当前位置: 仪器信息网 > 行业主题 > >

作物育种

仪器信息网作物育种专题为您整合作物育种相关的最新文章,在作物育种专题,您不仅可以免费浏览作物育种的资讯, 同时您还可以浏览作物育种的相关资料、解决方案,参与社区作物育种话题讨论。

作物育种相关的仪器

  • 一、育种软件的作用为商业化育种提供全流程信息化管理,将育种团队的育种环节(亲本选育、材料组配、试验规划、数据采集、育种决策)有序衔接,实现育种数据的标准化,程序化,电子化集成管理,构架有价值育种数据库,并结合数量遗传学、生物统计、遗传学研究成果进行育种数据的定性定量分析,提高育种选择效率效果。二、主要功能育种试验方案设计、采集数据管理、育种材料管理和数据分析,一体化的大型育种软件系统;亲本材料选育杂交组配优良组合筛选区域试验,满足整个商业化育种流程;多年多点多材料,文本数据、照片集成管理利用;育种材料世代追踪,系谱图直观体现;育种材料编码化管理,田间数据高效电子化采集;软件中独立的试验设计统计分析模块可提供间比法/BS、对比法/BS、单因素随机区组、简单格子、α-格子分析、BIB分析、增广试验、配合力分析、品种区域试验(一年多点、多年多点)、品种稳定性分析(BS模型、shukla模型、eberhart-russell模型)、关联分析、通径分析等常用育种试验设计及统计分析方法。支持分子标记辅助选择(MAS)和全基因组选择(GS)数据分析,支持大数据量运算。系统中强大的试验管理功能可实现从试验方案设计、分种排种顺序校验、数据采集、数据汇总、数据分析,最终出试验分析报告,实现全流程贯通,全流程信息化;育种团队成员间可实现数据共享,异地各试验站育种资源信息及时传输汇总,及时掌握育种信息动态;种质资源库管理(种质出入库管理、种质分类、种质信息记载、种质检索调用);提供产量相关性状结构指数、权重管理、雷达图、差值选择育种、理想品种评价、杂交组合试配、混合线性模型(BLUP&GBLUP育种值)等科学先进的育种材料分析筛选评价模型;支持多作物育种数据管理,育种性状自定义。博思公司2004年率先开发出国产育种软件,用户遍及种业公司及农科院所高校,作物种类已涵盖玉米、小麦、水稻、油菜、大豆、蔬菜、花卉、棉花、烟草、水稻、甘蔗、果树、甘薯等植物科研育种。使用方式灵活,即可单机使用亦可联网使用,育种数据存储在用户内部、安全放心。
    留言咨询
  • SeedScope 数字化育种控制实验系统育种、栽培过程数字化是实现育种过程信息化管理,掌握种质资源信息的关键。目前的育种信息管理大多关注样本库的管理及田间数据的快速记录、替代人工操作,缺少不同土壤环境下育种、种质性状的生理生态监测和记录。澳作公司提供的SeedScope 数字化育种栽培控制实验系统有室内、室外等多种配置,既可用于室外育种小区、大田,观测地上作物抗性生理及地下土壤的水、肥变化,也可用于室内不同光照控制实验,提高育种效率。SeedScope系统内的光质传感器,实时测量育种气候箱内的叶绿素含量、氮素水平、干旱胁迫、病害胁迫等,为光源控制提供基础数据,确保种质性状只源于品种差异,而不是环境变化。 SeedScope在大田栽培过程中,提供土壤的氧化还原、pH值、土壤水分、温度等环境参数,及作物养分、株高等生物量,还提供根系生长量及根结线虫导致的根系形态变化。 SeedScope 还可以人工提供干旱、降雨等控制实验环境,研究不同气候条件下作物农艺性状。SeedScope 提供自动在线、无人值守的监测方式,数据可远程传输,一套数据、多人共享,可实现从育种到作物种植全过程的监测和控制实验,也可用于野生种质资源观测,集合最新的育种、种质监测数字化技术实现作物的优质生长。可根据用户定制系统配置,提供从设计到安装整体解决方案。更多详情请关注北京澳作生态仪器有限公司网站:查询相关仪器资料。更多详细信息请联系 索要相关资料。
    留言咨询
  • TPXQ-C-1作物测产仪也叫玉米小区测产系统,是为农作物区试和育种试验单位在测量试验小区农作物产量而设计的一款智能化设备。 系统实现了对测产数据全程自动化记录,数字化展现。广泛用于玉米、小麦、水稻等主要农作物的产量测量。作物测产仪可以配合小区脱粒机单独使用,也可以安装在小区测产收割机上使用,实现边脱粒边测产,快速测量出重量、含水量和容重的数据结果,支持电子表格储存,系统直接分析处理得到小区产量数据,可以连接打印设备,现场打印数据标签,以便区试、育种等科研人员对田间收获样品相关数据进行分类和分析研究。功能特点:1、平板电脑、打印机和谷物测产箱一体式连接,并可卸载和安装;2、高精度水分测量原理可以快速准确的测量水分,可实现实时收获和测产;3、利用倾角和振动补偿称重原理,减小物料仓斗晃动和振动对称重精密性的影响;4、采用分组取样测量,解决物料紧实度对测量水份重复性及容重准确性的影响;5、测量时间快且稳定、准确,稳定后6秒输出数据结果。软件功能:1、测产软件操作简单,带多点水分曲线校准(支持用户自行校准)、重量校准及细节参数的设置;2、软件可在线规划16种小区测产路线图,可以实现自动和手动两种模式进行系统工作;3、设备支持与Android平板RS232串口通信,实现数据实时传输和反向控制;4、软件可将测产数据用热力图的方式呈现;5、可大容量存储数据,并可导出Excel数据,也可传输到U盘进行备份;6、平板可以直接与打印机无线连接,支持数据实时打印。技术参数:1.外形尺寸:760mm*480mm*1335mm2.供电模式:DC12V-24V,适配常规的电池或者电源适配器3.设备功率:30W4.测量作物:玉米、小麦、水稻5.测产指标:重量、水分、容重6.称重范围:2.5kg/次 7.称重精度:±10g/次8.含水量精度:±1%9.容重精度:±10g/L/次
    留言咨询
  • 谷丰光电自主研发设计的水稻数字化考种机是一款快速高精度水稻考种的视觉系统,该系统集成了机器视觉、数字图像处理以及工业控制等先进技术,为水稻育种、分子研究等相关领域提供了一种新型高技术高效率检测手段。可以快速高精度的获取水稻种子样品的总粒数、实粒数、结实率、粒长、粒宽、粒面积、粒周长以及千粒重等参数。数据分析软件可实时监测种子检测状态并将数据结果实时的存储到EXCEL中。应用领域:水稻育种,水稻基因研究粒长、粒宽、千粒重、实粒数、总粒数,系统测量值和人工测量值比较,平均相对误差小于5%,R2大于0.9.谷粒粒长、粒宽、长宽比、千粒重、投影面积GWAS分析结果,鉴定出控制粒长的基 因位点GS3,控制粒宽的基因位点qsw5,控制粒长宽比的基因位点GS3,控制千粒重的基因位点GS3,控制谷粒投影面积的基因位点有MADS29、TH1、GS3)。主要配置:成像单元像素尺寸:14.08μm 成像单元类型:单色线阵列CCD相机光源:线阵列LED光源尺寸:700*1100*1240mm(长宽高)电源:单相 220VAC控制装置:WindowsPC 控制机柜软件:在线控制,图像处理,数据分析及存储主要性能参数: 可测参数:总粒数,实粒数,粒长,粒宽,结实率,千粒重,粒面积,粒周长等 平均误差:≤3% 效率:60s/单株 检测方式:在线实时采集 数据存储:EXCEL格式自动存储 可持续工作时长:20h(每天) 工作环境温度:0-50℃ 额定功率:1KW水稻育种水稻功能基因研究 粒长、粒宽、千粒重、实粒数、总粒数,系统测量值和人工测量值比较,平均相对误差小于5%,R2大于0.9.谷粒粒长、粒宽、长宽比、千粒重、投影面积GWAS分析结果,鉴定出控制粒长的基 因位点GS3,控制粒宽的基因位点qsw5,控制粒长宽比的基因位点GS3,控制千粒重的基因位点GS3,控制谷粒投影面积的基因位点有MADS29、TH1、GS3)。考种机图片水稻考种机外观图,用户交互界面及数据存储界面 水稻数字化考种机应用案例目前多家院校企业采购了谷丰光电的水稻数字化考种仪,合作的单位包括中国种子集团有限公司,深圳市作物分子育种设计研究院,华南农业大学,三明市农业科学研究院,湖南岳阳农科所,湖北农业科学院,中国农业科学院深圳生物育种创新研究院,山东省农业科学院,海南大学等。武汉谷丰光电科技有限公司致力于植物表型,农业科研和机器视觉系统集成领域,具备核心图像处理、光机电控制、以及系统集成技术,掌握一批自主知识产权。公司主营业务包含:水稻数字化考种机,玉米考种机,叶片表型快速分析仪,植物表型分析系统,植物表型参数自动提取系统,植物荧光表型检测平台,高光谱成像系统,作物考种服务,图形分析定制服务,表型仪器定制服务。谷丰光电“自主创新,创国际品牌”。
    留言咨询
