当前位置: 仪器信息网 > 行业主题 > >

肿瘤环境

仪器信息网肿瘤环境专题为您整合肿瘤环境相关的最新文章,在肿瘤环境专题,您不仅可以免费浏览肿瘤环境的资讯, 同时您还可以浏览肿瘤环境的相关资料、解决方案,参与社区肿瘤环境话题讨论。

肿瘤环境相关的资讯

  • 单细胞技术之肿瘤免疫微环境研究应用|含肿瘤微环境会议预告
    肿瘤异质性对癌症预后和治疗反应有显著影响。传统的基因组和转录组分析被广泛用于研究不同的癌症类型,在预测预后和对不同治疗的反应以及为癌症治疗提供靶点方面具有潜在作用。不同癌症类型的单细胞分析表明,肿瘤免疫微环境的详细信息在多种癌症类型之间共享。目前,自从发现检查点抑制剂以来,免疫治疗彻底改变了癌症治疗并引起了越来越多的关注。肿瘤免疫微环境由非细胞成分(血管、细胞外基质、信号分子等)和细胞成分(T细胞、髓细胞、成纤维细胞等)组成。尽管传统的基因组和转录组学分析,也强调免疫相关途径和计算方法,并已应用于预测免疫细胞成分,但技术限制阻碍了时间的精确表征。传统的批量基因组和转录组分析获得的信号均来自不同细胞,掩盖了特定细胞类型和状态的识别。原位杂交和免疫组织化学已被用于探索单个细胞的基因组、转录组和蛋白质组学特征,但其产量相对较低。流式细胞术能够分析数千或数百万个单细胞蛋白质组学图谱;然而,这些方法需要事先选择感兴趣的抗体。随着细胞分离和测序技术的突破,单细胞转录组测序已经能够在单次运行中在单细胞水平上对许多细胞进行无偏好的全基因组分析。单细胞转录组测序已被用于分析单个细胞的转录组学,用于解析细胞间的异质性。肿瘤免疫微环境在诊断、治疗和预测不同类型癌症的预后方面显示出了潜力。与传统方法相比,scRNA-seq可用于识别新的细胞类型和相应的细胞状态,加深了我们对肿瘤免疫微环境的理解。1.介绍了scRNA-seq的原理,并比较了不同的测序方法。2.根据肿瘤免疫微环境中新的细胞类型、持续的过渡状态以及肿瘤免疫微环境成分之间的相互通讯网络找到了癌症的预后预测和治疗的潜在靶点。3.总结出在肿瘤免疫微环境中应用scRNA-seq后发现的由癌症相关成纤维细胞、T细胞、肿瘤相关巨噬细胞和树突状细胞组成的新型细胞簇。4.提出了肿瘤相关巨噬细胞和耗尽的T细胞的发生机制,以及中断这一过程的可能靶点。5.对肿瘤免疫微环境中细胞相互作用的干预治疗进行了总结。几十年来,肿瘤免疫微环境中的细胞成分定量分析已被应用于临床实践,预测患者生存率和治疗反应,并有望在癌症的精确治疗中发挥重要作用。总结目前的研究结果,我们认为单细胞技术的进步和单细胞分析的广泛应用可以导致发现癌症治疗的新观点,并应用于临床。最后,作者提出了肿瘤免疫微环境研究领域的一些未来方向,并认为通过scRNA-seq对这些方向进行辅助。相关会议预告:8.30召开,点击报名scRNA-seq在刻画肿瘤免疫微环境中的应用scRNA-seq技术进展scRNA-seq程序主要包括单细胞的分离和提取、cDNA合成、核酸扩增、测序和数据分析。与传统的批量测序相比,scRNA-seq单个细胞中的RNA量相对较少。因此,需要更有效的扩增方法。研究人员已经成功建立了稳定的单细胞文库构建过程,以产生足够的cDNA用于测序。单细胞分离和捕获是scRNA-seq在不同方法中的基本程序。目前单细胞分离和捕获的常用方法。这些程序分为四大类:激光捕获微切割、油滴包裹技术、流式细胞荧光分选技术和微流控微孔技术。scRNA-seq技术的未来发展可能会降低成本并增加细胞产量,使scRNA-seq成为研究单个细胞转录组的标准工具。肿瘤免疫微环境的细胞成分肿瘤免疫微环境的细胞成分包括淋巴细胞(T和NK细胞)、髓细胞(巨噬细胞和树突状细胞)、成纤维细胞和其他免疫细胞。成纤维细胞传统上被归类为基质细胞,因为它们在构建细胞外基质中发挥着重要作用。在这里,作者将肿瘤免疫微环境的癌相关成纤维细胞包括在内,因为它们分泌丰富的促炎和抗炎因子来重塑免疫微环境。细胞毒性CD8+T细胞识别肿瘤细胞上的特异性抗原并随后消除它们,是免疫微环境最常见和最有效的免疫细胞。CD8+T细胞的细胞毒性功能依赖于CD4+T Th1细胞。其他CD4+T细胞,包括Th2细胞和Th17细胞,也促进肿瘤微环境中的免疫反应。调节性T细胞抑制肿瘤免疫微环境并加剧肿瘤进展。自然杀伤T细胞和自然杀伤细胞也参与其中。它们的受体识别肿瘤细胞,从而激活其他免疫细胞。作为先天免疫的重要组成部分,骨髓细胞,包括肿瘤相关巨噬细胞和树突状细胞,在肿瘤免疫微环境中发挥着重要作用。巨噬细胞通常分为促炎M1和抗炎M2表型。肿瘤相关巨噬细胞主要由M2巨噬细胞组成,通过产生生长因子和细胞因子促进肿瘤生长、肿瘤存活和血管生成。DC对于T细胞的抗原呈递至关重要,连接先天免疫和适应性免疫。癌症相关成纤维细胞在肿瘤免疫微环境中维持增殖和分泌调节因子,可分为炎症性CAF和肌纤维母细胞CAF。炎症性CAF具有较高的细胞因子和趋化因子分泌,而肌纤维母细胞CAF高度表达收缩蛋白,成纤维细胞对免疫微环境起相互抑制作用。