当前位置: 仪器信息网 > 行业主题 > >

株型改良

仪器信息网株型改良专题为您整合株型改良相关的最新文章,在株型改良专题,您不仅可以免费浏览株型改良的资讯, 同时您还可以浏览株型改良的相关资料、解决方案,参与社区株型改良话题讨论。

株型改良相关的资讯

  • 面包改良剂将制定行业标准
    行业公会:按规定使用时面包安全   本报9月4日A6版《面包一“改良” 增肥三四倍》报道引起了市民极大关注。8日,全国工商联烘焙业公会在广州专门召开的烘焙食品安全座谈会上,有关专家认为,市民不需谈改良剂色变,只要在国家规定范围下使用面包改良剂,面包是安全可靠的。   但鉴于面包改良剂等复合添加剂要比单一添加剂复杂,烘焙业公会副秘书长单志明透露,很多烘焙企业都要求烘焙业公会组织制定面包改良剂的行业标准,规范复合添加剂的生产。全国工商联烘焙业公会表示,中秋节后将与有关部门及烘焙行业企业沟通,着手制定面包改良剂的行业标准。“对符合规定合法生产的企业我们要扶持发展,对于一些害群之马我们坚决清理”。   改良剂未纳入QS管理   同时,记者8日走访广州一德路批发市场发现,面包改良剂等食品添加剂应有尽有,溴酸钾这样禁用于食品的添加剂也不难找到,而且部分面包改良剂等米面用的添加剂竟然都标示了QS标志,但面包改良剂并未纳入QS管理,经过网上查询发现,不是查不到记录,就是用其他产品如香精香料的许可证号冒名顶替的。   专家们表示,面包改良剂包括很多种类,不同种类有不同的效用,比如乳化剂可以使面团更松软,“2005年以前,大部分氧化剂都是使用溴酸钾,因为‘物美价廉’,但2005年禁用之后,厂家基本都改用ADA、过氧化钙、葡萄糖氧化酶等代替,尽管效果不如溴酸钾,但已经非常接近。”烘焙业公会专家委员会委员谢拥葵说道。   市场添加剂“应有尽有”   在一家销售食品添加剂的商行,各式各样的食品添加剂摆满了柜台,除了各种香精、色素之外,还有饼干膨松剂、乳化剂、果味粉、钵仔粉、用于牛肉丸的特立素(令肉类增加弹性、吸水膨胀令食品烹调后更爽口软滑并保鲜)……你想得到的想不到的都有。   不过当记者问有没有面包用的改良剂时,店主警惕地表示“没有”,但记者稍稍翻找,就在角落找到了“面包改良剂”。店员告诉记者,一包15元,买一箱还可以便宜2元一包。“怎么用?”“有使用方法嘛,面包加1%到1.2%,就是100斤面粉加1斤就行,一包有2斤,200斤的面粉才加15块的改良剂,抵啦。”
  • 抗氧化基因改良苹果或将上市
    普通苹果切片与北极苹果切片对比   美国一家公司正尝试出售一种基因改良苹果,这种苹果切成片或碰伤后,果肉不会被氧化变成棕色。据报道,这家名为奥肯那根特色水果的公司称,这种名为“北极苹果”的不暗化苹果将会受到消费者和食品公司的欢迎,并将有助于提高苹果的销售量。   据悉,北极苹果包含一种综合基因,能急剧减少多酚氧化酶的产生,这种酶是苹果肉变暗的“元凶”。这种基因并不是来自其他的物种,其DNA序列是来自苹果自身的4种能控制多酚氧化酶的基因。   其实,早在上世纪90年代,美国人就已经开始使用基因改良食品,但是,这些食品主要集中于加工食物类。因此,北极苹果有可能成为人们直接吃进嘴里的第一种经基因方法改造过的水果。   但是,代表苹果企业的美国苹果协会反对这种苹果的生产。该协会表示,虽然他们不认为这种基因改良后的苹果有害,但是却会破坏苹果健康、自然食物的形象。   奥肯那根水果公司的负责人则表示,不会氧化变暗的苹果能够提高企业的销售额,正如儿童胡萝卜能提高胡萝卜销售额那样。“一个完整的苹果在某些场合对某些人来说是一个‘大工程’。”他说,如果在聚会中,有一果盘苹果,人们可能不会取来吃,但是假如是一盘苹果片,很可能每个人都会吃一片。   在美国,苹果片作为一种健康食品广受欢迎,在超市和餐厅都有出售。但是,这些苹果片通常涂有维生素C和钙来防止氧化变暗,这样一来会影响苹果本身的口感。北极苹果的上市也许能够解决这一问题。
  • 2022中国改良型创新药珠江高峰论坛
    2022中国改良型创新药珠江高峰论坛暨中国化学制药工业协会二类新药专业委员会成立大会( 2022年3月11日-12日 中国 广州 )指导单位:中国化学制药工业协会主办单位:越洋医药开发(广州)有限公司北京医恒健康科技有限公司承办单位:上海盛杰医药(集团)有限公司协办单位:石药集团支持单位:上海医药集团股份有限公司 邀请辞 随着仿制药一致性评价的不断深入,药品研发、质控与监管理念的不断提升,制剂技术日新月异飞速的发展,原辅料可选择种类越来越多,医生患者越来越高的临床需求,人们逐渐发现一些原研产品,特别是上市较早的原研产品,存在着这样或那样的缺点和不足需要去完善和提高,于是药物研发者们不满足一味地简单仿制原研,开始致力于二类新药的研发,进行弯道超车。但是,既然是改良,就一定要在模仿中实现超越,就要有更高更强的技术支撑,问题和困难也常常会在研发过程中与挑战者不期而遇,新技术新材料的使用也难免经验不足,但这也是激发业界勇者高昂斗志和乐于探索交流的原因。在这期间,有些人有困惑有失败,有些人有成功有心得,为此,越洋医药开发(广州)有限公司、北京医恒健康科技有限公司将在2022年3月11日~12日在中国广州联手打造中国改良型创新药珠江高峰论坛,使同行们有机会能在一起深入地研讨交流我国最新的二类新药政策法规与研发经验和案例。本届高峰论坛与中国化学制药工业协会二类新药专业委员会成立大会同期举行,是专业委员会的首次亮相。会议将邀请国内制药行业的管理者、实力药企和享誉业界德高望重的院士,经验丰富干货满满的知名大咖齐聚一堂。会议为期两天,除主论坛外,还将设置3个分论坛,内容涉及新政法规解读与实施、研发立项策略、制剂技术与临床、分析质控与注册、儿童用药、辅料包材等,为与会者奉上信息、知识与技术的饕餮盛宴。我们诚挚的邀请满心期待着您的到来! 记住,2022年3月11日~12日让咱们广州聚吧!主论坛: 改良型新药研发的政策环境与前沿技术进展主席: 闻晓光 中国药学会制剂专业委员会委员和工业药剂学专业委员会委员;越洋医药董事长2022年 3月11日 上午08:15-08:30开幕致辞雷英 中国化学制药工业协会执行副会长兼秘书长魏世峰 北京医恒健康科技董事长闻晓光 中国药学会制剂专业委员会委员和工业药剂学专业委员会委员;越洋医药董事长08:30-09:05《国家药品标准提高与药品注册管理》王平 国家药监局药品注册司药品稽查专员09:05-09:40议题待定陈凯先 中国科学院院士;中科院上海药物所研究员;上海中医药大学学术委员会主任;国家科技重大专项“重大新药创制”总体专家组 技术副总师09:40-10:15《纳米材料的生物学效应与安全》赵宇亮 中国科学院院士 ;发展中国家科学院院士 10:15-10:30茶歇交流 10:30-11:05《中国医药行业发展情况、预测行业发展趋势》潘广成 中国化学制药工业协会执行会长11:05-11:40《医保控费背景下,我国改良型新药的机遇与挑战》张自然 中国化学制药工业协会特邀副会长兼政策法规专业委员会主任11:40-12:15《专利法修正对药品研发的影响及案例分析》曹津燕 原国家知识产权局知识产权发展研究中心副主任、研究员;中国药学会知识产权研究专业委员会委员;北京医恒健康科技有限公司监事长12:15-13:10午餐休息分论坛一 : 改良型新药的立项策略和关键技术2022年 3月11日 下午主持人:魏世峰 北京医恒健康科技董事长;北京罗诺强施医药技术董事长13:10-13:45议题待定 张强 北京大学药学院教授;国家药典委员会制剂专业委员会副主任委员;北京市重点实验室主任(确认中) 13:45-14:20《生物药物505(b)(2)产品立项和开发案例》魏世峰 北京医恒健康科技董事长;北京罗诺强施医药技术董事长14:20-14:55《蛋白结晶技术在大分子药物制剂中的应用》谭力 寻济生物科技(北京)有限公司首席创新科学家14:55-15:10茶歇交流15:10-15:45《改良型新药的平台驱动研发和经验分享》朱海健 力品药业(厦门)股份有限公司总经理15:45-16:20《难溶性药物的改良型新药开发策略》 韩军 聊城大学生物制药研究院院长16:20-16:55《改良型新药的非临床药代动力学研究》郭建军 湖南恒兴医药科技有限公司CEO16:55-17:35圆桌讨论2022年 3月12日 上午主持人:吕万良 北京大学药学院党委副书记、教授;国际控释协会中国分会主席、中国药学会药剂专业委员会副主委08:30-09:05《中国高端制剂从基础研究向应用转化的发展战略思考》陆伟跃 复旦大学教授,中国药学会常务理事、战略发展委员会委员、学术工作委员会委员、药剂专业委员会主任委员09:05-09:40《以缓控释新药为例解析中国2类和美国505(b)(2)新药开发》闻晓光 中国药学会制剂专业委员会委员和工业药剂学专业委员会委员;越洋医药董事长09:40-10:15《肿瘤基因调控与塑性分化——面向新思路的生物药剂学策略》吕万良 北京大学药学院党委副书记、教授;国际控释协会中国分会主席、中国药学会药剂专业委员会副主委 10:15-10:30茶歇交流10:30-11:05《复杂注射剂在505(b)(2)产品开发中的应用》岳占国 广州玻思韬控释药业有限公司高端复杂注射剂副总监11:05-11:40《从转化视角探讨眼科制剂的挑战与创新》魏刚 复旦大学教授;中国药学会药物制剂专业委员会委员 11:40-12:15《改良型创新药物的行业分析》王海盛 哈药集团副总经理 12:15-13:05午餐休息2022年 3月12日 下午主持人:王健 药物制剂国家工程研究中心教授;中国药学会工业药剂专业委员会主任委员13:05-13:40《二类新药为源头创新在未满足临床需求中的个案分析》魏晓雄 汉都医药总裁、首席医学官13:40-14:15《新型制剂的智能制造和连续制造》王健 药物制剂国家工程研究中心教授;中国药学会工业药剂专业委员会主任委员14:15-14:50《原料药立项关键技术 - 绿色合成工艺探索》张绪穆 南方科技大学理学院副院长;化学系讲席教授 14:50-15:05茶歇交流 15:05-15:40《多样化递送技术与改良新药研发》郭桢 上海博志研新药物技术有限公司高级制剂总监15:40-16:15议题待定吕爱锋 江苏豪森药业总裁;中国药学会工业药剂专业委员会委员16:15-16:50《创新药制剂产业化的挑战:工艺及质量考量》王志云 再鼎医药高级副总裁闭幕致辞分论坛二 : 改良型新药的质控与工艺研究2022年 3月11日 下午主持人:周建平 中国药科大学药剂学教研室主任;国家药典委制剂专业委员会主任委员;中国药学会制剂专业委员会委员13:10-13:45《AD治疗的给药策略研究》周建平 中国药科大学药剂学教研室主任;国家药典委制剂专业委员会主任委员;中国药学会制剂专业委员会委员13:45-14:20《化药口服液洋葱伯克霍尔德菌群(Bcc)的污染风险研究》马仕洪 中国食品药品检定研究院化药所微生物室主任;中国生化检测标准化技术委员会委员 14:20-14:55《溶出曲线考察合理设计与计算常见误区》周立春 原北京市药品检验所所长助理,国家药典委化药专业组委员14:55-15:10茶歇交流15:10-15:45《复杂制剂对分析方法开发的挑战》严子梦 华氏医药首席科学官;北京鑫开元医药科技有限公司执行副总经理15:45-16:20《流通池法用于脂质体中游离/结合型药物研究的案例分析》钱敏 上海市食品药品检验研究院化药所16:20-16:55《改良型新药研发中的非官方杂质对照品制备与应用》山广志 中国医学科学院医药生物技术研究所分析测试中心副主任16:55-17:35圆桌讨论2022年 3月12日 上午主持人:尹莉芳 中国药科大学教授;药学院副院长;中国药学会药剂专业委员会副主任委员 ,中国药学会工业药剂专业委员会委员08:30-09:05《改良型新药研发的处方开发和临床设计》尹莉芳 中国药科大学教授;药学院副院长;中国药学会药剂专业委员会副主任委员 ,中国药学会工业药剂专业委员会委员09:05-09:40《高端纳米制剂的立项与开发案例分享》王淑君 沈阳药科大学药学院教授;中国医药教育协会药物创新研究分会主任委员09:40-10:15议题待定百诚医药10:15-10:30茶歇交流10:30-11:05《高端经皮给药制剂的研究开发》吴传斌 广州新济药业创始人/董事长11:05-11:40《复杂制剂工艺研究及申报经验》 王悦 石药集团石家庄研究院副院长 11:40-12:15《高难度品种BE设计的药学关联核心点考量及案例分析》孙亚洲 长沙晶易医药副董事长 12:15-13:05午餐休息2022年 3月12日 下午主持人:涂家生 中国药科大学药剂学教授;国家药典委药用辅料和药包材专业委员会主任委员13:05-13:40《基于新辅料创新的改良型新药研发策略》涂家生 中国药科大学药剂学教授;国家药典委药用辅料和药包材专业委员会主任委员 13:40-14:15《注射剂包装材料的技术要求与相容性研究》孙会敏 中国食品药品检定研究院研究员 中国药品监管研究会药用辅料与药包材监管委员会主任委员14:15-14:50《药品质量管理的成本风险控制》康毅 德国美剂乐集团上海代表处首席代表14:50-15:05茶歇交流 15:05-15:40议题待定华威医药15:40-16:15《基于关键物料属性的供注射用辅料选用原则》孙春萌 中国药科大学药学院药剂系副主任 16:15-16:50《各类药品包材变更的法律规定和技术要求》俞辉 浙江省药品检验研究院包材所所长;国家药典委辅料与包材专业委员会委员 闭幕致辞分论坛三 : 改良型新药的临床试验与注册申报 2022年 3月11日 下午主持人:武海波 精诚CRO董事长;中国药物临床试验机构联盟副秘书长;中国药品监督管理研究会国际交流专业委员会委员;中国医药质量管理协会CRO分会副主任委员13:10-13:45《改良型新药调释制剂临床药代动力学研究技术指导原则》赵秀丽 首都医科大学附属北京同仁医院国家药物临床实验机构副主任/办公室主任 13:45-14:20《生物等效性评价的临床实验设计与分析》姚晨 北京大学第一医院医学统计室主任;北京大学临床研究所副所长;海南省真实世界数据研究院副院长14:20-14:55《改良型新药:另一条有高回报潜力的新药研发路径》杨劲 中国药科大学教授14:55-15:10茶歇交流15:10-15:45《如何加快药物创新研发》王卫军 精诚CRO首席医疗官 15:45-16:20《复杂制剂BE研究的科学家考量与监管要求》杨永胜 青岛百洋首席科学官;前FDA BE评审官员16:20-16:55《定量药理学(Pharmacometrics)在药物研发中的应用》苏霞 恩远医药科技(北京)有限公司副总经理16:55-17:35圆桌讨论 2022年 3月12日 上午主持人:李眉 药品审评中心化学药品生物制品室原室主任/化药组组长08:30-09:05《复杂药物药学研究与申报要点探讨》霍秀敏 原CDE化药一部高级审评员09:05-09:40《研发与生产现场核查要点》战丹 原黑龙江省药品检验检测所主任药师;国家核查中心国际检查员09:40-10:15《改良型新药的注册与申报资料常见问题》由春娜 山东博安生物技术股份有限公司法规与注册部副总裁10:15-10:30茶歇交流10:30-11:05《改良型新药临床研究设计思路》欧阳冬生 长沙都正生物科技股份有限公司董事长/总裁11:05-11:40《企业申报质量标准遭遇注册实验复核不顺利的原因分析》余立 原北京市药品检验所所长助理;国家药典委生化专业组委员;中国药学会抗生素专业委员会委员11:40-12:15《对化药创新药临床试验期间药学变更技术要求的相关解读》李眉 药品审评中心化学药品生物制品室原室主任/化药组组长12:15-13:05午餐休息2022年 3月12日 下午主持人:郑爱萍 中国人民解放军军事医学科学院;毒物药物研究所药物制剂研究室主任 13:05-13:40《WHO、英国及我国儿童用药目录的对比分析与借鉴》赵志刚 天坛医院药剂科主任;首都医科大学化学生物与药学院临床药学系主任13:40-14:15( 确认中 )14:15-14:50《模型引导的儿童药物临床试验》赵维 山东省儿童药物临床评价与研发工程技术研究中心主任 14:50-15:05茶歇交流15:05-15:40《TDS在改良新药开发中的优劣势分析及产业化落地》罗华菲 药物制剂国家工程研究中心皮肤途径药物递送技术平台负责人 15:40-16:15《儿童改良型新药研发关键技术及实例解析》郑爱萍 中国人民解放军军事医学科学院;毒物药物研究所药物制剂研究室主任16:15-16:50( 确认中 )闭幕致辞 ▌支持媒体扫码快速注册报名(会务组将于24小时内与您联系)▌联系我们【商务合作】何先生 +86 189 1895 8744邮箱:hezhengshen@shengjiejituan.cn
  • 牧场管理及牛群改良管理研讨会成功举办
    2015年12月, 福斯公司携手富源牧业举办了第一期牧场管理及牛群改良管理研讨会。此次培训得到了福斯丹麦总部的大力支持,选派出具有丰富经验的畜牧业专家Daniel Schwarz 博士以及在牧场管理有丰富经验的奶牛生产性能测定专家及合作伙伴来到中国,为富源牧业量身定制了一系列内容丰富的培训课程。此次培训由富源牧业DHI中心主任周鑫宇主持,除富源牧业之外还包括伊利优然牧业,各地畜牧总站等相关专家近50人参加。福斯亚太区总裁Kirk Leung先生参加开幕式并致辞。 奶牛生产性能测定可以为牛群管理提供基础数据,根据检测结果所获取的信息,帮助牧场主 针对疾病管理(如隐形奶牛乳房炎的管理)、生产力、繁殖率以及个体奶牛和整个牛群的饲养问题做出准确决策。除此之外,奶牛生产性能测定的信息管理还延伸至奶牛场管理的各个领域,其中包括牧场盈利能力,牛群健康,干乳期奶牛转型,牛犊饲养,奶牛育种等领域。 福斯汇集了一大批在奶牛生产性能测定领域举足轻重的专家能手,他们愿意把多年积累的实践经验及专业知识 毫无保留地奉献出来。研讨会进行中,参与 人员还将受邀加入不同的研修小组,进行以下几方面的培训与讨论:1)牛群改良测试概述;2)牛奶样品采集;3)福斯分析仪的操作4)数据处理及分析;5)饲草快速检测的近红外光谱技术 等方面。培训结束之后,双方就未来后续培训课程进一步探讨。 福斯不仅仅为其用户提供一台仪器设备,还将协助用户开展具体项目,分享全球成功经验,提供整体化解决方案。
  • 农工党中央提议改良院士终身制 院士去官员化
    农工党中央在《关于我国院士制度改革的提案》中,提出两院院士去&ldquo 官员化&rdquo 、改进两院院士选举制度等建议,特别是提出要改良两院院士&ldquo 终身制&rdquo ,以进一步促进科技创新。   历史告诉我们,我国最早的院士产生于1948年,包含自然科学和人文社会科学学科的著名学者共81人当选。1955年,我国科学院选聘学部委员233人,华罗庚、苏步青、郭沫若、李四光、竺可桢、茅以升等著名学者成为学部委员。将学部委员直接转为院士而正式建立院士制度,始于1993年。那一年,我国还宣布成立中国工程院并开始选聘工程院士。   院士作为国家科技、工程领域的支柱,对推动我国综合国力的不断增强发挥着越来越重要的作用。比如最近的天宫一号与神舟八号交会对接成功,蛟龙号载人潜水器创下5188米的下潜记录等等,都有院士的贡献。但随着世界一些国家为了摆脱国际金融危机影响和推动经济复苏增长,克服全球共同面临的能源资源环境等重大问题,纷纷加大科技投入,科技竞争在综合国力竞争中的地位更加突出,这也对我国两院院士和科技工作者提出更高要求。   近年来,我国两院院士的增选受到媒体和公众的关注程度一届高过一届。从世界范围看,在其他主要国家,院士增选基本上被界定为科学界内部的事情。但在我国院士增选如今被放在聚光灯下,受到过多社会关注。因为,院士发挥的作用和具有的权力已经远远超出科学界,发挥着类似于历史上&ldquo 国师&rdquo 的作用。科学界在我国传统上享有极高的甚至是过高的名誉、地位,使得本来只对科学界重要的事情也进入公众话语。我国的院士增选又与很多科学以外的事情联系在一起,比如一些科学界领导人没有选上院士,比如大型国企和政府官员争当院士,比如国家重大项目的评审和申请等等。   农工党中央的提案指出,院士是国家设立的科学技术方面的最高学术称号,为终身荣誉。但在我国却存在着把&ldquo 终身荣誉&rdquo 和&ldquo 终身能力&rdquo 、以及&ldquo 职业生涯终身制&rdquo 概念混淆的情况。终身荣誉是对科研工作者已经取得成绩的肯定,是对未来取得更多科技突破的精神鼓励,绝不是对科研工作者争取科技成果的&ldquo 封顶&rdquo ,也不能成为科技创新的&ldquo 绊脚石&rdquo 。因此,他们建议,为了进一步推动我国科技发展,为两院院士和科技工作者进一步创造良好环境,逐步完善我国的院士制度,应该进一步改良院士&ldquo 终身制&rdquo 。   他们认为,&ldquo 创新&rdquo 是科学的灵魂,&ldquo 批判精神&rdquo 是科学发展的重要支柱,是一个永无止境的过程。从事科学研究的人即使今天达到最高水平,也并不意味着明天仍处于最高水平。同时也阻碍了其他科研工作者在科学创新方面与其公平竞争。建议将&ldquo 院士终身制&rdquo 改为任期制,一期5年,最多连任一期共10年,到任后转为名誉院士(或荣誉院士)而不是现在规定的院士80岁以后转为的资深院士。
  • 作物遗传改良国家重点实验室云南开放合作基地挂牌
    由云南省农科院与华中农业大学合作共建的作物遗传改良国家重点实验室云南开放合作基地24日在省农科院粮作所正式挂牌成立,依托此平台,两地专家将在生物技术育种、粮经作物新品种选育、人才培养等方面开展合作。   为提升云南农业科技水平,去年5月,省农科院与华中农大签订院校合作协议,在水稻分子育种、油菜、花卉等方面进行合作研究,目前,各方面的项目合作已全面展开。作物遗传改良国家重点实验室云南开放合作基地正是双方在原有合作研究基础上的一次提升,根据协议,双方将共建一个可支撑作物遗传改良研究领域的应用基础和应用研究的试验技术平台,以形成资源共享、相互开放、协作共赢的科学研究和人才培养常态机制,合作开展高水平的科学研究。   由中国科学院院士张启发带领的作物遗传改良国家重点实验室团队,以国家重大科技专项“水稻重要农艺性状相关功能基因组学研究”为依托,开展水稻功能基因组研究,使中国的水稻功能基因组研究进入世界先进行列。我省是高原特殊生态区,不同的海拔造就了云南多样的作物种植,在杂种优势利用、品质育种、制种研究等方面有很大的发展空间和潜力。作物遗传改良国家重点实验室云南开放合作基地建立后,将立足于我省的生态和资源特点,利用现代分子生物学手段研究种质资源创建及遗传多样性,分离克隆重要基因,培育满足高原种植业需要的作物新品种。
  • 科学家改良基因组组装流程 提高测序成本效益
    据物理学家组织网5月5日报道,最近,美国能源部联合基因组研究所(DOE JGI)、太平洋生物科学公司(PacBio)与华盛顿大学合作,开发出一种改良的基因组组装工艺流程,生成的读取片段达到数万个核苷酸长度,最终的组装序列准确率大于99.999%。以往的桑格技术只有700个核苷酸,新工艺大大提高了测序组装和分析的成本效益。相关论文在线发表于5月5日的《自然· 方法学》上。   人们在降低成本和DNA测序通量上已取得巨大进步,但在重建基因组过程中,仍面临很大挑战。现有技术擅于造出短DNA字母片段(读取片段),经过计算把它们拼一起(组装)成为长链,以此来确定目标序列中这些字母的序列和功能。基因组装就好比把几百万的&ldquo 拼图&rdquo 拼在一起,而事先不知道原图是什么样子。由于DNA片段非常小而数量却极大,用目前流行方法来组装非常困难。   研究小组描述这一工艺为&ldquo 从DNA样品制备到最终基因组确定的全自动过程&rdquo ,所用技术叫做HGAP(分级基因组组装过程)。利用太平洋生物科学公司的单分子实时DNA测序平台,生成的读取片段达到数万个核苷酸长度,比人类基因组计划时期的主力技术&mdash &mdash 桑格测序技术还要长。   桑格技术只能产出约700个核苷酸的读取片段,而且要建多个DNA库控制多种运行,结合数据分析才能填补碱基编码空缺。后桑格法也需要多个库,但结合了优选技术。据研究小组报告,HGAP则相反, &ldquo 只需准备一个DNA库,就会自动连续不断地读取单分子实时测序完成组装,而不需要循环一致测序。&rdquo 他们还用DOE JGI以往测序过的3种细菌对新方法进行了测试,收集数据进行了对比,发现HGAP方法最终组装好的序列准确率大于99.999%。   &ldquo 我们一直在寻找新做法,在产出高质量数据的同时提高效率。&rdquo DOE JGI基因组技术副主管兰恩· 潘那奇奥说,&ldquo 我们在研究多种改良技术以实现规模经济效益,这只是其中之一。&rdquo 在全世界已完成或正在进行的两万多个基因组项目中,超过20%在使用DOE JGI的测序技术,大多集中在环境生物学、能源和碳处理方面。目前,研究小组正在进一步扩展这种新方法的应用范围,以研究更复杂有机生物的基因组。   太平洋生物科学公司首席科学官乔纳斯· 克拉奇也表示,通过与JGI微生物和微生物基因组组装与注释领域的科学家合作,他们才能改变单分子测序组装方法,使组装结果质量更高,而且在速度和价格方面能与下一代测序与组装方法竞争。
