当前位置: 仪器信息网 > 行业主题 > >

自主研制

仪器信息网自主研制专题为您整合自主研制相关的最新文章,在自主研制专题,您不仅可以免费浏览自主研制的资讯, 同时您还可以浏览自主研制的相关资料、解决方案,参与社区自主研制话题讨论。

自主研制相关的论坛

  • 【转帖】我科学家研制出自主知识产权便携质谱仪

    我科学家研制出自主知识产权便携质谱仪可广泛应用于环境监测、食品安全、新药研制等领域食品安全、环境污染……生活不断考验着分析仪器的性能。“现场、快速、便携式”成为国内外分析仪设备研究关注的重点。近日,由中国计量科学研究院和清华大学合作研制的便携式质谱仪样机在京发布,这台重量不到10公斤的小型仪器被认为与国外同类研究水平同步。  质谱仪是将物质粒子电离成离子,并将它们分离,检测其强度,进行定性、定量分析的仪器。由于其高灵敏、高分辨等特性和可直接测量,被广泛应用在环境监测、食品安全、新药研制和生命科学等多个领域。  在我国,以质谱仪为代表的分析仪器设备一直存在核心技术不足的问题,国内质谱仪市场一直被国外公司垄断。从“十五”开始,我国在科技计划中设立相关课题,此次便携式质谱仪便是“‘十一五’科技支撑计划”和“创新方法”的资助成果。  课题组在“十五”攻关课题“质谱联用仪器的研制与开发”成果基础上,通过两个具有不同技术优势和特色的团队成功合作取得一系列创新性科技成果。该套便携式质谱仪核心关键部件由课题组自主攻关、设计,关键部件和整机技术水平与国外的同类仪器相当。  专家认为,该套便携式质谱仪的核心部件离子源及质量分析器均拥有自主知识产权和明显的创新性:仪器具备二级质谱(MS/MS)的串联分析能力,体积小、功耗低;此外,该仪器具有可直接分析气体、液体、固体样品的能力,能实现快速、原位分析。  中科院大连化物所张玉奎院士表示,便携式质谱仪的研制成功,会推动我国质谱仪器产业的发展,也会为相关领域提供一种先进、现场、快速的检测方法。(

  • 【分享】我自主研制纠缠光子法探测器量子效率绝对定标装置

    由中国计量科学研究院承担的国家“十一五”科技支撑课题 “利用相关光子测量技术建立光电探测器量子效率测量装置的研究”近日通过了专家验收。该课题自主研制的缠光子法探测器量子效率绝对定标装置,成功将我国光辐射功率计量的量程能力扩展到了光子水平,为用光子数重新定义国际基本单位之一的“坎德拉(cd)”量值复现研究奠定重要基础。  课题的研制成功,缩短了我国与国际发达国家之间在实现基于量子物理复现光辐射功率基准研究方面的差距;同时为研究量子信息、生物医学、空天探测器、天文物理、环境科学等领域中涉及到的光子探测技术提供了光子水平的计量技术保障。

  • 我国自主研制艾滋病疫苗进入Ⅱ期临床

    中国科技网北京8月14日电 经过方案优化、伦理审查、试验准备和受试者招募等程序后,我国科技重大专项艾滋病疫苗Ⅱ期临床试验今天在北京佑安医院启动,这是国际上首次使用复制型活病毒载体研制的艾滋病疫苗进入临床试验阶段,因而受到国际艾滋病疫苗界的高度重视。 艾滋病疫苗研究全球科技界面临的重大挑战之一,目前国际上多个国家正在采用不同方法进行研究。作为我国科技重大专项的重点研究领域,在国家科技重大专项的支持下,中国疾病预防控制中心与国药中生北京生物制品研究所采用新方法,联合研制了具有完全自主知识产权的艾滋病疫苗,该疫苗在“十一五”期间完成了Ⅰ期临床试验,显示安全性良好,免疫原性强,可诱导受试者产生抗艾滋病病毒的体液和细胞免疫反应。今年3月下旬,国家食品药品监督管理局批准了该艾滋病疫苗Ⅱ期临床试验申请,在不久前盖茨基金会发表的备受关注的8个全球艾滋病疫苗名单中名列第五。 该课题组专家邵一鸣教授告诉记者,此次临床试验的主要目标是进一步评价疫苗的安全性和免疫原性,并确定疫苗的免疫程序,以利于在随后的临床试验中检测疫苗的有效性。(记者 项铮) 《科技日报》(2012-08-15 一版)

  • 【转帖】中国首台自主研制的全自动焊接机器人“昆山一号”问世

    【转帖】中国首台自主研制的全自动焊接机器人“昆山一号”问世

    DATE 2008/01/21   【日经BP社报道】 图1“昆山一号”机器人 图2“昆山一号”机器人   中国首台自主研发和制造的全自动工业焊接机器人—“昆山一号”日前在江苏研制成功。目前这台机器人已进入紧张的最后调试阶段。   “昆山一号”机器人不但可以自动优化轨迹,快速更换马达和手腕,满足所有标准与非标准的控制应用,而且其运动平稳,精度很高。   据悉,掌握着“昆山一号”全套知识产权的华恒公司,靠接外资企业的焊接业务起家。华恒在研制“昆山一号”时,把筹措来的600多万元研发资金集中投到了“自动控制软件”等核心技术研发上。车、铳、铣等初级工序和配套零部件则发包出去,微软、松下等知名企业也接下了不少订单。   “‘昆山一号’全自动机器人的成功研制,使华恒公司从产业链的中下游一下子跨越到上游乃至前沿”,华恒公司工程技术中心副主任朱伟说[img]http://ng1.17img.cn/bbsfiles/images/2008/01/200801231000_77667_1621362_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2008/01/200801231000_77668_1621362_3.jpg[/img]

  • 电子所自主研制的地球磁场传感器迈入国际先进行列

    中科院电子所第十研究室(中科院电磁辐射与探测技术重点实验室)面向国家“立足国内,找矿增储”等重大战略需求,在中科院知识创新工程、SinoProbe计划等项目经费支持下,经过近3年的技术攻关,突破了制约我国地球物理电磁勘探仪器装备研发的核心技术——磁场传感器(磁棒)技术,研制出可应用于大地电磁法(MT)、可控源音频大地电磁法(CSAMT)、海洋可控源大地电磁法(CSEM)、瞬变电磁法(TEM)、地球物理电磁测井等方法的磁场传感器,最低工作频率可到0.0001Hz(10000s),噪声水平达到皮特斯拉(pT)或飞特斯拉(fT),各项指标已迈入世界先进行列。 小批量生产的CAS系列磁棒陆续经多个地球物理勘探部门一年多不同季节、不同地区的野外工程应用和测试对比表明,电子所研制的频率域和时间域磁棒与国外同类磁棒的先进技术水平相当,部分指标略高于国外产品;同时,与国外同类磁棒相比,CAS系列磁棒的重量和功耗均具有十分明显的优势。CAS系列磁棒的研制成功,为我国研发具有自主知识产权的地球物理电法勘探仪器装备奠定了坚实的技术基础。 此外,CAS系列磁场传感器在海洋探测与监测,尤其在海底科学观测网建设、海底资源勘探等领域还具有广阔的应用前景。http://www.cas.cn/ky/kyjz/201301/W020130124369638072295.jpg大雪天气测试传感器性能http://www.cas.cn/ky/kyjz/201301/W020130124369638082139.jpg夏季测试传感器性能http://www.cas.cn/ky/kyjz/201301/W020130124369638088957.jpg磁场传感器外观图

