当前位置: 仪器信息网 > 行业主题 > >

肿瘤治疗

仪器信息网肿瘤治疗专题为您整合肿瘤治疗相关的最新文章,在肿瘤治疗专题,您不仅可以免费浏览肿瘤治疗的资讯, 同时您还可以浏览肿瘤治疗的相关资料、解决方案,参与社区肿瘤治疗话题讨论。

肿瘤治疗相关的资讯

  • 免疫细胞疗法能否成为肿瘤的主要治疗方法?
    分享:基因编辑技术能否有助于将细胞疗法用于治疗实体瘤?珀金埃尔默旗下Horizon Discovery的乔纳森弗兰普顿 (Jonathan Frampton) 在给Laboratory News的一篇撰文中,介绍了如何利用碱基编辑技术来降低当前昂贵的治疗成本,使其成为治疗癌症的主流方法。开发同种异体细胞疗法还需解决一些挑战,包括如何避免破坏患者的免疫系统。目前有两种有效的细胞疗法能治疗“液体肿瘤”(白血病和淋巴瘤)。诺华研发的Kymriah和吉利德科学研发的Yescarta两种药物使用的细胞均属于嵌合抗原受体(CAR) T细胞——两者最初均表现出高反应率,这种高反应率会在部分患者中形成持久的临床反应。虽然这些疗法的前期效果良好,但如何让下一代细胞疗法能够有效治疗实体瘤,仍面临不少问题。2019年,美国新增约176,000名液体肿瘤患者,而实体瘤新增患者约为160万(几乎增长10倍)。此外,由于Kymriah和Yescarta 均属于自体疗法(使用患者体内的细胞用于药物生产),这种个体的治疗成本很高,分别为475,000美元(Kymriah)和373,000美元(Yescarta),这远远超出了大众可以承受的医疗预算范围。相比之下,如使用一般抗癌药物,患者每月的花费约为10,000 美元。这种情况下,需要作出哪些改变,才能让细胞疗法成为治疗癌症的主要方法呢?基因编辑技术—能否将细胞疗法用于治疗实体瘤?尽管细胞疗法是一种复杂的癌症治疗形式,但它可以直接靶向液体肿瘤。细胞疗法可以通过血液进入白血病和淋巴瘤细胞,从而不需要靶向特定的组织或器官,也无需在杂乱无章的毛细血管网络中进行导航以及长时间驻留在免疫抑制和缺氧的实体瘤微环境中。人们普遍认为,需要进一步完善细胞疗法才能应对和克服这些挑战,从而提高患者的生存率。 避免出现脱靶染色体易位要增加存活率、增殖率和持久性,需要精确调节治疗细胞,这可能涉及对多个基因进行编辑。虽然普遍使用的基因编辑器CRISPR-Cas 在改变单个遗传信息时具有很强的稳健性,但这一过程会使得DNA双链产生断裂 (DSB) ,导致细胞出现脱靶染色体易位。借助单编辑或双编辑技术,在正确的指引和谨慎使用下,就很少会出现遗传信息的改变;不过,如需要编辑多个基因,产生染色体易位和其他遗传畸变的风险就会增加,这种风险可能会引起致癌细胞的产生,对于患者来说这无疑是一种潜在的灾难。在需要对一个或两个基因进行编辑,如果可以精确地识别出用于患者治疗的已编辑过细胞,就可避免易位现象。然而,当需要编辑的细胞较多时,很难精确识别已编辑细胞,进而导致致癌易位风险的增加。碱基编辑器:避免出现双链断裂碱基编辑作为基因编辑领域一项相对较新的技术,正在受到人们的关注。碱基编辑器可以在不使用核酸酶来导入DNA 双链断裂的情况下,持续高效地在原代细胞中进行基因编辑。利用碱基编辑在DNA中形成一个缺口(或单链断裂)并借助脱氨酶改变特定的碱基对,这样就可以通过在早期编码外显子中引入终止密码子来实现高效的基因敲除。未来几年,碱基编辑会对细胞疗法的发展产生更明显的影响,尤其是对同种异体细胞、非自体细胞治疗的发展的影响。通用型同种异体细胞疗法?借助同种异体细胞疗法,可以将健康供体转换为通用型治疗细胞,可以大规模生产治疗细胞并集中储存,在治疗需要时可以随时获取。但要开发同种异体细胞疗法会面临一些挑战,包括如何才能避免破坏患者的免疫系统。为了克服这个问题,就必须改造现行的同种异体细胞疗法,使其具有隐身模式,在这种模式下,患者的免疫系统将它视为“自我”的一部分。要开发出这样的细胞,需要修改多个基因,而且这些基因很可能会被敲除。碱基编辑器将在编辑多个基因方面发挥关键作用,这样能够在不使用免疫抑制药物的情况下,延长同种异体治疗细胞在患者体内的存活时间。同种异体细胞疗法的供应链简单、易大规模生产,成本上比自体细胞疗法更低。相关医疗经济研究结果表明,如果能够实现规模经济,同种异体细胞疗法的费用可以降到每剂7500美元,毫无疑问这将有助于进一步推广细胞疗法,使其成为主流疗法。推广细胞疗法持久临床反应的高效细胞疗法是另一个可以实现的目标。它需要将免疫细胞的疗法在治疗液体肿瘤中的成功经验转应用于治疗实体瘤,它需要修改免疫细胞,使其能够适应更为复杂的实体瘤微环境,同时降低此类疗法的成本。这两个目标都可以通过应用高效的基因编辑技术开发同种异体细胞疗法来实现。目前人们正利用CRISPR-Cas进行细胞开发,随着安全性不断提高,未来的同种异体细胞疗法利用碱基编辑器来改变基因信息,将为真正的细胞疗法治疗肿瘤带来雨霖。作者: Jonathan Frampton,珀金埃尔默旗下Horizon Discovery业务发展合伙人(Corporate Development Partner)
  • 肿瘤质子治疗四大问题和最新进展
    p   提到“质子治疗”,大多数人可能首先会联想到化学原子核中的质子,恰恰是这种微小的粒子,将其应用于癌症治疗上,能取得意想不到的效果,且已经成为目前最先进的癌症治疗技术。 /p p   近日,《自然》就刊发了一篇综述,归纳了质子治疗肿瘤的现状和最新进展,为了能让更多癌症患者获得质子精准治疗,专家们提出了三种建议方案:缩小加速器基建规模、更加精准质子、拓展医保覆盖范围,最终把质子治疗肿瘤作为抗癌首选方案之一,让更多患者获益。 /p p   质子治疗最早于1946年首次被提出,1954年,美国劳伦斯伯克利国家实验室的研究团队进行了世界首例肿瘤患者的质子治疗。此后,美国、欧洲、日本等相继开始了质子在医学领域的研究,但直到1988年,质子治疗才获得了美国FDA的批准,质子治疗从此开始在肿瘤治疗领域大放异彩。 /p p   目前,全美有20多家癌症质子束治疗中心,包括MD安德森肿瘤中心、梅奥医学中心、麻省总医院肿瘤中心、宾夕法尼亚大学附属的癌症质子束治疗中心和佛罗里达州医疗联合机构附属质子束治疗中心等。 /p p   2015年5月8日,我国首家质子重离子医院——位于上海国际医学园区的上海市质子重离子医院正式运营,截至到目前,收治患者已突破1000例。 /p p    strong 质子治疗的原理 /strong /p p   所谓质子治疗,就是将失掉电子的氢原子原子核,利用回旋加速器或者同步加速器加速到光速约70%,以这种极快的速度穿透到人体内部,到达癌细胞所在的特定部位,速度突然降低并停止,释放出最大能量,产生“布拉格峰”,将癌细胞杀死,同时有效地保护周围正常组织,且副作用小。比如当肿瘤直接与重要器官或结构如脊髓、视神经、心脏等相邻,质子治疗依然能在有效治疗肿瘤的同时保护这些重要器官或结构的功能,这在常规辐射治疗中是不可能的。 /p p   同时,质子刀对比其他放射手术方法,其穿透性能强,对病灶的定位效果是最佳的,机器操作的精准度也最高,其对病灶外区域造成的辐射量少,降低诱发二次癌症的几率。与质子治疗相比,X射线治疗诱发第二原发肿瘤的风险高出12倍,接受质子治疗后的患者能拥有更好的生存质量。国外临床治疗数据表明,质子治疗肿瘤有效率达到95%以上,五年存活率高达80%。 /p p   此外,质子刀还可以适用于肿瘤复发的治疗,肿瘤之前经过放射治疗后复发,可以再次接受质子治疗,只需要控制质子束的剂量和浓度,这在传统放射治疗中是不可能的。 /p p   strong  质子治疗的优势 /strong /p p   临床上,质子束疗法通常可以治疗前列腺癌、头颈部肿瘤、部分儿童肿瘤、胰腺癌,甚至部分早期乳腺癌和肺癌等。 /p p   比如,对于早期前列腺癌患者而言,放疗是常见的用于局部前列腺癌的根治性治疗方法。临床试验证明,高放射剂量可以取得更好的治疗效果。然而,对前列腺放射剂量的递增也增加了对于临近正常组织损伤的风险。在外照射放疗的治疗过程中正常直肠的暴露剂量与治疗并发症相关,多表现为直肠出血。因此,病灶区最大剂量同时周围直肠最小化剂量是放射治疗的理想追求。 /p p   同样的问题也存在于肺癌的放射治疗中。放疗在转移性肺癌的治疗中起着重要作用,单纯放疗可以治愈Ⅰ期非小细胞肺癌(NSCLC)。放疗也可作为综合治疗的组成用于治疗局部晚期 NSCLC。根治性放疗中需要采用大剂量照射,治疗和剂量必须在预期的治疗毒性与实现肿瘤局部控制的可能性之间取得平衡。 /p p   事实上,为了限制辐射损伤邻近正常组织的风险,放疗往往达不到杀死肿瘤的剂量,但质子治疗就能达到上述目的。 /p p   《自然》刊文认为:质子治疗癌症对患者的获益还是可预测的,随着质子加速器等技术进步,从质子治疗中获益的患者数量也会增加。 /p p    strong 《自然》刊文指出质子治疗的四大问题 /strong /p p   虽然质子治疗比较与传统放射治疗有着无可比拟的优势,但是其依然存在几大问题。 /p p   上述提到的《自然》刊文就指出,相对于常规X-射线放疗而言,质子治疗费用至少高出2-3倍,这对于来自普通家庭的患者来讲,这笔高昂的医疗费用是难以承担的,并且未全部覆盖到医保,比如,目前上海质子重离子医院一个疗程的费用是在27.8万元,只能走一些商保渠道。 /p p   还比如在美国,虽然医保覆盖了部门部分癌症质子治疗,但是保险公司对于质子治疗适应症患者的选择十分苛刻,有近30%的患者被拒之门外,保险不承担费用,主要原因是临床治疗中提供有明显疗效的临床数据太少,这就形成了一个恶性循环:患者个人的医疗保险不负担,相关临床治疗也很难开展下去。 /p p   对于患者而言,质子治疗的医疗费用难以承担,而对于医院来讲,质子设备同样难以承受。 /p p   自20世纪90年代以来,加速器的重量从上百吨降到了20吨,加速器直径也缩小了3倍,迄今为止最小的质子治疗加速器直径不到2米,与一张特大号床相当。但是,与旋转机架和其它辅助设备加在一起,即使是最为Mini型质子治疗系统也要占用几百平方米面积,也比一般传统的50平方米治疗室大几倍,目前,多数医院缺乏建造质子治疗专用机构的资金和空间,这些是现实问题。 /p p   同时,质子治疗还存在一个更精准度的问题,有医生表示,目前质子束能精确在0.5厘米内,这与X射线类似,将质子束的精密度从厘米精准到毫米级将是下一步必要的技术更新。尤其在治疗肺部和肝脏肿瘤时,肿瘤所处位置是一个移动部位,这将是另一艰难的技术挑战。 /p p   此外,精通质子设备安装和调试的专业技术人员以及擅长质子治疗技术医生的短缺也是一大问题。 /p p    strong 改进建议和最新进展 /strong /p p   治疗费用方面,《自然》刊文指出保险公司应建立“参考定价”模式,为有相似治疗效果的不同治疗方法建立统一支付标准,这将有助于在新的临床应用中收集质子治疗临床数据。 /p p   在设备方面,目标是把质子治疗设备安装在一个房间内,医院可以不另建造治疗室,这样更便于医院更新换代现有的X射线治疗装置,同时,如果一台质子加速器设备价能格降低到500万美元,那么普及应用质子治疗的时代也就不远了,相应地治疗费用也会不断降低。 /p p   在精度方面,目前已经探究出几种测量质子束的方法,当质子与原子核相互作用时,它们发出可跟踪的γ射线,当组织器官受到质子脉冲照射加热产生膨胀和收缩时,会释放声波。这种技术在实验环境中可以使质子束精确在几毫米范围,但尚未在临床治疗中应用,克服在临床治疗中的技术障碍需要医疗科研机构、医生和患者的共同努力。 /p p   对于专业技术人员和医生的短缺,《自然》刊文提出解决方案之一是使质子治疗工作流程与传统的X射线治疗类似,可以借用现有的放疗医生和技术人员,另一种方法是更多地依靠人工智能和全自动化,通过专家指导系统形成一个AI系统进而指导患者治疗过程。 /p p   值得一提的是,《自然》刊文还提到了质子治疗的三项最新进展:质子笔形束可以将辐射剂量准确地照射到实体肿瘤上,减少了从多角度照射患者的必要 快速成像方法可以检测患者位置的微小变化,进而改变光束的精准区域 运用可延展材料制作的“软体机器人”,利用其机器人手臂,对患者进行快速且舒适地定位,减少医生频繁进入治疗室的机会。 /p
  • 构建分子机器用于肿瘤复合治疗
    近日,华东理工大学化学与分子工程学院副教授钱若灿与美国伊利诺伊大学香槟分校教授陆艺合作,设计了一种基于DNAzyme分子机器的肿瘤复合治疗策略,可同时调控T细胞/癌细胞间相互作用以及诱导肿瘤细胞内线粒体聚集,促使肿瘤细胞凋亡。相关成果近日发表于《德国应用化学》。  近年来,肿瘤复合治疗作为一种高效癌症治疗策略,得到了高速发展。尽管如此,开发对正常细胞无毒的靶向复合治疗方法仍是一项挑战。金属离子特异激活的DNAzyme在细胞调控方面具有独特优势,被广泛用于细胞相关研究。在此前工作中,双方团队基于金属离子特异性的DNAzyme和相关底物构建细胞调控模块,设计了多种逻辑控制开关,实现了细胞间动态行为的人工调控,包括单个细胞和多细胞球体的细胞间连接与解离。但上述工作采用胆固醇作为锚定剂,缺乏肿瘤靶向能力。  为克服以上限制,研究人员构建了具备在细胞间与细胞内调控功能的DNAzyme分子机器,可分别从细胞外与细胞内对肿瘤细胞进行靶向杀伤。在细胞外,该策略可实现T细胞与肿瘤细胞间的动态调控,包括肿瘤细胞识别、T细胞-肿瘤细胞密接以及肿瘤杀伤后的T细胞解离。在乏锌肿瘤细胞内,DNAzyme分子机器可诱导线粒体聚集并促进肿瘤细胞凋亡。在酸性环境下,凋亡荧光成像实验证明,基于DNAzyme分子机器的肿瘤复合治疗策略对乏锌肿瘤细胞的杀伤效果显著。  该研究展示了一种基于DNAzyme分子机器的细胞动态调控方法,为肿瘤联合治疗提供了新策略。  相关论文信息:https://doi.org/10.1002/anie.202210935
  • 珀金埃尔默助力肿瘤治疗创新|7月24日昆明国际肿瘤研究论坛
    肿瘤治疗已有250多年的历史。自传统的化疗起,肿瘤治疗经历了传统化疗/放疗时代,基于小分子和抗体的靶向药时代,肿瘤免疫治疗时代,和当下的精准医疗时代。与此同时,珀金埃尔默一直致力于——“为了更健康的世界,不断创新”,从传统化疗/放疗-基因组学-高通量筛选-单细胞组学-生物制药多个方向全面助力肿瘤治疗创新之路。在此,我们盘点肿瘤治疗历史的大事件,并从应用角度介绍珀金埃尔默对肿瘤治疗的贡献。传统治疗传统治疗兴起于90年代,主要包括手术切割,放射疗法和化学治疗等。通过近三十年的努力,美国于1937年建立National Cancer Institute (NCI) 用于开展肿瘤研究,深入了解肿瘤发病原因并开发有效的治疗方案。同年, Richard Perkin 和 Charles Elmer 合伙创建珀金埃尔默(PerkinElmer)并涉足分析仪器领域,推出原子吸收光谱仪用于追踪顺铂类化疗药物的摄取。PerkinElmer 于1987年推出首个商业化PCR系统Perkin-Elmer Cetus DNA Thermal Cycler,助力分子克隆研究。尽管近年来新的抗癌疗法不断涌现,传统疗法依然是当下肿瘤治疗的中流砥柱和一线手段。基于传统疗法,我们致力于耐药研究和联合用药等方向的前沿应用,如单细胞ICP-MS联合高内涵在单细胞组学水平研究肿瘤耐药机制[1],基于Alpha技术的高通量筛选则为靶向耐药的联合用药治疗方案打下基础(下图)[2]。图片源自文献:Cell. 2019 Jun 27 178(1):152-159.e11.靶向治疗上个世纪80-90年代的分子研究,包括针对癌症相关基因如P53和HER2基因的鉴定和克隆,为靶向药物开发打下了基础。1997年罗氏Roche药厂研发靶向CD20的利妥昔单抗(Rituximab)成为首个获批的单克隆抗体。次年著名的曲妥珠单抗(Trastuzumab)在美国获批,用于 HER-2阳性乳腺癌治疗。曲妥珠单抗的获批显著提升治疗效果的同时,也极大的推动针对乳腺癌的靶向治疗开发。2001年FDA批准首个激酶抑制剂格列卫(Imatinib mesylate),标志着肿瘤治疗进入靶向治疗时代。针对含有费城染色体融合基因 (BCR-ABL)的慢性骨髓性白血病病人,格列卫治疗可达到惊人的90%反应率,并能做到对疾病的持久控制。2001年也同时见证了首个Magic bullet抗体药物偶联物(Antibody Drug Conjugates ,ADCs)的获批。与后期兴起的免疫治疗不同,ADCs在病人免疫系统受损的情况下依然能发挥抗癌效果。随着格列卫的获批,多种著名的小分子靶向药物,尤其是激酶抑制剂进入抗癌市场[3]。同时,珀金埃尔默的小动物产品线也发挥活体成像的优势,助力多个小分子药物获批,其中包括由舒尼替尼(Sunitinib)和尼罗替尼(Nilotinib)。除了激酶抑制剂外,珀金埃尔默的活体成像平台也参与了首个,也是目前唯一获批的蛋白酶体抑制剂硼替佐米(Bortezomib)的研发。图片源自文献:Trends Pharmacol Sci. 2015 Jul 36(7):422-39.针对靶向治疗,珀金埃尔默参与了多个领域的进展。在基因水平研究,GeneAmp Thermo Cycler和ABI PRISM 310 Genetic Analyzer可用于分析描述BCR-ABL[4]。在激酶抑制剂研究领域,1998年我们推出了均相免疫检测LANCE平台,并进一步在2006年推出LANCE Ultra 平台,专注体外激酶活性筛选,除了分子水平外,我们的激酶解决方案还涵盖了细胞和活体水平研究,例如新一代TRK抑制剂研究的案例[5]。同时,我们一直致力于高通量药物筛选及药物研发应用,推出行业金标准多模式读板仪Envision和高内涵成像分析平台Opera 和Operetta,以及对应的试剂耗材和移液工作站平台,并在今年收购拥有HTRF® 免疫检测技术的生命科学领域尖端企业Cisbio Bioassays,以加速药物筛选、靶向药物发现和联合用药研究[6]。图片源自文献:Nat Biotechnol. 2009 Jul 27(7):659-66.肿瘤免疫新兴的肿瘤免疫主要包括两个大板块:以免疫检查点抑制剂为代表的肿瘤免疫治疗和以CAR-T疗法为代表的免疫细胞治疗。除此之外,免疫疗法还包括个性化肿瘤疫苗,溶瘤病毒和改造抗体例如BITE等。在肿瘤免疫治疗领域,靶向细胞毒性T细胞抗原-4(CTLA-4)的伊匹单抗(Ipilimumab,Yervoy)成为首个获批的免疫检查点抑制剂,并开启了肿瘤免疫时代。2014年同时见证了两款靶向PD-1的肿瘤免疫治疗明星药:帕博利珠单抗(Pembrolizumab, Keytruda,K药)和欧狄沃(Nivolumab, Opdivo,O药)的成功上市。值得一提的是,珀金埃尔默的DELFIA平台参与了O药的体外研发过程中的ADCC检测[7]。肿瘤领域免疫治疗带来的里程碑式的突破也让两位先驱 James P. Allison 和Tasuku Honjo,摘得2018年诺贝尔生理学或医学奖桂冠。在他们的研究成果中,不乏看到珀金埃尔默的身影。例如,我们的核酸解决方案协助Tasuku Honjo研究PD-1激活机制[8]。在解析肿瘤免疫微环境的研究过程中,James P. Allison作为MD Anderson癌症中心的一线科学家,多次使用多光谱组织病理成像系统进行肿瘤免疫微环境全景分析[9-10]。图片源自文献:NatRev Drug Discov. 2018 Dec 17(12):922.在细胞治疗领域,2017年由诺华推出的首个CAR-T细胞疗法Kymriah™ 的获批上市无疑是一针强心剂,激励肿瘤治疗方向细胞疗法的研发投入。当下,在肿瘤治疗领域,细胞治疗增长最为迅猛,成为最火热的研发管线[11]。靶向包括CAR-T和CAR-NK在内的细胞治疗,我们同样提供多个维度的金标准解决方案,主要包括体外水平的细胞功能评价[12]和体内水平研究[13]。在细胞功能描述上,我们支持细胞因子检测、细胞增殖追踪和基于高内涵以及多模式检测平台细胞杀伤效力评价。在体内水平研究,强大的IVIS活体成像平台则可协助监测体内肿瘤进展以及追踪免疫细胞体内的分布和迁移[14]。进一步在组织水平,多光谱组织病理成像系统则可通过其多标和成像优势深入解析细胞治疗对肿瘤免疫微环境带来的变化[15]。精准医疗肿瘤治疗的变革的背后也贯穿着精准医疗的演化。精准医疗(Precision Medicine)于2011年首次被定义,并因2015年精准医疗计划(Precision Medicine Initiative)的宣布成为覆盖全球的热门话题。在2016年的美国国家癌症射月计划(Cancer Moonshot)中再次强调利用精准医疗进行药效预测。同年中国也正式启动精准医疗计划,并将其列为国家重大战略性新兴产业。图片源自文献:Comprehensive Medicinal Chemistry III 2017, Pages 388-415虽然从定义上来看精准医疗不依赖于某个特定的技术平台,但测序技术,尤其是二代测序的兴起对精准医疗的推动不言而喻。在测序技术的引领下,我们已从基因测序时代步入大数据时代。然而,现阶段肿瘤治疗依然难以复制格列卫的临床效果。肿瘤细胞的高度异质性和持续进化能力让基于终点法的测序技术很难有效的预测肿瘤细胞-药物相互作用。与此同时,免疫治疗的成功更是向我们强调了细胞间相互作用的重要性。为了克服这些挑战,并将精准医疗推向新的高度,珀金埃尔默主要致力于两个方向开发应用:(1)基于ICP-MS和高内涵等平台的单细胞组学研究和(2)以新兴类器官和病人来源原代细胞为基石的个性化指导用药研发[16-18]。类器官结合了表型筛选和3D水平研究于一体,最大程度提高生理/病理相关性的同时支持中高通量的筛选,为精准用药,肿瘤基因型-药物相互作用研究和样品库制备开辟了新的道路[19]。会议邀请会议时间:2019年7月24日会议地点:恒盛酒店二楼恒盛厅(昆明市龙泉路77号)欲了解更多大会咨询,请点击下面链接http://www.kiz.ac.cn/qt/tzgg/sygg/201906/t20190625_5328203.html参考文献[1]单细胞ICP-MS联合HCS为您揭秘顺铂化疗耐药机制https://mp.weixin.qq.com/s/foZlyjWWXddY5FK0woqy2A[2] Wojtaszek JL, et al. A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy. Cell. 2019 Jun 27 178(1):152-159.e11.