  • 油料作物及其种子在全球经济和食品供应中扮演着至关重要的角色。油料作物是指那些种子或果实中油脂含量较高的植物,它们是食用油、工业用油、生物燃料和动物饲料的主要来源。油料作物种子,如大豆、油菜籽、葵花籽、花生等,是全球食用油和工业用油的主要来源,它们不仅富含油脂,还含有多种对人类健康有益的营养成分。油料作物种子含油率的测定对于评估种子的经济价值和加工潜力至关重要。它帮助农民选择高产量种子,指导油脂加工企业优化生产计划,确保产品质量,促进科研育种以培育更高含油率的作物品种,同时在国际贸易中提供定价依据,对保障食品安全、推动农业可持续发展以及促进全球经济都有深远的影响。传统上,索氏提取法是测定含油率的标准方法,它依赖于有机溶剂(如乙醚或丙酮)来提取油分,随后蒸发溶剂并称量剩余油脂以计算含油率。尽管索氏提取法在准确性方面表现出色,但该方法过程复杂,耗时,且需破坏种子,这限制了其在快速筛选和育种研究中的应用。相比之下,低场核磁共振技术(Low Field Nuclear Magnetic Resonance, LF-NMR)提供了一种无损、高效、安全的替代方案。LF-NMR技术通过测量种子中油分和水分对应的氢原子信号来直接确定含油率,无需使用化学溶剂,从而避免了样品的破坏和环境污染。特别是脉冲核磁共振方法,它通过分析油料种子固相(如蛋白质和碳水化合物)和液相(油脂)的自由感应衰减(FID)信号,能够迅速而准确地测定种子的含油量。这种方法不仅测量速度快,准确性高,而且保持了种子的完整性,非常适合于种子的快速筛选、育种研究以及大规模的种子质量评估。纽迈分析基于低场核磁共振技术研发的油料作物种子含油率分析仪,具备核磁共振无需特别制备样品、无损检测、绿色环保的特点,且测量准确性与重复性非常优异,分析速度快、操作简单方便,是一款理想的具有高性价比的台式核磁分析仪。产品采用了模块化的设计理念,可根据用户需要设定配置,满足工厂、科研实际需求。油料作物种子含油率分析仪油料作物种子含油率分析仪的基本参数:磁场强度:0.50±0.01T样品尺寸范围:Ø 16mm*H40mm磁体均匀度:≤30ppm油料作物种子含油率分析仪的特点:无需化学试剂处理,绿色环保无损检测,测试速度快对操作人员技术要求低油料作物种子含油率分析仪的应用:油料、植物种子/油料饼粕,如花生、瓜子、橄榄、玉米、大豆等重复测量11次极差:≤0.5%含油含水率,含油率范围:1%~100%含水率范围:2%~10%应用案例:
    留言咨询
  • 仪器用途:作物表型数据采集仪TPZW-BX-1主要用于测量作物植株表型性状数据,包含角度测量、长度测量、粗度测量、叶面积测量等功能。主要应用于大田作物、温室大棚作物;粮食、油料、蔬菜、花卉等植物。田间作物表型信息获取种类、数量以及信息处理与分析方法对于发现有价值的表型特征并确定其遗传因素有着重要影响,而传统的田间表型信息获取方法依赖于研究人员的人工采样测量,不但费时费力,还存在效率低和主观性强等缺点。为了提高农业试验表型性状数据采集效率,托普云农研发了一款作物表型数据采集仪。该仪器可以实现自动记录测量数据,测量数据直接通过U盘导出,一个人即可完成测量,提高工作效率和准确性。对田间表型信息数据的获取、促进表型研究和遗传育种研究提供了技术支撑。功能特点:1.超轻便设计:单人可操作使用。2.多功能模式组合:长度、宽度、角度、粗度模式组合,功能强大。3.功能模式切换自如:7个功能模式可自由切换。4.分批次分组测量:可根据种植小区行号分批次进行测量。5.数据记录:自动记录测量数据,提高工作效率,测量精确度高。6.数据导出:作物表型数据采集仪测量数据可通过U盘导出,无需再手工输入。产品参数:测量参数:1. 叶(叶长、叶宽);茎(茎长、节长、节粗); 穗(雄穗长、果穗长、果穗粗、秃尖); 根(根长);果实直径等。2. 角度:茎叶夹角、雄穗分枝角度、果穗倾角、剑叶夹角等。3. 面积:玉米、小麦、水稻等作物叶面积等。技术参数:1.材质:ABS树脂2.长度测量范围:0-120cm3.角度测量范围:0°~±180°4.长度分辨率:0.01cm5.长度精度:±0.5%6.角度分辨率:0.01°7.角度精度:±1°8.响应时间:<1s9.储存空间:一次可存储200组数据10.供电方式:5v充电锂电池11.续航时间:作物表型数据采集仪持续工作可以使用3-4小时别名:作物农艺形态测量仪、作物形态测量仪、植物表型数据采集仪、植株形态数据采集仪更多详细信息:作物表型数据采集仪
    留言咨询
  • 产品介绍TPZW-G-1便携式作物株高测量仪是一种便携、快捷的株高测量设备,常用于玉米高产育种,理想株型筛选用,也可实现快速、高效的对玉米、水稻、小麦、油菜、等作物的株高测量,同时可满足对玉米穗位的测量。产品集测量与记录于一体,测量的同时便完成了数据的记录,数据可通过主机的U盘导出,方便数据的整理与分析。功能特点1、应用范围广泛:适用于玉米、水稻、小麦、油菜、芝麻、大豆、高粱、棉花、各种果树等以及株高范围在100~3800mm内的作物。2、产品轻量化:主机重量1.2kg,无其他辅助设备,主机可固定在固定杆上,用户可自行调节高度方便查看,产品测量时占地空间非常小,对测量场地无要求,适合户外田间测量。3、株高和穗位测量可自由切换:产品集成了株高和玉米穗位两种测量功能,可通过系统内的模式切换,即可实现测量同一植株的株高和穗位或者测量处理多个株高,之后测量穗位两种方式,用户可根据测量需求自由切换,轻松操作。4、数据查看方便、记录效率高:测量仪主机上内嵌了一块3.5寸高清全彩液晶屏,方便测量过程中的数据呈现及用户查看及查询;同时,主机每次测量按下记录的时候会有声音提示,大大提升了用户体验和降低漏记频率。5、内置大容量电池,满足长时间测量:测量仪内置大容量可充电锂电池,一次充满电,便可长时间移动式测量,无繁杂连接线缆限制。6、产品操作方便:产品集测量、数据记录、导出于一体,闭环流程提高了工作效率;实际测量时,用户设定完成后,只需根据测量时使用的指针,按下对应按钮,完成测量和记录。7、数据导出方便:仪器自带U盘,接口为通用USB接口,数据记录直接存储在U盘中,当用户完成了测量后,只需将U盘插入与笔记本电脑或台式机电脑的USB接口中将测量数据导出,数据记录格式为Excel文件。8、数据保护系统完善:产品系统设有误操作保护,避免用户错误操作导致测量数据的丢失或删除。同时用户也根据需要备份好数据,清空数据库,避免数据被做他用。。技术参数株高测量范围:100-3800 mm分辨率:1mm精度:±0.5%响应时间:<1s储存空间:一次可存储200组数据供电方式:可充电锂电池续航时间:设备持续工作可以使用3-4小时产品尺寸:主机:136(L)*54(D)*90(H)mm+118(L)*47(D)*80(H)mm杆子:1600-3800mm产品重量:主机1.21KG标准配置测量主机1台固定杆1个滑动杆(包含上指针)1个下指针1个U盘1个充电适配器1个
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。主要优势加速农业研究、缩短新产品推向市场时间定量、确定、可信结果全植株、根系、枝叶系统、环境测量多种产品和环境检测验证提升科研水平聚焦田间实验持续、实时生物反馈模块设计、分步预算无需基础设施投资Plantarray 高频测量植物对动态环境条件的反应主要特征性状精度Plantarray植物生物量增益高水准, 直接蒸腾高水准, 直接水利用效率高水准, 直接营养利用效率高水准, 直接根活力高水准, 直接气孔冠层导度高水准, 直接土壤水含量、温度、EC高水准, 直接盐水准(EC)高水准, 直接耐旱和恢复指数高水准, 直接鉴别干旱胁迫点高水准, 直接气象指数,VPD高水准, 直接环境传感器 (PAR, PH, 风速等)高水准, 直接主要诊断能力诊断能力Plantarray定量测量高水准高精度取样高水准实时测量 (相同条件)高水准多重个性化处理高水准随机结构高水准实时分析高水准应用套件应用套件Plantarray干旱胁迫高水准盐度和重金属胁迫高水准灌溉 / 养分高水准CO2 指示高水准热、冷胁迫高水准光高水准植物健康早期检测主要特点直接精确测量主要生理-产量相关性状不同模式控制灌溉-时间、重量、土壤湿度、日常蒸腾等自动、实时测量阵列中单个植株高时空分辨率24/7 持续测量枝叶系统、根系以及环境基于反馈的独特灌溉控制云实时数据分析全植株、无损测量适合多数植物、土壤类型和生长阶段Plantarray系统可靠、耐用,是数十年利用称重蒸渗计(重力称量)系统的研究成果,用于监测在不同变化环境条件下不同植物的反馈。Plant-Ditech长期专业经验融入在系统每个部分之中。每个花盆置于高精度称重天平上,称重天平与控制单元相连,可持续24小时/7天测量花盆重量,并可进一步计算器生理性状。包含2个控制阀用于最大灌溉、施肥灵活性可进行自动化、个性化、植物特异反馈灌溉每个控制单元设计可容纳4个额外传感器、尽管内部互连,当单元损坏不影响其他单元使用降低噪音以及使用长电缆的需求特别设计排水容器坚固-无移动部件整个花盆容量范围 (2 - 60L)4个排水位防止水漏在蒸渗计表面不影响植物和实验前提下实现水和根测量Plantarray系统技术参数 测量单元配有3个数字通道、1个模拟通道、1个称重式蒸渗仪通道,所有的传感器可以同时连续工作;高精度称重模块,最大测重量达50kg(测量范围依具体配置而定),测量精确度±0.02%称重量;植物生长容器满足多种植物的生长需求,容积2-60L,采用防漏水、溅水设计;可根据植物生长时间或生长容器重量选择灌溉模式,灌溉系统采用精准的滴灌控制,能够精确的控制浇水、施肥或施用生物激素的量;多种土壤类、气象类高精度传感器备选,用于测量土壤含水量、温度、电导率,空气温湿度、PAR、气压、NDVI等参数;直接测量参数:重量、空气湿度、空气温度、气压、辐射(PAR)、土壤水分、土壤电导率、土壤温度、日蒸腾计算参数:植物生物量增益、日蒸腾、水分利用效率、气孔导度、抗胁迫因子、水分相对含量、 根穿透力、根系水通量、VPD。Plantarray系统的技术优势Plantarray平台相比于现有系统,具有操作简单,成本低的特点。