领域。 /p p   “这有可能做一些你利用其他技术做不到的事。”英国敦提大学生物物理学家David McGloin说。例如,该激光器能追踪的细胞比荧光标记能追踪的更多,并且比高频ID等萌芽技术更简单易用。剑桥大学神经生物学家Kristian Franze也赞同这一观点。“如果他们能开发出适用于活细胞的此类技术,那对许多人而言将非常有趣。”他说。 /p p   要制作一个激光器,你需要两件东西:一种能被激发产生光的材料或“媒介”以及一个回荡着特定波长的光的“共振腔”,就像管风琴会同特有频率的声波共鸣一样。与谐振腔共振的光会刺激该材料发出更多光,极大地放大其效果来创造激光,结果将产生一个能放大光量的反馈回路。 /p p   之前,科学家也曾“摆弄”过以细胞为基础的激光器。例如,2011年,美国哈佛大学医学院生物医学家Seok Hyun Yun和现供职于英国圣· 安德鲁大学的物理学家Malte Gather,利用工程改造后包含绿色荧光蛋白的单个细胞作为发光媒介,并将其置于一个共振腔内,从而制造了一个激光器。但没有人制出放置在单个细胞内的激光器。 /p p   研究小组多年来一直在探索以单细胞为基础的激光,希望在活组织内造出会发荧光的细胞,以便在这些细胞工作时跟踪它们,深入揭示身体内部机制,比如癌症是如何开始的。目前,Gather和Yun正在利用类似技术分别进行研究。 /p p   一个困难环节是将腔囊放置在细胞内。Gather和同事将细胞与直径约为5~10微米的塑料球混合,这些小球被掺杂了荧光染料。小珠子充当了空腔,而染料则充当了媒介。细胞经由内吞作用将小球吸入“体内”,这一过程就像免疫细胞吞噬病原体。由于这些球体用荧光染料浸过,所以用一种颜色的光撞击后,它们会发出另一种颜色的光。这种光接着在球体内共振,引发激光作用,并放大自己。重要的是,每一束激光会根据球体的精确尺寸发出12种不同波长的光。相关论文发表在近日出版的《纳米快报》上。这一技术能作用于4类细胞,包括人类巨噬细胞和一种白血细胞。 /p p   研究人员指出,这一技术在细胞传感、医疗成像等领域有着广泛应用。“改写传统激光研究领域的知识并在这个平台上展开研究以便将激光性能最优化,将是一件有趣或者说非常激动人心的事情。”Yun表示。 /p p   之后,研究人员设计出一种5纳秒的光脉冲激活这些染料。它发射的光能沿球体的中间线运行——通过一种名为全内反射的过程进行约束。特定波长的共振和增加会更强烈,直到珠子发出足够的激光。 /p p   Yun和同事Matjaz Humar还设法诱导细胞“吞下”塑料珠子,并且他们制造了两类共振球,相关成果日前在线发表于《自然—光子学》期刊。研究人员利用一个细胞内的脂肪滴或油滴反射和放大光,从而产生激光。Yun和Humar报告说,他们能改变波长,并且利用不同直径的荧光聚苯乙烯微球而不是被注射进去的油滴或脂肪滴标记单个细胞。理论上,利用不同组合的微球和具有不同光谱特性的染料,应当可以使为人体中存在的几乎所有细胞进行单独标记成为可能。 /p p   Yun和Gather表示,这些激光器最显著的应用可能将是追踪单个细胞的行动。每个塑料珠子的直径和光学特性都略有不同,因此它们能有效区分波长,充当细胞条形码。Gather和同事用19小时在细胞培养皿中追踪了少量巨噬细胞,而Yun和Humar也进行了类似验证。 /p p   由于激光器能在明确的波长上照亮细胞,这让它们比荧光蛋白质标记等其他细胞追踪技术更有优势。包含荧光染料和蛋白的传统荧光探针拥有相对较宽的发射光谱——约30~100纳米。这限制了能被同时使用的探针数量,因为通常很难从组织中天然分子广泛的背景发射中区分出这些发光源。但这种激光器的光谱特性使其能同时追踪数千个微小指向标。研究人员通过为每个细胞装载数个小球将这一数字扩展到数百万或数十亿。然后,每个细胞将以不同的波长组合发射激光。 /p p   但这一技术还有很长的路要走。首先,研究人员需要确定不同的细胞类型都能“吞下”小球,尤其是活组织中的细胞。Gather预测,这将不是问题。“我相信该技术是可归纳的。”他说。另外,研发人员必须缩小塑料球的尺寸。Yun承认,现在的小球会将细胞填满。但Yun和Gather已经证实,他们可以用更小的玻璃球代替塑料球。 /p p   由于细胞发光可以持续一个较长的周期,可以在较长时间里识别和跟踪活组织内的细胞,有望为研究人员提供一种很有潜力的手段,执行细胞内传感、自适应成像,还可能真正看到肿瘤细胞的生长过程。但科学家指出,目前这一技术还只用在实验室培养的活细胞中,但他们希望进一步研究能带来用于动物实验的细胞跟踪系统,并最终用于人类。“不管怎样,它非常酷!”McGloin说。 /p
  • 细胞内NMR光谱方法在活细胞中应用
    在活细胞中以原子分辨率确定蛋白的三维结构,对结构生物学家来说是一大挑战。本期Nature报告的两项进展,应能拓宽这一领域中一项很有希望的方法——细胞内NMR光谱的应用范围。以前,光谱方法较低的灵敏度及样本的短寿命,使得人们难以获得足够的结构信息来用这种方法确定蛋白结构。为NMR实验收集数据一般需要一到两天时间,这对活细胞来说太长了。Sakakibara等人通过在2至3个小时内收集到足够数据而克服了这一局限。他们报告了完全根据在活大肠杆菌中获得的信息确定的第一个三维蛋白结构。   该原理证明研究中所用模型蛋白,是来自嗜热菌的假设的重金属结合蛋白TTHA1718。此前,活细胞的细胞内NMR光谱仅限于细菌和非洲爪蟾卵母细胞,对活真核细胞的广泛应用受到向这些细胞中输送同位素标记蛋白效率相对较低的限制。现在,Inomata等人发现,通过细胞穿透肽由吡啶酸调控的作用,有可能将合适标记的蛋白输送到人细胞的细胞液中,所用细胞穿透肽通过共价键与目标蛋白相结合。当输入的蛋白被内生酶活性或自体还原裂解作用释放时,研究人员便能够获得活的人细胞内蛋白质的高分辨率二维异核NMR光谱。这一方法有可能成为以细胞内蛋白为作用目标的药物的设计及筛选工作的一个强大工具。
  • Th22免疫细胞帮助癌细胞获得癌症干细胞属性
    就像外来非洲杀人蜂(Africanized honey bees),工蜂像大多数肿瘤细胞,而蜂王是癌症干细胞。蜂王可以重新再生整个杀人蜂群体,但其生存依赖蜂王浆。如果去除蜂王浆,蜂王死亡和整个杀人蜂群也会被杀死,而研究发现Th22源性IL-22就是蜂王浆。HZA007Po ELISA Kit for Angiogenin (ANG) 猪血管生长素(ANG)检测试剂盒 HZA147Po ELISA Kit for Adiponectin Receptor 1 (ADIPOR1) 猪脂联素受体1(ADIPOR1)检测试剂盒 HZA153Po ELISA Kit for Alpha-Fetoprotein (aFP) 猪甲胎蛋白(αFP)检测试剂盒 HZA062Po ELISA Kit for Interleukin 16 (IL16) 猪白介素16(IL16)检测试剂盒 HZB650Po ELISA Kit for Major Basic Protein (MBP) 猪主要碱性蛋白(MBP)检测试剂盒 HZA225Po ELISA Kit for Atrial Natriuretic Peptide (ANP) 猪心钠肽(ANP)检测试剂盒 HZA172Po ELISA Kit for Platelet Factor 4 (PF4) 猪血小板因子4(PF4)检测试剂盒 HZA164Po ELISA Kit for Ubiquitin (Ub) 猪泛素(Ub)检测试剂盒 HZA164Si ELISA Kit for Ubiquitin (Ub) 猴泛素(Ub)检测试剂盒 CEA968Po ELISA Kit for Aprotinin (AP) 猪抑肽酶(AP)检测试剂盒 HZA263Po ELISA Kit for Creatine Kinase, Mitochondrial 1A (CKMT1A) 猪线粒体肌酸激酶1A(CKMT1A)检测试剂盒 HZA083Po ELISA Kit for Leptin Receptor (LEPR) 猪瘦素受体(LEPR)检测试剂盒 HZA085Po ELISA Kit for Leukemia Inhibitory Factor (LIF) 猪白血病抑制因子(LIF)检测试剂盒 HZA088Po ELISA Kit for Monocyte Chemotactic Protein 2 (MCP2) 猪单核细胞趋化蛋白2(MCP2)检测试剂盒 HZA267Po ELISA Kit for Cathepsin K (CTSK) 猪组织蛋白酶K(CTSK)检测试剂盒 HZA274Po ELISA Kit for Insulin Like Growth Factor Binding Protein 6 猪胰岛素样生长因子结合蛋白6(IGFBP6)检测试剂盒 (IGFBP6) HZA093Po ELISA Kit for Macrophage Inflammatory Protein 1 Beta (MIP1b) 猪巨噬细胞炎性蛋白1β(MIP1β)检测试剂盒 HZA095Po ELISA Kit for Macrophage Inflammatory Protein 3 Alpha (MIP3a) 猪巨噬细胞炎性蛋白3α(MIP3α)检测试剂盒 HZA096Po ELISA Kit for Macrophage Inflammatory Protein 3 Beta (MIP3b) 猪巨噬细胞炎性蛋白3β(MIP3β)检测试剂盒 CEA097Po ELISA Kit for Matrix Metalloproteinase 1 (MMP1) 猪基质金属蛋白酶1(MMP1)检测试剂盒 HZA098Po ELISA Kit for Matrix Metalloproteinase 10 (MMP10) 猪基质金属蛋白酶10(MMP10)检测试剂盒 HZA277Po ELISA Kit for Connexin 43 (CX43) 猪间隙连接蛋白43(CX43)检测试剂盒 HZA099Po ELISA Kit for Matrix Metalloproteinase 13 (MMP13) 猪基质金属蛋白酶13(MMP13)检测试剂盒 HZA302Po ELISA Kit for Galectin 2 (GAL2) 猪半乳糖凝集素2(GAL2)检测试剂盒 HZA304Po ELISA Kit for Galectin 4 (GAL4) 猪半乳糖凝集素4(GAL4)检测试剂盒 Th22是一种免疫细胞类型T细胞的子集,通常情况下,T细胞是免疫系统的“士兵”,杀死肿瘤细胞。在结肠癌的情况下,研究人员发现,Th22作为肿瘤的辅助,实际上支持细胞变得能够再生(肿瘤干细胞的标志之一)。
  • 细胞激光器标记人体所有细胞