[3] Wu P, et al. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015 Jul 36(7):422-39.[4] Chasseriau J, et al. Characterization of the Different BCR-ABL Transcripts with a Single Multiplex RT-PCR. J Mol Diagn. 2004 Nov 6(4):343-7.[5] 精准医疗案例速递 | TRK抑制剂拉罗替尼开启泛癌种治疗新篇章https://mp.weixin.qq.com/s/-ZjWrUBnj2nqOG6hXBhRuQ[6] Lehár J, et al. Synergistic drug combinations improve therapeutic selectivity. Nat Biotechnol. 2009 Jul 27(7):659-66.[7] Wang C, et al. In Vitro Characterization of the Anti-PD-1 Antibody Nivolumab, BMS-936558, and In Vivo Toxicology in Non-Human Primates. Cancer Immunol Res. 2014 Sep 2(9):846-56.[8] Freeman GJ, et al. Engagement of the PD-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. J Exp Med. 2000 Oct 2 192(7):1027-34.[9] 2018诺贝尔奖得主James P. Allison桂冠之下的荆棘与赤诚https://mp.weixin.qq.com/s/s773rk2aWrmVP0r5TpUg-Q[10] Jianjun Gao, et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 2017 May 23(5): 551–555.[11] Tang J, et al.Trends in the global immuno-oncology landscape. Nat Rev Drug Discov. 2018 Dec 17(12):922.[12] 细胞治疗干货 | 免疫细胞杀伤经典案例https://mp.weixin.qq.com/s/47krDPy-vsxS5AP91T1GDw[13] IVIS视角——回顾2018年Carl H. June教授团队在CAR T领域的相关研究成果https://mp.weixin.qq.com/s/NMukfK6zcG8foSc7l4q6_w[14] Smith EL, et al.GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells.Sci Transl Med. 2019 Mar 27 11(485).[15] Ng SSM, et al.Heterodimeric IL15 Treatment Enhances Tumor Infiltration, Persistence, and Effector Functions of Adoptively Transferred Tumor-specific T Cells in the Absence of Lymphodepletion. Clin Cancer Res. 2017 Jun 1 23(11):2817-2830.[16] Snijder B, et al.Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: interim results from a single-arm, open-label, pilot study. Lancet Haematol. 2017 Dec 4(12):e595-e606.[17] Lee JK, et al.Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat Genet. 2018 Oct 50(10):1399-1411.[18] Vlachogiannis G, et al.Patient-derived organoids model treatment response of metastatic gastrointestinal cancers.Science. 2018 Feb 23 359(6378):920-926.[19] L.Li, et al.P 3D High-Content Screening of Organoids for Drug Discovery. Comprehensive Medicinal Chemistry III 2017, Pages 388-415关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 从肿瘤放射治疗技术的“前世今生”看我国大型医疗设备国产化
    “癌症”已经成为人类健康的第一杀手。  根据中国肿瘤登记中心最新统计数据,2015年我国预计有429.2万新增肿瘤病例和281.4万死亡病例。如此高的新增病例和死亡率使得人们谈“癌”色变。那么癌症有哪些有效的治疗方法呢?  目前恶性肿瘤治疗主要依赖放射治疗、手术治疗和化疗。下面我们就讲讲肿瘤放射治疗技术的“前世今生”。 WilliamHenry Bragg  放射治疗作为一种物理治疗手段已有100多年历史。自1896年贝克勒尔发现天然放射性现象之后的第8年,也就是1903年,英国物理学家威廉亨利布拉格William Henry Bragg与克里曼Kleeman在实验中观测到:带电粒子束在射入物质时,根据其能量大小会在某个深度形成一个剂量高峰。科学界将这一伟大发现(估计这哥俩根本没意识到他们的这个发现有多牛掰多伟大~)称之为“Bragg峰”(中文译为“布拉格峰”)。  科学家们很快发现,这种带电粒子束与传统射线(就是X射线,γ 射线什么的~)相比优势相当明显。     Robert R. Wilson  1946年美国物理学家威尔森Robert R. Wilson(这哥们可是参与曼哈顿计划的著名核物理学家)大胆提出,可将这种具有物理优势的射线应用于医学领域。  威尔森认为,带电粒子束或可在治疗肿瘤领域有突出表现,他的依据是:传统高能X射线穿越人体时,沿途会不断释放大量能量,肿瘤前后的正常组织也受到了相当剂量的照射。而带电粒子束有独一无二的“布拉格峰”,射线进入人体后,高能带电粒子束在射程前段仅会释放较少能量,直至射程末端,巨大的能量才会彻底释放,从而大幅减少了肿瘤周边正常组织的照射剂量。     各种放射线在体内的剂量分布对比图  在该理念提出不到10年,也就是1954年,美国的劳伦斯伯克利(LBL)实验室就开始启动粒子束治疗研究,此后瑞典、日本、德国的研究机构相继开展质子及重离子治疗研究̷̷  兰州重离子加速器作为核物理学领域非常重要的研究工具,主要用来探索物质微观结构、物质起源和宇宙规律等基础物理研究,中国科学院近代物理研究所的科研人员利用兰州重离子加速器国家实验室得天独厚的有利条件,于上世纪90年代初,在国内率先开展重离子治疗肿瘤基础研究,进行了放射物理、放射生物学实验以及一些治癌技术的初步预研,为重离子临床治疗积累了一些必要的基础数据。  在2006年-2013年期间,共完成了213例前期临床实验研究,包括皮肤鳞癌、恶性黑色素瘤、神经纤维瘤、前列腺癌、原发性肝癌等。试验患者大部分为常规治疗复发或无效病例,经过1个疗程(12-16次治疗)的试验研究治疗,大部分患者4年肿瘤局部控制率和存活率均达到60%以上,成功治疗了许多位于重要器官的恶性肿瘤,疗效十分显著,使我国成为继美国、日本和德国之后全球第四个掌握重离子治癌技术的国家。  重离子治疗技术使肿瘤放疗的精确性达到当今最高水平,既能有效杀灭肿瘤细胞,又能最大限度保护周围健康组织,既能有效杀灭乏氧的或者放疗抵抗的肿瘤细胞,又对各个细胞周期的肿瘤细胞都具有不可逆性杀伤作用。重离子治疗的优势简单粗暴地概括起来就是四点:精度高、疗程短、疗效好、副作用小。因此无论是生物学效应还是物理学特性,重离子都被誉为是面向二十一世纪最理想的放疗用射线。  目前,世界各国都在竞相发展重离子肿瘤治疗设备的研制与相关机构的建设。但是重离子放疗因其设备复杂,建造和维护成本较高,目前全世界只有9家重离子医院。  中国科学院近代物理研究所研发设计的完全拥有自主知识产权的医用重离子加速器,也是目前世界上最小的重离子治疗专用加速器示范装置,已通过了科技部、环保部、商务部、国家质量监督检验检疫总局组织的国家重点新产品认定,并已于2012年先后在武威离子治疗示范中心和兰州重离子医学创智产业园区投入建设。其中武威重离子肿瘤治疗中心于2015年12月成功建成出束,即将开始临床试验治疗。     武威重离子治疗示范装置  这标志着我国第一台完全拥有自主知识产权的医用重离子加速器装置投入运行,也标志着我国大型医疗设备的国产化取得了重大突破。医用重离子加速器是我国大科学装置回馈社会、造福于民的典范,必将在人类征服癌症的奋斗过程中做出重要贡献。(中国科学院近代物理研究所供稿)  参考文献  [1]叶飞 李强《重离子治癌相关研究》 原子核物理评论 第7卷第3期 2010年9月  [2]王岚 戴小亚 全球质子重离子医院现状与展望 China Academic Journal Electronic House
  • 回放速递--“肿瘤微环境与免疫治疗”会议
    p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 仪器信息网于2020年08月19日举办了“肿瘤微环境与免疫治疗检测方法专题网络研讨会”,应广大网友呼应,现发布回放视频供大家查看。 /span /p p style=" text-indent: 0em text-align: center " span style=" text-align: justify text-indent: 2em " strong 点击对应报告图片即可跳转查看 /strong /span /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0a17c589-5468-42bc-80d2-004d06efa4ec.jpg" title=" 192042020200705.jpg" alt=" 192042020200705.jpg" / /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 肿瘤微环境(Tumor microenvironment, TME)不仅包括了肿瘤细胞本身,还有与肿瘤细胞有密切联系的成纤维细胞、免疫和炎性细胞、胶质细胞等各种细胞,同时也包括附近区域内的细胞间质、微血管以及浸润在其中的生物分子。而免疫和炎症是构成肿瘤微环境的两大核心。近年来, 随着多个PD-1免疫检查点抑制剂的获批上市以及多个肿瘤免疫临床试验获得的成功,带动了肿瘤免疫治疗的发展,然而肿瘤免疫治疗领域还存在很多未解决的问题, 如只针对某些特定的肿瘤有作用,总体临床应答率低, 肿瘤免疫联合治疗的安全性, 肿瘤免疫治疗后的复发等。& nbsp 针对肿瘤的耐药现象,医学研究做了大量的工作,包含耐药基因突变研究,肿瘤异质性等,目前肿瘤微环境作为一种新的概念也逐渐得到了临床的重视。肿瘤微环境长期以来都是肿瘤研究当中一个关键和核心的方向,对于认识肿瘤的发生、发展、转移等过程有着重要的意义,而且对于肿瘤的诊断、防治和预后亦有着重要的作用。 /span /p p style=" text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 1、 a href=" https://www.instrument.com.cn/webinar/video_113335.html" target=" _blank" 《Lipid Metabolic Reprogramming in Tumor-Associated Macrophages》--李咏生& nbsp |& nbsp 教授、主任医师-重庆大学附属肿瘤医院(点击查看回放) /a /span /strong /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_113335.html" target=" _blank" span style=" text-align: justify text-indent: 2em " /span /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113335.html" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/2733bcfa-945d-432c-8dd5-9cbe09c02a1c.jpg" title=" 李咏生.jpg" alt=" 李咏生.jpg" / /a /p p style=" text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 报告摘要: /span /strong span style=" text-align: justify text-indent: 2em " Metabolic reprogramming is critical for the polarization and function of tumor associated macrophages (TAMs) and carcinogenesis, whereas the underlying mechanism remains elusive. Here we show that monoacylglycerol lipase (MGLL) deficiency contributes to lipid accumulation in TAMs and tumor progression. MGLL regulates macrophage activation via CB2-TLR4 interaction. We also found that receptor-interacting protein kinase 3 (RIPK3), a central factor in necroptosis, is downregulated in hepatocellular carcinoma (HCC)-associated macrophages, which correlates with the promoted tumorigenesis, as well as the enhanced accumulation and M2 polarization of TAMs. RIPK3 deficiency in TAMs reduces reactive oxygen species (ROS) and significantly inhibits and caspase1-mediated cleavage of peroxisome proliferator-activated receptors (PPARs) that enables PPAR activation and facilitates fatty acid metabolism including fatty acid oxidation (FAO), as well as induces M2 polarization in the tumor microenvironment. Our findings provide the molecular basis for lipid metabolic reprogramming of TAMs and highlight potential strategies for targeting cancer immunometabolism. /span /p p style=" text-align: justify text-indent: 2em " strong a href=" https://www.instrument.com.cn/webinar/video_113336.html" target=" _blank" 2、《靶向T细胞代谢的肿瘤免疫治疗新探索》-武多娇& nbsp |& nbsp 副教授-复旦大学附属中山医院 /a (点击查看回放) /strong /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113336.html" target=" _blank" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ccc8bf7b-47aa-447f-b1ac-73f7151042e1.jpg" title=" 武多娇.jpg" alt=" 武多娇.jpg" / /strong /a /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 免疫细胞代谢重组是调控机体固有性和适应性免疫反应的重要机制之一。代谢是免疫细胞执行功能的能量基础,同时也影响着免疫细胞表型分化、功能活化、增殖等关键过程。目前有研究提示在多种疾病中,比如自身性免疫疾病,慢性炎症或者肿瘤中免疫细胞功能的过度激活或者抑制与其异常代谢活动密切相关;免疫代谢的稳态失衡和异常调控促进疾病发生发展。因此全面阐明疾病中免疫代谢机制,不仅增强我们对疾病的理解,也提供跨越病种的创新治疗选择。通过靶向代谢性通路,选择性干扰或增强肿瘤免疫相关疾病的代谢活动,从而达到重塑免疫功能及肿瘤免疫精准治疗的目的。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_113337.html" target=" _blank" strong 3、《载药囊泡激活的抗肿瘤免疫反应在肿瘤治疗中的应用》-唐科& nbsp |& nbsp 副教授-华中科技大学基础医学院(点击查看回放) /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113337.html" target=" _blank" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/2492654d-7307-42a0-bbc5-1fb4beb86b48.jpg" title=" 唐科.jpg" alt=" 唐科.jpg" / /strong /a /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 细胞外囊泡因其包含丰富的生物活性物质在细胞间传递信号为大家所熟知,其中包含蛋白质,糖类,RNA分子乃至少量的DNA分子。基于此,我们通过细胞外囊泡包裹化疗药物来治疗恶性肿瘤,前期研究结果发现,载药囊泡除了可以靶向杀伤肿瘤细胞外,其可以有效的激活抗肿瘤免疫反应,在肿瘤的生物免疫治疗中发挥重要的作用。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_113338.html" target=" _blank" strong 4、《NGS助力肿瘤免疫学和癌症转化研究》-王亚俊& nbsp |& nbsp 肿瘤市场经理-Illumina 因美纳(点击查看回放) /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113338.html" target=" _blank" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/e2037c2b-bb9f-44dc-bf5b-646157022800.jpg" title=" 王亚俊.png" alt=" 王亚俊.png" / /strong /a /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 近年来,免疫肿瘤学作为肿瘤学的一个新兴领域,在抗击癌症过程中取得了突破性进展。这些发展得益于科学家对肿瘤如何逃避自然免疫反应的深入研究。对肿瘤逃避免疫反应机制的深入研究也为肿瘤免疫药物开发带来新的契机,这些疗法或者提高了免疫系统抗击癌症或者限制了肿瘤逃避免疫反应实现抗击癌症。领先的免疫肿瘤学研究人员正在利用新一代测序技术(NGS)研究免疫治疗反应因子,发现生物标记物,并将基因组学应用于个性化免疫治疗。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_113334.html" target=" _blank" strong 5、《One& nbsp Tissue,& nbsp More& nbsp Answers”& nbsp ---& nbsp Cell& nbsp DIVE& nbsp 超多标组织成像分析技术最新进展及其应用分享》-谢晓哲& nbsp |& nbsp 细胞影像分析产品经理-Cytiva(点击查看回放) /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113334.html" target=" _blank" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/3ca8b65e-0f21-46de-9d07-386ea9fa4cc2.jpg" title=" Cytiva.jpg" alt=" Cytiva.jpg" / /strong /a /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 本报告将从技术背景和应用场景等方面介绍全新的 Cell DIVE 超多标组织成像分析技术,能够在一张组织切片上对超过 60 个 Biomarker 进行成像和分析,深度挖掘组织微环境的空间位置信息,细胞间的相互作用关系及定位等信息,从而完成精准的可视化定量分析,助力肿瘤免疫治疗、用药指导、预后判断和病人分层等研究。 /p p style=" text-align: center text-indent: 0em " strong 仪器信息网肿瘤微环境交流群 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 191px height: 254px " src=" https://img1.17img.cn/17img/images/202008/uepic/e2e1218d-8140-4c1f-89b6-bb97025afb8a.jpg" title=" 交流群 肿瘤微环境.jpg" alt=" 交流群 肿瘤微环境.jpg" width=" 191" height=" 254" / /p