  • 我科学家研制成功自主知识产权便携质谱仪

    食品安全、环境污染……生活不断考验着分析仪器的性能。“现场、快速、便携式”成为国内外分析仪设备研究关注的重点。近日,由中国计量科学研究院和清华大学合作研制的便携式质谱仪样机在京发布,这台重量不到10公斤的小型仪器被认为与国外同类研究水平同步。质谱仪是将物质粒子电离成离子,并将它们分离,检测其强度,进行定性、定量分析的仪器。由于其高灵敏、高分辨等特性和可直接测量,被广泛应用在环境监测、食品安全、新药研制和生命科学等多个领域。在我国,以质谱仪为代表的分析仪器设备一直存在核心技术不足的问题,国内质谱仪市场一直被国外公司垄断。从“十五”开始,我国在科技计划中设立相关课题,此次便携式质谱仪便是“‘十一五’科技支撑计划”和“创新方法”的资助成果。

  • 【原创大赛】脉冲安培检测器之自主研制的金电极性能测试

    [b][/b][align=center][b]脉冲安培检测器之自主研制的金电极性能测试[/b][/align][b]前言[/b][url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]-脉冲安培法是近年发展起来的一种糖类物质分析方法,糖类经高效阴离子交换色谱柱分离后在脉冲安培检测器的金电极表面发生氧化反应,引起电流变化而被检测,避免了衍生过程。该方法具有选择性好、灵敏度和准确度高的优势。影响安培检测器分析准确性的因素很多,金电极、参比电极、检测池体和垫片等。根据经验得知其中影响最大的还要数金电极。本文对自主研制的金电极进行性能测试,并将其与Thermo进口金电极进行比对。[b]1 实验部分1.1 仪器与试剂[/b]Thermo ICS5000+ 型[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱仪[/color][/url],包括单元四元梯度泵,AS-AP自动进样器,DC模块含安培检测器,Chromeleon 6.80色谱工作站;色谱柱为Dionex CarboPac PA10(4×250 mm);Thermo金电极,自主研制的第四批金电极(4-1,4-3,4-4)。乳糖,阿拉丁试剂有限公司;50% NaOH(w/w),分析纯,德国Merck公司。[b]1.2 溶液的配制[/b]1.2.1 乳糖标准溶液的配制精确称取10.0 mg乳糖标准品于50 mL容量瓶中,用超纯水溶解定容,配制得到200 mg/L标准储备液,稀释得到10 mg/L的乳糖标准溶液。1.2.2 NaOH溶液的配制称取81.09 g 50%NaOH(w/w)于2.0 L PP淋洗液瓶中,加超纯水到2000 mL,摇匀,所得溶液的浓度约为500 mmol/L。[b]1.3 色谱条件[/b]淋洗液:A 超纯水(50%),B 500 mmol/LNaOH溶液(50%),流速为1.0 mL/min等度淋洗;波形:糖四电位电位;进样量:25 μL。[b]2 结果与讨论[/b]金电极专用于[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]测定糖,从2018年5月开始,请国内主要专业电极生产厂家定制,但都无法满足实验需求,自己生产了三批只有一批可用,但寿命不长,稳定性差,还是不能满足实际检测需要。国内几乎都是制作圆盘电极,方形电极无人会制作,在无数次的失败后,对电极的结构和性能进行系统分析,设计了全新的制作方式,经过一年半的实验,终于制作出与进口电极性能相当的金电极。实验分别采用Thermo进口金电极、4-1、4-3和4-4金电极作为安培检测器的工作电极参与氧化还原反应,测定10 mg/L的乳糖标准溶液。每个电极每次测定8次,根据峰面积的大小和重复性及噪音的大小来评估不同电极的性能。并且每隔2-4天对金电极进行检测,根据日间的峰面积偏差对其稳定性及耐用性进行评测。每次单个电极测试完后,采用施氏安培使用宝典的方法进行保存和维护。检测结果如表1所示。[align=left] [/align][align=center]表1 不同金电极测定10 ppm乳糖的检测结果[/align][align=center] [/align] [table=0][tr][td] [align=center]金电极[/align] [/td][td=4,1] [align=center]Thermo[/align] [/td][td=4,1] [align=center]4-1[/align] [/td][/tr][tr][td] [align=center]时间[/align] [/td][td] [align=center]峰面积/nC*min[/align] [/td][td] [align=center]RSD(n=8)[/align] [/td][td] [align=center]噪音/nC[/align] [/td][td] [align=center]背景/nC[/align] [/td][td] [align=center]峰面积/nC*min[/align] [/td][td] [align=center]RSD(n=8)[/align] [/td][td] [align=center]噪音/nC[/align] [/td][td] [align=center]背景/nC[/align] [/td][/tr][tr][td] [align=center]9月26日[/align] [/td][td] [align=center]39.8943[/align] [/td][td] [align=center]0.70%[/align] [/td][td] [align=center][color=red]0.2700[/color][/align] [/td][td] [align=center][color=black]16[/color][/align] [/td][td] [align=center]47.6906[/align] [/td][td] [align=center]0.14%[/align] [/td][td] [align=center]0.0278[/align] [/td][td] [align=center][color=black]22.4[/color][/align] [/td][/tr][tr][td] [align=center]9月28日[/align] [/td][td] [align=center]43.8591[/align] [/td][td] [align=center]1.08%[/align] [/td][td] [align=center]0.0338[/align] [/td][td] [align=center][color=black]16.8[/color][/align] [/td][td] [align=center]49.2144[/align] [/td][td] [align=center]0.04%[/align] [/td][td] [align=center]0.0256[/align] [/td][td] [align=center][color=black]22.2[/color][/align] [/td][/tr][tr][td] [align=center]9月30日[/align] [/td][td] [align=center]42.2816[/align] [/td][td] [align=center]0.62%[/align] [/td][td] [align=center]0.0299[/align] [/td][td] [align=center][color=black]17.3[/color][/align] [/td][td] [align=center]47.2476[/align] [/td][td] [align=center]0.08%[/align] [/td][td] [align=center]0.0203[/align] [/td][td] [align=center][color=black]22[/color][/align] [/td][/tr][tr][td] [align=center]10月3日[/align] [/td][td] [align=center]39.3699[/align] [/td][td] [align=center]0.73%[/align] [/td][td] [align=center]0.0996[/align] [/td][td] [align=center][color=black]19.4[/color][/align] [/td][td] [align=center]46.2975[/align] [/td][td] [align=center]0.10%[/align] [/td][td] [align=center]0.0296[/align] [/td][td] [align=center][color=black]22[/color][/align] [/td][/tr][tr][td] [align=center]10月6日[/align] [/td][td] [align=center]38.7942[/align] [/td][td] [align=center]0.79%[/align] [/td][td] [align=center][color=red]0.2366[/color][/align] [/td][td] [align=center][color=black]15.6[/color][/align] [/td][td] [align=center]46.3227[/align] [/td][td] [align=center]0.05%[/align] [/td][td] [align=center]0.0200[/align] [/td][td] [align=center][color=black]19.2[/color][/align] [/td][/tr][tr][td] [align=center]10月10日[/align] [/td][td] [align=center]38.0609[/align] [/td][td] [align=center]0.57%[/align] [/td][td] [align=center]0.1683[/align] [/td][td] [align=center][color=black]16.4[/color][/align] [/td][td] [align=center]45.1849[/align] [/td][td] [align=center]0.28%[/align] [/td][td] [align=center]0.0194[/align] [/td][td] [align=center][color=black]17.8[/color][/align] [/td][/tr][tr][td] [align=center]10月15日[/align] [/td][td] [align=center]36.4223[/align] [/td][td] [align=center]0.30%[/align] [/td][td] [align=center]0.1390[/align] [/td][td] [align=center][color=black]14.2[/color][/align] [/td][td] [align=center]44.9905[/align] [/td][td] [align=center]0.57%[/align] [/td][td] [align=center]0.0295[/align] [/td][td] [align=center][color=black]16.6[/color][/align] [/td][/tr][tr][td] [align=center]平均值[/align] [/td][td] [align=center]39.8118[/align] [/td][td] [align=center]0.69%[/align] [/td][td] [align