    激光拥有许多普通光不同的特征,使激光在许多领域被作为工具使用。但一般激光都需要复杂的技术和设备制造,让细胞发射出激光的想法似乎比较疯狂。科学家有时候看起来就是这么疯狂,最近有科学家真的制造出能发射激光的活细胞。这一新技术成为《自然》网站的最近头条新闻。科学家将含有荧光染料的油滴注射到单细胞内,用短脉冲光线激发细胞内染料产生激光。  这一新技术发表在7月27日《自然光子》杂志上,该技术不仅能开发为医学诊断的方法,也具有形成治疗疾病新技术的可能。  这一技术的设计者是Seok Hyun Yun和Matja? Humar,哈佛大学医学院的这两位光物理学家,利用油滴反射和放大光线使单细胞产生激光。Yun在2011年曾经报道过一种能产生激光的细胞,先利用基因工程技术让细胞表达荧光蛋白,然后将表达荧光蛋白的细胞放置于一对镜子中间,或者是细胞借助镜子的反射制造激光。最新这一技术更进一步,是让细胞自己独立产生激光。  在未来,这种“生物激光器”将能被进一步开发,植入活的动物体内,这能将大大提高显微镜扫描的精确度。将这种激光细胞植入身体内,可以制造出体内激光光源,帮助科学家观察组织结构和诊断疾病。  生物技术常用的荧光探针包括荧光染料和荧光蛋白,这些荧光的特点是发射比较宽的波长。这一特点导致荧光探针无法同时使用许多类型。例如我们可以选择绿色、红色和蓝色的荧光,其实同样是红色,其波长有非常多的类型。因为每个探针都是多种波长组成的混合光线,因此我们只能选择很少几类荧光作为工具。例如我们比较常用的荧光免疫组织化学,你一次用三种颜色标记三种不同蛋白就非常不错了。  激光能解决这个尴尬的问题,因为激光的特点就是非常窄的波长,这样理论上,我们可以同时追踪非常大量不同的目标分子。而且也能大大提高检测的灵敏度。波士顿布里格姆妇女医院生物工程学家Jeffrey Karp对该技术大加赞赏,认为是解决了用一种技术同时示踪数千种目标分子的伟大发明。  最新报道的这一技术核心是将含有荧光的聚苯乙烯滴注射到细胞内,可通过改变聚苯乙烯滴直径获得不同发射波长的激光。理论上组合不同的聚苯乙烯滴和不同波长的染料,能用不同波长光线标记人体所有的细胞。
  • 冉冉升起的明日之星——干细胞来源细胞外囊泡篇
    细胞外囊泡(extracellular vesicles, EVs)/外泌体(exosomes)是几乎所有细胞在其生命活动中分泌的一种具有生物膜结构的纳米尺度的小囊泡。作为细胞间通讯的一种途径,广泛参与并调控着生命机体的多种生理和病理过程(图1)。外泌体独特的物理和生化性质,赋予了这些小囊泡诸多特性,如低免疫原性、良好的生物相容性以及高效的生物屏障穿透能力,使它们在疾病治疗领域备受关注。图1. 外泌体生物发生和分泌示意图来自美国化学协会的学者检索并分析了CAS数据库中EVs在治疗和诊断领域中应用研究的发表情况,统计结果显示干细胞来源EVs(stem cells derived EV, SC-EVs)的相关研究位列第2,其中间充质干细胞来源的EVs(mesenchymal stem cells derived EVs, MSC-EVs)研究热度最高,发表文章数量高达4000篇。图2. 不同细胞来源外泌体在疾病诊断与治疗领域研究的论文情况本期文章,小编对MSC-EVs在疾病治疗、食品以及医美等领域的应用进行了简单综述,并进一步梳理了目前基于MSC-EVs的临床进展。MSC-EVs的疾病治疗研究及其产业化MSC是一种来源于成体组织和器官的多能干细胞,MSC-EVs具备免疫调节特性,且可以促进血管生成,给予细胞保护和抑制细胞凋亡等功能,因此,MSC-EVs在疾病治疗中具有极大的潜力。研究表明,来自MSC-EVs的miRNAs,特别是miR-320C,能够促进骨关节炎软骨细胞增殖。在一项心肌缺血再灌注I/R损伤研究中,携带miR-182-5p的MSC-EVs显示出改善心功能和减少心肌梗死的心脏保护作用,并伴有减少体内炎症反应。另外,MSC-EVs携带的miR-27b可诱导促炎细胞因子的下降,用于治疗脓毒症。当然,MSC-EVs本身可通过表达杀菌肽及抗菌肽如LL-37、人β-防御素2、肝素和脂钙蛋白-2和/或通过免疫调节来治疗传染病。除了直接以天然MSC-EVs作为治疗或者辅助治疗剂外,具有特定组织器官靶向功能的功能化的MSC-EVs也成为新一代研究和探索的重点,以便在治疗疾病时获得更有针对性的特异性。如图3所示,CAS数据库检索2017-2021年外泌体在不同研究领域的论文情况,表明EVs在治疗和诊断领域中应用研究的文章发表呈逐年递增情况,其中,EVs的靶向递送研究稳居C位,数量高达6000+篇。图3. 外泌体在不同研究领域的论文情况及趋势此外,来自美国化学协会的学者收集并总结了部分投身于开发EVs靶向性功能的公司在靶向不同疾病类型的布局,其中癌症、神经系统疾病、肺部疾病和伤口愈合是最受关注的疾病类型(如图4所示)。图4. 有潜力的外泌体治疗公司和靶向的疾病类型来自华南理工大学的研究者们通过疏水插入法将纤维蛋白靶向肽CREKA修饰到MSC-EVs表面,显著提高了MSC-EVs在骨缺损部位的富集和停驻,调节炎症反应和促进细胞成骨分化以实现骨骼组织的修复。该研究表明靶向修饰在骨组织修复中具有很大的应用价值,为提高MSC-EVs的治疗效率提供了一种新的策略。位于美国加州的Aetholon Medical公司另辟蹊径,开发了一款名为Hemopurifier的研究性医疗设备。Hemopurifier将细胞膜分离技术和亲和层析(affinity chromatography)技术结合在一起,可特异性地从血液循环系统中捕捉表面具有特定聚糖修饰的纳米颗粒,而病毒以及肿瘤来源的EVs往往正是通过这些聚糖修饰逃逸免疫系统。Hemopurifier在黏附和捕获表面修饰聚糖的EVs和病毒颗粒的同时,将血细胞再次送回到患者体内。该技术获得美国FDA授予的突破性设备(Breakthrough Device)认定。Aethlon公司已经通过实验证明Hemopurifier能够捕捉多种类型肿瘤分泌的EVs,其中包括乳腺癌、卵巢癌和转移性黑色素瘤。迄今为止,Aetholon Medical已使用该技术用于多种癌种、埃博拉、丙型肝炎、HIV和COVID-19等疾病的治疗。基于MSC-EVs的临床治疗试验EVs的研究已经从实验室开始进入临床阶段。Clinical trials网站数据显示,截至文章发表时共有59个注册在案的基于EVs的治疗项目处于临床试验阶段,其中超过60%的项目为MSC-EVs。如表1所示,排名靠前的研究项目包括肺部疾病(11项临床试验)、SARS-CoV-2感染(9项临床试验)、癌症、心脏病和神经系统疾病(均有4项临床试验)。其中,FDA已授权Direct Biologics公司的骨髓MSC-EVs治疗产品ExoFlo再生医学先进疗法,用于治疗COVID-19急性呼吸窘迫综合征(ARDS)(NCT04657458)。它还在对溃疡性结肠炎(NCT05176366)、克罗恩病和肠易激病(NCT05130983) 、实体器官移植排(NCT05215288)和轻/中度COVID-19(NCT05125562) 进行临床试验。Aruna Biomedical公司正在研究神经干细胞来源的外泌体(neuralstem cells derived extracellular vesicles, NC-EVs),用于治疗卒中以及其他神经系统和神经退行性疾病,候选基因AB126具有穿过血脑屏障的能力和中枢神经系统特异性。临床前数据表明,NC-EVs在改善测试小鼠血栓栓塞性中风模型中的细胞、组织和功能结果方面比MSC-EVs更有效。表1. 外泌体治疗性临床试验(部分)其他应用:食品和化妆品(医美)此外,EVs在食品、医美等领域的应用也被不断发掘和报道。CAS资源库的检索显示,在过去3年中,与EVs在化妆品和食品中的应用相关的文献数量亦呈现急剧增加趋势(图5)。图5. CAS数据库中与化妆品(A)和食品(B)中外泌体应用相关的文献发表趋势MSC-EVs已被证明在皮肤美容中发挥重要作用,如促进伤口愈合、缓解皮肤老化和防止疤痕形成等方面。源自诱导多能干细胞的EVs能够调节MMP-1/3的表达并增强衰老皮肤成纤维细胞中I型胶原蛋白的表达。而来自脂肪干细胞的EVs能够通过PI3K / Akt信号传导途径促进伤口愈合,并增加成纤维细胞中I型和III型胶原蛋白的数量。多酚、维生素、多不饱和脂肪酸等生物活性化合物是常见的提高营养价值的食品补充剂。然而,它们的生物利用度差、水溶性较差和代谢改变可能会降低它们的效果。借由EVs作为载体,可实现其有效递送。展望干细胞EVs在疾病治疗的赛道俨然已成一匹黑马,但是EVs如何与靶细胞通信,以及如何实现组织器官选择性的潜在机制尚不清楚,而这些机制的研究是开发针对外泌体通讯的有效治疗方法和开发工程外泌体衍生的治疗载体的先决条件。此外,该领域尚无统一的分析表征标准、纯化方法、表征技术及数据分析等的差异都会导致难以获得稳定且批间一致性良好的EVs。这些均是横亘在EVs研究以及产业化道路上的问题。在此过程中,EVs的基础研究以及新分析技术的迭代,有望为干细胞EVs疗法带来新的见解和策略,并可能激发下一代递送系统的设计与开发。截至目前,纳米流式检测技术已经进入由中国研究型医院学会细胞外囊泡研究与应用分会围绕SC-EVs制定的两项全国团体标准中,以及由上海市生物医药行业协会依据协会制定的《间充质干细胞外泌体质量控制标准》(T/SBIAORG 001-2023)团体标准中,NanoFCM将紧跟行业发展,在外泌体大规模生产、纯化工艺和表征质控等过程提供完整的解决方案。参考文献Rumiana Tenchov, Qiongqiong Angela Zhou*,et al.Exosomes – Nature’s Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics[J].ACS Nano 2022, 16, 17802&minus 17846Y W,et al. Requirements for human mesenchymal stem cell‐derived small extracellular vesicles[J].Interdisciplinary Medicine, 2023 1:e20220015.中国研究型医院学会.T/CRHA001-2021人间充质干细胞来源的小细胞外囊泡[S].全国团体标准信息平台(ttbz.org.cn)中国研究型医院学会.T/CRHA002-2021人多能干细胞来源的小细胞外囊泡[S].全国团体标准信息平台(ttbz.org.cn)上海市生物医药行业协会.T/SBIAORG001-2023间充质干细胞外泌体质量控制标准[S].上海,上海市生物医药行业协会(sbia.org.cn)部分数据来自于ClinicalTrials网站(ClinicalTrials.gov)
  • 温和细胞分选,开启单细胞测序成功的第一步!