研究表明,成纤维细胞募集M2巨噬细胞和调节性T细胞,抑制肿瘤微环境中的免疫反应。肿瘤相关成纤维细胞也被发现在某些情况下会支持抗肿瘤免疫。除了分泌抗体,B细胞还通过产生与T细胞相互作用的细胞因子参与细胞免疫。研究表明,B细胞抑制细胞毒性T细胞并诱导CD4+T细胞分化为调节性T细胞。B细胞也是最近引入的三级淋巴结构的重要组成部分,富含B细胞的三级淋巴结构与各种肿瘤的生存和免疫治疗反应有关。先前的研究强调了细胞成分在时间中的重要作用。然而,免疫细胞的鉴定常基于有限的细胞标记,并借助免疫组织化学。个体免疫细胞的转录组图谱是探索不同免疫细胞及其相应功能所必需的。为了理解细胞进化过程及其决定因素,有必要应用scRNA-seq观察每个细胞的转录动态。利用scRNA-seq探索免疫微环境的新发现聚类和注释对于解释scRNA-seq数据探索至关重要。根据细胞相似性对数据进行划分,挑战在于在不提供先验知识的情况下估计固有的簇数或密度。可能的解决方案是采用分层聚类方法来揭示细胞的分层结构,这也与细胞本体相一致。给定聚类方法产生的数据划分结果,需要细胞类型注释来提供生物学意义。注释的主要挑战是确定每个聚类中存在多少细胞类型,以及是否存在当前未发现的细胞类型。在实践中,研究人员通常首先识别每个聚类的标记基因,然后根据专业知识和文献对其进行注释。scRNA-seq使研究人员能够以更高的分辨率将免疫细胞分类为具有不同功能的亚群,描述了免疫细胞的常规亚型。利用scRNA-seq发现的淋巴细胞(T和NK细胞)、髓细胞(巨噬细胞和树突状细胞)和成纤维细胞的组成(图2)。人和小鼠样本的scRNA-seq表明,成纤维细胞可分为抗原呈递CAFs、癌症相关成纤维细胞或肌成纤维细胞。抗原提呈CAFs独特地表达主要组织相容性复合体(MHC)II类基因,包括激活CD4+T细胞的CD74。在结直肠癌中也观察到类似的抗原提呈CAFs亚群。乳腺癌症基因工程小鼠模型中成纤维细胞的scRNA-seq进一步鉴定了血管CAF、基质CAF、发育CAF和循环CAF。血管CAF、基质CAF和发育CAF似乎起源于固有成纤维细胞和恶性细胞发生上皮-间充质转化时的血管周围位置。循环CAF是血管CAF群体中增殖的部分。在其他小鼠模型中也发现了血管CAF和基质CAF,它们在患者乳腺肿瘤样本中是保守的,并且发现它们会增加乳腺癌症细胞的转移。提高CAF的分辨率为开发精确靶向CAF的药物提供了生物标志物。另一项关于乳腺癌症的scRNA-seq研究将调节性T细胞分为五类:共表达细胞毒性T淋巴细胞相关抗原-4的调节性T细胞、具有Ig和ITIM结构域的T细胞免疫受体,以及相互或仅表达相同基因的GITR和其他调节性T细胞,它们具有不同的功能。不同预后的患者具有不同比例的调节性T细胞簇,为个性化治疗提供了靶点。免疫微环境对T细胞和髓细胞进行了更详细的泛癌研究,发现存在颗粒酶K+T细胞、干扰素刺激基因+T细胞、杀伤细胞免疫球蛋白样受体在记忆性T细胞和NK细胞上表达、转录因子7+CD8+T细胞,ficolin 1+常规DC2、分泌性磷酸蛋白1+TAM,以及肿瘤微环境中的叶酸受体β+TAMs。基于scRNA-seq数据,免疫微环境还发现了新的免疫细胞亚群。葡萄膜黑色素瘤的scRNA-seq鉴定了以前未识别的细胞类型,包括主要表达检查点标记LAG3而不是程序性死亡-1或CTLA-4的CD8+T细胞。同时,在肝细胞癌中发现浸润耗尽的CD8+T细胞和具有高表达layilin的记忆T细胞的克隆富集,这些研究为癌症免疫治疗提供了新的靶点。因为CD8+T细胞是参与消除恶性细胞的主要成分。大肠癌CXC基序趋化因子的scRNA-seq鉴定配体BHLHE40+Th1样细胞与干扰素-γ调节转录因子BHLHE40。在不稳定肿瘤中,这些细胞对免疫检查点阻断有良好的反应,可能会提高免疫疗法的疗效。树突状细胞对于呈递抗原以激活肿瘤免疫微环境中的T细胞是必不可少的。胃癌的scRNA-seq揭示了一个新的树突状细胞簇,表达吲哚胺2,3-双加氧酶1和趋化因子C–C基序趋化因子配体(CCL)22、CCL17、CCL19和白细胞介素-32,它们参与T细胞的募集。胰腺导管腺癌的scRNA-seq还鉴定了除了常规细胞标记物之外还高表达吲哚胺2,3-双加氧酶1的树突状细胞簇。吲哚胺2,3-双加氧酶1对于催化色氨酸消耗和犬尿氨酸产生、抑制T细胞增殖和细胞毒性至关重要,这揭示了树突状细胞和T细胞之间的密切相互作用。此外,通过scRNA-seq鉴定了溶酶体相关膜蛋白3+树突状细胞,并且似乎是经典树突状细胞族的成熟形式。溶酶体相关膜蛋白3+DC可以迁移到淋巴结,并高度表达与T细胞相互作用的配体。这些表达特异性标记物的新型树突状细胞簇的发现为癌症免疫治疗提供了一个新的视角。使用scRNA-seq在肺腺癌中发现了肿瘤相关巨噬细胞的新特征基因,包括髓系细胞触发受体2、CD81、具有胶原结构的巨噬细胞受体和载脂蛋白E。