=center]0.1396[/align] [/td][td] [align=center][color=black]16.5286[/color][/align] [/td][td] [align=center]46.7069[/align] [/td][td] [align=center]0.18%[/align] [/td][td] [align=center]0.0246[/align] [/td][td] [align=center][color=black]20.3143[/color][/align] [/td][/tr][tr][td] [align=center]日间RSD[/align] [/td][td] [align=center][b]6.34%[/b][/align] [/td][td] [align=center][b] [/b][/align] [/td][td] [align=center] [/align] [/td][td] [align=center][b] [/b][/align] [/td][td] [align=center][b]3.17%[/b][/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][/tr][/table] [table=0][tr][td] [align=center]金电极[/align] [/td][td=4,1] [align=center]4-3[/align] [/td][td=4,1] [align=center]4-4[/align] [/td][/tr][tr][td] [align=center]时间[/align] [/td][td] [align=center]峰面积/nC*min[/align] [/td][td] [align=center]RSD(n=8)[/align] [/td][td] [align=center]噪音/nC[/align] [/td][td] [align=center]背景/nC[/align] [/td][td] [align=center]峰面积/nC*min[/align] [/td][td] [align=center]RSD(n=8)[/align] [/td][td] [align=center]噪音/nC[/align] [/td][td] [align=center]背景/nC[/align] [/td][/tr][tr][td] [align=center]9月26日[/align] [/td][td] [align=center]44.5527[/align] [/td][td] [align=center]0.19%[/align] [/td][td] [align=center]0.0353[/align] [/td][td] [align=center][color=black]37.2[/color][/align] [/td][td] [align=center]45.0656[/align] [/td][td] [align=center]0.30%[/align] [/td][td] [align=center]0.0524[/align] [/td][td] [align=center][color=black]38.2[/color][/align] [/td][/tr][tr][td] [align=center]9月28日[/align] [/td][td] [align=center]44.6819[/align] [/td][td] [align=center]0.17%[/align] [/td][td] [align=center]0.0251[/align] [/td][td] [align=center][color=black]36.4[/color][/align] [/td][td] [align=center]43.8768[/align] [/td][td] [align=center]0.43%[/align] [/td][td] [align=center]0.0353[/align] [/td][td] [align=center][color=black]35.4[/color][/align] [/td][/tr][tr][td] [align=center]9月30日[/align] [/td][td] [align=center]44.1855[/align] [/td][td] [align=center]0.21%[/align] [/td][td] [align=center]0.0301[/align] [/td][td] [align=center][color=black]37.4[/color][/align] [/td][td] [align=center]45.8564[/align] [/td][td] [align=center]0.17%[/align] [/td][td] [align=center]0.0349[/align] [/td][td] [align=center][color=black]33.8[/color][/align] [/td][/tr][tr][td] [align=center]10月3日[/align] [/td][td] [align=center]44.3116[/align] [/td][td] [align=center]0.13%[/align] [/td][td] [align=center]0.0261[/align] [/td][td] [align=center][color=black]33.6[/color][/align] [/td][td] [align=center]45.6930[/align] [/td][td] [align=center]0.12%[/align] [/td][td] [align=center]0.0460[/align] [/td][td] [align=center][color=black]33.8[/color][/align] [/td][/tr][tr][td] [align=center]10月6日[/align] [/td][td] [align=center]44.1716[/align] [/td][td] [align=center]0.12%[/align] [/td][td] [align=center]0.0135[/align] [/td][td] [align=center][color=black]34.6[/color][/align] [/td][td] [align=center]44.4248[/align] [/td][td] [align=center]1.18%[/align] [/td][td] [align=center]0.0254[/align] [/td][td] [align=center][color=black]30.5[/color][/align] [/td][/tr][tr][td] [align=center]10月10日[/align] [/td][td] [align=center]44.6800[/align] [/td][td] [align=center]0.20%[/align] [/td][td] [align=center]0.0194[/align] [/td][td] [align=center][color=black]33.4[/color][/align] [/td][td] [align=center]44.2642[/align] [/td][td] [align=center]0.13%[/align] [/td][td] [align=center]0.0211[/align] [/td][td] [align=center][color=black]26.8[/color][/align] [/td][/tr][tr][td] [align=center]10月15日[/align] [/td][td] [align=center]44.0805[/align] [/td][td] [align=center]0.18%[/align] [/td][td] [align=center]0.0360[/align] [/td][td] [align=center][color=black]33.8[/color][/align] [/td][td] [align=center]43.6248[/align] [/td][td] [align=center]0.62%[/align] [/td][td] [align=center]0.0454[/align] [/td][td] [align=center][color=black]28.6[/color][/align] [/td][/tr][tr][td] [align=center]平均值[/align] [/td][td] [align=center]44.3805[/align] [/td][td] [align=center]0.17%[/align] [/td][td] [align=center]0.0249[/align] [/td][td] [align=center][color=black]35.2000[/color][/align] [/td][td] [align=center]44.6865[/align] [/td][td] [align=center]0.42%[/align] [/td][td] [align=center]0.0372[/align] [/td][td] [align=center][color=black]32.4429[/color][/align] [/td][/tr][tr][td] [align=center]日间RSD[/align] [/td][td] [align=center][b]0.57%[/b][/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center][b] [/b][/align] [/td][td] [align=center][b]1.95%[/b][/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][td] [align=center] [/align] [/td][/tr][/table][align=center] [/align][align=left] [/align][align=left]由检测结果可得,四个金电极单日内的进样重复性良好,RSD均小于等于1.18%,且峰面积差距不大,在40-50 nC*min范围内,说明这批金电极的检测灵敏度良好。[/align][align=left]经过共七次不同天的测试,20天中,四个金电极的峰面积日间偏差分别为6.34%,3.17%,0.57%,1.95%,其中Thermo金电极的偏差最大为6.34%,自主研制的三个金电极的日间偏差均小于3.17%,说明这批金电极的性能优异接下去对其进行更持久的测试,确保该批电极能长时间使用。[/align][align=left]从噪音来看,其中Thermo金电极的噪音较大,且最大达到0.27nC,而自主研制的三个金电极的噪音大致范围在0.01-0.06nC,并且从背景来看,这四个金电极的背景都在合理范围内波动,说明自主研制的金电极性能优异。[/align][align=left]进口Thermo金电极的日间偏差和噪音都较大,推测因为该金电极之前使用过很长一段时间,不是新电极,表面已被污染,故而导致其检测重复性不够,且不够稳定。[/align][align=left] [/align][b]3 结论[/b][align=left]经过多次失败,一年半的不断地改良,这次这批金电极的性能优异,不论是日内偏差还是日间偏差都很小,并且噪音也很小,灵敏度高,各方面性能都可以与进口的金电极匹敌,自主研制出替代进口金电极的国产金电极接近成功。[/align]