  • 快速单层单次扫描技术实现质子闪疗,助力肿瘤治疗
    武汉大学医学物理团队针对目前的肿瘤放射治疗手段——闪疗(FLASH),首次在国际上提出了一种应用于质子闪疗技术的快速单层单次扫描技术(基于自主设计的静态和动态的脊形滤波器),可大幅缩短质子笔型束扫描时间。该方法能够满足FLASH所要求的高剂量率的同时,提供与标准的调强质子治疗可比的剂量分布,同时大幅缩短常规笔行束扫描时间,有望推进质子闪疗的临床转发步伐。相关研究成果以“基于脊形滤波器的质子闪疗”为题,近日发表在放射治疗的权威期刊《医学物理》。论文第一作者为武汉大学医学物理专业博士生张国梁,通讯作者为武汉大学教授彭浩。该项目由武汉大学、解放军总医院第五医学中心和无锡新瑞阳光粒子医疗装备公司共同参与。目前全球质子治疗中心和治疗患者数目的年增长速度超过15%,近年来在中国也进入了一个高速的发展阶段,多家肿瘤治疗机构都在筹建质子中心。质子闪疗有望在未来肿瘤治疗中扮演重要的角色,也为国产质子治疗相关技术赶超世界领先水平提供了机遇。据彭浩介绍,闪疗是一种在超高剂量率下进行的超快速放疗手段。和传统剂量率照射相比,闪疗可以在不改变肿瘤控制效果的同时,减少辐射对正常组织和器官的损伤。闪疗效应的一种可能解释是高剂量率导致组织中的氧气耗竭,使正常组织产生辐射抵抗,其他解释包括活性氧化物质和免疫反应。质子放疗由于其先天的剂量率和布拉格峰的优势,是FLASH临床应用的首选。在国际上,质子设备厂商(如IBA,VARIAN等)和诸多质子中心都在开展相关研究,如瑞典的IBA公司给出了基于Hedgehog的解决方案,美国的Varian公司也提出了类似光子放疗中多叶光栅的动态束流调制方案,其目的均为实现快速的束流调制。针对此问题,武汉大学医学物理团队与国产质子设备商新瑞阳光合作,首次提出了一种新型用于质子FLASH的扫描方案。质子笔型束扫描时间长的原因在于,多层能量切换时间(秒级),难以满足闪疗所需的瞬时高剂量率的要求。研究团队设计了一种单能量单层束流扫描技术,通过自主开发设计的脊形滤波器,可以一次照射完成束流调制和适形实现瞬时高剂量率的质子闪疗。相比IBA和Varian两家国外厂商的方案,研究团队的方法真正做到了基于Dose而非Fluence的调强,能在保证高剂量率的同时做到治疗靶区内的剂量适形,也能大幅的缩短治疗时间。以头颈部和肺部肿瘤为例,相比于传统的质子调强治疗,扫描时间可缩短5—10倍左右。相关论文信息: https://doi.org/10.1002/mp.15717
  • 表面增强拉曼光谱监测肿瘤的光动力治疗
    导读 细胞中的氧化还原平衡,是指氧化性物种和还原性物种之间的动态平衡,在大多数生理过程中发挥着至关重要的作用,尤其是细胞凋亡(名词解释)过程。通过提高肿瘤微环境 (名词解释)中活性氧(ROS)的浓度,打破氧化还原稳态,是介导癌细胞死亡,进而达到肿瘤治疗目的的有效手段。目前,基于纳米酶(名词解释)催化的一些新型化学动力治疗、光动力治疗方法被用于肿瘤治疗领域,旨在达到肿瘤细胞中原位催化产生ROS的效果。但是,大多数对于上述治疗的机理研究仍然只停留于纳米酶级联催化反应的结果,无法做到对整个治疗过程的监测。表面增强拉曼光谱(SERS)(名词解释)作为一种快速、无损的测试技术,其灵敏度甚至可以达到单分子级,在监测细胞内相关生化反应方面具有巨大潜力。将SERS技术应用于上述肿瘤的光动力治疗过程的监测,不仅能帮助进一步理解纳米酶催化过程的具体机制,更能得到肿瘤微环境中氧化还原状态的具体信息。研究亮点 近日,吉林大学宋薇教授、刘卓副教授和赵冰教授团队将一种金/碳量子点(Au@CDs)复合材料级联纳米酶用于对肿瘤细胞的光动力治疗,并且采用SERS技术监测了整个光动力治疗过程中肿瘤微环境内氧化还原平衡的打破与再修复过程。该成果以“SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@carbon dots for tumor catalytic therapy”为题发表在Light: Science & Applications,吉林大学博士研究生李林甲为第一作者,宋薇教授、刘卓副教授和赵冰教授为论文共同通讯作者。该研究工作得到了国家自然科学基金,吉林省教育厅科技研究计划等项目的支持。研究人员首先以CDs作为模板剂和封端剂设计构筑了一种具有级联模拟酶活性的核壳结构Au@CDs材料,相比于单独的金纳米粒子,CDs外壳避免了Au核的聚集,并提供了致密且均匀的SERS热点。在808 nm近红外光激发下,Au@CDs表现出近红外光致增强的类过氧化物(POD)酶和近红外光诱导的类谷胱甘肽氧化酶(GSHOx)活性:即在近红外光照射下,表面等离子体共振(SPR)激发的大量热载流子可以有效地参与反应,金纳米粒子典型的等离子体光热效应可以增强POD活性;另外Au@CDs介导谷胱甘肽(GSH)参与反应,加速ROS的生成,呈现出光热增强的光动力治疗效果。这种级联纳米酶催化过程将迅速打破肿瘤细胞内的氧化还原稳态,产生大量ROS,最终导致癌细胞凋亡。图1 Au@CDs的级联纳米酶催化机制及其光热增强的光动力治疗肿瘤过程。为了监控这一催化过程,研究人员利用SERS技术,通过对四甲基联苯胺(TMB)底物分子的氧化产物的识别,实现了对光动力治疗肿瘤过程中,肿瘤微环境内活性氧动态变化过程的监控。即在近红外激光的辐照下,肿瘤细胞内活性氧水平会随着Au@CDs催化反应的开始而迅速上升,在很短的时间内(3min)即达到拉曼信号的峰值,实现氧化应激损伤效果;而激光辐照结束后,肿瘤微环境则会在一个相对较长的时间(33 min)进行自修复,即过表达的GSH等还原性物质消耗过量ROS的抗氧化过程,最终肿瘤微环境回到氧化还原平衡态。图2 (a-c)光动力治疗肿瘤过程中拉曼信号的变化及(d-e)对应的肿瘤微环境内氧化还原平衡的打破和再修复过程。总结与展望 Au@CDs级联纳米酶与传统的纳米药物和免疫治疗剂相比,具有通过级联反应中的光热性质促进光动力治疗效果的优点,能快速提高肿瘤内ROS的浓度,打破氧化还原稳态,进而达到肿瘤治疗目的,由于过表达的GSH等还原性物质消耗过量ROS,抑制了ROS向细胞外扩散。通过SERS策略,获得了光动力治疗过程中完整的氧化应激过程,对基于肿瘤微环境氧化应激损伤的光疗机制进行了深入的研究,为肿瘤光动力治疗的实时监测提供了最有价值的机制和数据支持。论文信息 Li, L., Yang, J., Wei, J. et al. SERS monitoring of photoinduced-enhanced oxidative stress amplifier on Au@carbon dots for tumor catalytic therapy. Light Sci Appl 11, 286 (2022).https://doi.org/10.1038/s41377-022-00968-5
  • Science|发现肿瘤免疫治疗新潜在靶点
    8月4日,中国科学技术大学生命科学与医学部周荣斌、江维教授团队与转化医学与创新药物国家重点实验室唐任宏团队合作,在Science以“First Release”的形式在线发表题为“Pituitary hormone α-MSH promotes tumor-induced myelopoiesis and immunosuppression”的“Research Article”研究论文,报道了下丘脑-垂体轴及其产生的激素α-MSH在介导肿瘤诱导的髓系造血和免疫抑制中的关键作用。肿瘤诱导的免疫抑制是其逃避免疫监视和攻击的重要原因。靶向PD-1和CTLA-4等靶点的免疫检查点治疗(ICT)策略在一定程度上能够逆转肿瘤免疫抑制并取得了较好的治疗效果,但临床响应性还比较低,需要进一步揭示肿瘤免疫抑制机制并寻找新的免疫治疗靶点和策略。肿瘤患者经常遭受抑郁、恐惧、焦虑等精神或情感应激,且流行病学研究发现长期抑郁、压力会加速肿瘤的发展并削弱肿瘤免疫治疗的效果,表明神经系统及其介导的应激反应在肿瘤生长和免疫调控中发挥重要作用。下丘脑-垂体(HP)轴是神经内分泌系统的重要组成部分,也是机体感应应激反应的重要调节中枢。过去的研究发现HP可通过产生激素如促肾上腺皮质激素、促甲状腺激素和催乳素调节免疫反应。此外,在肿瘤患者中HP产生的雌激素、孕激素和糖皮质激素等一些下游激素或效应物显著升高,提示神经内分泌系统和HP轴可能调节肿瘤免疫,但是HP轴在肿瘤免疫中的作用及免疫系统感应肿瘤诱导的神经应激的机制尚不清楚。在该项研究中,研究人员通过构建不同的肿瘤模型(ICT抵抗的LLC和B16F10-GMCSF肿瘤以及敏感的MC38和MCA205肿瘤)来研究下丘脑-垂体轴在肿瘤免疫中的作用,发现荷瘤小鼠血清中α-MSH浓度显著升高,但垂体产生的其他激素如内啡肽、促甲状腺激素、催乳素、卵泡刺激素、黄体生成素等无显著差异。与此同时,研究人员发现荷瘤小鼠下丘脑室旁核(PVH)神经元被激活,并且垂体中叶负责编码α-MSH合成的蛋白POMC的表达也显著增强,表明肿瘤可促进下丘脑活化和垂体α-MSH产生。为了进一步研究POMC及其产物α-MSH在肿瘤免疫中的作用,研究人员利用立体定位注射腺病毒载体的的方式敲低垂体Pomc基因的表达,随后进行荷瘤实验。结果显示敲低垂体Pomc的表达能够显著抑制不同皮下肿瘤的生长。同时,在B16F10肺转移模型和LLC原位肿瘤模型中,敲低垂体Pomc的表达也能够显著抑制肺部转移灶数目和肺部结节数量。进一步研究人员发现敲低垂体Pomc表达能够增强抗肿瘤免疫能力,同时抑制髓系造血和肿瘤相关髓系细胞(MDSCs和TAMs等)的聚集。这些结果表明垂体来源的α-MSH通过诱导髓系造血和免疫抑制促进肿瘤生长。为了探究α-MSH通过何种受体参与调控肿瘤诱导的髓系造血和免疫抑制,研究人员检测了α-MSH的受体的表达情况,发现MC5R在骨髓造血前体细胞高表达。通过构建Mc5r全身或条件型缺陷小鼠进行荷瘤实验,研究人员发现Mc5r缺陷可以显著地增强抗肿瘤免疫并抑制不同类型肿瘤的发生发展。此外,Mc5r缺陷可以抑制肿瘤诱导的髓系造血。更为重要的是,不管是ICT敏感还是抵抗的肿瘤模型中,利用多肽抑制剂阻断MC5R均可抑制肿瘤生长,且MC5R多肽抑制剂与抗PD-1抗体联合使用可提高ICT的效率。最后,研究人员探讨了上述研究的临床相关性,发现非小细胞肺癌(NSCLC)和恶性头颈癌(HNC)患者血清中α-MSH浓度显著升高并与外周血中的MDSCs比例呈正相关。论文链接:10.1126/science.abj2674
  • 肿瘤免疫治疗出新,国产CAR-T加速发展
    p    strong 在日益增长的病患需求、不断推进的监管制度和大量资金投入研发及合作 的情况下,国内的细胞治疗产业发展迅速,目前已形成了近百家不同规模的公司。南京传奇生物的 CAR-T 疗法获得国内首个按药物申报的临床批 件。截至 2018 年 5 月,另有 13 家企业的 19 个 CAR-T 项目临床申请获得 CDE 受理,绝大多数都是以 CD19 为靶点。预计未来 3-5 年,国产 CAR-T 产品将陆续上市。 /strong /p p    span style=" color: rgb(146, 208, 80) font-size: 18px " strong 1CAR-T 细胞免疫疗法简介 /strong /span /p p   CAR-T 细胞免疫疗法(Chimeric Antigen Receptor T-Cell Immunotherapy)指的是嵌合抗原受体T 细胞免疫疗法,是细胞免疫疗法的一种,也是目前临床上较为有效的治疗恶性肿瘤的方式之一。 /p p    span style=" color: rgb(0, 176, 240) " strong 1.1 治疗原理及特点 /strong /span /p p   CAR-T 的治疗原理是从肿瘤患者外周血中分离出自身T 细胞,通过基因转导的方法,将能特异性识别肿瘤抗原的CAR 结构转入T 细胞,体外扩增培养后,回输患者体内,杀伤具有相应特异性抗原的肿瘤细胞。细胞免疫治疗的本质上是通过人体自身免疫系统对病变组织进行攻击,故治疗效果更为显著,潜在的毒副作用相对更可控。因输入的免疫细胞可在患者体内增殖,故治疗的持久性也更有保障。 /p p   CAR-T 细胞免疫治疗在临床试验中显示出良好的靶向性、杀伤性和持久性,在治疗血液肿瘤方向有突破性进展,并且正在尝试用于实体瘤,具有广阔的发展空间。 /p p style=" text-align: center " img width=" 599" height=" 329" title=" 1.jpg" style=" width: 483px height: 271px " src=" https://img1.17img.cn/17img/images/201808/insimg/1fd05cef-9bc0-4bff-a36c-eee6bbbcc17b.jpg" / /p p    span style=" color: rgb(0, 176, 240) " strong 1.2 较传统疗法优势显著 /strong /span /p p   传统肿瘤治疗方法主要有:手术切除、放化疗、小分子靶向药物、单抗药物以及造血干细胞移植。其中,手术切除仅对早期患者有效,若癌细胞转移则效果不佳 放化疗较普遍,但选择性差,对正常组织损伤大 靶向药物(包括小分子和单抗)综合疗效较好,毒副作用相对较小,但也面临刺激肿瘤细胞基因变异、产生药物耐受性等问题。造血干细胞移植疗效迅速,但往往供体选择困难,且术后易发生排斥反应。细胞免疫疗法是肿瘤治疗最前沿领域,临床数据显示,相较其它肿瘤治疗方法,CAR-T疗法具备以下多方面优势: /p p   更“精准”:由于CAR-T 细胞是应用基因修饰病人自体的T 细胞,利用抗原-抗体结合的机制,能克服肿瘤细胞通过下调MHC 分子表达以及降低抗原递呈等免疫逃逸。 /p p   更“灵活”:CAR-T 既可以利用肿瘤细胞的蛋白质抗原,又可利用肿瘤细胞的糖脂类非蛋白质抗原,扩大了肿瘤抗原靶点范围。 /p p   更“广谱”:鉴于很多肿瘤细胞表达相同的肿瘤抗原,针对某一种肿瘤抗原的CAR基因构建一旦完成,便可以被广泛利用。 /p p   更“持久”:通过基因工程修饰可在CAR-T 结构中加入促进T 细胞增殖与活化的基因序列,能保证T 细胞进入人体后还可以增殖。CAR-T 细胞具有免疫记忆功能,可以长期在体内存活。 /p p style=" text-align: center " img width=" 600" height=" 446" title=" 2.jpg" style=" width: 493px height: 351px " src=" https://img1.17img.cn/17img/images/201808/insimg/c44d0e48-640d-4d87-9054-338c3dffc0d7.jpg" / /p p span style=" color: rgb(0, 176, 240) " strong   1.3 目前上市产品 /strong /span /p p   2017 年,FDA 批准了2 个CAR-T 产品上市:,诺华的CAR-T 疗法Kymriah(Tisagenlecleucel,CTL019)、,Kite Pharma 的CAR-T产品Yescarta。2 个产品具有类似的结构。首先,都以CD19 蛋白为靶点。CD19在B 细胞白血病和淋巴瘤中广泛表达,是CAR-T 技术研究相对成熟也是研发最热门的靶点 其次,皆为第二代CAR-T,相比第一代多了细胞内共刺激分子,有利于增强抗肿瘤活性,且CAR-T 细胞的增殖性和持久性都更强。第二代CAR-T 有较多的临床数据支持,稳定性高且技术工艺较为成熟,是目前的主流技术。未来,随着新结构在临床上的试验推广及生产工艺的改进,第三代、第四代CAR-T 产品更为优良的疗效值得期待。 /p p style=" text-align: center " /p p style=" text-align: center " img width=" 599" height=" 427" title=" 3.jpg" style=" width: 486px height: 360px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/8416a160-d7d6-4d7d-9f6a-6e60bfaaed41.jpg" / /p p style=" text-align: center " img width=" 600" height=" 562" title=" 4.jpg" style=" width: 497px height: 462px " src=" https://img1.17img.cn/17img/images/201808/insimg/c8e275bc-1e64-418b-a365-6e3c1b95babd.jpg" / /p p   span style=" color: rgb(146, 208, 80) font-size: 18px " strong  2国内外研发动态 /strong /span /p p span style=" color: rgb(0, 176, 240) " strong   2.1 CAR-T /strong /span /p p   2017 年,CAR-T 研究进入白热化阶段,主要由欧美制药企业引领。其中,诺华、Kite Pharma和Juno Therapeutics 是该领域的三只领头羊,无论从产品研发、临床研究还是学术推广上都有较为深厚的积淀。 /p p   诺华和Kite Pharma /p p   诺华和Kite Pharma 处于全球CAR-T 研发第一梯队,分别上市了全球首个和第二个CAR-T产品,在肿瘤免疫治疗上具有划时代的意义。两个企业均就已在美获批的适应症向欧洲EMA 提交了Kymriah 和Yescarta 的上市申请,且就诸多其他适应症积极开展临床试验,若实验进展顺利,预计未来5 年可获批治疗其他多种类型肿瘤。同时,两家公司也在开发针对其他靶点的CAR-T 产品(见表2),主要是以BCMA 为靶点治疗多发性骨髓瘤,均处于临床I 期。 /p p   Juno 和Celgene /p p   Juno Therapeutics 致力于肿瘤细胞免疫研究,是该领域的先驱公司之一,其JCAR015 进度靠前,本有希望成为第一款获批的CAR-T 产品。但在2016 年7 月和11 月,相继有3名和2 名急性淋巴细胞白血病患者在接受JCAR015 治疗的II 期临床试验时,因神经毒性引发的脑水肿死亡,临床试验叫停。在经历了几个月的研究分析后,公司并没能找到确切的原因,因此于2017 年3 月正式宣布放弃JCAR015。竞争对手诺华和Kite Pharma 获得领先。尽管JCAR015 出师未捷,Juno 的CAR-T 研发管线依然十分丰富。同样以CD19 为靶点治疗非霍基金淋巴瘤的还有2 个产品-JCAR017 和JCAR014,均处于临床I 期。不同于JCAR015 使用CD28 作为共刺激结构域、逆转录病毒作为表达载体(类似Kite Pharma 技术),JCAR017 和JCAR014 均以4-1BB 和慢病毒作为共刺激结构域和表达载体(类似诺华技术)。JCAR017 治疗弥漫性大B 细胞淋巴瘤(DLBCL)的I 期临床数据显示,3 个月和6 个月内,分别有74%和50%的患者得到完全缓解,且3 级或以上的细胞因子释放综合症和神经毒性的发生率仅为1%和14%,安全性良好。公司计划于2018 年提交上市申请。 /p p    span style=" color: rgb(0, 176, 240) " strong 2.2 未来的发展方向-新靶点、新适应症 /strong /span /p p   目前,以CD19 为靶点的CAR-T 产品研究相对较深入,已上市的2 个产品均是以CD19为靶点治疗血液肿瘤。全球来看,CAR-T 的研发管线迅速扩张,既包括新靶点的探索,如BCMA、CD123、CD33 等 也包括新适应症的拓展,如由血液肿瘤向实体瘤进阶。全球已有多家公司的项目推进到了临床阶段,预计未来将陆续有针对不同肿瘤的CAR-T 产品问世。 /p p style=" text-align: center " img width=" 600" height=" 410" title=" 5.jpg" style=" width: 491px height: 322px " src=" https://img1.17img.cn/17img/images/201808/insimg/4e49703d-75a2-4d35-bb6b-c2870d4805eb.jpg" / /p p   span style=" color: rgb(0, 176, 240) " strong  2.3 国内发展逐渐步入正轨 /strong /span /p p   伴随CAR-T 在国际上的快速发展,我国细胞免疫疗法也大致经历了宽松放开(第一阶段)、“魏则西”事件后的短暂停滞(第二阶段)以及现在的大浪淘沙、行业洗牌(第三阶段)。行业有望向有序、规范、健康的方向稳步前进。 /p p   第一阶段-全面放开、秩序混乱(2016 年以前) /p p   由于CAR-T 疗法具有特殊性,不同于常规药物,2009 年卫生部将免疫细胞治疗技术纳入可进入临床研究和应用的第三类医疗技术管理。由于监管体制相对宽松,部分医疗机构科室在没有经过卫计委批准的情况下,纷纷开展免疫细胞治疗项目,各种形式的临床试验和临床应用项目迅速增加。 /p p   第二阶段-紧急叫停、举步维艰(2016 年) /p p   2016 年4 月,“魏则西”事件经过媒体宣传持续发酵,在社会上造成巨大影响,免疫细胞治疗技术的滥用引起监管部门高度重视。5 月,卫计委召开关于规范医疗机构科室管理和医疗技术管理工作的电视电话会议,明确要求所有类型的免疫细胞治疗技术停止应用于临床治疗,仅限于临床研究。包括CAR-T 在内的免疫细胞治疗在国内进入停滞期。 /p p   第三阶段-有序放开、步入正轨(2017 年至今) /p p   2016 年12 月,CDE 发布了关于《细胞制品研究与评价技术指导原则》(征求意见稿)的通知,根据征求意见稿,细胞制品未来将按药品评审原则进行处理。2017 年12 月,《细胞治疗产品研究与评价技术指导原则(试行)》发布,提出了细胞治疗产品从早期研发到生产、从药学研究、非临床研究,到临床研究阶段应遵循的一般原则和基本要求,初步规范了细胞治疗产品的研究、开发与评价方法,未来仍将逐步完善、细化与修订。指导原则框架和内容科学合理,符合细胞治疗产品作为药品研发的规律,这是行业的大洗牌,促使提高产业门槛和监管力度,一方面让缺乏核心技术、不符合水准的企业自行淘汰,另一方面鼓励合格研发机构的细胞治疗产品申报,进一步推动我国细胞治疗药品产业的发展和壮大。 /p p style=" text-align: center " img width=" 600" height=" 152" title=" 5.1.jpg" style=" width: 495px height: 113px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/18ae45ad-cc46-4854-8c54-66f7f765c8e5.jpg" / /p p style=" text-align: center " img width=" 598" height=" 283" title=" 6.jpg" style=" width: 494px height: 234px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/db24ffdf-043d-43cc-b801-acf17ea03adc.jpg" / /p p   span style=" color: rgb(0, 176, 240) " strong  2.4 中国位列第一梯队,热门靶点竞争激烈 /strong /span /p p   在全世界范围内,CAR-T 疗法的临床试验正在大幅增加。美国是开展CAR-T 临床试验最早的国家,据Clinic Trail.gov 的统计数据,截至2017 年4 月,美国登记开展CAR-T 临床研究达165 项,居全球首位。中国紧跟其后,共计登记开展了158 项CAR-T 研究,数量上仅次于美国,超过全球注册总数的40%,并呈逐年递增趋势。 /p p style=" text-align: center " img width=" 598" height=" 370" title=" 7.jpg" style=" width: 482px height: 309px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/6f2fbe2f-9c36-45ff-a858-597e856407cb.jpg" / /p p style=" text-align: center " img title=" 8.jpg" style=" float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/ffcb942b-2dc6-4520-af66-5d8f6e18165d.jpg" / /p p style=" text-align: center " img title=" 9.jpg" style=" float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/3d4e9c0b-e584-4788-a0ab-c6ed48799147.jpg" / /p p style=" text-indent: 2em " 靶点决定适应症,从适应症上看,有75%的在研CAR-T 项目拟用于白血病、淋巴瘤等血液肿瘤,仅有小部分的在研项目针对肝癌、肺癌等实体肿瘤,与美国在研CAR-T 项目的适应症分布也非常类似。这是因为在早期的临床试验中,CAR-T 仅被证实可以显著改善晚期血液肿瘤患者的预后,但在实体瘤上的突破直到近几年才有所进展,各种实体瘤是CAR-T 继血液肿瘤之后的重要发展方向。 /p p style=" text-align: center text-indent: 2em " img width=" 599" height=" 219" title=" 10.jpg" style=" width: 509px height: 188px " src=" https://img1.17img.cn/17img/images/201808/insimg/8fda02ba-f729-41c9-9a59-ef7087882217.jpg" / /p p    span style=" color: rgb(0, 176, 240) " strong 2.5 多个产品临床申请获得受理,3个纳入优先审评 /strong /span /p p   在日益增长的病患需求、不断推进的监管制度和大量资金投入研发及合作的情况下,国内的细胞治疗产业发展迅速,目前已形成了近百家不同规模的公司,且有多家已建立产业化基地,覆盖了从细胞存储到细胞制剂制备、细胞治疗技术研究等各方面。CAR-T 细胞治疗在技术上愈发成熟、安全、高效,制备工艺和临床使用规程也将更加标准化、自动化、精准化。临床申报方面,南京传奇生物的CAR-T 疗法获得国内首个按药物申报的临床批件。截至2018 年5 月,另有13 家企业的19个CAR-T 项目临床申请获得CDE 受理,绝大多数都是以CD19 为靶点。预计未来3-5 年,国产CAR-T 产品将陆续上市。 /p p style=" text-align: center " img width=" 599" height=" 425" title=" 11.jpg" style=" width: 498px height: 352px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/4875bb32-e1ed-415f-a32d-196db2b1463c.jpg" / /p p style=" text-align: center " img width=" 600" height=" 290" title=" 12.jpg" style=" width: 494px height: 240px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/ed2c137f-3bba-4617-be9f-6b81cd20fdb8.jpg" / /p p style=" text-align: center " img width=" 600" height=" 204" title=" 13.jpg" style=" width: 487px height: 161px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/254aa5be-19df-448a-bba2-52818afd313b.jpg" / /p p   目前CAR-T 是肿瘤精准治疗的热点前沿领域,国内有近百家不同规模的公司都在从事自主或合作研发,未来免疫细胞治疗将成为一片红海市场,最早上市的产品可占有抢占市场的先发优势。若能领先外资企业产品在国内上市,更有利于在激烈的市场竞争中立足。然而目前CAR-T 细胞制备仍然依赖传统的人工操作,细胞质量和稳定性都难以保证,疗效也会因此大打折扣。CAR-T 按照药物申请上市,必然要通过生物制品质量控制,可预见自动化生产是未来的大趋势,一方面可满足监管机构对药品制备的要求,另一方面便于实施工艺优化,在大规模产业生产条件下(如数百上千份)降低生产成本,才能在竞争中立于不败之地。 /p p & nbsp /p
  • 瓦里安医疗系统将在ChinaMed上展示全新放射肿瘤治疗系统
    瓦里安医疗系统将在北京举行的 ChinaMed展会上展示采用影像引导技术的全新放射肿瘤治疗系统:TrueBeam(TM)   瓦里安还将在第23届国际医疗仪器设备展览会期间举办放射治疗新技术研讨会   提供肿瘤放射治疗全面解决方案的全球领先生产企业瓦里安医疗系统公司 (Varian Medical Systems, Inc.) (NYSE: VAR) 将于2011年3月25至27日在北京召开的第23届国际医疗仪器设备展览会(International Medical Instruments and Equipment Exhibition,简称“ChinaMed”)上展示其采用影像引导技术完成放射治疗的全新 TrueBeam(TM) 系统。   TrueBeam 是一台全新设计的系统,为快速和精确地治疗肿瘤而设计 -- 包括针对随着患者呼吸而移动的肿瘤进行治疗。TrueBeam 可以应用于肺部、胸部、前列腺、头颈部和其他类型肿瘤的治疗,其所拥有的大量技术创新,能够更好的动态完成同步影像、患者定位、运动管理和治疗实施。通过其高强度模式 (High Intensity Mode),TrueBeam 能够迅速、准确地给予非常高的剂量投照,速度是前一代技术的两倍以上。   瓦里安医疗系统公司中国区市场商务经理张岭 (Ling Zhang) 表示:“TrueBeam 系统去年四月份在美国首次推出,此次将是公司首次面向中国的医疗专业人士展示该系统。我们为此次有机会展示TrueBeam这个高性能的癌症治疗设备感到非常自豪。”   瓦里安还将在这届 ChinaMed 展会上重点展示其 X 射线产品,包括技术先进的新型 X射线球管和平板探测器。这些新产品旨在共同作用改善成像品质、提高病人流通量以及降低每次成像成本。瓦里安中国X 射线产品中国区总经理潘小力 (Hsiao-Li Pan) 表示:“由于我们在北京工厂扩大了库存和产品支持服务,我们的客户将能够充分获得数字放射治疗带来的好处。”   新技术研讨会   此外,瓦里安将于2011年3月25日下午举办的新技术研讨会上向来自全国各地25家重点医院的约60名来宾正式推出 TrueBeam。发言人将包括加州大学圣地亚哥分校 (University of California, San Diego) 医疗中心的放射肿瘤医生 Joshua Lawson 医学博士以及佛罗里达州墨尔本的 MIMA Cancer Center 首席医学物理师 Joseph Ting 博士。Lawson 博士将谈论 TrueBeam 系统的临床优势。Ting 博士将着重介绍该系统的高强度模式,该模式大大缩短了治疗时间,使一些原先不可能实现的治疗成为可能。   瓦里安亚太区销售与市场部副总裁 Thomas P. Duffy 表示:“瓦里安为能在今年的ChinaMed 上展示这个新的世界级肿瘤治疗解决方案感到非常荣幸。在全球各地都有像 Lawson 博士和 Ting 博士这样的临床专家先行一步,开始使用 TrueBeam 提供准确的影像引导手段,为癌症患者提供高度个性化的先进治疗。”   瓦里安医疗系统公司简介   总部位于加州帕洛阿尔托的瓦里安医疗系统公司是提供癌症及其他疾病放射治疗,放射外科治疗,质子治疗和近距离放射治疗设备及相关软件的全球领先生产企业。该公司提供用于综合癌症治疗机构、放射治疗中心和医学肿瘤学治疗机构的信息管理软件。瓦里安医疗系统还是应用在医学,科学和工业应用领域的 X 射线成像管和数字探测器以及货物检测和工业检测 X 射线成像产品的主要供应商。瓦里安医疗系统拥有约5400名员工,他们分布在该公司位于北美、欧洲和中国的生产机构以及全球约70个销售和支持机构。该公司的北京工厂涵盖肿瘤治疗设备生产业务、面向放射治疗临床专业人士的教育中心、客户服务中心以及 X 射线产品装配与服务。
  • 科学仪器六月沙龙:常见肿瘤临床诊断及治疗
    p & nbsp strong 仪器信息网讯 /strong 2017年6月19日下午,由首都科技条件平台检测与认证领域中心、慕尼黑展览(上海)有限公司主办,首都科技条件平台生物医药领域中心、首都科技条件平台北京大学研发实验服务基地协办的“常见肿瘤临床诊断及治疗”主题沙龙活动在北京UCoffee悠咖啡成功举办。来自主办方、科研院校、仪器厂商及检测机构等20余名代表参加了本次沙龙。仪器信息网作为支持媒体也积极参加了本次活动。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/6409ac95-7a7a-46f8-93c8-7eb31861bc70.jpg" / /p p style=" text-align: center " strong 活动现场 /strong /p p   本次沙龙活动由北京科学仪器装备协作服务中心协作部部长苏立清主持,她谈到,肿瘤是一种高死亡率且发病率逐年升高的疾病,严重威胁人类的健康。近年来,随着医学影像学及体外诊断试剂技术的迅速发展,临床医学在肿瘤的早期诊断、疗效评估以及预后转归等方面均取得可喜的研究进展。为使肿瘤诊疗临床方面医务工作者、医疗影像医疗仪器研发工作者、体外诊断领域工作者深入了解肿瘤的诊疗全过程,本次沙龙特别邀请北京大学肿瘤医院放射科主任徐刚教授、中国人民解放军火箭军总医院放疗科赵志强教授作精彩报告并与大家座谈交流。 br/ /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/53f6d437-eacd-4b0b-a10e-041d640fad1b.jpg" / /p p style=" text-align: center " strong 北京科学仪器装备协作服务中心协作部部长 苏立清 /strong /p p   北京大学肿瘤医院放射科主任徐刚教授主讲了题为《癌症的早期诊断》的精彩报告,从癌症早期症状、望闻问切视触叩听、早期诊断新技术三个部分讲解了癌症早期诊断的全过程。癌细胞虽然能无限增殖化,但其修复能力差。因此,越早发现,越早治疗,癌症越有可能被治愈。徐教授谈吐风趣幽默,深入浅出地讲解了直肠癌、胃癌、食管癌、肺癌、胰腺癌、膀胱癌、皮肤癌、口腔癌、乳腺癌等多种癌症的早期症状。这些早期症状包括疼痛、大小便习惯改变、消瘦、发热、出血和分泌物、溃疡、结节肿块等,只要留心这些早期异常信号,及时治疗,就能将癌症消灭在萌芽阶段。徐刚特别介绍了一种肿瘤标记物——血清甲胎蛋白(AFP),可通过检测该标记物来诊断肝细胞癌、生殖细胞癌、胚胎细胞癌、卵巢畸胎瘤、胃癌、胆道癌、胰腺癌等癌症。但是当患有肝炎、肝硬化、肠炎以及遗传性酪氨酸血症等良性病时,AFP也会升高,因此,在诊断时需要注意这一情况。 br/ /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/be1cd266-728c-4c59-b01b-a2755553d879.jpg" / /p p style=" text-align: center " strong 北京大学肿瘤医院放射科主任 徐刚教授 /strong /p p   中国人民解放军火箭军总医院放疗科赵志强教授在题为《常见肿瘤临床诊断及治疗概述》的报告中给大家介绍了肿瘤的综合治疗。综合治疗是指根据病人的身心情况,肿瘤的具体部位病理类型、侵犯范围和发展趋向,结合细胞分子生物学的改变,有计划地、合理地使用现有的多学科各种有效治疗手段,以最适当的费用取得最好的效果,同时最大限度的改善病人的生活质量。肿瘤综合治疗应遵循局部与全身、分期治疗、个体化治疗、生存率与生存质量并重、成本与效率并重、中西医并重的多项原则。之后,赵志强教授着重讲解了肿瘤的发生部位及诊治特点。发生在头部的常见肿瘤有脑胶质瘤、脑膜瘤、脑垂体瘤等,临床上多表现为头晕、头痛,脑胶质瘤还能引起为癫痫,治疗多以手术、伽马刀治疗为主。胸部常见肿瘤有食管癌、肺癌、乳腺癌等,食管癌多表现为进食哽咽感、吞咽困难等,治疗上多视具体情况以手术、放疗、化疗及靶向治疗相结合的疗法。腹部常见肿瘤有肝癌、胰腺癌、直肠癌等,肝癌、胰腺癌临床上多表现为腹胀、腹痛,直肠癌多表现为便秘、便血,治疗上多采用手术、放疗,对于肝癌有时也会采取介入、射频疗法。 /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/f27bf2a8-3e53-4ff4-a37e-5cbb459b6771.jpg" / /p p style=" text-align: center " strong 中国人民解放军火箭军总医院放疗科 赵志强教授 /strong /p p   本次沙龙活动现场气氛热烈,专家同与会人员面对面交流,为提问者当面答疑,成果显著。 br/ /p p style=" text-align: center " img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201706/insimg/ee84bb88-1c29-430f-941c-4b5a4c2de412.jpg" / /p p style=" text-align: center " strong 现场提问互动环节 /strong /p p   让我们共同期待下次科仪沙龙快些到来吧! /p
  • 昊诺斯关于肿瘤免疫治疗的讲座在拜西欧斯成功举办
    昊诺斯关于肿瘤免疫治疗的讲座在拜西欧斯成功举办编者按:上周,昊诺斯大仪器部销售工程师以及艾森厂家技术工程师应邀在用户单位拜西欧斯(北京)生物技术有限公司(简称:拜西欧斯)举办讲座,讲座主要涉及肿瘤免疫治疗方面,除此之外,昊诺斯厂家艾森的技术工程师还给拜西欧斯的老师们介绍了艾森RTCA技术以及部分艾森产品,并就其他相关问题进行了广泛交流。昊诺斯讲座进行中产品消息 | 交流 | 分享昊诺斯讲座进行中产品消息 | 交流 | 分享用户单位简介: 拜西欧斯(北京)生物技术有限公司(简称:拜西欧斯)成立于2009年,注册资金1000万元,是一家专业从事医药产品研发、转化、推广和应用的国家高新技术企业。拜西欧斯坐落于北京市丰台科技园。拜西欧斯拥有多项具备自主知识产权的核心技术,如单克隆抗体制备技术、双特异性抗体制备技术、肽类药物制备技术,已申请或正在申请国内发明专利、PCT专利,未来拜西欧斯将产生很好的经济效益和社会效益。目前,拜西欧斯在研产品17种,包括注射用缺血性脑卒中神经保护肽、自体gp96复合物肿瘤疫苗冻干粉针、抗体活化的靶向T细胞注射液、CD19CAR-T,HER2CAR-T,PD-1CAR-T细胞注射液、人源化BIHER2和BICD19双特异性抗体等。 访问http://www.herosbio.com/pro.asp?thebigclassid=15查看更多艾森产品信息!扫码关注昊诺斯微信公众号
  • IVIS视角:“饿死”那些癌细胞——饥饿疗法在肿瘤治疗领域的应用
    肿瘤在体内只有一个目标,就是不停地生长!生长!生长!在生长的过程中不可避免的要消耗掉大量的氧气和营养物质,所以肿瘤会构建自身的血管网络系统用于养分和氧气的输送,这些肿瘤内部搭建的血管就是肿瘤的能量供应站。因此切断肿瘤的主动营养供应,破坏肿瘤的能量代谢系统,就能抑制肿瘤细胞的增殖,从而“饿死”癌细胞。但是,这种能量切断不是广义上的让病人减少进食,或者少吃营养的东西,这样会使正常组织得不到足够的能量导致免疫力下降。真正的饥饿疗法具有选择性,可以特异性的抑制肿瘤细胞的代谢过程(图1),实现对肿瘤的精准致命打击。图1 特异性抑制肿瘤细胞能量代谢级联纳米酶靶向肿瘤“饥饿”环境通过级联纳米催化药物的设计,将葡萄糖氧化酶(GOx)和过氧化氢酶(CAT)通过pH响应的聚合物交联形成级联纳米酶,通过血清蛋白将纳米酶和抗肿瘤前药复合形成纳米药物。肿瘤的酸性环境可以将纳米酶释放,COx迅速消耗肿瘤细胞内的葡萄糖和氧气,产生饥饿和缺氧环境,切断肿瘤能量供应的同时提升前药系统的化学治疗效果,并且消耗葡萄糖产生的毒副产物H2O2也可以快速被CAT分解,以避免产生全身毒性。这种结合靶向饥饿环境并结合缺氧化学治疗的方案可以有效抑制肿瘤细胞的增殖,不会产生毒副作用,通过小动物光学成像可以清楚的看到级联纳米酶颗粒在肿瘤部位的富集随时间的变化情况,以及48小时后纳米酶颗粒在各个脏器中的分布情况。图2 基于级联纳米酶的纳米药物设计以及在体内的靶向分布情况参考文献Ma Y, Zhao Y, Bejjanki N K, et al. Nanoclustered Cascaded Enzymes for Targeted Tumor Starvation and Deoxygenation-Activated Chemotherapy without Systemic Toxicity[J]. ACS nano, 2019, 13(8): 8890-8902.光照诱导肿瘤能量代谢阻断通过新型纳米颗粒的构建,利用肿瘤细胞高表达组织蛋白酶B的特性,设计酶剪切开关,将载有光敏剂的介孔纳米硅和和定位序列修饰的氧化钨颗粒偶联在一起形成行星-卫星结构。被肿瘤细胞摄取后纳米颗粒可以被高表达的组织蛋白酶B剪切,行星-卫星结构分开,配合不同波段的光照同时引发光动力和光热效应,切断肿瘤氧化磷酸化和糖酵解过程,阻断能量供应,抑制肿瘤的增殖。通过小动物活体光学成像进行肝部转移肿瘤的体内表征,实验结果表明这种纳米颗粒配合光照可以有效诱导肿瘤细胞产生“饥饿”环境,通过抑制肿瘤细胞能量供应清除体内的转移肿瘤。而正常细胞内组织蛋白酶B含量不足,行星-卫星结构无法分开,在光照过程中光动力产生的单线态氧可以进一步氧化纳米氧化钨颗粒,阻碍光热反应的发生,不会影响到正常组织的代谢过程,证实了可以基于能量代谢的肿瘤选择性精准治疗策略的可行性。图3 光照切断肿瘤细胞能量供应参考文献Huo D, Zhu J, Chen G, et al. Eradication of unresectable liver metastasis through induction of tumour specific energy depletion[J]. Nature communications, 2019, 10(1): 1-17.