此外,乳腺癌症的scRNA-seq表明,除了M2型基因如CD163、跨膜4域A6A和转化生长因子β1外,血管生成因子纤溶酶原激活剂、尿激酶受体和IL-8也在肿瘤相关巨噬细胞中表达。肿瘤相关巨噬细胞中这些新的基因特征图谱与患者生存相关,并为癌症治疗提供了新的潜在靶点。肿瘤样本scRNA-seq显示,一个肿瘤相关巨噬细胞亚群呈现出SPP1、巨噬细胞清除剂受体MARCO和MHC II类基因的高表达。MARCO和SPP1是巨噬细胞激活中的抗炎和免疫抑制信号,而MHC II类基因与促炎功能有关。其他scRNA-seq研究表明,肿瘤相关巨噬细胞经常同时具有促炎和抗炎特征。这一现象表明,肿瘤微环境中的巨噬细胞活化与传统的M1/M2极化不一致。图2:利用scRNA-seq揭示免疫微环境中的新的免疫亚群单细胞数据揭示免疫细胞进化大多数免疫细胞都处于细胞发育过程中。大量的免疫细胞处于发育轨迹的瞬态状态,而不是分化良好的细胞的离散状态。借助scRNA-seq和深入分析,研究人员可以探索分化细胞的特征、特定细胞类型的转变及其可能的机制。最常用的计算方法是拟时序分析。轨迹描述了细胞的发育过程,其特征是基因表达的级联变化。分支点代表细胞分化的显著差异。各种机器学习计算方法已被用于构建轨迹,包括Monocle3、DTFLOW、DPT、SCORPIUS和TSCAN,这些方法已在单独的综述中进行了评估和比较。由于肿瘤相关巨噬细胞和T细胞代表了免疫微环境中最丰富的免疫细胞类型,这里主要关注这两种细胞类型。scRNA-seq显示,TAMs经常共表达M1基因,包括TNF-α和M2基因,如IL-10,并且肿瘤相关巨噬细胞的分化和状态与其抗肿瘤作用直接相关。拟时序轨迹分析证实,肿瘤相关巨噬细胞在M1和M2表型之间连续转换。转录因子IRF2、IRF7、IRF9、STAT2和IRF8似乎在决定TAMs分化中很重要,并可作为表观遗传学靶点诱导肿瘤相关巨噬细胞的M1极化,从而产生促炎和抗肿瘤的微环境。使用环境刺激和抗原T细胞受体(TCR)刺激测定T细胞表型。不同状态的细胞之间TCR库的重叠,即TCR共享,也可用于研究T细胞的进化。结合scRNA-seq和TCR追踪在结直肠癌中发现20个具有不同功能的T细胞亚群。在黑色素瘤肿瘤的耗竭T细胞中发现了28个基因的耗竭特征,包括TIGIT、TNFRSF9/4-1BB和CD27,并且在大多数肿瘤的高耗竭细胞中也被发现上调。另一项关于T细胞的研究进一步鉴定了CD8+T细胞中的其他耗竭标记物,如LAYN、普列可底物蛋白同源物样结构域家族A成员1和突触体相关蛋白47。拟时序轨迹分析表明,T细胞在时间上处于连续激活和终末分化(衰竭)状态(图3)。已经进行了额外的研究来研究耗尽的T细胞的进化和逆转T细胞耗尽的潜在靶点。scRNA-seq与TCR分析相结合表明,功能失调的衰竭T细胞和细胞毒性T细胞可能在时间上与发育有关。因此,研究集中在CD8+T细胞从效应细胞到衰竭T细胞的过渡过程。scRNA-seq鉴定出两个CD8+T细胞簇为非小细胞肺癌中预先耗尽的T细胞。在肺腺癌中,预先耗尽与耗尽的T细胞比率与更好的预后相关。因此,在耗尽前中断预先耗尽的T细胞可能对癌症免疫治疗至关重要。由于免疫细胞和恶性细胞之间的密切相互作用,恶性细胞的进化在免疫细胞进化中也起着至关重要的作用。拟时序轨迹分析表明,转移性肺腺癌的轨迹分支不同于向纤毛细胞和肺泡型细胞的正常分化。受恶性细胞进化的影响,正常的骨髓细胞群体被单核细胞衍生的巨噬细胞和新型树突状细胞取代。T细胞也被发现会衰竭,从而构建免疫抑制的肿瘤微环境。同样,另一项研究表明甲状腺癌症细胞来源于乳头状甲状腺癌症细胞亚簇,其中构建了不同的肿瘤免疫微环境,导致预后显著恶化。图3:肿瘤相关T细胞和巨噬细胞的进化过程免疫微环境中不同细胞间的通讯网络免疫微环境上的细胞通讯与肿瘤进展有关。配体-受体相互作用是一种重要的细胞通讯类型,对于构建免疫微环境和识别潜在的治疗靶点至关重要。scRNA-seq是在细胞基础上进行的,这使得研究未发现的细胞相互作用变得可行。已经开发了许多基于scRNA-seq数据研究配体-受体相互作用的分析工具,包括iTALK、CellTalker和CellPhoneDB。这些工具利用了已知配体-受体对相互作用的数据库。其中,CellTalker利用差异表达的基因,而CellPhoneDB包括配体和受体的亚基结构。其他工具,如NicheNet,也考虑了受体细胞下游通路的变化。在肿瘤进展过程中,恶性细胞导致免疫细胞的募集和功能障碍,从而相互影响肿瘤的发生和恶性细胞的进化,形成恶性循环(图4)。发现TAMs通过表皮生长因子受体-双调节蛋白配体受体对与恶性细胞相互作用。在基底样乳腺癌细胞系中AREG的调节导致抗炎TAMs的招募。同时,基于scRNA-seq,发现了一种EGFR相关的反馈回路可促进胰腺腺鳞癌的进展。来源于TAMs的抑瘤素M也与其在恶性细胞上的受体相互作用,以激活信号转导子和转录激活子3。