    随着单细胞测序技术的快速发展,科研工作者们可对每个独一无二的单细胞进行分析,认识到细胞间的异质性,深入了解如胚胎发育早期的分化特征、肿瘤微环境中的非均质性、罕见循环肿瘤细胞的转录组等等以往传统高通量测序方法难以攻克的领域。单细胞分析的应用已进入百花齐放的时代,涵括神经生物学、癌症、免疫学、微生物学、胚胎发育、临床诊断等多个领域。单细胞测序分析的第一步,即是单细胞样品的制备,同时确保其生物完整性不被破坏。高质量的样品制备影响着后续单细胞分析成功与否。高活性、无细胞碎片且均一的单细胞悬液可使测序结果在完整性、真实性、数据可重复性得到提升。最常见细胞分离的方法可用MACS磁珠或流式细胞仪进行目的细胞分选与富集。单细胞测序流程利用流式细胞分选法富集目的细胞群体缩小研究范围,对单细胞群体可进一步精细化解读。尤其在研究罕见细胞族群,单细胞测序前先以流式细胞分选富集稀有细胞,可大大增加实验数据真实性与可靠性。现今已有愈来愈多单细胞测序研究结合流式细胞分选,筛选目的细胞、过滤死细胞减少样本中無效细胞的比例,提高单细胞文库构建的成功率以及后续的数据质量,让单细胞测序更有深度与广度分析实验数据,推动进一步研究范畴。传统高压液滴分选仪分选单细胞传统液滴式流式细胞分选(Droplet cell sorter),将目的细胞利用适宜的荧光标记。经荧光染色或标记的单细胞悬液,被高压压入流动室内,在鞘液的包裹和推动下,细胞被排成单列,以一定速度从流动室喷口喷出。通过相应荧光检测及充电,获得目的细胞,实现单细胞分离。然而操作过程中,分选的细胞相继受到高压、充电带有电荷、减压的刺激,常导致分选的目的细胞在分类过程中的损伤和溶解,活细胞回收率不高;即使回收的活细胞也因分选过程受刺激影响细胞基因转录图谱表现,无法维持其生物完整性。传统高压液滴分选仪进行单细胞分选Adapted from Technologies for Single-Cell IsolationInt. J. Mol. Sci. 2015, 16美天旎MACSQuant® Tyto® 革命性的细胞分选仪专利的微芯片技术,精准地控制阀门开合以进行细胞分选,该仪器的特性在于整个分选过程在一次性使用的全封闭样本舱(cartridge) 中进行,且无需鞘液、避免了样本污染和残留风险。上样简单、自动进行分选设置,无需操作人员进行高强度与长时间的培训就能轻松操作。由于实际分选过程都在样本舱进行,不会损失珍贵的样本材料;阳性和阴性分选组份均可在无菌洁净操作台内轻松回收。细胞不会受到高压、电荷及减压刺激,不同于传统的液滴分选仪,这种温和的分选方法可最大保持细胞活性和功能,即使经过多次分选,细胞活性也不会受影响,充分表明这种阀门介导的分选机制具有温和性质。美天旎MACSQuant® Tyto® 细胞分选仪与样本舱功能示意图。A. 美天旎MACSQuant® Tyto® 细胞分选仪;B. 样本舱;C.独特微芯片技术的分选示意图。单细胞测序前,使用美天旎MACSQuant® Tyto® 细胞分选仪(MQ Tyto)进行目的细胞分选富集。分选过程不受到高压、电荷、减压与剪切力刺激,作用温和不影响细胞生物功能完整性,维持细胞基因转录图谱表现,提高细胞存活率与回收率。位于美国加州大学(University of California, Irvine- UCI)的Dr. Kai kessenbrock研究团队致力于研究机体正常组织内环境稳态和乳腺癌中的细胞通讯。他们在单细胞水平上系统性分析研究乳腺干细胞微环境(stem cell niche)中细胞通讯的机制和乳腺上皮組織内的异质性,进一步加深对早期肿瘤发生过程中系统性变化的理解;最终目的是开发用于早期检测的生物标记物以及改善乳腺癌的治疗策略。Dr. Kai kessenbrock团队在FVB小鼠取出小鼠乳腺组织,分别以美天旎MACSQuant® Tyto® 细胞分选仪(MQ Tyto)与传统液滴式流式细胞分选(Droplet cell sorter)分离乳腺上皮细胞(CD49f+/EpCAM+)后,标记建库并进行单细胞测序;比较两种不同的流式细胞方法分选后,所获得的测序数据真实性与可靠性,也进行分选后的细胞培养,观察细胞存活与功能。小鼠乳腺上皮细胞分离与单细胞建库 (Data kindly provided by Quy Nguyen, UCI)1. MQ Tyto可有效分选出不同乳腺上皮细胞亞型(Luminal 1, Luminal 2, Basal-like subtypes),基因转录图谱完整呈现。聚类分析与差异基因热图展示2. 经由MQ Tyto分选,每个单细胞可捕获更多的mRNA数量(UMI),获得更多可分析的基因数(Genes);显示MQ Tyto保留了细胞的完整性。质控图3. 传统液滴式流式(Droplet cell sorter)细胞分选后细胞应激基因表现明显上调。这主要是来自于细胞分选操作过程中所受到的外力刺激,而非原始组织环境细胞的真实表现。应激基因表现量展示4. 细胞分选后,持续培养七天乳腺上皮细胞并形成乳腺球(mammosphere formation)进行计数。结果显示MQ Tyto组形成更多的乳腺球,表示其MQ Tyto分选后的上皮细胞维持其功能性与高存活率。综上,利用MQ Tyto对目的细胞进行分离与富集,作用温和不影响细胞生物功能完整性,维持细胞基因转录图谱表现,提高细胞存活率与回收率,开启单细胞测序成功的第一步。
  • 拉曼光谱解密细胞内结冰如何影响细胞活性
    冷冻保存技术是将细胞长期维持在稳定的状态,从而应用于各种疾病的诊断和治疗。据1970年代以来的研究显示,多种类型细胞冷冻保存后的存活率会随着冷冻速率的不同而不同。大多数种类细胞的存活率与冷冻速率呈倒U形关系:即当超过最佳冷却速率后,细胞存活率随冷冻速率的增加而迅速下降,当低于最佳冷却速率时,细胞存活率随冷冻速率的降低而迅速下降。在快速冷冻速率下,细胞内的冰晶形成(Intracellular ice formation,IIF)会对细胞造成损害,并随着冷冻速率的增加导致细胞活性丧失。然而,IIF的机制仍无定论,目前业内存在的主要有以下三个假设:(1)Mazur假设称细胞外冰晶可以穿过膜孔生长进而诱导细胞内冰晶形成;(2)Asahina则认为冷冻直接破坏细胞膜是导致IIF的原因;(3)Toner等人则提出表面催化形成晶核是造成IIF的原因。  传统低温光学显微镜技术是有限的,高速图像采集和双光子显微镜可以提高观察细胞冷冻的空间和时间分辨率,虽然可以在低温下观察细胞反应,却不能与每个细胞的活性相关联。显微拉曼光谱技术可对细胞进行无标记检测,并可用于细胞内水的热力学状态(即液态水与冰)等化学属性进行识别,因此可作为探究细胞冷冻反应的有力工具。此外,显微拉曼光谱的高空间分辨率和可区分细胞膜、线粒体等亚细胞结构的能力意味着该工具可用于进一步探究IIF及其成因,并通过拉曼光谱能够直接表征IIF对细胞活性的影响进而判别冷冻细胞后的活性。  明尼苏达大学研究团队在Biophysical Journal发表题为“CharacterizingIntracellular Ice Formation of Lymphoblasts Using Low-Temperature RamanSpectroscopy”的研究成果(图1)[1]。研究结果表明显微拉曼光谱技术可用于研究细胞在不同冷冻速率和冷冻液成分下的冷冻反应。通过拉曼光谱发现胞内冰晶形成并不一定会导致细胞死亡,但细胞内冰晶的数量及大小会影响细胞活性。另外研究还发现,细胞内冰晶形成靠近于细胞膜并靠近于细胞外冰晶,而通过增加细胞膜和细胞外冰晶间的距离可以减少IIF;实验使用细胞松弛素D破坏肌动蛋白细胞骨架以改变细胞膜的渗透性来增加胞内冰晶形成量,当存在胞内冰晶时,可以显著的观察到细胞内渗透梯度,这些观察结果揭示了细胞膜与胞外冰晶的相互作用是导致IIF的原因。图1 研究成果(图源:[1])  此项研究选用Jurkat细胞作为淋巴细胞的模型细胞,采用的共聚焦显微拉曼系统Alpha 300R配备:UHTS300光谱仪、600 l/mm光栅以及DV401 CCD检测器。激发光源波长为532 nm,100×物镜(NA=0.9),聚焦在被测物上的光功率为10mW,显微分辨率约为296 nm。将细胞冷冻至-50℃,并在成像前保持20分钟。每幅图像有60×60个像素,每个像素点采集的积分时间为0.2秒,因此,对整个细胞进行成像总共需要12分钟。分别在第20、80和140分钟时对相同细胞进行拉曼光谱成像采集,以排除来自激光照射带来的光损伤/光漂白的热量影响。  单细胞中细胞色素c的分布被作为冷冻状态下细胞活性的衡量标准,其拉曼成像结果与台盼蓝染色结果高度一致。细胞色素c的空间分布使用 Moran' s I量化,并被用作细胞活性的标记。Moran' s I是一种基于信号位置和强度的进行空间相关性度量的方法,其值为-1时表示信号完全分散,+1时表示信号完全相关,0时表示信号随机分布。细胞色素c在750、1127、1314和1585 cm-1处具有强烈的拉曼信号,本实验以1127 cm-1作为标记峰用于生成细胞色素c的拉曼成像,并通过吖啶橙/碘化丙啶(Acridine orange/Propidium iodide,AO/PI)染色验证解冻后细胞的活性。根据常见的细胞内、外物质的特征峰位置(表1,图2),整合每个像素的光谱来组合拉曼成像,表征冰晶的大小、冷冻保护剂的细胞内浓度以及外部冰与细胞膜的接近程度。表1 拉曼光谱的波数分布数据来源:[1]∣制表:生物探索编辑团队图2 不同物质的拉曼光谱(图源:[1])  注:1)海藻糖;2)葡聚糖;3)DMSO;4)=细胞色素c;5)冰;6)冷冻保存在10% DMSO中的Jurkat细胞。根据左边的特定信号渲染出右边图像,并以光学显微镜图像为参考。  结果发现:1  细胞色素c的拉曼光谱可表征细胞复温后活性  解冻后细胞复苏率与冷冻速率的之间的函数绘制曲线呈倒U形,可知“最佳”冷冻速率为1-3℃/min,当冷冻速率高于该曲线时认为是过快的,并会与IIF相关(图3A)。在冷冻细胞的不同焦平面上获得的拉曼成像显示,细胞中间(中心)的细胞色素c图像提供了最强的信号(图3B)。台盼蓝染色阴性细胞(活细胞)的细胞色素c局部拉曼信号强且最低Moran' s I值为0.65,而台盼蓝染色阳性细胞(死细胞)没有可区分的细胞色素c拉曼峰(图3C)。因此,可使用0.65的Moran' s I值作为区分活细胞和死细胞的阈值水平。图3 Jurkat细胞活性的拉曼检测(图源:[1])  注:(A)在10% DMSO中冷冻Jurkat细胞后的复苏率与冷冻速率的函数曲线图。(B)冷冻细胞在三个不同深度焦平面上细胞色素c的拉曼成像。(C)通过拉曼光谱检测冷冻后Jurkat细胞的活性并使用台盼蓝进行验证,对应的细胞色素c的拉曼特征、拉曼成像和计算的Moran' s I值。2  拉曼光谱可分析细胞内冰晶的形成  拉曼光谱测定了细胞在1、10和50℃/min冷冻速率下的细胞活性:以1℃/min冷冻保存后的细胞中有80%是活的,以10℃/min冷冻保存后的有60%的细胞是活的,而以50℃/min冷冻保存后的只有20%的细胞是活的(图4A)。每个细胞内冰的相对量可以根据冰的横截面积与细胞的横截面积的比值(Aic)来估计。Aic与不同冷冻速率相关性函数(图4B),Aic随着冷却速率的增加而增加。统计Aic与Moran' s I值的函数曲线图,结果表明活细胞中的冰晶比死细胞少,但存在群体上的差异(图4C)。图4 不同冷却速率下细胞内细胞色素C和冰晶的分布(图源:[1])3  基于拉曼图像可计算IIF的冰晶尺寸及位置  在不同冷冻速率下,大多数细胞仅存在小冰晶。图5 细胞内冰晶的拉曼成像(图源:[1])4  拉曼图像可表征冰晶、细胞膜和IIF的相互作用  分别将细胞以10℃/min的冷冻速率在10% DMSO或10% DMSO+10%葡聚糖中进行冷冻保存。通过拉曼成像分析IIF和Aic,细胞通常存在于相邻冰晶之间的未冷冻溶液中(图6A)。实验观察指定了两个不同的区域:1)细胞外冰晶靠近细胞膜的区域;2)相邻冰晶之间的区域,其中细胞膜远离细胞外冰晶(图6B)。通过测量细胞和细胞外冰晶之间的未冷冻溶液的厚度来表示细胞膜与细胞外冰晶的接近度(图6C)。图6 在10% DMSO或10% DMSO+10%葡聚糖中冰和Aic的拉曼图像(图源:[1])5  拉曼验证破坏细胞骨架增加了细胞内冰晶的形成量  质膜不是孤立地起作用,而是与细胞中的其他结构相互作用,特别是细胞骨架。为了确定破坏膜结构对IIF的影响,将Jurkat细胞放置于50以及250μM细胞松弛素D(Cytochalasin D,CD)中培养30分钟,然后在10% DMSO中以10℃/分钟的速率进行冷冻。对于存在CD的实验,在10个细胞中有2个中观察到大块冰晶(图7A)。约83%的细胞靠近细胞膜存在比例很高的细胞外冰晶,其中带有大块冰晶的细胞确认死亡,而带有小冰晶的细胞部分死亡部分存活。细胞内冰晶与细胞膜的空间定位确证在细胞外冰晶附近(图7B)。在所有实验条件下,IIF的细胞比例相同(100%),但结果显示Aic会随着CD浓度的增加而显著增加(图7C)。图7 细胞松弛素破坏细胞骨架对IF的影响(图源:[1])此项研究证实了拉曼光谱技术可用于研究细胞在不同冷冻速率、不同冷冻保护剂下的冷冻反应。此外研究还表明了IIF靠近于细胞膜,特别是与细胞外冰晶相邻的位置。随着靠近细胞膜且与胞外冰晶相邻的比例增加,IIF比例也会增加,并且随着细胞膜和胞外冰晶之间的距离减小,IIF比例也会随之增加,这些结果表明细胞膜和细胞外冰晶之间的相互作用是造成IIF的原因。该研究还进一步了解了冷冻保护剂的潜在作用机制,但是,研究中无法通过拉曼技术将细胞骨架与细胞内其他蛋白质成分区分开来,因此也无法明确IIF是否会损害细胞骨架。
