当前位置: 仪器信息网 > 行业主题 > >

重点频段

仪器信息网重点频段专题为您整合重点频段相关的最新文章,在重点频段专题,您不仅可以免费浏览重点频段的资讯, 同时您还可以浏览重点频段的相关资料、解决方案,参与社区重点频段话题讨论。

重点频段相关的资讯

  • 物理所实现空气耦合的MHz频段高灵敏度超声波探测
    高灵敏度、小型化的超声探测器在诸多方面发挥着重要应用,例如医学诊断、光声成像、无损检测等。目前,商用的超声波探测器主要采用压电换能器,但为了实现较高的灵敏度,往往需要较大的尺寸,其传感器的典型尺寸一般为毫米到厘米。   近些年来,随着微纳光电技术的发展,在硅芯片上微加工制备得到的光学超声波探测器可同时实现较高的灵敏度和空间分辨率。其中,微腔光力系统由于其高灵敏度、宽带宽、低功耗和易于集成等优越特性,引起越来越多的关注。由于微腔光力系统中的较强光力相互作用,微腔的机械位移可以通过光学共振信号来敏感读出。由于机械共振增强了响应,且光学共振可增强读出灵敏度,因此微腔光力系统已被证实是位移、质量、力、加速度、磁场和声波等物理量的高灵敏探测理想平台。   前期工作中,研究人员已在各种体系的光学微腔中实现超声波/声波的探测,例如二氧化硅微腔、聚合物微腔、硅微腔等。多数超声波探测是在液体环境中实现的。而在空气环境中,由于超声波吸收损耗大,且声源/空气界面处的阻抗失配大,高灵敏度的超声波探测依然颇具挑战。前期工作中,空气耦合的超声波探测只在1 MHz以下频段实现。空气耦合的超声波探测在一些特定场景中具有重要应用,例如气体光声光谱和非接触式超声医学成像等。   为了提高空气耦合的超声波探测灵敏度,并拓展探测频率范围,近日,中国科学院物理研究所/北京凝聚态物理国家研究中心研究人员使用微芯圆环腔演示了在MHz频率范围内的空气耦合高灵敏度超声波探测。 在该工作中,研究人员通过光刻、氢氟酸腐蚀、氟化氙刻蚀、二氧化碳激光回流的微加工工艺,制备了带有较细的硅基座的微芯圆环腔,从而减少来自衬底的机械运动的约束,获得了在2.56 MHz的一阶拍动模式下约700的高机械品质因子,同时光学品质因子达到107以上。凭借较高的光学和机械品质因子,以及与超声波具有较大空间重叠的2.56 MHz的一阶拍动模式,他们在机械模式附近0.6 MHz的频率范围内实现了仅受热噪声限制的灵敏度,在0.25-3.2 MHz的频率范围内实现了46 μPa/Hz1/2-10 mPa/Hz1/2的灵敏度。此外,他们在机械共振频率下利用超声波驱动传感器时观察到了二阶和三阶机械边带,通过测量不同超声波压强(P)下的信噪比(SNR),发现一阶、二阶和三阶机械边带的分别与P、P2和P3大致成正比,三个机械边带上的测量强度与理论结果一致。这种非线性转换提供了一种扩展位移传感动态范围的方法。  该研究演示了一种基于微芯圆环腔的空气耦合高灵敏度MHz频段超声波探测方案,实现了宽带、高灵敏度超声检测。这项工作拓宽了使用微腔光力系统进行空气耦合的超声波探测的频率范围,并获得了较大频率范围的热噪声主导区域。相关研究成果以High-Sensitivity Air-Coupled Megahertz-Frequency Ultrasound Detection Using On-Chip Microcavities为题于近日发表在Physical Review Applied上。相关研究工作得到国家重点研发计划、国家自然科学基金委项目和中科院基础前沿科学研究计划的支持。图1 (a) 微芯圆环腔的光学显微镜图。(b) 模拟的回音壁模式的基模光场分布。(c) 1550 nm附近微腔的透过率谱。(d) 超声波探测实验装置的示意图。图2 (a) 微腔超声波探测器的噪声功率谱(黑色实线)与在2.56 MHz频率处施加了超声波信号的响应谱(绿色实线),虚线为计算得到的理论噪声。(b) 微腔超声波探测器的系统响应,即微腔对不同频率的超声波的响应。(c) 微腔超声波探测器的压强(左轴)和力(右轴)灵敏度谱。图3 (a) 施加单频超声波后不同阶机械边带的响应。(b) 一阶、二阶、三阶机械边带的与超声波压强的关系。
  • Physical Review Applied |利用片上光学微腔实现空气耦合的MHz频段高灵敏度超声波探测
    高灵敏度、小型化的超声探测器在诸多方面发挥着重要应用,例如医学诊断、光声成像、无损检测等。目前,商用的超声波探测器主要采用压电换能器,但为了实现较高的灵敏度,往往需要较大的尺寸,其传感器的典型尺寸一般为毫米到厘米。近些年来,随着微纳光电技术的发展,在硅芯片上微加工制备得到的光学超声波探测器可同时实现较高的灵敏度和空间分辨率。其中,微腔光力系统由于其高灵敏度、宽带宽、低功耗和易于集成等优越特性,从而引起越来越多的关注。由于微腔光力系统中的较强的光力相互作用,微腔的机械位移可以通过光学共振信号来敏感读出。由于机械共振增强了响应,且光学共振可增强读出灵敏度,因此微腔光力系统已被证实是位移、质量、力、加速度、磁场和声波等物理量的高灵敏探测的理想平台。前期工作中,研究人员已在各种体系的光学微腔中实现超声波/声波的探测,例如二氧化硅微腔、聚合物微腔、硅微腔等。多数超声波探测是在液体环境中实现的。而在空气环境中,由于超声波吸收损耗大,且声源/空气界面处的阻抗失配大,高灵敏度的超声波探测依然较为挑战。前期工作中,空气耦合的超声波探测只在1 MHz以下频段实现。空气耦合的超声波探测在一些特定场景中具有重要应用,例如气体光声光谱和非接触式超声医学成像等。为了提高空气耦合的超声波探测灵敏度,并拓展探测频率范围,最近,中国科学院物理研究所/北京凝聚态物理国家研究中心的博士生杨昊、胡志刚等人在李贝贝副研究员的指导下,使用微芯圆环腔演示了在MHz频率范围内的空气耦合高灵敏度超声波探测。在这项工作中,他们通过光刻、氢氟酸腐蚀、氟化氙刻蚀、二氧化碳激光回流的微加工工艺,制备了带有较细的硅基座的微芯圆环腔,从而减少来自衬底的机械运动的约束,获得了在2.56 MHz的一阶拍动模式下约700的高机械品质因子,同时光学品质因子达到107以上。凭借较高的光学和机械品质因子,以及与超声波具有较大空间重叠的2.56 MHz的一阶拍动模式,他们在机械模式附近0.6 MHz的频率范围内实现了仅受热噪声限制的灵敏度,在0.25-3.2 MHz的频率范围内实现了46 μPa/Hz1/2-10 mPa/Hz1/2的灵敏度。此外,他们在机械共振频率下利用超声波驱动传感器时观察到了二阶和三阶机械边带,通过测量不同超声波压强(P )下的信噪比(SNR),发现一阶、二阶和三阶机械边带的分别与P、P2和P3大致成正比,三个机械边带上的测量强度与理论结果一致。这种非线性转换提供了一种扩展位移传感动态范围的方法。本项研究演示了一种基于微芯圆环腔的空气耦合高灵敏度 MHz频段超声波探测方案,实现了宽带、高灵敏度超声检测,这项工作拓宽了使用微腔光力系统进行空气耦合的超声波探测的频率范围,并获得了较大频率范围的热噪声主导区域。相关研究成果以“High-Sensitivity Air-Coupled Megahertz-Frequency Ultrasound Detection Using On-Chip Microcavities”为题于2022年9月14日在Physical Review Applied上发表。第一作者为博士生杨昊,通讯作者为李贝贝副研究员。上述研究工作得到了国家重点研发计划(2021YFA1400700)、国家自然科学基金委项目(91950118,12174438,11934019)和中国科学院基础前沿科学研究计划(ZDBS-LY-JSC003)的大力支持。文章链接:https://doi.org/10.1103/PhysRevApplied.18.034035 图1 (a) 微芯圆环腔的光学显微镜图。(b) 模拟的回音壁模式的基模光场分布。(c) 1550 nm附近微腔的透过率谱。(d) 超声波探测实验装置的示意图。图2 (a) 微腔超声波探测器的噪声功率谱(黑色实线)与在2.56 MHz频率处施加了超声波信号的响应谱(绿色实线),虚线为计算得到的理论噪声。(b) 微腔超声波探测器的系统响应,即微腔对不同频率的超声波的响应。(c) 微腔超声波探测器的压强(左轴)和力(右轴)灵敏度谱。图3 (a) 施加单频超声波后不同阶机械边带的响应。(b) 一阶、二阶、三阶机械边带的与超声波压强的关系。
  • 振动试验机选择及试验可否判断的要素
    通过前文介绍,相信初入者对振动试验系统应该有一定了解。特别是电动式振动台推力有1~60tonf,针对试验条件和试验体,如何选择合适且经济的振动台进行试验?下面进行阐述。试验前,必须明确试验条件和要求。需要考虑的要素如下:※有没有试验规格※振动台式样规格※试验种类:正弦试验、随机试验、冲击试验、etc.※频率范围※加速度、速度大小※振幅(位移)大小※试验体的尺寸、质量、形状等※夹具的尺寸、质量、形状、共振点等※振动方向(垂直、水平、二轴同时振动、三轴同时振动)※是否和温度、湿度、高度(气压)、光照等条件复合试验※试验的控制点、检测点、控制误差范围等※其他特殊要求等试验规格介绍1.ISO(International Organization for Standard,国际标准化机构)2.CCC(China Compulsory Certificate System),GJB(国军标),GB(国标)3.MIL(Military Specifications and Standard,美军标)4.IEC(International Electro-technical Commission,国际电气标准会议)5.EN(European Norm)6.JIS(Japanese Industrial Standard,日本工业规格)7.各个公司内部规格BMW,TOYOTA, HONDA, SONY, SHARP, Panasonic。要读懂试验规格是一件很困难的事情,只能在实践中慢慢去理解,多请教,多学习。振动试验机的式样规格各个厂家的设备目录中记载有很多参数和规格,一般标准振动台以下几个参数比较重要,加振力:10kN、20kN、30kN、、、、、600kN最大正弦加速度:1000m/s2最大正弦速度:2m/s、2.5m/s最大位移:51mm、76mm、100mm使用频率范围:5Hz~3000Hz动圈质量:加振力不同,质量不同。这些规格参数代入前面的A、V、D、f四者之间的计算公式,即可以得到设备的交越频率和最大正弦能力特性曲线图(无负载)。再结合牛顿第二定律计算出各种负载下的最大加速度,继续使用上面的式子,可得到各种负载下的交越频率和能力特性曲线图。最大正弦能力特性曲线图(无负载情况):图中可以看出,电动振动台有三个工作区域,低频段对应位移区域,低中频段对应速度区域,中高频段对应加速度区域。或者说低频段受最大位移限制,低中频段受最大速度限制,中高频段受最大加速度限制。每个物理量对应频率变换点就是交越频率。因此,如果说5Hz的时候需要满足加速度500m/s2,或者1000Hz的时候满足位移50mmp-p,那就是外行话了。例题:某电动振动台使用频率范围5~2000Hz,最大位移51mmp-p,最大速度2m/s,最大加速度1000m/s2,请计算位移到速度,速度到加速度的两个交越频率,并试着画出该设备无负载最大能力特性曲线图。图中可以看出,25kg负载情况下,蓝线以下(含蓝线)的试验条件该设备都可以对应。超出蓝线对应的话,导致设备故障损坏。个人经验,振动台的损坏,一半以上都是过负载原因造成的,切记。试验条件的确认试验的种类:正弦试验、随机试验、冲击试验、etc。试验频率范围f加速度大小A、加振力F=∑mA(下节重点叙述)振幅(位移大小)D速度大小V1. 正弦定频试验的场合试验条件:频率10Hz 加速度10G半位移峰值D0-p = A0-p/(2πf)2 = 10×9.8/62.82 = 24.85mm全位移峰峰值49.70mm (注意半位移和全位移的倍数)一般振动台的全位移峰峰值有51mm、76mm、100mm,为了安全起见可以选76mm的设备。(请再计算一下速度的峰值。)注意:①控制仪输入f、A、D、V中的两个参数,会自动得出另外两个参数。4个量都不可以超过振动台式样规格。②扫频试验的时候取最大值。③正弦试验一般各个参数小于试验机的规格值即可,一般安全系数1.2~1.3。④以上计算都假定没有夹具和试验体的共振影响。2. 随机试验的场合加振力试验加振力rms≦随机额定rms(必要时需要试验PSD的等价频幅修正)速度3✖试验rms≦正弦波额定速度峰值位移3.5✖试验rms≦正弦波额定位移峰值☆☆☆加速度rms、速度rms、位移rms值的计算比较复杂,可以通过振动控制仪输入PSD值之后,自动得出数据。3. 冲击试验的场合加振力F= ∑mA∑m:总质量(动圈质量+夹具质量+ 试验体质量)速度≦正弦波额定速度峰值位移≦正弦波额定位移峰值☆☆☆速度、位移峰值的计算比较复杂,可以通过振动控制仪输入冲击脉宽和加速度之后,自动得出数据。规格标准不同,数值结果不同。IEC标准:MIL标准:试验体的尺寸、质量、形状、固定方式① 试验体直接固定动圈或垂直扩张台(垂直方向),水平滑台(水平方向),还是先固定在夹具上再固定在台面上?② 试验体尺寸有没有超出台面,有没有碰到其他地方(三综合恒温恒湿箱内壁等)?③ 各重心是否都在一直线上,重心是不是偏高?振动台台面的抗倾覆力矩是否在允许条件下?④ 固定螺栓全部固定好了?固定后是否会在振动时候倒下来?⑤ 夹具是不是要提前准备?⑥ 夹具共振点是多少?是不是在试验频率范围内?⑦ etc.。各种夹具的确认试验体固定在夹具上的位置和尺寸、夹具的共振点、夹具固定在振动台面上的间隔( □100mm,φ50mm,φ100mm ),螺钉大小( M6,M8,M10,M12等),公制(mm)还是英制(in.)?下面介绍一些常见的试验夹具。垂直扩张台面(Vertical Table):水平滑台(Slip Table): 其他夹具:总结一次振动试验的顺利完成需要考虑的要素很多,以上只是列举了一些基本要素。此外还涉及到振动控制仪的设置、控制点的位置、避免夹具的共振点、加速度传感器的固定方式、试验体的m(质量)k(弹性系数)c(阻尼)、振动台的能力(动圈特性、功放性能等)等等要素。总之,记住一句话“振动的水很深!”。只能在不断地工作和学习中慢慢积累。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 中国科大实现低频射频场的高灵敏里德堡原子传感器
    中国科学技术大学郭光灿院士团队在基于里德堡原子的低频射频电场测量上取得重要进展。该团队史保森、丁冬生课题组利用非共振外差方法实现了基于里德堡原子的低频射频电场精密探测,相关成果以“Highly sensitive measurement of a MHz RF electric field with a Rydberg atom sensor”为题发表在国际应用物理期刊《Physical Review Applied》上。   里德堡原子由于其较大的电偶极矩和极化率等独特性质,在微波测量领域展现出巨大应用潜力。基于里德堡原子的量子传感器在测量精度﹑抗干扰性以及可朔源等方面有望超越传统微波接收系统,因此该研究方向受到广泛关注,例如:美国陆军研究室、桑迪亚国家实验室等开展了相关研究,并取得了重要进展[Physical Review Applied 13, 054034 (2020),Physical Review Applied 15, 014047 (2021)]。尽管里德堡原子传感器在GHz高频微波频段探测取得了重要进展,但在MHz附近的低频波段却遇到困难,测量灵敏度较低,其主要原因在于低频电场与里德堡原子之间的耦合是一种弱的非共振相互作用,受限于光谱测量分辨率,人们难以测量微弱微波电场造成的扰动,这就限制了里德堡原子微波测量向低频波段的扩展。   在本工作中,研究团队基于AC Stark效应和非共振外差技术,通过引入一个本地振荡电场来放大系统对微弱信号电场的响应,最后通过测量探测光的电磁诱导透明光谱得到信号电场的强度。研究团队实现了对30-MHz微波电场(波长近10米)的高灵敏度测量,最小电场强度为37.3µV/cm,灵敏度为−65 dBm/Hz,动态范围超过65 dB。此外,研究团队还演示了1 kHz振幅调制(AM)信号的传输和接收:通过对探测光束信号进行解调,并分别方波和正弦波调制下提取初始调制信息,保真度均达到98%。图1 (a)里德堡态激发 (b)传感器示意图图2 (a)系统灵敏度 (b)和(c)AM解调信号演示 这项工作提高了MHz电场的原子传感器灵敏度,有助于原子电场传感技术的发展。该工作对里德堡原子传感器的在其他领域的应用,如远程通信、超视距雷达和射频识别(RFID)也有参考价值。   中科院量子信息重点实验室硕士研究生刘邦为本文的第一作者,丁冬生教授、史保森教授为本文的共同通讯作者。该成果得到了科技部、基金委、中科院、安徽省重大科技专项以及中国科学技术大学的资助。
  • 我国提出新的太赫兹时间频率特性分析方法
    “飞秒激光”———瞬间发出的功率比全世界发电总功率还大的奇特之光 “太赫兹频段”———电磁波谱中有待进行全面研究的最后一个频率窗口。2009年12月23日,在中国计量院昌平实验基地举行的两场课题鉴定会上,与会专家一致认为,我国在飞秒脉冲激光参数测量、太赫兹产生与测量等前沿光学计量领域已经达到了国际一流研究水平。   激光曾被视为神秘之光。近年来,科学家研究发现了一种更为奇特的光———飞秒激光。飞秒激光是一种以脉冲形式运转的激光,具有非常高的瞬时功率,比目前全世界发电总功率还要高出百倍。它还能聚焦到比头发直径还要小的空间区域,使电磁场的强度比原子核对其周围电子的作用力还要高数倍。   在飞秒激光的各项研究中,其参数的准确测量对飞秒脉冲激光产生、传输、控制等各个过程的研究和应用具有重要作用。由中国计量院光学所完成的课题“飞秒脉冲激光参数测量新技术研究”自主研究并建立了准确、可靠、稳定、实用的飞秒脉冲激光参数测量装置,对飞秒脉冲激光参数测量引起误差的各种因素做了系统、深入的研究,实现了对飞秒脉冲激光时域波形、光谱相位、脉冲宽度、峰值功率等参数的准确测量。“我们首次提出并实现了飞秒脉冲光谱相位和光学元件色散特性测量的新方法和新技术,降低了传统方法的光谱相位测量不确定度和误差,将飞秒脉冲激光参数的准确度提高到一个新水平。”课题组主要成员邓玉强介绍,课题组的创造性研究成果已多次被日本北海道大学、法国圣艾蒂安大学、中国工程物理研究院、中科院上海光机所等国内外著名研究机构引用,促进了超短脉冲激光研究和应用技术的发展,提升了我国在超短脉冲激光参数测量领域的国际地位。在课题鉴定会上,专家组也认为,该课题的完成标志着我国在前沿光学计量领域达到了国际一流水平。   飞秒激光参数测量技术等超快技术的发展直接推动了光学计量另一前沿高端技术的进步,那就是太赫兹研究。据介绍,太赫兹频段是指频率从十分之几到十几个太赫兹,介于毫米波与红外光之间相当宽范围的电磁辐射区域。长期以来,由于缺乏有效的太赫兹辐射产生和检测方法,人们对于该波段电磁辐射性质的了解非常有限,该波段也被称为电磁波谱中的“太赫兹空隙”,是电磁波谱中有待进行全面研究的最后一个频率窗口。   谈到太赫兹研究的运用领域,中国计量院光学所所长于靖仿佛一下子打开了话匣子:“太赫兹的作用简直太大了。在食品领域,不同的物质在太赫兹波段存在不同的吸收谱线,因此可以利用这一特性识别物质成分,检验食品中的有害物质。如识别大豆油、花生油、混合油、地沟油等,识别油水混合物中油的含量,检验奶粉中是否含有三聚氰胺等 在纺织品领域,丝绸、尼龙、棉布、麻布、皮革等都有独特的太赫兹吸收谱线,利用这一特性可以将太赫兹作为检验纺织品材料和质量的手段 在医疗领域,生物体内的水分对太赫兹有较强的吸收,而病变细胞由于所含水分减少,从而吸收减少。利用这一特性可以用太赫兹区分健康细胞与病变细胞 在安全检验领域,太赫兹可以区分毒品,如大麻、兴奋剂、摇头丸等。太赫兹也是探测地雷、炸药、爆炸物等危险品非常有效的光源。用太赫兹成像还可以观察到恐怖分子是否带有凶器,太赫兹也能透过建筑物观察到内部的情况,在反恐方面有重大的应用前景。”除此之外,太赫兹在航空航天、天文、生物、药品制造等多个领域都有非常重要的应用。   太赫兹广泛而重要的应用前景使它被认为是改变未来世界的十大技术之一。但是,太赫兹研究中存在很多需要突破的关键问题。“最难的就是太赫兹的产生以及相关参数的测量。”于靖介绍说,刚刚完成鉴定的“太赫兹脉冲产生与时频特性测量方法研究”课题正是将太赫兹的产生和测量作为研究重点,课题组在对太赫兹产生、传输和探测方面进行了大量实验和自主研究,突破了太赫兹辐射与测量一系列关键技术,最终产生了(0.1-3.5)THz的宽带相干太赫兹辐射,并建立了太赫兹时域和频域测量实验装置。   邓玉强介绍:“我们在国际上首次提出了新的太赫兹时间频率特性分析方法,消除了传统方法产生的频谱干涉,降低了时域波形噪声的影响,实现了物质太赫兹吸收谱线的高分辨测量,在太赫兹时间频率特性分析方面属国际领先水平。我们自主研制的太赫兹系统可以产生稳定的宽带太赫兹辐射,为太赫兹光谱的研究提供了有利的工具。”鉴定委员会专家也一致认为,太赫兹辐射测量装置具有测量结果准确、重复性好、稳定性高、结构紧凑、信噪比高等特点,达到国际先进水平。(2010年1月21日)
  • “变革性技术关键科学问题”重点专项:2021年拟拨6.37亿,围绕材料等5领域部署
    3月29日,科技部发布了国家重点研发计划“变革性技术关键科学问题”重点专项2021年度项目申报指南。“变革性技术关键科学问题”重点专项,重点支持相关重要科学前沿或我国科学家取得原创突破,应用前景明确,有望产出具有变革性影响技术原型,对经济社会发展产生重大影响的前瞻性、原创性的基础研究和前沿交叉研究。指南中明确,该重点专项2021年拟部署项目的国拨概算总经费为6.37亿元,将围绕空间、电子信息、材料、地学及生命等5个领域方向部署项目,优先支持34个指南方向。1. 月球内部圈层结构与演化过程的研究利用历史数据特别是嫦娥系列月球探测数据,以重、磁、电、震、热等几大核心要素,开展多物理场的综合研究,构建月球内部圈层结构模型,剖析月球内部圈层结构特性及其形成的机理,研究月球大尺度演化历史中的重大事件,构建新的月球演化理论框架,实现对月球内部圈层结构和月球演化过程认知的新突破。2. 空间超冷原子奇异物理性质研究发展空间微重力条件下制备、测量、精密调控10~100pK量级温度超冷原子的新方法和新思路,研究超冷原子气体的奇异物理特性。研究10~100pK温度下,光晶格中超冷原子的量子相变,研究这种极端条件下产生的新物态,以及这些物态的新物理性质和动力学过程;研究物质波辐射和相干特性,并对其进行精密探测,探索异核量子少体奇异分子特性;基于空间超冷原子气体,发展探测超出标准模型的新粒子与新相互作用的新思路,研究包括轴子与类轴子粒子在内的暗物质备选 粒子的新奇量子态。为空间超冷原子相关科学实验提供科学依据和研究基础。3. 新型空间高能辐射探测的重要科学问题研究面向新一代更高性能、国际领先的空间暗物质粒子、宇宙线和伽马射线的探测需求,开展关键科学问题研究。研究大接收度、宽能量动态范围条件下,从海量杂乱信息中智能判选有效事例的科学问题和优化方法,充分利用多种探测器的能量、时间和簇射形状等信息,实现多种类粒子的高效准确获取;研究高精度高分辨率的电荷重建测量算法,降低高能宇宙线碎裂效应和簇射反冲效应的影响,发展多变量分析和粒子鉴别算法,提升对电子和光子的测量能力;研究核子、电子特别是伽马光子的高精度能量和方向/径迹重建算法,最大限度地修正簇射反冲效应和不同入射角度的影响;研究利用电离效应、地磁刚度、穿越辐射等多种标定手段相结合的可靠在轨标定方法,确保测量能标的准确性;开展实验进行验证。4. 天体爆发现象的高能辐射研究利用多波段多信使天文观测设备和手段,对双致密星并合引力波电磁对应体、X射线双星、快速射电暴、高能中微子以及伽马暴和磁星进行探测研究,研究X射线中子星和黑洞双星、快速射电暴、高能中微子以及伽马暴和磁星暴发的产生机制,破解黑洞、中子星和磁星等致密星的形成和演化以及双致密星的并合机制,研究强引力场、强磁场、高密度下的物理规律, 测量引力波速度和哈勃常数等基础物理参数。5. 多源卫星数据在轨智能融合理论与方法面向快速获取信息的需要,探索多源卫星数据在轨智能融合新理论与新方法。研究单平台多载荷自融合系统架构, 研究多源异构卫星数据信息相关性度量理论与方法,建立多星协作认知模型,突破单星分辨率与探测识别精度极限,开展多星协作对提升状态判读与动态过程预测准确性的理论与数值分析,研究基于知识与数据双驱动的多源数据智能融合方法与低能耗硬件加速计算方案,研制多源数据融合在轨处理试验系统并进行航空 验证。6. 基础三维无源元件的单片高集成度自卷曲技术针对微型电子系统对高集成度基础无源元件的需求,研究单片自卷曲技术。研究自卷曲结构的薄膜应力生长调控机制和异质晶体薄膜集成结构的应变诱导卷曲力学机理;提出高频、高磁导率纳米颗粒磁流体芯及其毛细注入机制;研究力-电-热多物理场耦合规律,建立等效分析模型;探索零功耗的自卷曲结构可重构方法,实现基础无源元件电性能可调。 7. 电磁矢量高分辨成像理论与系统研究针对单一波束宽度范围内多目标分辨的需求,开展基于电磁矢量的高分辨成像理论与技术研究,突破多目标分辨的电磁衍射极限限制。研究非线性电磁矢量波前调制理论与技术,探索可重构矢量调制材料特性同系统非线性状态数量最大化的联系;研究基于波前非线性调制的信号处理与成像算法;研制短基线稀疏阵列三维成像雷达原理样机,开展飞行试验,为电磁矢量高分辨三维成像技术应用奠定技术基础。8. 红外微分体制和硅基单片集成的探测芯片技术针对红外高背景辐射环境中微弱目标的红外探测跨代技术所需要的芯片技术,构建红外成像芯片的微分体制和硅基单片集成体制;研究微分物理量原位直接探测的方法,基于光-电联合调控对不同的光场要素实现原位集成式微分感知的技术;研究基于胶体量子点的硅基单片集成短波红外探测芯片,重点突破量子点的批量化合成、暗电流抑制和弱信号采集技术;建立适应微分体制和硅基单片集成体制的红外成像芯片关键技术。9. 面向宽温域功能器件的连续组分外延薄膜技术与材料以宽温域实用功能器件为牵引目标,发展水平方向化学组分连续变化的外延薄膜生长技术和匹配的水平空间跨尺度表征技术;制备连续组分铁电和热电功能材料单晶薄膜;获得居里温度和热电优值等关键参量随精细组分的定量化规律;研究连续组分外延薄膜宽温域下参量调控机制;研制基于连续组分外延薄膜的宽温域连续响应功能器件。10. 面向半导体集成的铁电调控新功能器件面向半导体集成多功能电子和光电子器件的发展需求,开展铁电氧化物薄膜和二维层状材料与第二、三代半导体相兼容的异质集成技术和可控制备工艺的研究;研究铁电-半导体界面特性及其功能器件极化调控规律,突破常规晶体管的性能瓶颈;构建铁电多功能性调控金属离子发光物理模型和技术方法,革新传统的发光触发和调制技术,研究铁电氧化物的多功能性与半导体光电特性的耦合,实现基于新机制的半导体集成的铁电功 能调控光电子器件。11. 生物过程启示的陶瓷材料室温制备关键科学问题研究自然制造过程中生物材料组成和显微结构形成过程的典型特征;研究生物环境、类生物环境、生长因子等条件下陶瓷材料合成和显微结构形成动力学过程,开展生物合成陶瓷材料结构形成动力学的跨尺度理论模拟和计算;研究微纳尺度限域环境、外场(光、力、电)等辅助条件对物质传输、反应和组装致密化机制的影响,设计和研发陶瓷材料室温制备装备,优化制备工艺参数,研制宏观尺寸工程陶瓷材料。12. 大尺寸异形构件的热防护材料及其制造技术面向大尺寸异形构件整体制造及热防护的需求, 研究多元超高温陶瓷复合材料高温长时抗氧化机制,优化设计宽温域抗烧蚀多元超高温陶瓷组分;研究反应熔渗法制备大尺寸构件的多元超高温陶瓷生长机制,发展陶瓷与碳/碳材料结构功能一体化的梯度复合方法;研究大尺寸构件碳基体与陶瓷相的定向引入方法、应力形成机制与变形控制方法,形成大尺寸异形构件整体制造与分区域热防护制备技术。13. 