研究人员通过整合素受体与胶原蛋白、纤维连接蛋白、血小板反应蛋白1配体和富含亮氨酸重复序列的G蛋白偶联受体4-R-反应蛋白3的相互作用,发现CAF与胃癌细胞之间的通信,这些配体调节干细胞。此外,胰腺导管腺癌的scRNA-seq揭示了TIGIT与T细胞和NK细胞中的甲型肝炎病毒细胞受体2之间的相互作用,以及它们在恶性细胞中的相应配体PVR和LGALS9,导致免疫细胞功能障碍和胰腺癌症进展。因此,基于单细胞数据探索免疫细胞和恶性细胞之间的细胞相互作用提供了可能治疗靶点,以打破肿瘤进展的恶性循环。除了恶性细胞外,scRNA-seq和随后的分析还预测了免疫细胞之间在时间上的相互作用,这表现出相反的功能(图3)。例如,研究发现TAM降低了CXCL12-C-X-C基序趋化因子受体3和CXCL12-CXCR4的相互作用,增强了鼻咽癌细胞毒性T细胞和Tregs之间的CD86-CTLA-4相互作用,导致肿瘤免疫微环境加重癌症进展。此外,CAFs通过分泌CXCL12募集Tregs,并通过periostin与M2巨噬细胞相关。图4:免疫微环境中的细胞通讯网络基于scRNA-seq的肿瘤免疫微环境的临床应用和潜在靶点几十年来,临床实践中一直采用时间的量化来预测患者的生存率和对治疗的反应。利用免疫组化分析的免疫评分,量化肿瘤中的原位免疫细胞浸润。与传统的免疫评分相比,scRNA-seq在免疫微环境上提供了前所未有的渗透免疫细胞分辨率。已经鉴定出与预后相关的新的免疫细胞簇。例如,在早期复发的肝细胞癌中发现了一种独特的低细胞毒性先天性样CD8+T细胞表型。这些T细胞过表达KLRB1,同时下调共刺激和耗竭相关分子,包括肿瘤坏死因子受体超家族、成员9、CD28、诱导型T细胞共刺激因子、TIGIT、CTLA-4和HAVCR2。这种T细胞簇的浸润与癌症的不良预后相关。此外,基于scRNA-seq的细胞相互作用也被计算在预测模型中。基于细胞间通讯相关基因构建了机器学习模型,以预测肺腺癌的复发。将八个细胞间通讯相关基因和患者的临床信息相结合,获得了0.841的受试者-操作者特征曲线下面积。除了预后预测外,肿瘤免疫微环境中独特的细胞相互作用也与免疫疗法的反应有关。scRNA-seq分析发现,抗PD-1治疗的应答者和非应答者之间存在不同的细胞-细胞通信网络,有可能预测患者对抗PD-1疗法的反应。因此,在scRNA-seq的帮助下,可以更准确地预测患者的预后和对免疫疗法的反应。利用scRNA-seq在精准医学中具有启发性,例如帮助靶向治疗克服耐药性。例如,医生在使用替比法尼治疗的非CR肌肉浸润性膀胱癌症患者治疗前后应用患者衍生异种移植物的scRNA-seq。在治疗后的PDX中发现PD-L1的上调,并降低了免疫细胞的抗肿瘤作用。因此,选择了用PD-L1抑制剂进行额外治疗。随后,患者获得了良好的反应。此外,在单药耐药性肿瘤中,通过scRNA-seq鉴定了新的免疫亚型。用抗集落刺激因子1受体阻断TAMs不能减少胆管癌的肿瘤进展。scRNAs-eq鉴定了表达APOE的粒细胞髓系衍生抑制细胞的补偿富集,其介导T细胞抑制。TAMs和粒细胞性骨髓源性抑制细胞的双重抑制与抗CSF1R和抗淋巴细胞抗原6复合物、基因座G治疗联合增强了小鼠的免疫检查点阻断效果小鼠模型,这在临床实践中很有前景。除了治疗耐药肿瘤外,scRNA-seq在免疫微环境上的应用也突出了需要进一步研究的潜在新靶点。T细胞是免疫微环境中去除恶性细胞最重要的免疫细胞。然而,在不同的肿瘤中,耗尽的CD8+T细胞会导致不利的预后。除了众所周知的免疫抑制检查点外,scRNA-seq还鉴定了高表达内皮前体蛋白、酪氨酸酶相关蛋白1和内皮素受体B型的耗尽CD8+T细胞,这些细胞可以作为新的潜在靶点。髓细胞是免疫微环境招募免疫细胞所必需的。通过scRNA-seq鉴定TREM2/APOE/补体组分1,q亚组分阳性巨噬细胞浸润为透明细胞肾癌复发的预后生物标志物。另一项研究证实,小鼠中靶向TREM2的抗体与缺乏MRC1+和CX3CR1+巨噬细胞以及表达免疫刺激分子的髓系簇的扩增有关,这促进了T细胞反应并导致更好的预后。细胞相互作用也可以用作治疗靶点。肝内胆管癌的scRNA-seq揭示了血管CAFs与肝内胆管细胞之间的串扰。血管CAFs分泌的IL-6诱导Cajal间质细胞细胞的表观遗传学改变,从而增强恶性肿瘤。因此,IL-6信号在Cajal间质细胞的中断变得非常有趣。表1总结了scRNA-seq显示的癌症治疗的潜在靶点。表1:scRNA-seq显示的癌症治疗的潜在靶点总结scRNA-seq可以绘制全面的肿瘤免疫微环境细胞图谱,为各种肿瘤的临床应用提供了新的视角。此外,免疫微环境的细胞成分和通讯为癌症治疗提供了潜在靶点,并有助于精确医学的发展。技术的进步和单细胞分析的广泛应用可以发现癌症治疗的新观点,助力临床研究。作为突破性的新技术,单细胞分析技术有望逐渐取代传统的整体样本二代测序。单细胞分析技术在临床和药物开发方面的应用前景更为广阔,可以代替或补充分子、细胞和组织病理检测的现有技术,也可以用于新兴的细胞治疗。