  • 岛津原子力显微镜——iPS细胞与癌细胞的对比与区分
    干细胞的研究一直受制于供体细胞很难获得,而且相关实验的伦理风险也不容忽视。因此2007年发明的诱导式多能性干细胞(iPS)技术成为最佳的胚胎干细胞替代。iPS细胞在形态、基因和蛋白表达、表观遗传修饰状态、细胞倍增能力、类胚体和畸形瘤生成能力、分化能力等方面都与胚胎干细胞相似。但是iPS转化过程中,会有一定的几率发展为癌细胞。不同体细胞来源的iPS细胞成瘤性有差异。因此,如何筛选安全型iPS细胞是该技术能够进入临床实验的关键。原子力显微镜作为一种三维形貌观察工具,不仅具备超高分辨率,而且支持在液体环境下工作,是一种理想的细胞观测设备。除了形貌观察外,原子力显微镜还可以多种表面属性进行定量观测。例如,基于力学测试的表面机械性能测试。这些特征为原子力显微镜应用于iPS细胞观测与筛选提供了技术基础。为此设计一个实验,分别用原子力显微镜观察未分化的iPS细胞和HeLa细胞。HeLa细胞是一种被广泛使用的癌变细胞,因此可以和iPS细胞进行对比观察。上图显示了SPM形状图像(a)HeLa细胞和(b)iPS细胞。用光学显微镜观察到的相应相位差图像分别显示在(c)和(d)中。图中箭头所示位置处的截面形状轮廓如(e)和(f)所示。从细胞形态上来看,HeLa细胞呈圆顶形,表面隆起比较高,约7um;而iPS细胞呈扁平状且细胞间粘附呈网状结构,细胞高约1.7um。仔细观察细胞之间的边界,可以看出HeLa细胞之间的边界呈凹陷状,而iPS细胞之间的边界是凸起的,而且呈网络状。据此可分析得知这两种细胞各自的间粘附具有差异,且HeLa细胞之间的粘附较弱,而iPS细胞之间的粘附较强。除了形貌观察外,原子力显微镜还可以通过力学测量获得细胞表面的机械性能。如下图所示,用探针针尖压触细胞表面,通过对探针获得的力反馈分析样品各类机械性能。对于本实验,在对64×64点的测量区域进行测量后,从获取的体数据中形成形状图像。该观察中使用的探针是由OlympusCorporation制造的OMCL-TR800PSA并且具有0.15N/m的弹簧常数。测量是在培养液中的活细胞条件下进行的。对细胞的最终压力(排斥力)为2.5nN。通过比较从探针与样品接触的位置到达到2.5nN的力的变化,确定样品的硬度。(a)和(b)显示了SPM观察到的HeLa和iPS细胞的细胞形状图像,(c)和(d)显示了相应的ZX断面图像,是从样品竖截面方向看时在(a)和(b)中箭头所示的X线位置处施加到探针的力的图像。图中上方为测量起点,下方白色虚线为压触终点,显示了样品截面形状轮廓。在ZX图像中,探针与样品接触后检测到力的位置以黄色到红色的颜色显示。因为这表明探针对细胞的变形,所以可以理解较大量的细胞变形显示细胞的较软部分。可以从细胞变形量了解硬度。(c)中的HeLa细胞显示出均匀的变形,但相比之下,在(d)中的iPS细胞中,细胞体较软,细胞间粘附区较硬。分析结果表明,HeLa细胞表面硬度比较均匀,软硬部分差别不大,而iPS细胞主体较软,细胞间粘附区较硬。由以上测试可知,利用原子力显微镜对iPS细胞进行表征,有潜力发展为正常细胞筛选以及剔除癌变细胞的合适工具。本文内容非商业广告,仅供专业人士参考。
  • 科普干细胞填充技术,揭秘干细胞抗衰原理
    你可能经常能够在耳边听到别说干细胞,干细胞是一个什么样的概率,是个什么东西你真的了解吗?今天小编就带你来深入了解我们常说的:干细胞!什么是干细胞?干细胞是一类具有无限的或者永生的自我更新能力的细胞、能够产生至少一种类型的、高度分化的子代细胞,干细胞(stem cell,SC)的“干",译自英文“stem”,意为“茎干”,“干”和"起源”。干细胞群的功能即为控制和维持细胞的再生。 一般来说,在干细胞和其终末分化的子代细胞之间存在着被称为“定向祖细胞”的中间祖细胞群,它们具有有限的扩增能力和限制性分化潜能。这些细胞群的功能是增加干细胞每次分裂后产生的分化细胞的数量。干细胞是具有多向分化潜能、自我更新能力的细胞,是处于细胞系起源顶端的最原始细胞,在体内能够分化产生某种特定组织类型的细胞。干细胞与衰老的关系构成人体的200余种细胞中,大部分为终末分化细胞,高度分化使其失去了再分裂的能力,最终会衰老、死亡;但同时机体也保留了一部分未分化的原始细胞,即干细胞。这些细胞在特定条件下或者产生新的干细胞,或者按一定的程序分化形成新的功能细胞,从而使组织和器官保持生长和衰退的动态平衡,当衰退的进程大于再生长的能力时表现为衰老;如果细胞再生能力更强,那么组织衰老的进程将被延缓甚至阻断。 干细胞的功能、特点使得其在创伤修复、神经再生和抗衰老等临床医学领域具有广阔应用前景。已有研究证明,干细胞在心血管疾病、代谢病、帕金森氏综合征、肝硬化、白血病等多种疾病的治疗中疗效显著;而干细胞抗衰老更是《Science》杂志评选出的1999年度10大科学进展之一,由此引发的“再生医学”革命不容小觑。可想而知,干细胞抗衰老效应的发挥取决于是否能够动员足够数量的理想的干细胞。 干细胞美容应用延缓衰老、永葆青春,自古以来就是人类不懈追求的目标,美容行业所说的抗衰老是以形体形象为主,祛皱、提拉等项目都属于抗衰项目,延缓肌肤衰老!尚恩控股集团联合国内外医美领域专家,对干细胞美容应用展开深入研究,干细胞美容抗衰老是目前临床上的主要应用,主要通过对自体干细胞进行体外培养、扩增、纯化,再移植到人体指定部位,激活皮肤干细胞的再生和修复,降低细胞老化速率,增强肌肤内部支撑结构,从而达到除皱、祛疤、减肥、丰胸等效果,医佳颜活性因子抗衰便是运用了干细胞再生特性,对面部凹陷进行再生填充,修饰面部脸型,起到紧致提拉祛皱的美容抗衰功能。
  • 南开团队开发干细胞仿生赋能系统助力干细胞研究发展
    随着人类在生命科学领域探索的不断深入,干细胞研究和应用已经成为科学界和全球生物医药行业关注的热点之一,也成为包括我国在内的不少国家的重要科技战略。尽管具有广阔前景,但干细胞研究和应用仍面临许多亟待解决的难题,干细胞的高质量地体外培养就是关键难题之一。南开大学生命科学学院教授杨军课题组,在20余年持续研究的基础上,开发出一套可以模拟体内微环境的干细胞防生赋能系统,有效解决了目前干细胞体外培养效率低、费用高、安全性差、代际功能减损等问题,助力干细胞研究更好地走向应用。以课题组成员为骨干的学生创新创业团队“奇府”,正致力于将这一研究成果推向市场。干细胞是人体发育过程中以及成体后体内存在的一类细胞,具有自我复制,多向分化等特点,常用于生长发育、疾病发生、药物筛选等科学研究。除此之外,干细胞还可以用于疾病治疗,例如:胚胎干细胞分化的眼角膜给患者带来了光明,脐带造血干细胞用于治疗遗传性或获得性造血系统疾病、间充质干细胞对自身免疫病患者进行免疫调节等。新冠肺炎疫情暴发以来,干细胞,尤其是间充质干细胞也被应用到重症以及危重症的救治研究当中。然而,通常干细胞获取比较困难,数量也极其有限。为了获取足够数量用于治疗的干细胞,必须进行体外扩增。然而,随着扩增代数的增加,干细胞的生物学功能逐渐减弱,这使得可应用的干细胞可用代次有限,导致干细胞资源稀缺,难以满足庞大的市场需求,而其高昂的成本也极大限制了干细胞产业发展。因此亟需一套解决干细胞数量严重短缺的方案。研究人员介绍,目前的干细胞培养系统存在四大痛点——增殖能力不足,细胞产量低;功能丢失,治疗效果差;干细胞纯度低,安全风险大;细胞资源稀缺,生产成本高。简而言之,现有的培养系统极易造成培养的干细胞不够用、不好用、不敢用和用不起的问题。“这是由于一般的干细胞扩增使用的培养表面不能很好地仿生体内微环境导致的。” “奇府”团队负责人、南开大学生命科学学院博士生陈国强介绍,在多细胞生物中,没有一个细胞是孤立状态,细胞间的相互作用尤为重要。如果把干细胞培养环境比作“房子”,细胞间相互作用就是一根重要的“支柱”,没有这根“支柱”,“房子”就摇摇欲坠。那么,如何实现体外微环境构建呢?研究团队以干细胞仿生培养材料入手,全面优化配套培养体系。首先,研究团队筛选多种细胞间相互作用蛋白,分析其基因以及蛋白序列,随后选择几种基因利用基因工程技术构建融合蛋白基因,通过生物合成技术稳定批量制备人工基质蛋白产品,最后利用纳米涂层技术在传统材料表面形成人工基质蛋白涂层实现表面功能改性。“奇府”团队通过先进基因工程技术制备的核心产品,其基质成分明确稳定,量产纯度>95%,且为人源蛋白,能够更好地调控人源干细胞,且更为安全。同时,“奇府”干细胞赋能体系大规模构建细胞间相互作用的核心蛋白,很好地在培养平面上实现了体内微环境的仿生,从而使细胞功能得以维持。此外,“奇府”产品通过细胞间相互作用蛋白仿生调控干细胞生长微环境,缩短干细胞增殖周期同时延缓干细胞衰老,使可用的干细胞数量大大增加,扩大了干细胞的生产规模,降低了干细胞的生产成本且减少了患者等待的时间。“我们的培养技术补齐了最后一根‘支柱’,仿生干细胞微环境,在体外构建了干细胞生存之家,而且还是一个温暖舒适的‘阳光房’,达到高效增殖、安全使用、功能提升和成本降低的四大效果。”陈国强说。“为了实现最好的干细胞培养效果,进行培养体系各组分详细优化,从培养基质的成分配比,作用时间到培养基的选择以及细胞消化液组成都进行了数百次以上的尝试。”项目骨干秦政介绍。干细胞扩增技术成熟后,“奇府”团队开启了针对干细胞不同用途赋能体系的开发。干细胞的行为受到其所处的微环境的影响,要想让干细胞发挥指定的功能,需通过微环境对其进行精准调控。为实现这一目的,“奇府”团队通过查阅各种疾病以及发生发育相关论文,不断优化培养体系,先后开发出心肌修复、血管再生、免疫调节以及关节修复等4种干细胞赋能体系。在相应疾病模型小鼠试验中,相较于传统基质表面培养的干细胞,“奇府”赋能的干细胞具有更加显著的治疗效果。截至目前,“奇府”干细胞防生赋能系统涉及的相关技术现已获得十余项国内外发明专利,发表科技论文100余篇。基于领先的仿生构建技术和良好的实验效果,“奇府”团队还将研究成果积极向产品转化,将人工基质蛋白及其配套的培养体系简化组合形成了简单易用的试剂盒产品。“目前,我们的团队已与国内干细胞生产企业和相关医疗机构达成良好的合作关系,将产品提供给合作单位进行试用,得到了很好的评价反馈。未来,我们希望以市场化的方式,将‘奇府’系列产品规模化推入市场,真正助力我国的干细胞研究和应用。”相关论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adhm.201600114
  • 王小波博士谈:流式细胞术对细胞分型和功能的检测