劣质地下水改良的原位调控理论与技术研究面向劣质地下水分布区安全供水的重要需求,研究原位调控含水层条件下原生劣质地下水中氟、砷、氨氮等典型有害组分的去除机理,构建水质改良原位调控理论体系;开发典型原生劣质地下水中有害组分及赋存状态的原位与现场快速检测方法,研发劣质地下水多相态条件下有害组分反应性溶质运移模型,探索强化吸附除氟、强化固定除砷和强化生物脱氮等原位改良技术,建立典型原生劣质地下水原位调控的技术方法体系。14. 中国东部深层高温地热的形成机制、分布特征和资源评价针对中国东部深层高温地热的动力背景、生成与聚集机制、分布规律等开展研究。通过地球物理、地质、地化综合研究,解析地幔、岩石圈和地壳结构及其热物理参数;查明中国东部新/活动构造特别是控热构造的三维分布与时空演化特征; 开展有效热源分析,建立地热场挽近时期构造-热演化历史;结合地震、电、磁、重力等地球物理数据、地质地球化学资料,探索精细刻画浅部地壳热结构新的计算模型;开展干热岩结构力学成 因、压裂、特别是临界CO2压裂改造方法与机理研究。15. 富氦天然气成藏机制及氦资源分布预测技术研究有效氦源的评价参数及氦气释放机制,揭示控制氦源效率及潜力的关键因素;研究复杂地质介质中氦的运载机制及控制因素,揭示地质条件下温度、压力、介质特征对氦气运移、富集的控制;研究富氦气藏成藏过程及关键控制因素,阐明古老克拉通地台区富氦气藏、深大断裂/岩浆活动区富氦气藏、非常规天然气(页岩气、煤层气等)富氦气藏的成藏条件、动态富集过程及关键控制因素;建立氦源效率、有效性及潜力评价技术、复杂地质条件氦气运载效能评价技术、富氦气藏成藏条件及富氦天然气有利分布区带及勘探目标预测技术,综合集成构建氦资源评价预测技术。16. 火星的宜居环境和生命信号探索研究基于我国和国际上已有数据,结合火星陨石、模拟样品的实验室研究,充分参考地球类火星的极端环境条件,研究火星表面水成矿物的分布、含量和形成环境,水成地貌特征和古沉积环境演化,为生命可能产生的大概率区域提供参考;研究火星表层以下水冰分布,并寻找可能的地下宜居环境;分析火星陨石中的硫等挥发性元 素的同位素组成和不同氧气含量下硫等挥发性元素的光化学反应过程;研究地球临近空间、柴达木盆地等类火星极端环境中的生物多样性、分布特征和适应机制,开发地球代表性生物标志物在模拟火星环境中的检测方法,提出若干可测量的关键检测技术指标。17. 空间微重力燃烧的基础性研究面向先进能源动力和高性能发动机提高能效、燃烧源污染物的控制、地面和载人航天防火技术,通过一系列的微重力燃烧实验,得到解耦浮力效应的科学实验数据,促进对燃烧现象科学本质的认识和模型的建立,推动燃烧科学和技术的创新。具体内容包括:层流近极限燃烧特性研究;射流火焰湍流转捩及火焰结构特性研究;载人航天火灾行为及材料防火安全研究;航空航天液体燃料燃烧机理研究;微重力燃烧的碳烟生成研究,火焰合成特 种材料研究。18. 空间环境中新材料制备原理与特种成形技术基于空间环境的特殊条件,探索新材料变革性制备原理与特种成形技术。揭示超高温金属材料的液态热物理性质,探索空间快速凝固动力学规律;研究新型大块非晶与稀土磁性合金的空间制备与成形过程,优化非晶/纳米晶软磁合金组织和磁性能;探索空间环境中液相分离机理,发展高性能稀土镁合金特种成形技术;研究无机功能晶体的空间生长动力学及其生物医学特性,实现其结构和缺陷的主动调控;建立有机功能材料和纳米复合材料的空间合成新途径,发展新型凝胶润滑材料和含浸润滑剂多孔纳米复合材料。19. 空间胚胎发育和生命孕育研究研究空间微重力对哺乳动物和人类生殖细胞及其支持细胞协同发育的影响,从分子、细胞、组织等多个层面,系统地探究微重力环境对生殖细胞及其支持细胞协同发育的影响;研究空间 微重力下体外培养和分化胚胎干细胞为各类功能细胞、组织及器官的特性变化及基本规律;研究空间环境低敏感小鼠品系的筛选和构建,空间小鼠培养关键科学与技术问题。20. 日—地和日球层边界探测中的重要科学问题围绕理解日—地多圈层耦合过程和日球层边界的复杂系统开展重要科学问题研究。基于光谱成像观测研究日冕磁场、密 度、温度、速度的空间分布及其快速演化;建立太阳风结构的多视角观测的反演方法,研究其在行星际空间中的传播特征和演化规律,研究太阳风与地球磁层相互作用的关键区域(包括磁层顶、极光区和磁尾)的成像特征;建立数据驱动的内/外日球层全链条三维多元太阳风动力学演化模型,模拟背景太阳风环境及太阳风暴大尺度结构的传播与演化;研究太阳风边际结构及动态特性,星际介质对太阳风的侵入作用;研究太阳风超 热粒子及异常宇宙线的起源、加速和演化,银河宇宙线在太阳系边际的调制传输机制。21. 基于范德华外延—剥离转印的半导体器件制作新方法面向未来信息系统对高性能半导体器件的需求,突破衬底对器件性能的限制,探索基于范德华外延—剥离转印的器件制作新方法,实现不依赖外延关系的衬底选择,为高效率光电器件和大功率射频器件的研制提供变革技术。22. 基于声波新原理激励小型化天线技术面向低频天线机动化和高频天线芯片化的重大应用需求,研究多频段小型化声波激励天线新机理、新材料和新工艺,突破天线尺寸数量级缩减的技术瓶颈和传统天线辐射效率与带宽的物理极限,实现天线技术在尺寸和性能上的跨越。23. 具有开放扩展架构的模块化移动终端技术针对传统移动终端更新换代导致的资源浪费,研究可持续演进的模块化终端新形态,通过软件、模块升级与按需组合,支持多频段、多体制无线接入,实现终端由封闭向开放扩展架构的转变。24. 超铺展液滴调控技术用于高效农药利用的基础研究面向农药高效利用的重大需求,研究农作物叶面独特的微观结构和性质对农药液滴撞击在其表面迸溅和沉积的影响机制;构筑适用于多种作物和农药的新型高效表面活性剂超铺展剂体系,与农药活性调控技术相结合,解决农药的残留问题;与高效植保装备和精准施药技术相结合,构建能够使农药喷雾在作物和杂草间靶向喷洒、高效选择性沉积、抗风雨侵蚀的颠覆性技术,突破传统方法的极限,全面提升农药利用率;推动精准农业的实用化,完成农田农药喷洒测试。25. 高灵敏高速高温超导单光子探测材料与器件面向自由空间光通信对轻质小型、高灵敏光子探测器的迫切需求,聚焦星间激光通信等航空航天国家重大战略,开展新型结构高温超导薄膜制备过程与跨尺度物性理论研究和工艺优化设计;揭示基于量子金属态的新型超导量子效应形成机制;建立微结构与库珀对输运特性的构效关系和评价准则;发展基于高温超导体量子金属态的高灵敏、高速单光子探测原型器件。26. 稀土基新型电子相变半导体与敏感电阻器件围绕国家战略,从电子材料角度变革现有突变式敏感电阻元器件技术;发展稀土镍基氧化物等新型电子相变材料的非真空制备技术并结合理论计算优化其制备工艺;发展其金属绝缘体相变温度在宽温区范围的精准设计方法;研究其高压诱导电子相变特性与机理;研究其氢致电子相变特性、机理、与潜在器件应用;制作稀土基突变式热敏、压力敏感电阻原型器件。27. 分布式光纤地震成像与反演的关键技术及应用研究针对我国页岩气等非常规油气安全、高效开发关键需求,探索三分量分布式光纤地震传感技术;基于井中与地面光纤传感记录,开展裂缝发育、流体运移成像与反演方法研究,开展地下介质结构动态成像与物性参数动态反演方法研究;开展非常规油气开发现场及周边区域野外监测示范。28. 南极冰下复杂地质环境多工艺钻探理论与方法针对南极复杂冰下地质环境研究需求,变革现有冰层钻进及冰下地质钻探取样技术,探索面向南极恶劣地表环境和暖冰、脆冰与冰岩界面等复杂冰下地质环境的多工艺钻探取样理论与方法,提高复杂冰层钻进速度和增加冰下基岩取心长度。29. 高铁地震学研究针对高铁路基安全、地震预测、智慧城市地下空间探测与监测等重大问题需求,变革性地把高铁噪声源转变为可利用的优质震源,探索以高铁震源为代表的移动组合震源激发地震波场新理论,发展基于移动组合震源的地下介质结构探测、动态监测等系列新技术。30. 高通量培养筛选鉴定健康相关微生物的关键技术建立健康相关微生物菌自动分离培养及性状分析平台,揭示重要肠道细菌及代谢产物对“微生物—代谢—免疫”轴影响的微观机理;建立多组学大数据分析技术与人工智能算法,揭示临床常用药、疾病与健康相关的微生物组特征以及代谢、免疫特征;建成中国健康人体微生物实体库和微生物组的健康大数据库,突破微生物组研究关键技术,发展具有应用前景的微生物组干预技术,促进新型健康药物研发。31. 空间领域青年科学家项目针对太阳活动和空间天气的智能预报,地月空间探索等领域中的基础科学问题开展研究。32. 电子信息领域青年科学家项目针对碳基结构与硅基片上集成技术、语义通信理论与编码方法、多功能毫米波无源元件设计理论与实现技术、光电融合计算加速技术等领域中的基础科学问题开展研究。33. 材料领域青年科学家项目针对强自旋轨道耦合材料、二维量子材料、光—电—磁功能材料、柔性材料、生物医药材料等新概念功能材料与器件领域中的基础科学问题开展研究。34. 地学领域青年科学家项目针对地球与生命早期协同演化的金属同位素示踪技术与原理,关键带水文生物的地球化学研究,热带、中高纬度气候系统与我国极端天气气候的关系,涡旋运动与海洋生态系统储碳过程的关系等领域中的基础科学问题开展研究。
  • 微电子所成功研制太赫兹倍频器核心元件
    近日,中国科学院微电子研究所微波器件与集成电路研究室(四室)太赫兹器件研究组研制出截止频率达到3.37THz的太赫兹肖特基二极管和应用于太赫兹频段的石英电路。该器件作为太赫兹倍频器核心元件,经中电集团41所验证,性能与国际同类产品相当。   太赫兹波指的是频率在0.1THz~10.0THz范围的电磁波。它具有很多优异的性质,被美国评为“改变未来世界的十大技术”之一。太赫兹波谱学、太赫兹成像和太赫兹通信是当前研究的三大方向。在安全检查、无损探测、天体物理、生物、医学、大气物理、环境生态以及军事科学等诸多科学领域有着重要的应用。具有极高截止频率的肖特基二极管能够在室温下实现太赫兹波的混频、探测和倍频,是太赫兹核心技术之一 此外,在低损耗的衬底上实现太赫兹电路是太赫兹技术得以实现的基础。   由四室主任金智研究员领导的太赫兹器件与电路研究组针对太赫兹电路的关键技术开展研究,对器件外延材料生长的进行了设计与优化,突破了低电阻欧姆接触合金、肖特基微孔刻蚀和空气桥腐蚀技术等关键制作工艺,有效地降低了器件的串联电阻和寄生电容,实现了可在太赫兹频段应用的肖特基二极管,并开发了多种肖特基二极管的集成方式(见图1),太赫兹肖特基二极管(见图2)器件的最高截止频率达到3.37THz,可广泛应用于太赫兹波的检测、倍频和混频。   为了解决太赫兹频段下外围电路损耗高的问题,研究人员开发出器件与电路衬底背面减薄技术,并采用低介电常数石英材料实现了太赫兹电路,研制出厚度小于50um,可应用于太赫兹频段核心电路(见图3),极大地减小了在太赫兹频段的损耗,提高了电路模块的效率。   课题组与中电集团第41研究所联合开展了太赫兹倍频器的验证工作,采用自主研制的太赫兹肖特基二极管器件实现了倍频器在太赫兹频段的工作,在170~220 GHz的倍频效率为3.6%,220~325 GHz的倍频效率达到1.0%(见图4),可实现宽频带倍频,其输出功率和倍频效率与国外VDI同类产品相当,该倍频器可用于构建宽频带太赫兹源,在太赫兹成像、太赫兹通信和卫星遥感方面有着广阔的应用前景。对于太赫兹系统的核心器件(主要是肖特基二极管)的国产化具有重要意义,为国内的太赫兹技术的发展提供良好的器件和工艺支撑。
  • 北京大学王兴军团队提出:全芯片化的微波光子频率测量系统
    移动通信、雷达、卫星遥感、电子对抗以及基础仪器科学等领域的进步,促使着微波系统向着高频、宽带、大动态范围、多功能的方向发展。面对这些新的发展需求,传统的微波技术在微波信号的产生、传输、处理、测量等各个方面均面临巨大挑战。微波光子学融合了微波技术和光电子技术,即利用光电子学的方法处理微波信号,可以突破传统射频电子器件的性能瓶颈,被认为是下一代各类微波系统应用的解决方案之一。传统微波光子系统一般使用分立的光电子器件与电学模块搭建链路,这使得微波光子系统样机或产品具有重量大、功耗高、稳定性差等不足。因此,实现微波光子系统的微型化、片上化和集成化,是推动微波光子技术真正落地与广泛应用的关键,也是近年来学术界和产业界关注的焦点。然而,目前已报道的研究工作仍未能实现微波光子系统的完全芯片化集成,需要借助分立的光电子器件(例如:激光器、调制器等)或电子器件(例如:电学放大器等)来构建完整的系统链路,这在成本、体积、能耗、噪声方面严重制约着微波光子技术的工程化与实用化。鉴于此,近日,北京大学电子学院区域光纤通信网与新型光通信系统国家重点实验室王兴军教授研究团队提出了融合硅基光电子芯片、磷化铟芯片和 CMOS 电芯片的多芯片平台混合集成方案,首次实现了微波光子系统光-电链路的完全集成化拉通。基于该技术方案,研究团队设计实现了一款全芯片化的微波光子频率测量系统,整体尺寸约为几十 mm²,功耗低至 0.88 W,可实现对 2-34 GHz 宽频段微波信号瞬时频率信息的快速、精准测量。该成果发表在 Laser & Photonics Reviews,题为“Fully on-chip microwave photonic instantaneous frequency measurement system”。北京大学博士研究生陶源盛与北京大学长三角光电科学研究院杨丰赫博士为论文的共同第一作者,王兴军教授为论文通讯作者。该团队设计的全芯片化微波光子频率测量系统原理如图1所示,他们在硅光芯片上有源集成了高速调制器(用于微波信号加载)、载波抑制微环、可调谐光学鉴频器和光电探测器等器件。基于磷化铟平台实现高性能的分布式反馈(DFB)激光器,并通过端对端对接耦合方式与硅光芯片实现互连。为在保证系统测量精度的条件下降低对后端采样与处理电路的要求,他们将硅光芯片的弱光电流输出通过金线键合的方式直接连接至 CMOS 跨阻放大芯片的输入。经跨阻放大后的电信号,仅需通过低速采样电路采集,通过离线处理即可还原出输入高频微波信号的瞬时频率信息。图1:全芯片化的微波光子频率测量系统。(a)系统三维示意图;(b)磷化铟激光器芯片与硅光芯片的光学显微图;(c)系统整体的集成封装实物图。图源:Laser Photonics Rev.2022, 2200158, Figure 1面向电子对抗、雷达预警等实际应用场景,研究人员们在实验演示了该全芯片化微波光子频率测量系统对多种不同格式、微秒级快速变化的微波信号频率的实时鉴别。如图 2 所示,依次是对 X 波段(8-12 GHz)范围内的跳频信号(Frequency hopping, FH)、线性调频(Linear frequency modulation, LFM)和二次调频(Secondary frequency modulation, SFM)三类信号的频率-时间测量结果,误差均方根仅 55-60 MHz,是迄今为止同类型集成微波光子系统所展示出的最佳性能。图2:复杂微波信号频率的动态测量结果。(a)跳频信号(Frequency hopping, FH)的频率测量;(b) 线性调频(Linear frequency modulation, LFM)的频率测量;(c)二次调频(Secondary frequency modulation, SFM)信号的频率测量图源:Laser Photonics Rev.2022, 2200158, Figure 4未来展望 本工作所提出的多平台光电混合集成工艺方案,除适用于微波测量应用,对于研究微波信号产生、信号处理、信号传输等其他各种类型微波光子系统的集成化、微型化也具有很高的参考价值,为推动微波光子技术的工程化应用提供了一种通用性的解决方案。
  • 中国计量大学:基于太赫兹波段的负曲率轨道角动量光纤
    随着通信技术的快速发展,近些年的通信容量实现了快速增长,传统的光纤通信网络已经难以满足当前高速通信的需求。增大通信网络的容量和提高通信速度的一种方法是开发太赫兹(Terahertz, THz)波段的光纤通信空间维度。太赫兹波是介于微波和红外光之间的一种电磁波,频率介于0.1THz到10THz之间,由于它带宽大和传输速度快以及可以提供点对点的网络拓扑结构而备受关注。而在空间维度资源中,基于轨道角动量(Orbital Angular Momentum,OAM)的模分复用技术由于携带不同拓朴荷数的相互正交的轨道角动量模式成为扩大通信容量的一种非常有潜力的方案。轨道角动量具有全新的电磁波自由度特性,具有轨道角动量特性的电磁波可以在常用的信息传输方式,如波分复用(Wave Division Multiplexing,WDM)、偏振复用(Polarization Multiplexin,PM)、时分复用(Time Division Multiplexing,TDM)等信息传输方式上成倍的提高信息传输容量。近日,中国计量大学严德贤课题组提出了基于太赫兹波段的负曲率轨道角动量光纤。该光纤以重庆摩方精密科技有限公司提供的HTL聚合物材料(耐高温树脂)为基底,采用两层倾斜椭圆管的结构设计,通过引入环芯区域在0.4-0.8THz波段成功产生50-52个OAM模式,且在所研究的波段内获得了高模式纯度、低限制损耗和低波导色散等传输特性,相关研究成果以“Design of negative curvature fiber carrying multiorbital angularmomentum modes forterahertz wave transmission”为题发表在《Results in Physics》。图1.3D打印负曲率轨道角动量光纤结构图图1展示了基于摩方精密nanoArch S140打印技术的3D打印光纤样品图。光纤整体尺寸为6.57mm,靠近纤芯区域的第二层倾斜椭圆管结构最小尺寸为0.051mm。光纤结构设计完成后,在Comsol Multiphysics有限元仿真软件中选取光纤结构的任一截面进行仿真研究。在研究频段内给定相应的太赫兹频率后,可以获得相应的模场分布,针对相应的模式进行数据收集和处理可以得出所需传输特性。在光纤中产生OAM模式的前提条件是有效生成HE和EH模式,且HEl+1,1与EHl-1,1有效模式折射率差异高于10-4。光纤中的OAM模式合成规则可由公式1表述:图3是OAM光纤各种传输特性随频率的变化趋势。由图3(a)和(b)可知,光纤产生的所有HEl+1,1与EHl-1,1之间的折射率差异均高于10-4,表明HE和EH模式均可以有效合成OAM模式。图3(c)是光纤的限制损耗特性,限制损耗与光纤的有效传输距离密切相关,由图可知光纤的限制损耗在0.55-0.8THz区间最低可以达到10-15(dB/cm)量级。图3(d)表示了OAM光纤的低平坦色散趋势,在0.4-0.8THz区间有近零的波导色散参数,有利于太赫兹波在光纤内部的快速传输。OAM模式的高模式纯度特性表明了光纤可以有效携带信息进行传输,由图3(e)所示结果,在0.55-0.8THz区间光纤的OAM模式纯度均高于80%。图3(f)是OAM光纤的有效模场面积特性,一般来说具有较高的有效模场面积可以产生较小的非线性特性,可以进一步提高信息的传输质量。图3.(a)有效模式折射率,(b)有效模式折射率差异,(c)限制损耗,(d)波导色散,(e)OAM模式纯度,(f)有效模场面积随频率的变化趋势官网:https://www.bmftec.cn/links/10
  • 张承青电镜实验室环境约稿[6]:低频振动环境改善
    为促进电子显微学研究、电镜应用技术交流,打破时空壁垒,仪器信息网邀请电子显微学领域研究、技术、应用专家,以约稿分享形式,与大家共享电子显微学相关研究、技术、应用进展及经验等。同时,每期约稿将在仪器信息网社区电子显微镜版块发布对应互动贴,便于约稿专家、网友线上沟通互动。专家约稿招募:若您有电子显微学相关研究、技术、应用、经验等愿意以约稿形式共享,欢迎邮件投稿或沟通(邮箱:yanglz@instrument.com.cn)。本期将分享张承青老师为大家整理的关于电镜实验室环境对电镜的影响的系列约稿经验分享,以下为系列之六,以飨读者。(本文经授权发布,分享内容为作者个人观点, 仅供读者学习参考,不代表本网观点)系列之六 低频振动环境改善《外部振动对电子显微镜的影响及处理》一文第一稿于2010年1月完成,本篇主要内容来自该文。以前从未署名投稿,本次做了一些补充修改,第一次署名。还是怕产生误解,再说明一下吧。首先我们来探讨一下电镜实验室低频振动的形成原因。在室外,如马路上、室外篮球场、操场等环境本人都曾经尝试过检测低频振动并试图发现是否存在共性。遗憾的是,从0到125赫兹频率范围内,1/3倍频程测试的包络线来看,不同的地方基本没有共性,所以结论是:这些室外环境的低频振动主要由环境物理振动产生,包括火车汽车、潮汐海浪、江河水流、远处的地下施工、甚至可能还有地球的物理震动等等。低频振动频率低、波长长,所以可以传递到很远地方而衰减不多。那么,建筑物内的低频振动是不是也是这个原因呢?大量的实测数据却显示建筑物内的低频振动主要不是由某处(不管是不是在同一建筑物内)传递过来的,而是主要由建筑物自身谐振造成的(一开始我自己也怀疑这个观点是否正确,带着疑问又继续收集归纳和总结了一百多个场地测试数据,最后还是只有用“建筑物自身谐振”来解释电镜实验室的低频振动才能说得通。实例1:多次开/关近旁的小型振动源,发现对测试结果基本没有影响,相信是牛顿第二定律F=ma所揭示的客观规律:振动源功率(F)太小,无法撼动数千吨的建筑、不能引发谐振。实例2:(实际上这不是某一次测试,许多次的测试都是同样结论,为叙述方便,都归纳到一个实例中):哈尔滨某大学一楼(无地下室)、二楼、四楼、六楼和八楼的测试中发现,楼层越高振大;实例3:在苏州某半导体公司厂房内(二楼,该厂房结构粗大,相当结实)做对比测试:分别在柱边、墙边、梁边和房间正中央(该室约六十平方米,接近正方形)测试振动,结果惊讶地发现:基本相同!后来在不同城市不同建筑内测试,情况都是这样!实例4:很多测试都有一个共同结果,就是3~8Hz的振幅包络线产生一个峰值,其它频段则不然(或是没有峰值,或是峰值段无规律)。经向一位退休建筑师请教(当年天天坐公交车上班认识的,祝老先生健康长寿),我们分析是由于我国工民建标准造成,梁柱板墙规格、混凝土砂浆比例、进深开间配筋等等,这些因素致使3~8Hz的谐振构成谐振峰!实测数据还推翻了之前我以为房间中间振动会比其它地方大的错误认识,并且进而得出“低频微振是整个楼房的谐振”这一推论。在所谓“条式楼”的测试中也多次发现沿楼房长轴方向的水平振动,明显会比短轴方向小;实例5:在某大学一楼(无地下室)、二楼、四楼、六楼和八楼的测试中发现,楼层越高振大;结论:多次测试结果都证明,低频振动主要是由该建筑的谐振造成。中国的工民建规范基本一致(层高、进深、开间、梁柱截面、墙、地梁、筏板,等等),虽然有差别,但是不大,特别是对于低频谐振来说,大致可以找到共性。一般来说有如下规律:1.建筑平面形状为条式和点式的建筑,其低频谐振都比较大;其它如工字型、王字形、L形、八字形、H形、口字型、日字形等等低频谐振都较小;2.最常见的条式楼里沿长轴方向的振动往往明显比短轴方向小;3.同一建筑内,没有地下室的一楼振动最小,楼层高越高振动越差,有地下室的一楼振动与二楼接近,地下室最下层振动最小;4.垂直方向的振动比水平方向大且与所在楼层无关(当然是在同一楼层测试比较);5.楼板越厚,则振动的垂直方向与水平方向相差越小(我曾经多次从测试数据成功推测出楼板厚度),绝大多数情况下振动的垂直方向比水平方向大;6.除非有某个大型振动源,同一层建筑的振动都基本相同,无论是房间中间,或者是靠近墙边、靠近柱子、横梁上方等各处,都基本一样(注意,即便在同一位置不动、间隔几分钟再测试,极可能数值都是不完全一样的,个别频点可以相差百分之五十以上)。好了,既然我们现在明白了低频振动的来源和特点,那就可以有针对性的采取改进措施和提前预估某环境的振动情况啦。由于改善低频振动成本较高,有时受环境条件限制,某些方法完全不能应用(参见下面的讨论),所以实际工作中,经常是选择/更换较好场地做电镜实验室来得事半功倍。下面我们讨论一下低频振动的影响和解决方案。20Hz以下的低频振动对电子显微镜的干扰影响很大,参见以下两图。图一 图二图一与图二是由同一台扫描电镜拍摄的高分辨图像(均为300kx)。但是因为存在振动干扰,图一的水平方向(分段)有明显的毛刺,并且图像的清晰度和分辨率明显下降。消除了振动干扰后得到同一样品的图像为图二(有没有“赏心悦目”的感觉?)。如果测试结果表明准备安装电镜的场所振动超标,则必须采取适当措施,否则电镜厂家不能保证电镜安装后的性能可以达到最佳设计标准。一般可以选择混凝土减震台(Anti-Vibration Foundation)、被动式减震器(Passive-Vibration Isolation Platform)、主动式减震器(Active-Vibration Isolation Platform)等几种方法来改善或解决。混凝土减震台需要现场施工,且必须采取特殊方法(底部和周围有弹性软垫层等),一般的土建施工方法有可能反而增加低频(20Hz以下)振动。施工中有大量土建材料进出难免影响周围环境。混凝土减震台的示意图见图三。图三质量在50吨左右的混凝土减震台,其减振效果一般可以达到2Hz以上约-2~-10dB。混凝土减震台的质量越大减振性越好,条件允许的情况下应尽可能大些(经多地多次实测,小于5吨的减震台在1~10Hz低频段内有谐振,反而增大了振动;小于20吨的基本无效,能够起到减振效果的须大于30吨,暂无30~40吨的数据,尽量不要低于50吨;北京某大学一两百吨减震台效果良好;重庆某研究所,地面混凝土直接做在巨大山石上,环境极差,但测得振动值极小)。在被动式减震器中,一般常用的橡胶、钢弹簧、空气弹簧(汽缸)等方式的减震器因为它们在20Hz以下的低频段效果很差,甚至往往由于谐振反而加大了振动,所以不考虑采用。只有磁力减震器的低频效果尚可,但是其性能还是远不如主动式减震器(与混凝土减震台的减振效果相近)。图四是几种减震方式的效果比较。图四 几种减震方式的振动传输特性比较仔细观察图四,我们有以下结论:1.碳素钢弹簧的谐振频率(fh)大约为50Hz,在70Hz以下的低频段不但没有减震效果,反而由于谐振而加大了震动。橡胶垫的fh大约为25Hz,在35Hz以下的低频段不但没有减震效果,反而由于谐振而加大了震动。2.小于5吨的混凝土减震台在10Hz以下有谐振加大振动,还不如不做。3.空气弹簧的fh大约在15Hz左右,在25 Hz以上有较好的减震性,在40 Hz以上有良好的减震性,所以被广泛应用于光学平台等精密仪器设备的减震。但是它在20 Hz以下同样有较大的谐振,所以不宜作为电镜减震的选项(有些电镜内部采用空气弹簧减震,相信那是不得已而为之)。在做低频减震处理时,以上几种减震方式不要考虑选用。4.磁力减震器低频减震效果尚可,要求不高的情况下可以选用。5.各种主动式减震器效果都是相当好的。它们的谐振频率可以低到1 Hz以下,2~10Hz的减震效果可以达到-10~-22dB,非常适用于对低频段减震要求较高的场合。(据说最新科技产品“超级橡胶”有具良好减震性能,看到电视上说已在港珠澳大桥上应用,很想能搞一小块来测试一下是否可以应用在电镜方面,但是朋友答应的样品迄今不见踪影。有人能帮我搞块样品吗?先谢了。)一般我们认为,对于电镜来说20 Hz以下的低频振动影响大并且难以防范。由于绝大多数人不能感受到20 Hz以下的低频振动,所以经常发生明明有较大的低频振动,却因为感觉不到而误认为没有什么振动。被动式减震是利用减震设施的质量、固有振动传递特性等物理性能来达到隔阻和减弱外部振动对电镜的影响。被动式减震器的工作原理可参考图五。图五主动式减震器的工作原理与被动式相比有很大差异。各种类型的主动式减震器工作原理基本相同,都是由一个三维探测器检测到三维方向传来的外部振动后,由PID控制器发出等幅反相的控制信号,再由执行机构产生等幅反相的内部振动来抵消(或减弱)外部振动的干扰。主动式减震器的工作原理可参考图六。图六主动式减震器一般常用的有压电陶瓷式、空气式、电磁式等。它们的区别主要是执行机构不同,而三维探测器和PID控制器基本都大同小异。压电陶瓷式:利用压电陶瓷的晶体压电效应产生等幅反相的三维内部振动。空气式:由PID控制器控制进(排)气阀,连续可控的压缩空气在特殊的汽缸内产生等幅反相的三维内部振动。电磁式:PID控制器分接控制三组电磁铁产生等幅反相的三维内部振动。主动式减震器的减振效果可以达到20Hz以上约-22~-28dB(实测过许多号称可以达到-38dB的,但是,只能说:抱歉)。不同形式的主动式减震器价格亦有较大的差异。各种减震器一般在电镜就位安装之前准备好,与电镜同时安装。另外在某些特定的条件下,减震沟也可以取得较好的减震效果。图七是减震沟有效的情形。图七 图八是减震沟无效的情形。 图八一般来说,减震沟越深减振效果越好(减震沟宽度对减振效果影响不大)。常见的几种减震方法对比参见下表:电镜减震,与处理桥梁、楼宇、风振、地震等有些共通之处,但是区别更大,绝不能生搬硬套。目前国家在低频微震领域还没有必须的相关理论依据、设计规范、设计标准、设计案例、各个工民建设计单位基本都没有配备专业检测仪器,所以,和前面讨论过的低频电磁屏蔽一样,当前没有“有资质的设计部门”来做专业设计。2020.11张承青作者简介作者张承青,退休前在某电镜公司工作多年,曾经做过约两千个(次)电镜环境调查、测试,参与多个电镜实验室设计及改造设计规划,在低频电磁环境改善和低频振动改善等方面有些体会,迄今仍在这些方面继续探索。附1:张承青系列约稿互动贴链接(点击留言,与张老师留言互动): https://bbs.instrument.com.cn/topic/7655934_1附2:张承青系列约稿发布回顾拟定主题发布时间文章链接序言 电镜实验室环境对电镜的影响2020年10月13日链接系列之一 电子显微镜实验室环境调查的必要性2020年10月15日链接系列之二 电镜实验室的电磁环境改善2020年10月20日链接系列之三 低 频 电 磁 屏 蔽 实 践2020年10月22日链接系列之四 主动式低频消磁系统2020年10月27日链接系列之五 几种改善电磁环境方法比较2020年10月29日链接系列之六 低频振动环境改善2020年11月3日链接系列之七 谈谈电子显微镜的接地2020年11月5日链接系列之八 温度湿度和风速噪声2020年11月11日链接… … … … … … 附3:相关专家系列约稿安徽大学林中清扫描电镜系列约稿