  • 台风施虐下的科研执着!肿瘤免疫与肿瘤微环境研讨会圆满落幕
    ?经过连日的精心筹备,由Bio-Techne与PerkinElmer共同主办,广州睿贝医学科技有限公司协办的肿瘤免疫与肿瘤微环境研讨会于2018年9月16日在广州花园酒店圆满结束。肿瘤免疫研究领域的专家、学者顶着超强台风“山竹”的肆虐,齐聚一堂,共同度过这次“干货满满”的分享盛会。在半天的议程中,会议聚焦肿瘤免疫研究与治疗以及肿瘤微环境研究的新思路、新方法,从RNA到蛋白多靶点深度解析肿瘤,共同探讨肿瘤免疫治疗的科研成果向临床转化的方式方法。?会议精彩瞬间剪影 Bio-Techne大中华区董事总经理裴立文先生在本次会议上,分享了Bio-Techne品牌的发展历程、在中国的战略布局以及主营业务,并提出Bio-Techne力求推动生命科学发展到极致的服务宗旨。Bio-Techne 大中华区董事总经理裴立文先生致辞 PerkinElmer DAS华南区总经理林森先生回顾了近年来肿瘤免疫领域的突破性进展,并提出PerkinElmer组织原位微环境单细胞分型定量的专利解析方案,以切实帮助学者们在肿瘤免疫领域实现研究突破。PerkinElmer DAS华南区总经理林森先生致辞 本次会议邀请到业界4位知名大咖进行了精彩报告,深度回顾肿瘤免疫研究及治疗领域的现状、瓶颈与突破性进展,无私地分享自己的科研成果与研究思路,共觅医学转化的破晓之光。与会老师们在开放自由的氛围下,共享临床与科研资源,为接下来的合作奠定了坚实基础。精彩报告回顾主讲嘉宾廉哲雄:自身免疫性肝病的免疫学发病机制华南理工大学医学院、生命科学研究院副院长廉老师为我们深度回顾了该实验室近些年在自身免疫性肝病的研究,并高瞻远瞩地提出科研成果向临床转化的意义,让与会的老师们受益匪浅。廉哲雄教授作精彩报告许大康:An integrative approach to narrow gaps to understanding of Immunosuppression in the pancreatic tumor-microenvironment 上海交通大学医学院检验系研究中心主任,医学博士,博士生导师,曾任Monash大学分子与转化医学系研究室主任。许老师就肿瘤微环境的解析问题进行了深入的分享与探讨,无私地向我们回顾了近年来自己的研究成果与研究思路,同时表达出对未来科研向临床转化的重视和期许。许大康教授作精彩报告 周鹏辉:Tumor Microenvironment Impeded Cancer Immunotherapy现任中山大学肿瘤防治中心,华南肿瘤学国家重点实验室教授、博士生导师,先后入选中山大学“百人计划二期”青年杰出人才,中组部“青年千人计划”,长期从事肿瘤免疫学和肿瘤免疫治疗研究。周老师向我们全面介绍了细胞治疗这一近些年的热点研究领域,及领域中的突破性进展,并结合自己正在从事的走在细胞治疗领域前沿的研究,向与会者展示出先进的科研临床转化理念与方案,令与会者获益良多。周鹏辉教授作精彩报告 欧阳能太:RNAscope在肿瘤PD-L1表达的临床应用探讨 中山大学附属孙逸仙纪念医院细胞分子诊断中心主任欧阳老师结合自己强大专业的病理学临床诊断经验积累,同与会者就临床组织水平研究与诊断的方案进行深入探讨,并从临床病理诊断的角度为诠释了肿瘤微环境研究的价值和意义。欧阳能太教授作精彩报告 本次研讨会上与会专家分享真知灼见,引起热烈的讨论与共鸣。相关资料下载:肿瘤免疫微环境景观分析方案:https://www.instrument.com.cn/netshow/sh100168/down_895055.htmVectra-组织切片定量分析系统:https://www.instrument.com.cn/netshow/sh100168/down_895056.htm
  • 直播预告|探索肿瘤微环境——单细胞解析肿瘤浸润白细胞
    肿瘤浸润白细胞( Tumor Infiltrating Leukocytes, TIL) 作为深入实体肿瘤内部的免疫细胞群体,在肿瘤-免疫学研究中占据重要地位。MACS Technology以卓越的技术致力于高质量TIL新发现,并助力肿瘤微环境研究。Agenda:肿瘤微环境与肿瘤浸润白细胞研究肿瘤浸润白细胞的目的肿瘤浸润白细胞研究的困难及挑战美天旎肿瘤浸润白细胞研究解决方案Q&A主讲人简介:田瑜博士,Ph.D., Product Manager, Miltenyi Biotec复旦大学神经生物学国家重点实验室取得博士学位,后就职于Prof. Brian Seed研究室从事单克隆抗体表达系统的研发工作。2016年进入生命科学产品营销领域,现任美天旎中国产品经理。直播时间:2020年3月26日(本周四)下午3:00—4:00报名方式:扫描上方二维码,即可报名参与!