  • 会议邀请 I 瀚辰光翼邀您参加2023作物基因组与遗传改良前沿论坛
    为促进作物基因组与遗传改良领域科学家交流最新研究进展,推动相关研究发展,新疆农业科学院联合《园艺研究》(Horticulture Research)、《植物生物技术》(Plant Biotechnology Journal)期刊发起“2023作物基因组与遗传改良前沿论坛”,诚挚邀请作物基因组与遗传改良领域广大学者、青年英才参加本次论坛。瀚辰光翼参加此次大会并设立展位,诚邀各位专家学者莅临交流指导!会议信息大会时间 ▼报到 9月18日会议 9月19日-20日上午离会 9月20日下午主办单位▼新疆农业科学院;《园艺研究(英文)》编辑部承办单位▼新疆农学会;省部共建干旱荒漠区作物抗逆遗传改良与种质创新国家重点实验室大会地点▼乌鲁木齐独山子大酒店大会日程
  • Grinder高通量组织研磨机改良QuEChERS方法,更接近真值
    Geno/Grinder高通量组织研磨机改良QuEChERS方法,更接近真值关于传统QuEChERS方法QuEChERS方法是2003年由美国农业部的化学家Anastassiades和Lehotay等研究建立的一种能有效分离水果、蔬菜中痕量农残的样品前处理技术。QuEChERS是Quick、Easy、Cheap、Effective、Rugged和Safe的缩写,顾名思义,这种前处理方法具有操作简便、溶剂使用量少、污染小等优势。▲ 化学家Anastassiades高度评价Geno/GrinderCole-Parmer(原Spex)的Geno/Grinder高通量组织研磨机专为动植物组织快速匀浆研制。使用Geno 高通量组织研磨机改良QuEChERS前处理方法,一键式操作,可调频率最高可达1750rmp,1-2分钟完成样品均质化过程,可有效简化提取步骤和提取时间。特殊的垂直振荡专利技术,在均质的同时还可研磨样品,使提取剂充分与样品中的农药残留结合,检测结果更接近真值。超高通量的Geno/Grinder高通量组织研磨机最多可同时处理16个50mL样品瓶,更高效,样品间重复性、一致性更好。Cole-Parmer(原Spex)公司的应用工程师使用Geno/Grinder高通量组织研磨机改良后的QuEChERS方法与传统方法进行了对比实验,实验结果表明,Geno/Grinder高通量组织研磨机改良后的QuEChERS方法在简化操作之余,还有效的提升了回收率,实验过程及结果如下所示。为使实验样品更具代表性,本实验选用草莓(软性)、苹果(密度和硬度大)、芹菜(富含纤维),切成6-12mm的小段混匀,称取15.1g,放入50mL离心管中(每种样品设置4个平行)。每个样品瓶中小心加入250μl的农药混标(Spex CertiPrep公司货号为CAL-CARB-13标准溶液,浓度:40μg/ml,基底:二氯甲烷),盖上盖子,用手轻轻摇晃15s,以确保整个样品的农药溶液与样品混匀,4℃冰箱静置过夜。传统QuEChERS方法将4个离心管中样品合在一个搅拌机中,均匀地破碎混合,重新称量15.1g转移至相同的离心管中。加入6g无水MgSO4、1.5g无水醋酸钠和15mL乙腈(含1%冰醋酸),盖上盖后手摇1min。草莓管中呈粉红色、苹果提取物为淡黄色、芹菜是饱和绿色。而后3500rmp离心3min,取上清液分成两等分,加入15mL离心管中(每个样品5ppm杀虫剂),加入25mgPSA和5mgGCB,盖盖后手摇30s,3200rmp离心1min后取上清液。经过浓缩净化后,上机检测。Geno/Grinder 高通量组织研磨机改良QuEChERS方法在每个样品瓶中加入3粒陶瓷研磨珠(货号2183)和5mL乙腈(含1%冰醋酸),放在Geno/Grinder高通量组织研磨机上1500rmp研磨2min,草莓样品已经呈浆状,苹果和芹菜较硬,研磨6min可以达到一致性很好的糊状。(添加少量的溶剂如5mL乙腈,可以起到润滑的作用,使研磨效果更佳。)然后,加入6g无水MgSO4、1.5g无水醋酸钠、10mL乙腈(含1%冰醋酸),重新盖好盖子,放在Geno 高通量组织研磨机上1500rmp均质1min。可以看到草莓管中的液体是粉红色的,苹果的是淡紫色的,芹菜是饱和的绿色,所有材料都是混合均匀、可流动的。而后3500rmp离心3min,取上清液分成两等分,加入15mL离心管中(每个样品5ppm杀虫剂),加入25mgPSA和5mgGCB,盖盖后Geno/Grinder组织研磨机上1500rmp均质30s,3200rmp离心1min后取上清液。经过浓缩净化后,上机检测。极简Geno/Grinder改良QuEChERS方法为了简化QuEChERS前处理步骤,Cole-Parmer(原Spex)应用工程师还做了这样的尝试,将6g无水MgSO4、1.5g无水醋酸钠、15mL乙腈(1%冰醋酸)添加到含15.1g的草莓离心管中,盖上盖子在Geno组织研磨机上1500rmp研磨4min,经过浓缩净化后,上机检测。草莓很好的与提取剂混合在仪器,但在苹果和芹菜的样品实验中并不理想,盐和部分样品结合在一起时,研磨介质对样品的研磨效果受阻,只实现了部分磨削。样品分析 两种方法浓缩净化后对样品颜色的对比:草莓样品苹果样品芹菜样品传统QuEChERS方法111Geno改良QuEChERS方法111使用HP 5890-GC,CV-5柱、5972-MSD检测器分析,35-450m/z,信噪比3:1,样本容量1ul。最终每个样本中标准农药浓度为5ppm,如上表格是三个样品中各农药的浓度检测结果。▲ 草莓样品的检测结果▲ 苹果样品的检测结果▲ 芹菜样品的检测结果可以明显看出,使用Geno/Grinder高通量组织研磨机均质化的样品,检测结果均优于传统方法。百菌清类的农药使用Geno/Grinder处理的样品也没有检测到其含量,优于本次实验中使用的方法没有针对特定类型的农药进行优化,有些农药不稳定也不足为奇。有趣的是图2苹果样品的检测结果中,Geno/Grinder处理的样品二苯胺的检测值是6.2ppm,比样品中引入的标准5ppm还要大,而传统方法只检测到了3.8ppm。二苯胺类杀虫剂在苹果种植中使用率很高,高于标准的部分,很有可能是苹果样品中自带的。充分证明Geno/Grinder高通量组织研磨机处理的样品,农药残留检测结果更接近样品的真值。结论同样的样品,同样的方法,Geno/Grinder高通量组织研磨机改良方法制备的样品,农药回收率明显高于传统QuEChERS方法。Geno/Grinder组织研磨机频率可调,在制备过程中,所有样品都以同样的方式振动,样品均一性、重复性更好,消除可变因素。Geno/Grinder组织研磨机一次可进行16个50mL离心管的研磨混匀,超高通量,可以有效的减少样品制备的时间,使实验更轻松。使用Geno/Grinder组织研磨机做均质化,还可以在均质的同时进行研磨,使提取剂与样品充分结合,提高提取效率和提取精度。说明:本应用由科尔帕默合作伙伴培安公司首次翻译。
  • 启迪 探索 创新 | 2021中国改良型创新药珠江高峰论坛
    随着仿制药一致性评价的不断深入,药品研发、质控与监管理念的不断提升,制剂技术日新月异飞速的发展,原辅料可选择种类越来越多,医生患者越来越高的临床需求,人们逐渐发现一些原研产品,特别是上市较早的原研产品,存在着这样或那样的缺点和不足需要去完善和提高,于是药物研发者们不满足一味地简单仿制原研,开始致力于二类新药的研发,进行弯道超车。但是,既然是改良,就一定要在模仿中实现超越,就要有更高更强的技术支撑,问题和困难也常常会在研发过程中与挑战者不期而遇,新技术新材料的使用也难免经验不足,但这也是激发业界勇者高昂斗志和乐于探索交流的原因。在这期间,有些人有困惑有失败,有些人有成功有心得,为此,北京医恒健康科技有限公司、越洋医药开发(广州)有限公司将在2021年11月26~27日在中国广州联手打造中国改良型创新药珠江高峰论坛,使同行们有机会能在一起深入地研讨交流我国最新的二类新药政策法规与研发经验和案例。 本届高峰论坛与中国化学制药工业协会二类新药专业委员会成立大会同期举行,是专委会的首次亮相。会议将邀请国内制药行业的管理者、实力药企和享誉业界德高望重的院士,经验丰富干货满满的知名大咖齐聚一堂。会议为期两天,除主论坛外,还将设置3个分论坛,内容涉及新政法规解读与实施、研发立项策略、制剂技术与临床、分析质控与注册、儿童用药、辅料包材等,为与会者奉上信息、知识与技术的饕餮盛宴。我们诚挚的邀请满心期待着您的到来! 记住,11月26~27日让咱们广州聚吧!主席:闻晓光中国药学会制剂专委会委员和工业药剂学专委会委员越洋医药董事长8:15-8:30开幕致辞雷英中国化学制药工业协会执行副会长兼秘书长魏世峰北京医恒健康科技董事长闻晓光中国药学会制剂专委会委员和工业药剂学专委会委员越洋医药董事长8:30-9:05国家药品标准提高与药品注册管理王平 国家药监局药品注册司司长9:05-9:40议题待定陈凯先(确认中) 中国科学院院士中科院上海药物所研究员上海中医药大学学术委员会主任国家科技重大专项“重大新药创制”总体专家组技术副总师9:40-10:15纳米材料的生物学效应与安全赵宇亮中国科学院院士发展中国家科学院院士10:15-10:30茶歇交流10:30-11:05中国医药行业发展情况、预测行业发展趋势潘广成中国化学制药工业协会执行会长11:05-11:40医保控费背景下,我国改良型新药发展的机遇与挑战张自然中国化学制药工业协会特邀副会长兼政策法规专委会主任11:40-12:15专利法修正对药品研发的影响及案例分析曹津燕原国家知识产权局知识产权发展研究中心副主任、研究员;中国药学会知识产权研究专业委员会委员;北京医恒健康科技有限公司监事长12:15-13:10午餐休息主持人:魏世峰 北京医恒健康科技董事长北京罗诺强施医药技术董事长13:10-13:45议题待定张强 北京大学药学院教授国家药典委员会制剂专业委员会副主任委员北京市重点实验室主任(确认中)13:45-14:20生物药物505(b)(2)产品立项和开发案例魏世峰北京医恒健康科技董事长北京罗诺强施医药技术董事长14:20-14:55蛋白结晶技术在大分子药物制剂中的应用谭力 寻济生物科技(北京)有限公司首席创新科学家14:55-15:10茶歇交流15:10-15:45改良型新药的平台驱动研发和经验分享朱海健 力品药业(厦门)股份有限公司总经理15:45-16:20难溶性药物的改良型新药开发策略韩军聊城大学生物制药研究院院长16:20-16:55改良型新药的非临床药代动力学研究郭建军 湖南恒兴医药科技有限公司CEO16:55-17:35圆桌讨论主持人:吕万良北京大学药学院党委副书记教授国际控释协会中国分会主席中国药学会药剂专业委员会副主委
  • 邀请函 | 青岛IDC2021化学创新药与改良型新药CMC研发论坛,德祥与您不见不散
    机遇与挑战并存国家“4+7”带量采购政策虽然给仿制药行业带来了震荡,但同时也为产业创新带来新的发展机遇。在“带量采购、鼓励创新”等新政策的影响下,布局创新药也成为了当下药企发展的主要方向。一部分制药领军企业不断增加研发投入,创新成果不断涌现,迈入了研发创新驱动发展的道路。 在化学新药研发至上市过程中,药物研发阶段和临床前研究阶段是药企亟待攻关的两大难点,疾病选择、靶点发现、化合物合成、化合物筛选、晶型预测、药物分析、安全性评价、原料药研究、注册申报每个步骤都至关重要。 德祥作为深耕科学仪器行业近30年的*供应商,将亮相10月8-9日于青岛举办的IDC2021化学创药与改良型新药CMC研发论坛。该论坛将聚焦4大论坛、6大板块,细致探讨药物研发和临床前研究的每个环节,为与会的1000左右行业从业者提供探讨交流的平台。会议信息日期2021年10月8-9日地点青岛 黄岛泰成喜来登酒店展位德祥展位号:7 福利时间于2021年9月30日之前, 扫描下方二维码关注德祥公众号,填写“青岛IDC2021化学创新药与改良型新药CMC研发论坛信息反馈表”,前20名幸运儿可在会议期间,凭姓名到德祥展台领取精美礼品一份,先到先得,不要错过哦。 关于德祥 自1992年创办以来,德祥就一直是科学仪器行业内颇受尊敬的*供应商。公司业务包含仪器代理,维修售后,自主产品研发生产销售售后。 实验室分析仪器、工业检测仪器及过程控制设备是德祥主营的产品,现已覆盖高校、科研院所、政府组织、检验机构及工业、企业等客户,涵盖制药、石化、食品饮料和电子等各个行业。 我们设有 13个办事处和销售点(含越南),3个维修中心,1个样机实验室,致力于为每一位客户提供*的服务。
  • 8月4-5日东南科仪邀您共聚苏州,IDC 2022化学创新药与改良型新药研发分析论坛
    东南科仪邀您参加IDC 2022化学创新药与改良型新药研发分析论坛 时间:2022年8月4-5日地点:苏州合景万怡酒店(苏州市吴中区金枫路 264 号)东南科仪展位号:5号 展前预告 东南科仪将在现场为大家展现应用于制药行业最新的分析检测仪器,将展示美国LOGAN溶出仪(往复筒&往复架法)、透皮扩散仪。 届时还有德国BINDER箱体、美国阿美特克ATLAS老化箱、美国阿美特克博勒飞粘度计\流变仪、德国KRUSS接触角测量仪、Formulaction稳定性测试仪、美国康宁微反应器、ALP高压灭菌器、EYELA旋蒸\浓缩、法国Interscience微生物分析仪器、美国爱色丽分光光度计品牌产品等介绍,展示制药行业的解决方案。一起期待吧! 展会介绍 中国创新药发展势头强劲,预计未来 5 年本土创新药销售额以CAGR 超 30%的速度增长。未满足的临床需求有待更多供给;制度、人才红利促发医药创新热潮;医保加速纳入,共同助力创新药产业形成正循环。对于头部药企来说,疾病领域的覆盖优先权可能更先于靶点选择。对于初创公司来说,疾病领域也是管线搭建的重要考量。多维度竞争、多元化时代,做什么、怎么做、为什么这么做,有时候比速度本身更重要。IDC2022化学创新药与改良型新药研发分析论坛从立项、源头靶点发现、分子筛选与设计,到CMC开发以及药物分析等角度,展开2天5个会场的精彩盛宴。砥砺前行的中国创新药行业,终将迎来了属于自己的黄金时代。 会议议程
  • “100家实验室”专题:访农科院农作物基因资源与基因改良国家重大科学工程实验室
    为广泛征求用户的意见和需求,了解中国科学仪器的市场情况和应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。近日,仪器信息网工作人员参观访问了本次活动的第四十一站:中国农业科学院农作物基因资源与基因改良国家重大科学工程开放实验室。   农作物基因资源与基因改良国家重大科学工程,是由原国家发展计划委员会投资约1.4亿元,以中国农业科学院为依托单位建立的我国农业及生物领域目前唯一的一个国家重大科学工程,该工程下辖开放实验室(以下简称“实验室”)于2003年11月竣工并投入使用。它是我国农业科学基础研究与应用基础研究领域能力建设的重大进步和标志性工程。实验室作为国家级开放实验室,曾经接待过多位国家领导人的参观及48个国家的农科院院长的访问。   实验室外景   实验室实验员赵新先生热情接待了仪器信息网到访人员,并详细介绍了实验室情况。“建立之初,国家重大科学工程仪器设备共69类468台(套),购置费8053.38万元,具有多功能、高通量、高效率、自动化、网络化和简单化等特点。各类仪器先进性与实用性相结合,大、中、小型仪器设备相配套。日前我们又购置了一些新仪器。”   “实验室的仪器大致可归到以下四类:基因组学技术平台、蛋白质组学技术平台、分析检测技术平台以及实验室常用设备。”   “基因组学技术平台是实验室中仪器设备最为完善的平台,拥有多台先进仪器,还能提供EST文库构建测序服务、Shotgun文库构建服务、DNA片段分析技术服务以及ROCHE公司超高通量基因组测序系统。”   Applied Boisystrns公司全自动3730XL DNA测序仪   (图注:实验室现有3台该仪器。) Roche公司454高通量基因测序仪   (图注:该仪器为实验室最近购置,是最新的基因组测序仪,尤其适合检测植物基因组,还可检测小RNA。仪器使用非常简便,只需要一步简单的全基因组样品制备过程,就可以在短时间内快速获得大量的碱基信息,且准确率达到99%以上。)   Applied Boisystrns公司7900高通量实时荧光定量PCR仪   (图注:该仪器在此类仪器中是最为先进的,具有超高的检测灵敏度及最低的试剂用量需求,全自动化操作,可实现多次收集信号。这款仪器在定机之初就必须选择应用板孔,该实验室的是适用于384孔板样品的。目前全北京就只有两台该仪器,除了这一台外,另一台在ABI公司当展品。此外,实验室还拥有ABI公司的7000型以及7300型实时荧光定量PCR仪各一台。7000实时荧光定量PCR仪是型号较老的仪器,仪器的程序设置不太人性化,灵活性也不够高,只能在整个升温程序的最后一步收集信号,但该仪器的预定情况较好,经常连续工作,几乎不关机。)   BIO-RAD公司iCycler荧光定量PCR仪   (图注:该仪器拥有优秀的控制与分析软件,具有操作、分析及维护简便易行的特点。相关附件为定量PCR试剂盒以及光学级PCR管。这款荧光定量PCR的程序设计比较灵活,收集数据也可分步设置,使用者都说好用。)   GENETIX公司Qpix2机器人挑取克隆系统   (图注:该仪器是挑取克隆菌落的高效自动化设备,它可在短时间内完成挑取克隆、复制、点膜等工作,适用于cDNA文库构建,它的活动机械臂上配有高像素摄像头,可以用图像定位自动搜寻符合要求的菌落并将其从大盘培养基上挑取到96孔或384孔板上。)   “基因组学技术平台还有三台大型的机器人系统,分别是:Beckman公司Multimek384自动化工作站和FX自动化工作站以及Roche公司的MagNA Pure LC自动DNA提取仪。”    Beckman公司Multimek 384自动化工作站   (图注:该仪器是连续自动加样系统,是个单臂的机器人,配有一个384头的移液器,用于液体加样的操作,可以精确地移取、混合液体样品。)   Roche公司的MagNA Pure LC自动DNA提取仪   (图注:该仪器可以快速的提取细胞、组织中的DNA或RNA,在提取的过程中可以有效的防止交叉污染。)   Beckman公司FX自动化工作站   (图注:该仪器是加样机器人,用于液体样品的加样及混合。FX为双臂机器人,同时装有8个单头和1个96头移液器,适用于各类标准或非标容器。)   “蛋白质组学技术平台也是装备比较齐全的技术平台,可提供从样本制备、样品标记、双向电泳分离、图像获取、图像分析到自动挖胶、酶切和点质谱靶等一整套技术的平台。整个过程从图像分析开始全部实现自动化,足以满足蛋白质组学大量研究工作的需求。其中,双向电泳技术是蛋白质组学研究领域中重要的样品分析手段。”   GE公司AKTA purifier蛋白质纯化层析系统   (图注:该仪器适用于各种层析技术,专门分离和纯化各类生物分子。据悉,该实验室拥有4台AKTA purifier系列仪器,型号分别为purifier100、purifier 10+、basic 10。)   GE公司双向电泳系统   (图注:左侧是专门用来跑第一项的(IEF),可设定多个程序,一般水化胶条和等电点聚焦可以一起做,能保证恒温20℃,总时长需要30小时以上 它的相关配件是水化盘,平衡盘,带电极的陶瓷条,每件东西都是价值不菲。右侧呈现的是双向电泳的电泳槽+电源+循环冷水浴,其中电泳槽+电源是GE品牌的,电泳槽可是跑24㎝胶条的,里面是铂金电极丝;电源可预先设定程序,实现倒计时或正计时,并且可以同时提供两台电泳槽的用电;和它们相配套的是注胶模具、上下玻璃板、上槽和胶架,其中玻璃板是经过特殊加工的,每块板价值上千元。整套双向电泳的使用成本较高。)   GE公司UMAX PowerLook 1120 白光扫描仪   (图注:该仪器成像效果很好,可扫描真彩和灰度两种胶图,储存格式为tif,操作便捷,带有分析软件,可根据同一样品的重复试验胶所扫描的灰度胶图的不同判断出蛋白含量的变化,根据蛋白的变化就可以进一步判断植物生长过程中的各种性状变化所引起的植物内在变化;它的配套设施比较简单,就是进口无尘纸,这种纸擦拭扫描仪玻璃表面时几乎不留下纸屑和杂物。)   Typhooe荧光成像系统   (图注:这一台仪器是用来扫描荧光的,可以是经过荧光标记的普通植物组织,也可以是电泳胶;价格高于30万美元 该仪器日常保养和维护比较简单。)   GE公司Ettan Spot Picker全自动斑点切割系统   (图注:该仪器也叫做“挖胶仪”,跑完电泳做完对比分析之后用来挖胶点。可移动机械臂上带有摄像头,系统可根据图像资料寻找需要挖的胶点并把挖到的胶点放进96孔板或者其他型号的板子里,以供后面质谱分析使用。)   DeCyder专业蛋白凝胶图像分析软件   (图注:该软件能快速处理大量2-D蛋白电泳凝胶图像。据了解,该软件价格不菲。)   Bruker公司Autoflex基质辅助激光解析飞行时间质谱仪(MALDI-TOF)   “分析检测技术平台包含各类分析仪器,例如液质联用仪、气质联用仪、毛细管电泳仪、超高效液相色谱仪、激光共聚焦显微镜、近红外品质分析仪、核磁共振油份分析仪等仪器,可提供常规的分析测试服务。”     分析检测技术平台的部分仪器   “实验室常用设备很多,包括电穿孔系统、脉冲场电泳仪、超速离心机、冷冻干燥机、电洗脱仪、半干转印仪、超声波细胞破碎仪、真空浓缩仪、自动分液系统、氮吹仪、全自动流动微波多肽合成系统、超滤系统等仪器。”   部分实验室常用设备   “整个重大科学工程实验室的仪器设备面向全国开放,提供DNA测序、蛋白质测序、文库构建、蛋白质组平台科研合作等服务。实验室建有网上预约系统,该预约系统几经改版,已比较人性化,用户在网上就可预约仪器设备,非常方便。目前,仪器的预约情况良好。”   赵新实验员为仪器信息网工作人员介绍仪器   附录1:中国农业科学院作物科学研究所   http://www.icscaas.com.cn/   附录2:农科院作物研究所农作物基因资源与基因改良国家重大科学工程开放实验室   http://www.genomics.net.cn/
  • 通知|2021中国改良型创新药珠江高峰论坛 暨中国化学制药工业协会二类新药专业委员会成立大会