  • 精密测试技术及仪器国家重点实验室开放课题申请
    6月10日,精密测试技术及仪器国家重点实验室(天津大学)发布2022年度开放课题申请通知。申请时间为2022年06月11日~06月30日,资助金额不超过8万元人民币,资助期限不超过3年,课题起始时间为2022年09月01日。一、申请指南与条件本次申请在重点实验室研究方向内自主立题进行申请,可重点聚焦下述研究范围,同时,需提出本实验室固定研究人员做联系人。1、极限测量理论与技术 (1)微纳测试新方法 针对微电子、光电子等先进制造领域的发展需求,研究高分辨力、多尺度的 扫描探针/光学显微测试新方法,在极限空间分辨力和超快测量等方面取得突破; 研究基于新型材料的传感器件特性表征与测量方法;研究分子水平生物过程的测 量方法,为生命科学研究提供更为先进的研究手段;研究重大工程实践中的微纳 测量问题,发展现场复杂环境下的精密测量方法与技术。 (2)新型三维传感及测量技术 新型三维传感及测量技术在超精密加工、智能制造、生物医学、材料科学等 领域具有重要的研究价值和现实意义,开放课题聚焦以光谱色散扫描、衍射光学 投影、二维超表面、近场光学为核心的新型微结构三维测量技术: ① 低反射率微结构三维测量技术; ② 基于衍射光学线激光扫描测量技术; ③ 超表面微纳光学系统技术; ④ 近场光学探针超分辨成像技术。 (3)半导体缺陷测试技术研究方向 以第三代和第四代半导体晶圆/片、芯片、器件等国家战略性材料产业的重 大检测需求以及国际学术前沿为背景,开展半导体缺陷形成与调控机理测试研 究,为国家制备高质量半导体与工程应用提供技术支持。征集下列范围内研究课 题: ① 面向金刚石、氧化镓、氮化铝等第四代半导体缺陷形成与调控测试研究; ② 面向 4H-SiC、GaN 等第三代半导体缺陷形成与调控测试研究; ③ 基于半导体晶片离子、中子、质子、电子等辐照缺陷的形成与退火调控 测试研究。2、微纳制造与微传感器 (1)光学自由曲面制造与评价新方法 以空间遥感、全景成像、虚拟现实、短焦投影等重点领域内的大视场光学系 统需求为背景,重点研究光学自由曲面应用于大视场高像质光学系统制造的关键 技术,研究具有可加工性的连续自由曲面空间表达和数学实现方法,研究多参数 控制下面型设计及像差优化理论,研究自由曲面面形和装配误差对光学性能的影响规律,完善自由曲面光学系统设计理论。研究纳米切削机理,研究刀具伺服技 术在加工自由曲面时的误差模型、误差补偿方法和关键技术,进一步发展自由曲 面加工方法。 面向复杂光学自由曲面表面形貌高精度自动化快速测量需求,突破测量精度 与测量动态范围的制衡,研究全维度、全频段测量评价新方法。研究跨尺度多物 理量综合测量原理,解决极限测量空间限制测量难题;研制高端智能化测量仪器 装置,实现真正意义上任意未知光学自由曲面高精度全自动测量。研究核心高精 度标定及复原新算法,构建系统误差智能补偿数学模型,制定应用端为基础的科 学评价策略,完善光学自由曲面测量理论体系。 (2)原子及近原子尺度制造新方法 针对在下一代核心器件与高端传感器的巨大潜在驱动下制造精度再一次提 升并接近材料极限的趋势,提前布局亚纳米至原子精度、原子及近原子尺度制造 新方法、新技术的探索研究。采用特殊波段的电磁辐照以及电化学等方法,研究 材料在亚纳米至原子尺度下的增减机理与加工极限,构建过程模拟、可控性与工艺优化、加工质量评价等关键技术体系;研究原子及近原子尺度制造与纳米精度 制造的工艺衔接、表面状态演化等跨尺度问题。 3、精密测量与制造智能 (1)声学无损检测研究 声学无损检测研究面向航空航天、石油石化、能源电力、深海远洋等重大行 业需求为背景,重点研究基于包括常规超声、电磁超声、合成孔径超声等超声检 测技术,基于超声导波检测技术,光纤光学传感等无损检测技术,海底自主航行 智能球及海洋声学检测技术。开放课题选题定位于新型检测技术的基础理论早期研究与探索: ① 海洋环境监测的多参数传感器研发与应用; ② 基于压电材料的面阵声发射传感器研制。 (2)海洋磁场检测技术与磁流体动力学研究 海洋磁场检测技术以海洋资源探测、海洋环境保护以及军事海洋学等重点领 域内的磁场精密测量需求为背景,重点研究基于激光技术的磁场测量新原理、新 型激光磁场探测处理技术及新型激光海洋磁场精密测量装置。 磁流体动力学研究方向以航空、航天及航海等重点领域内的高精度传感需求 为背景,重点研究基于磁流体动力学的惯性传感新原理、新型磁流体动力学惯性 传感技术及器件、新型磁流体动力学高精度姿态测量装置、液态金属的灌装和密 封、与内外电极的浸润性调节和新型高密度液态金属材料的研制。 (3)激光与光电测试技术 以先进制造、航空航天、能源交通等重点领域内的精密测量需求为背景,重 点研究基于激光与光电传感新原理、新型光电探测处理技术及器件,具有重要学 术价值和重大工程应用前景的几何量测量新方法、新技术、新系统。开放课题选 题与设置定位于基础原理探索和创新技术的早期研究与验证,为后续技术研发与 工程应用提供源头动力。征集下列范围内研究课题: ① 面向先进制造的高精度几何量测量新原理、方法与技术;② 高动态条件下多自由度几何量测量新原理、方法与技术;③ 面向现场非可控环境精密测量的精度控制与误差修正方法与技术; (4)高性能声/光子晶体微腔与传感技术 针对航空航天、先进制造、智能装备等重点领域对高精度传感的需求,重点 研究基于声/光子晶体的高精度传感新原理、新型声光耦合技术与传感器件;研 究基于能带拓扑的高性能声/光子晶体微腔设计方法,新型声光传感器件特性表 征与测量方法。开放课题定位于基础理论探索和前瞻性创新技术的早期研究,为后续技术研发与工程应用提供源头动力。 (5)水下传感网络时间同步技术 以水下多节点分布式探测、识别与跟踪领域内的时钟参数精密测量需求为背 景,重点研究水下传感网络中高精度的时钟参数估计方法和低能耗的时间同步方案设计,力图改善水下传感网络的协同工作性能。开放课题选题定位于基础理论 和方法的早期研究与探索: ① 面向水下蜂窝网络的高精度的时钟参数估计方法; ② 面向节点随机部署水下传感网络的时间同步方案;③ 节点时间同步与被动目标定位的联合方案设计。 4、生物与环境检测技术及仪器 征集下列范围内研究课题: (1)海洋生物电生理检测技术及仪器 以鱼类等海洋经济物种为研究对象,探究听觉行为等国际学术前沿问题,研 究涉及脑电传感器、放大器、滤波器等方面的脑电检测技术及仪器,开放课题选 题定位于基础理论和方法的早期研究与探索: ① 基于听觉诱发电位响应的传感技术; ② 脑电电位放大器及信号增强方法; ③ 脑电电位滤波器件设计与构建。 (2)生物信息检测技术及仪器 围绕精准诊断、智慧医疗和食品安全等关系国民生命健康的重大检测需求, 以世界科技前沿和经济主战场为背景,研究基于微流体、纳流体和柔性传感器的 生物信息检测仪器及设备,推动现代检测技术与重大疾病诊断和慢病监测技术的 融合创新,开放课题选题定位于基础理论和方法的早期研究与探索: ① 基于纳米颗粒耦合的高灵敏度电化学传感技术; ② 基于喷墨打印的柔性传感器制造技术;③ 基于功能化微针的慢性病无创监测技术;④ 生物传感器的表面结构化修饰及信号增强方法; ⑤ 基于纳米光子的高灵敏度生物传感器; ⑥ 基于纳米孔道的高灵敏生物检测技术。此外,本次申请优先考虑与精密测试技术及仪器国家重点实验室有实质性合作研究的申请人或申请单位,并提供证明材料(如合作发表的高水平论文、项目、专利等);本校教职工和学生不能申请。二、申请材料经专家评审和实验室学术委员会批准的课题,可获得实验室开放基金资助。申请人需提交的材料有:电子申请书(WORD 或 PDF 格式)和纸质原件一式三份,申请书原件需签名,申请者所在单位需同意并加盖公章(国内申请单位划拨经费时会涉及到财务部门,因此需要法人级别的申请单位盖章;国外可只签名);电子版文件统一命名为“所属研究方向-单位-姓名”(所属研究方向详见申请书简表)。在申请受理截止时间06月30日前将相关证明材料及电子版申请书发送到指定的邮箱;纸质申请书原件(三份)最迟07月15日前邮寄到重点实验室。三、开放课题的经费使用及日常管理根据天津大学经费管理办法,获得资助的开放课题经费分期拨款到国内承担单位,经费应严格按照科技部、财政部《国家重点实验室专项经费管理办法》相关财务规定使用。凡申请拨款的课题负责人均需事先提供当次拨款金额发票,并在课题中期检查和结题时,提供经费使用情况说明并加盖有效的单位财务公章。重点实验室将通过开放课题进一步加强与课题承担单位的合作与交流,课题申请除相关研究内容外,需说明与重点实验室的合作或交流方式。为方便开放课题联络、运行和管理,所有申请课题都需指定精仪国家重点实验室固定研究人员作为联系人。同时,拟利用重点实验室条件进行开放课题研究的,请通过联系人协调,实验室将尽力解决好研究人员的相关工作条件。请申请者仔细阅读《精密测试技术及仪器国家重点实验室开放课题管理办法》,并严格按照管理办法的规定进行申请,凡不符合规定的将不予受理。四、联系方式联 系 人:王明方通信地址:天津市南开区卫津路 92 号天津大学17号楼东配楼精仪国家重点实验室邮政编码:300072联系电话:022-27406643传 真:022-27404778电子邮箱:pilab@tju.edu.cn附件1:精密测试技术及仪器国家重点实验室开放课题申请书.docx附件2:精密测试技术及仪器国家重点实验室开放课题管理办法.pdf精密测试技术及仪器国家重点实验室2022年06月10日
  • 中国计量大学严德贤课题组《Results in Physics》:基于太赫兹波段的负曲率轨道角动量光纤
    随着通信技术的快速发展,近些年的通信容量实现了快速增长,传统的光纤通信网络已经难以满足当前高速通信的需求。增大通信网络的容量和提高通信速度的一种方法是开发太赫兹(Terahertz, THz)波段的光纤通信空间维度。太赫兹波是介于微波和红外光之间的一种电磁波,频率介于0.1THz到10THz之间,由于它带宽大和传输速度快以及可以提供点对点的网络拓扑结构而备受关注。而在空间维度资源中,基于轨道角动量(Orbital Angular Momentum,OAM)的模分复用技术由于携带不同拓朴荷数的相互正交的轨道角动量模式成为扩大通信容量的一种非常有潜力的方案。轨道角动量具有全新的电磁波自由度特性,具有轨道角动量特性的电磁波可以在常用的信息传输方式,如波分复用(Wave Division Multiplexing,WDM)、偏振复用(Polarization Multiplexin,PM)、时分复用(Time Division Multiplexing,TDM)等信息传输方式上成倍的提高信息传输容量。近日,中国计量大学严德贤课题组提出了基于太赫兹波段的负曲率轨道角动量光纤。该光纤以重庆摩方精密科技有限公司提供的HTL聚合物材料(耐高温树脂)为基底,采用两层倾斜椭圆管的结构设计,通过引入环芯区域在0.4-0.8THz波段成功产生50-52个OAM模式,且在所研究的波段内获得了高模式纯度、低限制损耗和低波导色散等传输特性,相关研究成果以“Design of negative curvature fiber carrying multiorbital angular momentum modes for terahertz wave transmission”为题发表在《Results in Physics》。图1.3D打印负曲率轨道角动量光纤结构图图1展示了基于摩方精密nanoArch S140打印技术的3D打印光纤样品图。光纤整体尺寸为6.57mm,靠近纤芯区域的第二层倾斜椭圆管结构最小尺寸为0.051mm。光纤结构设计完成后,在Comsol Multiphysics有限元仿真软件中选取光纤结构的任一截面进行仿真研究。在研究频段内给定相应的太赫兹频率后,可以获得相应的模场分布,针对相应的模式进行数据收集和处理可以得出所需传输特性。在光纤中产生OAM模式的前提条件是有效生成HE和EH模式,且HEl+1,1与EHl-1,1有效模式折射率差异高于10-4。光纤中的OAM模式合成规则可由公式1表述: (1)根据公式1,在图2中给出了和在0.5THz的线性叠加过程以及相位分布图。图2.和在0.5THz的线性叠加过程以及相位分布如图2所示,和在模式合成后环芯区域有效产生OAM模式的模场分布,并获得[-ℼ-ℼ]的相位分布效果,满足在光纤中产生OAM模式的合成规则。图3是OAM光纤各种传输特性随频率的变化趋势。由图3(a)和(b)可知,光纤产生的所有HEl+1,1与EHl-1,1之间的折射率差异均高于10-4,表明HE和EH模式均可以有效合成OAM模式。图3(c)是光纤的限制损耗特性,限制损耗与光纤的有效传输距离密切相关,由图可知光纤的限制损耗在0.55-0.8THz区间可以达到10-15(dB/cm)量级。图3(d)表示了OAM光纤的低平坦色散趋势,在0.4-0.8THz区间有近零的波导色散参数,有利于太赫兹波在光纤内部的快速传输。OAM模式的高模式纯度特性表明了光纤可以有效携带信息进行传输,由图3(e)所示结果,在0.55-0.8THz区间光纤的OAM模式纯度均高于80%。图3(f)是OAM光纤的有效模场面积特性,一般来说具有较高的有效模场面积可以产生较小的非线性特性,可以进一步提高信息的传输质量。图3.(a)有效模式折射率,(b)有效模式折射率差异,(c)限制损耗,(d)波导色散,(e)OAM模式纯度,(f)有效模场面积随频率的变化趋势 文章链接:https://doi.org/10.1016/j.rinp.2021.104766
  • 2016重大科学仪器设备开发专项明确10个重点支持方向
    2月19日,科技部网站发布关于发布重大科学仪器设备开发专项2016年度指南的通知,本指南共设置了关键核心部件、高端通用科学仪器和专业重大科学仪器3类任务,下设10个重点方向,支持数量不超过实施方案内容的30%。  其中核心关键部件开发与应用中包括:源部件、探测器与传感器、分析分离与控制部件;  高端通用仪器工程化及应用开发包括:分析仪器、 物理性能测试仪器、电子测量仪器、计量仪器;  专业重大科学仪器开发及应用示范包括:支撑经济和产业发展的专业重大科学仪器、服务公益行业和民生改善的专业重大科学仪器、保障国家安全和公共安全的专业重大科学仪器。  此外,指南中还指出,项目成果是以市场前景广泛的关键核心部件和重大科学仪器设备产品的开发和产业化应用为目标,一般的核心部件与科学仪器的原理和方法研究,商业化前景不明确的核心部件与仪器研制等工作,以及临床医疗仪器、生产设备、机械装备、平台建设等,不属于本专项的支持方向。  详细内容如下:“重大科学仪器设备开发”重点专项2016年度申报指南  科学仪器设备是科学研究和技术创新的基石,是经济社会发展和国防安全的重要保障。为切实提升我国科学仪器设备的自主创新能力和装备水平,促进产业升级发展,支撑创新驱动发展战略的实施,经国家科技计划战略咨询与综合评审特邀委员会、国家科技计划管理部际联席会审议,“重大科学仪器设备开发”重点专项作为2016年度启动的专项之一,并正式进入实施阶段。  一、指导原则与主要目标  本专项坚持问题导向、需求导向原则,紧扣我国科技创新、经济社会发展对科学仪器设备的重大需求,充分考虑我国现有基础和能力,在继承和发展“十二五”期间国家重大科学仪器设备开发专项成果的基础上,坚持政府引导、企业主导,立足当前、着眼长远,整体推进、重点突破的原则,以关键核心技术和部件的自主研发为突破口,聚焦高端通用科学仪器设备和专业重大科学仪器设备的仪器开发、应用开发、工程化开发和产业化开发,带动科学仪器系统集成创新,有效提升我国科学仪器设备行业整体创新水平与自我装备能力。  通过本专项的实施,构建“仪器原理验证→关键技术研发(软硬件)→系统集成→应用示范→产业化”的国家科学仪器开发链条,完善产学研用融合、协同创新发展的成果转化与合作模式,激发行业、企业活力和创造力。强化技术创新和产品可靠性、稳定性实验,引入重要用户应用示范、拓展产品应用领域,大幅提升我国科学仪器行业可持续发展能力和核心竞争力。  本专项按照全链条部署、一体化实施的原则,共设置了关键核心部件、高端通用科学仪器和专业重大科学仪器3类任务,下设10个重点方向,本指南为重大科学仪器设备开发专项2016年度指南,支持数量不超过实施方案内容的30%。  二、总体要求  1. 专项定位  本专项充分利用国家科技计划(专项、基金)或其他渠道,已取得的相关检测原理、方法、技术或科研装置,开展系统集成、应用开发和工程化开发,形成具有自主知识产权、“皮实耐用”和功能丰富的重大科学仪器设备产品,并服务科学研究和经济社会发展。项目成果是以市场前景广泛的关键核心部件和重大科学仪器设备产品的开发和产业化应用为目标(一般的核心部件与科学仪器的原理和方法研究,商业化前景不明确的核心部件与仪器研制等工作,以及临床医疗仪器、生产设备、机械装备、平台建设等,不属于本专项的支持方向)。  2. 申报主体  结合本专项的特点和定位,如无特殊说明,本指南所设项目均由有条件的企业牵头申报。鼓励企业结合国家需求和自身发展需要,联合科研院所和高等学校的优势力量参与项目研发工作(主要为企业提供所需的技术支撑),落实目标任务明确、产权和利益分配明晰的产学研用结合机制。同时,要采取有效措施,切实发挥企业在专项中的技术创新决策、研发投入、项目实施组织和成果转化等方面的主体地位作用。  3. 支持方式  本专项每个指南方向下的项目可支持1—2项,实施“后端资助”机制。即,结合科学仪器开发的特点,以及我国科学仪器产业发展实际,强化利益共享、风险分担机制,对企业承担的项目,实施专项经费后端资助政策。项目立项后,前半段主要由承担单位自筹经费实施,资助20%的专项经费 经中期评估确认,项目进展顺利、能够达到预期目标、科研管理和项目经费管理规范的项目,后半段再主要由专项经费给予支持。  4. 立项要求  4.1 项目基本要求  1)国内外需求迫切,目标仪器设备应用单位明确且具有代表性,相关原理、方法或技术已取得重要突破,能形成具有自主知识产权和市场竞争力的核心部件与科学仪器产品。  2)目标核心部件与仪器设备整体设计完整、结构清晰合理,技术路线(含软件开发)可行,工程化方案、应用开发方案可操作性强 项目质量管理和产业化策划、企业资质和能力、知识产权和利益分配等非技术内容可行。  3)拥有本领域的核心关键人才,且具有相关理论研究、设计、工程工艺、系统集成、应用研究以及产业化研究等相关方面结构合理的人员队伍。  4)对核心部件类项目:原则上承担单位主营业务为核心部件生产企业,项目实施后能够获得全部自主知识产权,技术就绪度达到7级以上,并在相关仪器主要生产企业得到广泛应用,形成一定市场规模,产生直接经济效益。  5)对仪器整机类项目:充分利用国家科技计划(专项、基金)或其它渠道,已取得的相关检测原理、方法、技术或科研装置成果,开展系统集成、工程技术研究和应用开发,形成“皮实耐用”、功能丰富的重大科学仪器设备产品,并服务科学研究和经济社会发展。根据科学仪器设备开发和应用的自身规律,每一个项目应包括仪器开发(含软件开发)、应用开发、工程化开发和产业化开发等类型工作。除仪器设备开发单位外,产业化单位、应用单位也应从项目设计开始,全程参与项目的组织和实施工作。项目实施三年后,目标仪器技术就绪度达到7级以上,可形成一定市场规模,产生直接经济效益。  4.2 企业承担项目的基本要求  (1)在中国大陆境内注册,具有较强科学仪器设备研发和产业化能力,运行管理规范,具有独立法人资格   (2)经高新技术企业认定或达到同等条件   (3)项目与企业重点发展方向相符   (4)与项目参与单位具有前期合作基础   (5)与项目参与单位事先签署具有法律约束力的协议,明确任务分工、国拨经费分配、成果和识产权归属及利益分配机制   (6)企业投入的自筹研发经费与国拨经费投入比例不低于1:1。投入的自筹研发经费应用于项目研发活动,而不得用于生产线、厂房等产业化能力建设。  4.3 项目组织要求  (1)项目推荐单位要加强本部门、本地区、本行业领域科学仪器设备发展的顶层设计、资源整合和扶持培育。  (2)项目推荐单位要组织项目牵头单位,会同产、学、研、用等各方面,积极开展项目设计和策划工作。在项目设计时,既要注重技术问题,也要注重工程化和产业化策划、企业资质和能力以及知识产权和利益分配机制等非技术问题。  (3)项目推荐单位要督促项目承担单位在项目提出时落实法人负责制、落实项目配套条件 督促项目承担单位联合国内外优势力量共同开展项目设计和实施。  (4)项目推荐单位在组织推荐过程中要充分发挥专家的咨询作用。除考虑技术可行性外,还应重点关注工程化和产业化策划、企业资质和能力以及知识产权和利益分配机制等非技术内容。在此基础上,择优向科技部推荐项目。  三、主要任务  1. 核心关键部件开发与应用  攻克源部件、探测器与传感器、分析分离与控制部件等科学仪器核心部件的关键技术,研究部件的核心关键材料以及生产工艺,形成具有自主知识产权、质量稳定可靠的核心关键部件。  共性考核指标:目标产品应通过可靠性测试和异地测试,技术就绪度达到9级,至少应用于2种类型仪器。  原则上,每个项目下设任务数不超过6个,承担单位数不超过6个。  1.1 源部件  1.1.1 光源  (1)高强度、高稳定空心阴极灯  研究内容:研发高强度、高稳定空心阴极灯,优化空心阴极灯结构设计,研究合金阴极材料组成及制作工艺,改善空心阴极灯生产工艺,研制空心阴极灯性能测试特殊装置,研究影响噪声、同心度等关键指标的因素及改善方法。开展工程化开发和产业化开发,形成工程化和产业化能力。为原子吸收光谱仪和原子荧光光谱仪等仪器提供核心部件。  考核指标:稳定性指标,铜灯在30 min内基线漂移0.2%,其它元素灯在5 min内基线漂移0.6% 普通元素灯的使用寿命≥ 6000 mA.h,易熔、易挥发元素灯≥ 4000 mA.h 改善空心阴极灯性能,灯噪声≤ ± 0.2% T,灯旋转360。的能量偏移10%。应提出明确合理的可靠性指标要求,项目完成时,目标产品应参照国家或行业相关标准进行测试。发明专利3项,技术标准3项。项目验收后三年内年销量达到2万支。  实施年限:不超过3年  1.1.2 射频源  (1)ICP射频源  研究内容:开发ICP射频源,研究大功率射频自激发生、频率锁相、功率调谐和高效散热技术,开发能够有效的降低等离子体电势的全固态自激式电感耦合等离子体射频源 实施ICP射频源的工程化和工艺化开发,形成可靠的产品,解决相关国产仪器对高性能射频源关键部件需求的难题。  考核指标:工作频率27.12 MHz,频率稳定度± 0.02%,功率输出0.6~1.6 kW可调。发明专利3项,技术标准3项。项目验收后三年内年销量达到100只以上。  实施年限:不超过3年  (2)双相射频源  研究内容:开发双相射频源,研究双相射频源高精度驱动与高稳定反馈、过载保护电路、辅助激发信号耦合与双相射频电源数字控制技术,开发能够精密驱动线性离子阱的双相射频高压电源 实施双相射频源的工程化和工艺化开发,形成稳定可靠的产品,有效解决相关国产仪器对高性能双相射频源关键部件的需求。  考核指标:射频高压最大2 kVpp,频率0.9~2 MHz,辅助信号带宽50 kHz~450 kHz 射频高压最大10 kVpp,频率1 M~1.2 MHz,辅助信号带宽10 k~550 kHz。发明专利3项,技术标准3项。项目验收后三年内年销售达到100套。  实施年限:不超过3年  1.1.3 新型质谱离子源  研究内容:研究敞开式离子化新技术,研制新型电喷雾、介质阻挡放电、激光/气体辅助喷雾和高度集成化敞开式的离子源,开展新离子化应用方法开发和数据库构建,实施新离子源的工程化和产业化开发,满足原位实时快速分析、单细胞分析、质谱成像分析、超痕量样品分析需求,推动我国质谱离子化技术与装置的跨越式发展。  考核指标:形成6种以上具有自主知识产权的新型敞开式质谱离子源产品,有力支撑食品安全、环境应急、新药研发、现场快检、生物研究、质谱成像、公共安全等质谱检测应用。形成敞开式质谱离子源工艺化、产业化基地,实现批量生产。发明专利3项,技术标准3项。项目验收后三年内年销售达到40套以上。  实施年限:不超过3年  有关说明:每个项目形成5种以上不同的离子源产品。  1.2 探测器与传感器  1.2.1 光探测器  (1)光电倍增管  研究内容:开发侧窗型、端窗型光电倍增管,研究侧窗型、端窗型光电倍增管的结构设计,优化阴极材料及倍增极材料配方和制作工艺,研究包括激活工艺、封装工艺等在内的各环节生产工艺,探究影响光电倍增管灵敏度、暗电流、响应时间等关键性能的因素及改进方法,进行工程化和产业化开发,为分析仪器、辐射测量仪器、高能物理研究、石油测井及军用设备提供关键部件。  考核指标:阳极光照灵敏度≥ 300 A/lm(典型值) 最大暗电流50 nA(30分钟后) 增益106。发明专利3项,技术标准3项。项目验收后三年内年销售达到500支。  实施年限:不超过3年  (2)太赫兹探测器  研究内容:研制基于栅控二维电子气的新型室温太赫兹探测器,突破场效应混频探测器芯片及其模块制造的关键技术,实现全国产化。建立定量化的场效应混频探测器模型和模拟仿真技术 从外延材料、天线设计、阻抗匹配到模块化集成实现场效应混频探测器的优化设计 开发纳米栅极及其低漏电率的工艺制备技术 研究二维电子气场效应阈值电压的调控技术,研制两端结构的高灵敏度太赫兹场效应混频探测器。  考核指标:研制成0.1~1.1 THz波段内系列化的室温太赫兹场效应混频探测器芯片及其模块,满足室温下高灵敏度的太赫兹波探测需求。0.11、0.22、0.34、0.65和0.90 THz探测器芯片的等效噪声功率小于10 pW/Hz1/2 响应度大于2800 V/W 带宽大于80 GHz 响应时间小于100 ns 硅透镜和波导喇叭集成的两种探测器模块。发明专利3项,技术标准3项。项目验收后三年内年销售达到100套。  实施年限:不超过3年  1.2.2 辐射探测器  研究内容:攻克高密度快衰减无机闪烁晶体生长及阵列加工制备、PIPS探测器的高阻硅材料研制、吸收区结构设计及漏电流工艺控制等关键技术,建立辐射探测器成套的完整生产、测试工艺,形成具有自主知识产权的高性能(高能量分辨率、高空间分辨率、高时间分辨率)、高可靠性辐射探测器系列产品,开展工程化和产业化研究,形成批量生产能力,为医疗诊断仪器、工业无损探测仪器和核辐射环境检测仪器提供核心关键部件。  