  • 肿瘤免疫治疗的历史和发展
    p    /p p style=" text-align: center " img width=" 601" height=" 450" title=" 微信图片_20180815094550.jpg" style=" width: 432px height: 279px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/5d07b690-f0e6-4943-9da8-475dc21c595b.jpg" / /p p style=" text-align: center " img width=" 599" height=" 450" title=" 微信图片_20180815094557.jpg" style=" width: 434px height: 299px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/96076a5e-3b80-4742-8e13-4ccc9c310a83.jpg" / /p p style=" text-align: center " img width=" 598" height=" 450" title=" 微信图片_20180815094606.jpg" style=" width: 437px height: 322px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/1214af3f-9f28-4e04-bf94-973de2705e30.jpg" / /p p style=" text-align: center " img width=" 601" height=" 450" title=" 微信图片_20180815094712.jpg" style=" width: 439px height: 299px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/f5c0ed6b-b3bf-4ef1-ba2e-38094a33ccc6.jpg" / /p p style=" text-align: center " img width=" 599" height=" 450" title=" 微信图片_20180815094719.jpg" style=" width: 431px height: 305px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/6fcbdc4c-de1d-4ae2-89a0-0e00dd2884f9.jpg" / /p p style=" text-align: center " img width=" 598" height=" 450" title=" 微信图片_20180815094724.jpg" style=" width: 426px height: 347px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/a9cf6a21-899e-42fe-91d4-ba0bbe9ec6a3.jpg" / /p p style=" text-align: center " img width=" 600" height=" 451" title=" 微信图片_20180815094727.jpg" style=" width: 427px height: 343px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/fef30b51-3356-45ef-90d4-820426c78b1a.jpg" / /p p style=" text-align: center " img width=" 600" height=" 448" title=" 微信图片_20180815094736.jpg" style=" width: 432px height: 327px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/b83a59dc-1fee-47bf-a0e2-4ef9e6f646ed.jpg" / /p p style=" text-align: center " img width=" 599" height=" 450" title=" 微信图片_20180815094740.jpg" style=" width: 437px height: 324px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/a7073cba-5b5c-4083-a6f2-93599f5c7a0e.jpg" / /p p style=" text-align: center " img width=" 598" height=" 450" title=" 微信图片_20180815094743.jpg" style=" width: 439px height: 325px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/56d4c926-269e-410b-bf8d-96aecbd9f4ad.jpg" / /p p style=" text-align: center " img width=" 598" height=" 450" title=" 微信图片_20180815094750.jpg" style=" width: 440px height: 308px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/0b1133bc-8b10-4a78-86f4-175be80198fd.jpg" / /p p style=" text-align: center " img width=" 599" height=" 450" title=" 微信图片_20180815094754.jpg" style=" width: 437px height: 272px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/6472caf3-cf6e-40e6-ae17-01542b97c67d.jpg" / /p p style=" text-align: center " img width=" 599" height=" 450" title=" 微信图片_20180815094757.jpg" style=" width: 429px height: 277px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/c5bded28-9d07-4280-ac10-4c235d19b03d.jpg" / /p p style=" text-align: center " img width=" 598" height=" 449" title=" 微信图片_20180815094801.jpg" style=" width: 431px height: 276px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/ab620cc7-93e8-4990-9e60-b02bc8f5e984.jpg" / /p p style=" text-align: center " img width=" 600" height=" 449" title=" 微信图片_20180815094804.jpg" style=" width: 431px height: 305px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/6eef1626-5817-4f29-8cdc-db73e34a0c40.jpg" / /p p style=" text-align: center " img width=" 599" height=" 450" title=" 微信图片_20180815094807.jpg" style=" width: 440px height: 282px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/0b2f4c2a-ffd7-443b-baa7-b470a98c8b9f.jpg" / /p p style=" text-align: center " img width=" 598" height=" 449" title=" 微信图片_20180815094810.jpg" style=" width: 446px height: 292px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/b51ba76b-1e32-4af4-8d3c-a43a9b4e7ce7.jpg" / /p p style=" text-align: center " img width=" 600" height=" 451" title=" 微信图片_20180815094814.jpg" style=" width: 441px height: 297px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/e447e213-2355-4b48-b201-577a5967c7f1.jpg" / /p p style=" text-align: center " img width=" 599" height=" 450" title=" 微信图片_20180815094817.jpg" style=" width: 443px height: 299px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/e1f07b55-0e52-47e8-bc5e-bd7349980c7f.jpg" / /p p style=" text-align: center " img width=" 599" height=" 450" title=" 微信图片_20180815094820.jpg" style=" width: 449px height: 283px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/2f4fec23-5a7b-4ce0-8442-4bf5711c0716.jpg" / /p p style=" text-align: center " img width=" 599" height=" 451" title=" 微信图片_20180815094823.jpg" style=" width: 439px height: 324px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/7035a03c-5ef1-4c55-954e-293f208e7283.jpg" / /p p style=" text-align: center " img width=" 598" height=" 450" title=" 微信图片_20180815094826.jpg" style=" width: 439px height: 300px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/53a4557e-38b5-4c9d-b988-a953835ad6ac.jpg" / /p p style=" text-align: center " img width=" 601" height=" 450" title=" 微信图片_20180815094829.jpg" style=" width: 435px height: 328px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/f81fb219-5a22-49a7-ac14-f04c52b469ca.jpg" / /p p style=" text-align: center " img width=" 600" height=" 451" title=" 微信图片_20180815094833.jpg" style=" width: 435px height: 304px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/a1b7fbc2-a077-4f0a-81c2-b0ee894f31bb.jpg" / /p p style=" text-align: center " img width=" 600" height=" 449" title=" 微信图片_20180815094836.jpg" style=" width: 431px height: 319px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/4909d58f-cdd7-414f-95f4-c8b603a0ee27.jpg" / /p p style=" text-align: center " img width=" 600" height=" 449" title=" 微信图片_20180815094839.jpg" style=" width: 425px height: 267px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/80d41752-b85f-4db2-86da-1d9e8a5892ee.jpg" / /p p style=" text-align: center " img width=" 598" height=" 449" title=" 微信图片_20180815094842.jpg" style=" width: 440px height: 321px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/578572c8-2010-49f3-9ccc-da3ce8ddc10e.jpg" / /p p style=" text-align: center " img width=" 599" height=" 450" title=" 微信图片_20180815094844.jpg" style=" width: 432px height: 293px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/1acbef39-f402-415f-af2b-10d7cadaf6ff.jpg" / /p p style=" text-align: center " img width=" 599" height=" 450" title=" 微信图片_20180815094847.jpg" style=" width: 448px height: 329px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/2d18fff8-345c-4866-bf2a-3f5d88608d76.jpg" / /p p style=" text-align: center " img width=" 600" height=" 449" title=" 微信图片_20180815094851.jpg" style=" width: 454px height: 366px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/4336b299-8599-4297-9c31-161cb128e03f.jpg" / /p p style=" text-align: center " img width=" 600" height=" 451" title=" 微信图片_20180815094854.jpg" style=" width: 448px height: 339px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/f1d29551-46b1-4f4e-858f-dd57ad91c1a5.jpg" / /p p style=" text-align: center " img width=" 598" height=" 450" title=" 微信图片_20180815094857.jpg" style=" width: 444px height: 323px float: none " src=" http://img1.17img.cn/17img/images/201808/insimg/e32ee567-b2b3-4ff4-bd99-4deb56570c99.jpg" / /p p style=" text-align: center " img width=" 601" height=" 450" title=" 微信图片_20180815094901.jpg" style=" width: 443px height: 335px " src=" http://img1.17img.cn/17img/images/201808/insimg/6ea62e6c-886b-4ea2-aa52-424a93b9eff4.jpg" / /p p 总结: /p p   免疫检查点抑制剂作为率获得临床疗效突破的肿瘤免疫治疗方式,给肿瘤患者带来了长期生存的希望。以欧狄沃和Ipilimumab为代表的免疫检查点抑制剂,引领了肿瘤免疫治疗的发展。 /p p    strong 未来肿瘤免疫治疗面临的挑战: /strong /p p   · 探索更加精准的生物标记物,找到不同肿瘤免疫治疗方案的最佳获益人群 /p p   · 以PD-1/PD-L1抑制剂为基石的联合治疗,会给肿瘤患者带来更大的生存获益。 /p p & nbsp /p
  • 专家预测:三年内中国肿瘤免疫治疗市场将达几百亿
    p   肿瘤免疫治疗是指应用免疫学原理和方法,通过激发和增强机体抗肿瘤免疫应答,并应用免疫细胞和效应分子输注宿主体内,协同机体免疫系统杀伤肿瘤、抑制肿瘤生长,打破免疫耐受的治疗方法。由于其副作用小、治疗效果明显,正逐渐成为未来肿瘤治疗的发展方向,被称为继手术、放疗和化疗之后的第四大肿瘤治疗技术。 /p p   国外肿瘤免疫治疗产业以免疫治疗药物为主,而我国肿瘤免疫治疗产业主要包括三个部分,免疫细胞存储、肿瘤免疫治疗药物、细胞免疫疗法,其中以细胞免疫疗法为主。 /p p   免疫系统是人体自身的医生,而肿瘤免疫治疗被认为是唯一有可能彻底治愈癌症的方法,目前肿瘤免疫治疗多数被用于晚期肿瘤患者,但将来可能会像化疗一样,成为癌症治疗的一线方法。预计到2025年有100-150亿美元的市场只是个开始,未来10年60%的癌症病人将采用免疫治疗,在美国达350亿美元。就国内而言,专家估计三年内将达到几百亿的市场规模。 /p p   国内能够开展肿瘤免疫治疗的医疗机构及潜在对象包括: /p p   1)已经开展业务的500多家三甲医院,现有技术和管理不成熟,新技术替代可能性较大; /p p   2)尚未开展细胞治疗的500多家三甲医院,其中大部分可以推广; /p p   3)有条件的三乙、二甲等医疗机构 4)体检中心及高端会所,不属于医疗行为的亚健康人群保健,利润空间更大。 /p p   如按三甲医院,一家医院每月收30个病人、每个病人治疗3个疗程、3万/疗程计算(目前市场的平均情况和常规收费),单三甲医院近几年保守估计就能达到300多亿的市场规模。如按肿瘤病人,每年新发病例312万、未来10年60%的患者接受治疗(现状是经济实力较好的一半都会选择做,一般肿瘤病人大部分会愿意尝试)、3个疗程、3万/疗程,未来10年的市场空间将达到1600多亿。如按药品,可以类比抗肿瘤药的规模,约1000多亿,抗肿瘤费用目前已占到我国医疗消费的20%左右。 /p
  • PMIO China 第四届中国精准医学与肿瘤免疫治疗峰会通知
    聚力新一代免疫治疗/干细胞/溶瘤病毒/基因编辑/伴随诊断的创新突破,助力中国未来精准医疗商业化发展过去10年里,同其他国家一样,中国临床肿瘤学实践逐渐迈入精准医疗时代,中国科研工作者合成一系列具有良好疗效的靶向药物应用于临床。在免疫治疗领域,几十项国内和国际试验,正将PD-1/PD-L1抑制剂推入临床。毋庸置疑的是,肿瘤免疫治疗已经占据了长期风口。随着治疗方案的不断优化,肿瘤免疫治疗正在步入2.0时代——免疫联合治疗时代。但未来挑战仍有多种可能,NGS和ctDNA液体活检等新技术促进生物标志物试验快速发展的同时,如何克服EGFR和ALK TKI耐药的作用机制,解决生物标记物伴随诊断和检测的标准化问题,另外肿瘤异质性等一系列问题仍需医药研发科学家进一步探索和克服。为促进和加强肿瘤免疫治疗及精准医疗领域的交流与合作,帮助药企解读最新国内外药政法规,审评与监管政策,助力加速企业研发,临床申报与上市,推动中国生物药的产业化发展,GEC Events携手知名行业协会等机构将于2021年8月20-21日在上海召开PMIO China 第四届中国精准医学与肿瘤免疫治疗峰会,邀您一起“ 共话肿瘤免疫,助力精准医疗”。 PMIO 2021将致力于为立足创新前沿、取得突破性进展的生物科技公司,制药公司,细胞或基因治疗公司的同仁们提供思想碰撞的舞台,为精准医疗服务技术供应商搭建一站式垂直交流平台。大会将诚邀50位重磅演讲嘉宾,500多位生物医药科研及产业界参会人员共聚一堂,贯穿肿瘤免疫治疗创新药物研发(免疫细胞/干细胞、抗体、疫苗、小分子),前沿疗法的 CMC 药学与工艺开发、探索伴随诊断、基因测序、单分子/单细胞检测技术、大数据与人工智能在精准医疗与转化医学的前沿应用和领先实践!将为您带来肿瘤免疫联合疗法创新药、细胞/基因治疗从研发到上市全周期的最新动态与前沿技术,提供高品质交流机会,共同推进中国生物药的商业化发展。大会特色 ● 500+ 专业高层参会代表●100+ 参会机构● 40+ 国际知名演讲嘉宾● 70%+核心市场(肿瘤免疫治疗, 细胞基因治疗, 基因编辑, 二代测序等)参会者● 60%+公司决策层及总监级别以上参会者● 两会合一及4个专题分会场热点话题●2021/22年中国精准医疗与肿瘤免疫治疗行业趋势●免疫治疗药物开发全球合作及未来研发方向●NGS在肿瘤精准免疫治疗中应用●基因测序与大数据应用最新进展●创新液体活检技术的开发与临床应用●新一代免疫细胞治疗技术: 通用性细胞技术, 新生抗原, 新靶点, 新结构●最新欧美CAR-T、TCR-T临床数据及商业化模式●下一代免疫疗法与免疫联合治疗●细胞治疗产业化与降本增效前沿技术●基因治疗, 干细胞, 基因编辑等技术从实验室到临床应用往届精彩回顾敬请期待PMIO China 2021峰会更多精彩!电话:+86 150 0218 0039邮箱:enquiry@gecgroup.com.cn官网:www. PMIO-summit.com
  • 免疫治疗得诺贝尔奖了,我们距离治愈肿瘤还有多远?