    指导单位:中国化学制药工业协会主办单位:北京医恒健康科技有限公司 越洋医药开发(广州)有限公司承办单位:上海盛杰医药(集团)有限公司支持单位:上海医药集团股份有限公司 石药集团 邀请辞 随着仿制药一致性评价的不断深入,药品研发、质控与监管理念的不断提升,制剂技术日新月异飞速的发展,原辅料可选择种类越来越多,医生患者越来越高的临床需求,人们逐渐发现一些原研产品,特别是上市较早的原研产品,存在着这样或那样的缺点和不足需要去完善和提高,于是药物研发者们不满足一味地简单仿制原研,开始致力于二类新药的研发,进行弯道超车。但是,既然是改良,就一定要在模仿中实现超越,就要有更高更强的技术支撑,问题和困难也常常会在研发过程中与挑战者不期而遇,新技术新材料的使用也难免经验不足,但这也是激发业界勇者高昂斗志和乐于探索交流的原因。在这期间,有些人有困惑有失败,有些人有成功有心得,为此,北京医恒健康科技有限公司、越洋医药开发(广州)有限公司将在2021年11月26~27日在中国广州联手打造中国改良型创新药珠江高峰论坛,使同行们有机会能在一起深入地研讨交流我国最新的二类新药政策法规与研发经验和案例。本届高峰论坛与中国化学制药工业协会二类新药专业委员会成立大会同期举行,是专委会的首次亮相。会议将邀请国内制药行业的管理者、实力药企和享誉业界德高望重的院士,经验丰富干货满满的知名大咖齐聚一堂。会议为期两天,除主论坛外,还将设置3个分论坛,内容涉及新政法规解读与实施、研发立项策略、制剂技术与临床、分析质控与注册、儿童用药、辅料包材等,为与会者奉上信息、知识与技术的饕餮盛宴。我们诚挚的邀请满心期待着您的到来! 记住,11月26~27日让咱们广州聚吧!主论坛: 改良型新药研发的政策环境与前沿技术进展主席: 闻晓光 中国药学会制剂专委会委员和工业药剂学专委会委员;越洋医药董事长2021年 11月26日 上午8:15-8:30开幕致辞雷 英 中国化学制药工业协会执行副会长兼秘书长魏世峰 北京医恒健康科技董事长闻晓光 中国药学会制剂专委会委员和工业药剂学专委会委员;越洋医药董事长8:30-9:05《国家药品标准提高与药品注册管理》王平 国家药监局;药品注册司司长9:05-9:40议题待定陈凯先(确认中) 中国科学院院士;中科院上海药物所研究员;上海中医药大学学术委员会主任;国家科技重大专项“重大新药创制”总体专家组 技术副总师9:40-10:15《纳米材料的生物学效应与安全》赵宇亮 中国科学院院士 ;发展中国家科学院院士 10:15-10:30茶歇交流 10:30-11:05《中国医药行业发展情况、预测行业发展趋势》潘广成 中国化学制药工业协会执行会长11:05-11:40《医保控费背景下,我国改良型新药的机遇与挑战》张自然 中国化学制药工业协会特邀副会长兼政策法规专委会主任11:40-12:15《专利法修正对药品研发的影响及案例分析》曹津燕 原国家知识产权局知识产权发展研究中心副主任、研究员;中国药学会知识产权研究专业委员会委员;北京医恒健康科技有限公司监事长12:05-13:10午餐休息分论坛一 : 改良型新药的立项策略和关键技术2021年 11月26日 下午主持人:魏世峰 北京医恒健康科技董事长;北京罗诺强施医药技术董事长13:10-13:45议题待定 张强 北京大学药学院教授;国家药典委员会制剂专业委员会副主任委员;北京市重点实验室主任(确认中) 13:45-14:20《生物药物505(b)(2)产品立项和开发案例》魏世峰 北京医恒健康科技董事长;北京罗诺强施医药技术董事长14:20-14:55《蛋白结晶技术在大分子药物制剂中的应用》谭力 寻济生物科技(北京)有限公司首席创新科学家14:55-15:10茶歇交流15:10-15:45《改良型新药的平台驱动研发和经验分享》朱海健 力品药业(厦门)股份有限公司总经理15:45-16:20《难溶性药物的改良型新药开发策略》 韩军 聊城大学生物制药研究院院长16:20-16:55《改良型新药的非临床药代动力学研究》郭建军 湖南恒兴医药科技有限公司CEO16:55-17:35圆桌讨论2021年 11月27日 上午主持人:吕万良 北京大学药学院党委副书记、教授;国际控释协会中国分会主席、中国药学会药剂专业委员会副主委8:30-9:05《中国高端制剂从基础研究向应用转化的发展战略思考》陆伟跃 复旦大学教授,中国药学会常务理事、战略发展委员会委员、学术工作委员会委员、药剂专委会主任委员9:05-9:40《以缓控释新药为例解析中国2类和美国505(b)(2)新药开发》闻晓光 中国药学会制剂专业委员会委员和工业药剂学专业委员会委员;越洋医药董事长9:40-10:15《肿瘤基因调控与塑性分化——面向新思路的生物药剂学策略》吕万良 北京大学药学院党委副书记、教授;国际控释协会中国分会主席、中国药学会药剂专业委员会副主委 10:15-10:30茶歇交流10:30-11:05《复杂注射剂在505(b)(2)产品开发中的应用》岳占国 广州玻思韬控释药业有限公司高端复杂注射剂副总监11:05-11:40《从转化视角探讨眼科制剂的挑战与创新》魏刚 复旦大学教授;中国药学会药物制剂专业委员会委员11:40-12:15《改良型创新药物的行业分析》王海盛 哈药集团副总经理 12:15-13:05午餐休息2021年 11月27日 下午主持人:王 健 药物制剂国家工程研究中心教授;中国药学会工业药剂专业委员会主任委员13:05-13:40《二类新药为源头创新在未满足临床需求中的个案分析》魏晓雄 汉都医药总裁、首席医学官13:40-14:15《新型制剂的智能制造和连续制造》王健 药物制剂国家工程研究中心教授;中国药学会工业药剂专业委员会主任委员14:15-14:50《原料药立项关键技术 - 绿色合成工艺探索》张绪穆 南方科技大学理学院副院长;化学系讲席教授 14:50-15:05茶歇交流 15:05-15:40(确认中)15:40-16:15议题待定吕爱锋 江苏豪森药业总裁;中国药学会工业药剂专业委员会委员16:15-16:50《创新药制剂产业化的挑战:工艺及质量考量》王志云 再鼎医药高级副总裁闭幕致辞分论坛二 : 改良型新药的质控与工艺研究2021年 11月26日 下午主持人:周建平 中国药科大学药剂学教研室主任;国家药典委制剂专委会主任委员;中国药学会制剂专业委员会委员13:10-13:45《AD治疗的给药策略研究》周建平 中国药科大学药剂学教研室主任;国家药典委制剂专委会主任委员;中国药学会制剂专业委员会委员13:45-14:20《洋葱伯克霍尔德菌(BBC)生产过程污染风险评估与监控方法研究》马仕洪 中国食品药品检定研究院化药所微生物室主任;中国生化检测标准化技术委员会委员 14:20-14:55《溶出曲线考察合理设计与计算常见误区》周立春 原北京市药品检验所所长助理,国家药典委化药专业组委员14:55-15:10茶歇交流15:10-15:45《复杂制剂对分析方法开发的挑战》严子梦 华氏医药首席科学官;北京鑫开元医药科技有限公司执行副总经理15:45-16:20《流通池法用于脂质体中游离/结合型药物研究的案例分析》钱敏 上海市食品药品检验研究院化药所16:20-16:55《改良型新药研发中的非官方杂质对照品制备与应用》山广志 中国医学科学院医药生物技术研究所分析测试中心副主任16:55-17:35圆桌讨论2021年 11月27日 上午主持人:尹莉芳 中国药科大学教授;药学院副院长;中国药学会药剂专委会副主任委员 ,中国药学会工业药剂专委会委员8:30-9:05改良型新药研发的处方开发和临床设计尹莉芳 中国药科大学教授;药学院副院长;中国药学会药剂专委会副主任委员 ,中国 药学会工业药剂专委会委员9:05-9:40《高端纳米制剂的立项与开发案例分享》王淑君 沈阳药科大学药学院教授;中国医药教育协会药物创新研究分会主任委员9:40-10:15(确认中)10:15-10:30茶歇交流10:30-11:05(确认中)11:05-11:40《复杂制剂工艺研究及申报经验》 王悦 石药集团石家庄研究院副院长 11:40-12:15《高难度品种BE设计的药学关联核心点考量及案例分析》孙亚洲 长沙晶易医药副董事长 12:15-13:05午餐休息2021年 11月27日 下午主持人:涂家生 中国药科大学药剂学教授;国家药典委药用辅料和药包材专业委员会主任委员13:05-13:40《基于新辅料创新的改良型新药研发策略》涂家生 中国药科大学药剂学教授;国家药典委药用辅料和药包材专业委员会主任委员 13:40-14:15《注射剂包装材料的技术要求与相容性研究》孙会敏 中国食品药品检定研究院研究员 中国药品监管研究会药用辅料与药包材监管委员会主任委员14:15-14:50《药品质量管理的成本风险控制》康毅 德国美剂乐集团上海代表处首席代表14:50-15:05茶歇交流 15:05-15:40(确认中)15:40-16:15《基于关键物料属性的供注射用辅料选用原则》孙春萌 中国药科大学药学院药剂系副主任 16:15-16:50《各类药品包材变更的法律规定和技术要求》俞辉 浙江省药品检验研究院包材所所长;国家药典委辅料与包材专业委员会委员 闭幕致辞分论坛三 : 改良型新药的临床试验与注册申报 2021年 11月26日 下午主持人:武海波 精诚CRO董事长;中国药物临床试验机构联盟副秘书长;中国药品监督管理研究会国际交流专业委员会委员;中国医药质量管理协会CRO分会副主任委员13:10-13:45《改良型新药调释制剂临床药代动力学研究技术指导原则》赵秀丽 首都医科大学附属北京同仁医院国家药物临床实验机构副主任/办公室主任 13:45-14:20《生物等效性评价的临床实验设计与分析》姚晨 北京大学第一医院医学统计室主任;北京大学临床研究所副所长;海南省真实世界数据研究院副院长14:20-14:55《改良型新药:另一条有高回报潜力的新药研发路径》杨劲 中国药科大学教授14:55-15:10茶歇交流15:10-15:45《如何加快药物创新研发》王卫军 精诚CRO首席医疗官 15:45-16:20《复杂制剂BE研究的科学家考量与监管要求》杨永胜 青岛百洋首席科学官;前FDA BE评审官员16:20-16:55《定量药理学(Pharmacometrics)在药物研发中的应用》苏霞 恩远医药科技(北京)有限公司副总经理16:55-17:35圆桌讨论2021年 11月27日 上午主持人:李眉 药品审评中心化学药品生物制品室原室主任/化药组组长8:30-9:05《复杂药物药学研究与申报要点探讨》霍秀敏 原CDE化药一部高级审评员9:05-9:40《研发与生产现场核查要点》战丹 原黑龙江省药品检验检测所主任药师;国家核查中心国际检查员10:30-11:05《改良型新药临床研究的一般考虑》欧阳冬生 长沙都正生物科技股份有限公司董事长/总裁11:05-11:40《企业申报质量标准遭遇注册实验复核不顺利的原因分析》山东省儿童药物临床评价与研发工程技术研究中心主任 14:50-15:05茶歇交流15:05-15:40(确认中)15:40-16:15/
  • 1848万!江西省农业科学院土壤肥料与资源环境研究所农业农村部酸化土改良与利用重点实验室仪器设备采购项目
    一、项目基本情况:1.项目编号:JXBJ24121308301-1项目名称:江西省农业科学院土壤肥料与资源环境研究所农业农村部酸化土改良与利用重点实验室仪器设备采购项目01包采购方式:公开招标预算金额:4120000.00 元最高限价:4120000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001121002稳定同位素比质谱仪1台4120000.00元详见公告附件合同履行期限:合同签订生效后120个日历日内完成安装调试并交付使用。本项目不接受联合体投标。2.项目编号:JXBJ24121308301-2项目名称:江西省农业科学院土壤肥料与资源环境研究所农业农村部酸化土改良与利用重点实验室仪器设备采购项目02包采购方式:公开招标预算金额:3280000.00 元最高限价:3280000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001120994四极杆飞行时间液质联用仪1台3280000.00元详见公告附件合同履行期限:合同签订生效后90个日历日内完成安装调试并交付使用。本项目不接受联合体投标。3.项目编号:JXBJ24121308301-3项目名称:江西省农业科学院土壤肥料与资源环境研究所农业农村部酸化土改良与利用重点实验室仪器设备采购项目03包采购方式:公开招标预算金额:2580000.00 元最高限价:2580000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001120995多功能酶标仪1台480000.00元详见公告附件赣购2024F001120999自动微生物鉴定分析系统1台1400000.00元详见公告附件赣购2024F001120998全自动脂肪酸分析菌种鉴定系统1台700000.00元详见公告附件合同履行期限:合同签订生效后90个日历日内完成安装调试并交付使用。本项目不接受联合体投标。4.项目编号:JXBJ24121308301-4项目名称:江西省农业科学院土壤肥料与资源环境研究所农业农村部酸化土改良与利用重点实验室仪器设备采购项目04包采购方式:公开招标预算金额:2400000.00 元最高限价:2400000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001120996全自动间断化学分析仪1台620000.00元详见公告附件赣购2024F001121001扫描电子显微镜1台1780000.00元详见公告附件合同履行期限:合同签订生效后90个日历日内完成安装调试并交付使用。本项目不接受联合体投标。5.项目编号:JXBJ24121308301-5项目名称:江西省农业科学院土壤肥料与资源环境研究所农业农村部酸化土改良与利用重点实验室仪器设备采购项目05包采购方式:公开招标预算金额:2350000.00 元最高限价:2350000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001121000气相色谱三重四极杆质谱联用仪1台1680000.00元详见公告附件赣购2024F001120997电感耦合等离子体发射光谱仪1台670000.00元详见公告附件合同履行期限:合同签订生效后90个日历日内完成安装调试并交付使用。本项目不接受联合体投标。6.项目编号:JXBJ24121308301-6项目名称:江西省农业科学院土壤肥料与资源环境研究所农业农村部酸化土改良与利用重点实验室仪器设备采购项目06包采购方式:公开招标预算金额:1800000.00 元最高限价:1800000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001120989激光粒度分析仪1台490000.00元详见公告附件赣购2024F001120991傅里叶近红外光谱仪1台445000.00元详见公告附件赣购2024F001120990纳米粒度及ZETA电位分析仪1台410000.00元详见公告附件赣购2024F001120992研究级傅里叶变换红外光谱仪1台455000.00元详见公告附件合同履行期限:合同签订生效后90个日历日内完成安装调试并交付使用。本项目不接受联合体投标。7.项目编号:JXBJ24121308301-7项目名称:江西省农业科学院土壤肥料与资源环境研究所农业农村部酸化土改良与利用重点实验室仪器设备采购项目07包采购方式:公开招标预算金额:1950000.00 元最高限价:1950000.00采购需求:采购条目编号采购条目名称数量单位采购预算(人民币)技术需求或服务要求赣购2024F001120988便携式X荧光重金属分析仪1台450000.00元详见公告附件赣购2024F001120993X射线衍射仪1台1300000.00元详见公告附件赣购2024F001120987微波消解仪1台130000.00元详见公告附件赣购2024F001120986全自动石墨消解仪1台70000.00元详见公告附件合同履行期限:合同签订生效后150个日历日内完成安装调试并交付使用。本项目不接受联合体投标。二、获取招标文件:时间:2024年04月07日 至 2024年04月12日,每天上午0:00至12:00,下午13:00至23:30(北京时间,法定节假日除外 )地点:江西省公共资源交易网(网址:https://ggzy.jiangxi.gov.cn/)方式:登陆网站报名并下载招标文件。(下载招标文件时遇到问题可拨打客服电话400-998-0000咨询)售价:0.00元三、对本次招标提出询问,请按以下方式联系:1.采购人信息名称:江西省农业科学院土壤肥料与资源环境研究所地址:江西省南昌市南昌县莲塘北大道1738号联系方式:0791-827286752.采购代理机构信息名称:江西省百巨招标咨询有限公司地址:江西省南昌市红谷滩区庐山南大道1999号保利高尔夫花园配套中心3#商业楼店面110-113室联系方式:0791-852398873.项目联系方式项目联系人:艾汕辉、黄颖慧、马俊、刘玲电话:0791-85239887
  • 高端制剂研讨会2020——高技术壁垒仿制药 & 改良型新药 邀您共襄盛会
    p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 555px height: 263px " src=" https://img1.17img.cn/17img/images/202006/uepic/6f8aabea-eb03-4f89-a659-8bb985b2b123.jpg" title=" 文章首段banner.jpg" alt=" 文章首段banner.jpg" width=" 555" height=" 263" / /p p style=" text-align:left line-height:150%" strong span style=" line-height:150% color:#2F5496" 时间丨 /span /strong span style=" line-height:150%" 2020 /span span style=" line-height:150%" 年 span 8 /span 月 span 28-29 /span 日 /span /p p style=" text-align:left line-height:150%" strong span style=" line-height:150% color:#2F5496" 地点丨 /span /strong span style=" line-height:150%" 青岛· 金沙滩希尔顿酒店 /span /p p style=" text-align:left" span style=" font-size:16px font-family:宋体 color:#103FA0" ▌ /span strong span style=" font-size:16px color:#2F5496" 大会组织机构 /span /strong strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 586px height: 702px " src=" https://img1.17img.cn/17img/images/202006/uepic/a2c7ba33-ebbd-44d0-af10-02e1163b2590.jpg" title=" 组织机构.jpg" alt=" 组织机构.jpg" width=" 586" height=" 702" / /p p style=" text-align:left" span style=" font-size:16px font-family:宋体 color:#103FA0" ▌ /span strong span style=" font-size:16px color:#2F5496" 邀请函 /span /strong /p p span style=" font-size:14px" 随着 span “ /span 简单 span ” /span 常规技术制备的仿制药市场日益饱和, span “ /span 高技术壁垒仿制药 span ” /span 、 span “ /span 改良型新药 span ” /span 、 span “505(b)(2)” /span 逐步成为药圈高频热点词汇,许多制药公司纷纷将目光投向这一潜力巨大且快速发展的新兴细分领域。通过对法规及技术的理解和掌握,开发复杂高端制剂既能够解决未满足的市场需求、惠及更多患者,同时也使得企业具备差异化竞争优势,获得更高更持久的获利机会。 /span /p p span style=" font-size:14px" br/ /span span style=" font-size:14px" 机遇与挑战并存,为帮助国内企业充分了解高技术壁垒仿制药及改良型新药、应对技术 span / /span 策略 span / /span 监管方面的巨大变化, span “ /span 高端制剂研讨会 span 2020” /span 将于 span 2020 /span 年 span 8 /span 月 span 28-29 /span 日在青岛盛大召开。 /span /p p span style=" font-size:14px" & nbsp /span /p p span style=" font-size:14px" 本次大会围绕 strong span style=" font-family:等线 color:#103FA0" 1 /span /strong 个热点主题、分为 strong span style=" font-family:等线 color:#103FA0" 2 /span /strong 个专业分论坛,并安排会前企业家闭门会。邀请众多业内知名专家学者、法规评审专家,深入交流新热前沿专题,发表真知灼见、碰撞智慧观点,共同为中国高端制剂发展赋能。 /span /p p style=" text-align:left" span & nbsp /span /p p style=" text-align:left" span style=" font-size:16px font-family:宋体 color:#103FA0" ▌ /span strong span style=" font-size:16px color:#2F5496" 大会主要内容 /span /strong /p p strong span style=" font-size:14px color:#2F5496" 主论坛: /span /strong span style=" font-size:14px" 高技术壁垒仿制药和改良型新药 span /505(b)(2) /span 注册申请的现行法规 /span /p p strong span style=" font-size:14px color:#2F5496" 分论坛一: /span /strong span style=" font-size:14px" 高技术壁垒仿制药和改良型新药 span /505(b)(2) /span 开发 span & amp BE /span /span /p p strong span style=" font-size:14px color:#2F5496" 分论坛二: /span /strong span style=" font-size:14px" 高技术壁垒仿制药和改良型新药 span /505(b)(2) /span 分析方法及技术 /span /p p style=" text-align:left" span & nbsp /span /p p style=" text-align:left" span style=" font-size:16px font-family:宋体 color:#103FA0" ▌ /span strong span style=" font-size:16px color:#2F5496" 顾问委员会 /span /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 566px " src=" https://img1.17img.cn/17img/images/202006/uepic/ab493797-f489-47a4-91bc-927950074475.jpg" title=" 顾问委员会.jpg" alt=" 顾问委员会.jpg" width=" 600" height=" 566" / /p p style=" text-align:left" span style=" font-size:16px font-family:宋体 color:#103FA0" ▌ /span strong span style=" font-size:16px color:#2F5496" 部分嘉宾阵容 /span /strong /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202006/uepic/a7a542ff-8f94-4fce-9748-48da24b4f894.jpg" title=" 部分嘉宾阵容-01.jpg" / /p p style=" text-align: center" img style=" width: 618px height: 973px " src=" https://img1.17img.cn/17img/images/202006/uepic/e838ffb2-ee0e-4ab6-bc60-966a0fd94090.jpg" title=" 部分嘉宾阵容-02.jpg" width=" 618" height=" 973" / /p p class=" MsoListParagraph" style=" text-align:left text-indent:0" span style=" color:#7F7F7F" 注:所有嘉宾排序不分先后 /span /p p style=" text-align:left" span style=" font-size:16px font-family:宋体 color:#103FA0" ▌ /span strong span style=" font-size:16px color:#2F5496" 大会议程 /span /strong strong /strong /p p style=" text-align: center" img style=" width: 726px height: 814px " src=" https://img1.17img.cn/17img/images/202006/uepic/e2736dae-f50b-40ab-8d2f-8c2b11ab8ee4.jpg" title=" 大会议程-01.jpg" width=" 726" height=" 814" / /p p style=" text-align: center" img style=" width: 639px height: 536px " src=" https://img1.17img.cn/17img/images/202006/uepic/79e95186-d40f-4bcf-8f80-80568a6ba7f7.jpg" title=" 大会议程-02.jpg" width=" 639" height=" 536" / /p p style=" text-align: center" img style=" width: 708px height: 953px " src=" https://img1.17img.cn/17img/images/202006/uepic/809c3198-deb6-4a09-ad42-be21a7a7ee83.jpg" title=" 大会议程-03.jpg" width=" 708" height=" 953" / /p p style=" text-align:center" strong span style=" font-size:15px font-family: & #39 Microsoft YaHei UI& #39 ,sans-serif color:#103FA0 background:white" 扫描下方二维码快速报名 /span /strong /p p style=" text-align:center" span style=" font-size:16px font-family:宋体 color:#103FA0" ▼ /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 100px height: 100px " src=" https://img1.17img.cn/17img/images/202006/uepic/b0cd308b-2463-46a7-8b7e-4d85be106807.jpg" title=" 报名二维码.png" alt=" 报名二维码.png" width=" 100" height=" 100" border=" 0" vspace=" 0" / /p p style=" text-align:left" span style=" font-size:16px font-family:宋体 color:#103FA0" ▌ /span strong span style=" font-size:16px color:#2F5496" 战略合作伙伴 /span /strong strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4da72b71-750b-45a2-bef8-93ac138d895a.jpg" title=" 战略合作伙伴.jpg" alt=" 战略合作伙伴.jpg" / /p p style=" text-align:left" span style=" font-size:16px font-family:宋体 color:#103FA0" ▌ /span strong span style=" font-size:16px color:#2F5496" 特约赞助单位 /span /strong strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/b052f688-a56e-4b0f-825e-94b089789787.jpg" title=" 特约赞助单位.jpg" alt=" 特约赞助单位.jpg" / /p p style=" text-align:left" span style=" font-size:16px font-family:宋体 color:#103FA0" ▌ /span strong span style=" font-size:16px color:#2F5496" 支持媒体 /span /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/44e656a3-0ce5-436a-b6a6-229ac4b4e971.jpg" title=" 支持媒体.jpg" alt=" 支持媒体.jpg" / /p p style=" text-align:left" span style=" font-size:16px font-family:宋体 color:#103FA0" ▌ /span strong span style=" font-size:16px color:#2F5496" 会场信息 /span /strong /p p style=" text-align:left line-height:150%" strong span style=" line-height:150% color:#2F5496" 大会酒店丨 /span /strong span style=" line-height:150%" 青岛金沙滩希尔顿酒店 /span /p p style=" text-align:left line-height:150%" strong span style=" line-height:150% color:#2F5496" 酒店地址丨 /span /strong span style=" line-height:150%" 青岛市黄岛区嘉陵江东路 span 1 /span 号 /span /p p style=" text-align:left" span style=" font-size:16px font-family:宋体 color:#103FA0" & nbsp /span /p p style=" text-align:left" span style=" font-size:16px font-family:宋体 color:#103FA0" ▌ /span strong span style=" font-size:16px color:#2F5496" 招商报名联系方式 /span /strong /p p span style=" font-size:14px" 徐老师 span & nbsp /span /span /p p span style=" font-size:14px" Mob: 159 0193 7440 /span /p p span style=" font-size:14px" 刘老师 span & nbsp /span /span /p p span style=" font-size:14px" Mob: 131 2220 5920 /span /p p span style=" font-family:宋体 color:#103FA0" ▌ /span strong span style=" color:#2F5496" 媒体合作接洽 /span /strong /p p span style=" font-size:14px" 程老师 span & nbsp /span /span /p p span style=" font-size:14px" Mob: 131 2057 5897 /span /p p strong span style=" font-size:15px font-family:& #39 Microsoft YaHei UI& #39 ,sans-serif color:#103FA0 background:white" & nbsp /span /strong /p p span style=" font-family:宋体 color:#103FA0" ▌ /span strong span style=" color:#2F5496" 往期大会精彩回顾 /span /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c6023d44-7623-4015-92db-447006038a5f.jpg" title=" 往期大会精彩回顾 small.jpg" alt=" 往期大会精彩回顾 small.jpg" / /p p br/ /p
  • 德国IKA/艾卡:助兴竞猜世界杯,做精彩人生玩家
    当本届世界杯即将演变为一届美洲杯。是时候了,该拼了,该真刀真枪的大干一场了。不要像巴神一样思考人生,出局就晚了。巴西世界杯淘汰赛即将开始,IKA为你助兴竞猜人生玩家。参与IKA世界杯竞猜将获得世界杯特殊折扣,完美匹配你的世界杯之旅。活动说明:1、关注IKA官方微信(搜索微信号IKA-CHINA添加)即刻参与竞猜,特价赢取IKA产品;2、IKA会按时公布猜测的比赛场次,开赛前回复即视为有效;敬请密切关注IKA-CHINA官方微信。3、竞猜收益:? 猜对当期获胜队伍,即可获得C级特价优惠.? 猜对当期获胜队伍+净赢球数或进球队员名字,即可获得B级特价优惠+IKA高级保护伞一把.? 猜对当期获胜队伍+净赢球数+进球队员名字,即可获得A级特价优惠+IKA高级保护伞一把.4、第一个回复正确的人才有资格获得IKA世界杯特惠收益。第一名放弃后资格依次順移.5、本活动所述特价均含税含运费。6、本活动解释权归属IKA中国区市场与产品管理部。还等什么,精彩玩家就是你! 第一期竞猜场次:6月29日 00:00 巴西 vs 智利请按本格式回复微信:本期获胜队伍 / 净赢球数 / 进球队员名字 本场特价产品:欧洲之星强力控制型 P4 货号:2850025市场公开价: RMB22,475本场C级特价:RMB9,000本场B级特价:RMB7,000本场A级特价:RMB5,000传送缓冲梯度 4级搅拌量(水) 40L最大粘度 100,000 mPas转速范围 14-530 rpm转速显示 数字显示扭矩测量 相对扭矩钻夹头最大扭矩 200 Ncm搅拌转轴输出功率 95 W接口 RS232 / 模拟接口IKA 旋蒸特惠正在火热进行中,不要错过哦
  • 育种家话育种|“三株野草”如何变成“一碗面”?——对话小麦育种专家杨武云
    文章来源:光明网-科普中国小麦是世界上种植面积最广的粮食作物,栽培历史有1万年以上。不过,我们今天见到的小麦,已经不是它最初的样子。“现代小麦的起源进化是一个巧合且复杂的过程,经历了两次远缘杂交。”四川省农业科学院副院长、研究员、农业农村部西南区小麦生物学与遗传育种重点实验室主任杨武云介绍说。 在一万多年前,两个物种,一个叫做乌拉尔图小麦,还有一个是拟斯卑尔脱山羊草,天然杂交形成了做意大利面条的四倍体小麦;七千年前左右,四倍体小麦在自然界又跟另外一个物种叫节节麦,天然杂交,染色体自动加倍,形成了六倍体小麦,也就是现代面包小麦的祖先。  “研究清楚小麦的遗传和生物学特性,才能更好的指导小麦新品种的培育。”杨武云说,如今,科学家能够模拟小麦的进化过程,用不同的四倍体小麦和不同的节节麦杂交,合成新的人工合成小麦,再用它作为桥梁,将具有丰富遗传多样性的小麦祖先中优异基因导入到现代小麦中,从而培育新的小麦品种。  1995年,杨武云利用在国际玉米小麦改良中心培训的机会,带回了一批含节节麦血缘的人工合成小麦资源。当时,全世界育种家对人工合成小麦基因资源寄予厚望,但还没有取得成功。  “里面有节节麦的基因资源,野生性很强,具有很多对育种不利的性状,比如株型散,株高很高,壳比较硬难以脱粒等。所以无法在育种中被直接利用。”  杨武云将带回来的人工合成小麦与四川小麦杂交,经多代鉴定,最终在国际上率先育成了突破性小麦新品种“川麦42”。川麦42高抗条锈病、稳定性好、适应性广、品质优良且综合性状好,2003年和2004年,分别通过了国家和四川省品种审定委员会审定,并被推荐为四川省和全国重点推广的小麦新品种。  “川麦42产量比对照品种,在国家区试里面增产了17%,在四川省区试里面增产了30%。在大面积生产上应用,每亩可以增加100公斤左右。现在川麦42是四川小麦培育的骨干亲本,利用它又先后培育了40多个品种。”杨武云说。在培育川麦42的过程中,杨武云还结合多年来的育种实践经验,总结出了一套高效的人工合成小麦育种利用策略——“大群体有限回交法”。不仅在小麦育种上可以应用,在其他作物育种中也可以使用。  “现在我们课题组收集了大量的四倍体小麦和节节麦,在大量合成新的人工合成小麦。这些材料就像自己的子女一样,肯定有好东西在里面。”谈起未来的目标,杨武云说,第一是要高产稳产,第二是要绿色生产,抗病、抗逆,少用农药,第三还要培育强筋、弱筋或者中强筋等多元化的品种出来,满足不同层次的市场需求。  “野生资源很好,但是它也有很多不好的东西,要通过先进的技术来改良它,才能够更大范围地更好地利用它的基因资源为我们现代育种服务。”杨武云说。
  • 【告别危险生产】制药企业安全生产改良方案!
    一家总部位于瑞士的全球知名的制药企业决定利用现有的设备,满足全球市场对药品产量的需求。因此对生产过程产生的废溶剂、母液进行精馏回收,技改项目的工艺流程涉及高危工艺-氧化反应。制药小知识氧化反应为化工工艺生产过程中的一种重要反应类型,是制备许多化工原料产品及中间体必须经过的一道生产工序。氧化反应为有电子转移的化学反应中失电子的过程,即氧化数值升高的过程。多数有机化合物的氧化反应表现为反应原料得到氧或失去氢。氧化反应是一种危险的放热反应类型,如果在反应过程中气相氧含量过高,容易引起爆燃造成工艺反应失控,轻则造成设备损毁、环境污染、物料经济损失,重则可能造成人身伤亡安全事故。因此,根据国家安监总局的要求,氧化反应釜必须设置气相氧含量检测仪器。为保证安全生产,防止发生生产安全事故,除了反应釜温度和压力的报警和联锁、反应物料的比例控制和联锁及紧急切断动力系统、紧急断料系统、紧急冷却系统、紧急充氮系统,气相氧含量监测、报警和联锁系统也是安全控制的基本要求,气相氧含量是工艺重点监控的工艺参数之一。客户在为氧化反应釜选择气相氧分析仪过程中,充分考虑了工艺的特殊性和危险性。#工艺危险特点#反应原料及产品具有燃爆危险性,反应原料含有酯类、醇类有机物、催化氧化剂、次氯酸钠强氧化剂等,反应气相组成容易达到爆炸极限,具有闪爆危险;反应过程物料具有强腐蚀性,由于加入物料中有溴化钠和次氯酸钠,导致反应气相中含有腐蚀性溴化氢和氯气气体。#传统解决方案#传统的分析方法是采用电化学氧分析仪或磁氧分析仪配套预处理系统进行分析,由于反应物料中含有酯类、醇类有机物、溴化氢、氯气等物质,氧气分析仪表本身及预处理系统使用效果并不是特别理想。电化学氧分析仪燃料电池更换频繁由于其生产产品和流程工艺物料组成成分的特殊性,电化学氧分析仪燃料电池非常容易失效,需要频繁更换燃料电池才能正常分析,仪表备件成本高,仪表长期运行维护费用很大。磁氧分析仪氧传感器部件容易出现故障磁氧分析仪的氧传感器部件非常精密,容易受到粉尘、水汽和腐蚀性气体的影响,容易出现故障,氧传感器经常维护同样增加了用户仪表的长期运行维护费用。预处理系统样品传输不锈钢管线及部件的腐蚀问题由于氧化反应釜气相物料中含有微量溴化氢、氯气和水,势必会对预处理系统样品传输不锈钢管线及相关附属部件造成腐蚀,预处理系统的长期正常安全运行存在隐患。维护和标定困难, 工作量大由于样气背景中含有容易损伤磁氧和电化学传感器的介质组分,及含有溴化氢、氯气气体容易腐蚀样品不锈钢传输管线等原因, 因此造成系统维护和标定工作量大, 加之故障后如果备件不能及时供应上,很难在较短时间内修好,系统常常处于半瘫痪状态。测量不准确, 数据可靠性差系统故障率高,氧化釜气相含氧量测量不准确, 测量数据可靠性差, 不能作为有关工艺操作安全监控措施的依据。TDL激光气体分析解决方案及优势在传统的磁氧或电化学氧分析仪系统中,采样预处理系统的日常维护是其中的主要工作。激光氧气分析仪TDL能够原位安装,彻底取消了采样系统,无样品传输管线、无传动部件、无消耗性部件,避免了众多可能影响测量的故障点,大大降低了系统维护工作量, 运行费用低。梅特勒托利多所设计的GPro500激光气体分析仪具有原位安装的特点而且采用探头式设计,易于安装与调节光路,消耗氮气量少。对于氧化釜气相介质内含有微量溴化氢、氯气腐蚀性介质的特点,与物料接触部分采用耐腐蚀的金属材质,有效解决了微量腐蚀性气体对仪表的腐蚀问题。采用探头式设计,激光源发射的激光被探头头部的直角棱镜平行反射回与激光源位于同侧的激光接收器,形成折叠式光程,此设计在实际使用中具有一些技术特点:1. 单个法兰安装, 无需两侧对焦2. 降低吹扫气体消耗量,只需3L/min3. 激光穿过气体两次,有效光程翻倍,准确性更高4. 尺寸小,易于安装在狭小空间内采用多点谱线锁定和内置一致性检查技术,完全避免温度、压力、信号波动造成的测量误差,进一步提高了测量的精确性,维护周期预测性提示功能改被动性维护为主动性维护,有效确保了生产过程安全性和可靠性。
  • 我科学家揭示控制水稻分蘖新机制
    中国农业科学院作物科学研究所万建民科研团队最新研究发现,一种新的D53核蛋白作为调控植物分蘖的激素——独脚金内酯信号途径的“开关”,参与调控植物分蘖(枝)的生长发育,从而为植物特别是农作物的株型改良提供了重要的理论基础,也为育种家解决水稻籼粳亚种间杂交优势利用技术难题提供了帮助。相关研究成果于12月11日在线发表在《自然》上。这也是万建民科研团队继2012年在该刊上报道TE蛋白调控水稻分蘖形成机理后,在阐述植物分枝(蘖)形成机制领域的又一重大进展。   据万建民介绍,杂交稻的推广应用被誉为第二次绿色革命,但普通籼型杂交稻的单产潜力已十分有限。而籼粳亚种间杂交具有强大的杂种优势,其有效利用可实现水稻单产的再次飞跃。因此,挖掘水稻籼粳亚种间的杂交优势成为作物育种学家的重要课题。然而,籼粳交杂种普遍存在植株偏高、易倒伏等问题,使得籼粳亚种间的杂种优势利用受到了极大的限制。为攻克这一难题,科研团队从控制水稻分蘖的角度开展了探索性研究。   独脚金内酯是一类新的调控植物分蘖的激素,但该激素如何调控植物分蘖的分子机理尚不清楚。万建民科研团队利用一个部分显性水稻矮化多分蘖突变体d53,通过外源激素处理和内源激素测定进行了独脚金内酯调控植物分蘖的机理研究。   结果表明,d53是一个独脚金内酯不敏感突变体。通过精细定位和图位克隆,他们获得了位于水稻第11号染色体短臂末端的DWARF 53(D53)基因,该基因编码一个新的在结构上与I类Clp ATPase类似的核蛋白——D53蛋白。后续的功能分析发现,在独脚金内酯存在的条件下,D53蛋白可与两个已知的独脚金内酯信号分子D14、D3互作形成蛋白复合体,使得D53蛋白更易被蛋白酶体系统降解,从而诱导独脚金内酯信号的响应,对植物分蘖发挥调控作用。这一结果为通过调控D53基因的表达量,影响独脚金内酯的信号转导,从而对植物分蘖发挥调控作用提供了重要依据。
  • 质构仪在乳制品质地分析中的应用及探头选择
    呈固体块状的均质样品乳制品中的塑性粘性固体有人造黄油、黄油、奶油干酪、乳清干酪、乳化干酪等产品,此类产品关键物性特点是硬度即延展性、融化性与温度相关性、加工过程中的硬度变化、内聚性等。而蜡质和绵软弹性固体样品则主要是意大利干酪、荷兰干酪、羊乳酪、白乳酪、软质乳酪等,通过质构仪可分析其硬度、表面粘附性、成熟度、货架期、水分丧失引起的表面结构变化等。典型实例 1:奶油的铺展性分析(挤压/挤出实验) 该探头专业用于检测黄油、人造黄油的铺展性、蜡质性的特殊探头,通过实验可得到样品的硬度、粘附性、柔软度等指标。实验结果解读:如图所示为不同状态下黄油的测试曲线。曲线的正向峰值反映了黄油样品的硬度,可见 Dry 的黄油由于含水量少,故而在质地上较为坚硬,而 Wet 的黄油则硬度最小,Good 的黄油硬度处于二者之间,硬度的大小也反映了反映了产品的柔软度,硬度小则柔软度高,反之则柔软度差。从图中可见,太干或太湿的黄油在硬度上都会与“Good”产品存在明显的差异。典型案例 2:传统与素食奶酪产品的质地分析(穿刺实验)实验结果解读:用小直径的柱形探头做奶酪的穿刺实验,穿刺实验主要比较的是破裂力(正向峰值前面出现的小的峰)、硬度(正向峰值)、穿刺做功(正峰面积)、粘附力和粘附性。通过质构仪分析可见,素食产品在硬度和表面粘性上均小于传统奶酪,素食产品的内部均一性要优于传统产品(穿刺过程中力量基本不发生变化),而传统产的内部随着挤压的进行力量在缓慢的增大,可见其均一性不如素食产品,即脂肪含量的不同使得素食产品含水量较少且更脆,可见素食产品还需要在硬度、表面粘性、含水量等方便进行优化与改良。典型实例 3:黄油的硬度检测分析实验结果解读:人造黄油改善了黄油脂肪含量高的问题,为了使人造黄油在口感和质地上与黄油更加的接近,生产商需要了解二者在质地和口感上存在的差异具体表现在哪里。切线切割探头可以反应切割黄油时的平均力量(最大峰值),以及挤压做功(正峰面积),通过力量与做功的比较发现,人造黄油切割力与做功都远小于天然黄油,由此可见在质地上人造黄油更为柔软。
  • 安东帕固体表面Zeta电位仪提升血液透析膜适应性
    血液透析膜内表面的处理,对于血液透析膜的生物适应性至关重要。Zeta电势的测试在提高血液透析膜的生物适应性上起到一定的协助作用,安东帕固体表面电位分析仪SurPASS已经在此领域取得成功应用,并给出了详实的实验证明。 就有一定病史或急性肾功能衰竭患者来说,体外血液透析是维系生命的唯一方式。血液透析可以替代肾脏,起到将血液中的有害物质排出体外的功能。这个过程中,广泛使用的是人造的、排放成捆的中空纤维聚砜超滤膜(PSU)。为了提高透析膜的生物适应性以及避免该膜与血液接触时发生并发症,需要对透析膜的内层表面进行改良处理。安东帕固体表面分析仪SurPASS的高灵敏度在此时显得尤其重要。 医学发展趋势显示PSU透析膜受到青睐。将具有活性的羧基(COOH)移植到聚砜表面上,这是一条能制备具有固定生物活性物质界面的有效途径。将未处理的和经改良处理的透析膜的zeta电势作对比,结果显示对透析膜进行改良处理是有效的。未处理的PSU膜的零电荷电势点(IEP,ζ = 0 mV 处的pH)为pH 5,而移植了羧基的处理膜为pH 3.5。 IEP的改变以及在高pH情况下流动电势的不同,这都说明了将羧基移植到血液透析膜内层表面是非常成功的一种处理方法。由于安东帕固体表面分析仪SurPASS采用全自动测量,集成式滴定单元可以全自动调整 pH 值和添加剂浓度,测量更方便,其结果也更为准确可靠。 在表面分析中,安东帕固体表面分析仪SurPASS 可测试基于流动电势和流动电流得到的宏观固体表面Zeta 电位。Zeta 电位与固体/液体界面的表面电荷有关,能够反映出表面化学(pH 滴定法)和液相吸附过程。SurPASS 有助于了解和改进表面性质,并开发出新的专业材料。 现代的固体表面分析仪 SurPASS高灵敏度能够检测出表面性质的最微小变化可以轻易获得表面电荷和相关性质的信息从小颗粒到大晶片适用于测试各种样品的测量池圆柱形样品池用于粉末 (最小的颗粒尺寸 25 μm) 、颗粒、纤维和纺织用品夹片样品池适用于平板状样品的无损测试可调间隙样品池适用于规则形状如矩形 和圆形的平面小样品和中空纤维样品停机时间短,可节省时间测量池的快速更换测量参数每秒更新一次具有直观可视化多功能特性的全新软件全自动测量自动测量过程几乎无需手动操作集成式滴定单元可以全自动调整 pH 值和特性物质及蛋白质等添加剂的浓度 更多产品信息,请登录:www.anton-paar.com 关于安东帕(中国)奥地利安东帕有限公司(ANTON PAARGMBH)是工业及科研专用高品质测量和分析仪器的全球领导厂商。公司成立于1922年,总部设在奥地利格拉茨,在全球12个国家和地区设有分公司直接提供销售和售后服务,并在其它主要地区设有代理销售、服务机构。作为世界上第一台数字式密度计的发明者,安东帕公司的产品占全球浓度、密度测量仪器仪表行业市场份额的70%。 安东帕公司的密度仪、黏度测量仪、流变仪、旋光仪、折光仪、固体表面Zeta电位分析仪、 SAXSess 小角X光散射仪、闪点与燃点测定仪、微波消解与合成设备等产品作为分析与质量检测工具,已广泛应用于啤酒饮料,石油,化工,商检,质检,药检等诸多领域和研究机构,并且已作为许多国家行业标准及计量校正仪器。我们的用户包括了一级方程式赛车队,炼油厂,和几乎所有的世界知名饮料制造商。
  • 赋能高质量土壤普查 | ICP-OES让“精准”结果稳定输出!