该系统将冗长的手动调试过程从数月甚至数年缩减为数周,节约了大量宝贵的时间。通过试错方式,利用低成本的自动化系统,Plantarray减少了大规模现场密集测试的工作。/ 生理学特征的监测和数据高通量分析,如生长速率、蒸腾速率、水分利用率、气孔导度等特征;连续控制不同的土壤和水分环境(如干旱、盐分或化学物质);理想的实验平台:全自动、均一检测、适用于不同类型植物、精确测量、非破坏性、实现随机分组实验设计3-4周的实验相当于4-6个月的人工工作;操作简单,维护费用几可忽略;灵活的设计能够满足任何温室中不同方面的科学研究需求。实时统计分析-为了数据的可靠快速分析,提供多阶乘ANOVA或配对T检验;实验目的-在实验运行中为了确保处理的效果可以获取最优化的实验参数;快速定量选择-提供植物对于不同环境需求生理反应的评级和评分的简况;复杂实验通过简要图像呈现生理参数与环境条件的空间和时间关系,显示趋势、异常和比率。 Plantarray系统应用领域 非生物逆境胁迫研究,比如:干旱、淹水、营养、有毒物质等胁迫研究;生物逆境胁迫研究:如病虫害等在农作物、蔬菜、树木、药用植物等方面的育种研究;根系的土壤穿透力、水通量研究;生物激素与养分研究;生理生态学研究等。应用案例非生物胁迫反应应用非生物胁迫是指环境影响如干旱(缺水), 盐度,浇水过量), 极端温度(冷、霜和热)以及有毒物质,这些非生物胁迫可负面影响作物以及其它植物生长、发育、产量以及种子品质。现代作物产量高,但易受到非生物胁迫影响。因基因环境互作的复杂性,提升作物胁迫反应面临巨大挑战, 特别是气候变化期间。要满足全球日益增长的食品需求,研究人员在努力培育适应恶化条件的作物优化品系。Plantarray高通量植物生理研究平台提供了简单易用的软硬件工具,可自动控制实验阵列每个花盆的灌溉处理(品质和数量),分析每个植株对控制处理的反应。通过测定检测施加环境胁迫条件的植物的特定胁迫阈值,系统显著降低了研究植物应对缺水环境的研究时间和精力,并与田间结果高度相关联。干旱处理:浇水良好处理控制 热分布图和图表(生长速率)根系生理表型性能应用根在水吸收中的作用非常重要,但是,因根位于地下,要想持续对其进行监控非常具有挑战性,特别是采用无损监测方法。使用嵌入土壤的传感器,可测量土壤湿度、温度以及电导率,同时测量其它环境信号和生理参数,Plantarray可对多个功能性状进行定量评估,例如流入根的水分-土壤传感器可持续、精确测量水流入每株植株的速率。干旱临界点植物土壤水流入以及流出的即时平衡(蒸腾)提供了不同研究植物和处理条件下的冠层相对水含量(RWC)和其变异。植物RWC认为是植物胁迫状态的比较参照点。SPAC-Analytics分析软件Plant-DiTech公司的SPAC (土壤-植物-空气连续体) 分析是基于云服务的软件,可进行实时数据、分析以及生产力预测。SPAC-Analytics分析软件可帮助农业研究者处理多传感器和来源的输入数据 ,提供多种种植和生产力性状相关的数据统计和图标信息,包括环境参数(包括胁迫)。输出是详细的性能分析,是基于植物群体和处理反馈的高级数据统计工具。来自大阵列的植物样品的生长循环任一时期的数据可自动、持续追溯 。该软件可帮助你在实验时和实验后实时运行多个分析,可使用海量实时数据进行人工处理。SPAC-分析主要优势实时数据统计分析-多因素ANOVA或配对T-检验-结果可靠、快速 达到目标- 实验中优化实验参数,确保关键的处理效果快速定量选择-生成基于性能的概述,用于对植物针对不同环境的生理反馈进行分级和评分负责实验以简洁图标展示-测量生理变量和环境条件之间的时空关系,展示趋势、异常以及比率SPAC-analytics分析软件如何工作 系统对相关性以数字、图表的形式进行处理并展示,下列测量和施加条件之间的测量值、趋势、异常和比率的关系1、测量参数的平滑时间(重量、土壤水含量、空气水需求等)。2、一段时间上述所提到参数的变化率。3、不同时间间隔的植物生物量增益(天、周、和季度)。4、日常蒸腾的模式。5、不同时间间隔的(天、周、季度)水利用效率 (WUE) 。6、土壤水含量 (质量平衡计算或特定传感器直接测r)。7、一天中不同小时气孔导度变化。8、从土壤到根系的水流(安装土壤传感器)。9、一天每小时的植物相对含水量的变化 SPAC-analytics主要优势 Plant-DiTech公司的SPAC-Analytics软件是基于网络软件系统,可让用户浏览并分析每个传感器输入的在线数据。任意网络浏览器都可以管理图形结果,基于用户数据采集,整个实验期间都可浏览。在用户的统计软件上,选择部分可与背景数据一起导出用于下一步工作用。一群样品中的单个植株以及数百个植株的阵列的分辨率有所差异。用户可控制整个群体以及单个样本,例如:1、选择植物/一行(剔除特殊植物)2、参数选择3、日期范围选择4、4、平滑/非平滑图型展示 Plant-DiTech公司的SPAC-Analytics 软件可提供快速、可靠的在线科学分析。
    留言咨询
  • 万深PhenoGA-F田间作物表型分析测量仪Instrument for Measuring plant phenotype — Model PhenoGA-F一、用途基因型、表型和环境是遗传学研究的铁三角。表型(性状)是基因型和环境共同作用结果,而基因型与表型之间有着多重关系。研究者用测序和基因组重测序来评估等位基因差异定位数量性状等已变得很普遍,但其需大量性状数据来佐证。然而这类分析测量的结果受人员、工具和环境等的干扰很大,还会损伤到植物。高效、准确的万深PhenoGA植物表型分析测量仪实现了可视化的精确数据分析和表型测试,如测试对压力和环境因素的表型反应、生态毒理学测试或萌发测定、遗传育种研究、突变株筛选、植物形态建模、生长研究等。二、主要性能指标1、成像1、在明亮的田间环境下,由顶视的超大变焦镜头自动对焦2400万像素以上的佳能EOS单反相机直联电脑获取植物顶视的RGB彩色图。 2、拍摄分析范围120cm*80cm,可变焦调小视野至30cm*20cm,适合对各类作物在60cm高度内时的表型分析。2、分析软件(1)常规分析:分析投影外接圆直径及面积,外周长,拟合椭圆主副轴及偏角,凸包内径、面积及周长,植株宽,最小外接矩形长、宽,植株紧实度、茎叶夹角或分枝角,以及植株高(需另配测高仪)。(2)顶视的表型分析:叶冠直径、叶冠层面积、叶冠层占空比、叶片分布紧密度等,叶片数、叶片投影面积及其动态变化、投影叶片长,果实外观品质、花形和花色等。(3)颜色分析:RGB、LAB颜色值,具有叶片颜色自动矫正特性,可按英国皇家园林协会RHS比色卡2015版来自动比色。可按指定颜色数进行聚类分割,并统计颜色分布及面积占比。(4)生长分析:作物叶冠绝对生长、相对生长曲线,相对生长趋势。(5)其它:不同生长时期自动批量化处理分析,多植株网格分析,直线、角度等几何测量,各测量结果可编辑修正。3、数据报表(1)可接入条码枪来自动刷入样品编号,具有按条码标识跟踪分析的特性。 (2)各项分析数据和标记图片可导出。三、标准配置1、万深PhenoGA-F田间作物表型分析测量仪软件U盘及软件锁1套2、自动对焦2400万像素以上的佳能EOS单反相机1套3、折叠式田间表型拍摄架(重8kg以内)1套4、笔记本电脑放置桌1套5、叶色色彩矫正板1块6、尺寸自动标定板1块7、标定板升降支撑架1付8、手持式条形码阅读器1付9、掌式便携背光板1付10、测高仪(含激光测距仪、测距仪夹、手机固定夹、2米伸缩杆、横向标示杆及螺钉、反射垫、内六角扳手、便携黑筒、卷尺)1套12、强光遮挡用塑料布1张13、品牌笔记本电脑(12代以上酷睿i5 CPU / 16G内存/ 256G硬盘 / 14”彩显/无线网卡,Windows 10或11完整专业版)1台四、可选配硬件1、测高仪(含激光测距仪、测距仪夹、手机固定夹、2米伸缩杆、横向标示杆及螺钉、反射垫、内六角扳手、便携黑筒、卷尺)。2、红外热成像相机(分辨率 384*288像素,测温范围-20-150℃,测温精度为最大测温范围绝对值的±2%),以测定叶温和叶温分布。3、真正3D成像的手持式扫描仪,以获得植物真3D模型用于全方位视角存档观察。
    留言咨询
  • 育种筛选 400-860-5168转2623
    育种筛选,种子筛选--Qualysense正在帮助种子育种家、食品公司和检验机 构在营养、健康和安全方面取得卓越成绩。结合了 两种传感技术——3D机器视觉和高分辨率近红外光 谱技术。每种谷物都以高速和固定的位置向光源输送。彩色 摄像机拍摄颗粒的三维图像,高分辨率近红外光谱 仪测量吸收光的数量。这两个数据集通过先进的 算法进行处理,这些算法提取每个谷物的几何参数 和生化指纹。? 易于操作和维护 ? 一个设备替换实验室中的几个设备 ? 更换手动和目视检查 ? 产品开发研发装置 ? 每秒20到50粒,取决于商品。育种选种: 培育一个新品种的平均时间 是8年,而80%的种子被浪费掉了。 QSorter可以帮助减少繁殖周期和浪费:在育种过程的早期选择感兴趣的种子,清除杂质 扩大人口规模 减少温室内工作 减少湿化学需求 欺诈检测(查找谷物/豆类其他品)稻米品质快速准确分析: 垩白 破碎仁 尺寸、形状和体积 水分、蛋白质含量、未成熟、受损 的谷粒,比检查员快6倍 高精度和一致性。花生:质量检测研究: -损坏的种核去除 -从普通品种中筛选高油 酸品种 -黄曲霉毒素检测 -清除异物,包括外壳(作 为一个单独的类别,而不 是损坏) -尺寸和形状测量,用于分 级、分割检测比人工检查快20倍 无偏见,消除人为错误