  • 我国自主研制科研装备获重大突破 实用化深紫外全固态激光器唯我独有

    2013年09月07日 来源: 科技日报 作者: 李大庆 http://www.stdaily.com/stdaily/pic/attachement/jpg/site2/20130907/011378496864671_change_hzp3951_b.jpg9月4日,中科院工作人员在检查深紫外非线性光学晶体的光透度。新华社记者 马宁摄 科技日报北京9月6日电(记者李大庆)由中国科学院承担的国家重大科研装备研制项目“深紫外固态激光源前沿装备研制项目”今天在北京通过验收。这个系列科研装备的研制成功,使我国成为世界上唯一一个能够制造实用化深紫外全固态激光器的国家。 经过10多年的努力,中科院的科研人员在深紫外激光非线性光学晶体方面实现突破,在国际上首先生长出大尺寸氟硼铍酸钾晶体,并发现该晶体是第一种可用直接倍频法产生深紫外波段激光的非线性光学晶体。在此基础上,科研人员又发明了棱镜耦合技术(已获中、美、日三国专利),率先发展出直接倍频产生深紫外激光的先进技术,并全面开展新型深紫外激光科研装备的研制和学科应用研究。 2007年,财政部设立专项,对中科院深紫外固态激光源前沿装备研制予以支持。经过5年多的持续攻关,利用大尺寸氟硼铍酸钾晶体和棱镜耦合专利技术,中科院理化技术所、物理所、大连化物所和半导体所的科研人员在世界上首次研制成功8类8台集实用化、精密化于一体的深紫外固态激光源,实现了一系列关键指标的突破。利用这8台深紫外固态激光源,科研人员成功研制出了深紫外激光拉曼光谱仪、深紫外激光光化学反应仪、深紫外激光光发射电子显微镜、深紫外激光光致发光光谱仪、深紫外激光自旋分辨角分辨光电子能谱仪、光子能量可调深紫外激光光电子能谱仪、深紫外激光原位时空分辨隧道电子谱仪、基于飞行时间能量分析器的深紫外激光角分辨光电子能谱仪等8台科学仪器。 据了解,目前这8台仪器已经在石墨烯、高温超导、拓扑绝缘体、宽禁带半导体和催化剂等一系列重大研究领域中获得了重要结果:证实了Pb、O等原子可通过单层石墨烯岛的开放边界进行插层反应,实现石墨烯与衬底之间去耦合;首次发现拓扑绝缘体Bi2Se3的自旋结构和轨道结构是固定在一起;首次观测到Bi2212能量/动量谱与不同激发光子能量关系。相关研究成果已发表在国际顶级科学期刊上。 今天通过验收的包括两个平台——深紫外非线性光学晶体与器件平台和深紫外全固态激光源平台,以及深紫外激光拉曼光谱仪等8台科学仪器。验收委员会的专家认为,这些仪器设备的研制成功及在石墨烯、高温超导、拓扑绝缘体、宽禁带半导体和催化剂等研究中获得的重要成果,“使我国深紫外领域的科学研究水平处于国际领先地位,并在物理、化学、材料、信息等领域开创了一些新的多学科交叉前沿。”“该项目取得的研究成果属于原始创新工作,具有重要意义,并对继续开拓深紫外激光的应用具有十分重要的意义。” 据介绍,深紫外全固态激光源前沿装备研制项目的实施,初步打造了我国“晶体-光源-装备-科研-产业化”的自主创新链。在科技部的支持下,中科院新启动了深紫外仪器设备的产业化开发工作;在财政部的支持下,中科院也启动了深紫外固态激光源前沿装备的二期研制项目。 中科院院长白春礼在验收会上说,科研装备创新能力是衡量一个国家科技创新能力的重要标志。现代科技的进步越来越依靠科学仪器的创新和发展,科研仪器装备的突破,往往催生新的科研领域,产出重大创新成果。迄今为止,至少有1/3的诺贝尔物理和化学奖授予了那些在测试仪器和实验方法方面有重要创新的科学家。所以,我国要实现重大科学突破,不仅要有创新自信,要善于提出原创科学思想和方法,而且要发展出新的试验手段,研制出新的仪器装备。

  • 【分享】我国自主研制大型衡器自动加载试验装置

    日前,中国计量科学研究院成功研制国内首台大型衡器自动加载温湿度试验装置,并通过专家鉴定。该装置通过机器人加卸载系统,无需拆卸衡器,便可自动化实现温度和湿度条件下的大型衡器称量性能试验,整体技术指标优于国外现有装置,大幅度提升了我国衡器性能试验系统能力。  电子计价秤、电子汽车衡、轨道衡、定量包装秤、港口秤……种类众多的衡器与人们的生产、生活密切相关,衡器产品质量合格与否对维护市场经济秩序和贸易公平起到十分重要的作用。包括称量性能试验、重复性试验、除皮试验等在内的衡器性能评价试验是保证衡器计量准确、质量合格的主要手段。

  • 基金委今年再出2亿,力挺科研仪器研制

    2011年初,中央财政拨专款设立国家重大科研仪器设备研制专项,由基金委安排专项资金5亿元,支持我国重大科研仪器设备自主研制工作。据悉,北大、重庆医科大、上海光机所、化学所、大连化物所、生物物理所、大气所、国家授时中心、紫金山天文台9个单位获该重大专项支持。目前,已有4家单位公布相关信息。·6000万 国家重大科研仪器专项落户中科院紫台 ·国家授时中心重大科研仪器研制专项获批 ·生物物理所获重大科研仪器设备专项支持 ·6000万 重庆医科大入选重大科研仪器设备研制专项 2012年2月15日,基金委采取部门限额推荐立项建议和自由申请两种模式受理申请,将2012年度国家重大科研仪器设备研制专项(自由申请项目)项目指南发布,据悉自由申请项目资助计划为2亿元,单项资助强度不超过1000万元/项。 那么,这些专项资金又将花落何处?大家出来预想一下!

  • 【新闻】我首台质谱联用仪研制成功

    ----缓解分析仪器设备核心技术不足"空心化"现象 近日,"十五"科技攻关重大项目"科学仪器研制与开发"中的"质谱联用仪器的研制与开发"课题在北京通过验收,这标志着拥有自主知识产权的高性能线性离子阱液相色谱-质谱联用仪和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用仪在我国首次研制成功。 质谱仪是一类将物质粒子(原子、分子)电离成离子,通过适当电磁场将它们分离,并检测其强度进行定性、定量分析的仪器。由于其直接测量的本质和高灵敏、高分辨性,被广泛应用在环境监测、食品安全、新药研制和生命科学等多个领域。在我国,以质谱仪为代表的分析仪器设备一直存在核心技术不足、"空心化"现象严重的问题,国内逐年扩大的质谱仪市场一直被国外公司垄断。中国计量科学研究院、复旦大学、清华大学等单位从2004年起承担"质谱联用仪器的研制与开发"课题的研究。 课题组坚持走原始创新、集成创新和引进-消化吸收-再创新相结合的道路,经过两年多的攻关,取得了一系列创新性科技成果。除涡轮分子泵和电子倍增器外的所有关键部件均由课题组自主攻关、设计和加工,关键部件和整机达到了较高的技术水平。通过课题实施,课题组还建立了开放式的质谱技术及质谱仪器的研发平台,培养了一支结构合理的研发队伍。 验收会上,专家们认为,包括四极杆GC-MS、线性离子阱GC-MS和线性离子阱LC-ESI-MS三种类型仪器在内的质谱联用仪整机,以及一系列关键技术、关键部件的自主研制成功标志着我国质谱仪及质谱技术的研究及产业化有了一个很好的开端,对中国的质谱事业具有开创性的意义。 (文章来源:中国仪器仪表信息网)

  • 中国研制色谱仪器的公司有哪些?