    个明天(2022年4月22日),我们将迎来第52个世界地球日。今年世界地球日的主题是“Invest In Our Planet”,珀金埃尔默始终致力于人类健康和环境安全,在此共同呼吁:投资保护我们的地球,它是我们唯一的家园,每个人都需付诸行动!土壤和沉积物是地球必不可少的组成部分,对粮食的安全有着重要的作用,本期我们继续关注土壤普查。上期回顾:赋能高质量土壤普查,珀金埃尔默原子光谱“精准”出击土壤普查是查明土壤类型及分布规律,查清土壤资源数量和质量等的重要方法,普查结果可为土壤的科学分类、规划利用、改良培肥、保护管理等提供科学支撑,也可为经济社会生态建设重大政策的制定提供决策依据。土壤中的元素组成对土壤质量有着重要的影响,并且也与人类和环境的健康密切相关,因此土壤中重金属及元素检测也是本次土壤普查的重要内容。ICP-OES因具有多元素同时测量、灵敏度高、检出限低等优点,被广泛用于实验室的土壤分析领域。本次土壤普查中涉及到ICP-OES的元素也有很多,主要包括:B、Mg、Al、Si、P、S、K、Ca、Cr、Mn、Fe、Ni、Cu、Zn 、Mo、Pb等元素,这些元素有的是做土壤中总量的,有的则是有效态等非总量元素,每种类型参考的方法也有所不同。Avio 200/220 Max系列ICP-OES让土壤检测的 “精准”结果稳定输出!高灵敏度无惧低含量元素分析挑战土壤中部分有害元素含量较低,尤其是Pb、Cd等元素,采用ICP-OES分析时往往需要较高的灵敏度。Avio 200/220 Max系列ICPOES由于其独特的光路设计和强大的DBI-CCD检测器,具有高效的光能传输与转化,使其获得远优于同类产品的灵敏度,可替代石墨炉进行超痕量元素分析。全面的扣背景技术轻松解决背景干扰土壤基质中元素组成复杂,对于一些低含量元素会受到较为严重的光谱干扰,如铅(220.353)的会受到基体中高含量铝元素形成的光谱背景干扰。Avio 200/220 Max系列具有全面的扣背景技术,包括自动扣背景、单点、双点扣背景、MSF、IEC等等,可以有效地去除复杂的背景结构。对于正常的光谱线信号,即使周边有强烈的连续信号,无论是平台、斜坡还是强谱线的翼部对测定信号的影响都可以通过自动背景选择进行背景校正,获得满意的测试结果。非常适合入门级或仅具有少量分析经验的客户。开创性平板等离子体技术降低运行成本此次土壤普查涉及样品数量庞大,Avio 200/220 Max系列可以为用户大大降低运行成本。专利平板等离子体技术,Avio系列ICP-OES仅需消耗其他系统一半的氩气量,即可生成稳定、耐基体的等离子体。同时无需对射频发生线圈进行冷却和维护,提供出色的运行效率和生产力。另外,为了提高效率,Avio 200/220 Max系列具有动态波长稳定(DWS)功能,在开机短短几分钟之后您就可以进行样品分析,并在分析工作结束后关闭仪器电源以节约电能。独有的土壤快速消解技术大大缩短样品前处理时间对于土壤样品元素分析,前处理通常占用了整个分析过程的大部分时间,那么寻找一种快速有效的土壤前处理方式则会大大提高分析效率。珀金埃尔默公司创新研发了一种土壤快速消解方法,该方法节约时间,最长仅需2h;用酸量少、操作更加安全;交叉污染少,结果更准确;适用于大批量样品分析。实际样品分析结果采用快速消解技术分析GSS-8中的As、Zn、Pb、Cd、Ni、 Cu、Cr等元素,结果均与标准值吻合。检测装备的灵敏、准确和稳定是获取高质量普查数据的重要保障。作为世界原子光谱技术的领导者,珀金埃尔默深谙土壤检测客户需求,携全能元素分析方案“精准”出击,为确保检测实验室高质量完成土壤普查任务赋能!赋能高质量土壤普查 | ICP-OES让“精准”结果稳定输出!Original Lily 珀金埃尔默 2022-04-21 18:15收录于合集#土壤三普3个#环境31个明天(2022年4月22日),我们将迎来第52个世界地球日。今年世界地球日的主题是“Invest In Our Planet”,珀金埃尔默始终致力于人类健康和环境安全,在此共同呼吁:投资保护我们的地球,它是我们唯一的家园,每个人都需付诸行动!土壤和沉积物是地球必不可少的组成部分,对粮食的安全有着重要的作用,本期我们继续关注土壤普查。上期回顾:赋能高质量土壤普查,珀金埃尔默原子光谱“精准”出击Avio 200/220 Max系列ICP-OES让土壤检测的 “精准”结果稳定输出!
  • 专家呼吁建立儿童食品添加剂标准
    专家提醒,在警惕超量、超范围使用食品添加剂可能对儿童身体健康造成伤害的同时,还要警惕正常使用添加剂存在的潜在问题。中国农业大学食品科学与营养工程学院副教授朱毅认为,不同类型的添加剂叠加使用,虽然每一种添加剂都没有超标,但是它们集中在一起,会不会相互发生反应产生新的毒害物质?这个问题至今还没有明确答案。但由于孩子们代谢器官尚未发育成熟,可能造成有害物质在体内产生积累效应,长期大量摄入可能会对儿童的健康成长不利。   专家介绍,消费者最常接触到的添加剂是漂白剂、着色剂、抗氧化剂、防腐剂、香精、甜味剂六大类。现在由于添加剂引发的食品安全问题无外乎四种,第一种是使用非法添加剂,比如三聚氰胺、苏丹红、瘦肉精 第二种是超量使用食品添加剂 第三种是超范围使用食品添加剂 第四种是使用不合格的添加剂。一位从事食品加工的业内人士说:“一些小企业使用不合格的添加剂,价格低,成本低,染色和食品改良效果也不差,性价比高。”   鉴于以上情况专家建议分人群建立添加剂使用标准,呼吁应该建立专门的儿童添加剂使用标准。专家表示,截至目前,国家虽然对婴幼儿食品添加剂范围进行了严格限制,同时制定了相应的配方食品和辅食的国家标准,但是针对三周岁以上的儿童和青少年却还没有专门的食品安全标准。专家称,在有条件的情况下,建议更细致地分人群建立添加剂的使用标准。   针对人工色素带来的健康隐患,专家强调对于颜色过于鲜艳、着色太浓的食品,家长一定要谨慎购买,如果食用后发现嘴唇、手指有染色和气味刺鼻的食品要立即停止食用。“爱孩子就DIY(自制),因为自制食品更健康。”专家提醒,家长在加强对孩子食品安全卫生知识的教育,增强他们的食品安全意识的同时,自己也要付诸行动。“尽量让孩子远离加工食品,动手制作的食物能提供平衡的营养,保留较多的膳食纤维,这是爱孩子最明智的表现。”专家提醒,想避免摄入大量食品添加剂,最好的方法就是自己购买食品原料亲自动手制作健康的家庭食品。国外研究表明,在让儿童远离各种加工食品之后,不少孩子的多动症、注意力不集中、学习障碍、攻击性行为等都有所改善。
  • 2016中国生命科学领域十大进展公布
    日前,中国科协生命科学学会联合体组织18个成员学会推荐,由生命科学领域专家审核并评选出2016年度“中国生命科学领域十大进展”。  植物分枝激素独脚金内酯的感知机制植物分枝激素独脚金内酯的感知机制示意图  植物激素调控植物的繁衍生息,与人类生存环境和粮食安全息息相关。独脚金内酯作为新型植物激素,调控植物分枝、决定植物株型、影响作物产量。清华大学谢道昕、饶子和及娄智勇等合作发现了独脚金内酯的受体感知机制,揭示了“受体-配体”不可逆识别的新规律,发现受体D14参与激素活性分子的合成和不可逆结合、进而触发信号传导链,调控植物分枝。这一发现丰富了生物学领域过去百年建立的配体可逆地结合受体并循环地触发传导链的“配体-受体”识别理论,为创立生物受体与配体不可逆识别的新理论奠定了重要基础,并对植物株型遗传改良和寄生杂草防治具有重要指导作用。该工作发表于《自然》杂志(Nature,2016 ,536:469-474)。  线粒体呼吸链超级复合物的结构与功能哺乳动物呼吸体三维结构呼吸体电子传递及质子转运途径  呼吸作用是生命体最基础的生命活动之一。由位于线粒体内膜的氧化磷酸化系统完成,为细胞提供能量。人类线粒体呼吸链氧化磷酸化系统异常会导致多种疾病,如阿尔茨海默病、帕金森病、多发性硬化、少年脊髓型共济失调以及肌萎缩性脊髓侧索硬化症等。哺乳动物呼吸体是由包括44个膜蛋白在内的81个蛋白亚基(69种不同蛋白分子)所构成的分子量高达1.7兆道尔顿的超级膜蛋白分子机器。清华大学杨茂君研究组先后在《自然》(Nature, 2016, 537: 639–643)和《细胞》(Cell, 2016,167:1598–1609)杂志发文,报道了呼吸链超级复合物结构。该结构是目前所解析的最复杂的非对称性膜蛋白超级分子机器的结构(图A,B),为进一步理解哺乳动物呼吸链超级复合物的组织形式、分子机理以及治疗细胞呼吸相关的疾病提供了重要的结构基础。  组蛋白甲基化修饰在早期胚胎发育中的建立与调控小鼠植入前胚胎的组蛋白H3K4me3和H3K27me3修饰动态变化图谱  组蛋白修饰对基因表达与沉默发挥重要调控作用,在早期胚胎发育过程中, 异常的组蛋白修饰会导致胚胎发育停滞。哺乳动物植入前胚胎全基因组水平组蛋白修饰的建立与调控是发育生物学领域一个亟待解决的科学问题。同济大学高绍荣团队首次利用微量细胞染色体免疫共沉淀技术揭示了H3K4me3和H3K27me3两种重要组蛋白修饰在早期胚胎中的分布特点以及对早期胚胎发育独特的调控机制,发现宽的H3K4me3修饰在早期胚胎大量存在并在基因表达调控和胚胎发育第一次细胞命运决定中发挥重要作用。该成果发表在《自然》(Nature,2016,537:558-562)杂志上,其意义为揭示了组蛋白修饰在植入前胚胎发育以及早期细胞分化过程中的特异性调控模式,对研究胚胎发育异常、提高辅助生殖技术的成功率具有重要意义。  基于胆固醇代谢调控的肿瘤免疫治疗新方法胆固醇酯化酶ACAT1调控T细胞肿瘤杀伤过程示意图  T细胞介导的肿瘤免疫治疗是治疗肿瘤的重要武器,在临床上已取得了巨大的成功。但现有的基于信号转导调控的肿瘤免疫治疗手段只对部分病人有效,因此急需发展新的方法让更多的病人受益。中国科学院上海生物化学与细胞生物学研究所许琛琦、李伯良与合作者从代谢调控这一全新的角度去研究T细胞肿瘤免疫反应。鉴定了胆固醇酯化酶ACAT1是调控肿瘤免疫应答的代谢检查点,抑制其活性可以增强CD8+ T细胞的肿瘤杀伤能力。同时发现ACAT1抑制剂Avasimibe(辉瑞公司开发的用于治疗动脉粥样硬化的药物,进行了III期临床试验),具有很好的抗肿瘤效应,并且能与现有的临床药物PD-1抗体进行联合治疗。该项研究开辟肿瘤免疫治疗研究的一个全新领域 同时发现ACAT1这一药物靶点及其小分子抑制剂的应用前景,发展了新的肿瘤免疫治疗方法。该研究论文发表在《自然》(Nature,2016,531:651-655)杂志上。  内源性干细胞介导功能性晶状体再生治疗婴幼儿白内障  中山大学中山眼科中心刘奕志教授带领团队,历经18年研究,发现了晶状体上皮干细胞 为了利用干细胞的再生潜能实现组织修复,设计并创建了一种新的微创白内障手术方法,保留了自体晶状体干细胞及其再生的微环境,长出了功能性的晶状体,已用于临床治疗婴幼儿白内障,提高了患儿视力,降低了并发症。该研究不仅为白内障治疗提供了全新的策略,也首次实现了自体干细胞介导的实体组织器官的再生,开辟了组织再生及干细胞临床应用的新方向。论文发表在《Nature》杂志(Nature, 2016,531:323-328)。  活性RAG型转座子的发现揭示抗体V(D)J重组的起源文昌鱼ProtoRAG转座子和脊椎动物RAG蛋白的功能比较  以免疫记忆与疫苗产生为核心的人类适应性免疫的关键机制就是RAG介导的抗体重排,所以,RAG基因的起源一直是免疫形成揭秘的关键问题。为此,诺贝尔奖获得者利根川进(Tonegawa)1979年提出了转座子起源假说,此后围绕RAG的起源与功能,展开了激烈的学术争论,直到该成果发表前, 转座子起源假说并未得到证实,成为免疫学一个经典谜题。  北京中医药大学徐安龙研究组以有活化石之称的文昌鱼为研究对象,发现了具有介导V(D)J重排功能的原始RAG转座子,证实了利根川进的假说。该发现不仅改写免疫教科书中关于适应性免疫起源的观点:将适应性免疫的起源由脊椎动物推前近1亿年到无脊椎动物,而且可能为未来利用重排机制设计新的免疫抗体/基因提供崭新的基因编辑思路和技术。相关研究论文发表在《细胞》 [Cell166(1):102—114,2016]上。  植物雌雄配子体识别的分子机制  受精需要精子和卵细胞的结合,而精子能否被及时的传递到卵子是受精的关键。在被子植物中,精子是通过花粉管来传递的,但花粉管是如何将精子传递到卵子的呢?这一问题是植物生殖生物学几十年来关注的主要问题之一,这个过程也是植物生殖隔离及物种多样性维持的重要因素之一。中科院遗传发育所杨维才研究组首次分离了拟南芥中花粉管识别雌性吸引信号的受体蛋白复合体,并揭示了信号识别和激活的分子机制。通过转基因手段将其中一个信号受体导入荠菜中,并与拟南芥进行杂交,转基因荠菜的花粉管识别拟南芥胚囊的效率得到明显提高。该研究通过基因工程手段建立了利用关键基因打破生殖隔离的方法,为克服杂交育种中杂交不亲和性提供了重要理论依据。该研究成果发表在《自然》杂志上(Nature, 2016,531:241-4)。  精子tsRNAs可作为记忆载体介导获得性性状跨代遗传  研究发现父亲的某些获得性性状,如饮食诱导的代谢紊乱,可通过表观遗传的方式“记忆”在精子中并遗传给下一代,这对人类健康和繁衍具有深远的影响。中国科学院动物研究所周琪、段恩奎与上海生命科学研究院营养科学研究所翟琦巍研究员合作团队基于父系高脂饮食小鼠模型,发现精子中一类来源于tRNA的小RNA (tsRNAs) 在高脂饮食下表达谱和RNA修饰谱均发生显著改变,且将高脂小鼠精子中的tsRNAs片段注射到正常受精卵内可诱导F1代产生代谢性疾病。tsRNAs进入受精卵后可导致早期胚胎及后代小鼠胰岛中代谢通路基因发生显著改变。本研究从精子RNA角度,为研究获得性性状跨代遗传开拓了全新的视角,提出精子tsRNAs是一类新的父本表观遗传因子,可介导获得性代谢疾病的跨代遗传。文章发表后被国际重要刊物广泛引用和评价,也引起国际各大媒体的关注。该论文发表在《科学》(Science,2016,351(6271): 397—400 )上。  MECP2转基因猴的类自闭症行为表征与种系传递MECP2转基因猴表现出类人类自闭症的刻板行为与社交障碍等行为  中国科学院上海神经科学研究所仇子龙研究员等通过构建携带人类自闭症基因MECP2的转基因猴模型及对MECP2转基因猴进行分子遗传学与行为学分析,发现MECP2转基因猴表现出类人类自闭症的刻板行为与社交障碍等行为。此研究首次建立了携带人类自闭症基因的非人灵长类动物模型,为深入研究自闭症的病理与探索可能的治疗干预方法提供了重要基础。  在该研究中,研究人员通过精巢异种移植,将幼年食蟹猴的精巢移植到裸鼠的背部,实现了食蟹猴精巢提早成熟,并利用移植精巢组织内生成的精子成功获得了健康的F1代MECP2转基因食蟹猴后代。该工作加速了食蟹猴的精子生成速度,缩短了食蟹猴的繁殖周期,对于推动非人灵长类动物模型的应用具有重大意义。该研究成果发表于《自然》(Nature, 2016,530:98–102)杂志上。  埃博拉病毒入侵机制研究  埃博拉病毒入侵宿主细胞模式图(左)博拉病毒表面激活态糖蛋白GPcl与其宿主的内吞体内受体NPC1的复合物三维结构图(右).  2014-15年暴发的埃博拉病毒疫情在西非国家造成了1万余人死亡,引起了全人类社会的高度关注。此前,埃博拉病毒入侵宿主细胞的分子机制并不清楚。中国科学院微生物研究所高福团队在国际上率先解析出埃博拉病毒表面激活态糖蛋白与宿主细胞内吞体膜受体NPC1腔内结构域C的复合物三维结构,阐明两者如同“锁钥”的相互作用模式,从分子水平阐释了一种新的囊膜病毒膜融合激发机制(第五种机制),成为近年来国际病毒学领域的一大突破。该研究为抗病毒药物设计提供了新靶点,加深了人们对埃博拉病毒入侵机制的认识,为应对埃博拉病毒病疫情及防控提供重要的理论基础。研究成果在《细胞》(Cell,2016, 167:1511–1524)杂志上发表。
  • 聚焦国家重点研发计划之农业领域——七大农作物育种 畜禽重大疫病防控与高效安全养殖综合技术研发篇
    从“经验育种”到定向高效“精确育种”——记“主要粮食作物分子设计育种”项目  “十三五”末我国粮食作物良种选育将上新台阶,“主要粮食作物分子设计育种”项目已获2016年国家重点研发计划“七大农作物育种专项”14191万元经费支持,我国水稻、小麦和玉米新品种培育有望在2020年前取得重大突破。  本项目是2016年“七大农作物育种”专项支持力度最大的项目。本项目由中国科学院遗传与发育生物学研究所牵头实施,汇集国内优势单位57家、155名科技人员,设立“水稻分子设计育种”“小麦分子设计育种”“玉米分子设计育种”和“共性技术与信息平台”四个课题。  项目根据水稻、小麦、玉米三大作物的共性和特性,拟在分子设计育种方向上开展以下五方面的研究:一是主要粮食作物关键基因挖掘和分子设计:在分析不同地区三大粮食作物主栽品种特性的基础上,结合其产量、生育期和抗病虫等性状相关的基因型,根据水稻、玉米等基因克隆和小麦测序信息等相关信息,利用已精细定位的高产、优质、抗病虫、耐逆、养分高效利用等重要性状基因/主效位点,发掘验证育种可用的基因特异性分子标记 二是研发和提高作物分子育种技术:利用育种材料全基因组遗传背景选择、分子标记筛选、基因快速导入和优异基因聚合等手段,显著提高传统育种效率,加快品种改良速度,建立作物分子育种技术体系和应用平台,克服多性状多基因聚合、后代选择效率低等难题,大幅度提高我国分子育种的理论和技术水平 三是新品种培育与推广:通过分子组装设计,将供体亲本与主栽品种进行杂交选育,利用分子标记进行辅助选择,尝试多性状、多基因位点的不同聚合方式,实现重要性状基因的聚合,创制高产、优质、抗病虫、耐逆、养分高效利用等有重大育种利用价值的新材料,最终培育出具有多种优良性状能大面积推广的突破性新品种 四是分子设计育种信息平台的建立:研制分子设计育种软件,建立农艺性状和基因信息数据库,建立并完善分子标记数据库和分子检测平台 五是生物安全的基因组编辑育种技术体系的建立:在技术层面完整地对作物基因组编辑技术进行全方位的改进、完善和创新,提高基因组编辑技术的高效性和准确性,建立生物安全的作物基因组编辑育种技术体系。  本项目的实施将建立水稻、玉米、小麦等主要粮食作物品种分子设计信息系统和高效育种技术体系,形成大量具有自主知识产权的发明专利及技术标准,推进优质高产抗逆与资源高效利用育种的相关理论与技术创新,显著提升我国作物育种技术自主创新能力。通过培育推广突破性新品种,大幅提高作物单产,降低生产成本,大幅度减少农药用量,提高化肥利用率,节约水资源。揭开神经嗜性病毒的神秘面纱——记“重要神经嗜性人兽共患病免疫与致病机制研究”项目  人兽共患病防控关系动物和人民健康、环境与生态安全。随着环境、气候的改变,人类面临人兽共患病的威胁日益加剧。“重要神经嗜性人兽共患病免疫与致病机制研究”项目于2016年获得国家重点研发计划“畜禽重大疫病防控与高效安全养殖综合技术研发专项”立项支持,我国在重要神经嗜性人兽共患病的免疫与致病机制研究领域将有望取得重大突破。  本项目经费为4900万元,执行期为2016—2020年。该项目由华中农业大学牵头实施,汇集国内14家优势单位、38名科技人员进行联合攻关。项目将围绕狂犬病毒、乙型脑炎病毒的免疫与致病机制,从7个方面开展系统研究:一是病原生态学与分子流行病学研究:将对我国新出现的狂犬病、乙型脑炎传染源,开展遗传演化、地理分布、感染率、毒力、免疫原性等分析,并对不同动物(尤其是野生动物)传播狂犬病和乙型脑炎的分布和流行新特点展开研究。二是病原感染与传播机制研究:将从病毒感染不同宿主细胞受体利用的角度,揭示乙型脑炎病毒跨宿主传播的分子机制,并研究狂犬病毒逆神经轴浆传输机制。三是病原复制/增殖机制研究:重点研究病毒蛋白及宿主因子在病毒复制与包装过程中的调控作用机制。四是病原诱导天然免疫应答及其调控机制研究:发掘神经嗜性病原天然免疫识别受体,解析病原逃逸宿主天然免疫的机制,筛选有效宿主抗病毒因子等。五是病原诱导获得性免疫应答及其调控机制研究:重点解析乙脑病毒调控Tfh细胞分化机制、狂犬病毒调控浆细胞和记忆性B细胞分化机制。六是病原入侵中枢神经系统(CNS)的机制研究:研究神经嗜性病原入侵中枢神经系统的途径、诱导血管内皮细胞活化及血脑屏障破坏的机制,为阻断病原入侵中枢神经系统提供分子靶标。七是病原诱导神经损伤的分子机制研究:解析乙型脑炎病毒诱导中枢神经系统炎症反应的分子机制、狂犬病毒诱发神经递质产生异常的分子机制,为神经嗜性病毒引发中枢神经系统疾病的治疗提供新的药物靶标和理论依据。  本项目将全面揭示狂犬病毒和乙型脑炎病毒的病原生态学与分子流行病学特征,发掘介导狂犬病毒和乙型脑炎病毒感染与传播的关键受体蛋白,阐明病毒复制以及与宿主免疫系统互作的新机制,解析其入侵神经系统、诱导神经损伤的关键信号通路。其研究成果不仅可以为狂犬病毒、乙型脑炎病毒的新型疫苗、诊断试剂、药物及治疗等防控技术与产品研发提供重要理论基础,而且还将推动我国神经嗜性病原研究新领域的拓展,具有重要的科学价值和社会意义。诱变育种:从“无中生有”到农作物品种持续创新——记“主要农作物诱变育种”项目  日前,中国农业科学院作物科学研究所牵头的“主要农作物诱变育种”项目已获2016年国家重点研发计划“七大农作物育种”重点专项4774万元经费支持。  “十三五”期间本项目汇集国内48家优势单位、116名科技人员,设立了小麦诱变育种技术创新与品种创制、水稻空间诱变育种技术创新与品种创制、水稻诱变育种技术创新与品种创制、玉米诱变育种技术创新与品种创制、大豆等经济作物诱变育种技术创新与品种创制、主要农作物诱变共性技术开发研究等六个课题。  