    留言咨询
  • 植物营养检测仪云唐 农作物叶片养分检测仪  品牌:云唐 型号:YT-ZY30  植物营养检测仪云唐 农作物叶片养分检测仪仪器特点:  1、可快速检测活体作物、干植株中的速效氮、速效磷、有效钾、全氮、全磷、全钾、有机质、亚硝酸盐,钙、镁、硫、铁、锰、硼、锌、铜、氯、硅、钼等各种中微量元素以及铅、铬、镉、汞、砷、镍、铝、氟、钛、硒等各种重金属含量。  2、安卓智能操作系统,采用更加高效和人性化操作,仪器标配wifi联网功能、4G联网功能、实现数据无线快速上传。  3、内置作物专家施肥系统,可对百余种全国农业、果树、经济作物的目标产量计算推荐施肥量,依据施肥配方科学指导农业生产。  4、采用双联排多通道设计,一次性可快速检测12个样品,所有检测项目可实现所有通道同时检测,极大提升检测效率,降低检测成本。  5、内置植物营养诊断标准图谱,根据各农作物营养缺失的图片,进行叶面对比,诊断丰缺。  6、采用高精度滤光片技术自主专利分析方法(专利号:ZL 2018 2 1777724.7),比色槽部分采用标准1cm比色皿,无机械位移及磨损,光路测试定位精确,保证检测结果优于国标要求。  7、仪器具有4G内存,可长期存储数据,并配有上传平台,无需数据线,数据可直接无线上传,方便进行数据管理和数据长期分析。  8、仪器内置新一代高速热敏打印机,检测完成可自动打印检测报告和二维码。  9、高灵敏7寸电容触摸屏,高清晰高交互显示,大程度降低传统仪器的繁琐操作和失误。  10、每个通道均配置四波长冷光源,所有光源实现恒流稳压,保证波长稳定。 硅半导体作为信号接收系统,寿命长达10万小时级别。重现性好,准确度高。  11、高强度PVC工程塑料手提箱设计,坚固耐用,便于携带,供电方式为交直流两用,可野外流动测试配套成品药剂。  一、植物营养检测仪云唐 农作物叶片养分检测仪功能多、测试项目齐全:  植株养分:● 植株中的氮素、磷素、钾素 亚硝酸盐等项。  ● 植株中的中微量元素:钙、镁、硫、铁、锰、硼、锌、铜、氯、硅、钼等。  ● 植株中的铅、铬、镉、汞、砷、镍、铝、氟、钛、硒等各种重金属含量。  还可扩展检测:土壤、肥料、食品、水质中的氮磷钾、有机质、微量元素、重金属等  二、植物营养检测仪云唐 农作物叶片养分检测仪仪器技术指标:  1.电源:交流 220±22V 直流 12V+5V(可用车载电源也可选择仪器内置锂电池)  2.功率: ≤5W  3.量程及分辨率:0.001-9999  4.重复性误差: ≤0.05%(0.0005,重铬酸钾溶液)  5.仪器稳定性:一个小时内漂移小于0.3%(0.003,透光度测量)。仪器开机预热5分钟后,三十分钟内显示数字无漂移(透光度测量) 一个小时内数字漂移不超过0.3%(透光度测量)、0.001(吸光度测量) 两个小时内数字漂移不超过0.5%(0.005,透光度测量)。  6.线性误差: ≤0.1%(0.001,硫酸铜检测)  7.灵敏度:红光≥4.5 ×10-5 蓝光≥3.17×10-3 绿光≥2.35×10-3 橙光≥2.13×10-3  8.波长范围 :红光:680±2nm 蓝光:420±2nm 绿光:510±2nm 橙光:590±4nm  9.仪器尺寸:43×34.5×19cm, 主机净重:5.1kg  三、植物营养检测仪云唐 农作物叶片养分检测仪测试速度:  测一个植株样品(N、P、K)≤40分钟,同时检测三个植株样品(N、P、K)≤1个小时  四、测试误差:  测试误差≤5%。  五、植物营养检测仪云唐 农作物叶片养分检测仪产品仪器特点:  多功能植物养分检测仪功能全:测试项目国内外全面(各类药剂均可选购)。  配套齐全:该仪器集药、器、仪为一体,携带方便,相当于一个小型实验室。适于高教院校、科研院所进行作物营养诊断和植物生理研究。农业服务部门或农资经销商、肥料厂商等测土施肥。  操作简便、速度快捷,成品药剂开瓶即用,无须配置。  性能可靠:工作稳定性优于国家标准JJG179-90指标的6倍,重复性达到光栅型分光光度计指标水平。  六、植物营养检测仪云唐 农作物叶片养分检测仪售后服务:  仪器整机质保五年,终身免费维修服务,免费邮寄仪器、免费培训。  终身免费提供土肥等农业相关技术支持!
    留言咨询
  • 作物茎粗测量仪 400-860-5168转1490
    作物茎粗测量仪是托普云农推出的用于研究植物表型的专用仪器,作物茎粗测量仪其测量速度快,拍照3秒即出结果,可先拍照后批量处理。作物茎粗测量仪测量的数据也可通过WIFE,4G无线网络传输至云平台。功能特点:1.超轻便手持式设计,方便田间和室内测量使用;2.大屏幕彩色手触摸屏,安卓系统,2000万像素;3.测量速度快,拍照3秒即出结果,可先拍照后批量处理;4.手机和作物之间固定距离设置,重复性拍摄茎粗无差异;5.压板和转轴柄一体式连接,方便固定作物茎部,减少风吹草动对作物茎粗拍摄的影响;6.环境适应性广,无需做遮光处理,可以在离体或活体情况下测量作物茎粗;7.自动调节白平衡,不受天气、光照等环境条件的影响;8.自带50G存储容量,本地可同时存储数据和作物茎粗图像两年的数据量,可在主机上查看历史记录;活体测量茎粗可得到随时间改变的相对生长速率。9.测量的数据也可通过WIFE,4G无线网络传输至云平台, 存储数据和作物茎粗图像可保存数十年;10.数据查看多样化:拍照分析后即可查看测量结果,也可在历史记录中查看数据报表,可导成EXECL格式;11.自动生成数据列表:测量时间,图片,GPS位置信息,作物茎粗等信息,节约数据整理时间技术参数:1.外形尺寸:307*140*80mm;2.底板材料:黑色双面细磨砂亚克力;3.背景材质:白色磨砂PVC防水纸;4.测量范围:0-6cm;5.测量误差:±1%;6.图像分辨率:2160×1080;7.电池:3010mAh续航时间5h以上;8.配置:作物茎粗测量仪背景装置1件,测量主机1台,充电器1台。其他:全自动凯氏定氮仪 浙江托普
    留言咨询
  • 作物考种系统 400-860-5168转6008
    精诚华泰 作物考种系统HTKZ-A (HTKZ-B型可测玉米果穗及玉米截面)仪器介绍:作物考种系统用于各类农作物实粒种子(谷粒、玉米、小麦、油菜籽等)的精确考种、各类粮库的虫口计数分析,以及发芽率、整齐度、均匀度分析,可兼做表面光滑的昆虫计数或虫卵计数(如:米象、蚜虫、蚕卵、鱼籽等),以及被当作种子净度工作台用于种子净度检验。测量指标:作物考种系统可测种子重量、千粒重、百粒种、面积比、面积均值、面积标准差、周长均值、周长标准差、长、宽均值、长均值、长标准差、宽均值、宽标准差、直径等数据。仪器特点:1.★ 500万像素分辨率的彩色数码拍摄仪,及超薄的背光光源板,具有相机画面畸变、背光板均匀性的自动矫正特性,有效减小尺寸测量误差。拍照分析的种粒直径1~20mm。稻种的实粒与秕谷需经风选,再分别计数分析。能大批量自动分析成像后的种粒图片。2.★ 全自动数粒速度:1200~20000粒/分钟,数粒误差≤±0.1~0.4%,极少监视修正即达100%正确。全自动千粒重分析的精度误差:≤±0.5%。对于直径较小的种粒(如油菜籽、蔬菜籽),单批次考种数量在5000-10000粒。可根据实际需求自行创制一键自动分析向导,适用于水稻、小麦、玉米、豆类、油菜籽、瓜子、蔬菜籽等各类农作物的自动精确考种、各类粮库的虫口自动计数,以及出苗数、整齐度、均匀度分析,显示和输出计数结果。3.★ 具有对被分析目标颜色、形状进行自学习和再学习,并实现自动分类的特性,以及品种比对特性。能自动测出各类粘连种粒的每粒粒形参数(长、宽、长宽比、面积、等效直径、周长等),能精准显示种粒外接矩形,并可自动排序输出,及可输出粒径分布图表。4.分析过程为全程电脑控制,高效、准确、简便易用,真正一键式操作,鼠标一点,结果即现。具有被测样本条码、电子天平RS232重量数据的自动输入接口。5.辅助删补:用鼠标选择增加/删除,或直接用鼠标在屏上手工计数,以确保100%正确目标区的个性化计数:对工作区视野中任选范围或矩形范围内的计数。6.分析数据导出:分析图像结果可保存,自动形成总报表,统计分析结果能输出至Excel表,以及,以及按宽度、长度、面积等输出的排列图和测量图。
    留言咨询
  • 作物株高测量仪 400-860-5168转6008