    Innovations in Pharmaceutical Technology (IPT) 最近对话安捷伦公司的王小波博士,其中谈到了推动流式细胞术发展的需求,以及该技术未来可能的发展方向。 IPT:在过去十年中,流式细胞仪的应用是如何发展的?流式细胞术是一种强大的技术,用于定量检测悬浮液中单个细胞和其他颗粒的物理和化学特征,速度可达每秒数千个细胞。细胞通常被不同靶蛋白的荧光标记抗体标记,从而能够同时对单个细胞的多种胞外或胞内蛋白质进行多重给检测与分析。由于细胞正在被应用于如免疫疗法、细胞和基因疗法等疾病治疗的研究,因此流式细胞术提供的数据就变得越来越重要。当然,它也可用于分子生物学、细菌学、病毒学、癌症研究和传染病的监测。在过去的十年里,使用流式细胞仪的人变得越来越多,而如今,许多生物学实验室都在使用流式细胞仪。重要的是,该技术的革新使其变得更易于使用且更具性价比。因此,流式细胞仪逐渐成为许多公司的最大收入来源。IPT:哪些应用领域目前正处于增长阶段?流式细胞仪传统上应用于免疫学—也即是我们通常所说的对免疫细胞如淋巴细胞的研究。例如,它已被用于免疫表型分析:根据细胞表面的抗原或标记物使用对应抗体来识别细胞的过程,以分类和了解不同类型的免疫细胞。如今,流式细胞仪的应用在涉及药物开发的细胞功能检测中也很常见,如细胞增殖、细胞活化、细胞信号、细胞凋亡和细胞毒性等。例如,流式细胞仪可用于检测共培养实验中免疫细胞对肿瘤细胞的杀伤。目前,流式细胞术在生物研究所涵盖的广泛领域有着丰富的应用。IPT:流式细胞术的使用是否还存在障碍?随着实验室拥有比以往更多的分析仪器,情况正在改善。设计实验、准备样品和运行流式细胞仪检测需要时间,特别是当科学家想要运行不同类型的检测时。此外,实验室想开展多色实验设计也很常见,其中20或30个荧光标记是正常的。因此,需要大量的时间和资源来进行数据分析,以获得实验结果中的生物学见解。好消息是,随着流式细胞仪的自动化程度越来越高,分析能力越来越好,这将帮助时间有限的实验室进一步优化工作流程。IPT:流式细胞仪性能方面有哪些最新的突破?除了使用更多的多色搭配方案,还有正在开发的新试剂,对靶抗原有更高的特异性和亲和力,改善了信噪比,以提高分辨率和更好的进行细胞分群,这使得实验室能够开展更加复杂的实验。我们现在能够在单次流式实验中检测数百万个单个细胞中40、50,甚至100多个分析物--这就是我们所看到大数据和人工智能发挥作用的地方。还有光谱流式细胞仪的面世,它可以检测荧光基团发出的整个光谱。与传统流式细胞仪中对一种荧光基团的单一波长范围检测相比,该技术在灵敏度方面有了进一步提高。IPT:流式细胞仪的未来是什么?流式细胞仪不仅需要继续发展紧跟细胞分析的需求,而且还需要让我们世界上的优秀科学家更容易使用它。在我从事这个行业期间,我看到了这个领域的积极变化;许多实验室现在都拥有流式细胞仪,使生物学家--无论他们是在大学还是在生物制药公司--都能使用这些强大的仪器进行前沿研究。流式细胞仪所涉及的仪器、试剂和软件的开发人员需要共同努力,继续保持这一发展趋势,以便在生命科学研究、疗法开发和临床诊断的背景下,在分析和理解复杂的细胞环境和过程方面实现全球性突破。我们终将见证,流式细胞仪作为世界上所有生物学家都可以使用的工具,将在推动生命科学研究、疗法开发和生产,以及临床诊断和预后方面发挥更重要的作用,最终促进医疗健康的进步。安捷伦流式细胞仪和实时细胞分析PLXA业务部总经理王小波王小波博士是细胞传感器、细胞处理和细胞分析技术相关生命科学工具领域的全球知名的专家和领导者。自2018年通过艾森生物被收购加入安捷伦以来,王博士一直在领导创新实时细胞分析平台和下一代流式细胞仪系统的开发和商业化。通过专注于满足细胞基因治疗和免疫肿瘤市场的客户需求,王博士带领团队实现了技术和解决方案在这些新兴和快速增长的市场中的渗透和应用。在加入安捷伦之前,王博士是艾森生物的联合创始人和首席技术官,他带领艾森团队开发了用于无标记、实时细胞分析的电子传感器平台以及NovoCyte流式细胞仪技术并实现了商业化。在创建艾森之前,王博士曾在AVIVIA生物科学公司担任过三年左右的研发高级总监。在此之前,王博士就职于美国德克萨斯大学MD安德森癌症中心。多年来,王博士发表了60多篇科学论文,在细胞处理、细胞分析和生物传感器技术等各个领域拥有50多项美国专利。
  • 库尔特 细胞研究不可或缺的细胞体积分析
    生物、药物等许多的研究均需要通过观察细胞体积的变化或细胞数目增减的来判断和评估实验的效果。由于细胞所处环境的改变可促使其自身体积做出相应的变化,以便适应改变后的环境大致新的平衡。由于并不能清晰地知道该种细胞体积变化规律,因此必须检测其体积或细胞数目随条件、时间的变化。   细胞的发育与细胞分裂周期级数递增均需要连续不断的细胞增殖。   在培养液中正在增殖的细胞在其分裂前其体积将增大至原体积的两倍。然而对细胞发育与分裂的速度作如何调整才能保证细胞体积的不变并不明确。因此,测量细胞的体积的变化对了解与控制细胞的发育和周期非常重要。   细胞的死亡   细胞的增殖与细胞的死亡之间需要一个精细的平衡以保持足够的细胞数量。该种平衡容许细胞作最佳的状态调节以适应各样机能变化的需求。细胞死亡有两种清晰的机制,坏死与凋亡。坏死是一个病理生理的机制,包括细胞膨胀以及细胞膜破裂而释出内容物。凋亡则是一个程序式死亡的机制。凋亡的特征之一就是细胞收缩。细胞有缺陷的凋亡与过度凋亡,两者同样会导致严重疾病。   渗透压的补偿   任何种类的细胞都有可能因处于不利环境而死亡。细胞犹如多孔的网筛极易因渗入已溶解于周围环境的化学物而使渗透压受影响。细胞内外环境中该些溶解物颗粒数目的不平衡,将会导致水份透进细胞而使其体积涨大,或者是水份从细胞渗出使其体积收缩。   当细胞或微生物遭遇环境的变化,它们都会尝试通过自身调节来适应新的环境。   细胞平均体积(MCV)的变化   当细胞或微生物遭受环境变化时,它们将通过自身调整以图适应新的环境。一些例子中细胞需要改变自身体积以便达到适合的目标。   由贝克曼库尔特公司出品的Multisizer 3 库尔特细胞特性分析仪是目前最权威的细胞体积、细胞计数的分析仪器,应用文献多不胜数。无可逾越的领先技术更使Multisizer 3 成为分辨率最高的仪器。国外的用户统计表明,Multisizer 3 已成为细胞实验室必备的研究工具。   自华莱士• 库尔特先生发明 库尔特原理 以来,该原理已广泛应用于材料、生物、医学、制药等众多的领域。目前生物领域的细胞计数标准就是库尔特原理。美国材料实验协会ASTM将库尔特原理定为生物细胞计数的标准(ASTM-F2194)。国际血液学标准化委员会亦指定库尔特原理为计算红细胞与白细胞的标准实验室方法 (Clin. lab. Haemat. 1988. 10, 203-212.)。   作为库尔特原理及技术应用的鼻祖,美国贝克曼库尔特公司始终保持着技术领先的优势。† 库尔特计数仪(Coulter Counter)无论在研究还是在质量控制的应用均具有深远的影响力。在权威的研究机构及其发表的学术文献当中,库尔特计数仪均担当着不可或缺的角色。   多年来贝克曼库尔特公司在市场上推出了一系列的库尔特计数仪(Coulter Counter),如:ZM、TA II、Multisizer II等系列型号,为科研与产品控制的实验室颗粒/细胞的检测提供最可靠的分析手段。Multisizer 3 型库尔特颗粒/细胞计数及粒度分析仪为当今所有计数仪、粒度分析仪当中分辨率最高的仪器。   库尔特原理(Coulter Principle)   又称为电感应区技术。   悬浮于弱电解液中的细胞被抽吸而经过一个小孔,因产生外加电压而形成“感应区”。细胞经过小孔时,细胞的体积替代了电解液的相应体积。因相应体积的电解液被替代,小孔感应区产生电压脉冲而导致电阻的改变。脉冲的强度与细胞的体积成比例的关系 。   Multisizer 3 先进的DPP 数码脉冲处理器,使测量过程中的数以百万计的脉冲信号无须经压缩而保存。数据因无损失而能实现再分析功能。DPP的功能使得Multisizer 3 能够实时监测样品在分析过程中的原始变化。   DPP同样可用于检测细胞体积的改变。在许多的生化过程中细胞体积是一个重要的参考因素。如细胞发育、细胞周期、细胞死亡、渗透压的补偿、致病机理和吞噬作用等。Multisizer 3 可以观测细胞粒径与体积从几秒到几小时内的变化。   DPP技术在低温生物学中的应用   这是在冷冻过程中受渗透压影响的细胞,其平均体积(MCV)的分布曲线和20秒内连续的脉冲峰值平均值的变化。   择任意的脉冲群可以将一个粒度分布“分割”成多重的分布。因此,可获得在分析全程中的某一时段的粒度分布。如图示,可获得细胞的平均直径随时间的变化。   使用Beckman Coulter 的Multisizer™ 3 库尔特体积粒度分析仪将能方便而精确地测量细胞平均体积(MCV)的各种变化。
  • 人NK/T细胞淋巴瘤细胞的处理方法与培养步骤!
    人NK/T细胞淋巴瘤细胞的处理方法与培养步骤! NK/T细胞淋巴瘤(NK/T cell lymphoma)是起源于成熟NK/T细胞的淋巴系统恶性肿瘤。NK细胞和T细胞具有共同的祖细胞,两者在功能和某些抗原的表达上具有相似之处,NK/T细胞淋巴瘤因起源于这两种细胞而得名。 细胞说明信息平台编号:Bio-129794规格:1×10⁶ Cells/T25培养瓶细胞信息:SNK-6细胞名称:人NK/T细胞淋巴瘤细胞细胞传代:如果细胞密度达80%-90%,即可进行传代培养。组织来源:淋巴细胞培养条件:1640培养基(GIBCO,货号11875093) +10%澳洲来源进口胎牛血清(GIBCO,货号10091148)+1%双抗形态:悬浮;淋巴母细胞样规格:1×10^6 cells/瓶用途:细胞系注意事项:仅用于科学研究或者工业应用等非医疗目的不可用于人类或动物的临床诊断或治疗,非药用,非食用(产品信息以出库为准) 细胞收到后的处理方法细胞在培养瓶中培养至良好状态后灌满完全培养液并封好瓶口是细胞运输的最好办法。收到细胞回到自己的实验室后,先打开外包装,用 75%酒精喷洒整个瓶消毒后放到超净台内,严格无菌操作,培养箱静置 2-4 小时。镜下观察:未超过 80%汇合度时,可将瓶装的完全培养液收集至离心管中,加入 6ml 完全培养基,放入 37℃、5%CO2 孵箱培养;超过 80%汇合度时,根据情况传代或者冻存,具体操作见细胞培养步骤。(注意发货的是密封培养瓶的话,放入培养箱培养记得培养瓶盖子拧松) 细胞培养步骤1)复苏细胞:将含有 1mL 细胞悬液的冻存管在 37℃水浴中迅速摇晃解冻,加入 5mL 培养基混合均匀。在 1000RPM 条件下离心 5 分钟,弃去上清液,补加 4-6mL 完全培养基后吹匀。然后将所有细胞悬液加入培养瓶中培养过夜(或将细胞悬液加入 6cm 皿中),培养过夜。第二天换液并检查细胞密度。2)细胞传代:如果细胞密度达 80%-90%,即可进行传代培养。3)细胞冻存:1、细胞生长至覆盖培养瓶的 80%面积时,弃 25cm2 培养瓶中的培养液,用 PBS 清洗细胞一次;2、添加 0.25%胰蛋白酶消化液约 1ml 至培养瓶中,倒置显微镜下观察,待细胞回缩变圆后加入完全培养液终止消化,轻轻吹打细胞使之脱落,然后将悬液转移至 15ml 离心管中,1000rpm 离心 5min;3、用适量的冻存液重悬细胞,并放置于冻存管中;4、先将细胞冻存管放置于-20℃ 1.5h,然后将其移入-80℃。 对于贴壁细胞,传代可参考以下方法:1、弃去培养上清,用不含钙、镁离子的 PBS 润洗细胞 1-2 次。2、加 1-2ml 消化液(0.25%Trypsin-0.53mM EDTA)于培养瓶中,置于 37℃培养箱中消化1-2min,然后在显微镜下观察细胞消化情况,若细胞大部分变圆并脱落,迅速拿回操作台,轻敲几下培养瓶后加 5ml 以上含 10%血清的完全培养基终止消化。3、轻轻吹打细胞,完全脱落后吸出,在 1000RPM 条件下离心 8-10 分钟,弃去上清液,补加1-2mL 培养液后吹匀。4、按 5-6ml/瓶补加培养液,将细胞悬液按 1:2 的比例分到新的含 5-6 ml 培养液的新皿中或者瓶中。PS:若客户收到 2ml 小管细胞,收到细胞后,用 75%酒精喷洒整个管子消毒后放到超净台或安全柜内,严格无菌操作;将小管细胞转移至 T25 培养瓶或 6cm 培养皿,加入 5ml 左右完全培养基混匀,放入培养箱过夜培养后查看细胞密度:若密度未超过 80%,换液继续培养,视情况传代或者冻存。若密度超过 80%,可直接进行传代(方法同上)。 北京百欧博伟生物技术有限公司的微生物菌种查询网提供微生物菌种保藏、测序、购买等服务,是中国微生物菌种保藏中心的服务平台,并且是集微生物菌种、菌种,ATCC菌种、细胞、培养基为一体的大型微生物查询类网站,自设设备及技术的微生物菌种保藏中心!欢迎广大客户来询!