考核指标:辐射探测器实现国产化和批量生产,基本满足我国科学仪器和工业应用对辐射探测器的需要。闪烁晶体探测器光输出≥ 45000 ph/MeV 衰减时间≤ 100 ns 密度≥ 6.5 g/cc 能量分辨率≤ 9%@662 keV 阵列规格:4×4~16×16 PIPS辐射探测器灵敏面积13 mm2 暗电流小于2 nA 击穿电压大于100 V。位置灵敏型闪烁探测器像素面积1 mm×1 mm~6 mm×6 mm 暗电流500 nA 脉冲恢复时间50 ns 几何填充因子60% PDE在380 nm~550 nm范围内最小值不小于30% 批量生产90%以上产品雪崩电压偏差± 0.2 V 雪崩电压随温度变化系数50 mV/℃ 后脉冲0.5% 微像素间串扰10% 本征位置分辨率≤ 0.5 mm 能量分辨率能量分辨率≤ 12%@662 keV 时间分辨率≤ 300 ps。X射线成像探测器灵有效灵敏面积≥ 100×100 mm2,CMOS读出工艺 X射线空间分辨率≥ 15 lp/mm能量响应范围:30~160 keV。发明专利3项,技术标准3项。项目验收后三年内年销售达到1000支。  实施年限:不超过3年  1.2.3 物理量探测器  (1)超高温温度和压力传感器  研究内容:攻克信号背景噪声抑制、高速动态光谱采集、高精度信号反演等关键技术,研究超高温环境下工作材料试验、结构设计、加工制作工艺、校准与标定方法,解决超高温环境下温度、压力和振动参数原位测量问题,研究超高温环境下温度和压力传感器静态和动态特性测试技术,开发高性光路系统、信号采集系统以及温度反演软件等,解决长期制约我国燃煤燃气锅炉、航空发动机等试验参数原位测量问题,为我国自主研制航空发动机、高超发动机、重型燃气轮机等先进能源动力系统提供有力支撑。  考核指标:对于高温温度传感器,温度测量范围—50~1800 ℃,响应时间200 ms,综合精度± 5% 对于高温压力传感器考核指标,工作温度范围—50~1200 ℃,频响范围:0~200 Hz,压力测量范围0~400 kP,综合精度± 5%(—50~500 ℃)、± 10%(500~1200 ℃) 对于高温振动传感器工作温度范围0~1200 ℃,频响范围0~1 MHz,振动测量量程10 g。发明专利3项,技术标准3项。项目验收后三年内年销售达到1000套。  实施年限:不超过3年  (2)高端应变式传感器  研究内容:攻克应变式传感器多因素耦合计量特性仿真设计理论 研究高性能弹性体、应变计、粘贴剂及传感器生产工艺 研究高稳定度传感器检测技术 形成自主知识产权的高端应变式传感器及其检测技术。并在此基础上进行产业化开发,满足我国力学量值传递、航空航天台架测试、工业生产过程控制等领域对力传感器的需求,打破关键领域国外产品的垄断,为中国制造2025提供测量技术支撑。  考核指标:量程为1 kN~2 MN,应用于国内量值传递领域的参考标准传感器或传递标准传感器,技术指标达到国际先进水平。线性≤ 0.01% FS 重复性≤ 0.002% FS 复现性≤ 0.005% FS 长期稳定度≤ 0.005%/年FS。实现量值传递等领域使用的高端传感器的产业化 促进传感器产品质量的提高。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年销售达到50套。  实施年限:不超过3年  (3)精密位置传感器  研发内容:针对高端数控机床、3D打印、几何量计量、精密转台等应用需求,开发大量程、高精度金属光栅,突破金属光栅纳米压印成型工艺、新型光栅结构、高性能光栅读数、光栅校准和误差补偿等关键技术,实现大量程、高精度长度测量与高精度动态角度测量等性能,在航空航天、机器人、机床等行业开展示范应用,在此基础上开展工程化研发,开发具有自主知识产权的国产高精度金属光栅,替代国外进口,为我国先进制造及制造业转型升级提供关键部件。  考核指标:平面光栅精度± 0.5μ m/m。发明专利3项,技术标准3项。项目验收后三年内年销售达到200个。  实施年限:不超过3年  1.2.4 化学生物传感器  研究内容:攻克基于红外特征分子光谱、集成光学免疫传感以及电化学测量的关键技术 研究高特异性、高亲和力植物激素识别分子的方法和技术,并建立相应的生物传感测定技术 研究基于基因工程生物放大原理的特异型生物传感器、主要植物激素的高灵敏生物传感器,建立特定结构分子的识别元件库。建成基于传感器的成套高灵敏在线测量系统,满足研究大气、环境、疾病等领域二次污染形成机理研究和生物医学研究的需求。  考核指标:针对含氮化合物N2O等大气气体检测支持多档量程,在0~10 ppm量程,分辨率达到0.001 ppm,气体类检测稳定运行时间不少于3年,期间免校准 基于免疫或核酸适配体的电、光、磁传感器,针对血液或体液特定分子开展快速检验,如甲胎蛋白、肌红蛋白等标志物等特诊分子,特征分子体系不少于30种标志物 基于基因工程生物放大原理的新型生物传感器,实现不少于10种肿瘤标志物等特定生物分子目标检测 10种主要植物激素的高灵敏生物传感器。发明专利3项,技术标准3项。项目验收后三年内年销售达到500套。  实施年限:不超过3年  1.3 分析分离与控制部件  1.3.1 光栅  研究内容:开发体光栅,研究宽光谱基底材料的配方及制备工艺技术、高效率体全息曝光记录技术、高损伤阈值技术和热定影技术,研究高光谱选择性和高角度选择性的体全息光栅性能优化与制作工艺。进行工程化和产业化开发,为激光器行业、精密制造行业和国防工业提供核心关键部件。  考核指标:完成体光栅在3种以上典型仪器的集成应用示范,衍射效率95%,适用光谱范围400 nm~2600 nm,光谱透过率90%,损伤阈值20 J/cm2。发明专利3项,技术标准3项。项目验收后三年内年销售达到80套。  实施年限:不超过3年  1.3.2 泵  (1)高精度超高压液相泵  研究内容:开发高精度超高压液相泵,研究耐高压泵的制作工艺,攻克降低流量脉动和死体积的关键技术,研究影响产品可靠性的因素,开展工程化和产业化研究,形成批量生产能力,为国产超高压液相色谱仪发展提供核心关键部件。  考核指标:最大工作压力≥ 100 MPa(1 mL/min流速) 流量准确度≤ 1.0% 流量精度≤ 0.06% RSD 一定条件下连续运行1000 h不漏液 死体积小于微升级别。满足超高相液相色谱梯度分析需求,故障率低。发明专利3项,技术标准3项。项目验收后三年内年销售达到100套。  实施年限:不超过3年  (2)精密微量注射泵  研究内容:开发精密微量注射泵,研究微量流体流量控制的准确性及稳定性的方法,研究制作工艺及制作材料,开展可靠性设计与测试,为流动注射分析仪、液相色谱仪、质谱仪等提供关键部件,满足多种实验需求。  考核指标:流量范围为0.01~50 mL 准确度0.5% 精度0.05% CV 不漏液,耐腐蚀。发明专利3项,技术标准3项。项目验收后三年内年销售达到500套。  实施年限:不超过3年  1.3.3 流量控制部件  研究内容:开发高精度、高稳定性、反控能力强的电子流量控制系统,研究流量控制精度及准确性的影响因素,攻克关键材料、关键零部件、算法等方面的关键技术,研究改善流量及压力稳定时间的方法。提升国产气相色谱仪智能化程度及性能。  考核指标:流量及压力稳定时间≤ 5 s 流量控制精度≤ 0.001 psi 满量程偏差≤ 5%。具备温度补偿功能。发明专利3项,技术标准3项。项目验收后三年内年销售达到500套。  实施年限:不超过3年  1.3.4 自动进样器  研究内容:开发高可靠、高性能自动进样器,研究产品制作工艺,研究影响质量可靠性的因素和保障措施,开发顶空进样、固相微萃取、吹扫捕集、在线过滤、富集和分析等功能。为质谱、色谱等化学分析仪器、生命科学仪器配套。  考核指标:进样重复性RSD0.2%,样品残留0.01%,定位精度优于0.2 mm。发明专利3项,技术标准3项。项目验收后三年内年销售达到100套。  实施年限:不超过3年  1.3.5 样品前处理仪  研究内容:攻克在线提取、浓缩净化、蒸馏分离的多元自动化控制、在线联机、微痕量破碎等前处理关键技术,研制智能加样、加载、分离、液面分层感应、色度识别、微流控等关键部件和模块,开发农、食产品安全、环保等领域的样品前处理的往复式在线数控提取仪、多道自动浓缩仪、程序消解仪、微流控核酸提取仪、高通量微量破碎仪、DNA富集“磁力枪”及多功能集成处理系统,软件研究基于高精度激光光衍射算法,实现单元独立控制和多元集成控制,达到破碎、消解、提取及浓缩等操作全程自动化,开展工程化和产业化开发,可与液相色谱、气相色谱、质谱、定量PCR仪、基因测序仪等联机匹配。  考核指标:研发前处理仪器不少于10种,实现色度识别数字化,高压制样、富集等一体化,多道处理连续化。回收率、重复性等技术指标符合相关分析方法标准要求,满足食品安全、环保、生物技术等领域样品前处理快速、高通量、自动化需求。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内销售达到500套。  实施年限:不超过5年  2. 高端通用仪器工程化及应用开发  攻克分析仪器、物理性能测量仪器、电子测量仪器和计量仪器开发的关键技术。  共性考核指标:目标产品应通过可靠性测试和异地测试,技术就绪度不低于8级。  原则上,每个项目下设任务数不超过8个,承担单位数不超过10个。  2.1 分析仪器  2.1.1 基于射线类的显微成像仪  研究内容:攻克多能谱光子计数X射线成像、多模态X射线成像、X射线成像探测器封装和集成工艺等关键技术,开发基于多能谱光子技术X射线的图像重建算法和处理软件,形成具有自主只是产权、功能健全、质量稳定可靠的基于射线类显微成像仪。并在此技术上开展工程化开发和产业化开发,解决小型化和产品化问题,形成工程化和产业化能力,实现生物体内器官和组织的深度、密度、体积等参数快速采集和全方位成像或结构件的显微成像,为核医学研究、工业无损探测和安全检查等领域提供技术支撑。  考核指标:分辨率优于3.6 lp/mm,最高计数率108/mm2S,多能谱甄选阈值8能区,单系统成像面积400 mm2,并可扩展拼接,单系统像素单元256×256像素尺寸100 μ m。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内产值达到1.5亿元。  实施年限:不超过5年  2.1.2 高分辨荧光显微成像仪  研究内容:攻克光切面成像、动态成像、荧光标记与共定位、三维空间还原、定量或半定量分析、单分子荧光探测、荧光漂白后恢复技术 以及高速高精度扫描控制技术。研制复眼照明、高精度Z轴调焦、微分干涉、荧光滤色块、平场复消色差物镜等关键部件和模块。开发四维全自动分析测量软件。形成具有自主知识产权、功能健全、质量稳定可靠的高分辨荧光微分干涉显微镜。进行工程化和产业化开发,实现对活体组织微观结构、各种肿瘤细胞的显微成像,为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供技术支撑。  考核指标:具有复眼照明、高精度调焦、微分干涉、图像分析,四维全自动分析等功能,平场复消色差物镜,最高100倍,数值孔径大于1.4,分辨率0.2 μ m,发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到3000万元。  实施年限:不超过5年  2.1.3 小型高灵敏度低能射线纳米尺度三维成像仪器  研究内容:攻克超高灵敏度低能射线探测、超高增益光信号采集、系统小型化等关键技术,研制激光等离子体低能量射线发生器、探测器等关键部件,开发组织深度、密度、体积等信息的快速采集软件系统,构建相关数据库,形成具有自主知识产权、功能完备、质量稳定可靠的小型化、灵敏度高、分辨率高、成像速度快的低能射线纳米尺度三维成像仪。开展工程化和产业化开发,应用于生物体内器官、组织的空间结构、物理性质等信息的快速采集、分析和融合。  考核指标:可实现单光子级别检测,光电信号增益大于106,在2D成像时间低于30 s、3D成像时间低于15 min的情况下分辨率优于50 nm。发明专利3项,软件著作权3项。项目验收后三年内年产值达到5000万元。  实施年限:不超过5年  2.1.4 高分辨共轭激光显微断层成像仪  研究内容:攻克共轭激光显微高分辨及快速成像关键技术,开发高灵敏度弱光探测器、高精度扫描机电平台等关键部件和模块,开发超快响应速度、超高探测效率、超宽光谱探测范围的探测系统。开发相关软件系统和数据库,形成具有自主知识产权、功能完备、质量稳定可靠的高分辨共轭激光显微断层成像仪,实现该仪器图像分辨率和成像速度的同时提高,满足对活体组织结构动态、定量、三维的显微观测需求。  考核指标:光电探测灵敏度达到单光子级别、光谱有效探测范围350 nm~850 nm、光探测效率60%、成像响应时间80 ns、成像速度300帧/秒、平面分辨率0.15μ m、轴向分辨率10 nm。发明专利3项,软件著作权3项。项目验收后三年内年产值达到5000万元。  实施年限:不超过5年  2.2 物理性能测试仪器  2.2.1 差式扫描量热仪  研究内容:攻克宽幅变温与控温、高温磁场耦合、磁环境精密测量、微型加热与样品固定等关键技术,研制宽幅变温控温和磁—热—电耦合等关键部件,开展磁场环境热分析仪器综合集成,开发温度和磁场精确控制、信号传输补偿与校正、数据分析等软件,丰富仪器功能,形成具有自主知识产权、功能健全、质量稳定可靠的差式扫描量热仪。并在此技术上开展工程化开发和产业化开发,解决宽幅变温差式扫描量热仪器的工程化和产业化问题,形成可商业化、通用型热分析仪器的系列化发展,满足特征温度、反应热、熔融与结晶、结晶度、热稳定性、固化、玻璃化转变、比热、质量变化、热膨胀系数、反应动力学等参数测量要求,为精密测量和制造行业提供关键技术支撑。  考核指标:温度范围100 K~973 K 温度重复性± 0.1 K 温度准确度0.1 K 升/降温速率0.01 K/min~50 K/min。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到1000万元。  实施年限:不超过5年  2.2.2 高精度数字散斑干涉检测仪  研究内容:研究超光滑、超精密、超高温零部件形貌和误差以及相关材料的力学性能测量、测试方法及仪器设备,攻克三维特征高精度动态重构、全息干涉条纹的高精度数值衍射算法和基于散斑技术的超高温下材料性能测试等关键技术,研制相干与非相干照明光源、定向加热激光、动态加载、数据采集处理等关键部件和模块,开发软件丰富仪器功能,形成具有自主知识产权、功能健全、质量稳定可靠的高精度数字散斑干涉检测仪,并在此技术上开展产业化开发,实现常温和超高温对被测物体的位移、变形、振动及材料力学特性等参量的高精度动态无损检测。研究数字散斑干涉及散斑结构视觉三维测量系统的集成 不同温度下光测手段和材料高温本构关系 数字散斑传感器的精密标定 为不同条件下材料力学性能精密测量和精密制造行业提供技术支撑。  考核指标:测量灵敏度小于50 nm 测量面积大于200 mm×200 mm 测量速度大于20 Hz 实现常温和超高温材料力学特性的测量 支持多相机同步测量,三维数据自动拼接。项目完成时产品应通过可靠性测试,技术就绪度达到8级,发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内预计年产值达到2000万元。  实施年限:不超过5年  2.2.3 超光滑表面无损检测仪  研究内容:研究多幅重叠干涉条纹的相位分离算法,形成具有自主知识产权、功能健全、质量稳定可靠的超光滑表面无损检测仪。并在此技术上开展工程化开发和产业化开发,解决质量可靠性和产品化问题,形成工程化和产业化能力。开展新型连续变波长激光器在相位移中的应用研究,实现非透明物体超光滑表面及具有多层超光滑平行反射面透明物体的纳米级表面形貌高精密测量,满足现代工业对大面积表面形貌和厚度变化测量的需要,为LED、光伏和半导体制造行业提供关键技术支撑。  考核指标:口径尺寸≥ 120 mm 测量精度达到RMS≤ 20 nm 测量重复精度RMS≤ 10 nm。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内产值达到2亿元。  实施年限:不超过5年  2.2.4 精密光学器件在线检测仪  研究内容:攻克尖端光学器件的精密间距测量、偏心检测与光学像质评价技术。探索镜片间隙的非接触式测量方法,实现在线的镜片间距高精度测量与引导装调 研究快速高精度的光学器件自动偏心测量方法 开展波前测量与波前标定方法研究,形成基于波前像差的光学像质判定算法。根据大型光学镜面、高数值孔径显微物镜、树脂压印镜片等至少三种应用场景的需求,开发一体式的综合测量仪器设备,并在国内高端的光学加工车间、国家质检系统、规模化的光学元器件生产线,开展应用示范,为精密光学加工、器件性能检测和尖端物镜装调,提供仪器支撑。  考核指标:口径尺寸100mm 间距测量精度优于800nm 偏心测量精度优于100nm 波前测量精度RMS≤ 15nm,测量重复精度RMS≤ 7nm 发明专利10项,软件著作权3项,技术标准2项。项目验收后三年内,年产值达到3000万元,年销量达到100台。  实施年限:不超过5年  2.3 电子测量仪器  2.3.1 高性能多功能矢量网络分析仪  研究内容:攻克多端口微波网络幅频和相频特性测量、半导体功率器件非线性特性测量、多端口网络误差修正算法、测量校准与量值溯源等关键技术 研制多通道大动态范围低温漂混频、高隔离度定向耦合、超宽带低相位噪声激励信号发生、宽频带开关倍频滤波、宽带同轴机械和电子校准件等关键部件和模块 开发多端口网络误差修正算法、非线性网络模型、时域和频域分析等测试软件,形成具有自主知识产权、功能健全、质量稳定可靠、不同频段不同端口数量组合的系列化微波矢量网络分析仪。并在此技术上开展工程化和产业化开发,解决质量可靠性和产品化问题,形成工程化和产业化能力,实现对微波毫米波网络的S参数、X参数、噪声系数、混频器件变频损耗、信号频谱等参数进行高精度测量,为相控阵雷达、移动通信、卫星通信、卫星导航、电子侦察与电子对抗等电子设备科研生产提供关键技术支撑。  考核指标:频率范围100 kHz~67 GHz 测试端口数量2和4 系统动态范围80~128 dB 具备机械和电子校准件、频谱分析、噪声系数测试、混频器测量等附件或功能。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到2000万元。  实施年限:不超过5年  2.3.2 无线通信信道模拟与监测分析仪  研究内容:攻克空中接口性能测试与比较、大多普勒频偏及频偏变化率模拟、长传输时延模拟、终端运动时延变化模拟、多天线通信终端多维度无线信道模拟、无线通信信道自动监测等关键技术,研制移动通信复杂传输环境模拟、卫星测控与通信信道模拟、电子对抗环境模拟等关键部件和模块,开发路径衰减、吸收损耗、遮挡衰落、多径衰落、多普勒频移、传输时延、群时延、多通道天线阵列相位等多种无线信道传输特性模拟软件,形成具有自主知识产权、功能健全、质量稳定可靠的无线传输信道模拟与监测分析仪。并在此技术上开展工程化开发和产业化开发,解决质量可靠性和产品化问题,形成工程化和产业化能力,实现无线传输信道传输特性定量模拟和多种环境条件无线信道传输特性遍历模拟,为移动通信、卫星通信、卫星导航、电子对抗等电子系统科研生产和工程建设提供关键技术支撑。  考核指标:工作频段1 MHz~18 GHz 通道数8 测试带宽125 MHz 每个信道衰落路径48个。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到2000万元。  实施年限:不超过5年  2.3.3 时域电磁干扰测量监测分析仪  研究内容:攻克大动态宽带信号高速采样、多通道并行采样数据动态重构、宽带信号并行数字检波等关键技术,研制高速、宽带时域电磁干扰测量监测仪,开发实时接收、分析等软件,形成具有自主知识产权、功能健全、质量稳定可靠的时域电磁干扰测量监测分析仪。并在此技术上开展工程化开发和产业化开发,解决质量可靠性和产品化问题,形成工程化和产业化能力,为大型水面舰艇中复杂电磁环境效应快速测量评估提供关键技术支撑。  考核指标:频率范围25 Hz~3.6 GHz、25 Hz~7 GHz、25 Hz~26.5 GHz 分辨率带宽符合CISPR16—1—1和GJB 151B的分辨率带宽 实时分析带宽≥ 40MHz 30 MHz~1 GHz频段的测试速度较传统电磁干扰测量接收机提升千倍以上 环境适应性、电磁兼容性和安全性均满足GJB 3947A—2009中对三级设备的相关要求。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到2000万元。  实施年限:不超过5年  2.4 计量仪器  研究内容:研究宽带大电流测量仪,攻克宽频带超大电流传感和校准技术,研究宽频带大电流溯源方法,研发高精度宽频带大电流计量仪器及校准装置,形成具有自主知识产权、功能健全、质量稳定可靠的宽带大电流计量仪。在此基础上,开展工程化开发和产业化开发,满足我国高铁、冶金、电力和国防军工等行业对宽频带大电流高精度测量应用和溯源需求,为精密测量和制造行业提供关键技术支撑。  考核指标:交流和直流大电流测量范围100 kA~300 kA,不确定度0.2%~0.5%,k=2,带宽≥ 10 kHz。宽频带电流频率测量范围50 Hz~2.5 kHz~1 MHz,电流测量范围10 A~2 kA,不确定度:1E—5~1E—2,k=2。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到2000万元。  实施年限:不超过5年  有关说明:非企业牵头申报,参与企业自筹资金与国拨总经费投入比例不低于1:1。  3. 专业重大科学仪器开发及应用示范  重点支持支撑经济和产业发展、服务公益行业和民生改善、保障国家安全和公共安全的3类专业重大科学仪器。  共性考核指标:目标产品应通过可靠性测试和异地测试,技术就绪度不低于8级。  原则上,每个项目下设任务数不超过8个,承担单位数不超过10个。  3.1 支撑经济和产业发展的专业重大科学仪器  3.1.1 工业过程在线分析检测仪器  研究内容:研发石油、化工、制药、能源、冶金、矿产、有色等重要流程工业的生产过程产物及排放物的在线监测技术,燃料、原料、材料等物质的物理与化学转化过程的样品在线快速采样、高压快速反应测试、在线无损检测、产物高速分离分析及多组分高频检测技术,并研制形成具有自主知识产权、功能先进、质量稳定可靠的流程工业生产及物质转化过程的在线分析检测及监测仪器 开发仪器应用方法,实施仪器产品与系统的工程化,实现产业化应用。  考核指标:达到相关国家标准,通过可靠性测试,技术就绪度8级以上,其中工业过程产物在线监测分析下限1 ppm、系统响应时间0.1 s 物质转化在线颗粒采样0.5 g、高压反应测试适用50 atm压力、产物在线高速分离分析适用20 ppb~1000 ppm浓度、多组分高频检测数据输出频率100 Hz并适用10个组分。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年销售达到50套。  实施年限:不超过5年  3.1.2 油气探测与管道检测仪器和设备  研究内容:攻克阵列侧向测量、岩性密度测量、油气管道测量、阵列感应测量、在保护套中的悬挂、井下大功率高可靠电源、井下仪器测量信息与地面仪器信息的匹配技术,并集成补偿中子测量、声波测量、井径测量、连斜测量、三参数测量等测井技术,进行软件开发,丰富仪器功能,形成具有自主知识产权、功能健全、质量稳定可靠的油气探测仪器,并在此技术上开展工程化开发和产业化开发,为石油、天然气、页岩气等勘探领域提供关键技术支撑。  考核指标:工作环境温度—25~175 ℃,工作压力≤ 140 Mpa 仪器供电连续工作时间不小于30小时 数据采集与存储,存储间隔每帧250 MS 适应4~12英寸井眼,可任选钻杆输送泵出存储和电缆输送方式,同时具备裸眼井测井、套管井固井质量测井功能。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到2000万元。  实施年限:不超过5年  3.2 服务公益行业和民生改善的专业重大科学仪器  3.2.1 燃煤电厂超低排放监测仪器  研究内容:针对燃煤电厂超低排放监测需求,研制基于光谱技术的气态污染物在线监测系统,实现低浓度SO2、NOx等气态污染物精确测量 攻克SO3的采样和前处理关键技术,开发SO3以及硫酸雾在线监测系统 研制基于光散射与β 射线技术融合的颗粒物监测系统以及低浓度颗粒物手工采样设备,实现低浓度颗粒物的快速、准确测量以及手工比对。  考核指标:SO2量程范围0~75 mg/m3,NOx量程范围0~100 mg/m3,线性误差≤ ± 2% F.S.,24小时零漂≤ ± 2% F.S. SO3量程范围0~100 ppm 最低检出限0.5 ppm 颗粒物检测限≤ 0.1 mg/m3,响应时间≤ 15 s,测量准确性≤ ± 10%,颗粒物手工采样器测量范围0~10 mg/m3 形成技术标准体系并实现年产100台套以上的生产能力。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年销售达到400套。  实施年限:不超过5年  3.2.2 水中半挥发性有机物自动监测仪器  研究内容:针对地表水/饮用水中半挥发性有机物,采用固相微萃取、自动富集与热解析技术,研制开发固相微萃取搅拌材料、自动萃取与热解析装置、GC—检测器分离单元,定性、定量自动检测水中半挥发性有机物和农药残留 通过系统集成,开发水中半挥发性有机物自动监测仪器 通过在水质自动监测系统及实验室检测示范应用,建立水中半挥发性有机物自动监测技术方法体系。  考核指标:实现《地表水环境质量标准》(GB3838—2002)中至少24种半挥发性有机物监测因子的连续自动监测 准确度≤ 10%,线性≥ 0.99,检出限≤ 0.5 μ g/L,重复性≤ 1% 形成技术标准体系并实现年产100台套以上的生产能力。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到2000万元。  实施年限:不超过5年  3.2.3 大气颗粒物源识别在线分析仪  研究内容:研究大气颗粒物特征提取和源识别在线测量方法,攻克高灵敏度和高对比度的弱散射信号检测提取、多维信息实时同步处理、散射颗粒特异性分析、多维信息组合分类等关键技术。研制多角度高吸收气密散射室、多参量同步偏振数据检测器、高精度流量测量及控制单元、温湿度动态补偿采样单元、微弱电信号提取及放大等关键部件和模块 开发大气颗粒物散射仿真模型和演化、反演颗粒物特定属性和群分布特性等算法,以及颗粒物光学识别经验数据库的颗粒物分类辨识软件,形成具有自主知识产权、功能健全、质量稳定可靠的大气颗粒物源辨识在线分析仪。开展工程化和产业化开发,应用于大气污染防治、高污染产业升级和改造等所需的基础数据采集,为获得雾霾与特定污染源的关联关系提供技术支撑。  考核指标:快速识别至少三类典型颗粒物 颗粒物组成分析的百分比误差,快速在线方式下小于50%,长时间校准方式下小于20% 颗粒物质量浓度范围1~1500 μ g/m3 颗粒物测量分析的时间分辨率小于180秒 发明专利5项,软件著作权2项,项目验收后三年内年产值达到2000万元,年销售量不少于100台。  实施年限:不超过5年  3.2.4 高通量微生物快速检测仪器  研究内容:攻克紫外激光诱发生物固有特征物质荧光、空气动力学粒谱测量、高频高Q悬臂梁传感等关键技术,研制虚拟撞击切割器、生物气溶胶监测与甄别处理电路、悬臂梁阵列谐振器等关键部件和模块,进行软件开发,丰富仪器功能,形成具有自主知识产权、功能健全、质量稳定可靠的生物气溶胶采样器、生物气溶胶监测仪、生物气溶胶报警器、生物检验分析仪、高精度悬臂梁生物检验仪。软件研究基于光谱特征信息提取数学模型及谱特征匹配等算法,实现对生物气溶胶活性、生物病原体种类等现场在线自动监测检测。