    本人为新手,请问下中国目前能够自主研制生产色谱仪器的公司有哪些?中国国产做的最好的仪器公司是哪家呢???这些信息我怎们查询呀~~~~~~急!!恳请了解行情的网友们给点提示~~·~~~~~~~~··谢谢谢谢!!~~

  • 东菱公司成功研制世界单体最大推力100吨电动振动试验系统

    据苏州高新股份4月15日消息,由中国机械工业联合会组织的科技成果鉴定会在苏州召开,会议对苏高新股份下属东菱公司自主研制的100吨电动振动试验系统等产品技术进行了科技成果鉴定。[b]由中国科学院院士胡海岩、翟婉明领衔的7位行业权威专家组成的鉴定委员会一致认为,ES-1000型(100吨)电动振动试验系统已通过计量检定,是我国自行研制的单台最大推力的电动振动试验装备,获得多项国家发明专利,具有完全自主知识产权。该装备为全球首台套,总体水平国际领先。[/b][align=center][b][img=东菱.png]https://img1.17img.cn/17img/images/202404/uepic/f8456888-e070-4f7d-8d4b-eaba547ec817.jpg[/img][/b][/align]据悉,此次100吨电动振动试验系统的成功研制,是东菱公司继2007年研制出世界最大推力35吨振动台、2012年推出世界最大推力50吨振动台后取得的又一个“世界第一”。东菱公司于2021年开始对单体100吨电动振动试验系统的自主研发。历时2年的技术攻关,突破了超大推力高强动圈设计制造技术、动圈自适应高效冷却控制技术,以及超大型功率放大器等关键核心技术,解决了超大推力驱动下动圈设计制造难、导向持续可靠性稳定性差,以及超大推力电动振动试验系统发热量大、冷却效果差等难题,成功研制出单体100吨超大推力电动振动试验系统,通过了中国计量院的第三方计量。100吨电动振动试验系统的成功推出,可满足我国航空航天、船舶、轨道交通等重大部件乃至整机的可行性试验需求,提供可靠的试验保障,为我国高端装备制造的整机和零部件模拟现实工况提供正弦振动、随机振动、冲击、连续碰撞等力学试验,还可与环境试验箱配用进行综合环境的可靠性试验等等,为解决我国重点科研产品进行大推力振动试验的瓶颈问题提供全面的解决方案。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 【分享】我国成功研制直流大电流比例自校准装置

    近日,从中国计量科学研究院获悉,由该院承担的科技部科技基础性工作专项项目“直流大电流测量技术研究”通过了国家质检总局组织的专家鉴定。经鉴定,该课题自主研制的5KA直流大电流比例自校准装置具有国际领先水平,填补了国内在高耗能工业生产和科学研究领域量值溯源和传递的空白。  据介绍,不仅核物理和高能物理等科学研究中需要对直流大电流进行准确的测量、控制和校准,在高速铁路、电动汽车、电冶、电化等高耗能工业生产中更需要准确测量直流大电流并实现校准溯源。近10年来,直流电流比较仪(DDC)的理论研究和设计技术虽然取得了较大进展,但目前国际国内各计量实验室面临的最大问题就是缺少在实际工作磁势和强干扰磁场条件下用有效技术手段对其进行校准。此次研制成功的直流大电流比例自校准装置成功解决了这一技术难题。

  • 泽攸精密携手松山湖材料实验室成功研制出电子束光刻系统

    [color=#000000]国产电子束光刻机实现自主可控,是实现我国集成电路产业链自主可控的重要一环。近日,松山湖材料实验室精密仪器联合工程中心产业化项目研发再获新突破:项目团队成功研制出[b]电子束光刻系统[/b],在全自主电子束光刻机整机的开发与产业化过程中取得阶段性进展,初步实现了电子束光刻机整机的自主可控,标志着[b]国产电子束光刻机研发与产业化迈出关键一步。[/b][/color][color=#000000]电子束光刻是利用聚焦电子束对某些高分子聚合物(电子束光刻胶)进行曝光并通过显影获得图形的过程,而产生聚焦电子束并让聚焦电子束按照设定的图形扫描的仪器就叫做电子束光刻机。它是推动我们当前新材料、前沿物理研究、半导体、微电子、光子、量子研究领域的重要手段之一。此前,全球电子束光刻机市场高度集中,主要由美日企业垄断,我国尚未掌握该领域核心技术,装备长期依赖进口。[/color][color=#000000]松山湖材料实验室精密仪器研发团队作为首批入驻实验室的团队之一,专注于材料和半导体领域的精密加工、表征和测量设备研发。团队负责人许智已从事相关研究近20年,参与承担多项国家重点研发计划专项工作及国家重大科研装备研制项目,近5年带领产业化团队研发的精密仪器成果转化填补多项国产空白,产值超亿元,产品出口美国、英国、德国、澳大利亚。[/color][color=#000000]为了研制具有自主知识产权的电子束光刻机整机,精密仪器研发团队在松山湖材料实验室完成一期项目研发并成立产业化公司后,带资回到实验室进入“滚动发展”模式:产业化公司东莞泽攸精密仪器有限公司与实验室共同投资2400万元进行第二阶段研发,目标是打造集科研与产业化为一体的电子束装备技术创新基地。通过深入开展电子束与新材料交叉领域的前沿技术研发,实现关键装备和共性技术的自主可控,切实提升我国在电子束加工与制备领域的整体创新能力和产业竞争力。[/color][color=#000000]目前,东莞泽攸精密仪器有限公司已基于自主研制的扫描电镜主机,完成电子束光刻机工程样机研制,并开展功能验证工作。通过对测试样片的曝光生产,可以绘制出高分辨率的复杂图形,朝着行业先进水平稳步前进。该成果标志着泽攸科技在电子束光刻机关键技术和整机方面的自主创新能力获得重大提升。下一步,团队及产业化公司将持续完善电子束光刻机的性能指标,使其达到批量应用及产业化的要求。[/color][来源:松山湖材料实验室][align=right][/align]

  • 【分享】中国计量院研制成功NIM5铯原子喷泉钟

    中国计量院研制成功NIM5铯原子喷泉钟11月30日,由中国计量科学研究院(NIM)自主研制的NIM5可搬运激光冷却铯原子喷泉时间频率基准通过了国家质检总局组织的专家鉴定。经鉴定,NIM5铯原子喷泉钟的频率不确定度达到210-15,相当于1500万年不差一秒,并在国际上首次实验实现喷泉钟直接驾驭氢钟产生地