本项目重点开展以下5个方面的研究:一是主要农作物诱变损伤修复与基因突变的分子解析:研究高能重离子辐射、空间诱变、地面模拟诱变等诱发小麦、水稻、玉米、大豆、棉花、辣椒、番茄等主要农作物变异的分子生物学效应,解析DNA损伤修复与突变发生的分子机理 结合新一代测序技术等最新分子生物学和基因组学技术,对重要突变体的特异性状进行遗传分析和分子鉴定,为育种的广泛利用和定向改良提供目的基因。二是主要农作物诱变育种关键技术研究:开发旨在提高基因突变频率,拓展突变谱和引导基因变异方向的核辐射与空间诱变等新途径,重点完善高能重离子、混合粒子场、质子、快中子等诱变因素处理靶室操作技术,建立主要农作物高效诱变技术体系 完善重要突变性状基因的TILLING、基因分型等高通量筛选平台,建立高效的突变体筛选技术体系。三是主要农作物诱变新材料创制:诱变创制大容量、呈梯度的主要农作物主栽品种突变库 根据主要农作物各生态区的需求,创制产量、品质、抗病、抗逆、株型等重要性状突变新材料。四是主要农作物优良突变新品种选育与示范:有效利用核辐射、空间诱变及地面模拟诱变等方法,与细胞工程、杂种优势利用和常规育种有机结合,培育具有高产、优质、抗病、抗逆、早熟等优良性状的新品种,通过试验示范、种企结合、良种良法配套栽培技术研究等措施方式,加速新品种的推广种植。五是诱变技术国际合作:重点开展与国际原子能机构、日本、韩国、澳大利亚、印尼等国际组织和国家的合作研究与人才交流,培养一支高水平的国际化诱变科技创新团队,保持我国在农作物诱变育种应用方面的世界领先地位。  本项目预期至2020年创制小麦、水稻、玉米、大豆、辣椒、番茄等作物新品种15个以上,新品种在项目期内累计推广650万亩,创造社会经济效益4.16亿元。同时,这些新品种的种子加工与推广将带动种业企业的创新发展。诱变创造出的一大批优异新种质(材料),将成为常规育种等取得重大突破的关键基础,以此作为杂交亲本,培育在产量和品质上有突破性的优良品种,将在更大范围内促进农作物增产。精准研判 科学施检 分级预警 严防入侵——记“潜在入侵的畜禽疫病监测与预警技术研究”项目  保障进出境我国动物及动物产品安全贸易的需求,提升口岸检疫把关技术水平,“潜在入侵的畜禽疫病监测与预警技术研究”项目已获2016年国家重点研发计划“畜禽重大疫病防控与高效安全养殖综合技术研发专项”4550万元经费支持,我国潜在入侵的畜禽疫病风险研判、监测与预警技术有望在2020年前取得重大突破。  本项目由中国检验检疫科学研究院牵头实施,汇集国内优势单位21家、169名科技人员,设立“外来畜禽疫病风险分析新技术研究”“潜在入侵的畜禽疫病检测、鉴定新技术研究”“潜在入侵的畜禽疫病口岸监测技术研究”“外来畜禽疫病现场快速检测技术与装备研发”“未知、变异动物疫病溯源及早期监测技术研究”和“外来畜禽疫病信息化预警和溯源技术研究”六个课题。  本项目根据外来畜禽疫病的共性和特性,拟开展以下六方面的研究:一是分析境外畜禽疫病信息,绘制风险传入场景树 构建基于专家研判系统的外来畜禽疫病半定量风险分析模型及定量风险分析模型,分析外来畜禽疫病随进境动物及产品潜在传入风险 建立外来畜禽疫病风险分析数据库。二是研究潜在入侵畜禽疫病的现场筛查、实验室精准检测等技术 研究非洲猪瘟等重要畜禽疫病RPA早期检测、激光显微切割免疫荧光等精准检测新技术 开展检测方法的国际验证 研发生物安全的标准物质并组装应用。三是研究进境动物及产品监测抽样框和布点选择策略 开展基于流行病学的监测抽样技术研究 研究口岸监测的风险不确定性,构建无疫监测抽样模型和疫病发生监测抽样模型 研发相关疫病的高通量监测技术并进行监测应用。四是研究外来畜禽疫病的现场快速检测技术及试剂 研发现场便携高灵敏的一体化检测设备 整合应用现场检测技术、试剂及装备,开展口岸现场的实时在线超敏检测和结果的自动采集上报。五是研究未知变异病原宏基因组学识别技术 构建病原体特征序列数据库 研究优化生物信息学分析流程,建立未知变异病原的分子溯源技术 建立潜在入侵的未知变异动物疫病RPA等早期监测技术并示范应用。六是整合潜在入侵的畜禽疫病口岸及现场检测数据、监测数据、未知和变异病原监测数据,构建进境动物及产品疫请数据库 研究数据治理技术,构建基于检测监测数据的进境动物及产品溯源平台 挖掘不同维度数据的潜在联系,构建疫病传播态势场景化数学模型 建立外来畜禽疫病信息化预警平台。  本项目实施后,我国潜在入侵畜禽疫病防控体系将更加完善,风险研判、口岸检疫把关以及溯源预警等能力都将得到明显“升级换挡” 建立的以国家和产品类型为检索对象的风险分析数据库,可满足快速通关放行对疫情研判的需求 项目研发的大力推广应用,可实现对口岸入境的畜禽及产品检测监测覆盖率80%以上,病原覆盖率90%以上 研究建立进境动物及产品疫情数据库 搭建潜在入侵畜禽疫病信息化分级预警平台,可满足对90%以上进境牛、羊等畜禽以及40种以上检疫性疫病进行场景化分级预警的要求。为稻粮谋 藏粮于技 强优势水稻杂交种再续力——记“水稻杂种优势利用技术与强优势杂交种创制”项目  为稻粮谋。在前两个五年计划的基础上,“十三五”中国强优势水稻杂交种研究继续获得国家支持,整合全国45家水稻杂种优势利用优势单位,实施“藏粮于技”战略,不断向水稻更高产量冲刺,力保中国13亿人口口粮安全。  项目由湖南杂交水稻研究中心牵头实施,汇集全国各稻区45家水稻杂种优势利用研究强势单位、156名骨干研究人员,针对全国不同稻作生态区水稻生产实际情况、区域特色和拟解决的共性和个性关键问题设立了7个课题,主要从如下五个方面开展研究:一是水稻杂种优势利用新技术、新方法研究:研究稻属远缘种、亚种、近缘种、生态群间优异基因利用和杂种优势利用新技术、新方法,拓展强优势水稻杂交种遗传基础 研究红莲型不育、光敏核不育、新型可控雄性核不育利用技术,建立安全型水稻杂种优势利用新技术 研究适应现代农业转变的轻简栽培、集约化、机械化生产的强优势杂交种新株型育种技术 二是强优势水稻杂交种高效育种技术研究:利用细胞工程、高通量SNP标记等技术建立不同稻作区强优势水稻杂交种亲本快速选育技术 研究不同稻作区水稻杂种优势预测与利用技术,建立和完善相应的强优势水稻杂交种高效育种技术体系 三是水稻杂种优势核心种群构建与资源创新:挖掘水稻高产、高光效、耐热、耐寒、抗病虫、重金属低富集、养分高效等重要性状功能基因,创建优异基因轮回选择库,创新水稻杂种优势利用核心种质,创建全国不同稻作区水稻杂种优势类群及其利用模式 四是强优势水稻杂交种骨干亲本创制:利用不同杂种优势类群,创制各稻区强优势突破性新材料,培育高配合力、高异交率的新型雄性不育系及强恢复系 五是强优势水稻杂交种创制。根据全国各稻作区育种目标和生态条件,确定强优势水稻杂交种的选育指标,利用强优势亲本大群体测配,通过生态育种、穿梭育种和规模化测试,选育聚合高产、优质、抗病虫、抗逆等优良性状基因的、适于现代耕作制度的水稻强优势杂交种,并进行大面积示范与推广。  本项目将通过水稻杂种优势利用新技术研究和强优势杂交种的选育和推广应用,将快速提升水稻杂种优势利用水平,可全面提升我国粮食的供给能力,促进农业生产的可持续发展,从而确保国家的粮食安全。本项目将以贯彻落实《国家中长期科学和技术发展规划纲要》和新时期国家粮食安全战略为指针,按照“创新、协调、绿色、开放、共享”理念的要求,预期将研创一批产量潜力更高、综合性状更强的水稻强优势杂交种。执行期间将创制强优势水稻杂交新品种30个,预计强优势杂交种累计示范推广900万亩以上,可增产粮食4亿公斤左右,创造直接经济效益达10亿元以上。同一个世界 同一个健康——记“畜禽重要病原耐药性检测与控制技术研究”项目  “十三五”末我国畜禽病原耐药性的监测和防控体系将上新台阶,“畜禽重要病原耐药性检测与控制技术研究”项目已获2016年国家重点研发计划“畜禽重大疫病防控与高效安全养殖综合技术研发专项”4550万元经费支持,我国畜禽病原耐药性的监控技术体系有望在2020年取得重大突破,为应对“耐药性”这一全球的公共问题和难题作出贡献。  本项目隶属“畜禽重大疫病防控与高效安全养殖综合技术研发专项”,拟建立“监测—预警—控制”一体化的畜禽病原耐药性监测和控制技术体系。本项目由华南农业大学牵头实施,联合在畜禽病原耐药性研究方面的优势单位如中国农业大学、吉林大学和华中农业大学等30家开展合作研究  本项目将从“监测—预警—控制”三方面开展以下研究:一是耐药性监测技术研究:研制一批具有自主知识产权的能适用于养殖单位、高校和科研院所等不同技术平台以及不同检测规模的快速、高通量耐药性检测技术或产品,建立耐药性监测采样方法标准、检测判定标准和各类耐药临界值标准,构建畜禽病原菌耐药性检测和评价标准体系。二是耐药性预警技术研究:在建立监测技术的同时,在全国范围内开展不同规模养殖场抗菌药用药和耐药性基础数据的大样本调查,掌握我国畜禽病原菌和养殖环境耐药菌的耐药特征,并在此基础上建立畜禽抗菌药物使用数据库,畜禽病原体(重要病原菌和球虫)、养殖环境生态链中的耐药菌和耐药基因的数据库,建立动物病原菌的耐药性风险评估模型和环境生态风险评估技术体系,为我国建立兽药安全评价导则和环境安全评价导则提供基础数据和技术支持。三是耐药性防控技术研究:主要通过研究天然植物及其提取物、生物酶制剂和微生态类制剂等新型饲用抗生素的替代产品及综合应用技术来减少抗菌药的使用 同时针对现有的经口给药的抗菌药物进行精准的生物药剂学(BCS)分类,引导兽药制剂研发,关注兽药剂型设计工艺和投药技术相结合,以兽医临床一线药物及专用药物为研究重点,以减抗增效,避免耐药性产生为目标,开展新制剂和投药新技术研究。此外,将获得与现有抗生素联合或单独使用有效治疗耐药病原菌感染和消减病原菌耐药性的候选药物和新兽药 建立其对畜禽主要病原菌感染的药动学/药效学同步模型,制定科学合理的用药规程和用药技术,延缓耐药性的产生。  项目的实施将显著提升我国动物疫病防控的科技创新能力,通过推广项目研发的耐药性防控技术,将减少我国畜禽养殖业抗菌药物的使用量,并培养一批从事畜禽病原菌耐药性研究的高水平人才,形成一支有国际影响力的研究队伍,提升我国在该领域的研究水平和国际学术地位。解析机理 创新方式 提升效率——记“主要农作物杂种优势形成与利用机理”项目  主要农作物杂种优势利用在世界范围为农作物产量的提高作出了巨大贡献,然而杂种优势的生物学基础却是国际科学界的世纪难题。过去20年的研究显示,显性和超显性是杂种优势的主要遗传学基础,但重要农艺性状杂种优势形成的机制还不清楚。  国家重点研发计划项目“主要农作物杂种优势形成与利用机理”,将通过比较分析杂种优势利用最为成功的禾本科作物水稻和玉米的杂种优势机理,在多种组学水平揭示杂种的组学特征,进而在基因水平阐明杂种优势形成的分子机理,从而能更好地理解为什么能产生杂种优势,怎样才能产生强杂种优势,使杂种优势理论获得突破。  前期杂种优势组学研究主要是基于单个杂交组合,并且只限于某个组学,不能产生一个系统的组学模型来解释杂交组合的组学特征。因此,不同杂种优势强度的组合间是否有共同的组学特征?这种组学特征又是什么?在不考虑上位性效应时,中亲优势就是显性、超显性累加的净效应,并且大量的研究证明了显性、超显性在杂种优势中的重要作用。但是,显性、超显性效应产生的机制是什么?海量的组学数据(转录组,代谢组数据等)和丰富的重要基因功能信息能否用来准确预测杂种优势?这些都是亟待回答的科学问题。  “主要农作物杂种优势形成与利用机理”项目,将回答以下科学问题:一是主要农作物不同优势杂交组合的组学特征 二是显性、超显性形成的机制 三是杂种优势的准确预测 四是高效杂种优势利用的新型雄性不育系及恢复系的创建。回答这些科学问题将对解析杂种优势的生物学基础这个生命科学界的世纪难题有所突破,并为作物杂种优势利用提供新策略和途径。  本项目将集中国内本领域优势单位,以水稻、玉米、油菜和小麦四大作物为研究对象开展项目的研究。集中深入地开展杂种和亲本间的基因组、转录组、代谢组学特征比较,建立基因组结构,基因表达,代谢物分化等多组学系统模型,从组学层面揭示杂种优势的分子机制。本项目注重基础理论研究成果向应用研究延伸,开展杂种优势群分析,优化不同作物的优势群,在宏观层面提出杂种组合选配的基本原则,同时,建立杂种优势预测的方法,在宏观选配前提下,预测有潜在强优势的杂交组合,高效选配强优势组合。杂种稳定性优势的遗传基础剖析能为选育广适性的强优势组合提供基因资源,使强优势组合发挥更大的经济效益和社会效益。杂种优势利用系统的雄性不育系的育性恢复机制的阐明将大大利于新的不育系创制,而新型雄性不育基因的发掘和不育系的培育将可能带来不育系繁殖和杂交种制种技术的革新。预期通过项目的实施将直接推动杂种优势利用水平的提高,进而为保障我国粮食安全做新的更大贡献。(来源:科技日报)
  • 您的试验机是该修了还是该换了?
    万能试验机(UTMs)是非常可靠耐用的工具——能够一周工作7天,每天进行数百次试验,承受试样在高达5kN、50kN、甚至600kN及以上的载荷下发生断裂时所产生的能量冲击。然而,和真的驮马一样,经过数年或数十年的工作,试验机最终会变旧、磨损,不再像新机一样可靠,性能也不可同日而语——但是,你会把它放在一边,置之不理?或者,你会对其翻新升级,让其保持可靠运行——可能会更胜从前?认识系统组件万能试验机(UTMs)已问世愈80年,最常见是机电试验系统。机电试验系统可用于进行拉力、压缩、挠曲(弯曲)和部件试验,按设计可分为两大部分:机架和控制器。试验机机架是系统机械部分的主体。承载机架一般由两个带有旋转丝杠的立柱构成,可垂直上下移动横梁。更为坚固的系统配有导柱,以加强结构刚度、提高对中性能。载荷传感器(测压元件)安装在移动横梁或底座上。夹头、压盘或其他装置装在载荷传感器和底座上,构成测试加载字符串。移动横梁在试验期间的行程,一般用编码器识别。其他传感器,例如引伸计或LVDT,也可用于测量试验试样或组件的实际位移。控制器可视为是系统的“大脑”。控制器配合其他配件,例如高低温环境箱和高温炉,对机架和传感器进行监控。控制器也可与计算机联结,按预定的试验方法进行控制、收集数据、分析和报告。好零件变坏时有时,系统部件会出现故障。连续使用的关键部件包括功率放大器和电机。功率放大器是试验系统的主要驱动装置,能够吸收大量功率来驱动电机。功率放大器是常用部件,使用10~15年就会出现故障——多数情况下,原装供应商无法再提供原装产品。目前,试验系统制造商面临的一大问题是,OEM供应商淘汰部件的速度越来越快,尤其是处理器芯片或显示器之类的电子部件。在此情况下,可选择修理或使用翻新部件,完全兼容的替代部件可能有现成的,或者需要经过设计和测试以符合替换需求。尽管大多数试验系统制造商都想方设法保证系统继续运行,但对制造商和顾客而言,因故障时间和成本消耗等因素而使这些选择难以付诸行动。何时考虑翻新改良简单地说,翻新是对老旧试验系统的升级。有时,翻新只是拆除控制器部分,换成时下先进的版本。更为常见的翻新是更换易出错或过时的关键部件,例如电机或功率放大器。翻新时,其他需要考虑重要因素是,升级后,系统是否需要满足当前行业标准的要求。现今,大多数翻新是加装新软件和预置试验方法的计算机,较大程度地实现试验过程、数据分析和报告的自动化。系统控制器较当前的行业标准越来越落后,或者与越来越新的配件不兼容时,多数用户都会考虑对系统进行翻新。例如,20年前认为20点/秒的数据采集速率“很快”,而现在的系统,试验数据采集高达2.5 KHz——试验曲线轮廓清晰度更真、显示的兴越点更多、试验结果更精确。而许多老旧的控制器与装有最新操作系统的计算机不兼容。老旧的控制器可能不具备按最新试验标准进行试验所需的处理能力和反应时间。例如,ISO 6892-1:2009“金属材料——拉伸试验”和ASTM E8-15“金属材料拉伸试验标准试验方法”对闭环应变速率控制规定了限制程度较高的应变速率和公差,老旧的控制器和软件一般都无能为力。有些老旧的试验机架,通用试验接口和运转机制与实验室内其他新型试验系统的相同,翻新是让其重新焕发生机比较经济的方法——无需购买全新的试验机。翻新后,实验员无需改变操作方式就可操作所有试验系统——因而提高了效率、减少了对实验员的培训、降低了用户错误、提高了试验结果的一致性。现有的载荷传感器、夹头和其他配件得以保留,节省了原始投资。翻新没有“万全之策”翻新的风险和优势并存。要知道,世上根本没有对所有试验系统(无论生产商是谁)都起效的翻新方案。首先应考虑翻新的内容有什么。对于老旧的系统,近、中期内有故障风险的零件应包含在内,例如功率放大器。安全同样是必须考虑的重要问题。检查新的急停开关等安全部件,确保符合最新行业标准的要求。另外,确保系统翻新后,现有的安全装置未被禁用或拆除。例如,如果一级限位开关出现故障,次级或二级限位开关能够保护系统的移动横梁不至于在两个方向上移动超限,是一级限位开关的后备。翻新方案应完全与原装试验系统的动态性能相匹配。换用的功率放大器或电机,电流和电压应大小相适。功率放大器或电机如果不够大,性能就会欠佳;相应地,试验系统将无法达到满载荷能力或最大试验速度,可能会因过载而过早出现故障。大部件能够奏效,但这种设计缺陷意味着大材小用。最重要的是,控制系统必须调试得当,以便运行稳定,性能最佳,从而确保系统指令和反馈环路处于最完美的设定。进行调整时,需要知道并输入正确的PID控制参数(比例范围/增益、积分增益/重置、微分增益/速率)。系统如果调试不当,好一点的情况是会导致性能欠差;但在最坏的情况下,会导致严重的安全问题,包括试验速度不准确、试验读数不精确,电机振动、机器不稳、振动、横梁突然移动、试验极限超限、关机时机器无法及时停机等等。当然,市场上有专门提供翻新服务的第三方机构,但在这方面,原装系统制造商只承认他们对原装产品设计的最佳参数以及固有的安全装置。例如,进行翻新的第三方可能会拆除系统的原装外壳或外罩,以便安装自己新的翻新零件——没有认识到这些拆除件实际上是射频屏蔽构件(用以阻挡射频干扰的影响)。另外,现有的传感器,例如载荷传感器和引伸计,必须具有电气兼容性,能够通过适配器与新的控制器相连,并且能够利用电气方法进行正确的校准、配平和读数。翻新安装根据ASTM E4和ISO 9513标准,由于换用了新的零件,作了修改,翻新的系统必须在使用前重新进行验证。ASTM E4“试验机力鉴定标准规程”规定,“试验机维修后,对称重系统的运行或显示数值有影响的,应立即进行验证。”因此,有必要考虑选择这样的翻新供应商:能够圆满完成翻新工作,微调系统设定,同时能够提供所有必需的服务,包括对载荷传感器、引伸计、位移和速度进行验证。由于ASTM E4还规定,重新装置的机器需要重新进行验证,也可考虑在客户所在地进行翻修,这样能够节约一些大型设备可能产生的往来运输和包装的金钱和时间成本。大多数标准万能试验系统的翻修工作应在一到两天内完成,包括对所有传感器的验证。何时不考虑进行翻新并不是每个试验系统都适合进行翻新。一次翻新,不可能把现有系统的所有零件都更换掉。通常,旋转丝杠、变速箱和离合器是较为可靠耐用的部件,不需要更换。然而,如果它们出现故障,更换起来费用浩大——不只是指零件成本,还指维修服务成本和停机时间。另外,机架性能的提高可能无法超越物理局限。例如,无论新控制器的电子器件多么优良,载荷精度范围可能永远也无法超越原装载荷传感器的精度范围。即使是专为更现代的试验机架设计的新型配件,可能也需要自定义安装,以便能够装入旧机架内。就像汽车,终有一天,与可能要更换或修理每个部件相比,整机更新会变得更便宜、更实际。翻新还是不翻新当然,几乎所有老旧的试验系统都可以翻新改良。问题是这种投资是否值得。先看看哪些部件需要更换或保留。再评估下保留的零件的预期寿命情况,以及如果出现故障,其更换件和成本情况怎样。最后想想新的配件或软件是否易用。大型落地机架,由于新系统和配件的成本因素,最适合进行翻新。台式机架可能不适合这样直截了当地做决定,尤其是市场有新型机架可供选择时。实验室原先购买的是5kN的框架,如果从未进行过超过2kN的试验,或者更喜欢占地面积较小的机器(因为实验室空间有限),可能会觉得换用小一点的2kN的单柱试验机更好。认识翻新的优点、缺点和风险 优点可以保留大部分原始投资:机架、载荷传感器、配件;成本比购买新的试验系统低;可将其视为维修预算项目,而不是固定资产;通过更换经常故障的零件,可以延长使用寿命和可靠性;能够提高原装试验系统某些方面的性能,例如更高的数据采集速率、智能数据记录和试验自动化;可以使用更新的软件和配件,例如非接触式视频引伸计。缺点较之于新的试验系统,成本节约并不明显,尤其是小型单立柱机架或台式机架;将维修服务成本作为因素计入时,较之于新的试验系统,成本节约并不明显;可能无法更换所有具有故障风险的零件;保留的零件如果出现故障,更换成本过于高昂;可能无法很方便地与新配件保持兼容,而是需要自定义安装等。风险试验系统调试失当,会导致性能欠佳或不良,例如,横梁行程超限、突然移动及试验读数不精确;更换件不是专为具体的试验机架设计的;功率放大器或电机如果不够大,试验系统无法达到原装产品应有的载荷能力或全速范围;原装安全装置被拆除或被禁用,例如二级限限位开关Q。技术贴士大型落地机架,由于新系统和配件的成本因素,最适合进行翻新。台式机架可能不适合直截了当地做决定,尤其是市场有新型机架可供选择时。实验室原先购买的是10kN的机架,如果从未进行过超过1kN的试验,或者更喜欢占地面积较小的机器,那换用小一点的1kN的单立柱试验机可能会更好。
  • 质谱、冷冻电镜等仪器助力2016年度“中国高等学校十大科技进展”