研究数据甄别处理和自动系统集成,开发精密标定技术。开展工程和产业化研究,为生物安全防控和其他国家安全领域提供关键技术支撑。  考核指标:生物气溶胶监测报警时间≤ 30 s,生物气溶胶采样流量不小于1000 L/min,检测时间≤ 30 min,检测种类涵盖细菌、病毒和毒素等生物病原体,细菌检测灵敏度105 cfu/mL,毒素检测灵敏度300 ng/mL。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到5000万元,年销售80—100台。  实施年限:不超过5年  3.2.5 高性能智能化食品药品无菌检测仪  研究内容:攻克基于VHP快速灭菌消毒及评价待检样品自动处理、细菌自动富集、功效检测等关键技术,研制洁净操作舱、传递系统、自动加样系统、阳性菌加注、传感反馈控制系统等关键部件和模块,进行控制软件开发,丰富仪器功能,形成具有完全自主知识产权、功能健全、质量稳定可靠的高性能智能化食品药品无菌检测仪。开发智能化管理软件系统,实现无菌检查自动监测检测。开展工程和产业化研究,为食品药品行业质量控制提供关键技术支撑。  考核指标:VHP灭菌浓度持续稳定在1000 ppm以上,灭菌保障水平达到10—6 SAL 整体效率达到手工的5倍以上。同时实现检测系统自动监控与远程监管功能,具有全自动调压气压控制,全自动精确传递定位机构,全自动操作系统,网络远程受控接口等,可自定测试程序。年产能达到300台以上。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年生产能力达到300套,销售额达到5000万元。  实施年限:不超过5年  3.2.6 新型全谱线快速光谱仪  研究内容:研究全谱线快速采集技术、激发光源校正技术、高稳定蒸汽发生技术,研制全谱、高灵敏度、高传输效率的单色器系统,开发新型全谱线快速光谱仪器和检验方法,解决食品、农产品中微痕量元素分析广普、精准的难题。形成具有自主知识产权、功能健全、质量稳定可靠的仪器产品,并开展工程和产业化应用,为食品和农产品领域提供关键技术支撑。  考核指标:波长范围190~320 nm,波长误差0.5 nm,分辨率2 nm,长期稳定性优于5.0%,光谱干扰、散射干扰0.1%。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到2000万元。  实施年限:不超过5年  3.2.7 井下甚宽频带地震仪  研究内容:攻克井下定位等关键技术,研制易于操作的下井装置、与井壁进行良好耦合等关键部件和模块,研制数据输出可与现有台站的甚宽频带地震计兼容的数据处理系统。形成具有自主知识产权、功能健全、质量稳定可靠的井下甚宽频带地震仪,实现对慢地震、固体潮汐、地震前兆和地壳运动等方面的观测能力。进行工程化和产业化开发,为地震研究和地球科学提供关键技术支撑。  考核指标:井下地震仪包括地震传感器、井下密封装置和下井装置等部分,可用于井下地震观测,具有遥控锁松摆、遥控调零、遥控姿态调整、标定等功能,具有真实记录长周期地震波、中长周期地震波和短周期地震波的能力。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到2000万元。  实施年限:不超过5年  3.2.8 空地全息三维自主技术装备  研究内容:研究新型低、中高空遥感技术装备,攻克高分辨率激光成像总体技术、高精度激光指向控制技术和高灵敏度阵列探测技术等关键技术,进一步丰富多种平台和环境下,对空地多种目标进行数据获取的手段,基于多模式、多光谱、多时相、多平台的装备优势,研制多种装备一体化处理的智能后处理软件,全自动处理生产三维模型数据,形成国产高端空地全息三维自主装备体系,为航空航天、测绘等领域提供关键技术支撑。  考核指标:系统兼有陆地、航空、低空等作业模式,具有集成化和轻量化设计,能保证稳定性与安全性 全息智能处理软件支持多种平台、多种数据格式,支持部件自动提取自动分类,准确率达到80%以上。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到2000万元。  实施年限:不超过5年  3.2.9 大视场机载高光谱成像仪  研究内容:应用于遥感探测、地质找矿、环境保护、农业评估、海洋观测等领域需求,研究大视场,宽谱段,高信噪比的机载成像高光谱仪。主要突破大视场,小F镜头,光分离技术,宽谱段谱仪及拼接技术,高信噪比的电子学技术以及大容量存储技术。  考核指标:视场大于60度,瞬时视场优于2豪弧度,F:1.5,光谱范围400 nm~2500 nm,波段大于128,光谱分比率由于15 nm,信噪比优于500:1。项目验收后三年内年生产、销售2台。  实施年限:不超过5年  3.3 保障国家安全和公共安全的专业重大科学仪器  3.3.1 基础设施安全在线检测监测仪器  研究内容:攻克材料劣化、缺陷演化过程中的无损检测监测关键技术,研制智能化在线实时监测仪器的相关核心关键模块,开发配套软件,实现大规模远程传感器监测网络的数据采集、缺陷智能化辅助识别、风险评估预警等功能。形成具有自主知识产权、功能健全、质量稳定可靠的民生或工业基础设施安全在线检测监测仪器,进行工程化开发和产业化开发,为重要民生或工业基础设施安全领域提供关键技术支撑。  考核指标:目标仪器缺陷探测能力和功能达到相关领域检测标准与安全评价规范要求。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到2000万元。  实施年限:不超过5年  3.3.2 快速通关检测专用仪器  研究内容:攻克激光诱导击穿、光频梳激发分辨、指纹识别、微阵列分析等关键技术,研制高性能信号激发、光谱分辨、光密度扫描等关键部件和模块,进行软件开发,形成具有自主知识产权、功能健全、质量稳定可靠的工矿产品及固体废物全元素分析仪、贵重货物无损鉴别仪、有毒有害物高分辨散射谱仪、真菌毒素偏振荧光免疫检测仪,病原生物纸基多靶快检仪,生物恐怖因子气溶胶监测仪,实现对跨境的大宗和贵重货物无损鉴别、高风险有毒有害物快速检测、病原及恐怖因子监测和及早预警。开展工程和产业化研究,为口岸安全和快速通关等领域提供关键技术支撑。  考核指标:研发口岸安全快速检测仪器不少于6种。对工矿产品,检出限:Pb为0.01%,S为0.05%,Ca为0.1%,Cu为0.01%,Zn为0.01%,H为0.05%,F为0.1%,Cl为0.1%,C为0.01%,2分钟内,所有元素同步给出。同时,完成金属元素和非金属元素的定量分析 对贵重品鉴别,建立不少于100种特征谱库 对有毒有害物,单点测量时间小于10ms,检出限满足SN标准要求 对真菌毒素和病原生物,技术指标满足国家相关要求 对恐怖因子,覆盖国际组织公布的气溶胶传播全部生物恐怖因子。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到5000万元,年销售80—100台。  实施年限:不超过5年  3.3.3 物流安全快检仪器  研究内容:攻克多通道荧光探针设计与检测、同轴嵌套多模离子化等关键技术,研制核心生物传感器件模块,进行软件开发,强化系统集成、研制出具有自主知识产权、功能健全、质量稳定可靠的成套生物传感检测技术装备、液—气多模离子源检测仪,精准控温多道荧光定量核酸检测仪,诊疗设备评价系统,建立物流安全监控系统,实现贸易全流程、即时风险预警。开展工程和产业化研究,为物流和公共安全等领域提供关键技术支撑。  考核指标:研制物流安全的危害因子专用检测仪器不少于4种,检测范围覆盖违禁危害因子85%以上,检出率95%以上 服务系统可达百万级用户。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到2000万元,年销售80—100台。  实施年限:不超过5年  3.3.4 放射性核素在线监测仪器  研究内容:攻克专有低本底、高效率、多晶体谱仪部件直接探测水体放射性水平的测量技术以及数据通讯和集成分析软件核心技术,攻克自动采集、制样、实时在线监测水体的测量技术以及数据通讯和集成分析软件核心技术 实现水中放射性实时在线快速监测、网络化辐射监测,分别形成具有自主知识产权、功能健全、质量稳定可靠的放射性核素在线监测系统,进行工程化和产业化开发,为环保行业提供关键技术支撑。  考核指标:γ 核素探测下限137Cs,探测下限0.5Bq/L 90Sr探测下限10mBq/L 3H探测下限1.2Bq/L 14C探测下限2Bq/L 总α 探测下限0.05Bq/L 总β 探测下限0.1Bq/L 适用温度—20℃~+50℃ 适用湿度95% 防护等级IP54。发明专利3项,软件著作权3项,技术标准3项。项目验收后三年内年产值达到2000万元,三年销售50台套。  实施年限:不超过5年  3.3.5 航空航天装备安全仪器  研究内容:研究复杂工况下姿态运动的高精度视频测量及其抗扰方法、海量时序视频图像特征的实时处理技术、载荷随姿态运动的变化规律分析方法、测试数据的微弱特征提取方法 攻克高噪声/振动环境下姿态运动的高精度实时测量,载荷/姿态测试数据的时/频/空耦合分析,及其嵌入式软硬件仪器化等关键技术,形成自主知识产权、功能健全、质量稳定可靠的复杂工况下姿态运动的高精度视频检测分析仪,在噪声/振动环境下实现姿态运动的高精度测量、提供载荷/姿态运动间的耦合特性参数。  考核指标:成像分辨率最高3600万像素,时间分辨率1微秒~1秒,采样频率1~10000 Hz 角度测量范围0~360。;姿态角测量精度最高0.01。;工作环境噪声0~130 dB 单路时序视频图像特征的实时处理速度最高2 GB/秒 检测分析信号的信噪比可达—20 dB。技术就绪度达8级,发明专利5项,软件著作版权3项,企业技术标准3项。项目验收后三年内产值达到1.2亿。  实施年限:不超过5年
  • 国家重点研发计划将步入项目实施新阶段
    p span style=" color: rgb(0, 0, 0) "   对于像中国21世纪议程管理中心副主任柯兵这样的科研项目管理者而言,过去的一年可谓每一步都走得小心翼翼、如履薄冰。 /span /p p span style=" color: rgb(0, 0, 0) "   直到最近,他们才终于松了口气。“目前,国家重点研发计划各专业机构已陆续走完了相关重点专项的指南发布、项目申报、立项评审、结果公示与审核等主要流程,即将与项目申报单位签订任务书,并于6月底完成大部分专项的项目立项和经费安排工作。”柯兵说。 /span /p p span style=" color: rgb(0, 0, 0) "   至此,作为中央财政科技计划(专项、基金等)管理改革突破口的国家重点研发计划,即将进入项目实施的新阶段。 /span /p p span style=" color: rgb(0, 0, 0) "   众所周知,新一轮科技计划管理改革被寄予厚望。国家重点研发计划管理改革在五类计划中最早启动,也是整合力度最大的一个计划。 /span /p p span style=" color: rgb(0, 0, 0) "   “从改革的推进及成效来看,国家重点研发计划重塑了管理流程,在打破条块分割、聚焦重大任务和原始创新、完善评审方式、强化信息公开等方面,都提出了新的重要举措。立项安排的审核结果表明,改革红利已初步显现。各重点专项实施方案编制专家组在审核中均表示,本批拟立项项目符合实施方案和指南的各项要求,基本上汇集了本领域的国内优势团队,同时还发现了一批新的科研团队。”科技部资源配置与管理司司长张晓原认为。 /span /p p span style=" color: rgb(0, 0, 0) "    strong 改革交出了第一份合格成绩单 /strong /span /p p span style=" color: rgb(0, 0, 0) "   近日,国家科技管理信息系统公共服务平台陆续公示了国家重点研发计划重点专项拟进入审核环节的1073个项目相关信息。这意味着,国家重点研发计划历经研发任务布局、重点专项凝练、指南编制与发布、项目申报与受理、立项评审等环节后,已画上了阶段性的句号,交出一份合格成绩单。 /span /p p span style=" color: rgb(0, 0, 0) "   早在2014年底,科技部等部门就选取了6个重点专项开展了试点工作。这6个试点专项集中体现了国家重点研发计划全链条设计和一体化组织实施的特点。以其中的“大气污染成因与控制技术研究”重点专项为例,该专项涵盖了围绕目标的所有环节。 /span /p p span style=" color: rgb(0, 0, 0) "   “基础研究阶段的比如大气污染的形成机理、它与健康的关系等,应用阶段的研发各种有效的污染控制技术,示范应用阶段的开展重点行业全过程污染控制技术研发与工程示范,构建全方位的污染控制监管与政策评估技术体系等。”科技部社会发展司副司长邓小明介绍说,“特别是,围绕专项实施还构建了多部门共同参与的大气科研统筹协调机制。” /span /p p span style=" color: rgb(0, 0, 0) "   在试点基础上,研究形成了《国家重点研发计划试点专项部署及2016年重点专项启动实施的建议方案》,经特邀咨评委咨询评议、国家科改领导小组会议审议通过后,报国务院批准实施。 /span /p p span style=" color: rgb(0, 0, 0) "   该方案明确了“十三五”期间国家重点研发计划的重点任务布局,与落实“中国制造2025”“互联网+”、能源行动计划、网络安全、生态文明等国家战略紧密结合。 /span /p p span style=" color: rgb(0, 0, 0) "   根据该方案,从2016年2月份开始,在现代农业、人口健康、产业转型升级、节能环保和新型城镇化等领域陆续启动了36个重点专项。 /span /p p span style=" color: rgb(0, 0, 0) "   这36个重点专项的项目申报指南涉及690个支持方向,共受理3663个项目申请,有数万家单位参与,项目牵头申报单位基本覆盖全国所有的省、直辖市和自治区,充分调动了全社会参与科技创新的积极性。 /span /p p span style=" color: rgb(0, 0, 0) "   在各类单位牵头申报的项目占比中,高等学校占37.1%,科研院所占24.1%,企业占33.4%,其他各类单位占5.4%。7家专业机构组织了近1700位专家开展项目申报评审,全部专家均由统一的国家科技专家库抽取产生,其中,34.5%的专家为两院院士、千人计划、长江学者、国家杰青等。对于典型应用示范类项目,还积极吸收企业一线专家和特殊行业的专家参与评审,发挥市场机制对技术创新的导向作用。 /span /p p span style=" color: rgb(0, 0, 0) "   “我们这些专业机构都有管理科研项目的经验,对于国家重点研发计划而言,从受理项目到评审,再到全过程管理,我们的努力方向就是按照改革的要求,营造好的环境,让科技计划管理更加符合科研规律。”柯兵告诉科技日报记者。 /span /p p span style=" color: rgb(0, 0, 0) "    strong 项目申报及评审方式打出一套改革组合拳 /strong /span /p p span style=" color: rgb(0, 0, 0) "   “对申报人员来说,最大感受是现在从指南公布到拿到评审结果时间很快,我们这个项目大概是春节时公布指南的,现在已经走完全部流程,这个时间大概是以往申报大项目的一半。”中国船舶重工集团公司第七○二研究所胡震告诉科技日报记者。 /span /p p span style=" color: rgb(0, 0, 0) "   确如他所说,项目评审改革是国家重点研发计划的一大亮点。首先,针对改革前科研人员反映的项目申报材料过于复杂、准备工作较为繁琐的情况,推行“预申报+正式申报”申报方式,简化项目申报准备工作,有效减轻科研人员申报负担。 /span /p p span style=" color: rgb(0, 0, 0) "   根据指南要求,科研人员先行提交3000字左右的预申报书,着重说明申报项目的目标和指标,简要介绍创新思路、技术路线和研究基础。专业机构受理预申报书后开展首轮评审,不需要项目申报人进行答辩。首轮评审将遴选出3—4倍于拟立项数量的申报项目,进入下一轮正式申报。 /span /p p span style=" color: rgb(0, 0, 0) "   “而且,以往的数轮答辩会对你的技术方案做非常细化的要求,而现在评审专家只对技术方案做方向性把握。总书记在全国科技创新大会明确要求,要让领衔科技专家有更大的技术路线决策权。这次改革的确赋予了科研人员更大的自主权。”胡震说。 /span /p p span style=" color: rgb(0, 0, 0) "   创新项目评审方式也是重要的改革内容:建设了针对各重点专项的核心专家库,为立项评审更精准遴选评审专家打下良好基础 首轮评审和答辩评审的专家均通过统一专家库随机抽取,减小了专业机构的自由裁量权 采用网络评审和视频答辩评审,评审专家与申报单位不见面,有利于专家排除干扰,做出公平公正的判断 采用15—17名专家背靠背独立打分的方式,提高了打分的公平性,降低了专家操控评审结果的风险 评审专家提前审阅项目申报材料,带着问题上会,并将问题提前告诉答辩人,使得答辩过程更加聚焦科技问题和创新点,便于评审专家更加客观地遴选优势科研团队。 /span /p p span style=" color: rgb(0, 0, 0) "   改革还注重建立科研诚信承诺制度,营造风清气正的科研氛围:申报单位和申报人要签订诚信承诺书,承诺杜绝有可能影响公平评审的行为 项目评审专家也要签署诚信承诺书,承诺恪守职业规范和科学道德,遵守评审规则和工作纪律 相关工作人员,更要遵纪守法、公正廉洁。 /span /p p span style=" color: rgb(0, 0, 0) "   此外,本次改革的一个突出亮点是,明确了“裁判员”不能作为“运动员”,即参与重点专项实施方案和年度指南编制的专家,不能申报和评审该专项的相关项目。“国家重点研发计划大的制度设计上已经相当完善,最重要的一点是过去的科研项目申报中‘裁判员’和‘运动员’不分,编写指南和申报项目的相互关联,最后真正想搞科研的,尤其是年轻人拿不到项目。长远来看,这是制约中国科技发展的一大瓶颈。我们很高兴国家重点研发计划做出了改变。”一位不愿意透露姓名的评审专家告诉科技日报记者。 /span /p p span style=" color: rgb(0, 0, 0) "   与过去相比,本次改革更加强调信息主动公开和社会监督,确保计划管理各个环节公平公正。在立项评审过程中,指南发布、项目申报及受理、形式审查、预评审、专家预览、答辩评审等主要环节均通过国家科技管理信息系统平台操作完成,全面实现信息公开和全程留痕,做到“可申诉、可查询、可追溯”。 /span /p p span style=" color: rgb(0, 0, 0) "    strong 补齐短板 进一步释放改革红利 /strong /span /p p span style=" color: rgb(0, 0, 0) "   采访中接触到的科研人员普遍认为,这次改革力度很大,需要一个适应过程,但都表示理解和支持。科技部副部长侯建国说:“这一年多来,从需求征集、建议凝练、方案编制、战略咨询,到指南编写、项目评审等各个阶段,都得到了广大科研单位、数万名科技人员的参与和大力支持,特别是参与实施方案和指南编写的专家,对工作认真负责,按照回避原则放弃了项目申报,为落实改革任务作出了重要贡献,我们要感谢他们。” /span /p p span style=" color: rgb(0, 0, 0) "   “改革是一项复杂的系统性工程,不可能在启动之初各个环节就已尽善尽美。”张晓原表示,从问卷调查来看,科研人员反映了改革中也还存在需改进和完善的地方,包括:专家库入库专家的学科、研究方向、研究水平等还需要进行科学详细的分类标识,专家抽选规则需要进一步优化 立项规则还需进一步完善,在评审专家投票打分排序这种基本立项程序之外,是否还可以增加如定向择优等其他方式作为补充,避免所谓的“一考定终身” 指南编制机制还需进一步健全,不在指南中设定具体的技术路线和研究方案,杜绝部分指南方向指向性较强的问题等。 /span /p p span style=" color: rgb(0, 0, 0) "   农业部科技发展中心聂善明副主任也对概算编制与评审提出建议,“本次改革以评审方式确定了各重点专项5年的经费概算,这是在资源配置方面的探索和尝试。考虑到科学研究存在着较强的不确定性,建议允许各专项在实施过程中能根据实际情况对概算进行动态调整,概算的编制和评审方式也要在探索中不断改进和完善。” /span /p p span style=" color: rgb(0, 0, 0) "   “我们将认真总结改革工作,高度关注科技界的诉求,建立完善反馈机制,及时发现新情况新问题,补齐短板,让改革红利充分释放,让广大科研人员有更多的获得感。”侯建国表示。 /span /p p span style=" color: rgb(0, 0, 0) " & nbsp /span /p
  • 吴玲:第三代半导体检测设备基本全部依赖进口,短期内无法国产化替代
    新一轮科技革命与产业变革正在创造历史性机遇。第三代半导体具备高效、高频、耐高压、耐高温等特性,是推动移动通信、新能源汽车、高速列车、智能电网等产业创新发展和基础能力提升的新引擎,是实现“双碳”目标和保障国家产业安全的重要支撑。虽然面临复杂的外部环境,但多因素促进我国第三代半导体产业逆势上涨。近日,在由第三代半导体产业技术创新战略联盟、中关村半导体照明工程研发及产业联盟主办的“2021第三代半导体创新发展峰会”上,第三代半导体产业技术创新战略联盟理事长吴玲做了题为“我国第三代半导体产业发展思考”的主题报告,深入分享了当前我国第三代半导体产业的发展现状、面临机遇和挑战,并提出对未来产业发展的几点思考与建议。现状在“十二五”、“十三五”国家科技计划支持下,我国初步建立了从上游材料(氮化镓、碳化硅等)、中游器件(光电、射频、功率器件等)到下游应用(照明与显示、5G通信、新能源汽车、高速列车、新型电力系统等)的全创新链和产业链,产业从无到有,国产化能力不断提升。半导体照明自主可控,光电子与微电子深度融合,跨界创新应用有望引领发展。我国是全球最大的半导体照明制造、出口、应用国,2021年产值7773亿元,芯片国产化率超过80%;产业发展从光效驱动转向品质驱动、成本驱动,从蓝光(白光)转向深紫外等更短波长,和绿光、黄光,甚至红光等长波长;从标准结构转向小间距Mini/Micro-LED,开启高度集成半导体信息显示技术新变革。微波射频领域开始国产替代,部分技术达到国际先进水平。5G通信移动基站用GaN射频器件实现6GHz以下产品小批量供应,2020年国内宏站用氮化镓射频器件国产化率超过20%;预计2023年进入毫米波频段商用,集成功放、低噪放、开关功能,这方面国内目前还不具备产业化能力;6G已启动预研,太赫兹频段进入技术论证和研究阶段,预计2030年实现商用。电力电子应用虽然需求迫切,但是产业化与国际差距较大。在“双碳”战略带动下,以新能源汽车、高速铁路、新能源为主体的新型电力系统、5G通信和数据中心等为主的应用对碳化硅、氮化镓电力电子器件的需求非常明确,新能源汽车和PD快充未来五年应用市场的年复合增长率将超过50%。 虽然我们进步很快,但距离产品好用、产业化形成规模,技术水平仍落后国外约5年左右。SiC单晶衬底虽已实现4英寸产业化、6英寸小批量供货,部分打破国际垄断,但目前国产化率不到5%,车规级、电网级功率电子材料和器件基本全部依赖进口。机遇当前,国内第三代半导体产业迎来战略机遇期,主要体现在以下几方面:一是新型电力系统、高铁、新能源汽车,5G/6G通信、半导体照明及超越照明、工业电机及消费电子市场等市场启动,应用需求驱动技术创新。二是在产业界、学术界多年努力下,国内与国际先进水平差距不大,国际半导体产业和装备巨头还未形成专利、标准和规模的垄断,我国有机会实现超越。三是与集成电路相比,第三代半导体投资门槛不高,对工艺尺寸线宽、设计复杂度、装备精密制造要求相对较低。四是近年来我国的精密加工制造技术和配套能力迅速提升,并且具有一定的基础,具备开发并逐步主导该产业的能力和条件。挑战半导体新材料正在重塑全球半导体产业竞争新格局,在产业链、创新链、生态链上都面临挑战。产业链方面,缺乏产业级的先进材料研发,碳化硅籽晶和单晶生长工艺控制技术与国际有5年左右差距;介质材料、高温高能量等工艺不成熟,芯片制造能力弱、产能不足,良率低、成本高、可靠性差;设计与系统应用的匹配性不够,上下游联动迭代不够,在系统中成本占比低,性能和可靠性要求高,器件进入应用供应链难度大、周期长,产业化能力提升缓慢;国产装备以仿制为主,大部分处于原型样机阶段,技术引领性不足,处于跟跑状态。检测设备基本全部依赖进口,短期内无法国产化替代。创新链方面,基础研究的应用需求导向不足,缺乏长期可持续、大投入的中早期基金支持;共性关键技术方面,缺乏开放的、体制机制创新的公共研发平台,缺乏材料和装备的中试平台,缺乏有能力满足企业需求的服务平台;产业化技术方面,知识产权和标准体系薄弱,重“科”轻“技”,研产脱节,产业升级转型专业技术门槛高。生态链方面,产业创新体系和生态不完善。研发分散、投入不够,缺乏稳定持续支持;原始创新和应用创新能力较弱;研发周期长,技术更新快,各层次人才规模不够,高端和战略性人才急缺;面临国际技术禁运和封锁;企业小而散,无序竞争,产业同质化严重、集中度低;财政资金与社会资本脱节,缺乏优惠政策对民间资本的引导,存在政府、市场双失灵现象。几点思考吴玲指出,我国第三代半导体产业发展需要思考如何统筹规划,形成发展合力,要大胆探索新型举国体制,建立开放创新、可持续发展平台和利益共享、风险共担、链条打通的创新共同体。未来,联盟将继续推动创新体系和创新生态建设,促进产学研深度融合,加快迭代研发,在推动组织“百城亿芯”示范应用、支撑地方及区域特色产业集群发展、探索科技金融链网模式加快科技金融结合、加强精准深入的国际合作等方面开展工作,携手产业界同仁,凝心聚力、砥砺奋进,共同推动我国第三代半导体产业迈上新台阶、实现新跨越。
  • 微立体光刻3D打印125GHz倍频器的波导腔体