  • ThawSTAR细胞复苏仪—无水自动化解冻细胞“黑科技”
    前言:深低温下细胞出于“休眠”状态得以长期保存,解冻后需要维持较好的活率才能达到应用效果 ,细胞解冻需要一个”舒适“的温度范围,如何实现过程控温?如何有效安全解冻细胞?如何维持工艺可重复?今天小编向各位介绍一款全系列产品,它就是美国百奥莱BioLife公司开发的ThawSTAR细胞程序复苏仪,一直被业内视为解锁细胞解冻工艺黑科技产品,ThawSTAR可以轻松实现细胞自动化解冻,标准工艺高度重复,解冻安全、操作方便、性能稳定!一、ThawSTARTM CFT系列细胞复苏仪(冻存管专用)2021年6月23日CFDA正式批准由复星凯特引进美国Kite的嵌合抗原受体CAR-T细胞治疗产品奕凯达® (阿基仑赛注射液)上市,该药品为中国首个获批上市的细胞治疗产品,行业士气颇受鼓舞,9月3日,国内第 2 款CAR-T! 药明巨诺 “瑞基仑赛注射液”获批上市 。一时间,朋友圈瞬间被刷爆,翘首期盼,艰辛付出,终于硕果累累!近二十年,随着世界生物技术快速发展,国内生物制药行业生机盎然,新的制药工艺不断引进与改进,免疫细胞靶向治疗已然成为实体肿瘤、癌症等决定患者生与死的最后救命稻草。对于采用“活体”细胞静脉注射的方式备受关注!白血病女孩Emily通过CAR-T疗法实现痊愈的故事,让患者再次看到希望。实际上,细胞解冻复苏需要一个“舒适温度”范围才能维持较好的解冻后活率,美国百奥莱BioLife 公司自2015年推出首款ThawSTARTM CFT系列细胞程序复苏仪以来,一直被视为业内黑科技产品,在无水干式的条件下自动化轻松解冻冻存管内细胞,而且维持与水浴一致的解冻活率,该款仪器设计小巧,操作简单,通过STARTM低温传感技术监控细胞样本解冻过程温度变化,可以在BSC生物安全柜内洁净度较高的环境中直接使用,相比传统水浴操作,ThawSTAR 解冻更安全、更稳定、更方便!ThawSTARTM 操作简单,流程如下:1. 连接电源启动仪器,预热至起始温度2. 垂直插入冻存管3. 仪器自动启动解冻程序4. 程序达到解冻终点后,冻存管弹出5. 取出样本后,轻轻晃动,冰晶消失。ThawSTARTM CFT系列细胞复苏仪订购信息,如下:二、ThawSTARTM CB系列细胞复苏仪(冻存袋专用)当前,已上市的几款CAR-T细胞药主要采用冻存袋灌装解冻,复杂且昂贵的生产工艺决定了其在终端市场的售价,此前,复星凯特阿基仑赛注射液被流出的药品销售订单来看,国内首款CAR-T疗法阿基仑赛注射液零售价为120万元/袋(约68ml),复星凯特相关负责人回复记者称,“公司CAR-T细胞治疗产品定价将根据价值、疗效、成本等各项综合考量制定,目前定价方案尚未最终确定,正在进行多方沟通中,希望可以惠及风多中国患者。” 但毫无疑问的是CAR-T细胞疗法确实很贵!(来源:资料图)(来源:资料图)CAR-T细胞疗法的全称是嵌合抗原受体T细胞免疫疗法,其中CAR指的是嵌合抗原受体,它的原理在于先激活免疫细胞,然后再去杀死癌细胞,即利用T细胞来杀死癌细胞。针对冻存袋细胞给患者静脉注射前最关键的一步解冻复苏工艺,美国百奥莱公司开发了ThawSTARTM CB细胞程序复苏仪!为实现冻存袋细胞标准化解冻方式提供了新途径!ThawSTARTM CB细胞程序复苏仪是一款针对细胞冻存袋细胞标准程序解冻的复苏仪,针对25~1000mL 容量6个标准规格冻存袋,提供了12个标准的解冻程序,通过STARTM低温穿透传感技术,直接检测细胞样品温度,实时传感系统自动判断解冻结束终点,给细胞解冻时控温提供了有效途径,人性化的操作界面一目了然,密码登录,解冻过程温度数据记录,方便追溯。对于不同细胞剂量美国百奥莱厂家还可以提供订制化解冻程序服务,仪器整体设计结构紧凑,桌面型触摸屏操作,操作简单、安全、稳定。 同样,ThawSTARTM CB优化了操作设计,流程如下:ThawSTARTM CB细胞复苏仪,程序可选、操作简单、解冻安全!ThawSTARTM CB系列细胞复苏仪订购信息,如下:三、ThawSTARTM AT系列细胞程序复苏仪(冻存瓶专用)传统的细胞药主要采用冻存袋存储细胞并在临床上注射使用,但是,受冻存袋包材本身柔软等材料本身特性限制,无法自动化批量分装,液体残留偏高。最近十年,由比利时Aseptic Technologies公司研发生产的AT-Closed Vials可谓是火遍了全球生物技术靶向治疗行业,解决了小剂量分装,深低温冻存、同时也实现了自动化放大分装工艺。尤其干细胞用户群体普遍采用6mL的AT-Closed Vial,那么针对6mL规格的AT-Closed Vial 如何实现有效干式精准解冻呢?美国百奥莱公司早在2018年便开发了ThawSTAR AT6细胞程序复苏仪,并被国外多家知名免疫细胞公司所采用,通过订制化标定解冻过程温度执行程序,可实现自动且精准的判断解冻结束终点,操作简单,工艺高度重复,避免了人为主观判断解冻终点造成的细胞药“失效”!ThawSTAR AT6 细胞复苏仪对于不同剂量下,液氮与干冰冻存过的样本解冻时间表现对比,如下:ThawSTARTMAT系列细胞复苏仪有多款型号,订购信息如下:如果您需要申请Demo机试用,请抓紧联系我们吧!中国区授权总经销:上海朗喜工业科技有限公司
  • 显微镜还能细胞计数--你所不知道的细胞计数方式
    前言当我们进行细胞实验的时候,很多时候都会对培养或者消化细胞的数量进行计算,最常规的就是细胞计数了。原始的细胞计数方法是通过对细胞进行染色,在显微镜下人工观察细胞状态判断细胞死活,进行计数。显微观察是细胞计数的基本原理,但是人工细胞计数是一件非常耗时耗力的工作,特别是要面对大量样本的计数需求时,因此就衍生出了细胞计数仪。我们常见的细胞计数仪是这样的:图源:网络,侵删这些自动细胞计数仪的原理又是怎样的呢?它们的底层原理是这样的:图源:网络,侵删其实自动细胞计数仪就是一个简化版的显微镜,然后搭载了对图片进行识别的软件功能,从而实现对细胞的计数。既然自动细胞计数仪可以做到,那么专业显微镜一定可以做得更好。Echo Rebel和传统的细胞计数仪不同,其具有极高的普适性,无需细胞计数仪的专用耗材,无论载玻片还是培养皿都可以进行计数。Echo Rebel的细胞计数仪是这样的:还可以是这样的:与传统的细胞计数仪相比,Echo Rebel细胞计数采用嵌入式设计,与显微镜完美融合,细胞计数时间短,普适性高,无需专用耗材,使用和维护成本低。你以为这就结束了,不,我们还可以这样:
  • 保卫细胞宝宝离不开细胞培养的四大护法
    隔壁的直男师兄今年喜得千金,最近总在实验室诡异地傻笑,问他为何,说是时常想起女儿的可爱模样。 这种感情,没养育过孩子的人恐怕理解不了。但生物汪在实验室养育细胞,也一样寄托感情,生怕细胞被养坏了。一个闪失,就前功尽弃。实验结果不可靠,没有一致性和稳定性,还重复不出来,再浓密的头发也经不住这样的考验。所以,有一个稳定、一致的培养环境,那就很重要了。 培养细胞不可能24小时值守,快快请出四大护法相助! 1. 大护法:二甲基亚砜(DMSO) 成功冻存和复苏细胞是细胞培养研究的常规操作。细胞低温储藏时,防止冰晶形成是维持细胞活力的关键。大护法DMSO作为冷冻保护玻璃化剂,可以让细胞免受冰晶导致的机械损伤。大护法法力无边,能够用于原代、继代培养和重组的异倍体和杂交瘤细胞系、胚胎干细胞 (ESC) 以及造血干细胞的冻存。 下面为大家解密DMSO这个既熟悉又陌生的细胞培养大护法~~l DMSO的摩尔浓度是多少?DMSO的摩尔浓度为14.1 M,依据是密度1.1 g/mL和分子量78.13 g/ml。l DMSO的来源?过去,DMSO是从树皮中分离出来的。现在,它是一种商业合成的溶剂。l 细胞冻存培养基中应使用什么浓度的DMSO?DMSO通常以1-10%的浓度使用,具体取决于细胞系。 l DMSO应该是液体,为什么我收到后却是固体?DMSO的熔点为16-19℃,室温过低就凝固。这并不妨碍使用,可以缓慢加热令其重新液化,不会有任何影响。l 哪种类型的过滤器可用于无菌过滤DMSO?DMSO可以用带0.2 μm PTFE膜的过滤器进行无菌过滤。 每个伺候细胞宝宝的“宝爸宝妈”对棕瓶子白盖子的DMSO应该都不陌生。没错!正是Sigma-Aldrich® 品牌热卖的这款DMSO(货号:D2650):明星产品,质量过硬,口碑积累,适用性广,久经验证。 2. 二护法:血清 血清里的生长因子能促进细胞的繁殖,附着因子可促进细胞的贴壁,此外矿物质、脂类及激素对细胞也大有裨益。常用的血清有胎牛血清和小牛血清,公认澳洲来源的血清品质更优、更安全。 赶快来了解一下保护细胞宝宝的二护法吧~~l 如何解冻血清?血清应在2-8°C过夜解冻以避免降解,或者在室温条件下,定期轻轻摇动使组分重悬。解冻的血清在加入细胞培养基前应该混合均匀。反复冻存会严重影响血清品质,建议将解冻的血清分装成单次使用量,并冻存于-20°C。如果储存于2-8°C的环境中,应该在2-4周内尽快使用。温度超过37°C时血清会降解,功能遭到破坏。l 如果血清收到时存在部分解冻,还能继续使用吗?血清是干冰包装运输,到达时应该是冷冻状态。运输超期,会部分解冻,但依然可以继续使用。l 培养基中加入血清和所有补充物后可以储存多久?如果正确无菌操作,添加血清的培养基可以在2-8°C最长储存6周。不论储存时间长短,一旦培养基变浑浊,应该使用适当的方法丢弃。l 为什么血清会出现浑浊或絮状物质?原因很多,主要有二:1. 反复的冻融会使血清脂蛋白发生变性造成浑浊,所以,一定要分装哦~~2. 血清加工中遗留的纤维蛋白原在解冻时会转化成纤维蛋白,过量的纤维蛋白就呈现为絮状物。不要着急,可以离心移除;不推荐过滤哦,因为容易堵。l 什么是γ辐照的血清?γ辐照的血清通过暴露于放射性60Co产生的25-40 kGy剂量的γ射线来灭活病毒和其他外来微生物(比如支原体)。γ辐照处理不影响血清的理化性质或细胞培养性能。l 为什么有些血清是热灭活的?如何热灭活?哺乳动物血清中天然存在的补体蛋白参与细胞溶解事件、收缩平滑肌、从肥大细胞和血小板中释放组胺和激活淋巴细胞和髓细胞。热灭活破坏了血清中补体的活性,因此免疫学应用,培养胚胎干细胞、昆虫细胞和平滑肌细胞时推荐使用。热灭活方法是在56°C水浴中处理30分钟,并每隔大约10分钟旋转一次瓶子。为了保持精确,可使用一个类似大小的瓶子作为对照,对照瓶内放入同等体积的水,并放置一个温度计,在温度到达56°C时开始计时30分钟。