  • 【转帖】中科院长春光机所研制成功小型三轴气浮台

    近日,中科院长春光学精密机械与物理研究所自主设计加工的高精度小型三轴气浮台研制成功。  该三轴气浮台与国内同类产品相比,具有精度高、体积小、承载性能好、可靠性高、加工周期短等优点,在航空航天领域的应用前景十分广泛。作为地面全物理仿真实验的核心设备,三轴气浮台将极大促进中科院三期相关创新重点项目的研制进程。该设备的成功研制,开辟了长春光机所精密机械加工的新领域,改变了长期以来国内三轴气浮台只能由少数几家单位研制的格局。  在设备研制过程中,长春光机所新技术室科研人员与加工单位奥普公司工艺人员充分发挥了该所在精密机械加工方面的优势,实现了高效配合,取得了多项工艺创新成果,在第一线加工检测人员的辛勤劳动下,在较短的时间内解决了高精度超半球及球凹的加工检测关键难题,并钻研出使用圆度仪及三坐标测量机精确测量半球球度的新方法,测量精度达到了亚微米级。

  • 【分享】我国自主知识产权便携式质谱仪样机发布

    食品安全、环境污染……生活不断考验着分析仪器的性能。“现场、快速、便携式”成为国内外分析仪设备研究关注的重点。今年年初,由中国计量科学研究院和清华大学合作研制的便携式质谱仪样机在京发布,这台重量不到10公斤的小型仪器被认为与国外同类研究水平同步。 质谱仪是将物质粒子电离成离子,并将它们分离,检测其强度,进行定性、定量分析的仪器。由于其高灵敏、高分辨等特性和可直接测量,被广泛应用在环境监测、食品安全、新药研制和生命科学等多个领域。 在我国,以质谱仪为代表的分析仪器设备一直存在核心技术不足的问题,国内质谱仪市场一直被国外公司垄断。从“十五”开始,我国在科技计划中设立相关课题,此次便携式质谱仪便是“‘十一五’科技支撑计划”和“创新方法”的资助成果。 课题组在“十五”攻关课题“质谱联用仪器的研制与开发”成果基础上,通过两个具有不同技术优势和特色的团队成功合作取得一系列创新性科技成果。该套便携式质谱仪核心关键部件由课题组自主攻关、设计,关键部件和整机技术水平与国外的同类仪器相当。 专家认为,该套便携式质谱仪的核心部件离子源及质量分析器均拥有自主知识产权和明显的创新性:仪器具备二级质谱(MS/MS)的串联分析能力,体积小、功耗低;此外,该仪器具有可直接分析气体、液体、固体样品的能力,能实现快速、原位分析。 中科院大连化物所张玉奎院士表示,便携式质谱仪的研制成功,会推动我国质谱仪器产业的发展,也会为相关领域提供一种先进、现场、快速的检测方法。

  • 【分享】我国成功研制疲劳试验机动态力校准装置

    日前,由中国计量科学研究院自主研制的疲劳试验机动态力校准装置通过专家鉴定。经鉴定,该装置主要技术指标达到国际先进水平,并填补了国内疲劳试验机动态力校准方法研究方面的空白。 疲劳是指材料在重复或交变应力作用下,所受应力远小于其抗拉强度时,经多次循环后,在无显著外观变形情况下而发生的断裂现象。这种断裂一旦发生,往往将导致灾难性的设备或人身伤亡事故。据了解,汽车零部件的破坏中85%由疲劳引起的,航空工程中有60%~80%的断裂是由结构材料的疲劳破坏引起的。为保证产品、工程质量和人身安全,相关行业主要通过疲劳试验机来测量试件材料的疲劳极限和疲劳寿命等性能指标。

  • 市场监管总局开展自主研发计量仪器设备信息搜集工作

    [align=center][b][size=16px]市场监管总局开展自主研发计量仪器设备信息搜集工作[/size][/b][/align][font=-apple-system, BlinkMacSystemFont, &][size=15px][color=#333333]计量资讯速递[/color][/size][/font][font=-apple-system, BlinkMacSystemFont, &][size=0px][color=#333333] [/color][/size][/font][font=-apple-system, BlinkMacSystemFont, &][size=15px][color=rgba(0, 0, 0, 0.298)]昨天[/color][/size][/font][font=-apple-system, BlinkMacSystemFont, &][/font][size=15px] 为贯彻落实国家“十四五”规划,进一步推动仪器设备国产化,激发各有关单位研制仪器设备的积极性和主动性,3月15日,市场监管总局办公厅印发《关于报送自主研发计量仪器设备有关情况的通知》,要求各省级计量技术机构、各国家产业计量测试中心对本单位自主研发的计量仪器设备情况进行梳理和汇总上报。[/size][size=15px] 《通知》要求各省级计量技术机构、各国家产业计量测试中心对“十三五”期间自主研发的计量仪器仪表、计量测试装备和计量基标准装置进行全面梳理,并填报“自主研发计量仪器设备信息表”(见附件),于2021年4月30日前报送市场监管总局计量司。报送的仪器设备必须由本单位自主研制,或者以本单位为主联合其它单位共同研制。既可以是已经研制、生产并在市场销售的,也可以是研制成功但尚未大规模生产,仅在实验室内部使用的首台套。对具有技术成果鉴定或论证报告的,可予以优先报送。报送邮箱为:Email:[/size][size=15px]huangchen@samr.gov.cn[/size][size=15px]。[/size][hr/] [size=16px]附件[/size][align=center][size=16px][b]自主研发计量仪器设备信息表[/b][/size][/align][b][size=15px] [/size][仪器设备名称] [size=15px] [/size][技术指标][/b][size=15px]  测量范围:[/size][size=15px]  准确度:[/size][b][应用领域][/b][size=15px][size=14px]□[/size]航空航天 [/size][size=14px]□[/size][size=15px]核工业 [size=14px]□[/size]兵器 [size=14px]□[/size]海洋工程[/size]□[size=15px]轨道交通 [/size][size=14px]□[/size][size=15px]智能装备 [/size][size=14px]□[/size][size=15px]新能源汽车 [/size][size=14px]□[/size][size=15px]信息技术[/size][size=15px][size=14px]□[/size]新材料 [/size][size=14px]□[/size][size=15px]传统能源 [/size][size=14px]□[/size][size=15px]新能源 [/size][size=14px]□[/size][size=15px]能源储运[/size][size=14px]□[/size][size=15px]节能环保 [/size][size=14px]□[/size][size=15px]生物医药 [/size][size=14px]□[/size][size=15px]传统制造 [/size][size=14px]□[/size][size=15px]其它______[/size][b][size=15px][产品介绍][/size][/b][size=15px](150-200字)[/size][size=15px] [/size][b][先进性][/b](国际领先、国内领先、国内先进、其他)[size=15px] [/size][b][创新性][/b](150-200字)[size=15px] [/size][b][销售使用情况][/b](150-200字)[size=15px] [/size][b][研制成本/销售价格][/b][size=15px] [/size][b][知识产权][/b][size=15px] [/size][b][研制单位][/b][size=15px] [/size][b][仪器仪表图片][/b](2~3张)[align=center][font=-apple-system-font, BlinkMacSystemFont, &][size=14px]END[/size][/font][/align]