    作物株高测量仪简介:作物株高测量仪用于测量小麦的株高。在小麦不同时期测量株高的标准不同。小麦株高一般是指植株基部至主茎顶部即主茎生长点之间的距离。1.幼苗期:(1)伪茎高度:植株基部(或分粟节处)到最上部展开叶叶鞘顶部(即叶耳处)的距离为伪茎高度(或长度);(2)植株全长:植株基部到最上部展开叶的叶尖的距离做为植株全长。2.苗期:(1)伪茎高度:植株基部(或分粟节处)到最上部展开叶叶鞘顶部(即叶耳处)的距离为伪茎高度(或长度);(2)真茎高度:各节间的总长为真茎高度(或长度);(3)植株全长:植株基部到最上部展开叶的叶尖的距离做为植株全长。3.拔节期:(1)伪茎高度:植株基部(或分粟节处)到最上部展开叶叶鞘顶部(即叶耳处)的距离为伪茎高度(或长度);(2)真茎高度:各节间的总长为真茎高度(或长度);(3)植株全长:植株基部到最上部展开叶的叶尖的距离做为植株全长。4.灌浆期:从植株基部(或分蘖节处)量到穗顶(不包括芒)的距离则为株高。作物株高测量仪功能特点:1、仪器带有数据管理云平台和APP,可通过电脑网页或手机查看数据。由测量杆,手机,识别APP软件组成。2、手机对准测量杆上的刻度,拍照自动识别刻度数据实时传输到手机。3、测量杆带有水平仪,使测量过程更规范,更准确。4、完善识别内容:自动识别结果中显示识别的高度数据,手动录入作物数据(如:品种、生育期等)完善作物信息。首页界面上可显示所有测量结果。5、可根据检测日期,种类,测量人,区组名称进行测量结果查询。 6、数据分析管理:分析结果可查看,可将图片和数据excel导出。7、数据上传:自动在wifi/4G网络链接正常下上传至云平台,实现管理、查看、分析数据。平台数据可下载、分析、打印。技术参数测量杆高度:1500mm测量精度: ±1mm测量范围: 10~1500mm(范围内可选)外壳材质: 铝合金软件系统: Android
    留言咨询
  • HT-ZWG-I作物株高测定仪1.1 简介作物株高测量仪适用于玉米、水稻、小麦、油菜、芝麻、大豆、高粱、棉花、各种果树等以及株高范围在80~5000mm内的作物(对于过高的作物,可以通过激光测距仪进行识别,理论最大识别高度10米)。操作简单,识别速度块,根据不同品类,识别记录的数据可分类查看、排序、导出。仪器带有云平台,识别记录可在云平台登录查看,免去人工记录,处理数据。在线询价1.2 技术参数测量杆收缩高度:550mm(收缩后方便携带)测量精度: ±1mm测量范围: 80~5000mm(范围内可选)外壳材质: 碳纤维杆软件系统: Android相机参数: 6400W像素超高清相机。使用时间: ≥12小时1.3 功能特点1、仪器带有数据管理云平台和APP,可通过电脑网页或手机查看数据。由测量杆,手机,识别APP软件组成。2、可远程操控,手机点击后,仪器自动识别刻度数据实时传输到手机。3、测量杆带有水平仪,使测量过程更规范,更准确。4、完善识别内容:自动识别结果中显示识别的高度数据,手动录入作物数据(如:品种、生育期等)完善作物信息。首页界面上可显示所有测量结果。5、可根据检测日期,种类,测量人,区组名称进行测量结果查询。 6、数据分析管理:分析结果可查看,可将图片和数据excel导出。7、数据上传:自动在wifi/4G网络链接正常下上传至云平台,实现管理、查看、分析、下载数据,免去线下传递数据造成的问题。8、平台数据可下载、分析、打印。1.4 产品配置1、激光测距仪1台2、测距仪固定夹1付3、安卓手机固定夹1个(6400W像素)4、碳纤维4米伸缩杆1付5、横向标示杆及螺钉各1个6、反射垫1张7、黑筒1个8、5m卷尺1把
    留言咨询
  • 作物生长监测诊断仪 400-860-5168转4365
    一、产品简介作物生长监测诊断仪是指由自动监测系统对农作物的生长发育状态、病虫害情况以及灾情进行实时视频监控(包括日间图像和夜间的红外图像)。结合气象、墒情等传感器以及虫情预报灯等,可以对田间苗情、虫情、灾情实现自动监测,使管理人员可以远程关注作物生长状况,根据作物在不同生长周期的需求,指导灌溉、施肥、喷药等措施。二、系统组成该系统由三米碳钢支架、HK2海康摄像头、太阳能供电系统(含防护箱)、云平台组成三、技术参数1.支持区域入侵侦测,越界侦测,进入区域侦测和离开区域侦等智能侦测2.采用高效补光阵列,低功耗,红外补光100 m3.内置加热玻璃,有效除雾4.支持超低照度,0.005 Lux F1.6(彩色),0.001 Lux F1.6(黑白),0 Lux wi th IR5.支持23倍光学变倍,16倍数字变倍6.支持三码流技术,每路码流可独立配置分辨率及帧率7.支持3D数字降噪,支持120 dB宽动态8.支持定时抓图与事件抓图功能9.支持定时任务,一键守望,一键巡航功能10.支持海康SDK,开放型网络视频接口,ISAPI,GB/T28181,ISUP,萤石11.最大支持256 GB Mi croSD卡存储12.抗干扰能力强,适用于严酷的电磁环境,符合GB/T17626.2/3/4/5/6四级标准,IP66
    留言咨询
  • 作物冠层分析系统 400-860-5168转1218
    SunScan 冠层分析系统 通过测量作物冠层PAR值提供了关于影响田间作物生长的限制因素的有价值的信息,如叶面积指数(LAI);SunScan探测器也可被用来描绘作物冠层PAR的分布图。 根据冠层吸收的Beer法则(Beer' s law for canopy absorption)、Wood的SunScan冠层分析方程以及Campbell的椭圆叶面角度分布方程 (Campbell' s Ellipsoidal LAD equations),使用光量子传感器来测量、计算和分析植物冠层截获和穿透的光合有效辐射及叶面积指数。标准组成:  SunScan探测器:一支1米长,内嵌64个光合有效辐射传感器的的探测器;  反射系数传感器(BF3):综合了2个PAR传感器,并能很容易地计算出作物冠层的PAR以及直射光与漫射光(the beam fraction)的比例关系;  数据采集终端(RPDA1):一款从采集和分析读数的高效、轻便、超耐用的掌上电脑,并可在进行自主测定记录数据;  SunData软件:用来对测量参数进行分析处理;  三角架:用来安放BF3。SunScan的可选产品包:产品包类型描述和优点SS1-COM Complete System这是SunScan的完整产品包,包括SunScan探头、SunData软件、掌上电脑、BF3探头、三角架和携带箱这是一个完整的强大的冠层分析工具,可以即时测出LAI和冠层上方的PAR,以及冠层内部经过冠层截获后的PAR。SS1-COM-R4 Complete System with Radio Link 在SunScan探头(改进的)和BF3之间增加了无线电连接。无线电连接范围在100-200m之间,替换掉了探头和BF3之间的电缆,使仪器可以在高冠层或者是广阔的区域使用。SS1-STD3 Standard System这是标准产品包,包括SunScan探头、SunData软件、掌上电脑。能够测SunScan的全部指标包括LAI,这需要在光线稳定的条件下,测定冠层上方的PAR作为参考。SS1-ELS1 Entry Level System 这个产品包仅包含SunScan探头、SunData软件。最便宜的产品包,拥有标准产品包的所有功能,但需要用户自己提供PDA,并安装windows mobile 5或以上版本操作系统,并通过9针的RS232 D-连接头连接。数据分析和存储 RPDA1 (Rugged PDA type) 这是一款十分耐用的手持式掌上电脑,可以记录和分析SunScan探头的数据,原始测得的数据像LAI等可以被现实、查看和存储通过操作系统,需要时还可以对成组数据进行平均。RPDA内置的存储卡可以存大于1000000个读数,并可以加装CF卡扩展存储空间;记录的数据可以轻松的传输给电脑。无线连接无线连接使SunScan探头和BF3之间的线缆连接限制得以消除,利用434MHZ频率波长可以在无障碍直线传输条件下,距离达250m,有障碍的情况下传输距离在100-200m之间。无线连接系统为BF3和SunScan探头加装了特殊模块分别为BF-RL4和SS1-RL4。参数:1、 探测器工作区域:1000x13mm宽,传感器间距15.6mm 2、 探测器光谱响应:400-700nm (PAR);3、 探测器测量时间:120ms;4、 探测器分辨率:0.3&mu mol. m-2.s-1;5、 探测器最大读数:2500&mu mol.m-2.s-16、 操作温度:0 - 60 ° C;7、 BFS电缆长度:标准为7米,可扩展到100米;8、 内存:2M内存,包含程序;1600K RAM 可用于储存数据; 9、 接口:RS232,9针母口 &rsquo D&rsquo 连接口; 10、BF3光谱响应范围:PAR(400-700nm); 11、RPDA1操作系统:Windows Mobile 6; 12、RPDA1显示项:LAI、所有探头的单独读数、PAR平均值; 13、RPDA1工作环境-30℃-60℃,1.2m的掉落测试; 14、RPDA1电源:充电电池,可连续工作12小时; 15、RPDA1存储空间:大于100MB可用;
    留言咨询
  • 油料作物水分检测仪 400-860-5168转3452