    太赫兹波是指频率在0.1THz~10THz内的电磁波,它的波长介于30~3000μm,在频谱中的位置处于微波和可见光之间,长波段部分与毫米波重合,短波段部分与红外线重合,在电磁波频谱中占据非常特殊的位置,具有很多特殊的性质:宽带性、互补性、瞬态性、相干性、低能性、投射性。相对于毫米波而言,太赫兹波的频率更高、波长更短,因此具有更高的分辨率、更强的方向性和更大的信息容量,同时器件可以更小;相对于光波而言,太赫兹波具有更强的穿透性,适合于云雾、硝烟等极端恶劣环境。太赫兹频率源是太赫兹技术发展的关键,其性能指标影响着整个太赫兹系统的性能,所以太赫兹频率源的获得至关重要。通过倍频的方式获得的信号源具有高频稳定性好、设备的主振动频率低、工作频段宽的优点,是目前获取太赫兹频率源广泛采取的方案。基于GaAs肖特基二极管的太赫兹倍频器因其高效率、低能量消耗和室温下可适用性,已广泛用于外差接收器中局部振荡器(LO)的可靠信号源。太赫兹倍频器具有广泛的实际应用,包括大气遥感、医学成像甚至高速通信。目前,用于封装太赫兹倍频器的波导腔体通常采用计算机数控(CNC)加工制造,该工艺成熟,可实现高精确度、高精密度和良好表面光洁度,能满足电子元件与波导腔体间严格的尺寸公差要求。近年来,3D打印凭借其小批量快速加工的能力,逐渐被用于加工被动微波器件。但是,兼具大的打印幅面以及高公差控制的打印设备较少,因此鲜少有3D打印制备超过100GHz频段的器件报道。3D打印的倍频器更是未见报道。图1. 125GHz倍频器的剖面图:(a)波导腔体的布局 (b)MMIC的特写图2. 微纳3D打印的波导腔体(左)和放置MMIC的波导通道(右)近日,英国伯明翰大学的Talal Skaik和Yi Wang等首次采用面投影微立体光刻(PμSL)3D打印工艺制备太赫兹倍频器的波导腔体。研究团队使用摩方精密科技有限公司(BMF)的nanoArch S140系统3D打印了波导腔体,打印材料为耐高温树脂(HTL),如图2所示,外形尺寸为30.4 mm×25.5 mm×19.1 mm,打印层厚为20μm以及光学精度为10μm。打印后在异丙醇中清洗,并进行30分钟的紫外线固化,最后在60°C下进行30分钟的热固化。制备的波导腔体通过光学系统检测并未发现缺陷,与MMIC(单片微波集成电路)配合的波导通道测量值为609μm,优于设计的630μm;同时超高光学精度打印保证了严格的尺寸公差,确保波导腔体的两部分能精确配合,避免MMIC电路的损坏。图3. 电镀后波导腔体的表面光洁度图4. 装配后的太赫兹倍频器为促进信号的传递以及减小外界干扰,在波导腔体表面镀上4μm厚的铜和0.1μm厚的金,平均表面光洁度约为1.4μm,如图3和图4所示,电磁仿真结果表明该粗糙度对变频损耗的影响可以忽略不计。图5. 3D打印与传统CNC加工的太赫兹倍频器的性能参数对比实验测试发现,3D打印制备的太赫兹倍频器与传统CNC制备的倍频器性能非常接近,相关性能参数如图5所示。3D打印的太赫兹倍频器在输出频率为126GHz下达到33mW的最大输出功率,在80mW~110mW的输入功率下转换效率约为32%,与传统CNC加工的倍频器具有相近的最大输出功率和转换功率。此研究成果以题为“125 GHz Frequency Doubler using a Waveguide Cavity Produced by Stereolithography”发表在会议期刊《IEEE Transactions on Terahertz Science and Technology 》上。
  • 西安光机所在太赫兹消色差超透镜研究方面取得新进展
    近日,瞬态光学与光子技术国家重点实验室在太赫兹频段可变焦消色差超透镜领域取得新进展,相关研究成果发表于Journal of Science: Advanced Materials and Devices(IF = 7.38)。论文第一作者为博士生江晓强,通讯作者为范文慧研究员。   超透镜是一种二维平面透镜结构,具有体积小、重量轻、易于集成等特点,可实现对太赫兹波振幅、相位、偏振等参量的灵活调控,有望解决天然材料在太赫兹频段电磁响应不足而导致的效率低、体积大等问题。近年来,消色差超透镜由于能够有效消除宽频带成像产生的色差问题而受到广泛关注。然而,如何在实现宽频带消色差的同时,赋予超透镜连续变焦的能力,仍然是目前亟待解决的难题。   针对此问题,研究团队首先基于Ⅲ-Ⅴ族半导体材料锑化铟(InSb)设计了性能优异的单元结构。随后,研究团队采用几何相位和传输相位相结合的方式,巧妙设计超透镜单元结构的排布方式与空间取向,采用单层超透镜实现了太赫兹波的宽频带聚焦,有效消除了色差现象。进一步地通过改变器件工作温度,进而调控器件单元结构的相位补偿范围,实现了焦距736.25 μm (NA = 0.62)至 861.02 μm(NA = 0.56)的连续变焦。本研究成果为设计多功能消色差超透镜提供了一种新思路,有望进一步拓展太赫兹频段超透镜在显微成像和内窥镜等领域的实际应用。 图1 连续变焦消色差超透镜工作示意图   西安光机所范文慧研究员带领的太赫兹光子学与表面微纳智造团队已在超宽频谱太赫兹波产生与探测、超快太赫兹波谱成像与应用、太赫兹频段超材料与超表面功能器件等领域开展持续研究并取得一定突破。相关研究成果陆续发表于Angewandte Chemie - International Edition、Carbon、Journal of Science: Advanced Materials and Devices、Optics Letters、Optics Express、Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy、Nanomaterials等国际知名期刊,获得了国内外同行的广泛认同。
  • 国拨总经费超14亿!国家重点研发计划5个重点专项指南发布
    01、“多模态网络与通信”重点专项(拟启动23个指南任务,国拨约4.22亿;其中青年科学家12项)“多模态网络与通信”重点专项2022年度项目申报指南为落实“十四五”期间国家科技创新有关部署安排,国家重点研发计划启动实施“多模态网络与通信”重点专项。根据本重点专项实施方案的部署,现提出2022年度项目申报指南。本专项总体目标是:开展多模态网络核心芯片、设备、关键技术和创新环境构建的研究,初步构建全维可定义的多模态融合网络架构、协议体系、安全体系和服务体系,使我国成为支持演进和创新的新型网络技术的主导者;巩固我国在移动通信领域的领先优势,重点开展5G演进及6G技术的前期研究,开展天地一体化技术的先导研究,使我国成为6G技术、系统和标准的全球引领者,并使我国高频段通信系统核心模块和芯片达到国际先进水平;充分发挥我国在光通信系统产品上的领先优势,带动光通信核心模块和芯片逐步取得竞争优势;并与微电子、光电子、新材料等方面交叉融合,借助本领域已有的产业优势,在前沿技术上率先取得突破。专项实施周期为5年(2021—2025年)。2022年度指南部署聚焦面向系统、行业应用的核心芯片、软件、关键设备研制和系统集成研究,同时辅以探索前沿技术,拟围绕多模态网络,新一代无线通信,超宽带光通信等三个技术方向,按照基础前沿类、共性关键技术类、青年科学家项目三个层面,启动23项指南任务,拟安排国拨经费4.22亿元。其中,青年科学家项目拟安排国拨经费3600万元,每个项目300万元。共性关键技术类项目配套经费与国拨经费比例不低于1:1。项目统一按指南二级标题(如1.1)的研究方向申报。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标,实施周期不超过4年。基础前沿类项目下设课题数不超过4个,参与单位不超过6个;共性关键技术类项目下设课题数不超过5个,项目参与单位总数不超过10家。项目设1名项目负责人,项目中每个课题设1名课题负责人。青年科学家项目不再下设课题,项目所含参与单位总数不超过3家。项目设1名项目负责人,项目负责人年龄要求,男性应为1984年1月1日后出生,女性应为1982年1月1日后出生。原则上团队其他参与人员年龄要求同上。除指南中特殊说明外,每个指南任务拟支持项目数为1~2项。“拟支持项目数为1~2项”是指:在同一研究方向下,当出现申报项目评审结果前两位评价相近、技术路线明显不同的情况时,可同时支持2项。2个项目将采取分两个阶段支持的方式,第一阶段完成后将对2个项目执行情况进行评估,根据评估结果确定后续支持方式。1. 多模态网络1.1 多模态网络的软件定义互连交换芯片研制(共性关键技术类)研究内容:针对多模态网络软件定义互连芯片面向的数据中心、5G承载网、高性能计算等典型应用场景,开展多模态网络互连交换芯片体系架构、模态隔离转发技术、状态可编程技术、模态加载和编译技术、软件定义报文技术等研究,突破软件定义数据链路层协议、软件定义报文线速处理、高负载下模态弹性无扰隔离技术、数据平面有状态转发技术、大规模状态表下的线速转发等关键技术难点,形成多模态高效芯片处理架构,完成多模态网络软件定义互连交换芯片的设计,基于境内工艺,实现多模态网络软件定义互连交换芯片流片、封装及测试,为多模态网络系列化设备研制提供核心芯片,构建软件定义互连交换芯片演示验证系统。考核指标:基于境内16nm或更先进工艺,完成多模态网络软件定义互连交换芯片研制;支持芯片级状态可编程、模态加载/编译及运行,实现大规模状态表下的高性能转发,支持模态间的弹性隔离,支持不同模态下的有状态寻址或无状态寻址;芯片交换容量≥6.4Tbps,端口最大传输速率400Gbps,支持2种以上软件定义数据链路层协议;确定性平面转发时延≤2μs,时延抖动≤1μs;支持8级以上业务可编程能力,支持流表精确匹配,流表容量≥1M条,共享缓存64MByte;芯片配套软件支持现场可编程特性、异构业务特性和多模态应用特性;完成芯片在典型应用环境下的演示验证。完成研制报告1份、申请专利20项。1.2支撑多模态网络的软件定义控制芯片(共性关键技术类)研究内容:面向多模态网络技术发展,为满足多种网络模态共存对控制面多维动态管理、多样化处理策略及高安全防护的需求,基于控制面和数据面分离的多模态网络架构下,开展多模态网络高吞吐率控制面处理器架构、控制面处理器功能重构技术、分布式协同控制、控制面内生安全技术和编译技术等研究,突破芯片上弹性模态资源管理和动态微服务加载、安全传输协议、内生安全硬件设计、面向通用网络处理器编程范式的编译工具研制等关键技术难点,提出支持多模态动态管理的高吞吐率低延迟控制器芯片架构,完成支撑多模态网络的软件定义控制芯片设计并流片,研制完整集成开发工具链、应用软件库运行环境,实现面向多模态网络管理的控制设备原型样机和系统。考核指标:建立软件定义控制芯片的多模态可编程高吞吐率架构,支持多域多级管理,支持L2~L7层级协议卸载和预处理,业务管理带宽达到100Gbps以上,对数据面请求的处理效率达到通用处理器的10倍以上,对同层或上层控制器的多模态流部署及拓扑管理请求的处理带宽达到通用处理器的10倍以上;软件定义控制芯片支持微服务的动态加载,功能重构时间小于100ns,支持多业务分发、统一表决以及负反馈控制的动态调度;基于硬件可信根实现配置管理,覆盖100%配置流;对基于未知漏洞和后门攻击的防御成功率达到99%以上;基于境内28nm及更先进工艺,完成芯片研制、集成开发工具研制、控制设备原型验证样机及系统研制;集成开发工具支持高级语言编程,控制代码编译执行效率不低于80%,支持断点调试和时钟精确模拟。1.3 多模态网络控制调度系统技术(共性关键技术类)研究内容:面向泛在化异构网络设备所组成物理网络中多种模态网络管控需求,开展基于多模态网络的控制调度系统总体架构、分布式/层次化控制与通信技术、面向异构设备的控制面本地化技术、分布式控制面状态维护技术、多业务流多模态路由承载技术、跨模态资源协同管控与内生安全技术、算网一体的资源协同调度技术、控制面主备切换和容灾备份技术等研究,突破支持多种可编程数据面流水线技术的分布式控制面集群、算网资源协同与自动化模态隔离与加载、高可用可视化控制面维护等技术难点,形成多模态网络控制调度系统架构,开展多模态网络控制调度相关关键技术原理和原型系统的验证。考核指标:完成基于多模态网络的控制调度系统总体架构的方案设计;控制面支持多种可编程数据面流水线技术、支持分布式及层次化扩展、多种硬件架构下的控制面本地化部署、分布式状态维护、算网一体协同调度、不少于5种多模态寻址与路由协议、基于命名空间隔离的跨模态资源编排、自动化模态加载、具备高可用性;控制通道管理容量不少于1000台数据面设备,拓扑发现时间低于2s,线性拓扑端到端链路建立时间低于5s,单节点在10万pps的负载下,被动packet-out或flow-mod响应时延99%小于1ms,集群可线性扩展;与算网非协同系统相比,算网资源配置与使用效率提升30%;构建原型系统实验验证环境,对多模态网络控制调度系统架构及关键技术开展性能评估,开源原型系统相关代码。1.4 多模态边缘网络关键技术研究(共性关键技术类)研究内容:应对信息网络发展成为人-机-物泛在互联关键基础设施和赋能平台的趋势,构建基于多模态网络环境的边缘网络,支持多模态协议混合接入,具备内生安全特性,突破基于异构语义标识的多模态协议混合路由寻址、隐私保护、按需组网等,支持网内计算增强,实现分布式算力与多模态网络环境的融合与协同;研究分布式算力感知与网络设备数据面卸载,研究基于多模态网络环境的网内计算分发和部署等,实现面向分布式计算的网络支撑;研究多模态边缘网络的安全访问控制,支撑多模态网络中信息物理融合安全接入、异构实体的内生安全互联互通。研发多模态边缘网络设备和系统,为面向园区/行业等垂直应用提供多元、高效、安全的边缘网络服务支撑。考核指标:提出基于多模态网络环境的边缘网络方案,完成原理验证,形成面向园区/行业等场景的验证报告3份,申请发明专利10项,提交国内国际标准提案5篇;设备内部支持不少于3种异构算力资源,支持面向不少于4种网络协议的存储计算转发异构资源协同调度、模态自定义的协议解析和处理,报文处理、交换芯片和处理器国产化,支持不少于6个100Gbps接口;控制系统支持对项目研发的设备进行模态控制,支持基于资源池的计算任务卸载和协同处理,支持计算模型在多模态网络设备中的分级、动态部署,对计算请求进行任务分配的平均响应时延不超过5ms;路由系统支持不少于4种异构多模态标识接入及其混合寻址路由、统一承载,支持与现网互联互通,支持隐私保护,路由隐私的平均处理时间不超过2ms;边缘融合接入与安全认证设备支持不少于4种实体标识的统一接入认证和授权,支持不少于2个10Gbps接口和10个千兆接口,支持国密算法,处理器国产化,支持并发连接数不少于10000个,支持一体化异构标识定义、时空可感、跨层多元的持续信任评估和管控。项目研发的设备和系统需具备内生安全特性,在白盒注入测试条件下基于未知威胁差模攻击的平均抑制成功率不低于95%。1.5 多模态网络节点关键技术研究与验证(共性关键技术类)研究内容:面向多模态网络智慧支撑环境,遵循“应用、业务、技术体制、智慧支撑环境”的四层架构,以面向计算的技术路线为主线开展多模态网络节点关键技术研究,开发多模态网络节点试验验证平台并对关键技术研究成果进行验证,为多模态网络超大规模专用核心芯片的开发奠定坚实的技术实践基础。重点突破多模态智慧支撑环境网络节点的系统架构、流数据驱动、计算模型、资源构建、互联方式、控制逻辑、节点操作系统和可编程模式等方面的关键技术,实现多模态网络在智慧支撑环境节点中,共生共存、区分服务、内生安全兼并的透明转移生态。考核指标:完成多模态网络智慧支撑环境节点技术实现方案,提供试验验证报告,关键技术突破大于10项;研制开发多模态网络智慧支撑环境节点机3台、用于构建试验验证环境节点协处理机6台和多模态终端网卡20块,设备间支持协同处理,开展大于6种模态网络同时并发运行的试验验证工作,其中主流技术体制的模态网络大于3种,可以支持模态间硬隔离;多模态网络智慧支撑环境节点机端口速率支持40/100/400Gbps,交换容量不少于4Tbps,存储容量大于10TB;节点协处理机端口速率支持10/40Gbps,交换容量不少于600Gbps,存储容量大于6TB,支持带内计算;多模态终端网卡端口速率支持1000Mbps/10Gbps,支持用户自定义模态加载,支持由应用按需选择模态;多模态网络智慧支撑环境节点机、节点协处理机、多模态终端网卡核心器件采用国产器件;节点操作系统支持内生安全,能有效抑制不确定失效扰动,在白盒测试条件下威胁抑制成功率不低于95%,支持多种网络模态的动态安装和部署,可适配本项目研发的节点设备,向开源社区贡献代码,目标功能的代码贡献比例不低于50%;提交1份多模态网络节点技术研究报告,提交标准草案大于3份,申请专利或软件著作权大于15项。1.6 多模态网络编程环境及软件化技术研究(共性关键技术类)研究内容:研究建立模态无关的多模态网络环境编程系统架构与模型,抽象网络模态的共性需求和能力特征,形成基于通用表达的网络模态编程语法,支持覆盖存储、计算、转发、安全等可定义的模态编程,支持网络模态的智能在线生成与行为验证;研制平台无关的多模态网络前端编译系统,支持网络模态的安全编程和形式化验证,基于异构的可编程资源协作实现网络模态的自动化编译与生成,具备内生安全特性;研制面向多样化平台的设备级后端编译系统支持依据应用需求实现多种模态在设备中的并发运行;研究应用驱动的网络模态智能承载技术,支持基于网络状态感知的资源编排,实现网络模态与基础环境间的优化匹配与调度;构建支持网络模态动态、并行部署的实网多模态网络环境,支持面向模态需求定制的环境资源组合和模态重构,为网络模态在多模态网络环境中的快速部署和应用提供支撑。考核指标:形成一整套完善的多模态网络编程方案,申请发明专利不少于10项。模态编程模型支持不少于转发、计算、存储、安全等4种操作,支持差异化网络模态能力的统一描述、智能生成和行为验证,编程语法面向用户开放;前端编译系统支持上述编程语法,支持面向不少于3种硬件资源的一体化协作编译,支持不少于5种策略的内生安全特性,支持模态语法检查和模型优化;研制面向不少于3种硬件资源的多模态网络后端编译系统,其中至少2种硬件资源的端口处理速率不低于100Gbps,支持上述编程语法,支持基于平台能力评估的模态处理流水线自动生成和优化;网络模态承载系统和工具集,支持主动和被动等2种感知方式,支持网络模态的动态缩容扩容,面向模态的调度时间为秒级,支持不少于5种业务场景的资源优化配置和模态动态部署;基于上述成果,构建不少于10个节点的实网多模态网络环境,支持100Gbps接口,实现多元化网络模态在异构化基础网络环境中的一体化编译和部署,支持跨区域互联互通,支持不少于5种模态的安装部署和并行运行,覆盖计算/存储/转发/安全等资源要素,模态平均部署时间小于10s。1.7 面向新一代移动互联网时延和可靠性敏感业务的模态网络架构关键技术研究与验证(共性关键技术类)研究内容:(1)探索模态移动网络体系架构与核心机理,构建减少处理时延提升网络可靠性的新型模态网络架构,突破传统移动互联网中架构时延、节点时延、可靠性、移动性、可扩展性、多样化等关键瓶颈。(2)研究低时延、低运行损耗、高可靠的自主可控网络虚拟化操作系统,支持裸金属、虚机及容器多种硬件平台的运行能力,在开放的模态运行环境中克服引入网络虚拟化后时延、资源开销增加等挑战。(3)研究面向泛在接入多模态网络的普适协同机制和分布式自治移动性管理机制,支持MEC应用的移动性管理,确保面向全场景无处不在的服务可用性,提升网络可靠性。(4)研究新型模态网络架构下,面向时延和可靠性敏感业务需求的业务链SLA保障机理,基于排队博弈、多目标优化等理论,协同优化业务链时延加权与资源效率,研究带宽保障分配方法和编排调度机制,研究适配业务需求的流量整形技术,研究基于网络拥塞感知的流量控制技术。(5)开展面向时延和可靠性敏感业务需求的模态移动网络关键技术原型验证。考核指标:形成超低时延、超高可靠、普适业务移动性的新型模态移动互联网络架构方案,显著简化网络架构层级、结合SRv6简化移动性管理、简化MEC业务连续性机理,显著降低链路和节点时延,降低部署成本,提升网络可靠性;完成低时延、高可靠、低运行损耗的虚拟化操作系统,支持双内核实时技术,对比普通虚拟化实时性能提升10倍(虚拟化层时延1.8 多模态网络新型端到端传送协议与拥塞控制创新研究(青年科学家项目,拟支持4项)研究内容:面向视频会议、虚拟现实和工业互联网等多模态网络应用对高质量低时延的传送需求,针对网络异构时变不可控和应用需求多维高差异的特点,开展新型低时延传送协议研究,包括端到端新型时敏传送协议与流控、端网协同新型低时延拥塞控制、异构网络资源协同智能传送。下述研究内容可选择1项或多项进行研究:(1)基于面向连接TCP的新型低时延传送协议;(2)基于无连接UDP的新型低时延传送协议;(3)新型网络多路径智能联合传送协议。考核指标:分项对应上述研究内容:(1)研究基于TCP/UDP的新型低时延传送协议,设计端到端新型时敏传送协议与流控机制,能够高效对抗随机丢包、支持跨层协作与分级传送、满足延迟限制、适配端系统能力;(2)设计端网协同新型低时延拥塞控制方案,对网络拥塞的感知速度提升至少0.5个RTT,具有快速适配网络状态、缓解拥塞的能力;(3)研究新型网络多路径智能联合传送协议,设计多径联合传送方案,支持带宽聚合、时敏选路、切换调度。对上述各项研究任务:开发新型端到端传送协议与拥塞控制系统;针对实时视频等典型应用,完成大规模试验网络上的应用验证,开展百万级用户测试,与GoogleBBR、GoogleWebRTC、IETFQUIC等传送协议相比,弱网场景下卡顿率降低不少于20%、尾时延降低不少于50%、清晰度提升不少于10%。申请技术发明专利不少于10项,提交标准草案不少于5项。
  • 华兴源创5G射频测试系统获得韦尔半导体批量订单
    2021年8月30日,在嘉盛半导体(苏州)有限公司举行了华兴源创5G射频测试系统交付仪式以及上海韦尔半导体股份有限公司、嘉盛半导体(苏州)有限公司、苏州华兴源创科技股份有限公司三方战略合作签约仪式。经过长达3年的潜心研究,由华兴源创自主研发的4台射频测试系统TS-1800,在韦尔半导体和嘉盛半导体大力支持下,顺利进入嘉盛半导体(苏州)有限公司的量产线用于韦尔半导体射频开关的测试。在中国大陆射频芯片封测产业,不得不提到嘉盛半导体苏州公司,全球超过一半的射频开关产品从这里完成封测。本次华兴源创交付的TS-1800射频测试系统,最核心的射频信号矢量信号收发仪板卡(VST)及射频矢量信号网络分析仪板卡(VNA)均为从底层架构完全自主研发,因此可以说是国内首台完全自主创新的5G射频测试系统。TS-1800设计的最高收发频率可达Sub6GHz,可满足所有5G射频开关(Switch)、低噪放大器(LNA)、功率放大器(PA)、滤波器(Filter)、射频调谐(Tuner)等射频前端芯片的测试,打破了国内在5G射频专用测试领域完全依赖进口设备和进口射频矢量板卡的局面。TS-1800射频测试系统的技术亮点主要有1.在硬件设计方面,TS800利用“高功率多频段复用技术”, HP Multi-band TM. 使客户在更换产品时,无需Loadboard硬件更换,只需控制切换即可实现不同的频段的高功率测试。这项技术区别于其他射频设备,实现轻松切换,进一步提高产能。2.在数据处理方面,TS1800 采用Auto-Detect 智能算法。这个强大的智能算法的成功应用,进一步提高测试精度,确保测量的稳定性和一致性。3.TS1800的优于分时系统利用双TX通道和双RX通道集成于一卡的优势实现低功率和高功率实时并行测试的技术,在测试时间上拥有竞争优势。4.高度集成的完全自主研发板卡在测试成本方面拥有天然的竞争优势。上海韦尔半导体股份有限公司董事副总经理纪刚代表公司出席了仪式。他表示韦尔半导体作为一家中国设计公司在保证芯片品质的基础上一直积极推进测试设备的国产化,目前公司的分立器件和模拟芯片的测试已经比较多的采用国产测试设备了,但其他产品的量产测试设备还是依靠海外测试供应商。2年多前豪威集团和华兴源创首先启动了合作,目前在其代工厂已采用华兴源创测试机加分选机的解决方案。经过2年多的不断改善,华兴源创的测试解决方案在效率、稳定性等多项关键指标上已经达到国际同类水平。今天交付的4台5G射频专用测试设备主要用于公司射频开关、LNA等前端芯片的测试,由于射频测试设备的技术门槛很高,截止目前我们基本上全部采用海外品牌测试机,此次首次采购数量不多,但意义重大。首先是韦尔半导体和华兴源创的战略合作又往前发展了一步,从一个品类变成了两个品类,其次今后韦尔半导体的射频前端芯片非常有机会能逐步通过采用高性价比的国产测试解决方案来提高产品竞争力。苏州华兴源创科技股份有限公司董事长陈文源出席了仪式,他表示:首先要感谢韦尔半导体和嘉盛半导体对华兴源创的信任和大力支持,因为公司作为半导体测试设备的新厂商,成败的关键因素之一就是一定要有几家下游铁杆客户不离不弃的陪跑。在韦尔半导体项目推进过程中接收端在高频5GHz范围左右扑捉小信号峰值的时候出现过数值不稳定现象,这是一个集硬件,算法,和信号完整性交织在一起的复杂问题。在韦尔半导体的信任和支持下我们工程师们历经约1个月的奋战,应用了严谨的鱼骨法问题解决方式,做了数十次DOE,终于找到原因,并用精巧的算法实现了稳定地抓取每一次数据的解决方案,这为今天的顺利交付奠定了扎实的基础。其次今天交付的设备,对于华兴源创只是万里长征开始的第一步,我们将持续投入研发,通过与海外同类畅销机型的对比以及从满足客户的各种需求出发,不断升级完善产品,希望在不久的将来,华兴源创的5G射频测试解决方案能成为国内射频芯片厂商乃至全球射频芯片厂商心目中的最佳测试解决方案。出席此次仪式的还有上海韦尔半导体股份有限公司运营总监蒋海林、生产运营高级总监褚彩萍、封装总监俞江彬、嘉盛半导体(苏州)有限公司总经理李操权、运营总监石岩、销售总监朱勤、测试总监向国平、苏州华兴源创科技股份有限公司运营中心长姚夏、董事会秘书朱辰、半导体事业部总监黄龙。华兴源创是行业领先的工业自动化测试设备与整线系统解决方案提供商,基于公司在电子、光学、声学、射频、机器视觉、机械自动化等多学科交叉融合的核心技术为客户提供从整机、系统、模块、SIP、芯片各个工艺节点的自动化测试设备。目前华兴源创产品已经服务于平板显示、半导体、可穿戴、新能源车等多个领域。
  • 江西面向全国发布2022重大科技研发专项和重点研发计划“揭榜挂帅”榜单