    p style=" text-indent: 2em " 人类与肿瘤抗争已逾百年。冷静地说,阶段性胜利并不多,免疫治疗大概算一个。昨天,2018年诺贝尔生理学或医学奖颁布,美国科学家詹姆斯· 艾利森(James P. Allison)与日本科学家本庶佑(Tasuku Honjo)因在肿瘤免疫领域的原创发现分享了该奖。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/9967c246-cf33-4186-a068-11851263511b.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-indent: 2em " 都说免疫治疗开启了肿瘤治疗的第三次革命,具有划时代意义。放眼全球,肿瘤的威胁确实来势凶猛,已日益成为与心脑血管疾病并驾齐驱的人类健康主要“杀手”。那么,今天我们不谈高精尖的科学术语,就来聊聊一个接地气的话题:当免疫治疗得诺贝尔奖了,我们距离治愈肿瘤还有多远? /p p style=" text-indent: 2em " 免疫治疗与“超级幸运者” /p p style=" text-indent: 2em " 科学家普遍认为肿瘤治疗领域有三次革命,第一次是化疗放疗,针对肿瘤分化分裂;第二次是靶向治疗,针对的是基因突变;第三次就是荣获本次诺奖的免疫检验点,它针对的是免疫逃逸。 /p p style=" text-indent: 2em " 詹姆斯· 艾利森对一种充当免疫系统“刹车片”的蛋白质进行了研究,他认识到松开这一“刹车片”,可以重新释放人体免疫细胞攻击肿瘤的潜力,后来这种概念发展成了治疗患者的新方法。 /p p style=" text-indent: 2em " 本庶佑则发现了免疫细胞的一种蛋白,并证明这种蛋白充当了制动器的角色,但作用机制有所不同。基于这一发现的疗法在对抗癌症方面非常有效。 /p p style=" text-indent: 2em " 可以说,由于两位科学家的原创发现,带来了过去十年癌症领域的一系列革命。随着更多科学家的关注、参与,逐渐推动临床出现了一系列振奋成就。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/0ad0e1fb-34d3-4f10-a62f-eaea2c7d8a64.jpg" title=" u=233057320,1556578971& amp fm=173& amp app=25& amp f=JPEG.jpg" alt=" u=233057320,1556578971& amp fm=173& amp app=25& amp f=JPEG.jpg" / /p p style=" text-indent: 2em " 免疫治疗之所以令人激动,主要原因在于:首先,免疫疗法能治疗已广泛转移的晚期癌症,部分标准疗法全部失败的晚期癌症患者在使用免疫治疗后取得了很好的效果。其次,免疫疗法有“生存拖尾效应”。响应免疫疗法的患者有很大机会高质量长期存活,这批曾被判死刑的晚期癌症患者被称为“超级幸存者”。 /p p style=" text-indent: 2em " 在黑色素瘤、肺癌、肾癌等患者中,免疫疗法都制造出了一批“超级幸存者”,最初接受治疗的一批患者很多已存活10年以上。这种“拖尾效应”是免疫药物与化疗、靶向药物最大的区别。 /p p style=" text-indent: 2em " “美国的詹姆斯· 艾利森找到的这种蛋白质是CTLA-4,日本的本庶佑找到的蛋白质就是著名的PD-1。”结构生物学家、中科院生物物理研究所副研究员叶盛表示,基于PD-1这套系统,现在开发出了一些已上市的、效果非常好的、广谱抗癌药物。“这些药物的作用方式和传统抗癌药物的作用方式有着很大区别。传统的药物通常是直接作用于癌细胞去杀死它们,但抗体药物针对的是PD-1或与之结合的PD-L1,通过抗体与它们的结合,阻止这两个蛋白相互识别结合,也就阻止了癌细胞对T细胞的抑制作用。” /p p style=" text-indent: 2em " 简言之,这种免疫治疗的逻辑是调动人体自身的免疫系统去抵御外敌。 /p p style=" text-indent: 2em " “PD-1这种生物标记在癌症患者中的表达高,针对PD-1进行封锁性免疫治疗,对癌症患者将大有助益。”上海交通大学医学院附属仁济医院肿瘤科主任王理伟教授告诉记者,这一里程碑式疗法是目前在全球较热门的特异免疫性治疗方法,其最大的特点是不分瘤种,如今在欧美国家的临床使用中,已有近30%的患者从中获益。 /p p style=" text-indent: 2em " 为癌症治疗打开了一扇新大门 /p p style=" text-indent: 2em " 不过就此认为人类战胜了肿瘤,还为时尚早。专家在接受记者采访时均提到,免疫治疗为肿瘤治疗打开了一扇新大门,每个方法有其特定的治疗方案和特定的临床指征。也就是说,包治百病的灵丹妙药从未出现过,谈“攻克肿瘤”为时尚早。 /p p style=" text-indent: 2em " “目前肿瘤免疫治疗,如免疫检查点抗体,对实体瘤治疗的有效率在10%-50%。”上海交通大学医学院附属瑞金医院肿瘤科张俊教授提到,以肺癌为例,对PD-1免疫治疗有反应的病人,有约50%的患者有长期生存的机会,但对所有未经筛选的病人,生存期只平均延长了三个月。 /p p br/ /p p style=" text-indent: 2em " 张俊提到,负性调节因子确实对肿瘤治疗起到了很好的作用,但不代表免疫治疗可以作为普适治疗方式。目前,美国FDA批准的PD-1单抗的适应症在于错配基因修复缺失的实体瘤病人。对多数实体瘤患者,现在需要关注的就是免疫检查点抑制剂,包括PD-1/PD-L1抑制剂、CTLA-4抑制剂等。这类药物对部分实体瘤如肺癌、黑色素瘤、肾癌、膀胱癌、头颈癌等效果不错。 /p p style=" text-indent: 2em " 另一个值得血液癌症患者关注的免疫疗法是CAR-T疗法。 /p p style=" text-indent: 2em " 整体而言,免疫疗法的副作用小于传统化疗、靶向药物,有5%-10%的患者可能会出现较严重的免疫相关反应,比如甲状腺炎症、免疫性肺炎、免疫性肠炎、免疫性肝炎甚至免疫性心肌炎。这些问题如发现不及时,可能发生致命事故。因此,也有科研人员提醒,随着免疫疗法流行,基层医生熟悉免疫疗法副作用的处理,至关重要。 /p p style=" text-indent: 2em " “从这个角度而言,我们需要能在正确的时间给正确的病人用到正确的药。”张俊表示,进一步通过生物标记物的筛选帮助病人治疗肿瘤至关重要。 /p p style=" text-indent: 2em " 提高有效率是下一步研究重点 /p p style=" text-indent: 2em " 应该说,随着整个科研链条的整合及人类对肿瘤愈加深入的认识,治疗手段和药物的研发耗费的时间在缩短。如果把肿瘤比喻成一幅拼图的话,现在人类可能已拼出了这幅图的六七成框架,但中间还有很多未解之谜。对全世界的肿瘤科研人员而言,最大的愿景就是每个实验室一点点地这儿拼一点、那儿拼一点,最后能把肿瘤形成、转移、发展的机理这张拼图拼完整,找到治愈肿瘤的突破点。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/5cb75c86-5143-4be3-9b42-f39fcbc22cf8.jpg" title=" u=3322499851,2911953909& amp fm=173& amp app=25& amp f=JPEG.jpg" alt=" u=3322499851,2911953909& amp fm=173& amp app=25& amp f=JPEG.jpg" / /p p style=" text-indent: 2em " 免疫治疗有其特定的方法和适应症,需更多精准医疗和免疫治疗的临床试验数据来阐明。2015年被称为免疫治疗元年,尚有大量临床数据还未获得。 /p p style=" text-indent: 2em " 比如,目前已有研究发现,在绝大多数实体瘤患者中,单独使用PD-1抑制剂的有效率其实并不高,在10%-25%左右。如何提高免疫疗法有效率,使得用免疫疗法来治疗肿瘤的可能性会越来越大,是下一步研究的重中之重。 /p p style=" text-indent: 2em " 也有研究认为,免疫治疗可能需要研究与化疗、放疗、靶向治疗等肿瘤治疗方式的联合应用。一剂式的肿瘤解决方案堪称“神药”,但似乎并不现实。如何联合用药,这也是科学家下一步要进一步研究的。 /p p style=" text-indent: 2em " 恭喜获得诺奖的科学家们,他们为肿瘤治疗开辟了一些新方向,也确实为不少在死亡边缘线上挣扎的患者争取到了“加时”。这段“加时”可能只有几个月,但谁又能否认这几个月的力量?它可能冰释了多年的遗憾,可能成全了一生的心愿,也可能放下了所有的固执。更重要的是,人类的医学文明何尝不就是从这几个月、几个月的延长与努力中获得进步的。可以肯定的是,在努力把癌症真正变成慢性病的路上,诺奖远不是终点。 /p
  • 显微镜下的癌细胞竟这么美!医学大家谈肿瘤治疗医术与艺术
    p & nbsp & nbsp & nbsp 良医修良术!在人类与肿瘤“过招”的百年历史上,一代代医学专家拓荒前行,从外科手术到化疗、放疗、靶向治疗、免疫治疗...人类取得过很多彪炳战绩,但走进今天,谁也不敢说完全征服肿瘤。 /p p   当肿瘤逐渐成为一种蔓延全球的慢性病,今时今日,我们当如何看待肿瘤,如何面对肿瘤患者? 是应该相信依靠技术能消灭所有疾病乃至肿瘤,还是对生命保有敬畏之心?是信奉“技术至上”,还是承认医学技术的局限,以医学人文之光来拓展救治病人的边界?1964年,美国大学医学生在“希波克拉底誓言”中加入了这样一段话:“我要牢记,医学既是科学,又是艺术,温暖、同情和理解,可能比手术刀或药物更为有效。”可见,高尚的医德与对人性的关照是全球从医人共同的核心品德。 /p p strong & nbsp & nbsp & nbsp 显微镜下看肿瘤细胞,画风完全不同—— /strong /p center img style=" width: 450px height: 336px " title=" " alt=" 40301_p38_b.jpg" src=" http://whb.news365.com.cn/u/cms/www/201803/01085709p4o0.jpg" height=" 336" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p style=" text-align: center "    strong 显微镜下的乳腺癌细胞 /strong /p center img style=" width: 450px height: 388px " title=" " alt=" 40301_p47_b.jpg" src=" http://whb.news365.com.cn/u/cms/www/201803/01085201fa2w.jpg" height=" 388" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p style=" text-align: center "   strong  肺癌细胞 /strong /p center img style=" width: 450px height: 600px " title=" " alt=" 40301_p50_b.jpg" src=" http://whb.news365.com.cn/u/cms/www/201803/010852414iqq.jpg" height=" 600" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p style=" text-align: center "   strong  卵巢癌细胞 /strong /p center img style=" width: 450px height: 474px " title=" " alt=" 40301_p53_b.jpg" src=" http://whb.news365.com.cn/u/cms/www/201803/01085330mdsq.jpg" height=" 474" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p style=" text-align: center "    strong 肾癌细胞 /strong /p p   融医学之严谨,于治疗之匠心,3月3日,一场医学与艺术的大戏“CSCO一赛诺菲肿瘤治疗艺术高峰论坛”将在上海拉开帷幕。作为业内最高水准的肿瘤学术交流平台,名医大家将共聚浦江,畅谈中国的肿瘤学进展与热点,探讨肿瘤治疗的医术与艺术。 /p p   strong  孙颖浩:仁心和创新是医者的永恒信念和追求 /strong /p center img style=" width: 450px height: 682px " title=" " alt=" 40301_p41_b.jpg" src=" http://whb.cn/u/cms/www/201803/01084523d2q3.jpg" height=" 682" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   孙颖浩,我国著名泌尿外科专家、中国工程院院士、亚洲泌尿外科学会前任主席、中华医学会泌尿外科分会主任委员、海军军医大学长海医院泌尿外科主任医师、教授 /p p   “求技、求艺、求道——这是医生的三重境界。”孙颖浩常常对刚工作的医生们说,“求技让你成为医生,求艺让你成为优秀的医生,而求道才能让你成为真正的临床科学家。” /p p   多年来奋战在前列腺癌疾病治疗第一线,孙颖浩看到当代医学界,往往太过于强调技术上的进步,却忽略了人文层面的关怀。“医生,始终是帮助人温暖人的职业。” 孙颖浩说:“有100个病人,99个都治好了,只有1个没治好,从这个病人的角度来看,就是100℅的不成功!”他如此形象地形容自己口中常常提到的“仁心”,告诫年轻医生要对每个病人都尽百分之百的努力。 /p p   唯有常怀仁心,方能施以医道。 /p p   古拉丁语中有句谚语,叫做“医学是最高贵的艺术”(Medicine is the noblest of all arts)。艺术需要原创,唯有原创的艺术品才具有不朽的生命力。孙颖浩认为,作为一名医生,不能在各种科学指标的量化考核面前迷失了自己,甚至丧失了医生应有的价值观,那样就变成了高级技工。现代医学的发展呼唤医生的“原创性”,要大胆地创新和突破,才能真正帮助到病人,才能切实促进本专业本学科的发展。 /p p   唯有不断创新,方能得以永恒。 /p p   目前,前列腺癌在我国以12.9%的增长速度逐年高发,日益成为泌尿男生殖肿瘤发病第一位的疾病,临床上大批患者以渴望的眼神看着医生,期盼着诊疗技术能够进步、进步、再进步一些。 /p p   “面对癌症,手术并不是唯一的方法!”尽管拿了多年的手术刀,如今,孙颖浩却有所选择地以物理能量治疗代替手术,“外科医生的伟大之处在于敢在上帝的艺术品上动刀子,这是因为我们有着对人体解剖的深刻了解,但是外科手术却又是通过破坏解剖结构来实现的。”孙颖浩认为,如何能够通过最小的创伤达到最优的治疗效果,应是当代肿瘤外科医生普遍深刻思考的问题。 /p p   物理能量治疗,就是通过电能、热能、激光等方式,针对肿瘤区域,精准进行靶向治疗,具有创伤小、副作用少、恢复快等优点———这也就是孙颖浩口中常讲的“无刀胜有刀!” /p p   从牵头构建前列腺癌多层次早期诊断体系、到创建开放和微创前列腺癌改良根治术,再到创立前列腺癌围手术期危险分层评估体系、前列腺癌物理能量治疗中心??一系列孙颖浩提出的专业术语背后,是他坚守在临床一线度过的20多载岁月,是他在全国60多所三甲医院已广泛铺开的关键诊疗技术,当然,还有2万余名已重获新生的患者。 /p p   医学有崖,大爱无疆,孙颖浩就是这样一点点拓展着医学的边界,改变着患者的命运。在小小的前列腺上,让肿瘤治疗绽放出最闪耀的光芒,成就了一个肿瘤医生的艺术! /p p   “胸怀天下,济苍生,安黎元”。作为一名军医,孙颖浩秉持着“达则兼济天下”的愿望,他反复自问:“我已经在专业上取得了成就,那么为国家、为推动整个泌尿外科学科的发展,我还能做什么呢?” /p p   在他的号召下,“扁鹊医师团”应运而生。自2016年起,孙颖浩带领医师团走进全国各地的基层医院开展义诊,积极帮助患者解决病痛。 /p p   授人以鱼不如授人以渔。早在2013年,孙颖浩就倡导并身体力行带领一线城市的中青年专家走进基层,将最先进的手术、治疗知识,方法与更多的泌尿外科同仁们交流。2017年,他推行的“研究型医生、研究型科室”医疗模式获得中国医院科技创新一等奖,多项人才国际交流计划启动,分享的果实沿着“一带一路”走了出去,更多的中国泌尿外科人被推到了世界舞台上。正如孙颖浩所说:“没有中国,世界泌尿外科不会奏响学术交流的交响乐。” /p p   在成长历程中,孙颖浩一直没能忘记,研究生导师马永江教授曾对他说过这样一段话:当你对待别人的时候,要学会雾里看花,看人家身上美好的地方 而当你面对工作、学习的时候,就要学会用放大镜、望远镜去看,看得越清楚、越深远越好。 /p p   医海泛舟数十载。多年来,孙颖浩正是一手举着“望远镜”,一手拿着“放大镜”,逢山开路,遇水架桥,在山重水复中打磨着自己的“仁心”和“创新”,演绎着一名人民军医的执着与追求。 /p p    strong 于金明:一个医生的基本底色是善良 /strong /p center img style=" width: 450px height: 324px " title=" " alt=" 40301_p44_b.jpg" src=" http://whb.news365.com.cn/u/cms/www/201803/010847229nkd.jpg" height=" 324" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   于金明,我国著名肿瘤放疗领域专家、中国工程院院士、山东省医学科学院名誉院长、山东省肿瘤医院院长、中华医学会放射肿瘤学专业委员会名誉主任委员 /p p   山东省肿瘤医院,闻名遐迩。一个医生曾这样说,“过去中国最好的放疗专家、最好的放疗中心是在北京和上海,现在是在山东,在济南,在于金明院长的山东省肿瘤医院。” /p p   于金明有很多身份:科学家、院长、院士、教授??这一切,绕不开他作为一个医生的底色。从1983年大学毕业后分配到山东省肿瘤医院算起,于金明从医已35年。 /p p   曾有记者问于金明:在你眼里,一名肿瘤患者和一个普通患者有什么不同? 他说,肿瘤患者只有一次治疗机会,如果首次治疗是规范正确的,很可能这个病人就能治好 如果是不规范甚至是错误的,一旦肿瘤复发或转移了,再行补救治疗,那治疗成功的希望会变得非常渺茫。所以,肿瘤医生要对自己有更高的要求。 /p p   这是一个肿瘤医生对自己的定位。1983年毕业后,分配到山东省肿瘤防治研究院从事肿瘤放射治疗工作 1988年赴美国弗吉尼亚大学医学院放射肿瘤中心学习,1990年5月被该中心聘为副教授 1993年听从祖国召唤,放弃了在美国优厚的待遇和工作生活条件,回到山东省肿瘤医院任放疗科主任??从于金明的履历看,他接受过中国、美国的医学培训。 /p p   也就在他留美归来的第二年,1994年起,于金明在医院放疗科开始用英语查房。这样做是为了与国际接轨,提高科室成员的英语水平? 这只说对了一半。于金明的这个倡议还包裹着一个柔软的想法:避免对肿瘤患者造成恶性刺激。 /p p   这是一个富有爱心的医生,也是一个肿瘤医生的治疗艺术。 /p p   “大多数肿瘤患者内心其实是很恐惧的,我们需要比较艺术地规避一些刺激。”在他看来,对很多肿瘤患者隐瞒病情,也许是一个肿瘤医生不得不面对的事实。面对一个也许根本治不好的患者,医生仍然要鼓励患者,要用一颗爱心、一个微笑,把希望与信任传递过去。 /p p   美国此前有研究统计显示,肺癌病人的治疗效价比是最低的,一年花费几十万甚至百万,换来的是多活两个月。这真的有意义吗? /p p   临床上,于金明也见过很多患者,为了看病,把果园卖了、房子卖了,倾家荡产,最终连一片可以遮风挡雨的屋顶都没了,而治疗的结局却摆在那里———并不乐观。为此,医生应该扮演什么角色? 仅仅谈科学、谈技术,只追求多活两个月吗? /p p   多年的临床感悟让于金明把治疗肿瘤分成三个层次:第一是病,这好比种子 第二是病人所处的经济社会与家庭环境,这好比土壤 第三是个体,就是患者本身。他总是不忘提醒自己和学生,永远不要忘记肿瘤是长在人身上的,这三个层次不可分离着看,医学本质是治人,是治疗生病的人,而不是那个病,在下每个诊断、制定每次诊疗方案时,扪心自问,这真是对这个患者最合适的方案吗? /p p   于金明说,如果与肿瘤的相逢是一场战役,它不管你是医学博士还是硕士,会还以“相对应的颜色”,医学是根本无法量化的,它是自然科学与社会科学的结合。也或者说,医学是一门艺术,医生是一个艺术家,而这份对医学艺术的感悟,需要多年的累积与感悟。 /p p   过去半个世纪,医学界对肿瘤治疗的理解有飞跃发展,期间有过停滞,有过瓶颈,但总的趋势是向前的,肿瘤治疗经历了经验医学、循证医学,到如今的个体化医学、精准医学时代。 /p p   于金明以前喜欢打乒乓,他着迷于打乒乓这项运动对精准的把握。他说,医学治疗何尝不需要这样的精准性。于金明看准了精准医学这个方向,他是我国现阶段开展肿瘤精确放疗新技术、新方法的开拓者之一。 /p p   回顾自己的从医经历,于金明感觉到,要当一个好医生,首先愿景与目标要高,如果定在60分,努力努力再努力,也只有60分,满足了 而如果目标是100分,可能经历千辛万苦,能拿到80分乃至90分。其次,医者要脚踏实地去推进自己的想法。第三,要有毅力与情怀,因为开拓的道路永远不是一帆风顺的。 /p p   于金明很喜欢美国梅奥诊所的一个院徽,这是一个一体两翼的结构,两个翅膀分别代表科研与教学,而临床就是体,就是医学之本。 /p p   “一切医学的探索与进步都是围绕着临床,围绕着患者的获益与幸福。每个生命都是不可再生的,都只有一次,弥足珍贵。”于金明说。 /p p    strong 秦叔逵:医学是科学与人性之光的结合 /strong /p center img style=" width: 450px height: 300px " title=" " alt=" 40301_p55_b.jpg" src=" http://whb.news365.com.cn/u/cms/www/201803/01084923mqx1.jpg" height=" 300" hspace=" 0" border=" 0" vspace=" 0" width=" 450" / /center p   秦叔逵,我国著名消化系统肿瘤诊治专家、中国人民解放军第八一医院副院长、全军肿瘤中心主任、国家药物临床试验机构主任、中国临床肿瘤协会副理事长 /p p   同是肿瘤医生,秦叔逵说起中美医生的差异:中国医生往往“含蓄”告知病情,为的是要给病人生的希望。美国医生比较直接,通常会告诉病人“中位生存期”。 /p p   “这样做的好处在于,病人可以更主动地安排接下来的生活,坏处是,可能就此击垮病人,说不定由此缩短了生存期??这是两难。”几乎半生与肿瘤过招,秦叔逵有一个越来越强烈的感受:对待肿瘤患者,人文关怀、树立信心也很重要。 /p p   “医学包括着艺术的成分,这不是文人雅士的清淡,而恰恰是对人性的尊重。我们看病是在看人,不仅要把病看好,更要关怀心灵。内科医生常说,三分靠药,七分靠精神。大多数人谈癌色变,对治疗充满恐惧,我们必须在治疗同时辅以情绪开导、科学宣教。”他说,肿瘤的生存期跟肿瘤的种类特性、患者个体的意念与心态、经济条件等综合因素相关,医生不是生命判官,生存期也着实难说。 /p p   出身医学世家,秦叔逵从小立志学医。选择肿瘤方向,是因为他认为这个领域有太多挑战、难题需要去攻克,这深深吸引着他。 /p p   “上世纪80年代,我们手上的肿瘤化疗药物不超过10种,而且药物低效、高毒,病人副反应很大,以至于在病房里听到化疗药物的输液车推来了,病人就先开始吐了,心理阴影巨大。而今,新药层出不穷,并且高效、低毒,一大批患者受益。”过去20多年,秦叔逵见证着中国乃至世界肿瘤医学界翻天覆地的变化:治疗手段越来越先进,靶向治疗、免疫治疗等肿瘤治疗新技术获得突破性进展,患者生存期延长了,生存质量越来越好。由于带瘤生存成为可能,世界卫生组织还把肿瘤与心血管疾病、糖尿病并称为三大慢性病。 /p p   不过,秦叔逵也很清楚,对有些肿瘤患者,比如晚期肿瘤患者,是治不好的。但医生、医学,什么都做不了了吗?并不是。人文关怀、心理抚慰有可能改善治疗结局,这包括延长生存期、提高生活质量。 /p p   从医45年,秦叔逵看过不计其数的病人,最难忘的是老师马永泉教授。他是我国近代内科学创始人之一,老湘雅毕业,肿瘤专家,自己也是一个肿瘤患者。 /p p   上世纪80年代,老先生被查出结直肠癌,属较晚期,做了手术。那个年代,药物很有限,他在治疗后反应很大,硬是挺了过来。到90年代后期,老先生80多岁,又被查出肾癌。这次手术没法做到根治,当时也没靶向治疗、免疫治疗,手术后靠化疗和中药联合治疗。老先生一直活到95岁,三年前去世。 /p p   “老先生有很好的科学素养。比如,他学过中医,也喜欢中医,但中医讲忌口,他并不唯信。他认为只有相对忌口,比如拉肚子时要少吃荤腥,并没有绝对忌口,为此,他还专吃鸡肉,他说,如果不加强营养,化疗怎么扛得住。另外,他很风趣,崇尚运动,平衡饮食,还把乐观的心态传递给病友。”在秦叔逵看来,面对肿瘤,老先生是科学与人文结合的典型,他以自己的亲身示范告诉患者,也提示着医生,在关注肿瘤医学进展的同时,也要不忘关怀患者的心灵,这可能是给绝望患者的另一颗救命良药。 /p