    深芬仪器CSY-L2油料作物水分检测仪可广泛应用于一切需要快速测定水分的行业,如绿饲料、含蛋白的饲料、含糖的饲料、含油的饲料、含淀粉的饲料、米糠、酒糟、鱼粉、维生素饲料、矿物质饲料、能量饲料、豆饼(粕)、棉仁粕、菜籽粕、血骨粉、酒糟 豆粕 麸皮 油料作物中水分含量一、产品名称:油料作物水分检测仪二、产品型号:CSY-L2三、产品介绍:在水分检测领域,测量准确性和测量速度之间的矛盾一直没有解决;针对这一现状提供一种有烘干法结构的快速测定水分的仪器。油料作物水分检测仪采用德国HBM称重系统,保证称重准确;环形石英钨卤红外线加热源,快速干燥样品;在干燥过程中持续测量并即时显示样品丢失的水分含量%,干燥程序完成后,最终测定的水分含量值被锁定显示。与国际烘箱加热法相比,环形石英钨卤红外线加热可以在高温下将样品均匀地快速干燥,样品表面不易受损,饲料水分测定仪其检测结果与国标烘箱法具有良好的一致性,具有可替代性,且检测效率远远高于烘箱法。智能化操作,一般样品只需几分钟即可完成测定,是一种新型的快速检测仪器。技术参数:(1) 体积小,重量轻,结构简单(2) 无需辅助设备(3) 操作简单,无需安装调试培训(4) 效率高、速度快,整体操作不超过10分钟(5) 多种分析方式,全自动、定时、半自动满足各种分析方式(6) 标配RS232通讯接口-方便连接打印机、电脑和其他外围设备、符合FDA/HACCP格式要求技术参数:1、水分测定范围:0.01-100%2、水分含量可读性:0.01%3、称重范围:0-100g4、传感器精度:0.005g5、称重传感器:德国HBM传感器6、加热温度范围:起始-205℃7、加热源:钨卤环形灯8、显示参数:%水分,时间,温度,重量9、通讯接口:标配RS232通讯接口-方便连接打印机、电脑和其他外围设备、符合FDA/HACCP格式要求10、电源:220V±10%/110V±10%(可选)11、频率:50Hz±1Hz/60Hz±1Hz(可选)12、油料作物水分检测仪秤盘尺寸(mm)直径110
    留言咨询
  • 在现代农业中,无人机技术的应用越来越广泛,专为农作物测绘而设计的无人机滤光片成为农田管理的得力助手。这款产品配备了专用光学滤光片,飞行高度和相机透镜的精妙搭配保证了获取清晰高效的农田数据,让监测和分析变得如此轻松。滤光片选取最佳波长,根据作物光谱反射率,可以匹配任何品牌的无人机,帮助用户精准监测作物生长状态,健康状况一目了然。无人机滤光片的简便操控使其适用性广泛,无论是农场主、农业科研人员还是农田管理者,都能从中获益。通过这款产品,科技为农作物管理增添了一份精准和便利,提升了农业生产效率,实现了产量和质量的双丰收。这种创新技术的引入,不仅改变了传统农业的模式,更带来了更加智能化、高效化的农田监测和管理方式。无人机滤光片的使用不仅仅是农业现代化进程的体现,更是科技与农业相结合的典范。在大数据时代,通过这一技术工具收集到的海量农田数据,为决策者提供了重要参考,助力农业产业的可持续发展。因此,购买无人机滤光片,让其为您的农作物管理增添一抹亮色,让农田管理变得更加精准、高效,实现农业的新跨越。趁着科技发展的春风,让我们与时俱进,共同探索农业未来的更广阔天在农业应用方面,远程监测农作物健康状况正成为的一种重要工作。通过配备了专用光学滤光片的无人机,可以从远处监测作物,甚至精确到个体植物。正确的滤光片组合可以帮助测量农作物缺水情况、叶绿素水平、植物压力和杂草渗透情况等。这些方法从光谱的反射率测绘中得到了对比值。下面的滤光片示例通过使用4个单独的滤滤光片/相机组合来计算作物的NDRE值,并计算NDRE的比率。这里涉及到的特定波段的比率和差异可以用于许多植物指数的计算。农作物监测滤光片——红色波段(red)在叶绿素A/B重叠区域的中心,而红色边缘波段(red edge)在反射率曲线的上升边缘的中心使用欧美伽的滤光片,您将能够降低误差,从而为作物测绘数据的准确性和可靠性提供可观的提升。这不仅是一项简单的设备,更是您作物测绘工作的得力武器。在测绘过程中,我们的产品能够帮助您更准确地捕捉目标数据,为作物的生长和管理提供更为精准的评估。不论您是研究人员、农业相关工作人员,我们的滤光片都将成为您不可或缺的助手。选择我们的产品,将为您的作物测绘工作带来更高效、更准确的体验。我们致力于为您提供优质的产品,为您的测绘工作注入更大的精准性和可靠性。我们的滤光片,可以提升您的测绘水平,为作物生长和管理提供更可靠的依据。让我们携手合作,共同打造作物测绘领域的未来,为农业发展贡献力量。让我们的滤光片成为您作物测绘工作的得力助手,为您带来更准确、更可靠的测绘体验。选择我们,选择质量,选择准确性。在作物测绘领域,精准的数据是至关重要的。为了更好地满足客户需求,我们特别推出了专门为作物测绘设计的滤光片,凭借着美国技术,这款滤光片不仅能有效过滤干扰光,更能显著提高测绘精度。使用我们的滤光片,不仅可以减少误差,还能大幅提升作物测绘数据的准确性,为作物的生长和管理提供更为可靠的依据。美国omega光学公司自1969年成立至今,专业于光学滤光片的研发和生产,在该领域内已取得巨大的成就与声誉,Omega公司多年来的一直致力于对产品的丰富完善,可以满足客户对不同波长范围、不同带宽精度、不同规格尺寸、不同应用领域等等一系列的细节要求,成为许多高质量用户的主要选择。 生产工艺 :先进的滤波片生产技术 真空薄膜沉积、精确抛光、计算机协助设计优化等。 质量保证 :每一个滤波片都经过严格的检查和测试;测试证明:可提供光学特性、光谱和光度性能的数据 优异性能 : 高透过率、高阻截率、无串色、长寿命。
    留言咨询
  • 作物水分胁迫指数(CWSI)是1981年发展起来的一项标准化指标,用以量化胁迫,克服其他环境参数对胁迫与植物温度关系的影响,该指数对植物生理生态研究意义非凡。WIRIS Agro相机是由Workswell公司长期与中欧领先的生命科学研究机构:作物研究所和捷克布拉格生命科学大学合作开发的一款专用于精准农业领域测量大面积水胁迫的专利产品。该相机由LWIR长波红外传感器(640×512)和10倍光学变焦RGB镜头(1920×1080)组成。该相机可直接测量得到作物水分胁迫指数图及高清RGB图,通过这些信息可用于确定产量分布、优化灌溉或控制水管理等补救措施,也可实时测量温度并通过软件将CWSI图像转换为可视化温度图像,为精准农业研究提供非常重要的技术支撑,革新了农业和生命科学研究手段。在旱季,人们通常感兴趣的是干旱对作物的实际影响。该影响不仅取决于气候条件,而且还取决于地下水干旱、植物根系大小等。用CWSI相机测量植物的水分胁迫可帮助我们快速确定干旱对作物的真实影响。CWSI Analyzer软件与CWSI相机密切配合,能在很短的时间内从海量图像生成潜在的产量图。使用无人机平台搭载CWSI相机,即可获得飞行过程中作物水分胁迫的实际值,或使用收集到的数据创建概览地图。通过对比不同年份不同水分胁迫下的产量,可绘制当前水分胁迫下潜在产量图。 一、主要应用l 水状况监测-监测水分胁迫:作物在生长季节的缺水状况。无论作物是否灌溉。特殊彩色地图“Crop”和“CropStep”可用。l 灌溉管理:灌溉系统优化既包括确定合适的土壤传感器位置,也包括结构优化。特殊彩色地图“Water”和“WaterStep”可用。l 表型研究:不同的植物品种对可用水量敏感程度。CWSI相机将帮助您确定与其他物种的植物相比,特定物种的植物处于水胁迫的频率。l 生物量覆盖指数:实时计算大田植物百分比。l 基于温度和CWSI测量的其他应用:土壤水分监测保墒、精准农业、智慧农业、森林资源管理等。二、技术参数Agro相机主要功能描述CWSI机上实时处理机上实时评估作物水分胁迫指数,最大、最小、中心点温度测量机载操作系统WIRIS OS操作系统,用于在飞行过程中进行实时数据流传输和评估——确保相机全部功能可用——易于通过S.Bus、CAN bus、MavLink、RJ-45或触发器控制生物量覆盖指数(%)RGB图中实时计算植被定量百分比Agro相机规格传感器分辨率640×512像素CWSI实时评估Agro相机技术基于作物水分胁迫指数(归一化值为0到1),提供了关于大面积作物胁迫和作物水分管理的信息。这些信息可用于确定产量图、管理灌溉或执行与水管理有关的补救措施。FPA传感器尺寸1.088×0.8705cm传感器类型LWIR长波红外传感器CWSI评估范围0-100%(100%表示严重受迫)温度敏感度0.03℃(30mK)视场角45°(13mm)CWSI彩色地图提供4种彩色地图,用于CWSI和水管理评估CWSI范围设置自动、手动CWSI数字变焦1-14倍连续Coreplayer软件包含3D制图软件兼容性Agisoft和Pix4D数码可见光相机分辨率1920×1080像素(全高清画质),1/3″传感器,自动白平衡,宽动态范围,背光补偿,曝光和Gamma控制,3D降噪功能光学变焦10倍光学减震变焦视场角超变焦6.9°-超宽58.2°,焦距33.0mm-3.3mm生物量覆盖指数调用阈值函数实时计算指数聚焦自动对焦与直接变焦同步存储和数据记录存储内置128GB高速SSD,用于存储影像和视频记录外部卡槽为微型SD卡和U盘,用于存储影像影像和视频格式CWSI JPEG、TIFF和全高清画质数码JPEG影像数码相机h.264编码高清视频全帧CWSI视频(原始数据记录)GPS地理标签(影像和视频)MavLink或外部GPS或兼容DJI A3控制器(通过CAN bus连接)接口&实时远程控制10-pin数字端口S.BUS、CAN bus、MavLink、外部GPS连接、外部触发以太网(RJ-45)端口视频流媒体和相机控制(有特殊需求时可选)微型USB2.0端口大容量存储相机控制和视频流(有特殊需求时可选)USB 2.0端口连接键盘用于室内相机控制远程控制系统CWSI OS确保飞行过程中实时控制相机所有功能远程控制选项S.BUS协议CAN bus用于DJI M600实时控制和GPS地理标记RJ-45用于无线上行链路安装(视频流和相机控制)镜头保护滤波片滤光片在飞行过程中保护镜头不受外部损伤相机功能测量功能:——CWSI在线评估,包含4种不同彩图——CWSI单点评估(中心),基于温度信息——生物量指数实时百分比评估——实时温度测量(最大、最小、中心点)定时拍摄:——同步拍摄CWSI图像,CWSI视频和可见光图像相机可视化模式画中画模式、全屏RGB分割模式、双屏显示微型HDMI视频输出1280×720像素(720p),纵横比16:9,微型HDMI视频输出软件&SDK桌面软件先进的CWSI数据评估软件,可将CWSI图像转换为温度图像电源,重量&尺寸输入电压9-36V DC, 同轴2×6.4mm,外壳-GND,平均功耗12W重量<430g尺寸(长×宽×高)83mm×85mm×68mm安装2×1/4-20UNC螺孔(1个位于底部,1个位于顶部)外壳材质经久耐用的铝制机身,长期测量稳定可靠环境参数工作温度-10℃至﹢50℃存储温度-30℃至﹢60℃三、应用案例(1)作物干旱的实际影响研究在旱季,人们通常感兴趣的是干旱对作物的实际影响。