热灭活过程必须小心控制,避免血清中支持细胞和组织繁殖的关键蛋白组分发生降解。l 胎牛血清的颜色和之前使用的批次不同,会影响血清使用效果吗?血清的颜色取决于血红蛋白浓度,颜色差异不影响血清性能。 说了这么多,从哪里请到这尊神呢?当然首选默克啦~~澳洲来源的牛血清,满足培养细胞的不同需要!货号产品描述F8318-500ML胎牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,500mLF8687-500ML胎牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,500mLB7446-1000ML小牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,1000mLB7447-1000ML小牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,1000mL 3. 三护法:胰蛋白酶 在细胞培养中,从组织上解离或从贴壁基质上分离细胞的步骤很关键,一般使用胰蛋白酶。胰蛋白酶作用于赖氨酸或精氨酸的C末端,在37°C时具有最佳的效率,因此使用期前要预热。当然,高浓度的胰蛋白酶长期孵育会去除细胞表面蛋白而损伤细胞,甚至杀死细胞。看来,这个护法的脾气可不好哦~~ 根据应用和细胞类型的不同,胰蛋白酶的组分和浓度也不同。比如,粘附分子在钙离子存在时决定细胞-细胞和细胞-基质的相互作用,为了削弱折衷联系,通常使用含EDTA的胰蛋白酶螯合二价阳离子(Ca, Mg)(点击这里,了解更多:T4049)。 胰蛋白酶的主要来源是猪的胰脏,产品是冻干粉或溶液。为了避免动物或微生物物质,现在也有技术可以在玉米中重组表达牛胰蛋白酶,厉害吧?(点击这里,了解更多:T3449)。 胰蛋白酶的使用浓度也很有讲究。对于强贴壁细胞系,常使用0.25%-2.5%的胰蛋白酶。如果实验需要细胞表面蛋白完整,则应降低使用浓度(0.05%胰蛋白酶)。 4. 四护法:抗生素 细菌宝宝的生存环境这么好,肯定有坏蛋觊觎,这就需要请出四护法——抗生素。 常见的生物污染由细菌、真菌和支原体造成,部分由病毒、化学物和细胞交叉污染造成。抗生素可以控制细胞培养中的生物污染。灵活使用抗生素是控制污染的方法,但千万不要偷懒,还是要注意无菌操作哦~~ 青霉素对大多数革兰氏阳性菌和少数革兰氏阴性菌有效,链霉素对革兰氏阴性菌和少数革兰氏阳性菌有效,联合使用青霉素和链霉素(简称双抗),就能有效控制细胞培养中大多数细菌的污染啦~~ 默克旗下有相当靠谱的抗生素。Sigma-Aldrich® 品牌热卖的青链霉素溶液(货号为V900929)不仅性能稳定,超高性价比;而且还是即用型经典配方(10KU青霉素和10mg链霉素/mL),直接以1:100比例添加到培养基中就全搞定! 怎么样?这四大护法,是不是各个身手不凡呀!有了他们,细胞宝宝就可以健康无忧啦~~ 友情提醒,11月起我们会推出四大护法优惠组合套装,敬请留意~也欢迎大家在留言区分享自己培养细胞的心得体会~~我们会精选出五个有趣有料的留言,送上默克超可爱的萌娃家族盲盒一个,共有5位幸运儿,快来留言参与吧! 留言截止时间:2020年10月30日12:00
  • 保卫细胞宝宝离不开细胞培养的四大护法
    隔壁的直男师兄今年喜得千金,最近总在实验室诡异地傻笑,问他为何,说是时常想起女儿的可爱模样。 这种感情,没养育过孩子的人恐怕理解不了。但生物汪在实验室养育细胞,也一样寄托感情,生怕细胞被养坏了。一个闪失,就前功尽弃。实验结果不可靠,没有一致性和稳定性,还重复不出来,再浓密的头发也经不住这样的考验。所以,有一个稳定、一致的培养环境,那就很重要了。 培养细胞不可能24小时值守,快快请出四大护法相助! 1. 大护法:二甲基亚砜(DMSO) 成功冻存和复苏细胞是细胞培养研究的常规操作。细胞低温储藏时,防止冰晶形成是维持细胞活力的关键。大护法DMSO作为冷冻保护玻璃化剂,可以让细胞免受冰晶导致的机械损伤。大护法法力无边,能够用于原代、继代培养和重组的异倍体和杂交瘤细胞系、胚胎干细胞 (ESC) 以及造血干细胞的冻存。 下面为大家解密DMSO这个既熟悉又陌生的细胞培养大护法~~l DMSO的摩尔浓度是多少?DMSO的摩尔浓度为14.1 M,依据是密度1.1 g/mL和分子量78.13 g/ml。l DMSO的来源?过去,DMSO是从树皮中分离出来的。现在,它是一种商业合成的溶剂。l 细胞冻存培养基中应使用什么浓度的DMSO?DMSO通常以1-10%的浓度使用,具体取决于细胞系。 l DMSO应该是液体,为什么我收到后却是固体?DMSO的熔点为16-19℃,室温过低就凝固。这并不妨碍使用,可以缓慢加热令其重新液化,不会有任何影响。l 哪种类型的过滤器可用于无菌过滤DMSO?DMSO可以用带0.2 μm PTFE膜的过滤器进行无菌过滤。 每个伺候细胞宝宝的“宝爸宝妈”对棕瓶子白盖子的DMSO应该都不陌生。没错!正是Sigma-Aldrich® 品牌热卖的这款DMSO(货号:D2650):明星产品,质量过硬,口碑积累,适用性广,久经验证。 2. 二护法:血清 血清里的生长因子能促进细胞的繁殖,附着因子可促进细胞的贴壁,此外矿物质、脂类及激素对细胞也大有裨益。常用的血清有胎牛血清和小牛血清,公认澳洲来源的血清品质更优、更安全。 赶快来了解一下保护细胞宝宝的二护法吧~~l 如何解冻血清?血清应在2-8°C过夜解冻以避免降解,或者在室温条件下,定期轻轻摇动使组分重悬。解冻的血清在加入细胞培养基前应该混合均匀。反复冻存会严重影响血清品质,建议将解冻的血清分装成单次使用量,并冻存于-20°C。如果储存于2-8°C的环境中,应该在2-4周内尽快使用。温度超过37°C时血清会降解,功能遭到破坏。l 如果血清收到时存在部分解冻,还能继续使用吗?血清是干冰包装运输,到达时应该是冷冻状态。运输超期,会部分解冻,但依然可以继续使用。l 培养基中加入血清和所有补充物后可以储存多久?如果正确无菌操作,添加血清的培养基可以在2-8°C最长储存6周。不论储存时间长短,一旦培养基变浑浊,应该使用适当的方法丢弃。l 为什么血清会出现浑浊或絮状物质?原因很多,主要有二:1. 反复的冻融会使血清脂蛋白发生变性造成浑浊,所以,一定要分装哦~~2. 血清加工中遗留的纤维蛋白原在解冻时会转化成纤维蛋白,过量的纤维蛋白就呈现为絮状物。不要着急,可以离心移除;不推荐过滤哦,因为容易堵。l 什么是γ辐照的血清?γ辐照的血清通过暴露于放射性60Co产生的25-40 kGy剂量的γ射线来灭活病毒和其他外来微生物(比如支原体)。γ辐照处理不影响血清的理化性质或细胞培养性能。l 为什么有些血清是热灭活的?如何热灭活?哺乳动物血清中天然存在的补体蛋白参与细胞溶解事件、收缩平滑肌、从肥大细胞和血小板中释放组胺和激活淋巴细胞和髓细胞。热灭活破坏了血清中补体的活性,因此免疫学应用,培养胚胎干细胞、昆虫细胞和平滑肌细胞时推荐使用。热灭活方法是在56°C水浴中处理30分钟,并每隔大约10分钟旋转一次瓶子。为了保持精确,可使用一个类似大小的瓶子作为对照,对照瓶内放入同等体积的水,并放置一个温度计,在温度到达56°C时开始计时30分钟。热灭活过程必须小心控制,避免血清中支持细胞和组织繁殖的关键蛋白组分发生降解。l 胎牛血清的颜色和之前使用的批次不同,会影响血清使用效果吗?血清的颜色取决于血红蛋白浓度,颜色差异不影响血清性能。 说了这么多,从哪里请到这尊神呢?当然可以选择默克啦~~澳洲来源的牛血清,满足培养细胞的不同需要!货号产品描述F8318-500ML胎牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,500mLF8687-500ML胎牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,500mLB7446-1000ML小牛血清,澳大利亚来源,无菌,适合细胞培养,适合杂交瘤细胞,1000mLB7447-1000ML小牛血清,澳大利亚来源,γ辐照,无菌,适合细胞培养,适合杂交瘤细胞,1000mL 3. 三护法:胰蛋白酶 在细胞培养中,从组织上解离或从贴壁基质上分离细胞的步骤很关键,一般使用胰蛋白酶。胰蛋白酶作用于赖氨酸或精氨酸的C末端,在37°C时具有最佳的效率,因此使用期前要预热。当然,高浓度的胰蛋白酶长期孵育会去除细胞表面蛋白而损伤细胞,甚至杀死细胞。看来,这个护法的脾气可不好哦~~ 根据应用和细胞类型的不同,胰蛋白酶的组分和浓度也不同。比如,粘附分子在钙离子存在时决定细胞-细胞和细胞-基质的相互作用,为了削弱折衷联系,通常使用含EDTA的胰蛋白酶螯合二价阳离子(Ca, Mg)(点击这里,了解更多:T4049)。 胰蛋白酶的主要来源是猪的胰脏,产品是冻干粉或溶液。为了避免动物或微生物物质,现在也有技术可以在玉米中重组表达牛胰蛋白酶,厉害吧?(点击这里,了解更多:T3449)。 胰蛋白酶的使用浓度也很有讲究。对于强贴壁细胞系,常使用0.25%-2.5%的胰蛋白酶。如果实验需要细胞表面蛋白完整,则应降低使用浓度(0.05%胰蛋白酶)。 4. 四护法:抗生素 细菌宝宝的生存环境这么好,肯定有坏蛋觊觎,这就需要请出四护法——抗生素。 常见的生物污染由细菌、真菌和支原体造成,部分由病毒、化学物和细胞交叉污染造成。抗生素可以控制细胞培养中的生物污染。灵活使用抗生素是控制污染的方法,但千万不要偷懒,还是要注意无菌操作哦~~ 青霉素对大多数革兰氏阳性菌和少数革兰氏阴性菌有效,链霉素对革兰氏阴性菌和少数革兰氏阳性菌有效,联合使用青霉素和链霉素(简称双抗),就能有效控制细胞培养中大多数细菌的污染啦~~ 默克旗下有相当靠谱的抗生素。Sigma-Aldrich® 品牌热卖的青链霉素溶液(货号为V900929)不仅性能稳定,超高性价比;而且还是即用型经典配方(10KU青霉素和10mg链霉素/mL),直接以1:100比例添加到培养基中就全搞定! 怎么样?这四大护法,是不是各个身手不凡呀!有了他们,细胞宝宝就可以健康无忧啦~~ 友情提醒,11月起我们会推出四大护法优惠组合套装,敬请留意~也欢迎大家在留言区分享自己培养细胞的心得体会~~我们会精选出五个有趣有料的留言,送上默克超可爱的萌娃家族盲盒一个,共有5位幸运儿,快来留言参与吧! 留言截止时间:2020年10月30日12:00
  • I型Treg细胞:造血干细胞移植疗法的伴侣?