  • 上海硅酸盐所提出“纳米催化医学”肿瘤治疗新策略
    p   癌症是少数现代医学仍然无法攻克的疾病之一,癌细胞以其复杂多样的代谢方式和生态微环境给癌症治疗带来极大的困难。在目前癌症的治疗策略中,化疗仍是最常用的手段之一。但常规的癌症化疗,在高毒性的药物作用于全身造成强烈毒副作用的同时,病灶的药效却随之大幅降低。事实上,强毒副作用与低化疗效果成为了癌症病人的主要死亡原因之一。因此,开发无毒、安全和高效的癌症治疗体系尤为重要。 /p p   近日,中国科学院上海硅酸盐研究所研究员施剑林、陈雨带领的科研团队提出了“纳米催化医学”的新型肿瘤治疗策略,利用多元化、高选择性和高特异性的催化反应实现安全、无毒药物在肿瘤区域微环境刺激下原位转化为有毒物质,从而达到选择性杀死肿瘤细胞而不对正常组织产生毒副作用的目的。最新的一项将纳米催化医学策略成功应用于肿瘤治疗的工作发表在《自然-通讯》上。 /p p   在该项工作中,研究团队合成了一种枝状介孔二氧化硅纳米粒子作为药物输运系统载体,依次负载直径2 nm的超小四氧化三铁纳米粒子和葡萄糖氧化酶,构建一种新型的纳米催化剂。该纳米催化剂中的葡萄糖氧化酶是一种高活性有机酶,且四氧化三铁纳米粒子是一种高效、高稳定性的Fenton反应催化剂。该催化剂利用肿瘤细胞内旺盛的葡萄糖原料和微酸性代谢环境,连锁地进行高效的生物酶催化反应和化学Fenton催化反应。在第一步生物酶催化反应中,葡萄糖氧化酶选择性地催化肿瘤内的d-葡萄糖生成过氧化氢与葡萄糖内脂。过氧化氢作为下一步化学Fenton催化反应的反应物,在酸性条件下被四氧化三铁催化生成高毒性的活性氧物种-羟基自由基。高毒性的羟基自由基可以诱导肿瘤细胞的凋亡,在实现杀死肿瘤细胞的同时,不对正常的组织和器官造成损害。体内动物实验结果显示,该纳米催化剂对健康的小鼠在1个月的时间内没有不良影响,表明其具有良好的体内生物安全性。在荷瘤鼠的体内治疗毒性研究中发现,其对于4T1乳腺癌肿瘤和U87脑胶质瘤肿瘤的抑制效率分别达64.67%和57.24%,表明该纳米催化剂具有较好的肿瘤杀伤和抑制能力。 /p p   此外,该团队利用瘤内催化反应策略,开展了不同的无毒副作用肿瘤化疗的系列前沿探索工作。如利用介孔氧化硅纳米颗粒作为载体,将无毒的金属朴啉分子输运至癌症病灶,在常规的超声外场作用下,瘤内催化产生大量单线态氧自由基,安全高效杀灭肿瘤(J. Am. Chem. Soc., 2017, 139, 1275-1284)。该团队还合成得到无毒的非晶铁纳米颗粒,进入肿瘤后,这种纳米颗粒在肿瘤弱酸性环境下释放出二价铁离子,催化肿瘤过表达的过氧化氢,原位产生活性氧组分,同样达到安全高效杀灭肿瘤的目的(Angew. Chem. Int. Ed., 2016, 55, 2101-2106)。这些工作为未来的肿瘤精准治疗提供了全新的路径。 /p p   该研究工作得到了国家重点研发计划“青年科学家”专项(纳米专项)、国家自然科学基金、中国化学会青年人才托举工程以及中科院青年创新促进会等的资助和支持。 /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201709/insimg/c586eb99-c6e8-41c8-b2e9-73c1aa46ffde.jpg" / /p p style=" text-align: center " strong 基于纳米催化剂的连锁催化反应用于肿瘤治疗的示意图 /strong /p p   论文题目:Tumor-selective catalytic nanomedicine by nanocatalyst delivery /p p    /p p & nbsp /p
  • 肿瘤免疫治疗的候选靶标-靶向胞内促癌蛋白
    肿瘤免疫治疗的策略之一就是使免疫系统特异性靶向肿瘤细胞而不是正常细胞。而突变相关的新抗原(neoantigen)正是这样的靶标,肿瘤细胞中体细胞突变产生的序列改变的肽段被细胞处理,被主要组织相容性复合体(major histocompatibility complex,MHC)呈递至细胞表面,进而被T细胞识别,对肿瘤细胞进行杀伤。由于新抗原只在肿瘤细胞中存在,其成为肿瘤免疫治疗的热门靶标之一【1】。但是大部分肿瘤只有有限的肿瘤突变荷载并不能够产生新抗原相关的反应,同时只有5%的新抗原能被MHC分子提呈,而能激活有效的杀伤性T细胞的新抗原更少【2】。同时,肿瘤细胞中大部分的促癌因子和蛋白都是胞内蛋白,这也限制它们作为新抗原被人白细胞抗原(human leukocyte antigen, HLA, 人MHC分子)呈递作为肿瘤治疗的靶标【1】。神经母细胞瘤(Neuroblastoma)是儿童中常见的一种恶性肿瘤,其具有很少的肿瘤突变,相反其是由于转录调控网络表观遗传学上的失调而引起的【3】。在实体瘤,尤其是肿瘤突变荷载少的实体瘤中发现特异性以及免疫原性都较好的肿瘤免疫治疗新靶标,一直以来是肿瘤免疫治疗存在的挑战。2021年11月3日,来自美国宾夕法尼亚儿童医学院的John M. Maris团队在Nature上发表题为Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs的文章。团队分析神经母细胞瘤的免疫肽组,在HLA-A*24:02上发现来自神经母细胞瘤主要促癌转录因子PHOX2B的未突变肽段QYNPIRTTF具有很好的肿瘤特异性,以该肽为中心设计的CARs能识别多种不同HLA呈递的QYNPIRTTF,且在体外和小鼠模型中具有不错的效果。高度多态性的人白细胞抗原(HLA-A,-B,-C)基因编码的MHCI分子能够将来自于细胞内蛋白质组的一段8-14个氨基酸长度肽段提呈至细胞表面,这些肽段为免疫肽组(immunopeptidome),随后T细胞识别监视这些肽-MHC复合体(pMHC),发现来自于外来病原的抗原。研究团队假设肿瘤细胞的免疫肽组中存着在一部分来自于肿瘤发生必须的促癌因子的特异性的肽,针对这些肽便可设计出以肽为中心的嵌合抗原受体(peptide-centric CARs, PC-CARs)来特异性靶向肿瘤细胞。首先,研究团队对8个神经母细胞瘤细胞来源的异种移植物和病人来源的异种移植物(cell-derived xenografts (CDX), patient-derived xenografts PDX)进行免疫肽组的检测,通过MHC的捕获,肽段洗脱以及后续LC-MS/MS质谱等一共发现了7608个肽段。筛选这些肽段和HLA的结合力,筛选到2286个强亲和力的肽段。随后分析肿瘤组织和正常组织的RNA-Seq数据,研究团队筛选到61个肽段,其来源的母基因在肿瘤组织中高表达。最后研究团队分析正常组织中MHC肽组,进一步把可能在正常组织中提呈的肽段筛选掉。最后得到13个肽段,其来自于9个特异在神经母细胞瘤中表达的基因。同时研究团队在原代神经母细胞瘤中也进行同样的免疫肽组筛选,发现56个肽段。CDX和PDX筛选的13个肽有7个在原代肿瘤细胞中也被筛选到。随后,根据pMHC结合力,HLA等位基因频率,母基因表达情况以及神经母细胞瘤生物学信息对这些肽进行排序,6条分别来自来自CHRNA3, GFRA2, HMX1, IGFBPL1, PHOX2B 和TH的肽段被选择继续研究。分析不同发育时期的转录组学数据,研究团队发现PHOX2B只在胎儿发育过程中表达而在出生前的正常组织中PHOX2B完全被沉默。PHOX2B也是神经母细胞瘤发生的主要调控因子,PHOX2B的表达也是神经母细胞瘤诊断检测的手段之一。这表明,PHOX2B是神经母细胞瘤高度特异性的肿瘤抗原且是免疫治疗的理想靶标。由于自身抗原的免疫原性较弱,研究团队决定设计基于scFv-CARs而不是TCRs来靶向PHOX2B。随后研究团队筛选sc-Fvs库,寻找能结合PHOX2B肽的特异性克隆,并通过sCRAP算法预测排除其抗原交叉反应。研究团队筛选到10LH克隆并进一步研究,scFv 10LH和PHOX2B具有很强的亲和力,KD为13 nM,kd是 7.6 × 10-4 s-1。据此,研究团队设计出识别在HLA-A*24:02上提呈的PHOX2B 9氨基酸肽QYNPIRTTF的PC-CARs。发现PHOX2B 9氨基酸肽QYNPIRTTF也可被其他类型的HLA-A提呈,而10LH PC-CARs能打破传统的HLA限制和不同种类pMHC识别结合。随后在体外细胞模型以及体内PDX模型中证明了PHOX2B特异性的PC-CAR T细胞的跨HLA肿瘤杀伤能力。图1 肿瘤抗原的发现以及PC-CARs设计工作流程本文利用多种技术手段从非突变的促癌蛋白中发现神经母细胞瘤的肿瘤特异性抗原,并靶向这些肿瘤自身肽段设计出了PC-CARs,具有较好的肿瘤杀伤能力以及跨HLA的反应活性。该方法将非免疫原性的胞内促癌蛋白纳入到选择中,极大扩大了肿瘤免疫治疗的候选靶标,有助于神经母细胞瘤以及其他肿瘤的免疫疗法的发展。同时打破传统的HLA限制,也会扩大肿瘤免疫治疗的受益人群。原文链接:https://doi.org/10.1038/s41586-021-04061-6
  • 金域检测医学的NGS专业知识,为肿瘤精准治疗提供关键支持
    最近,美国病理学家协会(CAP)宣布了针对NGSST-A 2023的室间质评结果。金域医学的实验室检测结果与预期一致,以高分通过这一室间质评,再次证明了金域医学在实体肿瘤基因检测领域的卓越准确性、可信度和规范性,获得了国际权威机构的认可。这个成就强调了金域医学在肿瘤基因检测方面的专业水准。近年来,下一代测序(NGS)技术以其高通量和高分辨率的特点,已广泛应用于肿瘤领域,有助于明确患者的肿瘤基因变异情况,为个体化治疗提供关键信息。然而,NGS的复杂检测流程要求高质量的实验室环境、熟练的操作技能和严格的质量管理,因为任何一个环节的问题都可能对最终的检测结果产生负面影响,从而干扰了临床医生的决策。因此,确保NGS检测结果的准确性和可靠性至关重要,以获取关键的肿瘤靶点信息,为肿瘤患者提供精准的治疗指南。金域医学自2018年首次参与NGSST-A室间质评以来,已经连续5年获得满分评价。这连续的满分通过反映了金域医学在NGS检测流程规范化、准确的结果解读、实验室管理水平等方面的卓越水平,将其置于国际行业领先地位,其出具的报告也在全球范围内得到广泛认可。这个成就强调了金域医学在NGS领域的杰出表现,为肿瘤患者提供了更可靠的基因检测服务。金域医学在分子病理领域拥有超过10年的经验,积累了丰富的下一代测序(NGS)和其他分子诊断平台方面的专业知识。他们构建了一套完整而成熟的NGS技术体系,开发了独特的湿实验和生信分析流程。目前,金域医学提供超过400项分子检测服务,其中包括近200项NGS产品。这些服务可以用于实体肿瘤的辅助诊断、分子分型、预后评估、靶向治疗以及最小残留病 (MRD) 监测。为了更好地支持中国的肿瘤精准治疗发展,金域医学实体肿瘤中心推出了"惠民3000"肿瘤检测体系。该体系包括NCCN、CSCO等国内外指南推荐的基因检测项目,同时满足CAP和国家卫生健康委员会的室间质评要求。最重要的是,这些服务的整体费用不会超过3000元,从而使基因检测变得更加负担得起。为了让高质量的基因检测服务惠及更多患者,金域医学与广州金域公益基金会合作,在全国范围内推出了"关癌同行,肺凡人生"公益活动。通过该活动,他们为有需要的患者提供免费的肺癌基因检测项目,为患者提供更多机会和资源,以更好地了解和应对肺癌。未来,金域医学将继续致力于肿瘤精准治疗的发展。
  • 越来越多基于二代测序的肿瘤治疗项目产生的数据在ASCO上发布
    GenomeWeb芝加哥讯 本周美国临床肿瘤学会年度会议中展示的研究项目包括了来自于部分研究项目的大量数据,这些研究项目均使用了二代测序技术来指导对肿瘤患者的治疗方法。研究结果表明,正如之前科学界已报道的那样,NGS panel及更广泛的测序方法可以在很多情况下的少部分(有时是多数)患者中鉴别出与肿瘤有关的基因变异,而这些鉴别出的患者中很大一部分都可能接受基因治疗。进行展示的某几个研究项目还通过NGS数据发现了部分具有可操作突变的患者,这些患者确实地接受了针对这些突变的治疗,很多患者均从这种靶向治疗中受益。 这些数据对于确立NGS相关疗法的临床效用至关重要,对于未对于未来进一步对比基因型疗法与非基因型疗法的实验有重大意义。同时,来自于采用了该方法的开创性研究项目的数据也揭示了这种方法对于病患照顾的影响及产生的效果。本周会议中展示的一项研究是由Sarah Cannon研究所的科研人员完成的,该研究记录了靶向NGS的结果,这些实验是SCRI发起的根据患者的基因数据将癌症患者与临床试验进行匹配的研究项目的一部分。 从2012年10月至2013年12月,研究所共接待了1040名患者,其中936名患者有足以用于测序的肿瘤组织,对这些样品使用了覆盖35种癌症相关基因的靶向热点panel进行了测序。在420名患者中并未发现至少一种突变,即半数患者,而研究团队在100名患者中发现了可操作突变。总的来说,这一患者群体在12天中即在临床医师面前表现出进展。另外,还有206名患者也参与到临床试验中,占了已测序患者的22%,不过超过半数的患者并未通过测序检测到任何突变,还有另外6%的患者被视为具有&ldquo 无法操作&rdquo 的突变。 50名具有可操作突变的患者参与到了特别针对某一个突变的实验中,这一突变是由这一组患者的NGS分析得到的。而另外53名患者则进行了非特异性针对他们的癌症驱动突变的实验。 该研究的第一作者Todd Bauer告知&ldquo 临床测序新闻&rdquo ,若对于基于NGS的癌症治疗,普遍认为重要的问题是这种方法是否可以鉴别突变,这些突变是否是可操作的,患者是否可利用这些发现进行治疗,这些治疗是否对患者有效,那么SCRI的研究给出的答案则分别是:&ldquo 是的,是的,是的,很难说。&rdquo &ldquo 如果把问题分开来讲,例如,对于PIK3突变,我们发现了90名患者,但只有大概三分之一继续进行了实验。&rdquo Bauer说。&ldquo 为何会发生这种情况?唔,部分患者的病情发展太快,没有接受任何其他治疗。有些患者则需要接受监控,以确定他们是否完成了辅药治疗或在治疗中是否表现稳定。&rdquo 研究人员在会议的海报上分享了部分数据,追踪了患者的治疗效果,对接受了针对自身基因突变的治疗的患者与那些未接受的进行了对比。&ldquo 让我们再看一看PIK3,&rdquo Bauer说,&ldquo 海报上显示了两条柱形图,一条紫色一条绿色。紫色柱形图是指接受了相匹配治疗的患者,而绿色是指接受不匹配治疗的,这些柱形图的长度则是研究的平均周数。&rdquo 对具有PIK3突变的患者,不同组在患者接受临床治疗的时间长短上仅表现出很小的差别,接受基因定向药剂的临床治疗的患者平均会进行12周治疗,而接受非定向治疗的患者则会进行11.5周治疗。 对于其他突变,例如KRAS,SCRI实验得到的区别则略大一些&mdash &mdash 基因型定向治疗为12周,而非定向治疗则为8周。而在有BRAF突变的患者中,进行了基因型定向治疗的患者平均治疗时间为29.5周,相比而言服用非定向药物的患者则只有10周。&ldquo 不过实际情况要更加复杂,&rdquo Bauer说。&ldquo 值得警惕的是,我的治疗中多个阶段均为晚期患者,而这些患者无法检测其活力。如果以另外的基因突变为例,例如FGFR突变,情况正好颠倒过来。&rdquo 在这一类突变中,患者群体的数据显示有两名拥有FGFR突变的患者在基因型定向治疗中病情得到了改善,而另一位FGFR突变患者则在非定向治疗中&ldquo 明显好转,&rdquo Bauer说。对于未来,Bauer说他的团体计划继续追踪实验结果。这些结果也会包含在他们的研究项目中,并且还会包含患者可能从别处接受的测序结果的分析,而不仅仅是SCRI提供的35个基因的panel。 其他研究 在会议所展示的另一份海报中,来自多伦多Princess Margaret癌症中心的一个团队展示了他们从结肠癌患者的分子基因图谱得到的研究结果,这些患者均接受了检测23个基因中279种突变的Sequenom panel测序以及覆盖48个基因的Illumina TruSeq cancer panel测序。据研究人员在会议上对CSN所述,团队最开始是使用Sequenom panel来分析患者的分子基因图谱,不过后来又转而仅使用Illumina MiSeq上的TruSeq panel来进行研究。在他们的海报中,研究人员汇报了2012年3月至2013年10月期间参与研究的190名患者。在由Sequenom panel分析的153名患者中,55%的患者具有至少一种癌症突变,而在MiSeq分析中37名参与实验的患者中89%均发现了突变。KRAS突变最为常见,存在于35%的患者中。其他的突变如BRAF、NRAS、PIK3CA、CTNNB1、ERBB2以及EGFR突变等,还有一些其他的突变均仅通过MiSeq panel检测得到。 对于测序结果对患者治疗方案及最终疗效的影响,研究团队到目前为止仅获得了有限的数据。会议上,主要作者Joanne Wing-Yan Chiu告知CSN,迄今为止,在Princess Margaret研究中心接受分子分析的大约240名患者中,仅有大概10位参与到了相应的定向治疗实验中。而在另一份会议摘要中,来自德克萨斯州立大学的MD Anderson癌症中心的研究人员分享了他们得自500名晚期癌症患者的数据,这些患者均参与到了一项IRB批准的一期临床治疗中,这一项目是在研究中心的临床癌症疗法部门进行的。通过研究人员的努力,MD Anderson使用了覆盖46个基因的Ion Torrent AmpliSeq panel对保存的肿瘤样本进行了分析。根据研究团队的汇报,在分析的500名患者中,共有293名患者拥有至少一种可检测到的突变。最常见的突变基因为TP53(38%)、KRAS(11%)以及PIK3CA(10%)。根据该团队的研究成果,&ldquo 将患者对应到相应的分子靶向治疗中这一方法已经起步了。&rdquo 另一项研究则提供来自于一系列肿瘤研究的数据,这些研究均为这些研究均为使用Foundation Medicine的FoundationOne癌症测序panel对患者进行分析的研究项目的一部分。该研究项目检测了医师基于FoundationOne测序结果改变治疗方案的比例,同时也监测了这些改变对患者存活率的影响。 根据展示结果,FoundationOne测试结果使得128名患者中有26名患者的医师改变了原本建议的治疗方案,而有69名患者的医师则依然按照原方案对患者进行了治疗,并未根据测序结果而改变。另外33名患者则根据医师的处方没有接受治疗,无论是测试前还是测试后。 根据作者描述,&ldquo 对存活率分析以及研究结果与肿瘤基因图谱间的相关性分析的数据搜集正在进行中。&rdquo 在一项NGS定向治疗的追溯研究中,来自大量社区肿瘤学实验的研究人员报告了在632名接受NGS测试的患者中,360名患者具有可操作的突变。在对这些病例中大概300例进行追溯时,研究团队发现在34%的患者中突变测试结果均指导了治疗方案。 会议上一份来自加拿大不列颠哥伦比亚省癌症研究中心的报告记录了对Ion Torrent AmpliSeq测试结果的追踪,以及额外的DNA及RNA测序。这些实验均是在2012至2014年期间召募的65名患有不同晚期癌症的患者中进行的,其中56名成功地进行了测序。 在该研究项目中,AmpliSeq panel仅在40%的病例中检测到了可操作靶点,而全基因组及转录组数据则可以提供更全面的靶向通路的信息,在70%的病例中提供了&ldquo 很大的信息量&rdquo 。根据研究人员的报道,在30名患者中21名的测序结果为可操作的,这些患者的临床数据均可查看。根据作者描述,8名患者接受了基于他们基因型的治疗,其中6名从这种基因型定向治疗中得到了临床改善。 虽然研究团队写道&ldquo 为确定这种技术的实用性还需要进行进一步的研究&rdquo ,他们仍然得到了这样的结论,即相比定向测序panel,全基因组测序可以提供更全面的信息及额外的临床可操作的数据。
  • 苏州大学李盛亮教授团队合作:近红外光远程调控钙通道与肿瘤治疗
    钙离子是一种重要的细胞信号,在生物发育生长以及生理响应等多个过程中扮演举足轻重的角色。钙信号一直是生物学以及医学科学家的重点研究对象,而且钙信号与多种人类重大疾病的发生与发展密切相关。在过去的几十年时间,科学家们一直试图调控钙信号从而达到对生物过程的有效控制,以及实现对疾病的精准治疗。近十年以来涌现了主要包括光遗传学在内的新兴技术应用于在体与离体钙信号调节,并取得了一系列重要的研究成果。但是,该类方法仍在创伤以及安全性等方面存在一定程度的缺陷和问题,影响了该技术的进一步使用。因此,如何远程无创、安全有限的深层组织内钙信号调控仍是当前的重大挑战。苏州大学药学院李盛亮教授与河北工业大学邢成芬教授合作在Nano Letters上发表了题为“Remote Manipulation of ROS-Sensitive Calcium Channel Using Near-Infrared-Responsive Conjugated Oligomer Nanoparticles for Enhanced Tumor Therapy In Vivo”的研究论文,发展了一种近红外响应性多功能性纳米载体系统应用于细胞钙离子通道的调控以及钙级联介导的肿瘤细胞死亡,实现了高效、安全地活体肿瘤模型的肿瘤清除治疗效果。苏州大学药学院李盛亮教授与河北工业大学邢成芬教授是论文的通讯作者。近年来,苏州大学李盛亮团队通过调控近红外光学治疗药物的分子结构与构效关系,发展了一系列具有高效光治疗活性与发光性能的药物体系与载体系统,从而实现了高性能的近红外肿瘤诊疗联合作用(Adv. Mater. 2022, 34, 2201263 Adv. Mater. 2021, 33, 2102799 Adv. Mater. 2020, 32, 2001146 Angew. Chem. Int. Ed. 2021, 133, 11864 ACS Nano 2020, 14, 13681 ACS Nano 2020, 14, 9917 ACS Nano 2019, 13, 12901 Adv. Sci. 2021, 8, 2003972 Mater. Horiz. 2021, 8, 571 Chem. Sci. 2020, 11, 888)。在上述工作基础上,该团队近期与河北工业大学邢成芬教授合作,构建了基于近红外光敏剂的多功能纳米载体,实现了钙离子通道的调控以及钙级联介导的肿瘤细胞死亡。该研究首先建立了一种负载TRPM2质粒的多功能纳米载体,该载体系统在红外光照射下一方面可以通过二硒键的响应性断裂释放TRPM2质粒从而增强TRPM2在肿瘤细胞中的表达,另一方面近红外光产生活性氧物种可激活活性氧敏感的钙通道蛋白TRPM2开启,引发钙内流以及钙信号相关的信号通路级联反应,包括线粒体损失以及抑制早期自噬等。电生理实验进一步证实了近红外光远程、反复式的钙信号调控性能。静脉注射后,近红外二区发光成像证实该载体系统可在肿瘤部位有效蓄积。与此同时,该低剂量近红外光照射启动的钙离子信号以及级联反应可实现高效的抗肿瘤治疗活性,且具备良好的生物安全性。图1. 近红外响应性多功能性纳米载体系统的设计原理及工作机制该研究的意义在于,利用近红外光敏剂的多功能纳米载体系统功能化策略,实现了同时递送基因与钙信号调控功能,发展了一种新型的近红外激活活性氧敏感的钙通道调控策略,为离子通道调控与抗肿瘤治疗提供了新的思路。
  • 在线参会!生物成像技术在肿瘤诊断与治疗中的应用会议通知
    随着信息技术与新材料技术的飞速发展,生物成像技术取得了革命性进展,大大突破传统成像的局限,生物成像技术已经成为生物学研究中不可或缺的方法。不仅在生命科学研究领域,在生物医学领域,例如在重大疾病诊断、个性化治疗、药物开发等方面都发挥着举足轻重的作用。目前主要的成像方式有:荧光成像(FI)、磁共振成像(MRI)、电子计算机断层扫描(CT)、发射型计算机断层成像术(ECT)、拉曼成像(RI)、超声成像(USI)、光声成像(PAI)还有质谱成像技术(MSI)等。此外,生物成像技术在医学转化及制药领域中的应用也越来越受到重视。为帮助相关领域的用户了解生物成像前沿技术及应用进展,仪器信息网将于2023年04月18日举办“生物成像技术在肿瘤诊断与治疗中的应用”主题网络研讨会,本届网络研讨会为期1天,将邀请行业内专家做精彩报告,为广大相关研究领域的用户搭建一个即时、高效的交流平台。参会指南1、点击会议页面链接报名;报名参会:https://insevent.instrument.com.cn/t/MUs 2、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接;3、本次会议不收取任何注册或报名费用;4、会议交流群二维码会议交流群微信二维码