    近日,江西省科技厅发布2022年度重大科技研发专项和重点研发计划“揭榜挂帅”榜单。重大科技研发专项分为关键技术类、企业需求类。重大科技研发专项关键技术类项目榜单围绕江西省优势产业及其十四条重点产业链中的关键核心技术问题,组织实施航空制造、稀土新材料、新能源、半导体导电材料、工业智能化装备、现代种业、碳达峰碳中和、创新药物等重大科技创新项目,支持强度为500-1000万元/项;重大科技研发专项企业需求类项目榜单,研发经费由需求方提供,省财政资金提供相应研发费用补助。重点研发计划项目榜单围绕航空、先进制造与装备、种业自主创新、生物医药等领域,根据战略需求、规划需求、市场需求等三类需求,经公开征集和咨询论证后凝练形成,每个榜单(指南)项目资助强度为100万元/项。据江西省科技厅网站信息(赣科发计字〔2022〕123号),江西省2022年度重大科技研发专项和重点研发计划“揭榜挂帅”榜单,对项目申报人无年龄、学历和职称等门槛要求,对项目申报单位无注册时间、地域要求。榜单选题清单如下:江西省2022年度重大科技研发专项关键技术类榜单选题序号领域榜单选题1航空制造大型低成本固定翼氢能动力物流无人机关键技术研究2工业智能化装备海洋油气开采平台高压高可靠大容量光电滑环系统关键技术研究3稀土新材料高品质白光LED用紫外/近紫外激发稀土发光材料关键技术研究4新能源6英寸34%效率空间太阳电池关键技术研究5氢基闪速炼铁关键技术研究6半导体导电材料高效率GaN基红光MicroLED材料生长及器件制备技术研究7现代种业艾种质资源创新与利用研究8碳达峰碳中和高性能半导体银基导电材料的关键技术研究9超临界水蒸煤制氢耦合绿色短流程冶金技术及装备10创新药物古代经典名方关键技术研究与开发江西省2022年度重大科技研发专项企业需求类项目榜单序号行业领域或产业链重大技术需求(难题)题目技术需求单位需求企业承诺投入研发资金(万元)承诺支付揭榜单位研发资金(万元)1电子信息晶圆级光学组件纳米压印的设计与加工江西省欧迈斯微电子有限公司50005002电子信息汽车智能网联与控制印制电路关键技术研究赣州市深联电路有限公司30003003电子信息高弹性接入型光传送网(OTN)设备研究江西山水光电科技股份有限公司246012004装备制造采用可降解合成脂油的大容量水电解制氢整流变压器技术研究江西变压器科技股份有限公司12901105装备制造基于深度学习的果蔬多频段全景视觉识别分选技术研究江西绿萌科技控股有限公司200010006装备制造小口径、厚壁高强度精密焊管成型机组研究江西福事特液压股份有限公司150010007新材料线路瓷绝缘子用高可靠性瓷件制备关键技术研究中材江西电瓷电气有限公司250025008新材料阳极泥中有价金属的绿色高效回收关键技术研究贵溪市鑫浩泰环保科技有限公司6003009新材料高精高效微晶磷铜球全自动产线关键技术研究江西保太有色金属集团有限公司120050010新材料基于再生铝的新能源汽车高强韧免热处理铸造铝合金及制备关键技术研究江西万泰铝业有限公司220020011新材料新型无锂耐热陶瓷材料技术研究江西帮企陶瓷股份有限公司240060012新能源“双碳”背景下源网荷储一体化系统综合配置策略关键技术研究及系统研究中国电建集团江西省电力设计院有限公司50010013新能源多源智能微电网供电系统开发及其关键技术研究江西清华泰豪三波电机有限公司70030014航空直升机轻量化用纳米均匀弥散增强铝基复合材料关键技术研究北京通用航空江西直升机有限公司52010015绿色食品蔓三七降尿酸药食健康新产品研发与产业化江西蔓三七健康科技有限公司50020016绿色食品植物甾(烷)醇酯高效制备及其应用关键技术宜春大海龟生命科学有限公司100010017绿色食品带骨白羽鸡肉熟化前淤血防控技术攻关与产品研制江西圣农食品有限公司120016018绿色食品罗城扎粉生产工艺的标准化及绿色安全装备改进江西锦江酒业有限责任公司50020019生物医药3类新药厄贝沙坦氨氯地平片的Ⅲ期临床试验研究江西施美药业股份有限公司1100110020生物医药接触式激光光纤及刀头能量转换技术的研究与应用江西麦帝施科技有限公司260020021中医药鲜竹沥传统炮炙工艺关键装备与质量控制技术研发江西仁安药业有限公司150060022中医药樟树中药炮制技艺标准的制定江西樟树天齐堂中药饮片有限公司160030023节能环保芳烃吸附剂自动化关键技术研究江西八六三实业有限公司2000200024房地产建筑波形钢骨组合剪力墙住宅智能建造成套技术中阳建设集团有限公司300050025节能环保天然纤维面料改性及前处理用多效复合酶的研究江西恩达麻世纪科技股份有限公司500100江西省2022年度重点研发计划项目榜单序号领域榜单选题1航空飞行器总体研发技术研究2飞行器检测维修与信息处理技术研究3航空发动机设计与制造技术研究4飞行器结构强度设计与制造技术研究(2项)5航空复合材料设计与制造技术研究(2项)6先进制造与装备机器人与智能装备研究7特种装备研究8先进交通装备研究9智能制造/智能生产线研究10工程机械装备研究11新型成型工艺研究12智能电网成套装备/输变电设备研究(2项)13新材料高性能钢铁材料研究14特种及先进陶瓷材料研究15稀土应用材料研究(2项)16有色金属材料研究(2项)17非金属功能材料和高分子材料研究(2项)18新能源光伏和LED光源关键技术研究19储能电池关键技术研究20动力锂电池关键技术研究21汽车汽车动力系统关键技术研究22汽车整车及关键零部件关键技术研究23智能网联汽车关键技术研究24新一代信息技术行业公共服务云平台架构研究255G/6G关键通信器件与设备研究26新型显示与交互技术研究27工业互联网系统平台集成研究28电子器件/芯片制造及传感器研究29智能物联网终端产品及系统研究(2项)30新一代人工智能新一代人工智能31现代服务业陶瓷生产工艺和技术研究与应用32基于信息技术的现代物流技术研究与应用33文旅融合研究与应用34种业自主创新早稻高效分子育种技术创新与优质高产广适新品种选育35油菜分子育种技术创新与高油优质高产高效新品种选育36茄果类蔬菜优异种质资源精准鉴定与特色优质新品种选育37柑桔分子育种新技术与优质极端熟期新品种创制38杉木良种选育研究与应用39泰和乌鸡食用和药用品种鉴别选育体系的建立及系列功能因子产品的研制40白羽肉鸡分子育种技术创新与优质高效新品系培育41重要农产品有效供给江西特色柑橘设施栽培关键技术研究与示范42优质富硒赣南脐橙关键技术研究与示范43优质甜柚标准化种植技术研究与示范44大水面净水渔业技术研发与应用45林业提质增效高纯度茶皂素提取关键技术研究与产品开发46油茶授粉结实关键调控技术研究与示范47林下中药材生态高效种植关键技术研究与示范48果材兼用型木本油料树种高效栽培关键技术研究和模式创制49农业绿色发展关键技术及投入品新型微生物肥料创制及与产业化示范50绿色富硒投入品研发及应用示范51冬春季设施果菜生产水肥温光综合调控关键技术研究与集成示范52畜禽饲料减粮替抗关键技术研发与产业化应用53农村“厕所革命”新技术产品研发与应用54耕地酸化防控和培肥协同关键技术研究与示范55食品制造与农产品物流赣味预制菜系列产品研发关键技术创新及产业化56低廉油脂资源高值化利用关键技术与示范57食药同源农产品中稳血糖功能因子的加工稳态化关键技术及新产品研发58江西名优特色蔬菜产地初加工及绿色防腐减损关键技术研发59农业信息化和智能农机装备杂交水稻机械化制种关键技术与智能装备创制应用60生物医药中药抗炎有效成分发掘与合成通路的研究与利用61智能中医艾灸治疗仪研发及示范应用62中药材大品种粉葛多糖新功能因子的制备、评价与产业化研究63中药饮片炮制规范及道地药材饮片品质提升研究64
  • 我国自主研制成功电子变压器测试仪,有望打破国外垄断
    记者21日从常州大学获悉,该校科研团队成功研制出由软件算法、硬件驱动、智能治具构成的电子变压器测试仪,实现测试频率2MHz到5MHz的技术突破,填补了国内高频段电子变压器测试领域空白。常州大学华罗庚学院机器人产业学院莫琦副教授介绍,这是国内唯一可测试20赫兹到5兆赫兹宽频条件下电子变压器参数的测试仪,可在千兆网卡、变压设备、微型电机等应用场景进行使用。目前,已申请发明专利3项,样机通过中国机械工业联合会科技成果鉴定,总体技术达到国际先进水平。“我国电子行业发展迅猛,预计到2023年,仅电子元器件市场规模将达2.1万亿元。而电子变压器作为电子行业基本的元器件之一,其性能参数直接影响电子产品的性能、安全性等指标,电子变压器测试成为电子产业链中不可或缺的环节,广泛的应用于消费电子、国防军工、医疗器械等领域中。但多年来,高精度测试仪市场被国外垄断。因此,2年前,我们团队在导师指导下,就开始自主研发高频、高效化的电子变压器参数测试仪。”常州大学华罗庚学院薛子盛说。薛子盛告诉记者,2年来,由多学科师生组成的科研团队,针对20Hz~5MHz测试信号源、宽频条件下自动平衡电桥、矩阵式治具智能扫描、自动平衡电桥频率拓展等关键核心技术进行攻关。如,20Hz~5MHz测试信号源技术,系统采用基于模拟乘法器可控增益放大电路,将信号源的电平调节分段实现,并采用放大-衰减的方法降低噪声,为电桥的平衡奠定了基础;宽频条件下自动平衡电桥技术,采用新型矢量合成技术产生高精度误差信号源,保证电桥的稳定平衡。记者了解到,该测试仪能够在20Hz-5MHz宽频带范围内,实现宽频条件下电子变压器性能参数的高精度自动测试,样机在四川长虹器件科技有限公司、常州瑞博电气有限公司试用报告显示:最快可达到13ms的测量速度,且能保证测试的稳定性,同—产品的重复测试值一致性好,大大提高了批量测试效率,而且在高速测试的同时,能够保证测试的稳定性,有效提高了生产效率。“目前,我们正在加快该技术成果的产业化,今后形成量产后,将有望打破国外垄断,有效解决我国相关产业实际测试情景人工误差大、测试耗时长等问题。”莫琦说。
  • 上海比朗最新研发 多频恒温超声波提取机功能升级
    上海比朗最新研发了新一代多频恒温超声波提取机,功能全新升级,可快速提取测定。  BILON品牌多频恒温超声波提取机是针对实验室小批量制备研究设计生产,具有体积小、重量轻、提取温度可控、使用方便等优点。针对超声用于小批量提取时存在的热效应影响过于明显,提取温度升温过高现象,BILON系列多频恒温超声波提取机成功解决了这一问题,实现了超声提取过程恒温化,从而杜绝了因提取温度升高对热敏性提取物活性的破坏,保证了提取品质。  本系列多频恒温超声波提取机可同时适用于挥发性或非挥发性提取介质,适用范围广,使用安全方便,性价比高,是实验室小批量制备及天然产物含量测定提取设备的极佳替代产品。  主要特征:1.BILON专用微电脑控制器,可储存50组工作数据。2.可选用聚能式超声也可选用分散式超声。3.一体化设计,全密封噪音小,使用方便。4.三频或多频段可选,便于对比提取效果。5.设有升降装置,方便调节提取杯的高度。6.专用锥形夹套不锈钢提取杯,可通入循环水对样品温度进行控制。技术参数:1.超声频率:20KHz,40KHz,59KHz(可选四频)2.单次处理量:100~1000ml3.超声波功率:900W4.温度控制范围:5~99℃5.超温报警装置:有6.温控方式:压缩机制冷,电加热7.提取杯:锥形夹套不锈钢提取杯8.内部照明:有9.紫外消毒:有10.适用介质:挥发性或非挥发性11.电源要求:220V 50HZ  标准配置  多频恒温超声波提取机BILON-S650CT 1台,锥形夹套不锈钢提取杯1个,升降装置1个,温度控制器1台。  详情以官网为主:http://www.bilon.cc/category-727-b0.html  上海比朗仪器制造有限公司是专业从事低温恒温、冷冻干燥、光催化、超声波等实验设备的研发、生产、销售于一体的公司。公司拥有专业的温控技术人员和先进的生产设备 完善的生产工艺 建立了一套完整的质量管理体系 保证产品质量。
  • 解读精准医学第一阶段重点研究方向
    随着精准医疗战略规划,纳入十三五重大科技专项,其将改变中国现有的诊断、治疗模式,为医学发展带来一场变革。据悉,近日,国家科技局颁布将精准医学研究列为2016年优先启动的重点专项之一,并正式进入实施阶段。  精准医疗所使用的工具包括大数据获得技术、大数据平台搭建与分析、分子诊断、分子影像,以及围绕数据分析所采用的个性、准时、准确的治疗方案。本次专项围绕这些总计提出4大任务,预计中央财政拨款10亿元。  精准医学重点研究专项五大目的  总结起来本次精准医学重点专项简单的来说有五大目的:  1. 构建百万人以上的自然人群国家大型健康队列和重大疾病专病队列   2. 建立生物医学大数据共享平台   3. 建立生物医学大数据分析技术   4. 建立疾病预警、诊断、治疗与疗效评价   5. 建立临床应用导向的:重大疾病的风险评估、预测预警、早期筛查、分型分类、个体化治疗、疗效和安全性预测及监控等精准防诊治方案和临床决策系统。  精准医学重点研究专项经费配套  指南中指出“中国大陆境内注册1年以上的科研院所、高等学校和企业”为主要申请单位。除此之外科研单位联合企业共同申请很有可能作为主要形式   具体经费指南中并未提及,但配套比例为1:1到1:1.5   根据国家往年的重大专项金额,本次中央财政预估投入10亿元。据报导,精准医疗将列入十三五发展规划,到2030年中央预计投入金额600亿元,其中中央财政拨款200亿,地方财政拨款400亿元。  精准医学重点研究专项四大任务  指南颁布了今年现阶段的主要任务,一共包含4大任务,涉及12个项目,30个子项目。  任务一:新一代临床用生命组学技术的研发  该任务的核心是搭建信息获取的综合技术平台,包括:  1. 面向未来精准医学应用的其他组学技术研发  1.1. 临床用单细胞组学技术研发研究内容  1.2. 临床用表观基因组技术研发与应用  此任务重点是要提升单细胞捕获富集技术,并借此建立基因组/蛋白质组测序技术,以及单个细胞高通量测序技术。难点和热点很有可能在蛋白质组学,因为目前相对于基因组学快速发展,蛋白组学分析鉴定技术相对落后。精准医疗对信息的综合获取能力提出了很高的要求,蛋白组学分析鉴定技术将成为明显的短板。  任务二:大规模人群队列研究  该任务是为了获得数据,将从三个大方向出发:  1. 建立百万量级的健康人群队列,主要涉及:京津冀人群,以及华中人群。  2. 围绕重大疾病专病进行队列研究,主要包括:心血管疾病、脑血管疾病、呼吸系统疾病、代谢性疾病、乳腺癌专病、食管癌专病。  3. 围绕罕见病进行队列研究,预计将建成50中疾病以上,5万人样本量的综合信息数据库。  任务三:精准医学大数据的资源整合、存储、利用与共享平台建设  精准医疗大数据平台,是一个以基因组学为基础,以应用为根本目的的生物医学数据分享平台。  建立此平台是数据能广泛流通,并能走向应用的关键举措。目前,国内外很多企业已经有了阶段性成果。据专家的一些公开言论,此项任务将很有可能和目前较强实力的IT企业合作。  任务四:疾病防诊治方案的精准化研究  在前三个任务基础上,该任务的主要工作将形成风险评估、预测预警、早期筛查、分型分类、个体化治疗、疗效和安全性预测及监控的临床监控、诊断和决策系统。此任务投入占据本次重点专项投入的一半。  主要涉及6各项目:  1. 基于组学特征谱的疾病分子分型研究  2. 基于医学分子影像技术的疾病精准诊疗方案研究  3. 药物个性化应用评价与临床应用研究  4. 罕见病精准诊疗技术研究  5. 疾病诊疗规范及应用方案的精准化研究  6. 个体化治疗靶标发现与新技术研发  以及15个子项目
  • 瞄准芯片、新能源、5G等领域,思仪科技携新品亮相中国国际信息通信展览会
    6月4日,由工业和信息化部主办的2023年中国国际信息通信展览会(PT EXPO CHINA 2023,简称PT展)在北京国家会议中心隆重召开。本次大会以“打通信息大动脉 共创数智新时代”为主题,展示中国信息通信技术在各行业的深度赋能和创新成果,推动行业数字化转型升级及数字经济发展。中国国际信息通信展览会(PT展)据了解,中国国际信息通信展览会(PT展)由工业和信息化部主办,是泛ICT行业最具行业影响力的盛会之一。自1990年起,PT展始终致力于打造极具创新活力的ICT平台,为ICT产业链提供政策解读、技术研发、市场应用和金融投资等全方位的服务和沟通合作机会,因其前沿、领先、前瞻和高效连接,贯通和满足ICT产业链各方利益和需求,PT展也被誉为中国乃至全球“ICT市场的创新基地和风向标”。中国电科展位思仪科技(仪器仪表板块)本次展会,中国电科重点展示了芯片仪表、5G、物联智联、专网通信、数字政府及数字身份认证六大板块领先技术及产品。作为中国电科集团下属股份制二级企业,国内电子测试测量仪器企业思仪科技主要在仪器仪表板块展示相关产品。1466信号发生器(下)和4082信号/频谱分析仪(上)3674矢量网络分析仪本次展会,思仪科技带来了“天衡星”系列高端测试测量仪器,包括1466信号发生器、4082信号/频谱分析仪和3674矢量网络分析仪。该系列尖端性能全面推向 110GHz,在信号纯度、调制带宽、分析带宽、扫描速度等核心指标以及稳定性、可靠性、环境适应性等方面显著提升,一专多能,进一步丰富信号模拟、信号分析和参数分析功能,通过仪器互联互通,面向移动通信、雷达、导航等各类测试场景提供灵活便捷的测试方案。4052系列信号/频谱分析仪思仪“天玑星”4052系列信号/频谱分析仪在2Hz~50GHz频段内可提供1.2GHz分析带宽、400MHz最大实时带宽的优异全面的信号分析能力,为移动通信、汽车电子、工业电子、教学研究以及航空航天与国防等领域用户提供更具竞争力的测试解决方案。4052不仅具有卓越的射频性能,在功能方面也更全面、更丰富,能够提供相位噪声测试、模拟解调测试、实时频谱分析、矢量信号分析、噪声系数测试、音频分析、瞬态分析、绝对功率测量等丰富的测试功能,同时支持5G NR、LTE、NB-IoT等信号自动测量,为无线通信领域发展助力;支持脉冲压缩、调频连续波自动测量,为雷达探测领域发展保驾;支持群延迟、载噪比、噪声功率比等自动测量,为卫星通信领域发展护航。“天玑星”系列与高端系列“天衡星”形成良好的互补,为客户提供差异化选择。5292A物联网信号分析仪5292A物联网信号分析仪是一款通用的矢量信号分析仪,频率范围覆盖 10MHz~6GHz,具有良好的频率、功率测量精度和稳定度;支持模拟与数字调制信号、全制式的通信标准信号以及 NB-IoT、WiFi 和蓝牙信号分析功能,携带的数据采集功能支持用户将IQ 数据实时保存起来,用做后期数据分析。与市场现有产品相比,具有极高的性价比,该产品在终端芯片、终端、基站设备和系统的研制、生产、和维护等方面具有广泛用途,也可以用来组建高校的通信教学实验室。5256C 5G终端综合测试仪5256C 5G 终端综合测试仪拥有 8 个测试收发端口 (8T/8R)、大带宽采集处理能力以及丰富的测试运算资源,可覆盖 3GPPTS38.521-1 协议标准及 2G、3G、4G 及 WiFi、Bluetooth (BT)、NB-loT、C-V2X、GPS 终端 / 模组射频一致性测试。5252DE通信测试仪5252DE 通信测试仪具备宽频覆盖、大解析带宽、扫描速度快、接收灵敏度低等优点。接口丰富、具备干扰分析、无线信号测向定位场强测试、通信信号解析等多种测量功能。体积小、重量轻、供电灵活支持云操控、适合外场基站测试与部署。太赫兹测试系统毫米波太赫兹矢量网络分析系统可覆盖 170GHz ~ 260GHz 频段最高频段可扩展至 500GHz 功率范围 -40dBm ~ OdBm,功率精度+0.5dB 具备管芯、LNA、PA 等器件小信号参数、增益压缩测试功能可根据用户的不同需求提供相应的解决方案。宽带固态功率放大器思仪科技的微波毫米波固态功率放大器分频段覆盖 4kHZ-110GHZ,最大输出功率高至 200kW,具有输出功率大、工作频段宽等优点,主要应用于电磁兼容测试、微放电测试、大功率元器件性能测试、抗干扰测试等领域。在电子测量仪器领域,思仪科技长期致力于电子测试前沿技术的探索和研究,实现了高端重大科学仪器和通用电子测量仪器系列重大技术突破,形成了器部件、电子测量仪器、自动测试系统完整的产品体系。面向通信领域,形成了无线通信、数据通信、光纤工程等领域系列齐全的仪器与测试解决方案,已广泛应用于卫星、通信、导航、科研、教育等领域,为国家光纤干线、5G通信、北斗导航等重大工程提供测试保障。除了电子测试测量仪器外,中国电科旗下还有着眼未来通信发展,把握5G“新基建”机遇,打造以三代半导体为核心,涵盖一、二三代半导体,涉及射频集成电路设计、制造、封测全产业链关健能力的IDM专业公司,并满足射频元器件自主保障需求,发挥产业带动效应。现场还展示了GaN晶圆、SiC MOSFET晶圆、AR/VR微显示器件等产品,以及在5G基站、新能源等领域的应用。
  • 子午工程二期圆环阵太阳射电成像望远镜设备完成系统集成
    11月13日上午,在位于四川省甘孜州稻城县的空间环境地基综合监测网(子午工程二期)圆环阵太阳射电成像望远镜项目建设现场,随着最后一个天线面缓缓吊起并安装到位,子午工程二期标志性设备之一圆环阵太阳射电成像望远镜项目设备完成系统集成,正式进入联调联试阶段。项目预计在2023年6月完成系统联调联试,进入试运行阶段,全面投入科学研究。   圆环阵太阳射电成像望远镜是由313台直径6米的天线构成的综合孔径射电望远镜,天线均匀分布在直径1公里的圆环上,由圆环中心100米高的定标塔为整个观测链路提供定标基准,状如一颗巨大的“千眼天珠”。望远镜工作在150MHz-450MHz的射电频段,可以对太阳爆发活动进行成像成谱观测。   国家重大科技基础设施子午工程二期于2019年开工建设,同年四川省政府为圆环阵太阳射电成像望远镜配套的地方项目获批,并开始建设。在项目建设工期紧,进度要求高的情况下,建设者们在高原环境下拼搏奉献,克服各种困难,使得台站基础配套用房在2020年12月按时竣工,为后续项目实施提供了良好的基础条件保障。   由于系统建设规模大、研制难度高,为了充分释放技术风险,项目组创新性地采用了2单元系统研制、16单元验证研制、313单元大系统建设的“三步走”建设方案。2021年8月两单元验证系统建设完成,2021年12月16单元验证系统建设完成。在2单元以及16单元验证系统研制过程中,项目承研方中国科学院国家空间科学中心太阳活动与空间天气国家重点实验室协调各外协单位通过在西安、眉县、合肥、稻城等地开展多轮次的样机研制以及联调联试,排查和解决了数百项技术难题,并突破了基于中心定标以及单通道多环绝对相位定标相结合的针对大规模地基干涉阵列的系统级高精度实时一致性定标技术,技术指标优于国际同类设备。16单元验证系统在天线单元数量仅有国际同频段观测设备1/3的情况下,由于采用了系统级高精度实时一致性定标技术,实测针对太阳活动区的观测结果已优于国际同频段太阳观测设备,并获得了高质量针对天鹅座A以及太阳爆发活动的观测结果,系统的整体功能和性能指标得到了验证,大系统建设的技术风险得到了充分释放。   基于“三步走”的建设方案设想,项目组在系统建设初期进行了充分的技术验证和关键技术突破,充分释放了技术风险,为最终313单元大系统建设奠定了基础,也为大系统能够提前保质保量完成系统集成提供了坚实技术保障。   全面建成后的圆环阵太阳射电成像望远镜,能够实时监测地球空间天气事件的源头——太阳,监测太阳射电耀斑,跟踪日冕物质抛射(CME)的形成、演化和进入行星际的全过程,对子午工程二期探索高时空分辨的日地空间环境动态特征和变化规律起到重要作用,并将在脉冲星搜索等夜天文研究领域和空间科学科普方面发挥重要作用,并有望为川西地区高质量发展贡献力量。
  • 中科院超快诊断技术重点实验室揭牌成立
    9月22日,中国科学院超快诊断技术重点实验室成立揭牌仪式暨实验室第一届学术委员会第一次会议在西安光机所举行。中科院高技术局副局长董永初、西安光机所所长赵卫、所党委书记武文斌、副所长高立民以及中国科学院院士侯洵、许祖彦等有关方面领导及我国在超快诊断技术领域部分知名专家出席了会议。西安光机所机关有关部门领导及实验室部分科研人员参加了揭牌仪式。 中国科学院高技术局董永初副局长、西安光机所赵卫所长共同为院重点实验室成立揭牌 中国科学院高技术局董永初副局长为院重点实验室学术委员会主任侯洵院士颁发聘书 中国科学院高技术局董永初副局长为重点实验室主任孙传东研究员颁发聘书   在实验室成立仪式上,中国科学院高技术局项目管理中心戴书荣副主任首先介绍了中科院超快诊断技术重点实验室的研究方向和组建过程等有关情况,她希望该实验室在保持超快诊断技术学科特色的基础上,进一步提升创新能力建设,积极推进我国超快诊断技术研究的进展,力争把实验室建设成为一个不断出人才、出成果的有特色的实验室。随后,中科院高技术局综合技术处于英杰处长宣读了关于聘任孙传东研究员为院超快诊断重点实验室主任、侯洵院士为实验室学术委员会主任的任命文件,西安光机所党委书记武文斌宣读了实验室第一届学术委员会组成人员名单。在全场人员的热烈掌声中,中科院高技术局董永初副局长和西安光机所赵卫所长共同为院超快诊断技术重点实验室成立揭牌。 院重点实验室学术委员会主任侯洵院士主持学术委员会第一次会议 中国科学院高技术局董永初副局长在会上讲话 西安光机所赵卫所长在会上讲话   随后,在侯洵院士的主持下举行了中科院超快诊断技术重点实验室第一届第一次学术委员会会议。与会的专家和领导听取和审议了《中国科学院超快诊断技术重点实验室2009年度工作报告》、《中国科学院超快诊断技术重点实验室学委会章程》,同时就实验室开放基金指南与自主部署项目等有关方面的问题进行了认真的讨论。西安光机所所长赵卫在会议发言中对各位领导和专家长期以来对西安光机所超快诊断技术研究工作所给予的关心和支持表示衷心的感谢,并表示超快诊断技术作为中科院和西光所的一个特色学科,所内将会继续加大力度积极推进实验室的建设与发展。中科院高技术局副局长董永初在讲话中强调要把人才队伍建设、吸引和培养高素质学科带头人作为实验室重要的建设目标和内容,同时在学科建设中要注重发挥特色、突出重点,力争使实验室在该学科领域实现国内领先、国际知名的创新发展目标。   与会的专家和领导在经过认真的研究和充分的讨论后一致认为:中国科学院超快诊断技术重点实验室建设目标明确,发展规划可行,学科及研究方向设置符合实验室定位,各项研究工作进展正常、发展态势良好 自主课题和开放基金部署符合学科发展,注重与国家任务衔接 科研队伍结构合理,重视青年科技骨干培养和技术支撑人员配置 科研条件及设施优良,具有国内先进的超快光电器件研制、系统集成与测试的实验平台 组织结构设置合理,运行管理规范,并且针对实验室今后的学科发展、高水平人才队伍建设、科技合作交流等方面的问题还提出了一些建设性的意见和建议。(瞬态室提供) 中国科学院超快诊断技术重点实验室第一届学术委员会
  • 聚焦42个重点领域!四川将在这些领域达到国际先进水平
    近日,四川省经济和信息化厅官方网站正式公布了《四川省制造业创新中心建设重点领域(2024版)》,围绕人工智能、航空航天、先进装备、生物制造、清洁能源、先进材料等方向,聚焦42个重点领域培育建设省级制造业创新中心。其中提到,要在智能网联汽车、氢能及燃料电池、精制川茶、特色发酵调味品等多个领域达到国内领先水平;要在太赫兹技术、通导融合卫星网络与产业应用、工业软件、稀土功能材料等多个领域达到国际先进水平。序号领域名称技术难点1人形机器人重点攻克高爆发驱动关节、高推力作动器、高功率伺服驱动器、智能灵巧手等核心部件,突破运动控制、智能感知、人机交互、精准操作等一系列智能核心算法,形成人形机器人整机产品,并建立核心部件与整机性能测试评估手段,开展人形机器人基础通用、运动控制、性能测试和仿真测试标准化工作,形成相关国家/行业标准,推动人形机器人产业高质量发展,达到国际先进国内领先水平。2中低速磁浮交通针对常导中低速磁浮交通系统在城市轻轨、市域(郊)轨道交通、磁浮旅游交通领域的独特优势,开展车辆、轨道梁、道岔及控制领域的技术攻关,突破磁浮交通一体化系统集成、车辆低成本轻量化、悬浮高品质走行减振、磁浮梁新材料配方、磁浮轨道高精度制造、高效安全磁浮道岔设计生产、全自动高集成度智能运行控制系统研制等核心技术,打造全数字化、高智能化、低成本化的先进磁浮交通系统,提升磁浮交通全系统的创新技术能力,达到国际先进国内领先水平。3中小推力航空发动机响应中央和省委省政府对“低空经济”“新质生产力”“未来产业”等相关指示批示精神,重点围绕中小型航空发动机,开展双层壁超冷单晶涡轮叶片、高空性能匹配技术、高度弯扭高效率风扇技术、小尺寸高负荷高压涡轮技术等关键核心技术攻关,突破600公斤级、1500公斤级中小型航空发动机研制、总装、试车、修理,打造我省飞发协同一体化平台,带动航空发动机产业高质量发展。4重大技术装备关键核心基础零部件围绕国防军工、航空航天、重型燃机、先进核能、高参数火电、特大型先进水电、深海深地、氢能等领域高端重大技术装备领域,开展核心材料设计、物理性能、超纯净化冶炼技术、先进成形技术、微观组织均匀性及性能调控等工艺技术研究,突破高端耐热长寿命材料、高韧抗冲刷耐蚀先进材料等设计、制造、表征以及产业化技术,提升重大技术装备关键核心基础零部件研制水平,达到国际领先水平,实现关键核心技术自主可控,保障国家重大战略任务需要。5智能网联汽车重点围绕智能网联汽车“车路云一体化”应用示范,突破人—车—环境系统综合态势感知、高精度地图与定位、自动驾驶决策方法、人机交互等技术,促进LTE-V/5G、大数据/云平台、信息安全与隐私保护等技术与智能网联汽车的融合,达到国内先进水平。6氢能及燃料电池围绕清洁高效电解水制氢、高效储氢运氢、燃料电池系统(发动机)、关键材料和核心零部件等开展共性技术研究,重点突破电堆、膜电极、双极板、质子交换膜、催化剂、碳纸、空气压缩机、氢气循环系统等关键技术瓶颈并实现产业化,达到国内领先、国际同步水平。7太赫兹技术重点围绕高精度雷达、高速通信、高功率电磁能、电子对抗、生物医学、无损检测、科学研究等领域对太赫兹技术的迫切需求,从研究、设计、试验、制造四个方面,突破高功率/超宽带太赫兹源技术、太赫兹芯片集成化技术、太赫兹波传输与调控技术、太赫兹光谱技术、太赫兹核心器件的高精密加工与集成技术以及太赫兹生物、太赫兹雷达与通信等系统中的关键技术与工艺,构建完整的从基础研究、器件、系统研制到应用示范的创新链条,形成覆盖相关太赫兹频段的优势产品,技术指标达到国内领先、国际先进水平。8微型发光二极管显示技术围绕微型发光二极管(Micro-LED)显示技术产业化所需材料、工艺路线、设备等开展研究验证,突破薄膜晶体管(TFT)基Micro-LED显示屏量产所需驱动架构设计、背板加工、巨量转移、修复、封装、模组等核心关键技术,实现规模化量产可行性验证,提升产线工艺水平达到国际先进。9先进化合物半导体工艺围绕功率半导体核心材料与器件,开展高品质外延晶片生长技术、超宽禁带半导体的异质集成单晶衬底技术及高功率器件等技术研究,推动相关材料与器件技术的产业化应用,实现自主可控,减少对国外技术的依赖,降低关键元件“卡脖子”风险,取得国内领先地位。10通导融合卫星网络与产业应用面向卫星载荷、地面设备及服务、空间信息应用、北斗导航、遥感等重点领域,构建卫星基础共性技术研发平台,重点突破整星制造、系统集成、无线接入、有效载荷、阵列天线等卫星互联网技术的研发、论证及试验,打通卫星研制、卫星发射、卫星地面设备、卫星运营及应用等关键环节,牵引和带动宽带卫星通信、卫星宽带应用、低轨移动通信等领域高速发展,达到国际先进水平。