  • 肿瘤微环境调节免疫细胞功能机制获揭示
    p   华中科技大学科研团队揭示了肿瘤微环境中肿瘤细胞与免疫细胞相互调节机制。《临床研究杂志》近日在线发表了该成果。 /p p   近年来,随着肿瘤免疫治疗,特别是Car-T细胞免疫治疗技术和免疫节点治疗在临床上的成功,深入研究肿瘤微环境对免疫细胞功能的调节机制具有重要的基础研究意义。 /p p   华中科技大学基础医学院免疫学系杨想平团队的研究发现,在小鼠模型中,皮下移植的肿瘤细胞在小鼠中生长更快,尾静脉注射的肺腺癌肿瘤细胞向肺转移结节在小鼠中明显增多,血管增多,巨噬细胞向促肿瘤表型极化增强。 /p p   杨想平团队和病理系王国平团队合作发现,在人的临床肺腺癌患者组织中,肿瘤细胞能通过其代谢产物调控巨噬细胞囊泡水解酶表达,从而使肿瘤相关巨噬细胞在肿瘤微环境中编程重组为促进肿瘤生长的免疫细胞。 /p p   该研究还发现囊泡水解酶表达高低可作为肺腺癌重要的预后标志,因此具有重要的临床意义。 /p p /p
  • 空间蛋白组学技术——肿瘤微环境研究利器
    过去,受制于传统的研究方法,科研工作者很难对肿瘤微环境这样的复杂整体系统进行深入的研究和分析。要么选择包含空间信息的低通量标记技术,例如免疫荧光标记,要么选择高通量的蛋白标记,例如流式细胞技术,但是没有办法获得空间信息。近年来,新型的空间蛋白组学技术,则能两者兼顾,获得数十上百种蛋白标记的单细胞水平的空间表达,从而能更好的帮助科研工作者揭示复杂系统在疾病发生发展中的作用,其中最为显著的是推进了科研工作者对于免疫系统及其在癌症中作用的理解。图一为冰冻切片的HER2+乳腺癌患者样本,扫描视野大约15 mm2,共标记了21种蛋白。如图所示,大多数肿瘤细胞(Pan-CK+)都同时表达HER2,表明该样本是一例上皮来源的恶性肿瘤组织。然而,在样本上同样发现了保有相对正常组织结构的正常上皮(Pan-CK+/HER2-)区域。图1:HER2+乳腺癌组织的免疫多标记染色图1A:Pan-CK+/HER2- 图1B:Pan-CK+/HER2+所有的21种蛋白标记(用不同颜色区分),可以对样本的不同区域进行细胞表型分析,图2为细胞密度相对较低的区域,便于区分各个标记蛋白。我们可以看到,单个肿瘤细胞会表达Pan-CK,EpCAM,HER2蛋白。图2:21-plex超多标记的组织切片成像通过单细胞分辨率的图像数据,再借由AI的全自动细胞分割,并定量分析各个蛋白的表达,从而进行细胞表型的分选(图3),同时也可以获得各类细胞的表达占比情况(图4)。图3:细胞表型分析散点图图4:各类细胞的表达占比在非小细胞肺癌的肿瘤免疫学研究中,科研工作者同样利用单细胞空间蛋白组学技术,通过26-plex的蛋白标记,量化了样本中三十多类细胞的表型及亚型。从而揭示了非小细胞肺癌中免疫细胞侵润的异质性,并进行了量化分析。图表1:26种生物标记物列表图5:肺癌样本的局部视野及细胞表型如图5所示,肿瘤基质和肿瘤细胞附近有明显的髓样细胞浸润,而T细胞主要在肿瘤区域外聚集。 进一步的细胞定量分析发现,被认为在许多癌症中发挥促肿瘤作用的髓样细胞,具有高表达量。随后的空间分析,对肿瘤微环境中的T细胞和髓样细胞群进行了定量研究(图6),揭示了该细胞及其相关细胞类型的分布密度。图6:T细胞及髓样细胞的空间分析空间蛋白组学的应用,保留了组织形态和结构,又能一次性进行多种生物标记,从而能在分析复杂系统的细胞表型的同时,获得各类细胞的空间信息,更为深入的研究免疫系统及其在疾病中的作用。如图7展示的全视野的石蜡阑尾组织样本的成像,用14种生物标记物标记了免疫细胞及上皮细胞。之后分别对淋巴结(图7A)和粘膜上皮(图7B)这两个特定结构进行细胞表型分析。图7:石蜡阑尾组织样本的全视野超多标记成像图7A:淋巴结局部视野 图7B:粘膜上皮局部视野针对粘膜上皮区域和富含免疫细胞的淋巴结结构,对细胞数量及类型做了定量和表型分析(图表2),全面的揭示了临床组织样本不同区域和结构的免疫微环境差异。图表2:组织特异性的细胞量化和表型分析除了石蜡和冰冻组织样本,超多标记技术还可以应用于多种特殊的液体样本,例如脑脊液,痰液(图8)/支气管肺泡灌洗液(BAL)或者是用于循环肿瘤细胞的检测。不同于传统的流式细胞技术的样本需要即时处理,并且实验也需要一次性完成的特点,新型的空间蛋白组学技术,能够保存长达2年的样本活性,期间可以进行反复的标记和成像。这一特性为稀有样本和复杂实验,提供了强大的助力。图8:对保存9天的人痰液细胞进行的六色免疫多标记成像过去,受制于传统的研究方法,科研工作者很难对肿瘤微环境这样的复杂整体系统进行深入的研究和分析。要么选择包含空间信息的低通量标记技术,例如免疫荧光标记,要么选择高通量的蛋白标记,例如流式细胞技术,但是没有办法获得空间信息。近年来,新型的空间蛋白组学技术,则能两者兼顾,获得数十上百种蛋白标记的单细胞水平的空间表达,从而能更好的帮助科研工作者揭示复杂系统在疾病发生发展中的作用,其中最为显著的是推进了科研工作者对于免疫系统及其在癌症中作用的理解。图一为冰冻切片的HER2+乳腺癌患者样本,扫描视野大约15 mm2,共标记了21种蛋白。如图所示,大多数肿瘤细胞(Pan-CK+)都同时表达HER2,表明该样本是一例上皮来源的恶性肿瘤组织。然而,在样本上同样发现了保有相对正常组织结构的正常上皮(Pan-CK+/HER2-)区域。图1:HER2+乳腺癌组织的免疫多标记染色图1A:Pan-CK+/HER2- 图1B:Pan-CK+/HER2+所有的21种蛋白标记(用不同颜色区分),可以对样本的不同区域进行细胞表型分析,图2为细胞密度相对较低的区域,便于区分各个标记蛋白。我们可以看到,单个肿瘤细胞会表达Pan-CK,EpCAM,HER2蛋白。图2:21-plex超多标记的组织切片成像通过单细胞分辨率的图像数据,再借由AI的全自动细胞分割,并定量分析各个蛋白的表达,从而进行细胞表型的分选(图3),同时也可以获得各类细胞的表达占比情况(图4)。图3:细胞表型分析散点图图4:各类细胞的表达占比在非小细胞肺癌的肿瘤免疫学研究中,科研工作者同样利用单细胞空间蛋白组学技术,通过26-plex的蛋白标记,量化了样本中三十多类细胞的表型及亚型。从而揭示了非小细胞肺癌中免疫细胞侵润的异质性,并进行了量化分析。图表1:26种生物标记物列表图5:肺癌样本的局部视野及细胞表型如图5所示,肿瘤基质和肿瘤细胞附近有明显的髓样细胞浸润,而T细胞主要在肿瘤区域外聚集。 进一步的细胞定量分析发现,被认为在许多癌症中发挥促肿瘤作用的髓样细胞,具有高表达量。随后的空间分析,对肿瘤微环境中的T细胞和髓样细胞群进行了定量研究(图6),揭示了该细胞及其相关细胞类型的分布密度。图6:T细胞及髓样细胞的空间分析空间蛋白组学的应用,保留了组织形态和结构,又能一次性进行多种生物标记,从而能在分析复杂系统的细胞表型的同时,获得各类细胞的空间信息,更为深入的研究免疫系统及其在疾病中的作用。如图7展示的全视野的石蜡阑尾组织样本的成像,用14种生物标记物标记了免疫细胞及上皮细胞。之后分别对淋巴结(图7A)和粘膜上皮(图7B)这两个特定结构进行细胞表型分析。图7:石蜡阑尾组织样本的全视野超多标记成像图7A:淋巴结局部视野 图7B:粘膜上皮局部视野针对粘膜上皮区域和富含免疫细胞的淋巴结结构,对细胞数量及类型做了定量和表型分析(图表2),全面的揭示了临床组织样本不同区域和结构的免疫微环境差异。图表2:组织特异性的细胞量化和表型分析除了石蜡和冰冻组织样本,超多标记技术还可以应用于多种特殊的液体样本,例如脑脊液,痰液(图8)/支气管肺泡灌洗液(BAL)或者是用于循环肿瘤细胞的检测。不同于传统的流式细胞技术的样本需要即时处理,并且实验也需要一次性完成的特点,新型的空间蛋白组学技术,能够保存长达2年的样本活性,期间可以进行反复的标记和成像。这一特性为稀有样本和复杂实验,提供了强大的助力。图8:对保存9天的人痰液细胞进行的六色免疫多标记成像