这些影响不仅取决于所谓的气候干旱条件,而且还取决于地下水干旱、植物根系的大小等。利用WIRIS Agro测量植物的水分胁迫将有助于用户确定干旱对作物的实际影响,如下图所示,田间作物CWSI值普遍在0.5一下,说明整体干旱程度较低。 (2)生物量覆盖指数计算BCI(生物量覆盖指数)与RGB场景中植被数量的评价有关。基于RGB相机的可见光数据,对包含绿色植被的地面进行评估,并将这些区域与RGB图像中被白色掩盖的其他(非植被)区域的百分比进行比较。BCI可由用户通过简单的阈值调整,植物百分比实时测量显示,如下图所示甘蓝占比为65%。 易科泰公司凭借多年在农业、林业、生态环境领域仪器技术研发集成及推广经验,结合Agro成像仪的优势特点,率先将该相机引入EcoDrone专业无人机遥感平台和陆基水分胁迫测量监测平台,通过选配多光谱、高光谱及叶绿素荧光成像技术,并配合土壤水分、空气温湿度、茎流等监测网络,组成完整的陆空双基作物数字化系统,为大田作物及森林植被水分胁迫监测、作物产量预估、表型研究及指导灌溉方面,提供方便、快速、一体化的解决方案。
    留言咨询
  • 作物植物蒸腾速率测量仪器用途植物气孔计是一款采用开路测量的科研型植物气孔计。用来测量各种因素对叶片气孔行为的影响,可方便、重复、准确地计算出气孔阻抗、气孔导度和蒸腾速率,还可测得空气温湿度,叶面温度,光合有效辐射。广泛的应用于植物叶片的水分生理研究,农作物水分利用、水分胁迫危害、生物化控调节效果等研究。作物植物蒸腾速率测量仪测量原理原理:根据循环扩散原理,由植物叶片表面湿度的变化来进行测量计算作物植物蒸腾速率测量仪测量功能空气温度、湿度、流量、光强PAR、叶片温度、湿度曲线、蒸腾速率,气孔导度、气孔阻抗,气体质量流速测量单位: 蒸腾速率(Tr):mmolH2Om-2.s-1气孔导度(Gs): molH2Om-2.s-1气孔阻抗(Rs):sm-1精度:蒸腾 1——5% ,导度 5——10%作物植物蒸腾速率测量仪技术参数叶室温度:德国贺利氏高精度数字温度传感器,测量范围:-20-80℃,分辨率:0.1℃,误差±0.2℃叶片温度:铂电阻,测量范围:-20-60℃,分辨率:0.1℃,误差±0.2℃湿度:瑞士进口高精度数字湿度传感器:测量范围0-85%,分辨率:0.1%,误差≤ 1%光合有效辐射(PAR):带有修正滤光片的硅光电池测量范围:0-3000μmolm -2s-1 ,精度μmolm -2s-1. 响应波长范围:400——700nm微型电子流量计,流量在0.2-1L范围内任意设定。分辨率:0.0001L,零点漂移:±0.005L电源:大容量DC8.4V充电锂电池每次充电可连续工作20小时。(不连接外置光源)数据存储:内存16G,可扩展为32G数据传输:USB连接电脑可直接导出数据显示:3.5"TFT真彩液晶屏彩色显示器,分辨率 800×480,强光下清晰可见按键:六按键,操作简单方便体积:260×260×130mm作物植物蒸腾速率测量仪重量:主机3.25kg
    留言咨询
  • Agro作物水分胁迫指数成像仪是第一款可用于精确农业领域绘制大面积水分胁迫制图的设备。该方法和装置的目的是确定植物林分水分胁迫值。例如,这些信息可用于确定产量图、优化灌溉或控制水管理补救措施。相机提供了LWIR波段传感器和10x光学变焦RGB相机分辨率全高清(1920x1080像素)。在旱季,我们通常感兴趣的是干旱对农作物的实际影响。这些影响不仅取决于所谓的气候干旱状况,还取决于地下水干旱、植物根系的大小等。使用 Agro成像仪测量植物的水分胁迫状况将帮助您确定干旱对作物的实际影响,获取植物表型信息。
    留言咨询
  • 我国有数以亿计的农民,他们不仅需要在田间辛勤劳作,还需要依靠适宜的气候与天气,才能实现良好的收成。随着大规模机械化作业和温室大棚等现代技术的应用,为农业生产效率的提高提供了重要助力,但是气温、湿度、光照、雨量,甚至风速和风向都会对作物的生长产生影响,只有每棵作物都得到精心的呵护才能获得好的收成,这也是农业物联网系统诞生的背景和肩负的使命。淄博海瑞德农业物联网对作物“嘘寒问暖”农业是技术含量非常高的产业,要想有个好收成,就必须全面了解农作物生长状态和生长环境。淄博海瑞德环境科技有限公司已经将物联网技术成功运用到了实践中,大量基于NB-IoT的传感器被用于监测大棚内土壤水分、空气湿度、二氧化碳含量等数据,采集到的数据上传到云平台,实现农业大数据的汇聚,管理员通过APP即可随时掌握这些环境状态,并远程操作温室大棚内的卷帘机、放风机、内遮阳、外遮阳、风机、湿帘水泵、顶部通风、电磁阀等设备,调节温室内的各项参数,以便为农作物的生长提供更适宜的环境。淄博海瑞德环境科技有限公司打造的农业物联网系统,智能温室大棚的农业物联网系统不仅可以对作物的生产环境条件进行控制,确保产量和质量优化,还可以对蔬菜种植、生产以及物流和交易等环节进行全程追溯。在一个150米*18米的传统温室大棚(实际耕种面积为3亩)中,防风、浇水、施肥等操作均需要人工执行,这些工作往往需要耗费大量人力。而在海瑞德的智能温室大棚则是另一番场景,大量的工作通过远程控制实现自动化执行,不仅操作更加高效,还提升了施肥施药的准确性。从运营的角度来看,智能温室大棚每年可以节省数万元的人工成本,以及化肥和农药的费用,在同等种植消耗下,可以增产15%-20%,一年即可收回投资,农业从依赖经验和大规模人力向依靠更加科学高效的工业化生产转变。可见,淄博海瑞德环境科技有限公司的成功实践为智慧农业指明了发展的方向。单纯的技术和产品堆砌并不能成就一张农业物联网,海瑞德在物联网和云平台领域具备强大的技术支撑优势, 通过物联网平台,联手合作伙伴构筑了完整的物联网生态。在农业物联网领域,物联网平台支持海量数据接入,同时具有低功耗的特性,支持规模化运营 向上则可以连接环境监测、物流配送、生产植保、生产绿色追溯等平台。作为农业物联网领域有多年经验的探索者和实践者,海瑞德借助物联网平台,打造了物联网监控云平台,平台具备数据收集、存储和计算分析,以及智能远程控制的后台功能,同时也提供了系统运维和客户自助服务等web端的管理界面。农业物联网是一个极具生命力的产业,目前全国农业大棚拥有量已经突破3600万架,在家畜和水产养殖、大田耕种等领域同样具有多款解决方案,这些解决方案为我国农业物联网的发展打开了新的局面。
    留言咨询
  • 作物夹角测量仪由托普云农研发生产,作物夹角测量仪可自动生成数据列表,包含测量时间,图片,作物夹角、作物茎粗等信息,节约数据整理时间。作物夹角测量仪详情请联系托普云农!作物夹角测量仪功能特点:1.超轻便手持式设计,方便田间和室内测量使用;2.大屏幕彩色手触摸屏,安卓系统,6400万像素;3.测量速度快,拍照3秒即出结果,可先拍照后批量处理;4.手动修正功能强大,手动触摸屏幕进行修正,使结果更准确;5.手机和作物之间固定距离设置,重复性拍摄角度无差异;6.压板和转轴柄一体式连接,方便固定作物茎部,减少风吹草动对作物角度拍摄的影响;7.环境适应性广,无需做遮光处理,可以在离体或活体情况下测量作物夹角和茎粗数据;8.自动调节白平衡,不受天气、光照等环境条件的影响;9.数据查看多样化:拍照分析后即可查看测量结果,也可在历史记录中查看数据报表,可导成EXECL格式,并可分享至微信、QQ和钉钉;10.自动生成数据列表:测量时间,图片,作物夹角、作物茎粗等信息,节约数据整理时间;11.作物夹角适用的作物:水稻、小麦、油菜;作物茎粗对各种作物的茎粗都适合测量。技术参数:1.外形尺寸:307*140*80mm;2.底板材料:黑色双面细磨砂亚克力;3.背景材质:白色磨砂PVC防水纸;4.测量范围:作物夹角:0-180°;作物茎粗:0-52mm;5.测量误差:作物夹角≤±1°;作物茎粗:≤±1mm;6.图像分辨率:2400×1080;7.电池:4500mAh续航时间8h以上;8.配置:作物夹角测量仪背景装置1件,测量主机1台,充电器1台。
    留言咨询