  • 助力免疫治疗 赛默飞推出全新Oncomine肿瘤试剂
    p style=" line-height: 1.5em "   2018年7月19日,赛默飞世尔科技(以下简称:赛默飞)宣布推出基于高通量测序技术(NGS)的Oncomine TCR Beta-SR Assay(SR = Short Reads)试剂。该产品可用于全面评估免疫系统的多样性,从而评价人体对感染、疫苗、细胞免疫治疗的免疫反应状况,反映免疫组库与疾病和治疗的关系,进一步发掘免疫反应相关的潜在标志物。Oncomine TCR Beta-SR Assay的上市,进一步完善了赛默飞旗下T细胞免疫组库解决方案,其兼容血液、FFPE(石蜡包埋组织)、以及cfDNA样本,并以双条码技术进一步降低引物干扰和误差,提升检测灵敏度,有利于肿瘤免疫研究的不断发展。 /p p style=" line-height: 1.5em "   近年来,以干细胞治疗和CAR-T(嵌合抗原受体T细胞免疫疗法)免疫细胞治疗为代表的肿瘤细胞治疗成为了引领未来医学革命的方向之一,并受到了业界瞩目。随着相关研究深入,T细胞免疫组库逐渐成为肿瘤免疫治疗及细胞治疗研究的热点以及突破口。赛默飞在2017年推出TCR免疫组库检测NGS试剂(Oncomine TCR Beta-LR Assay)。此次上市的Oncomine TCR Beta-SR Assay与此前发布的Oncomine TCR Beta-LR Assay形成了优势互补,进一步完善了旗下T细胞免疫组库解决方案。 /p p style=" line-height: 1.5em "   Oncomine TCR Beta-SR Assay的独特设计使研究人员可选择DNA或者RNA作为起始样本开展检测,且不受引物偏差的干扰,研究者使用Ion GeneStudio S5系统和Ion Torrent分析系统可在48小时内得到分析结果。与Oncomine TCR Beta-LR Assay结合使用时,研究人员可以实现全面的TCR beta测序,获得包括TRBV等位基因在内的分型结果,用于免疫应答相关的克隆型分析以及工程化T细胞监测。 /p p style=" line-height: 1.5em "   赛默飞大中华区总裁艾礼德(Tony Acciarito)表示:“支持肿瘤免疫治疗研究是赛默飞近年来在生物医药领域的业务重点之一,我们希望借由Oncomine TCR Beta-SR Assay的上市进一步完善我们的T细胞免疫组库解决方案,全方位地帮助我们的客户加速肿瘤免疫治疗向临床转化,践行赛默飞让世界变得更健康的使命。” /p p br/ /p
  • “小贝开讲”之流式细胞术在血液和肿瘤诊断与治疗中的应用
    时间:2017年12月21日 19:30 - 20:30内容简介:血液系统肿瘤在细胞形态、临床表现及对治疗反应上均具有高度的异质性,为了更好地了解疾病的发病机制、病理学特点及临床病程,需要将这些异质性的疾病分为性质相似的组,即进行分类和鉴别,进而采取相应的治疗方案;白血病及淋巴瘤细胞内或核内抗原检测己成为临床流式细胞分析的常规试验,尤其适用于臼血病系列划分和诊断。流式对于血液肿瘤的诊断、治疗以及预后评估有重要意义。此次讲座,我们非常荣幸得邀请到了著名的河北燕达医院王卉教授,给我们介绍一下流式细胞学在血液和肿瘤诊疗中的应用。主讲人简介:王卉 陆道培医疗集团病理和检验医学科副主任,流式细胞室主任中国抗癌协会血液肿瘤专业委员会第一届青年委员会委员,中国血液免疫学会流式细胞学组委员,中国医师协会检验医师分会造血与淋巴组织肿瘤检验医学专家委员会特聘专家,北京医学检验学会体液和血液学检验分会副主任委员,北京医学会医学细胞生物学分会委员。 从事临床流式细胞术检测和细胞分选16年,参与编写专业书籍8本(2本待出版)。擅长流式细胞术检测白血病、淋巴瘤、非造血系统肿瘤、微小残留病变等临床诊断。独立签发临床流式诊断报告十余万份,其中50%为来自全国各大医院会诊的疑难病例。
  • Nature|国产新一代CAR-T技术治疗肿瘤获完全缓解
    近年来,嵌合抗原受体T细胞疗法发展迅速,在癌症治疗中显示出巨大潜力,FDA也先后批准了数个CAR-T疗法上市。然而,CAR-T的局限性也非常突出,生产过程复杂、成本高昂、制备周期较长,而且还存在潜在安全性问题。目前的CAR-T制备过程中使用的病毒载体尤其值得关注,慢病毒载体的随机插入可能会导致潜在的致癌风险。此外,机体对病毒递送的DNA的特异性反应会阻碍CAR的表达,而且,病毒的制备本身会产生高成本。目前,有研究采用转座子系统和mRNA转导的策略,来构建非病毒载体的CAR-T细胞,但依然存在随机整合和CAR表达低效的问题。因此,如果能使用非病毒载体实现高效的、定点插入的CAR-T细胞制备,将是CAR-T细胞疗法的重大突破。2022年8月31日,邦耀生物与华东师范大学、浙江大学医学院附属第一医院合作,在国际顶尖学术期刊Nature上发表了题为:Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL 的研究论文。该研究通过 CRISPR-Cas9 基因编辑技术开发出了非病毒、基因特异性靶向的 CAR-T 细胞,并在人体临床试验中证实该 CAR-T 细胞在治疗复发/难治性B细胞非霍奇金淋巴瘤(r/r B-NHL)中的安全性和有效性。该研究中使用了邦耀生物搭建的具有自主知识产权的非病毒定点整合CAR-T平台——Quikin CART® 。该平台可在不使用病毒载体的情况下,通过一步制备获得基因组定点整合的CAR-T细胞产品,具有成本低、制备时间短、工艺简单、安全性和有效性高等优点。据悉,这也是国内首个在 Nature 期刊发表的CAR-T研究成果,既代表邦耀生物在CAR-T领域取得了巨大的突破,也意味着邦耀生物已成功迈向基因和细胞治疗的国际第一梯队。2020年5月,在浙江大学医学院附属第一医院开展了全球首个“PD-1敲除非病毒定点整合CD19-CAR-T细胞治疗复发/难治性非霍奇金淋巴瘤的临床试验”中,该产品体现出了出色的临床安全性和有效性,首例接受治疗的患者至今已疾病完全缓解(CR)超过2年。Quikin CART® 全新升级,更加快速高效传统CAR-T产品的制备主要通过病毒载体来实现,这会带来如下几个问题:一、由于病毒采用随机插入的方式将CAR序列整合到细胞基因组中,可能会改变正常基因的表达,因此存在潜在的致瘤风险,并且通过这种方式制备获得的CAR-T产品均一性很低;二、从生产工艺来看,传统CAR-T产品的制备时间都比较长,目前上市的几款CAR-T产品制备时间约为15-28天,这极大增加了患者等待用药的时间,也意味着这样的CAR-T产品无法用于肿瘤进展非常快的患者;三、极大增加了生产成本,从目前在美国上市的几款CAR-T产品来看,均定价在37.3-47.5万美元之间,折合人民币为256-326万元。2021年在中国批准的首款CAR-T产品奕凯达顶尖120万元人民币,创造了国产药的定价纪录。相较而言,Quikin CART® 可以有效解决使用病毒载体带来的这几大难题,展现出了巨大的优势。定点整合可以让每个CAR序列都精确地插入到基因组的特定位点,能避免随机插入导致的致瘤风险,最大程度保证了CAR-T产品的安全性和有效性。只需一步制备,即可同时实现CAR的持续性表达和T细胞内源基因的调控,大大缩短了整个CAR-T产品的制备时间,得以让更多患者受益。另外,使用非病毒生产工艺还可以极大减少因使用病毒载体带来的高昂成本。打破复发难治枷锁,为更多患者点燃希望非霍奇金淋巴瘤是一种原发于淋巴组织的血液系统恶性肿瘤,占所有淋巴瘤80%-90%,虽然患者在初次治疗后疾病得到缓解,但之后往往出现复发。尽管已有CAR-T产品获批用于复发难治性非霍奇金淋巴瘤的临床治疗,可是总体疗效依然有限。PD-1/PD-L1信号通路是抑制T细胞功能的重要免疫检查点,有不少研究报道了PD-1敲除可有效增强CAR-T细胞的功能。因此,邦耀生物利用Quikin CART® 平台开发了靶向CD19的非病毒PD-1定点整合CAR-T产品(BRL-201)。研究团队构建了包含4-1BB和CD3ζ的抗CD19 CAR序列(命名为19bbz)。然后将其选择性靶向基因组中的安全位点AAVS1,检测结果显示CAR序列在AAVS1位点的平均整合效率为10%,最高达19.8%。在临床前研究中,相比于慢病毒感染和结合基因编辑技术敲除PD-1的CAR-T细胞,BRL-201无论在PD-L1高表达还是低表达的肿瘤细胞中,都显现出更强、更持久的杀伤效果,小鼠生存率得到显著提高。机制研究表明,Quikin CART® 技术本身能显著提高记忆性T细胞的比例,且PD-1表达下调可以有效增强T细胞的抗肿瘤免疫功能。在开展的BRL-201治疗复发难治性非霍奇金淋巴瘤临床试验中,8例患者接受治疗后,未观察到CAR-T相关的神经毒性和2级以上细胞因子风暴,证明了BRL-201具有出色的临床安全性。根据检测结果显示,CAR-T细胞回输后能在患者体内快速扩增并持续较长时间,接受治疗后87.5%的患者获得了完全缓解(CR)的效果,所有患者均对治疗响应,客观缓解率(ORR)为100%。迄今,接受该CAR-T疗法的患者无癌生存期最长已超过2年,目前仍处于疾病完全缓解的状态。值得一提的是,无论是针对PD-L1高表达肿瘤患者的治疗,还是在CAR-T细胞回输剂量和阳性率较低的条件下,BRL-201均显示出了良好的疗效,证明了其具有强大的肿瘤杀伤能力。BRL-201在临床上体现了出色的安全性和有效性值得一提的是,加州大学洛杉矶分校的 Justin Eyquem 教授和 Nature 资深编辑 Victoria Aranda 高度评价了这项研究成果:全面系统的临床前研究,成功开发了非病毒定点整合CAR-T疗法,并报道了首个PD-1下调定点整合型CAR-T细胞的临床试验结果。研究人员在临床治疗中观察到了高比例的肿瘤完全缓解率,且未发现严重的毒副作用,这一令人鼓舞的结果显示出这种CAR-T疗法具有出色的临床安全性和有效性。研究人员同时也证明了非病毒定点整合T细胞治疗在临床应用的可行性。这一技术创新为未来更多基因靶向修饰CAR-T疗法的发展奠定了坚实的基础,对领域发展具有重要的推动作用。论文链接:https://www.nature.com/articles/s41586-022-05140-y
  • PMIO China 2023第五届中国精准医学与肿瘤免疫治疗峰会通知
    在现如今肿瘤免疫治疗和靶向治疗药物研发白热化的时代,如何提高新药研发领域技术创新,布局精准医疗领域的发展战略?如何精准开发新药,加快研发临床前和临床开发的进程?研发型药企如何上下游合作,为药物研发提供有效的伴随诊断试验,控制药物开发成本,获得理想的临床数据?有鉴于此, PMIO 2023 第五届中国精准医学与肿瘤免疫治疗峰会将于2023年9月7-8日在上海隆重召开。作为国内领先的精准医学、新药研发领域的行业盛会,PMIO 2023 将邀请并汇聚1000+来药企, 生物技术与学术界, 临床试验研究机构的专家与科学家, 特设肿瘤免疫,伴随诊断,小分子创新药开发主题论坛。峰会将聚焦新一代肿瘤免疫2.0开发,探讨创新药的新靶点选择,创新临床试验设计,探究生物标志物及伴随诊断在创新药开发中的作用、新一代临床试验技术,解读伴随诊断试剂临床试验注册审查指导原则,展示单细胞多组学,人工智能,真实世界数据,PROTACs,液体活检等创新技术在新药研发过程中的应用场景。会议旨在为中国创新药企、上下游产业链搭建合作交流专业平台,共同探索精准医疗背景下加速新药研发和创新,提升临床开发效率的新思路和行业思考。PMIO 2023关键话题●中国创新药在全球开发案例解读:经验教训与未来展望●小分子肿瘤免疫治疗药物的临床研究进展●大分子免疫治疗药物临床开发策略及未来研发方向●靶向肿瘤微环境的免疫治疗策略●基于单细胞测序技术的生物标志物和靶点挖掘的新方法●多组学数据在生物标志物和药物靶点挖掘中的应用●同步开发过程中药物及伴随诊断试剂如何共同开展临床试验●新药开发中的药物临床伴随诊断策略与趋势●生物标志物驱动下的药物临床研究●通过ct-DNA进行MRD的检测用于早期实体瘤治疗药物的开发●基于NGS液体活检的肿瘤伴随诊断在临床诊疗和药物开发中的应用●创新药研发中的AI、智能化、自动化和数字化应用进展谁应该参加●目标观众创新药企/Biotech、CRO、CDMO、伴随诊断与多组学服务商、产业园区、投资与咨询机构、高校及科研大内等R&D、早期研发、转化医学等技术专家及负责人●目标参展商提供:生物试剂、耗材、转化医学相关研究仪器、生命科学仪器、中心实验室、诊断公司、人工智能、实验动物、CRO、CDMO、GMP、原料药、咨询等技术与服务供应商【招展/论坛组织工作全面启动】1、多种合作形式火热开放中!主题演讲,产品展示,插页广告,晚宴赞助,吊绳&名卡、手提袋、卫星会、新品发布等多种合作形式火热开放中!名额有限,详情咨询:15002180039(同微信)2、PMIO2023演讲嘉宾火热征集中!演讲摘要/论文投稿,经组委评估并确认的嘉宾将享受以下福利:. 获得一张免费全程参会证;. 会议期间午餐券、嘉宾招待晚宴;. 在会议期间专享演讲嘉宾休息室;. 组委会官方宣传与推广投稿邮箱:enquiry@gecgroup.com.cnPMIO往届嘉宾张连山, 全球研发副总裁, 恒瑞医药卢宏韬, 共同创始人、首席科学官, 科望医药郭炳诗, CSO, 天境生物康小强, 总裁, 维立志博林毅晖, VP & 转化医学中心负责人, 思路迪医药张天裘, 总经理, 鼎航生物屈向东, 创始人兼CEO, 启愈生物邹灵龙, 生物分析副总经理, 复宏汉霖生物倪健, CEO, 优锐生物刘礼乐, 高级副总裁, 和铂医药华烨, 董事长兼首席执行官, 烨辉医药王斌辉, 医学部负责人, 施维雅中国王佳亮, 转化医学副总裁, 睿跃生物顾祥巨, 首席科学家, 来凯医药郭晓宁,副总裁、研发负责人兼首席医学官, 赛生药业谢毅钊, 首席转化医学官, 基石药业胡邵京, 研发总裁, 北京加科思新药研发李福根, 副总裁, 海河医药马连东, 副总裁, 新药研究院院长, 开拓药业叶斌, 临床生物标志物与药物开发副总裁, 盛诺基医药王结义, 创始人、董事长兼CEO, 礼进生物彭彬, 首席医学官, 岸迈生物徐伟, 新药生物与转化医学副总裁, 信达生物陈椎, 高级副总裁 生物学, 和誉生物…往届精彩回顾敬请期待PMIO China 2023峰会更多精彩!电话:150 0218 0039邮箱:enquiry@gecgroup.com.cn官网:www.PMIOsummit.com
  • 《Nature》重磅:癌症精准治疗新突破——个体化肿瘤疫苗
    p    span style=" font-family: 微软雅黑, & quot Microsoft YaHei& quot color: rgb(84, 141, 212) " 找到有效攻克肿瘤的方法长期以来一直是研究人员追求的目标,最大的困难之一在于广泛存在的肿瘤异质性,不仅仅在肿瘤组织内部,即使是同一种肿瘤类型,在不同患者间也存在着极大的差异。最新的两项独立研究表明,科学家们可以从肿瘤患者自身找到个性化治疗癌症的方法---个性化的肿瘤疫苗,这两项研究成果同时发表在了《Nature》杂志上。 /span /p p   癌细胞在快速生长和增殖过程中,往往来不及修复DNA在复制过程中出现的错误,因此会出现许多新的突变蛋白,称之为肿瘤新抗原。早期研究认为绝大多数肿瘤新抗原所携带的突变本身对肿瘤细胞的生长并没有影响,属于可被忽略的副产物。随着研究深入,近期科学家发现即使同种癌症患者身上的突变都不尽相同,新抗原也有所差别,可作为特异的标记物被免疫细胞识别。而个性化肿瘤疫苗的原理正是在于:通过寻找每个患者特有的突变,做到对症下药。例如A、B两名患者都携带有p53的基因突变,但A患者同时携带x+y突变,而B患者则携带m+n突变 那么激活对抗“x+y”的免疫细胞,对携带“m+n”突变的癌细胞可能是无效的。因此,肿瘤疫苗通过发现患者体内特异性表达的肿瘤新抗原,继而个性化激活免疫系统,实现真正的个体化精准治疗。 /p p    strong 研究成果为肿瘤治疗带来新希望 /strong /p p   来自美国波士顿Dana-Farber癌症中心和德国美因茨大学的两个研究团队最近展示了肿瘤“个性化疫苗”在临床上取得的重大突破,并分别在《Nature》上发表了题为& quot An immunogenic personalneoantigen vaccine for patients with melanoma& quot 和& quot Personalized RNA mutanome vaccines mobilizepoly-specific therapeutic immunity against cancer& quot 的成果文章。 /p p   两个项目都是首先对患者肿瘤组织样本进行取样测序,并分别使用独特算法预测哪些突变最有可能引起免疫反应。然后分别开发出了以多肽片段和RNA为基础的疫苗,并在晚期黑色素瘤3期或4期的中晚期复发高危人群身上展开了研究。 /p p   在来自Dana Farbar研究所的Wu博士带领的团队中,研究人员为每位患者量身定制了包括13-20种不同的含有新抗原的多肽疫苗(图1,ref 1)。常规临床数据显示该类晚期肿瘤的复发率高达50%,而结果显示6位患者中,4位患者在接受疫苗两年后没有出现复发迹象。另外2名患者出现了复发迹象,但是在接受了PD-1抗体药物治疗后获得了完全缓解。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/f8c2ddb0-5a4d-49ee-90bc-547a288794e7.jpg" title=" 1.jpg" width=" 600" height=" 698" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 698px " / /p p style=" text-align: center " 图1:Generation of a personal, multi-peptide neoantigen vaccine for patients withhigh-risk melanoma. /p p   类似结果在另一组研究中也被发现。由Ugur Sahin教授率领的美因茨大学团队为每位患者研发了含有不超过10种不同的编码新抗原的RNA片段(图2,ref 2)。13位受试者中,8位在接受疫苗后一年内没有出现复发迹象,其他5名患者在接受疫苗时肿瘤已经出现扩散,其中2名在接受疫苗后肿瘤缩小,另外1名患者在接受PD-1抗体药物后得到完全缓解。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/e79b67fe-bc30-4345-96a6-31db88a84a0d.jpg" title=" 2.jpg" width=" 600" height=" 346" border=" 0" hspace=" 0" vspace=" 0" style=" width: 600px height: 346px " / /p p style=" text-align: center " 图2: Vaccine design,manufacturing and clinical study procedure. /p p   上述两项研究在临床上都取得了突破性的进展,有望为肿瘤治疗开启新的研究方向,但是目前该方法还面临着一些挑战,最主要的问题之一是生产疫苗的时间。Wu博士表示如何缩短疫苗生产时间是进一步研究的主要方向。 /p p   一个关键影响因素是如何从测序的海量信息中快速确认最有可能引起免疫反应的突变位点,并对肿瘤DNA样本进行准确鉴定和评估。在& quot An immunogenic personalneoantigen vaccine for patients with melanoma& quot 项目中,研究人员利用Biomark HD系统和genotyping实验体系对正常和肿瘤组织中的95个SNP位点进行了多样本多位点的高通量检测分析,为样本的准确性、靶点的挑选和确认提供了进一步的信息。 /p p   另一个关键因素是对疫苗临床疗效的评估,从而筛选出最有效的疫苗进行接种。在& quot Personalized RNAmutanome vaccines mobilize poly-specific therapeutic immunity againstcancer& quot 文章中,研究人员利用Biomark HD系统和基因表达芯片对接种疫苗前、后肿瘤样本中的免疫基因表达水平变化进行了细致分析,从细胞因子、信号转导、表型和代谢机理等多角度对疫苗疗效进行综合评估(图3,ref 2)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/d95a611c-f2e4-4159-b646-7ed5e0276999.jpg" title=" 3.jpg" width=" 400" height=" 816" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 816px " / /p p style=" text-align: center " 图3: Differential gene expression patterns comparingpre- and post-vaccination tumour samples /p p    strong 工欲善其事必先利其器 /strong /p p   来自Parker癌症免疫疗法研究院的研发副总裁Fred Ramsdell博士指出:“这两项研究在本质上最大限度地提高了对仅在单个患者肿瘤细胞上表达的蛋白的反应,这就像你接受了一种针对只会感染你的流感病毒的疫苗。” /p p   该研究的前景是非常可观的,而在进一步开发成熟产品并在未来进行规模化生产的过程中,准确、高效、易操作等因素是必不可少的。上述两项研究中,科研人员在研究的不同阶段分别引入了Fluidigm 公司的Biomark HD系统进行基因分型和表达的分析,为产品研发提供了大量的数据基础。 /p p   该系统作为成熟的高通量基因分析系统,可进行多样本、多参数的基因分析,例如可对多达96个患者样本、每个样本96个位点进行同时检测,因此可对肿瘤患者体内的免疫反应进行综合评估,获得全面、细致的表达图谱,从而在快速鉴定个性化突变的基础上找到最为有效的靶点间排列组合。 /p p   肿瘤疫苗理论上同样适用于其他癌症的治疗,而不同肿瘤类型、不同患者之间基因表达和突变情况广泛存在着差异。利用Biomark HD系统和配套的微流控芯片,可根据实际情况灵活更换或搭配实验体系中的待测位点,减少了对实验设计的限制。 /p p   目前这两种疫苗都已进入后续研发阶段,两个团队分别成立了公司并正在进行更大规模的I期临床实验。随着规模的扩大,时间和成本控制也是需要考虑的因素。Biomark HD系统可在4小时内实现近万个数据点的分析,并将每个反应控制在纳升(nl)级体系内,大幅降低了试剂的使用成本。 /p p   同时,Fluidigm公司开发出了“Advanta& #8482 Immuno-OncologyGene Expression Assay”检测试剂盒,涵盖了170个与肿瘤免疫相关的基因和5个housekeeping基因。其中包括91个在肿瘤免疫反应中起重要作用的关键基因,这些基因在全球范围内被广泛报道与多种肿瘤的生长和依赖于检测点的治疗反应相关。另外公司通过与世界顶尖实验室和大型制药企业合作,进一步开发了74个肿瘤免疫标记物,帮助用户进行快速全面的指标筛选。除此之外,panel中还包含有开放位点,可以实现个性化实验设计。 /p p   Reference: /p p   1. Ott PA, et al., Animmunogenic personal neoantigen vaccine for patients with melanoma. Nature(2017) doi: 10.1038/nature22991. /p p   2. Sahin U, et al., Personalized RNA mutanome vaccines mobilize poly-specific therapeuticimmunity against cancer.Nature (2017) doi:10.1038/nature23003. /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制