  • 回放速递--“肿瘤微环境与免疫治疗”会议
    p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 仪器信息网于2020年08月19日举办了“肿瘤微环境与免疫治疗检测方法专题网络研讨会”,应广大网友呼应,现发布回放视频供大家查看。 /span /p p style=" text-indent: 0em text-align: center " span style=" text-align: justify text-indent: 2em " strong 点击对应报告图片即可跳转查看 /strong /span /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/0a17c589-5468-42bc-80d2-004d06efa4ec.jpg" title=" 192042020200705.jpg" alt=" 192042020200705.jpg" / /p p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 肿瘤微环境(Tumor microenvironment, TME)不仅包括了肿瘤细胞本身,还有与肿瘤细胞有密切联系的成纤维细胞、免疫和炎性细胞、胶质细胞等各种细胞,同时也包括附近区域内的细胞间质、微血管以及浸润在其中的生物分子。而免疫和炎症是构成肿瘤微环境的两大核心。近年来, 随着多个PD-1免疫检查点抑制剂的获批上市以及多个肿瘤免疫临床试验获得的成功,带动了肿瘤免疫治疗的发展,然而肿瘤免疫治疗领域还存在很多未解决的问题, 如只针对某些特定的肿瘤有作用,总体临床应答率低, 肿瘤免疫联合治疗的安全性, 肿瘤免疫治疗后的复发等。& nbsp 针对肿瘤的耐药现象,医学研究做了大量的工作,包含耐药基因突变研究,肿瘤异质性等,目前肿瘤微环境作为一种新的概念也逐渐得到了临床的重视。肿瘤微环境长期以来都是肿瘤研究当中一个关键和核心的方向,对于认识肿瘤的发生、发展、转移等过程有着重要的意义,而且对于肿瘤的诊断、防治和预后亦有着重要的作用。 /span /p p style=" text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 1、 a href=" https://www.instrument.com.cn/webinar/video_113335.html" target=" _blank" 《Lipid Metabolic Reprogramming in Tumor-Associated Macrophages》--李咏生& nbsp |& nbsp 教授、主任医师-重庆大学附属肿瘤医院(点击查看回放) /a /span /strong /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_113335.html" target=" _blank" span style=" text-align: justify text-indent: 2em " /span /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113335.html" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/2733bcfa-945d-432c-8dd5-9cbe09c02a1c.jpg" title=" 李咏生.jpg" alt=" 李咏生.jpg" / /a /p p style=" text-indent: 2em " strong span style=" text-align: justify text-indent: 2em " 报告摘要: /span /strong span style=" text-align: justify text-indent: 2em " Metabolic reprogramming is critical for the polarization and function of tumor associated macrophages (TAMs) and carcinogenesis, whereas the underlying mechanism remains elusive. Here we show that monoacylglycerol lipase (MGLL) deficiency contributes to lipid accumulation in TAMs and tumor progression. MGLL regulates macrophage activation via CB2-TLR4 interaction. We also found that receptor-interacting protein kinase 3 (RIPK3), a central factor in necroptosis, is downregulated in hepatocellular carcinoma (HCC)-associated macrophages, which correlates with the promoted tumorigenesis, as well as the enhanced accumulation and M2 polarization of TAMs. RIPK3 deficiency in TAMs reduces reactive oxygen species (ROS) and significantly inhibits and caspase1-mediated cleavage of peroxisome proliferator-activated receptors (PPARs) that enables PPAR activation and facilitates fatty acid metabolism including fatty acid oxidation (FAO), as well as induces M2 polarization in the tumor microenvironment. Our findings provide the molecular basis for lipid metabolic reprogramming of TAMs and highlight potential strategies for targeting cancer immunometabolism. /span /p p style=" text-align: justify text-indent: 2em " strong a href=" https://www.instrument.com.cn/webinar/video_113336.html" target=" _blank" 2、《靶向T细胞代谢的肿瘤免疫治疗新探索》-武多娇& nbsp |& nbsp 副教授-复旦大学附属中山医院 /a (点击查看回放) /strong /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113336.html" target=" _blank" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/ccc8bf7b-47aa-447f-b1ac-73f7151042e1.jpg" title=" 武多娇.jpg" alt=" 武多娇.jpg" / /strong /a /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 免疫细胞代谢重组是调控机体固有性和适应性免疫反应的重要机制之一。