    一、世界首例真实稳定可控的单分子电子开关器件  利用单分子构建电子器件对突破目前半导体器件微小化发展的瓶颈意义重大。实现可控的单分子电子开关功能是验证分子能否作为核心组件应用到电子器件中的关键。自上个世纪70年代以来,设计构筑稳定可控的单分子器件,探索其与微电子工艺的兼容性,并获得真正意义上的分子电子开关,在当代纳米电子学研究中具有重大的科学意义。  郭雪峰团队围绕单分子光电子学领域开展了长达9年的潜心钻研和持续攻关。他们原创性地发展了以石墨烯为电极、通过共价键连接的稳定单分子器件的关键制备方法,解决了单分子器件制备难、稳定性差的难题。在此基础上,通过功能导向的分子工程学成功地克服了二芳烯分子与石墨烯电极间强耦合作用的核心挑战性问题,从而突破性地构建了一类全可逆的光诱导和电场诱导的双模式单分子光电子器件。这项研究工作使得在中国诞生了世界首例真实稳定可控的单分子电子开关器件。这也是几十年来我国在分子电子学领域的科学研究第一次发表在《Science》杂志上。  论文于2016年6月17日发表在《Science》上,申请了发明专利。这项研究证明功能分子可以作为核心组件来构建电子回路,为将功能分子应用到实用电子器件中迈出了关键的一步。《Science》同期配发了长篇正面评述,得到了国内外同行的广泛认可和各种媒体的亮点报道。  二、发现原子核手征对称性和空间反射对称性的联立自发破缺  对称性及其破缺是基本的科学问题。手征对称性(又称手性)在自然界中广泛存在,如左右手、海螺壳、某些化学和药物分子等都有手性。原子核层次的手征对称性由孟杰及其合作者于1997年预言,后来得到证实,引起广泛关注。探索原子核的手征对称性,可以获得原子核形状及其运动模式等信息,具有重要的科学意义。  北京大学孟杰教授领导的研究团队长期致力于原子核手征对称性研究且持续取得进展:2006年预言原子核的多重手征对称性,激发国际相关研究,推动实验验证并得到证实 2011年发现手性原子核Br-80,将原子核手征对称性研究扩展到新的核区。2016年,通过重离子熔合蒸发反应,利用在束伽玛符合、带电粒子符合、线性极化等实验测量手段,在原子核Br-78中发现了宇称相反的两对手征双重带,以及表征它们之间八极关联的电偶极跃迁,给出了手征对称性和空间反射对称性联立自发破缺的证据。  研究结果于2016年3月发表在《物理评论快报》,并被遴选为封面文章。这是核物理领域,中国学者在该刊发表的首篇封面文章。该工作发现了目前最轻的手性原子核Br-78,以及手征对称性和空间反射对称性联立自发破缺的证据,深化了对原子核复杂结构及其表现形式的认识。  三、高效率高比冲磁聚焦霍尔推进技术  2016年11月3日我国空间电推进技术取得重大进展,由哈尔滨工业大学于达仁、贾德昌教授团队和中国航天科技集团公司第五研究院第五〇二研究所联合研制的磁聚焦霍尔推力器HEP-100MF成功搭载长征五号运载火箭在实践十七号卫星上进行了飞行验证,这是世界首次磁聚焦霍尔推力器实现空间应用。  目前,该磁聚焦霍尔推力器已完成了包括点火、性能标定、长稳态测试及卫星系统兼容性等所有在轨考核,各项参数均满足指标要求,其中磁聚焦与羽流发散角控制技术达到国际领先水平。  该团队历经14年,充分发挥学科交叉的创新优势,先后突破了宽范围磁聚焦、热/电/磁耦合设计、放电低频振荡控制、低功耗高可靠空心阴极稳定放电、耐离子溅射氮化硼基特种陶瓷材料等关键技术,研制的磁聚焦霍尔推力器比冲比国际著名同类产品SPT-100提高20%,羽流发散角减小了60%,大幅降低了推力器燃料消耗,并显著降低了羽流对航天器的影响,为我国新一代长寿命航天平台提供了具有自主知识产权的新型电推进技术。该成果将为我国新一代通讯卫星、遥感卫星、空间站及深空探测提供技术支撑,是国际电推进技术发展史上的一个重要里程碑。  四、高效钙钛矿发光器件研究  照明对于人类文明的重要性不言而喻。从远古时期的火把、中世纪的蜡烛,到近代的油灯、现代的电灯和当代的LED,人类寻找新型光源的脚步从未停歇。当前,照明消耗了全球发电量的30%以上,探索环境友好、高效节能的照明系统愈发重要。有机无机杂化钙钛矿材料因其优异的发光性能和可大面积低成本加工的潜力,在照明与显示领域具有广阔前景。  南京工业大学黄维院士和王建浦教授领导的创新团队是国际上最早认识到此类材料的发光潜力,并着力制备钙钛矿发光二极管器件的团队之一。2016年,他们创造性地利用溶液自组装方法制备了多量子阱结构的钙钛矿发光材料。该材料不仅保持了二维钙钛矿成膜质量高、稳定性好的优点,而且在不同带隙量子阱之间可发生快速的阶梯能量转移,有效克服了常温下二维钙钛矿激子易猝灭的缺点。在世界上首次实现了外量子效率达11.7%的高效钙钛矿电致发光器件,同时器件寿命较三维钙钛矿器件提高了两个数量级。  系列创新性研究成果相继发表在国际顶级学术期刊上,并已申请两项发明专利。其中,代表性成果于2016年9月26日在Nature Photonics上发表,是全球首篇钙钛矿发光器件外量子效率突破10%的报道,也是目前此类器件的世界最高效率,为钙钛矿材料及其在发光领域的研究开拓了新方向。  五、复杂电网自律-协同无功电压自动控制系统关键技术及应用  电压是智能电网运行的核心指标。电压问题已成为全球历次重大停电事故的关键诱因,同时也是大规模可再生能源并网的一个主要障碍。复杂电网电压控制(AVC)是世界性难题,在该领域国际权威、美国一流大学课题组研究搁浅后,美国电网转而寻求与该项目组合作。  该项目历经20余年,创造性提出了“自律+协同”的技术路线,突破了AVC从单控制中心到多控制中心、从常规电网到可再生能源电网、从中国电网到北美电网应用中的系列关键难题,研制出自主知识产权AVC系统,已在我国6大区电网、22个省级电网和6个千万千瓦级风光基地应用,控制了全国56%的常规机组与37%的风/光机组,在智能电网安全经济运行和大规模可再生能源接纳等方面取得了巨大经济社会效益。同时,该项目突破了美国三轮严酷的信息安全检查,历时3年零4个月,解答了3千余个信息安全问题,控制了包括美国首都和东部十三个州的PJM电网,实现了美国首例AVC,是我国先进电网控制系统首次出口美国。  由教育部组织、六位院士领衔的鉴定委员会认为:项目是“重大的原创性科研成果,引领了电力系统电压控制领域的发展与技术进步”、“具有里程碑意义”。美国能源部顾问、工程院院士Prof. BOSE认为该成果“使中国在电压控制领域遥遥领先于世界”。  六、植物分枝激素独脚金内酯的感知机制  植物分枝是农业生产中的重要农艺性状,对于植物株型和作物产量有重要影响 植物激素独脚金内酯不仅调控植物分枝,还调节植物与共生真菌及寄生杂草的相互作用。阐明激素感知机制,是生物学领域的重大科学问题,对揭示生命现象的本质、提高生物的生存和发展能力具有重要意义。迄今发现的动植物经典激素,都遵循1880s年代以来揭示的“配体-受体”可逆识别规律:激素活性分子通过非共价键可逆地结合受体,循环地触发信号传导链,调控各种生命活动。  清华大学谢道昕、饶子和及娄智勇等合作发现了独脚金内酯的活性分子、阐明了独脚金内酯的受体、揭示了新型的“受体-配体”不可逆识别机制:D14蛋白作为新型激素受体,首先参与合成独脚金内酯活性分子CLIM,然后通过共价键不可逆地结合CLIM、触发信号传导链、调控植物分枝,最终水解CLIM、释放没有活性的分子。  该工作于2016年8月发表在《Nature》上。《Nature》、《Science Signaling》和《Science China Life Sciences》发表专文高度评价该工作,新发现的“受体-配体”不可逆识别机制不同于百年研究历程所建立的“配体-受体”可逆识别机制,是生命科学领域激素研究的重大突破,具有重大科学意义。该研究可为作物株型改良和寄生杂草防治提供理论指导,具有潜在应用前景。  七、肌肉兴奋-收缩偶联的分子机理探索  肌肉兴奋收缩偶联(Excitation-contraction coupling, E-C coupling)指的是肌肉接受神经信号发生收缩的过程,是动物最基本的生理过程之一。该过程涉及到两类重要的钙离子通道,分别是位于细胞膜上的电压门控钙离子通道Cav和位于肌质网膜上的兰尼碱受体RyR。Cav被细胞膜的动作电位激活,进一步诱导下游RyR的激活开放,从而引发钙离子大量快速从肌质网释放至细胞质,进而引起肌肉的收缩。Cav的功能异常会导致心率紊乱、癫痫等疾病 RyR的异常则会导致肌中央轴空病等疾病。因此,它们是重要的药物靶点,其结构的解析工作具有重要的生理学和药理学意义。  颜宁研究组利用前沿的单颗粒冷冻电镜技术,在世界上首次解析了骨骼肌中RyR1和Cav1.1以及心肌中RyR2的近原子分辨率结构,这一系列突破为理解肌肉兴奋收缩偶联过程提供了关键的结构基础。尤为值得一提的是,Cav1.1系首个真核电压门控钙离子通道的结构,此成果备受瞩目,不仅为理解与多种疾病相关的电压门控钙离子通道和钠离子通道的功能和机理提供了分子基础,也为基于结构的药物研发提供了理论指导。  相关成果共发表5篇高水平论文。其中Cav1.1相关工作于2015年12月18日和2016年9月8日分别在Science和Nature发表 RyR1相关工作于2015年1月1日和2016年7月29日发表在Nature和Cell Research RyR2工作于2016年10月21日在Science发表。  八、亚洲季风的变化规律及其与全球气候变化的关系  西安交通大学全球变化研究院程海团队在国际合作的基础上发展了国际先进水平的铀系质谱测量技术(包括提高 230Th和234U半衰期的精准度),在此基础上分别建立了世界最长尺度的东亚季风(64万年)、印度季风(28万年)、南美季风(25万年)和中亚?中国西部西风带(13.5和50万年)的高精度高分辨率石笋同位素记录、及其与全球气候变化之间的相关关系,为全球气候变化研究提供了重要的时间标尺。特别是于2016年6月在《Nature》上以Article形式发表“64万年以来的亚洲季风记录与冰期终止”的论文,通过建立具有精确的绝对年代控制的石笋同位素记录、及其与海洋和冰芯记录的对比关系,进一步揭示了10万年的冰期?间冰期循环是4?5个岁差周期的平均 发现去除太阳辐射影响后的亚轨道尺度石笋气候变化序列与去趋势后的南极温度记录呈精致的反相关关系,并且两者的亚轨道尺度变化都具有比地球偏心率周期更强的岁差和倾角周期 结合深入解析过去64万年以来不同幅度千年气候事件(包括冰期终止事件)之间的内在相似性,进一步回答了“100ka problem”这一经典科学问题。从一定意义上讲,上述工作为洞穴沉积成为古气候变化研究领域的‘第四大支柱’、以及我国石笋古气候研究在国际上取得领先地位做出了重要贡献。  九、脑机融合的混合智能理论与方法  当天生“弱视”的大鼠通过脑机通讯“嫁接”上机器视觉,它就如看懂了路标,在迷宫里里识别路标沿路成功找到目标物 当一只猴子想喝一口面前的饮料,它可以通过“意念”控制远处的机械手作出抓、勾、握、捏四种手势,完成不同的任务。这一些充满科幻色彩的“不可能”,正在浙江大学的实验室成为现实。  在国家973计划、国家基金委重点项目等支持下,浙江大学吴朝晖、郑筱祥教授率领的团队围绕脑机融合问题潜心研究十余年,在国际上率先提出“混合智能”的研究范式——生物智能与机器智能的融合,形成了一系列突破理论与创新技术。研究团队认为,将生物自身的感认知能力与机器的计算能力深度结合,有望产生超越现有系统的更强智能形态。这一探索在残障康复、抢险救灾、国防安保等关系到国计民生和国防安全等领域具有重大应用前景。  目前,团队在国际上首次实现将计算机的听视觉识别能力“嫁接”到生物体上,构建了听视觉增强的大鼠机器人 在国内首例实现人意念控制机械手,完成“石头-剪刀-布”猜拳游戏 实现了用机器智能增强大鼠自身的学习能力,回答了脑机融合是否能使生物体获得学习增强的疑问。面对人类疾病,研究团队还实现了动物平台的“癫痫预测-电刺激抑制”脑机互适应融合机制。部分成果还实现了初步转化,成功开发了若干神经康复设备,并用于临床试验。  十、肝癌肝移植新型分子分层体系研究  我国是病毒性肝炎和肝癌的高发国家,其中乙肝病毒携带者约9000万,每年新发肝癌40余万,占全球新发肝癌病例的55%,严重危害国民健康。肝移植是治疗肝癌等终末期肝病的最有效手段。  目前国际上最常用的肝癌肝移植受者选择标准是意大利米兰标准。如果按照国外的标准,肿瘤直径小于5cm才适合做移植,那么我国有许多肝癌患者将失去肝移植的机会。为建立适合我国国情的选择标准,2008年郑树森院士团队创新性地提出了肝癌肝移植杭州标准, 认为肿瘤累计直径小于8cm,或者肿瘤大于8cm,但只要甲胎蛋白水平小于 400ng/ml,而且肿瘤组织学分级为中、高分化者,也适合肝移植。这是国际上首个引入肿瘤生物学特征及病理学特征的受者选择标准,被誉为是肝癌肝移植研究的“分水岭”。2016年,郑树森院士团队进一步开展了全国多中心6012例全球最大样本的研究,发现杭州标准使肝癌病人增加了52%的移植机会,同时5年存活率高达72.5%,居国际领先水平。同时,该研究也将杭州标准进一步细化,实现了肝移植受者的精准筛选和个性化治疗。  该研究成果发表于消化病学顶级期刊《Gut》,引起国际移植学界的高度关注和肯定,被欧美10余家国际移植中心引用和验证,成为肝移植学界高度认可的国际标准。美国UCLA、克利夫兰医学中心、日本东京大学等国际著名移植团队高度评价杭州标准是一个非常卓越的标准,第一次将肿瘤生物学特征纳入肝癌肝移植标准中,优于其它标准,为肝癌肝移植病人选择作出重要贡献。杭州标准是我国提出的首个被国际移植学界接受的医学标准,是我国器官移植领域最具有国际竞争力和自主创新价值的科研成果,该项创新性研究作为核心标志性成果获得2015年度国家科技进步创新团队奖。
  • 2016年度“中国高等学校十大科技进展”:颜宁、郭雪峰领衔
    2016年12月26日,由教育部科学技术委员会组织评选的2016年度“中国高等学校十大科技进展”经过形式审查、学部初评、项目终审评选专项工作等流程后在京揭晓。  “中国高等学校十大科技进展”的评选自1998年开展以来,至今已19届,这项评选活动对提升高等学校科技的整体水平、增强高校的科技创新能力发挥了积极作用,并产生了较大的社会影响,赢得了较高的声誉。  现将2016年度入选项目名单(附后)予以公布。入选项目名单按主持单位拼音顺序排序,排名不分先后。2016年度“中国高等学校十大科技进展”入选项目名单序号项目名称申报学校项目负责人合作单位1世界首例真实稳定可控的单分子电子开关器件北京大学郭雪峰美国杜克大学、中科院物理所、华东理工大学等2发现原子核手征对称性和空间反射对称性的联立自发破缺北京大学孟 杰山东大学(威海)、清华大学、北京航空航天大学、中国科学院理论物理研究所3高效率高比冲磁聚焦霍尔推进技术哈尔滨工业大学于达仁航天五院第五〇二研究所4高效钙钛矿发光器件研究南京工业大学黄 维浙江大学、英国剑桥大学、瑞典林雪平大学、南京邮电大学5复杂电网自律-协同无功电压自动控制系统关键技术及应用清华大学孙宏斌北京清大高科系统控制有限公司6植物分枝激素独脚金内酯的感知机制清华大学谢道昕中国科学院生物物理研究所、中国科学院遗传与发育生物学研究所、中国科学院上海药物研究所7肌肉兴奋-收缩偶联的分子机理探索清华大学颜 宁无8亚洲季风的变化规律及其与全球气候变化的关系西安交通大学程 海美国明尼苏达大学、美国加利福尼亚州立大学、奥地利因斯布鲁克大学、同济大学、南京师范大学、新加坡南洋理工大学9脑机融合的混合智能理论与方法浙江大学吴朝晖无10肝癌肝移植新型分子分层体系研究浙江大学郑树森无  注:按申报学校首字母排序,排名不分先后2016年度“中国高等学校十大科技进展”入选项目介绍  一、世界首例真实稳定可控的单分子电子开关器件  利用单分子构建电子器件对突破目前半导体器件微小化发展的瓶颈意义重大。实现可控的单分子电子开关功能是验证分子能否作为核心组件应用到电子器件中的关键。自上个世纪70年代以来,设计构筑稳定可控的单分子器件,探索其与微电子工艺的兼容性,并获得真正意义上的分子电子开关,在当代纳米电子学研究中具有重大的科学意义。  郭雪峰团队围绕单分子光电子学领域开展了长达9年的潜心钻研和持续攻关。他们原创性地发展了以石墨烯为电极、通过共价键连接的稳定单分子器件的关键制备方法,解决了单分子器件制备难、稳定性差的难题。在此基础上,通过功能导向的分子工程学成功地克服了二芳烯分子与石墨烯电极间强耦合作用的核心挑战性问题,从而突破性地构建了一类全可逆的光诱导和电场诱导的双模式单分子光电子器件。这项研究工作使得在中国诞生了世界首例真实稳定可控的单分子电子开关器件。这也是几十年来我国在分子电子学领域的科学研究第一次发表在《Science》杂志上。  论文于2016年6月17日发表在《Science》上,申请了发明专利。这项研究证明功能分子可以作为核心组件来构建电子回路,为将功能分子应用到实用电子器件中迈出了关键的一步。《Science》同期配发了长篇正面评述,得到了国内外同行的广泛认可和各种媒体的亮点报道。  二、发现原子核手征对称性和空间反射对称性的联立自发破缺  对称性及其破缺是基本的科学问题。手征对称性(又称手性)在自然界中广泛存在,如左右手、海螺壳、某些化学和药物分子等都有手性。原子核层次的手征对称性由孟杰及其合作者于1997年预言,后来得到证实,引起广泛关注。探索原子核的手征对称性,可以获得原子核形状及其运动模式等信息,具有重要的科学意义。  北京大学孟杰教授领导的研究团队长期致力于原子核手征对称性研究且持续取得进展:2006年预言原子核的多重手征对称性,激发国际相关研究,推动实验验证并得到证实 2011年发现手性原子核Br-80,将原子核手征对称性研究扩展到新的核区。2016年,通过重离子熔合蒸发反应,利用在束伽玛符合、带电粒子符合、线性极化等实验测量手段,在原子核Br-78中发现了宇称相反的两对手征双重带,以及表征它们之间八极关联的电偶极跃迁,给出了手征对称性和空间反射对称性联立自发破缺的证据。  研究结果于2016年3月发表在《物理评论快报》,并被遴选为封面文章。这是核物理领域,中国学者在该刊发表的首篇封面文章。该工作发现了目前最轻的手性原子核Br-78,以及手征对称性和空间反射对称性联立自发破缺的证据,深化了对原子核复杂结构及其表现形式的认识。  三、高效率高比冲磁聚焦霍尔推进技术  2016年11月3日我国空间电推进技术取得重大进展,由哈尔滨工业大学于达仁、贾德昌教授团队和中国航天科技集团公司第五研究院第五〇二研究所联合研制的磁聚焦霍尔推力器HEP-100MF成功搭载长征五号运载火箭在实践十七号卫星上进行了飞行验证,这是世界首次磁聚焦霍尔推力器实现空间应用。  目前,该磁聚焦霍尔推力器已完成了包括点火、性能标定、长稳态测试及卫星系统兼容性等所有在轨考核,各项参数均满足指标要求,其中磁聚焦与羽流发散角控制技术达到国际领先水平。  该团队历经14年,充分发挥学科交叉的创新优势,先后突破了宽范围磁聚焦、热/电/磁耦合设计、放电低频振荡控制、低功耗高可靠空心阴极稳定放电、耐离子溅射氮化硼基特种陶瓷材料等关键技术,研制的磁聚焦霍尔推力器比冲比国际著名同类产品SPT-100提高20%,羽流发散角减小了60%,大幅降低了推力器燃料消耗,并显著降低了羽流对航天器的影响,为我国新一代长寿命航天平台提供了具有自主知识产权的新型电推进技术。该成果将为我国新一代通讯卫星、遥感卫星、空间站及深空探测提供技术支撑,是国际电推进技术发展史上的一个重要里程碑。  四、高效钙钛矿发光器件研究  照明对于人类文明的重要性不言而喻。从远古时期的火把、中世纪的蜡烛,到近代的油灯、现代的电灯和当代的LED,人类寻找新型光源的脚步从未停歇。当前,照明消耗了全球发电量的30%以上,探索环境友好、高效节能的照明系统愈发重要。有机无机杂化钙钛矿材料因其优异的发光性能和可大面积低成本加工的潜力,在照明与显示领域具有广阔前景。  南京工业大学黄维院士和王建浦教授领导的创新团队是国际上最早认识到此类材料的发光潜力,并着力制备钙钛矿发光二极管器件的团队之一。2016年,他们创造性地利用溶液自组装方法制备了多量子阱结构的钙钛矿发光材料。该材料不仅保持了二维钙钛矿成膜质量高、稳定性好的优点,而且在不同带隙量子阱之间可发生快速的阶梯能量转移,有效克服了常温下二维钙钛矿激子易猝灭的缺点。在世界上首次实现了外量子效率达11.7%的高效钙钛矿电致发光器件,同时器件寿命较三维钙钛矿器件提高了两个数量级。  系列创新性研究成果相继发表在国际顶级学术期刊上,并已申请两项发明专利。其中,代表性成果于2016年9月26日在Nature Photonics上发表,是全球首篇钙钛矿发光器件外量子效率突破10%的报道,也是目前此类器件的世界最高效率,为钙钛矿材料及其在发光领域的研究开拓了新方向。  五、复杂电网自律-协同无功电压自动控制系统关键技术及应用  电压是智能电网运行的核心指标。电压问题已成为全球历次重大停电事故的关键诱因,同时也是大规模可再生能源并网的一个主要障碍。复杂电网电压控制(AVC)是世界性难题,在该领域国际权威、美国一流大学课题组研究搁浅后,美国电网转而寻求与该项目组合作。  该项目历经20余年,创造性提出了“自律+协同”的技术路线,突破了AVC从单控制中心到多控制中心、从常规电网到可再生能源电网、从中国电网到北美电网应用中的系列关键难题,研制出自主知识产权AVC系统,已在我国6大区电网、22个省级电网和6个千万千瓦级风光基地应用,控制了全国56%的常规机组与37%的风/光机组,在智能电网安全经济运行和大规模可再生能源接纳等方面取得了巨大经济社会效益。同时,该项目突破了美国三轮严酷的信息安全检查,历时3年零4个月,解答了3千余个信息安全问题,控制了包括美国首都和东部十三个州的PJM电网,实现了美国首例AVC,是我国先进电网控制系统首次出口美国。  