    一部分血液系统恶性肿瘤患者需要进行造血干细胞移植 (hematopoietic stem cell transplantation,HSCT) 才有治愈机会,而这些患者中只有大约50%有完全匹配的供体,其余患者需要来自不完全匹配的HSCT治疗。这些不匹配的供体HSCT中有近60%会导致移植物抗宿主病 (graft-versus-host disease,GvHD)。而T-allo10疗法可有望降低GvHD的发病概率,其通过1型调节T细胞(Type 1 regulatory cell,Tr1 cell)以抑制同种异体反应【1】。Tr1细胞一般存在于外周血中,是CD4+ T细胞的亚群,可诱导和维持外周免疫耐受 【2】。一般来说,Tr1细胞可分泌抑制性细胞因子 IL-10 和 TGF-β 【3】,表达抑制性受体CTLA-4【4】,但目前尚不明确Tr1细胞在T-allo10疗法的具体作用机制,亟需系统探索。2021年10月27日,美国斯坦福大学医学院Maria Grazia Roncarolo教授研究组在Science Translational Medicine上发表题为Alloantigen-specific type 1 regulatory T cells suppress through CTLA-4 and PD-1 pathways and persist long-term in patients的研究论文,描绘了Tr1 细胞的独特分子表型和作用机制,对深入理解Tr1 的细胞生物学特征及设计新型造血干细胞移植临床策略具有一定意义。在这项研究中,研究者利用T-allo10构建了稳定的、可重复的CD45RA - CD49b + LAG3 + Tr1细胞,并验证其表达Tr1特异的细胞因子(如IL-10、TGF-β、IL-22、IFN-γ),且具有同种抗原特异性。作者采用TCR-seq系统表征Tr1细胞,发现Tr1 细胞分化可能导致其TCR免疫组库的多样性降低。为了探索Tr1细胞的转录组特征,作者利用RNA-seq测序并发现了其若干特征基因,包括IL10、LAG3、ITGA2 (CD49b)、IFNG、PRF1、GZMB、GZMA等。Tr1细胞亦高表达Treg细胞相关基因,如CTLA4、LGMN (legumain)、TNFRSF4 (OX40) 、TNFRSF18等。为了进一步探索如何靶向同种异体抗原特异性 Tr1 细胞,作者基于转录组测序结果推测CTLA-4 或PD-1 通路可能对于Tr1 细胞至关重要。因此,作者阻断了这些通路,发现CTLA-4 阻断几乎完全消除了 T-allo10 介导的对应答Teff细胞增殖的抑制,PD-1/PD-L1 阻断也具有类似的效果。最后,作者研究了体外培养产生的Tr1 细胞的临床意义。研究者综合利用了正在进行I期临床试验(NCT03198234)【5】 的前三名患者的临床样本。结果表明,T-allo10细胞治疗过继转移后的24小时内,患者2和3外周血中的 Tr1 细胞频率达到峰值。在治疗后第 28 天,患者1的Tr1细胞比例仍达11.6%。作者进一步利用TCR-seq发现外周血循环的部分Tr1细胞携带与T-allo10疗法输入时的Tr1 细胞相同的TCR克隆型,表明过继转移的 Tr1 细胞可能在体内长期存在。综上,该工作系统探索了CD45RA- CD49b+ LAG3+ Tr1细胞的免疫表型、免疫组库、活化的分子及通路特征,并发现阻断CTLA-4/PD-1可作为Tr1 细胞的潜在抑制剂。值得一提的是,在能够反映患者真实情况的临床样本中,研究者发现T-allo10疗法过继转移的 Tr1 细胞可在体内长期存在,这对基于Tr1的造血干细胞移植新型治疗策略的设计和追踪提供了重要线索。原文链接:https://www.science.org/doi/10.1126/scitranslmed.abf5264
  • 一文揭秘:流式细胞指纹与细胞外囊泡应用
    在现代生物医学研究中,流式细胞术(Flow Cytometry)已经成为不可或缺的分析工具。它能够通过分析单细胞的多参数特性,揭示细胞间的复杂异质性。而在这一领域,流式细胞指纹(Flow Cytometry Fingerprint)作为一种前沿技术,正在为我们揭示细胞微观世界的更多奥秘。本期,我们跟随贝克曼库尔特一同探究流式细胞指纹,特别是在纳米流式领域,CytoFLEX nano凭借其独特的技术优势,正在引领这一领域的进展。 什么是流式细胞指纹?流式细胞指纹是指通过流式细胞术获得的细胞或颗粒的特定光学特征,这些特征包括散射光和荧光信号。每一种细胞或颗粒都有其独特的指纹图谱,这些图谱反映了它们的物理和生物化学特性。通过对这些指纹图谱的分析,研究人员能够识别并分类不同类型的细胞,甚至可以在同一细胞群体中发现不同的亚群。传统纳米流式在细胞外囊泡(Extracellular Vesicles, EVs)领域的挑战尽管流式细胞术在细胞分析中取得了巨大进展,但在传统纳米流式领域仍面临一些独特的挑战。一个主要问题是缺乏免疫分型的共识,并且同时检测的荧光信号非常有限。目前,细胞外囊泡(Extracellular Vesicles, EVs)亚群的研究还在起步阶段,并没有像免疫学中那样成熟。免疫细胞可以通过多色免疫分析,利用不同的CD分子的表达谱型(指纹)去定义其亚群,但在EV的研究中,类似的标记和分类标准尚未建立,并且相较于免疫细胞,EV有着更丰富的多样性,可供标记的潜在靶点也更多。 CytoFLEX nano的突破2024年3月份发布的CytoFLEX nano作为一款先进的纳米流式细胞仪(查看:3i流式新品|贝克曼库尔特发布CytoFLEX nano纳米流式分析仪),通过结合散射光和荧光信号的综合分析,显著提高了检测的准确性和灵敏度。CytoFLEX nano纳米流式分析仪品牌:贝克曼库尔特型号:CytoFLEX6荧光通道检测能力,实现精准指纹描述CytoFLEX nano能够同时检测6 个荧光通道,提供更加全面和详细的EV荧光指纹信息。5散射光通道检测能力,释放无限潜力CytoFLEX nano分析仪通过提供5个侧向散射通道扩展了您的研究可能性。通过分析不同散射的比率来研究新群体,而无需依赖染料进行鉴定或分离。这种创新方法不仅提高了实验的灵活性和精度,还为细胞外囊泡研究提供了新的可能性和洞察力。CytoFLEX nano分析仪无疑是未来EV多样性研究的重要工具。高灵敏度,确保捕捉每一个潜在的实验现象与信号在一个细胞外囊泡(EV)上,可能只有10个抗原的拷贝,而目前的流式细胞仪无法测量如此少量的抗原。CytoFLEX nano流式细胞仪的主要优势在于其改进的散射和荧光灵敏度,使得可以测量更小的颗粒并检测低密度的抗原。高阶算法应用:利用Cytobank解析EV“指纹”高阶算法的引入为细胞外囊泡(EV)研究带来了一定的变化。Cytobank平台提供了一系列强大的高阶数据分析工具,如ViSNE、FlowSOM、SPADE和CITRUS,这些工具能够高效解析流式细胞数据,揭示复杂的生物学特征。这些高阶算法在解析EV“指纹”中的应用,使得研究人员能够更精准地解析流式细胞数据,发现传统方法难以识别的细微差异。例如:癌症诊断:利用ViSNE分析癌症患者血液中的EV,发现特定的EV亚群与癌症类型和阶段相关联,为早期诊断和个性化治疗提供了新的生物标志物。心血管疾病研究:通过FlowSOM聚类分析心血管疾病患者的EV数据,识别出与疾病进展相关的特定EV亚群,为疾病机制研究提供了重要线索。免疫监测:利用SPADE分析免疫治疗前后患者的EV变化,揭示免疫反应的动态过程,为评估治疗效果提供了新的视角。差异分析:使用CITRUS对不同病理状态下的EV进行差异分析,发现与疾病相关的特定细胞亚群,帮助识别潜在的生物标志物。von Lersner, Ariana K., et al. "Multiparametric single-vesicle flow cytometry resolves extracellular vesicle heterogeneity and reveals selective regulation of biogenesis and cargo distribution." ACS nano 18.15 (2024):10464-10484.所见即所得,利用CytoFLEX SRT实现分选与分析的相互验证。CytoFLEX nano不仅让研究人员能够在EV分析阶段实现“所见”,更通过CytoFLEX SRT的精确分选功能,将这些识别出的EV亚群进行进一步的分选和深入分析,实现“所得”。这种协同工作流程,确保了数据的准确性和可靠性。CytoFLEX nano与CytoFLEX SRT的结合,为EV研究提供了一个强大的工具组合。前者通过高灵敏度的多通道检测,实现对细胞群体的初步识别;后者则通过精准的分选功能,对这些群体进行进一步的验证和分析。这一协同工作流程,使研究人员能够在分子水平上揭示EV的复杂特征和生物学功能,开拓新的研究领域和应用前景。通过这种多种方法的联动,科学家们能够更全面地理解EV的特性,从而在疾病诊断、治疗和预防中发挥更大的作用。CytoFLEX nano和CytoFLEX SRT的完美结合,真正实现了分选与分析的相互验证,尽可能捕捉到每一个潜在的EV亚群。John Tigges, DirectorFlow Cytometry Core Facility and Center for Extracellular Vesicle Detection, Beth lsrael Deaconess Medical Center“Having all these scatters at hand together with the greater sensitivity gives you the power to ask, what could I do now?lt opens up new research possibilities.“拥有这些散射通道以及更高的灵敏度,让你可以问自己,我现在还能做些什么?这开启了新的研究可能性。” 数据示例通过流式分选验证散射光流式细胞指纹的真实性在细胞外囊泡(EVs)的研究中,准确识别和表征其特性是至关重要的。使用CytoFLEX Nano流式细胞仪,我们能够通过高灵敏度的散射光检测捕捉到EVs的初步指纹信号。然而,为了验证这些散射光指纹的真实性,我们进一步利用CytoFLEX SRT进行精确分选。通过分选前后的对比分析,并使用标准微球验证散射光信号的差异,我们确保了这些指纹的准确性和可靠性。使用CytoFLEX SRT对在CytoFLEX Nano上观察到的不同散射差异信号进行分选,并通过回测确认这些差异的真实存在。同时,CytoFLEX SRT的精确分选功能也得到了验证。 结语CytoFLEX家族和Cytobank的结合,为细胞外囊泡(EVs)研究提供了一个强大且全面的分析工具组合。通过纳米流式细胞术,研究人员能够捕捉到EVs的复杂指纹信号,并通过精确分选技术,进一步验证和深入分析这些信号的真实性。这种多方法学联动,不仅提高了数据的准确性和可靠性,还揭示了EVs在不同生理和病理状态下的潜在作用。高灵敏度的散射光和荧光检测能力,加上Cytobank平台的高阶算法,使得研究人员能够更全面地理解EVs的特性,从而在疾病诊断、治疗和预防中发挥更大的作用。通过这些先进技术的应用,EVs研究已经进入了一个新的纪元,开创了更多的研究领域和应用前景。CytoFLEX nano和CytoFLEX SRT的完美结合,为现代生物医学研究带来了前所未有的便利和创新。未来,我们有理由相信,随着技术的不断进步和应用的不断深入,流式细胞术将继续在EVs研究中发挥关键作用,为生命科学的探索开辟更多可能性。贝克曼库尔特CytoFLEX SRT桌面型流式细胞分选仪品牌:贝克曼库尔特型号:CytoFLEX
  • 什么是活细胞成像,怎样才能得到一张好的活细胞成像图
    • 什么是活细胞成像? 活细胞成像(live cell imaging)统称为捕捉活的、活动状态的细胞图像的技术,这些细胞图像可以是单个静态图像,也可以是延时系列图像。相应地,活细胞成像的应用可以分为两大类:❶ 细胞在自然状态下的图像记录。❷ 实时观察和记录细胞、组织或整个生物体的动态过程。• 观察分析活细胞时面临的挑战 ▷ 在相对较短的时间内采集大量信息。▷ 要保持细胞保存在可调节培养环境气体浓度和温度(在很多情况下)的培养室中。▷ 激发光源会损害活细胞。▷ 细胞焦面漂移,无法聚焦。▷ 需要使用配备有软件或硬件控制自动对焦的成像仪器来避免这种情况。Revolution全自动显微镜成像系统Revolution全自动显微镜成像系统部件高度集成内置,节省空间,避免繁琐调试及维护;触屏式操控观察工作站,界面直观简洁,易于学习,方便使用。Revolution全自动显微镜成像系统的光源采用高能LED光源,自动荧光切换把光毒降到最低。▌智能化全自动多功能系统:▶ TimeLapse延时摄影:可以根据设定在特定时间内完成特定间隔时间和特定的拍照张数。▶ 独有的Hyperscan快速成像:30帧高速成像,可以在几秒钟内完成上百张照片的采集。▶ Multi-well Point孔板导航成像:不限定孔位大小,只需输入参数就可以自动完成多孔或单孔采集。▶ Focus Map自定义多点聚焦:可以自动完成不同层面的自动聚焦。▶ Z-Stacking多层扫描大景深成像:完成多层面大景深成像。▶ DHR智能实时数字化降噪:实时完成反卷积计算,得到清晰图像。▌ECHO INCUBATOR为活细胞观察提供一个稳定而灵活的培养环境ECHO INCUBATOR采用紧凑的一体式设计,方便用户快速安装和拆卸。箱体结构透明和大型前置开门设计,可为用户提供清晰的观察视野并方便操作样本。采用无风扇对流加热和循环热空气方案,在消除振动的同时并可防止外部灰尘进入您的样品和仪器光学元件。提供稳定的细胞生长环境,确保适合的细胞培养条件,使细胞处于最佳生长状态。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制