  • 农作物病虫害监测设备通常由管式土壤墒情监测仪、虫情测报仪、气象站、视频监控、围栏、风吸式杀虫灯、云平台等组成。通过实时监测和数据分析,农业四情监测站能够为农民提供更加精准的农业管理决策支持,提高农业生产效率和降低生产成本。 一、系统背景  随着智慧农业的发展,互联网、大数据、人工智能等技术逐渐运用到了农业生产的各个环节,大大提高了劳动力、资本等各项生产要素资源的配置与利用效率。  农作物病虫害监测设备借助物联网,智慧农业构建了集环境监控、精准调节为一体的农业生产系统,可对不同的农业生产环境及对象进行监测监管,通过传感设备检测环境的物理参数,对土壤、虫情、气象、苗青等生产环境状况进行实时动态监控,使之符合农业生产环境标准,这些新技术的应用将大大改善农产品品质,使其符合市场需求,可以实现供给与需求的有效对接,促进农业生产精细化、高效化、现代化发展。  二、系统组成  该系统由管式土壤墒情监测仪、虫情测报灯、气象站、视频监控、围栏、云平台组成。  该系统可对农业大田的土壤温度、土壤水分,病虫状况(病虫种类、病虫数量等),气候状况(空气温度、湿度、雨量、光照度、二氧化碳、风速风向等环境参数),作物长势进行系统监测和管理,通过GPRS/4G或网口将数据上传至测报平台,管理人员可远程实时查看各环境参数数据及趋势,节省人力,并根据数据反馈作出相应调整,以保证农作物良好的生长态势,助力农业生产。  三、平台介绍  1.农业四情测报平台是集虫情、气象、墒情、苗情监测为一体在线监控平台。虫情监测具有Al害虫自动识别、远程实时查看虫情、虫情在线分析、害虫种类自动识别、区域虫情统计、虫情变化趋势分析、设备监测等功能。气象监测具有远程实时查看气象、在线分析气象历史数据的功能。墒情监测具有远程获取土壤墒情(如土壤温湿度、水分、PH)数据、在线分析土壤墒情历史数据的功能。苗情监测可实时查看作物长势画面。  2.监控主页显示设备列表、大屏可视化、地图展示等菜单信息。显示土壤墒情、虫情、气象监测图标及设备的运行状态。  3.虫情监测包括实时虫情、虫情分析、害虫种类、实时状态、操作记录五部分。  4.虫情分析:可查询到所选时间范围内的图片。  5.虫情统计包括区域统计和趋势分析。  区域分析:选择区域,选择时间后点击查询即可查询出所选时间段区域内虫情设备的害虫数量。 趋势分析:选择区域,选择时间后点击查询,即可查询出区域内各害虫种类数量的曲线变化。  6.气象监测包括实时数据和历史数据两部分。  7.墒情监测包括实时数据和历史数据两部分。  8.系统管理包括设备管理、用户管理、区域管理、系统日志四部分。
    留言咨询
  • Agro作物水分胁迫指数成像仪是第一款可用于精确农业领域绘制大面积水分胁迫制图的设备。该方法和装置的目的是确定植物林分水分胁迫值。例如,这些信息可用于确定产量图、优化灌溉或控制水管理补救措施。相机提供了LWIR波段传感器和10x光学变焦RGB相机分辨率全高清(1920x1080像素)。在旱季,我们通常感兴趣的是干旱对农作物的实际影响。这些影响不仅取决于所谓的气候干旱状况,还取决于地下水干旱、植物根系的大小等。使用 Agro成像仪测量植物的水分胁迫状况将帮助您确定干旱对作物的实际影响,获取植物表型信息。根据水分胁迫值,可以进行近似的作物产品制图。显然,受干旱影响越大的作物产量就越低。Agro成像仪配套的Agro分析仪软件,能够在很短的时间内生产出大面积农作物的潜在产量图。您可以通过Agro成像仪的航测作业,快速获取作物水分胁迫数据;或者使用收集的数据创建概览地图,通过比较不同年份的水分胁迫状况及产量,进而根据当前水分胁迫状况进行作物估产。根据Agro成像仪的数据,可以有效地规划补救措施,特别是评估与植物水分和干旱管理有关的措施。使用Agro成像仪,可以直接发现水分管理对作物生长的重要影响。Agro在水资源管理方面比NDVI更有价值Agro和NDVI是两个非常不同的指数,它们都基于一个事实,即有关作物状态的信息。到目前为止,NDVI可能是使用最广泛的指数,不过它只基于光谱中不同波段的作物颜色(包括近红外);而Agro提供了关于作物如何受到干旱影响的额外信息,因此,具有专利技术的 Agro成像数据比NDVI技术更能提供作物胁迫和水分管理方面的重要信息。配套的Agro Analyzer是一款用于处理Agro图像的软件。它允许设置正确计算Agro所需的参数,该软件包括预定义的常见作物,其最大优势是能够同时处理数百幅图像(海量数据处理)。丰富的接口Agro成像仪提供了多种接口,可以与无人机、控制单元、外部GPS传感器等进行广泛的连接。具有Wi-Fi低延迟实时视频流和命令链路。还具有以下接口:S.BusCAN总线(兼容DJI M600和A3控制器)以太网(RJ 45)MavLink外部GPS连接外部触发
    留言咨询
  • 种子水分测定是列入《国际种子检验规程》和我国《农作物种子检验规程》的必检项目。同时也是种子质量和种子科学研究的重要测定项目。《2003国际种子检验规程》第九章水分测定中已将水分仪测定水分列入官方测定方法。深圳冠亚SFY系列种子水分含量检测仪,种子水分含量检测仪是根据**标准法研发生产的种子水分检测仪器,其检测结果可以和烘箱法达到一致,检测过程快速高效,一键式全自动操作,轻轻松松解决种子水分检测问题!深圳冠亚SFY系列种子水分含量检测仪,种子水分含量检测仪产品专利资质:●SFY系列红外线/卤素快速水分测定仪器(专利号:2005301013706)●是目前行业中通过ISO 9001:2008质量管理体系认证的产品。 ●“GY"商标证书,商标证书编号7927649号。●“SFY"商标证书,商标证书编号8931081号。深圳冠亚SFY系列种子水分含量检测仪,种子水分含量检测仪技术指标: 1、称重范围:0-60g 2、水分测定范围:0.01-**★★JK称重系统传感器 3、样品质量:0.5-60g 4、加热温度范围:起始-180℃★★加热方式:应变式混合气体加热器★★微调自动补偿温度15℃ 5、水分含量可读性:0.01% 6、显示7种参数:★★ 水分值,样品初值,样品终值,测定时间,温度初值,终值,恒重值★★红色数码管独立显示模式 7、双重通讯接口:RS 232(打印机) RS 232(计算机) 8、外型尺寸:380×205×325(mm) 9、电源:220V±10% 10、频率:50Hz±1Hz 11、净重:3.7Kg深圳冠亚SFY系列种子水分含量检测仪,种子水分含量检测仪产品特点:●CMC计量许可证00000018号(生产许可证)●自主研发生产、核心技术产品,SFY商标8931081●打印机可随时打印测试结果、保证数据的真实性●质量过硬、仪器零耗材●操作简单,无需辅助设备●专利产产品,仪器专利号:2005301013706●**指定快速水分检测仪深圳冠亚SFY系列种子水分含量检测仪,种子水分含量检测仪可广泛应用于检测粮食作物以水稻、豆类、薯类、青稞、蚕豆、小麦、花生、大豆、高粱为主要作物;经济作物以油籽、蔓青、大芥、胡麻、向日葵等为主;蔬菜作物主要有萝卜、白菜、芹菜、韭菜、蒜、葱、胡萝卜、菜瓜、莲花菜、菊芋、刀豆、芫荽、莴笋、黄花、辣椒、黄瓜、西红柿等;果类有梨、苹果、桃、杏、核桃、李子、樱桃、草莓、林檎等品种,野生果类有酸梨、野杏、毛桃、苞瑙、山樱桃、沙棘、草莓等。饲料作物如玉米、绿肥、紫云英。嗜好作物如烟草、咖啡,药用作物人参、当归、金银花种子的水分含量!
    留言咨询
  • 一、产品简介:常压室温等离子体(ARTP)同传统的低压气体放电等离子体源相比,具有等离子体射流温度低、放电均匀、化学活性粒子浓度高等特点,基于ARTP技术,我公司联合清华大学相关团队共同开发了世界上首台利用等离子体的手段对微生物进行诱变育种的专用仪器—ARTP诱变育种仪(ARTP Mutagenesis Breeding Machine)。该仪器突变率高,并且结构紧凑、操作简便、安全性高、诱变速度快,一次诱变操作(数分钟以内)即可获得大容量突变库,极大地提高了菌种突变的强度和突变库容量;ARTP技术结合高通量筛选技术,可实现对生物快速高效的进化育种。二、应用领域原核生物(如细菌、放线菌等)、真核生物(如霉菌、酵母、藻类、高等真菌等)及植物细胞。 截止到2022年10月21日,中文文献411篇,英文文献169篇,专利269篇,学位论文176篇,共计1025篇。三、产品参数分类技术参数整机功率300W(MAX)放电技术大气压均匀辉光放电,等离子体射流均匀、稳定工作气体99.999%及以上高纯氦气气量控制范围0~15SLM(标准升/分钟)气量控制精度±1.0% F.S.(满量程)有效处理间距2 mm样品处理系统单样品处理冷却系统外接制冷系统等离子体射流温度≤37℃四、应用案例案例一:放线菌抗生素产量显著提高突变率、正突变率分别为30%、21%,获得一株阿维菌素B1a产量提高23%。(常压室温等离子体对微生物的作用机理及其应用基础研究[D].王立言.清华大学 2009)等离子体诱变前后阿维链霉菌的形态变化(注:W为野生菌株;G1-8为典型突变菌株)案例二:藻类正突变率高、突变库表型丰富总突变率和正突变率在特异增长率上分别达到45%和25%,并且突变库中表型丰富。(PLOS ONE,2013,8(10):1-12)案例三:应用ARTP诱变大肠杆菌,提高苏氨酸产量获得一株苏氨酸高产菌株,摇瓶产酸达到50.6 g/L,与出发菌相比,提高了99.6%,经50次传代,遗传性稳定。(现代食品科技,2013,29(8):1888-1892) a1 a2出发菌株与1905#突变菌的菌体形态
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制