由教育部组织、六位院士领衔的鉴定委员会认为:项目是“重大的原创性科研成果,引领了电力系统电压控制领域的发展与技术进步”、“具有里程碑意义”。美国能源部顾问、工程院院士Prof. BOSE认为该成果“使中国在电压控制领域遥遥领先于世界”。  六、植物分枝激素独脚金内酯的感知机制  植物分枝是农业生产中的重要农艺性状,对于植物株型和作物产量有重要影响 植物激素独脚金内酯不仅调控植物分枝,还调节植物与共生真菌及寄生杂草的相互作用。阐明激素感知机制,是生物学领域的重大科学问题,对揭示生命现象的本质、提高生物的生存和发展能力具有重要意义。迄今发现的动植物经典激素,都遵循1880s年代以来揭示的“配体-受体”可逆识别规律:激素活性分子通过非共价键可逆地结合受体,循环地触发信号传导链,调控各种生命活动。  清华大学谢道昕、饶子和及娄智勇等合作发现了独脚金内酯的活性分子、阐明了独脚金内酯的受体、揭示了新型的“受体-配体”不可逆识别机制:D14蛋白作为新型激素受体,首先参与合成独脚金内酯活性分子CLIM,然后通过共价键不可逆地结合CLIM、触发信号传导链、调控植物分枝,最终水解CLIM、释放没有活性的分子。  该工作于2016年8月发表在《Nature》上。《Nature》、《Science Signaling》和《Science China Life Sciences》发表专文高度评价该工作,新发现的“受体-配体”不可逆识别机制不同于百年研究历程所建立的“配体-受体”可逆识别机制,是生命科学领域激素研究的重大突破,具有重大科学意义。该研究可为作物株型改良和寄生杂草防治提供理论指导,具有潜在应用前景。  七、肌肉兴奋-收缩偶联的分子机理探索  肌肉兴奋收缩偶联(Excitation-contraction coupling, E-C coupling)指的是肌肉接受神经信号发生收缩的过程,是动物最基本的生理过程之一。该过程涉及到两类重要的钙离子通道,分别是位于细胞膜上的电压门控钙离子通道Cav和位于肌质网膜上的兰尼碱受体RyR。Cav被细胞膜的动作电位激活,进一步诱导下游RyR的激活开放,从而引发钙离子大量快速从肌质网释放至细胞质,进而引起肌肉的收缩。Cav的功能异常会导致心率紊乱、癫痫等疾病 RyR的异常则会导致肌中央轴空病等疾病。因此,它们是重要的药物靶点,其结构的解析工作具有重要的生理学和药理学意义。  颜宁研究组利用前沿的单颗粒冷冻电镜技术,在世界上首次解析了骨骼肌中RyR1和Cav1.1以及心肌中RyR2的近原子分辨率结构,这一系列突破为理解肌肉兴奋收缩偶联过程提供了关键的结构基础。尤为值得一提的是,Cav1.1系首个真核电压门控钙离子通道的结构,此成果备受瞩目,不仅为理解与多种疾病相关的电压门控钙离子通道和钠离子通道的功能和机理提供了分子基础,也为基于结构的药物研发提供了理论指导。  相关成果共发表5篇高水平论文。其中Cav1.1相关工作于2015年12月18日和2016年9月8日分别在Science和Nature发表 RyR1相关工作于2015年1月1日和2016年7月29日发表在Nature和Cell Research RyR2工作于2016年10月21日在Science发表。  八、亚洲季风的变化规律及其与全球气候变化的关系  西安交通大学全球变化研究院程海团队在国际合作的基础上发展了国际先进水平的铀系质谱测量技术(包括提高 230Th和234U半衰期的精准度),在此基础上分别建立了世界最长尺度的东亚季风(64万年)、印度季风(28万年)、南美季风(25万年)和中亚?中国西部西风带(13.5和50万年)的高精度高分辨率石笋同位素记录、及其与全球气候变化之间的相关关系,为全球气候变化研究提供了重要的时间标尺。特别是于2016年6月在《Nature》上以Article形式发表“64万年以来的亚洲季风记录与冰期终止”的论文,通过建立具有精确的绝对年代控制的石笋同位素记录、及其与海洋和冰芯记录的对比关系,进一步揭示了10万年的冰期?间冰期循环是4?5个岁差周期的平均 发现去除太阳辐射影响后的亚轨道尺度石笋气候变化序列与去趋势后的南极温度记录呈精致的反相关关系,并且两者的亚轨道尺度变化都具有比地球偏心率周期更强的岁差和倾角周期 结合深入解析过去64万年以来不同幅度千年气候事件(包括冰期终止事件)之间的内在相似性,进一步回答了“100ka problem”这一经典科学问题。从一定意义上讲,上述工作为洞穴沉积成为古气候变化研究领域的‘第四大支柱’、以及我国石笋古气候研究在国际上取得领先地位做出了重要贡献。  九、脑机融合的混合智能理论与方法  当天生“弱视”的大鼠通过脑机通讯“嫁接”上机器视觉,它就如看懂了路标,在迷宫里里识别路标沿路成功找到目标物 当一只猴子想喝一口面前的饮料,它可以通过“意念”控制远处的机械手作出抓、勾、握、捏四种手势,完成不同的任务。这一些充满科幻色彩的“不可能”,正在浙江大学的实验室成为现实。  在国家973计划、国家基金委重点项目等支持下,浙江大学吴朝晖、郑筱祥教授率领的团队围绕脑机融合问题潜心研究十余年,在国际上率先提出“混合智能”的研究范式——生物智能与机器智能的融合,形成了一系列突破理论与创新技术。研究团队认为,将生物自身的感认知能力与机器的计算能力深度结合,有望产生超越现有系统的更强智能形态。这一探索在残障康复、抢险救灾、国防安保等关系到国计民生和国防安全等领域具有重大应用前景。  目前,团队在国际上首次实现将计算机的听视觉识别能力“嫁接”到生物体上,构建了听视觉增强的大鼠机器人 在国内首例实现人意念控制机械手,完成“石头-剪刀-布”猜拳游戏 实现了用机器智能增强大鼠自身的学习能力,回答了脑机融合是否能使生物体获得学习增强的疑问。面对人类疾病,研究团队还实现了动物平台的“癫痫预测-电刺激抑制”脑机互适应融合机制。部分成果还实现了初步转化,成功开发了若干神经康复设备,并用于临床试验。  十、肝癌肝移植新型分子分层体系研究  我国是病毒性肝炎和肝癌的高发国家,其中乙肝病毒携带者约9000万,每年新发肝癌40余万,占全球新发肝癌病例的55%,严重危害国民健康。肝移植是治疗肝癌等终末期肝病的最有效手段。  目前国际上最常用的肝癌肝移植受者选择标准是意大利米兰标准。如果按照国外的标准,肿瘤直径小于5cm才适合做移植,那么我国有许多肝癌患者将失去肝移植的机会。为建立适合我国国情的选择标准,2008年郑树森院士团队创新性地提出了肝癌肝移植杭州标准, 认为肿瘤累计直径小于8cm,或者肿瘤大于8cm,但只要甲胎蛋白水平小于 400ng/ml,而且肿瘤组织学分级为中、高分化者,也适合肝移植。这是国际上首个引入肿瘤生物学特征及病理学特征的受者选择标准,被誉为是肝癌肝移植研究的“分水岭”。2016年,郑树森院士团队进一步开展了全国多中心6012例全球最大样本的研究,发现杭州标准使肝癌病人增加了52%的移植机会,同时5年存活率高达72.5%,居国际领先水平。同时,该研究也将杭州标准进一步细化,实现了肝移植受者的精准筛选和个性化治疗。  该研究成果发表于消化病学顶级期刊《Gut》,引起国际移植学界的高度关注和肯定,被欧美10余家国际移植中心引用和验证,成为肝移植学界高度认可的国际标准。美国UCLA、克利夫兰医学中心、日本东京大学等国际著名移植团队高度评价杭州标准是一个非常卓越的标准,第一次将肿瘤生物学特征纳入肝癌肝移植标准中,优于其它标准,为肝癌肝移植病人选择作出重要贡献。杭州标准是我国提出的首个被国际移植学界接受的医学标准,是我国器官移植领域最具有国际竞争力和自主创新价值的科研成果,该项创新性研究作为核心标志性成果获得2015年度国家科技进步创新团队奖。
  • 2014年度高校十大科技进展揭晓 纳米颗粒快检入选
    由教育部科学技术委员会组织评选的2014年度&ldquo 中国高等学校十大科技进展&rdquo ,日前在京揭晓。经过形式审查、学部初评、主任办公(扩大)会终评和项目公示,北京大学主持的单个纳米颗粒光学检测新原理研究等10个高校科技项目,获评本年度高校科技十大进展。   据介绍,&ldquo 中国高等学校十大科技进展&rdquo 评选自1998年开展以来,至今已举办17届。这项评选活动对提升高等学校科技的整体水平、增强高校的科技创新能力发挥了积极作用,并产生了较大的社会影响,赢得了较高的声誉。   2014年度&ldquo 中国高等学校十大科技进展&rdquo 入选项目介绍   一、单个纳米颗粒光学检测新原理研究   纳米尺度颗粒的快速检测在环境监测、恶性肿瘤早期筛查和国家安全方面具有十分重要的意义。基于微纳光学的传感技术拥有无标记和抗电磁干扰等优势,为上述应用提供了新的机遇,但在快速探测和超高灵敏度方面仍面临挑战。为此,急需提出新的光学传感原理,突破传统检测极限,获得分辨单个纳米级颗粒的检测能力。北京大学龚旗煌院士和肖云峰研究员等制备出超高品质因子固态光学微腔器件,极大地增强了光与物质的相互作用,并实现超低阈值微腔拉曼激光发射。在此基础上,他们提出利用微腔拉曼激光模式劈裂来检测单纳米尺度颗粒的新方法。实验上,他们在液体环境下证明了新方法检测单个20纳米尺度颗粒的能力。这一方法的实现既可显著降低实验难度,又具有良好的抗噪声能力。同时,他们还与浙江大学童利民教授等合作,研制出纳米光纤阵列传感器,可快速检测单个百纳米尺度颗粒,并测定尺寸。这些新的原理和技术将推进光学传感的检测极限达到单分子水平,并具有实时便捷等优势。   研究成果分别发表在《美国科学院院刊》和《先进材料》(封面文章)上。工作得到国际学术界的重视,被多家国际科技媒体专题图文报道,并引起了大众媒体的关注。   二、网构软件理论、方法与技术   互联网正在逐步演化成一个全球泛在的计算平台,其开放、动态和难控的特性对软件技术提出了一系列重大挑战。以北京大学梅宏院士和南京大学吕建院士领衔的团队从2000年开始率先从软件角度探讨互联网计算,提出一种互联网软件新范型&mdash &mdash 网构软件,并在国家973计划连续两期项目的支持下,建立了一套网构软件技术体系,取得一系列重要突破:构造了一个开放、协同的网构软件模型,用以描述和规约自主性、协同性、演化性、情境性、涌现性和可信性等互联网应用新特性 提出了支持按需协同和在线演化的容器系统结构及相关机制,支持系统自治管理,设计实现了网构软件的运行时支撑平台 提出了全生命期软件体系结构驱动的网构软件开发和演化方法。   作为中国学者自主提出的学术理念,网构软件研究整体处于国际先进水平,在软件构件、软件体系结构、软件自适应等技术上处于国际领先行列。在软件领域顶级国际会议和期刊发表近百篇学术论文,十多次入选最佳/优秀/亮点论文,数十次在国际会议上做主题/特邀报告 获得一批中国发明专利,形成多项国际、国家和行业标准 研制的工具和系统在国内外众多大中型信息系统中得到应用 多次获得国家和部委级科技成果奖。   三、免疫细胞分化发育与功能调控新机制研究   免疫系统为什么能够精确地感知外界病原体侵袭,并及时启动能够清除病原体的免疫应答反应?这是免疫学领域前沿性重大科学问题。目前认为具有&ldquo 哨兵&rdquo 功能的树突状细胞起了关键性作用,但对于树突状细胞为什么具有这样的特殊免疫功能尚不十分清楚。第二军医大学医学免疫学国家重点实验室曹雪涛课题组从表观遗传和蛋白质修饰的新角度,研究了树突状细胞分化发育的分子机制,发现了一种树突状细胞选择性高表达并对于树突状细胞发育成熟至关重要的以前未见报道的新长链非编码RNA(将之命名为树突状细胞长链非编码RNA,lnc-DC),对于为什么lnc-DC能够决定树突状细胞的发育成熟进行了机制研究,首次提出了胞浆中的lnc-DC能够直接结合磷酸化蛋白信号分子STAT3而起关键性作用,此作用方式对于研究其他生命科学现象及其RNA与蛋白质相互作用机理有重要的启示与借鉴意义。此外,对于如何控制树突状细胞不过度活化以避免机体发生自身免疫性疾病,该课题组发现了一个名为Rhbdd3的蛋白质分子,能够抑制树突状细胞成熟和分泌炎症因子,阻止了自身免疫性疾病发生。   该研究丰富了对免疫细胞分化发育与参与自身免疫病机制的认识,对疫苗研发和疾病免疫治疗探索有指导作用。研究结果分别发表于今年《Science》和《Nature Immunology》。   四、快舟星箭一体化飞行器技术及应用   该项成果是在国家863计划重点支持下取得的一项原创性成果。针对突发灾害应急监测和抢险救灾信息支持的迫切需求,在国际上首次提出并实现了星箭一体化设计的理念和方法,解决飞行器快速研制、快速发射、快速应用的核心技术问题,实现了我国固体运载器机动发射卫星首次成功,创造了我国遥感卫星最快成像纪录。项目总体指标国内领先、国际先进,开辟了我国快速响应空间技术发展的新途径,取得了重大的经济和社会效益。   利用该成果研制的快舟一号卫星于2013年9月25日成功发射,在巴基斯坦阿瓦兰地震、台湾花莲地震、新疆于田地震、四川冕宁县森林火灾、霍尼亚拉洪灾、马航MH370客机失联、中国科考船&ldquo 雪龙号&rdquo 破冰支援等灾害发生后,及时实施了灾情监测,快速获取了灾害信息。特别是在云南鲁甸地震救援期间,快舟一号是我国唯一一颗实现针对灾区连续15天重访成像的高分辨率遥感卫星,及时提供了高分辨率的震区影像,为及时全面了解灾情、灾情评估、抢险救援指挥决策等提供了有力信息支撑。   快舟一号作为我国首颗具有快速响应能力的卫星,还在工程建设、土地利用、采矿区开采、水文、环境等实时监测应用方面,为国内19个省份61家用户单位提供了高质量遥感影像。   五、水稻矮化多分蘖基因DWARF 53的图位克隆和功能研究   水稻籼粳亚种间存在强大杂种优势,但籼粳交杂种普遍存在株高超高的问题,利用部分显性矮杆基因可克服株高超高,有效利用籼粳杂种优势。独脚金内酯是2008年发现的调控植物分枝的第三种激素,对植物株型起着至关重要的调控作用,但其信号传导途径却知之甚少。本研究利用一个水稻部分显性矮杆突变体dwarf 53(d53),通过图位克隆获得D53基因,它编码一个新的在结构上与I类Clp ATPase类似的核蛋白。分析发现,在独脚金内酯存在条件下,D53蛋白可与两个已知的独脚金内酯信号分子D14、D3互作,形成D53D14SCFD3蛋白复合体,使D53蛋白泛素化,进而被蛋白酶体特异降解,诱导下游目标基因表达,使独脚金内酯信号响应。该结果首次在遗传和生化层面上证实了D53蛋白作为独脚金内酯信号途径的抑制子参与调控植物分枝(蘖)生长发育,具有重要科学意义。不仅为水稻株型改良提供重要理论基础,也为籼粳交杂种优势利用提供有用的基因和材料。   该结果以Article Research形式在2013年12月26日《Nature》上正式发表,目前已被SCI他引31次。该杂志同期News & Views栏目为本研究发表了专题评述,认为&ldquo D53蛋白的发现为研究独脚金内酯和其他激素信号途径提供了积极帮助,并对调节植物营养分配与利用具有深远的影响&rdquo 。   六、高温气冷堆主氦风机工程样机研制   高温气冷堆主氦风机工程样机项目由国家科技重大专项支持,集合高校与企业力量协同创新,并已经取得重大成果。成功研制的高温气冷堆主氦风机,无论功率还是技术水平都属于世界领先,是世界高温气冷堆先进核电技术研发中的主要技术难关。该成果是我国自主创新在先进核能核心装备技术上的重大突破,对于我国自主创新的高温气冷堆示范电站建设具有重大意义。   主氦风机是高温气冷堆核电站的心脏装备。在研制过程中解决了多个重大技术问题,如主氦风机整机总体设计,大型氦气置入式立式高速电动机的研制,电磁悬浮轴承支撑的转子动力学分析,高性能叶轮的研制,大电流、高压差、高电压一回路边界电气贯穿件的研制等。   主氦风机的转子采用现代最新科技成果电磁轴承进行支撑。风机转子重量约4吨,完全采用电磁悬浮轴承支撑,实现了非接触无磨损运行,不需要润滑油系统。这是电磁轴承技术在世界上首次用于反应堆设备。   主氦风机工程样机由清华大学核能与新能源技术研究院负责总体技术并提供电磁轴承,同时负责整机调试及试验,佳木斯电机负责电机,上海电气鼓风机厂负责叶轮及整机总装和试验平台,中核能源公司负责项目管理和质保。它的研制成功也是先进核能技术协同创新的重大成果。   七、具有极高硬度和稳定性的纳米孪晶金刚石   天然金刚石一直被认为是自然界中最硬的材料。自从1955年人类成功合成金刚石起,合成出比天然金刚石更硬的材料就成为科学界和产业界的共同梦想。燕山大学田永君教授领导的中外研究团队,在建立的多晶共价材料硬化模型指导下,采用洋葱碳为前驱体,成功合成出具有极高硬度和热稳定性的纳米孪晶金刚石,孪晶的平均厚度仅为5纳米。纳米孪晶金刚石的维氏硬度可达200GPa,是天然金刚石的2倍,实现了人类合成比天然金刚石更硬材料的梦想 其韧性也比金刚石单晶提高了一倍,且抗氧化温度比天然金刚石高出200摄氏度以上。硬度、韧性和热稳定性三大指标的显著提高将使这类超硬工具的寿命成倍提高。   本成果发表在2014年6月的《Nature》杂志上,杂志封面和目录页分别进行了导读,题为&ldquo 极致的金刚石:纳米孪晶合成将其硬度及热稳定性推至顶峰&rdquo 和&ldquo 硬科学:合成的金刚石日渐强大&rdquo ,杂志同期的News & Views栏目刊文&ldquo 金刚石变得更硬&rdquo 也详细介绍了该项工作。本成果引起了学术界的广泛关注和高度评价,Nano Today、Materials Today等杂志以及科技日报、参考消息、赫芬顿邮报、芝加哥论坛、洛杉矶时报等新闻媒体和科学网站都进行了报道。   八、肝硬化中肠道菌群的改变的研究   2014年7月,浙江大学李兰娟院士领衔的团队,首次通过肠道微生态宏基因组技术,确定了肝硬化肠道微生物组的特征,成果发表在《Nature》杂志。   该研究从中获得269万个非冗余的人体肠道微生物菌群的基因集,首次建立了世界上第一个肝硬化肠道菌群基因集,包含269万个基因,其中36.1%即97万个为首次发现的基因 同时,阐明了肝硬化肠道菌群的结构变化 并通过基因标记物的聚类分析,发现了28种细菌与肝硬化密切相关,其中多个细菌是在肝硬化患者中首次发现,38种与健康人密切相关。此外,首次发现肝硬化患者口腔菌侵入到肠道,而健康人中没有此现象,可能对肝硬化发生发展产生重要影响 还发现了15个高特异性和灵敏性的微生物基因,建立了预测疾病的模型,今后不仅有助于肝硬化诊断,还能用于肝硬化疗效的评估。   这是李院士领衔的科研团队20年肝病微生态研究的结晶,他们对微生态在肝病发生发展中的作用机制做了大量艰苦的研究,取得了系列原创性成果,具有重大国际影响力。2013年9月,李兰娟院士当选为第五届国际人体微生物组联盟(IHMC)主席,成为首个在该组织担任主席职务的中国人。同时将作为大会主席举办2015年卢森堡国际人类微生态大会,引领国际微生态的学科发展方向。   九、全球变暖减缓的特征与机制   过去十几年间,人为温室气体加速排放,但全球表面温度上升速度却明显减缓。这些现象导致有些人开始质疑人类活动对全球气候变暖的影响作用。而气候学家则一直致力于寻找现象背后的物理本质。中国海洋大学陈显尧教授和美国华盛顿大学Ka-Kit Tung教授的最新合作研究结果表明,全球气候变暖的步伐并没有减缓,只是热量在气候系统各组成部分中的分配发生了变化。过去十几年间,大洋热盐环流将气候系统吸收的热量更多地输送至深层海洋,从而减缓了地球表面温度上升的速度。   大西洋表面热盐环流可以把热带高温高盐水输送到北大西洋北部,在那里海水向大气失热,变得更重而沉入深海,并形成北大西洋深层水向南输送。通过分析观测数据,陈显尧和Ka-Kit Tung发现上世纪90年代后期,北大西洋北部海水温度&mdash 盐度持续上升,由此推测大洋热盐环流的下沉分支可能变强,从而向深层海洋输送了大量热量而减缓表面温度上升。分析表明类似现象曾发生在上世纪50&mdash 70年代,北大西洋0&mdash 1500米层海洋的温度和盐度具有显著并同步的多年代际振荡特征。   这一成果说明了海洋在气候变暖的进程中起着至关重要的调控作用,也凸显了加强海洋观测模拟和分析对提高气候预测能力的重要性和紧迫性。   十、复合离子液体碳四烷基化生产高品质清洁汽油新技术   环保要求日益严格呼唤更清洁的汽油。碳四烷基化汽油具有高辛烷值、无硫、无烯、无芳等优点,是最理想的清洁汽油调和组分。传统工艺以浓硫酸或氢氟酸为催化剂,存在严重的设备腐蚀及潜在的环境污染与人身危害等重大问题,其工业应用受到了越来越大的挑战。因此,环境友好的碳四烷基化技术的开发一直是世界炼油工业的焦点。   中国石油大学(北京)徐春明教授和刘植昌教授所带领的研究团队,创新性地开发成功兼具高活性和选择性的复合离子液体催化剂 开发成功复合离子液体碳四烷基化新工艺,发明了催化剂活性监测方法和再生技术 开发成功管道反应器、旋液分离器等专用设备,建成世界首套&ldquo 10万吨/年复合离子液体碳四烷基化工业装置&rdquo 。工业运行结果表明,产品辛烷值高达97以上,吨烷油催化剂当量消耗5公斤,吨烷油能耗157kgEO。中国石油和化学工业联合会成果鉴定认为&ldquo 该技术具有自主知识产权,总体技术处于国际领先水平,具有广阔的应用前景和推广价值&rdquo 。该技术的成功应用,为我国乃至世界商品汽油的清洁化和全面质量升级提供了一种崭新的解决方案。   该技术获17项国际发明专利、10项中国发明专利,发表论文30余篇。于2014年9月获得中国石油和化学工业联合会唯一的技术发明特等奖。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制