  • 重大科研仪器设备研制专项发展战略论坛在京召开

    日前,国家自然科学基金委员会第78期双清论坛在北京召开,本次论坛主题为“国家重大科研仪器设备研制专项发展战略”。  本次论坛吸引了来自全国34个大学、科研机构和行业协会的近百名专家学者参加。论坛由中科院院士、中国科学院物理研究所研究员杨国桢、中科院物理研究所研究员金铎共同担任主席。  基金委副主任沈文庆为论坛致开幕词时,阐述了实施国家重大科研仪器设备研制专项的重大意义,强调专项战略研究一定要体现以重大科学目标为导向,突出定位的科学性、创新性和前瞻性。  中科院副院长詹文龙在论坛上强调了科学仪器研制自主创新以及“集中力量办大事”的重要性,并代表中国科学院表态对该专项战略研究的鼎力支持。财政部教科文司宋秋玲、科技部条财司吴学梯分别作了发言。基金委计划局副局长郑永和就重大仪器专项总体工作进展情况向会议作了报告,物理所杨国桢和金铎分别介绍了重大仪器专项战略研究工作进展情况及发展思路和相关政策措施等研究成果。  中科院院士杨国桢、杨学明、叶朝辉等分别代表各调研工作组就各学科调研组工作作了进展报告。会议邀请中科院物理所研究员周兴江、沈阳工业大学教授杨理践、国家仪器行业协会副理事长李跃光、美国科学院院士叶军等作了特邀报告。  本次论坛上,与会专家学者畅所欲言、集思广益,对进一步完善重大科研仪器设备专项管理、推动科研仪器设备研制工作和对于国家重大科研仪器设备研制专项的发展战略提出了诸多中肯的建议和意见,对专项资助工作的开展有重要指导意义。

  • 国家13亿财政经费力挺仪器仪表研制

    近日,国家自然科学基金委员会召开重大科研仪器设备研制专项第一届专家委员会会议,布局对建议入选项目的考察及评审工作。此前不久,科技部、财政部联合召开2011年度国家重大科学仪器设备开发专项工作会议,启动重大科学仪器设备开发专项。    而在年初,为贯彻落实《国家中长期科学与技术发展规划纲要(2006-2020年)》,推动我国重大科研仪器设备自主研制工作,中央财政拨专款设立国家重大科研仪器设备研制专项。    按照《国家重大科学仪器设备开发专项资金管理办法(试行)》的规定,基金委每年安排专项资金5亿元,科技部每年安排经费8亿元。即首年总投入达13亿元的“国家重大科研仪器设备研制专项”已经起程。    “过去做不了的事现在可以做了”    “真是赶上了,这可能是我这辈子做的最后一件非常有意义的事。”清华大学精密仪器与机械学系教授殷纯永说。    尽管已退休,但殷纯永仍受邀在中科院一项关于飞秒激光跟踪测量仪器研发的项目中担任顾问。他参与的这项研发工作由中科院西安光机所、清华大学等几家单位联合攻关,今年作为中科院推荐的10个重大科学仪器设备开发专项之一,目前已通过初审作为A类项目上报科技部。    “这对搞科研仪器研究的人来说是个十分难得的机会。能赶上这个机会,再做点事,我很高兴。”殷纯永说,“我搞了一辈子仪器研究,从第一个科学基金项目的两万元算起,几十年来所有经费加起来不过300万元。现在一个项目四五千万元,这也会培养出一些科研仪器研制方面的帅才。”    过去经费少时,他也曾勒紧裤带作出不错的成绩,但搞仪器研制,缺乏经费终究不行。虽然只是作为顾问参与项目申请,殷纯永也很振奋:“感到空间大了,很多过去做不了的事现在可以做了。”    从400万到1.5亿元    100多年来,约1/3的诺贝尔物理学和化学奖奖给了那些在发展科学仪器或测量方法方面有杰出贡献的科学家。加速科学仪器发展已成为世界各国科技投入的重点之一。但我国在科学仪器研制上相对薄弱,关键的高端精密仪器主要依赖进口。    “我承担过基金委的科研仪器基础研究专项,也参与了基金委和中科院2009年设立的大科学装置联合基金,今年又在德国汉堡DESY进行合作研究,充分认识到科学仪器研制对于科研创新的必要性。目前国内在经费、专门人才、硬件、软件等方面确实需要进一步提高。”天津大学材料学院教授蒋世春说。    1998年,为加强对科学仪器基础性研究的支持,基金委设立科学仪器基础研究专项。从当年资助5个项目、总经费400万元开始,14年间,这一专项已支持数百个项目,有很多项目取得了不错的成绩,有的打破了技术封锁,有的在产业化上取得初步成绩,还有些在自行研制仪器的基础上作出了重要的科研成果。    2009年,科学仪器基础研究专项经费增加到5000万元,2010年资助经费增至1亿元。    “今年科学仪器基础研究项目将达1.5亿元。”基金委计划局一位负责人说,“它和今年启动的国家重大仪器设备研制专项的5亿元是两回事,国家在仪器研制上投入是很可观的。”    科学仪器基础研究项目评审专家陈洪渊院士认为:科学仪器基础研究是一项长期的战略任务,基金委设立科研仪器基础研究专项是有长远目光的,最重要的是,它为仪器研制培养了一批人才。    重大专项起程    重大科学仪器设备开发专项,“先在推荐单位内部选拔,报上来后我们再请相关专家论证,经过综合评估方可立项。目前推荐单位的项目已报上来了,很快就会立项。”科技部科研条件与财务司孙增奇说。    此前,基金委4月份率先启动该专项。9月初,国家自然科学基金委员会主任陈宜瑜主持召开该专项第一届专家委员会会议。该专委会由科学家、技术专家、管理专家和财务专家组成。    “今年的立项建议已遴选完毕。”基金委计划局一位负责人说,“下一步该专项会在10月份进行现场考察,11月份召开评审会。”    按照《国家重大科学仪器设备开发专项资金管理办法(试行)》的规定,该专项为期5年,科技部和国家自然科学基金委应建立查重和协调机制,并与基金委“科学仪器基础研究专款”及其他相关国家科技计划等进行衔接。    许多从事或关注仪器研究的人对启动这一专项表示兴奋和认同。    暨南大学教授尹良红表达了愿望:“经费增加是好事,同时也要保护知识产权,保护研发者权益,提高科研成果产业化的学术地位和权重。”    “我们现在已经意识到仪器研制的重要性,国家在这方面的投入很不少,这对从事仪器研制的人来说是个很大的鼓舞。尽管还没有最后立项,但时间很紧迫,我们现在已经开始动手做了。”殷纯永表示。

  • 【分享】国家计量院成功研制疲劳试验机动态力校准装置

    从中国计量科学研究院获悉,我国自主研制成功疲劳试验机动态力校准装置,经专家鉴定填补该领域国内空白。  不仅人类会产生疲劳,汽车零部件、航空工程结构材料经过多次循环使用后也会产生疲劳——在无显著外观变形情况下而发生断裂,从而导致灾难性的设备或人身伤亡事故。  据统计,汽车零部件的破坏中85%是由疲劳引起的,航空工程中有60%—80%的断裂是由结构材料的疲劳破坏引起的。相关行业主要通过疲劳试验机来测量试件材料的疲劳极限和疲劳寿命等,而动态力值误差是疲劳试验机的一个主要性能指标。目前,受技术水平和研究能力的限制,国内对疲劳试验机检定或校准,通常只针对静态力值,明显降低了疲劳试验机动态力值计量的准确度,并增大了测量不确定度。此次研制的疲劳试验机动态力校准装置就可解决这一难题。