11车规级数模复合芯片面向信息通讯、工业控制、汽车电子和消费电子等领域,聚焦高性能、高可靠性、高安全性、高一致性及长效性模拟及混合集成电路技术发展,围绕汽车智能座舱、自动驾驶、车身电子、仪表及娱乐系统、照明系统、电池管理系统(BMS)及车身控制等多场景,突破大尺寸硅晶圆封装、三维堆叠集成等关键技术,开发协议、升降压、无线充、电源管理等车规级数模复合芯片,达到国际先进水平。12微流控器官芯片瞄准生命科学研究、疾病模拟、新药研发、个性化医疗等板块,以微流控芯片为核心,在芯片上构建器官生理微系统,开展重要生命器官构建的工程化技术研究,突破高仿真度、高通量、高灵敏度、高选择性和持久稳定等各类仿生模型及器官芯片关键技术,形成高标准、高自动化人体仿生器官芯片,实时监测细胞活性、细胞外环境变化和药物效应等生物学过程,达到国际领先水平。13硅基微波芯片、组件及微系统面向6G通信、雷达探测、太赫兹成像系统、安防应用等领域,构建硅基微波技术创新平台,涵盖硅基微波芯片、组件以及微系统工艺;重点突破器件建模、硅基超高频芯片设计、可重构微波器件、功能可重构射频系统、微系统工艺、微波电路人工智能(AI)设计等关键技术;形成微波芯片设计流程以及微波组件微系统设计、制造平台;开发谱系化硅基微波芯片、以微波芯片为核心的多功能组件等,达到国际先进水平。14数字机器人面向电子信息、装备制造、医药健康等重点行业,建设数字机器人论证与开发平台,重点突破行业数字化水平采集项研究、工具包轻量化部署、多智能体动态调度、异构数字机器人协同等关键技术,满足咨询评估、轻量化开发、快速部署、人工智能应用开发与调用等数字机器人研发推广关键需求,带动兼容主流模型的人工智能应用产业快速发展,达到国际一流水平。15工业软件重点聚焦高端装备制造业工业软件自主研发及工程化应用、产品化和产业化发展领域。突破重点工业领域工业软件协同攻关、软硬件支撑体系构建及工业软件协同研发等关键技术;突破研发设计类、生产制造类、经营管理类和运维服务类工业软件产品全场景、全流程、上下游协同联动的测试试验验证环境构建技术;突破重点工业领域工业软件设计及研发、测试及验证、接口集成等标准规范体系研制支撑技术,达到国际先进水平。16人工智能围绕人工智能大模型产业化应用,开展高质量数据集、可信人工智能理论、协同控制和优化决策、认知与推理、智能安全检测等共性技术研究,打造民用航空、医药健康、智慧交通等重点垂直领域大模型及标杆示范应用,建设人工智能公共服务平台,形成新一代人工智能数据、算力、算法理论与创新体系,构建全链条、全过程、自主可信的新一代人工智能产业应用生态。17元宇宙聚焦数字孪生、感知交互、智能显示、内容生成等关键核心技术,突破虚拟现实/增强现实/混合现实/扩展现实(VR/AR/MR/XR)、三维(3D)建模、实时渲染、机器视觉、语音识别、图形图像处理、智能传感、数字人、脑机接口,触觉反馈、多模态信息融合等技术瓶颈,加快图形计算芯片、高端传感器、声学元器件、光学显示器件等基础硬件研发创新,强化新一代通信网络、先进存算、人工智能、区块链、物联网、信息安全等技术支撑,推进在元宇宙在工业、文旅、教育、能源、交通、消费、城市等领域融合应用,达到国际领先水平。18密码技术及应用聚焦密码算法技术,实现优化、轻量化密码实现、同态密码/抗量子密码等先进密码算法研究与实现、后量子时代算法平滑替代等关键技术,突破高性能(40G以上)密码芯片、低功耗/微功耗(物联网等领域)密码芯片、安全模块嵌入国产处理器(密码内生的国产CPU)设计与实现技术,强化软件密码模块、高性能/高安全等级的密码板卡、通用密码虚拟专用网络(VPN)、服务器密码机、云服务器密码机等产品供给,推进在物联网、云计算、车联网、人工智能、区块链、卫星互联网、国家广域量子保密通信网等新的应用场景安全赋能,达到国际领先水平。19稀土功能材料研究新型稀土高效提取分离新方法及关键技术、稀土制备过程物料闭路循环利用技术;超高纯稀土材料制备方法及关键技术;开发超高纯稀土金属及其靶材等深加工产品的制备技术、开发高性能稀土磁性材料、稀土抛光粉和稀土抛光液,产品达到或接近国际先进水平,满足电机、液晶、硅晶片、高档玻璃基片抛光等应用要求。20高效太阳能电池系统性研究异质结电池技术,基于超薄硅片(低于100um),开发匹配先进钝化技术的金字塔绒面制作以及背面抛光工艺。开发新一代的钝化技术,实现表面原子级别的氢钝化。开发新一代的微晶硅生长技术,实现垂直生长技术和低接触电阻性能。开发高迁移率、高透过率低铟/无铟透明导电薄膜,降低总拥有成本(TCO)。开发基于异质结太阳电池先进金属化技术,如铜互联,先进印刷技术。突破0BB电池和组件端的先进互联技术,提升光伏组件效率,降低成本。21先进陶瓷材料及元器件围绕电子信息产业多层(积层,叠层)片式陶瓷电容器(MLCC)、低温共烧陶瓷(LTCC)、高温共烧陶瓷(HTCC)等高性能陶瓷材料、电子浆料及元器件整体需求,重点突破铜基反铁电MLCC材料的研制与应用技术、介电常数6至10系列化LTCC材料的研制与应用技术、HTCC集成电路封装外壳材料的研制及应用技术、高质量LTCC/HTCC电子浆料以及厚膜混合集成电路用电子浆料配方设计及制备技术等关键技术,解决我国高性能电子材料及核心元器件多项“卡脖子”及国产替代问题,整体技术水平达到国内领先、国际先进水平。22精准靶向高端制剂围绕临床亟需的重大疾病救治领域,针对精准靶向药物开发各阶段的关键技术进行突破,重点攻克替代进口自主培养基开发技术等生物药物研究及工程化技术、稳定高产的优质细胞株构建技术、靶向特异性细胞免疫治疗技术、抗体偶联(ADC)工程化偶联纯化评估与控制技术;打造覆盖源头创新、成药性评价、临床转化与验证和工程化等全过程研究关键环节的技术平台;开展新机制和新靶点化学药、抗体药物、抗体偶联药物、全新结构蛋白及多肽药物、疫苗、生物治疗药物的开发、大规模制备及临床评价,推动精准靶向药物创新能力与国际先进接轨,达到国际先进水平。23核医疗药物及装备围绕“健康中国战略”,解决放射性医用同位素及其原料受制于进口的瓶颈,突破镭-223、钇-90、镥-177、铼-188等核素制备及量产关键技术,实现反应堆产医用同位素国产化及商业化,重点研究放射性核素标记生物分子药物和体内介入生物相容性载体,重点突破具有精准靶向性、诊疗效果好的标记放射性药物及相关核医疗装备的研制,实现肿瘤的精准治疗和诊疗一体化,力争达到国际先进水平。24新型智能医学装备围绕高端医学装备“卡脖子”关键技术开展重点攻关,以需求为导向,利用云计算、大数据、人工智能、增强现实/虚拟现实(AR/VR)、物联网和“5G+”等新一代信息技术,开展计算机断层扫描系统、磁共振成像系统、手术机器人等高端医疗健康装备的研制开发、集成创新和规模化制造,实现智能医学装备新突破,打造成为国内特色优势产业集群,力争达到国际先进水平。25功效化妆品围绕化妆品创新原料开发和产品功效评价,聚焦川产道地天然资源和绿色发展,重点突破活性生物载体包裹和多功效物质复配工艺、促皮肤吸收/渗透/细胞组织靶向新技术、皮肤精准分型/无创检测装备研制与“个性化”产品研发等共性关键技术,搭建基于人体大数据的化妆品全生命周期的安全评级、风险预警和监测系统,开展规模化生产制备和产业化,打造行业顶先的一流技术服务平台和科技创新中心,实现国内具有重要影响力和知名度的特色产业高质量发展集群。26血液和免疫疾病治疗创新药物制造围绕血液制品和免疫细胞治疗产品在血液疾病和免疫性疾病治疗中的重大需求,以提高传统产品质量和生产效率为目标,重点突破创新型高浓度人免疫球蛋白生产工艺技术,并尽快实现产业化;采用基因工程技术、半衰期延长技术,构建高效表达重组人凝血因子的工程细胞株,加速新一代重组人凝血因子产品及长效化迭代产品的工艺技术开发和产业化,同步推进细胞培养基、层析填料等关键卡脖子原材料的国产化替代研究。基于自然杀伤(NK)细胞的抗肿瘤细胞活性及安全性,重点开展治疗肿瘤的免疫细胞药物开发,攻克NK细胞扩增技术、慢病毒转导NK技术、降低肿瘤免疫抑制微环境技术,形成自主知识产权,技术达到国际先进水平。27天然药物重点围绕四川省中药资源高质量发展,中药“说清楚、讲明白”等需求,聚焦药用植物遗传学、本草基因组学、药用植物时空多组学、功效物质生源合成途径解析、功效物质筛选及其药效机制评价等领域,重点突破药用植物资源多样性保护、川产道地药材遗传成因和生态成因解析、“优质、优形”新品种选育、高质量栽培、中药大品种培育、功效成分机体内靶点筛选、天然产物成药性结构修饰、新药创制等关键技术,实现“中国药”目标,达到国际领先水平。28高端电子化学品围绕电子化学品、同位素化合物、卤素气体、硅族气体、掺杂气体及高纯材料,聚焦散热材料、显示材料、印制线路板或印刷电路板、集成电路等方面“卡脖子”化学品,重点突破同位素化合物、高纯试剂(用于显影、清洗、剥离、刻蚀)、光刻胶、高纯靶材、特种气体及净化材料等材料,重点攻克高能束流微细特种加工、纳米加工、吸附提纯等共性关键技术及特种气体定向除杂、合成、纯化、充装、检测等技术瓶颈。29高性能工程塑料重点围绕高性能工程塑料、高性能氟硅弹性体、液晶聚合物、聚氨酯以及前瞻性工程材料领域方向,针对四川省内高性能工程塑料、液晶聚合物等关键聚合技术及工艺研发;工程塑料改性、注塑与模压成型等关键工艺及装备研发;工程塑料及聚氨酯等材料的三维打印关键共性技术研发;高强度、耐热、耐腐蚀、电绝缘、环保阻燃高性能氟硅弹性体关键合成技术及装备研发,技术达到国内领先、国际先进水平。30先进膜材料及分离技术围绕流程工业的复杂组分气体及液体净化分离的清洁生产需求,重点突破金属膜材料核心产品,开展膜材料技术、膜元件制备技术、膜分离技术、关键装备技术、工艺技术以及系统耦合集成,形成系统工程技术,建设气体高效过滤技术、液体清洁净化技术和PM2.5及气态污染物治理技术研究及转化平台,技术达到国际先进水平。31氟硅高分子材料重点围绕国防军工、航空航天、石油化工、建筑、电子信息、电力电器、轨道交通、汽车制造、防腐工程、新能源与战略新兴产业等工业领域和高新技术领域对高端氟硅高分子材料的迫切需求,从研发、设计、试验、制造、应用研究五个方面,突破氟硅精细化学品分子设计及其催化合成技术,高纯氟硅材料合成与制备技术,氟硅精细化学品及材料制造装备及过程强化技术,特种氟硅功能材料及关键制备技术,高端电子工业用氟硅高分子材料的开发、应用及产业化,氟硅高分子专用特种功能性助剂的结构设计及合成技术,氟硅高分子材料的配方设计及功能性开发技术,氟硅高分子材料制造设备及工艺、产品应用场景测试技术。技术达到国内领先、国际先进水平并打破国外垄断。32可降解塑料重点围绕市场消费、农业生产等领域对可降解塑料产品迫切需求,在新产品、新应用领域进行研发突破,提高可降解塑料市场份额,实现聚乳酸(PLA)、聚乙醇酸(PGA)、聚丁二酸丁二醇酯(PBS)、聚对苯二甲酸-己二酸丁二酯(PBAT)等各种可降解塑料装置大型化,利用非粮食生物类原料实现PLA等生物基生物降解产品工业化交付,持续提高产品性能、降低制造成本,满足不同应用场景的可降解时间精确控制要求。技术达到国内领先、国际先进水平。33新型植物保护剂围绕本质安全和低碳绿色清洁化生产,利用微通道、管式反应器、平推流反应器等连续流反应器实现草甘膦、草铵膦关键中间体或植物保护剂的工业化生产技术;实现高纯无钠草甘膦、草铵膦和L-草铵膦关键生产技术突破,实现芸苔素内酯等生物农药新工艺技术突破;实现硝化、加氢、氯化、氟化等高风险工艺采用微通道、管式或者釜式连续流生产植物保护剂关键中间体。技术达到国内领先或国际先进水平。34氰胺系新材料围绕天然气-氰胺-碳氮新材料产业链拓展与技术升级,针对尿素和三聚氰胺为原料生产双氰胺工艺技术需要,开发和优化高性能、低成本分子筛催化剂;高性能氰胺系列碳氮材料及专用化学品等下游应用技术;低成本三聚氰胺耐火板生产工艺及产品;高性能氮系和氮磷系阻燃剂工艺及产品;腈基树脂复合材料工艺及产品;氰胺系掺氮电池正负极材料工艺及产品。技术达到国内领先、国际先进水平。35生物纤维材料围绕生物纤维材料高品位生丝洁净制造难题,重点突破制丝环节中影响生丝品质的选茧、煮茧、鲜茧缫丝质量难以把控等几大技术难点,攻克选茧劳动用工量大、误选率高、影响生丝品质的问题,攻克煮熟蚕茧均匀性、洁净度难以提升等技术难点,攻克鲜茧缫丝丝胶黏性不够,严重影响抱合成绩等技术难题;研发基于机器视觉识别技术的智能化选茧设备,提高选茧的质量和效率,减少选茧劳动用工;通过“真空+”技术创建一体化、自动化煮茧工艺流程及技术方案,研发形成涵盖大、中、微型煮茧机的三个系列产品;应用减压煮茧技术攻克鲜茧缫丝质量瓶颈,建立起一套完整的适用于鲜茧缫丝的煮茧技术体系及工艺路线;实现提高生丝质量、降低原料茧耗、节能减排,大幅提高吨丝效益,达到国际领先水平。36绿色生物基纤维围绕绿色低碳生物基纤维,重点突破高品质纤维用竹浆粕、废旧纺织品回收浆粕、生物基功能纤维等制备技术,攻克提升竹浆粕反应活性、降低灰分及金属离子含量等关键难题,攻克废旧纺织品精准分拣、高效脱色、多组分分离等关键难题;围绕生物基纤维环境友好生产过程,重点突破高效、低耗、大容量莱赛尔生产技术和装备,攻克浆粕干法投料快速溶胀、高效率溶剂回收、低原纤化产品绿色制备等难题,形成生物基功能纤维生产关键技术;建立产品全生命周期的碳足迹体系和绿色制造标准,实现关键共性技术自主可控,达到国际先进水平。37优质白酒重点突破优质白酒酿造原料专用品种的选育及应用、酿酒功能微生物定向选育及精准代谢调控技术、酿造机理解析及质量提升技术、老窖池活态传承和窖池养护关键技术、智能化酿酒装备研发及数字化控制技术、白酒产业绿色发展关键核心技术等,加速推进技术研发和成果转化,形成白酒酿造新质生产力,持续提升白酒优质品率。38精制川茶重点围绕茶叶精深加工关键技术,开展茶叶干热后处理、后发酵处理、风味重组等技术研究。重点突破茶叶风味品质的量化指标与控制技术研究;采用现代仪器设备,研究各类茶叶的特征成分与含量标准,制定量化指标,推动产业标准化发展;开展茶膳食和茶叶综合利用创新研究应用,重点提升茶叶精深加工设备的自动化、智能化水平,达到国内领先水平。39预制菜针对预制菜风味保真差、复热品质还原难、货架期短等瓶颈问题,围绕预制菜上中下游进行全产业链研究,重点开展原辅料的等级评估、标准化预处理与保鲜、预制菜风味锁鲜和保真、护色保质、安全和健康营养、绿色包装、虚拟现实/增强现实(VR/AR)智能无人工厂设计、冷链配送系统、数字可追溯系统等关键共性技术研究,创新运用原料科学、营养科学、风味科学、食品机械学、基础化学、蛋白质组学、品质形成机理与调控等食品科学理论,构建预制菜标准体系,明确预制菜的定义及范围,在原材料、加工工艺、储存、冷链运输等方面建立行业、地方、团体等各级标准,加速建成在全国具有影响力的预制菜产业链研究及转化平台,技术水平达到全国领先水平。40特色发酵调味品重点支持传统发酵调味品现代化升级关键技术研究,开展专用复合调味品、营养功能性调味品、预调理食品的技术创新与新产品开发;采用组学、超显微成像、分子感官分析等技术,明确品质提高和劣变机理;采用组学和高通量测序等关键技术定向筛选关键发酵菌株,突破发酵菌株高活性高稳定性微生物发酵剂制备技术瓶颈,达到国内领先水平。
  • 我国在高亮度硬X光源研究中取得新进展
    p style=" line-height: 1.75em " & nbsp & nbsp & nbsp & nbsp 高亮度X光源由于其在材料、生物研究等方面的广泛应用,一直是国际相关科研领域追求的目标。韧制辐射、同步辐射光源、X射线自由电子激光(XFEL)等都可以产生高亮度X光源。超短超强激光通过不同相互作用机制,可在从THz到伽马射线的各个频段产生高亮度超短电磁辐射源。 /p p style=" line-height: 1.75em "   中国科学院上海光学精密机械研究所强场激光物理国家重点实验室与德国杜塞尔多夫大学合作,3月14日发表在国际物理学期刊《物理评论快报》上的论文Bright x-ray source from a laser-driven micro-plasma waveguide [Phys. Rev. Lett. 116, 115001 (2016)] 报道了利用高对比度超短超强激光和微等离子体通道相互作用产生高亮度X射线的理论方案。超强激光将通道壁上的电子拉出,在激光场中加速,高能电子在激光场中的横向运动可辐射极强的X光(如图)。利用这一新机制,辐射X光的能量在20keV左右,单个脉冲光子数接近1011个,X光源具有很好的准直性,亮度可达5× 1023photons/s/mm2/mrad2/0.1%bandwidth,为这一重要频段(~20KeV)产生极高亮度X光源提出了一种重要方案。强场激光物理国家重点实验室正准备在实验室超短超强激光装置上进行相关实验。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201604/insimg/9ad78f2c-8891-4cf9-88a3-08ed3718ea6d.jpg" title=" W020160419336153986380.jpg" / /p p style=" text-align: center " 高能电子在圆偏转超强激光场中加速、旋转,辐射出高亮度硬X射线 /p
  • 激光干涉测量:“聆听”宇宙的声音
    激光干涉测量助力空天探索 在空天探索领域,空间引力波探测是当前国际研究热点,作为人类观测宇宙的新窗口,引力波将为人类探索早期黑洞合并、超新星爆发等宇宙结构形成过程提供观测手段,对探索宇宙起源与演化具有重要的意义。为了探测中低频段的空间引力波,国内外研究人员计划在相距数十万乃至数百万千米的空间轨道上建立超高灵敏度星间激光干涉系统,该方法的本质是将现有的激光干涉超精密测量技术应用到外太空去,突破地面探测臂长的限制,摆脱地面各种干扰源对精密测量的影响。其关键技术是测量相距数百万公里的两个测试质量之间的间距变化,主要包括:测试质量与卫星平台之间的间距变化、两个卫星平台之间的间距变化,前者涉及到测试质量的多个自由度精密检测,探测灵敏度需要在1 mHz~1 Hz频段达到~1 pm/Hz1/2(平动)以及~1 nrad/Hz1/2(转动)水平。揭秘空间引力波探测的原理 空间引力波探测任务需要实现对测试质量皮米量级的平动测量以及纳弧度量级的转动测量,关键技术单元包括:激光外差干涉、差分波前传感以及高精度相位测量三部分,如图1所示,通过测量两测试质量之间的平动转动,获得其间距变化信息,从而探测引力波信号。图1面向空间引力波探测的激光外差干涉多自由度超精密测量技术示意图激光外差干涉 激光外差干涉测量原理如图2所示,频率相近的两束激光(测量光频率f1,参考光频率f2)合束后,合成波(频率为f1+f2)会存在一个包络,其频率为|f1-f2|,这一包络频率也被称为外差频率。 当测试质量在沿测量光传播方向上运动状态改变、或者引力波来临时,干涉仪的测量臂光程发生变化,表现为外差干涉信号的相位波动,即图2中紫色虚线部分。以经典迈克尔逊干涉结构为例,外差干涉信号相位的一个周期变化对应位移变化半波长(光程变化一个波长),有 其中,λ为激光输出波长,L为测试质量的等效位移,φ为外差干涉信号的相位变化。图2 激光外差干涉原理示意图差分波前传感 差分波前传感是一种基于激光波前相位比较的高精度角度测量方法,测量原理如图3所示。测量光与参考光合束后入射至四象限探测器表面,两束光满足干涉条件产生外差干涉信号,照射在探测器四个象限后会分别产生四路干涉信号。当测量目标平动时,四路外差干涉信号相位发生相应波动,与采用普通光电探测器的原理相一致;当测量目标转动时,测量光的波前相对参考光发生偏离,由于四象限探测器具有一定的空间间距,导致四路外差干涉信号的相位波动并不相同,通过对比不同象限的干涉信号相位差异,可以反演得到测量目标在水平方向和竖直方向上的转动角度,有 其中,θh为水平转动角,θv为垂直转动角 ФA/B/C/D为不同象限的外差干涉信号相位变化 kh/v为比例系数,由光束参数以及四象限探测器的几何参数共同决定,实验中常用偏摆镜配合自准直仪进行标定。图3 差分波前传感和四通道拍频信号波形示意图高精度相位测量 高精度相位测量可以通过锁相放大器或者相位计来实现,其基本原理如图4所示,外差干涉信号转化为电信号后与本地时钟(或外部参考)及其正交信号混频,低通滤波后分别得到Q信号(quadrature)和I信号(in-phase),计算I/Q反正切值并作相位解包裹运算得到相位差,Q信号作为相位误差信号反馈至本地可调时钟,更新本地时钟输出频率从而保持与输入外差干涉信号频率一致,形成锁相环路。图4 相位测量基本原理[1]国内外干涉仪研究进展LISA LISA (Laser Interferometer Space Antenna)是于1992年发起的一项探测1 mHz~1 Hz频段引力波信号的科学研究计划,这是最早开始、也是目前国际上发展最成熟的空间引力波探测计划,其中一项关键技术是实现测试质量的超高灵敏度多自由度测量。 2012年,德国汉诺威大学的Marina Dehne等人设计搭建了一套用于验证测试质量干涉仪噪声源及其消除技术的激光外差干涉测量系统,分析了多个噪声源(激光频率、激光强度、激光指向漂移、温度、偏振态、移频驱动边带、杂散光等)对相位读出的影响,并研究了多种噪声消减数据处理方法,在空间引力波探测目标频段成功实现了~1 pm/Hz1/2的超精密位移测量。图5给出了LISA激光干涉平动转动测量技术发展时间线,该计划从提出开始,经历地面模拟论证、噪声源探索、技术卫星验证、光路布局优化测试等,距今已经开展了三十余年,其中用于测试质量多自由度测量的激光外差干涉技术灵敏度已经突破1 pm/Hz1/2和1 nrad/Hz1/2。目前光学干涉平台布局处于优化设计阶段,激光外差干涉超精密测量技术是否能够实现百万公里距离的两测试质量之间的皮米级平动测量并成功探测到宇宙深处的引力波,这仍然需要时间来给出答案。图5 激光干涉平动转动测量技术发展时间线(LISA)太极&天琴 2008年,我国科学家开始探讨中国的空间引力波探测计划,并于2012年正式成立了空间引力波探测工作组,2014年提出基于“日心”轨道和“地心”轨道两个独立的探测方案,即太极计划和天琴计划[2-3]。目前两者均形成了较为完备的星间激光干涉测量方案。 同LISA一样,太极和天琴于2019年分别发射了太极一号和天琴一号技术验证卫星,所搭载的光学干涉平台如图6所示,前者采用殷钢材料制作光学干涉平台基座、后者则采用光粘的方式来提高干涉装置的热稳定性,两者都包含有前端光程参考干涉仪和测试质量测量干涉仪。测试实验最新结果表明,空间激光干涉仪可以实现毫赫兹频段皮米量级的超精密位移测量,标志着我国在空间引力波探测中用于测试质量的激光外差干涉测量技术研究正逐渐走向国际前列。图6 我国空间引力波探测技术验证卫星激光干涉平台(a)太极一号[2](b)天琴一号[4] 其他 2021年,美国德州农工大学提出了一种一体式外差干涉仪,将分光镜波片等关键镜组胶粘成一个整体,提升干涉仪稳定性,并通过抽真空、被动控温、噪声建模消减等措施最终实现了33 pm/Hz1/2@0.1 Hz的平动测量。 2022年,清华大学谈宜东团队提出了一种用于测试质量五自由度测量的偏振复用双光束干涉仪,光路设计如图7所示,包含参考干涉仪(RHI)、双光束干涉仪(DBHI)和偏振复用干涉仪(PMHI),初步实验在10 mHz~1 Hz频段实现了优于10 pm/Hz1/2 以及20 nrad/Hz1/2的平动转动灵敏度测量。图7 偏振复用双光束激光外差干涉五自由度测量系统星辰宇宙,未来可期 “此曲只应天上有,人间难得几回闻”,如果说引力波是携带着浩瀚宇宙信息的乐曲,那么激光干涉超精密测试技术就是用来“听曲”的最灵敏的传声筒。在空间引力波探测领域,我国的激光外差干涉多自由度超精密测量技术相比于欧美LISA团队仍处于跟跑阶段,但未来有希望实现并跑甚至领跑。而且,空间引力波探测中涉及的外差干涉技术,可以对长度量进行高精度、大量程的超精密测量,可扩展应用于下一代高速、超精密二维或三维运动台的精确定位与运动控制,进而支撑我国超精密加工制造、IC 装备及尖端航空航天科技的发展,对于国民经济和工业建设有着重要的实际意义[5]。全文下载:空间引力波探测中的激光干涉多自由度测量技术.pdf参考文献:[1]Schwarze T S.Phase extraction for laser interferometry in space: phase readout schemes and optical testing[D]. Hannover: Institutionelles Repositorium der Leibniz Universität Hannover, 2018.[2] Luo Z R, Wang Y, Wu Y L, et al. The Taiji program: A concise overview[J]. Progress of Theoretical and Experimental Physics, 2021(5), 05A108.[3] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical & Quantum Gravity, 2015, 33(3): 035010.[4]Luo J, Bai Y Z, Cai L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013.[5] 谈宜东, 徐欣, 张书练. 激光干涉精密测量与应用.中国激光,2021,48(15) : 1504001.作者简介 谈宜东,清华大学精密仪器系,长聘副教授,博士生导师,副系主任;基金委优秀青年科学基金获得者,英国皇家学会牛顿高级学者,教育部创新团队负责人。中国电子信息行业联合会光电产业委员会副会长、中国仪器仪表学会机械量测试仪器分会常务理事。 主要从事激光技术和精密测量应用等方面的研究工作。作为负责人承担国家自然科学基金,装发和科工局测试仪器领域关键技术攻关项目,科技部重点研发计划课题,军科委基础加强,重大科学仪器专项等项目40余项。在Nature Communications,PhotoniX, Optica, Bioelectronics and Biosensors, IEEE Transactions on Industrial Electronics等期刊发表 SCI 论文 100余篇,授权发明专利36项,在国际会议Keynote/Plenary/Invited报告40余次。先后获日内瓦国际发明展金奖,中国激光杂志社主编推荐奖,中国光学工程学会技术发明一等奖,中国电子学会技术发明一、二等奖多项。课题组介绍 清华大学精密仪器系激光技术与精密测量应用课题组,在激光器件及其物理效应、精密测量应用等方面开展了大量的工作,构成了从基础器件的设计和发明,到物理现象和效应的发现,进而在发现基础上的仪器发明,直至仪器的推广和应用这一较为完整的体系。先后研制了双折射-塞曼双频激光器及其双频激光干涉仪,实现了成果转化,成规模应用于国家02专项以及中芯国际、吉顺芯等公司进口光刻机干涉仪的替换;基于激光回馈原理的无靶镜纳米测量干涉仪,用于国家多个重点型号工程,包括:高分四号、一号以及激光聚变点火等。课题组还开展了远距离激光侦听、激光回馈调频连续波绝对测距、生化检测、pm量级灵敏度的激光干涉超精密测量技术(引力波专项)等研究。
  • 宁夏国家种苗生物重点实验室研究取得阶段进展
    银川,2010年4月6日 宁夏国家种苗生物重点实验室研究取得阶段进展 4月6日,宁夏林业研究所接种实验室技术员吴建华(左)与课题组人员一起,观察组培苗生根培养情况。 宁夏国家种苗生物重点实验室是首批36个企业国家重点实验室之一,2009年9月通过科技部验收。该实验室围绕林业生态建设、林业产业化和园林绿化发展关键技术等问题,分别开展了种质资源的引进收集、驯化筛选、培育与应用,植物组织培养、脱毒及病毒检测技术,植物优新品种发育学与抗逆性生理机理,植物转基因技术和种苗贮藏技术等5个方向的研究工作,获得了一些拥有自主知识产权和实用推广价值的研究成果,为林业生态、产业发展和企业发展提供了技术支持,并建成30公顷特色植物种质资源收集圃和部分资源离体保存库,已收集84科263属603种(变种、变型、栽培种)植物。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制