  • 【资料】我国研制出抑郁症治疗仪 全球首创

    世界首台抑郁症治疗仪诞生,此款仪器是由中国企业自主研发出的。    黑龙江省工业和信息化委员会组织的新产品鉴定肯定了由哈尔滨奥博医疗器械有限公司孙作东研究员率领的科研团队研发的“奥博抑郁症治疗仪”的先进性。鉴定结论表明,该治疗仪集经颅磁、经颅电、音乐疗法于一体。经查新检索该产品填补了国内外空白,为世界首创,核心技术在抑郁症治疗应用领域居国际领先水平。    抑郁症是以情感低落、思维迟缓、动作减少为典型症状的一组情绪障碍,这种“不快乐”被喻为“精神感冒”“蓝色隐忧”。全世界约有3.4亿人患有抑郁症。据统计,我国抑郁症患者已超过8900万,高发群体多以高职、高薪、高学历的成功人士以及青少年为主。目前抑郁症主要治疗方法是药物治疗,但因抗抑郁药物的滥用及其副作用大、禁忌症多且具有成瘾性,很多患者拒绝接受;心理辅导也是有效方法之一,患者也易于认可,但过程长起效慢。    孙作东是“脑细胞激活论”创立者,经过多年脑科学基础理论研究与临床实践,他发现抑郁症发病因素虽复杂,但神经递质缺失和传递功能弱化与抑郁症关系最为密切,比如5-羟色胺、去甲肾上腺素、多巴胺的不足等,并由此提出抑郁症治疗新主张,即激活特定部位神经元群使其恢复自泌和传递神经递质功能是治疗抑郁症的关键。他率领科研团队应用独创的内源性神经递质调控技术,历时5年成功研制了奥博抑郁症治疗仪。    该治疗仪已于今年1月获得了中华人民共和国医疗器械注册证,这标志着由我国学者自主研发、具有自主知识产权的世界首台抑郁症治疗仪器的诞生,意味着人类的“不快乐”有了新的治疗途径。该治疗仪为非介入治疗,是独立的治疗手段之一,特别适用于轻、中度抑郁症,可明显改善抑郁、睡眠障碍、焦虑等主要症状。目前,奥博抑郁症治疗仪首批产品已正式投放市场。

  • 【资讯】国内首款脂代谢抗肿瘤新药在重庆研制成功

    近日,具有自主知识产权、国内首款脂代谢抗肿瘤新药——德氮吡格及其注射液,在我重庆研制成功,并有望两年后进入临床使用阶段。 目前国内常用的抗肿瘤药物,尽管能够杀死肿瘤,帮助患者缓解病痛,但其具有的毒性,会给患者的免疫及造血系统带来损害。更重要的是,长期服用此类药品,病人会由此产生依赖性,不利于疾病的治疗。该项目负责人、重庆医科大学药学院教授余瑜介绍,这款抗肿瘤新药与国内其他的抗肿瘤药物相比,最大价值在于,在国内首次运用干扰肿瘤细胞脂代谢特异性的方式来杀死肿瘤细胞,减少了药物在治疗过程中产生的副作用,从而降低药物对病人的影响,提高肿瘤治疗的成功率。 德氮吡格可广泛地运用在肝癌、肺癌、脑癌、肾癌等疾病的治疗上。目前,该药物正在申报注册国家一类新药,该药获得了2006年度重庆市科学技术发明三等奖。

  • 国内首台高速3D内窥 OCT影像系统研制成功

    中国科技网讯 国内首台高速3D内窥OCT影像系统,日前在中科院西安光学精密机械研究所研制成功,填补了我国在该领域的技术空白,各项关键指标达到国际同类产品技术水平。 该设备使用自主研发的微型光纤探头,可深入心脏病患者血管栓塞处进行光学相干断层(OCT)扫描,获得栓塞处清晰的3D内窥影像。利用该影像技术可帮助医生在心脏手术中对支架摆放位置精确定位,实现离线对血管病变形态及心脏支架置入状况进行直接观察。其影像速度及分辨率都远超现有的血管超声(IVUS)和心脏X光(DSA)技术,对有效预防支架再狭窄和血栓支架的形成、实现心肌梗死的早期筛查和有效预防,以及研究和评价心脏支架安全性具有重要意义。 OCT技术是一种新兴的生物医学影像技术,通过探测散射光信号获得生物组织内部结构,具有高分辨、无损、快速等特点。西安光机所研制的3D内窥OCT影像系统成像分辨率约为12um,扫描速度40kHz,是传统眼科OCT扫描速度的两倍左右。(记者史俊斌 通讯员张行勇) 《科技日报》(2013-03-24 一版)

  • 中科院理化所成功研制大型氢液化器

    3月8日,首个全国产化大型氢液化器——5吨/天级大型氢液化系统在北京通过测试验收,总体性能达到国际先进水平。[align=center][img=1710310034204063668.jpg]https://img1.17img.cn/17img/images/202403/uepic/bb6669dd-b2e9-49e2-b1ba-94ac4bda2ce9.jpg[/img][/align][align=center]5吨/天级大型氢液化系统[/align]该液化器为中国科学院先导专项任务成果,由中国科学院理化技术研究所研制。该所低温工程与系统应用研究中心研究员彭楠告诉记者,该装备应用了氦制冷循环、正仲氢连续转化技术和自主知识产权低温透平膨胀机。按照任务书指标要求,系统满负荷稳定运行时间8.5小时,低负荷稳定运行时间73小时。在满负荷运行条件下,氢气液化率3070.2升/小时(约5.17吨/天),液氢产品的仲氢含量98.66%,液化系统能效比12.98千瓦时/千克液氢(含液氮损耗)。[来源:中国石油和化学工业联合会][align=right][/align]

  • 中科院自主研发基因测序技术将实现产业化

    来源:中国科技网-科技日报 作者:王怡 2013年10月31日 原标题:我自主研发基因测序技术将实现产业化 科技日报讯(记者王怡)2013年国际基因组学大会10月29日在青岛举行。在开幕现场,中国科学院北京基因组研究所与吉林紫鑫药业股份有限公司就合作开发第二代高通量测序系统项目签订投资意向协议,这标志着由中科院自主研发的第二代测序仪项目即将进入市场转化和产业转化阶段。 基因测序技术,自人类基因组计划实施以来长期占据着国际生命科学技术研究的制高点,随着第二代基因测序技术的发展日趋成熟和成本急剧降低,该项技术被越来越多的科研和实践领域所应用,形成庞大市场。目前我国市场上所有高通量测序设备和试剂均来源于进口,据估计仅2013年我国在仪器和试剂上的投入就超过20亿元。 “我们的基因组学研究一直处于世界前列,源于我们最早参与人类基因组测序的工程,但是我们使用的设备一直都依靠国外的进口设备,中国科学院作为国立科研机构,我们有义务自主研制开发基因测序仪打破国外垄断。”中科院北京基因组研究所党委书记杨卫平说。 在中科院资助下,历时两年半时间完成第二代测序仪研发项目,于2011年实现原理样机和性能验收,部分性能指标超越同类进口产品。其后中科院北京基因组研究所自主投入完成该项目的工程化和产品化开发,并形成其自主知识产权群,目前已有9个专利获得授权。 “第二代高通量测序仪的产业化发展是我们的第一步,后面我们希望能有更多的进展,比如在试剂、数据库和后台都能实现国产化。”杨卫平说。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制