代谢是免疫细胞执行功能的能量基础,同时也影响着免疫细胞表型分化、功能活化、增殖等关键过程。目前有研究提示在多种疾病中,比如自身性免疫疾病,慢性炎症或者肿瘤中免疫细胞功能的过度激活或者抑制与其异常代谢活动密切相关;免疫代谢的稳态失衡和异常调控促进疾病发生发展。因此全面阐明疾病中免疫代谢机制,不仅增强我们对疾病的理解,也提供跨越病种的创新治疗选择。通过靶向代谢性通路,选择性干扰或增强肿瘤免疫相关疾病的代谢活动,从而达到重塑免疫功能及肿瘤免疫精准治疗的目的。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_113337.html" target=" _blank" strong 3、《载药囊泡激活的抗肿瘤免疫反应在肿瘤治疗中的应用》-唐科& nbsp |& nbsp 副教授-华中科技大学基础医学院(点击查看回放) /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113337.html" target=" _blank" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/2492654d-7307-42a0-bbc5-1fb4beb86b48.jpg" title=" 唐科.jpg" alt=" 唐科.jpg" / /strong /a /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 细胞外囊泡因其包含丰富的生物活性物质在细胞间传递信号为大家所熟知,其中包含蛋白质,糖类,RNA分子乃至少量的DNA分子。基于此,我们通过细胞外囊泡包裹化疗药物来治疗恶性肿瘤,前期研究结果发现,载药囊泡除了可以靶向杀伤肿瘤细胞外,其可以有效的激活抗肿瘤免疫反应,在肿瘤的生物免疫治疗中发挥重要的作用。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_113338.html" target=" _blank" strong 4、《NGS助力肿瘤免疫学和癌症转化研究》-王亚俊& nbsp |& nbsp 肿瘤市场经理-Illumina 因美纳(点击查看回放) /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113338.html" target=" _blank" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/e2037c2b-bb9f-44dc-bf5b-646157022800.jpg" title=" 王亚俊.png" alt=" 王亚俊.png" / /strong /a /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 近年来,免疫肿瘤学作为肿瘤学的一个新兴领域,在抗击癌症过程中取得了突破性进展。这些发展得益于科学家对肿瘤如何逃避自然免疫反应的深入研究。对肿瘤逃避免疫反应机制的深入研究也为肿瘤免疫药物开发带来新的契机,这些疗法或者提高了免疫系统抗击癌症或者限制了肿瘤逃避免疫反应实现抗击癌症。领先的免疫肿瘤学研究人员正在利用新一代测序技术(NGS)研究免疫治疗反应因子,发现生物标记物,并将基因组学应用于个性化免疫治疗。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/video_113334.html" target=" _blank" strong 5、《One& nbsp Tissue,& nbsp More& nbsp Answers”& nbsp ---& nbsp Cell& nbsp DIVE& nbsp 超多标组织成像分析技术最新进展及其应用分享》-谢晓哲& nbsp |& nbsp 细胞影像分析产品经理-Cytiva(点击查看回放) /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/video_113334.html" target=" _blank" strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/3ca8b65e-0f21-46de-9d07-386ea9fa4cc2.jpg" title=" Cytiva.jpg" alt=" Cytiva.jpg" / /strong /a /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 本报告将从技术背景和应用场景等方面介绍全新的 Cell DIVE 超多标组织成像分析技术,能够在一张组织切片上对超过 60 个 Biomarker 进行成像和分析,深度挖掘组织微环境的空间位置信息,细胞间的相互作用关系及定位等信息,从而完成精准的可视化定量分析,助力肿瘤免疫治疗、用药指导、预后判断和病人分层等研究。 /p p style=" text-align: center text-indent: 0em " strong 仪器信息网肿瘤微环境交流群 /strong /p p style=" text-indent: 0em " strong /strong /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 191px height: 254px " src=" https://img1.17img.cn/17img/images/202008/uepic/e2e1218d-8140-4c1f-89b6-bb97025afb8a.jpg" title=" 交流群 肿瘤微环境.jpg" alt=" 交流群 肿瘤微环境.jpg" width=" 191" height=" 254" / /p
  • IVIS视角——[Nature]亚克隆合作通过修饰局部和全身的免疫微观环境驱动肿瘤转移 肿瘤异质性及转移性
    人类大多数肿瘤是异质性的,由具有不同性质的细胞克隆组成,呈现出不同的特点。高度异质性肿瘤具有较差的临床疗效,但其潜在机制仍不清楚。肿瘤的转移性是大多数癌症患者死亡的原因。因此,了解转移进程的驱动因子是改善临床结果的关键。癌症基因组测序研究已经确定了原发性和转移性肿瘤之间具有极小的遗传差异,并显示原位肿瘤和远处转移病灶具有显著的亚克隆异质性。最近的一些研究表明:微观环境变化是肿瘤转移传播和生长的主要媒介,从而突出了在肿瘤进展中的非细胞自发因子的作用。本期IVIS视角小编带您探究一下Nature最近发表的论文:《亚克隆合作通过修饰局部和全身的免疫微观环境驱动肿瘤转移》本文揭示了表达IL11和FIGF (VEGFD)的乳腺癌细胞的小亚克隆协同作用促进转移进展并产生了驱动性和中性亚克隆组成的多克隆转移。单克隆、多克隆原发灶和转移灶的上皮细胞及基质细胞表达谱分析显示了这种协同作用是间接的,是通过局部和系统微环境介导的。作者确定中性粒细胞为主的白细胞群受表达IL11小亚克隆的调节,敲除中性粒细胞的表达,可以阻止肿瘤转移的生长。来自原发性肿瘤、血液和肺的CD45阳性细胞群的单细胞RNA-seq显示IL11作用于骨髓间充质基质细胞,可诱导产生致瘤性和转移性中性粒细胞前体。本文结合IVIS活体成像系统研究发现了非细胞自发因子和小亚克隆在肿瘤转移中起着关键作用。探究驱动转移的亚克隆协同作用分子机制本文用人类乳腺癌细胞系(MDAMB-468)的肿瘤(来源于异质性肿瘤异种移植模型),研究亚克隆在肿瘤表型之间的相互作用。作者之前已经证实一个小的亚克隆通过非细胞自主的相互作用可以驱动肿瘤生长。本文测试了18个亚克隆,每一种表达一种与转移和血管再生有关的分泌蛋白。并发现具有全部18个亚克隆的多克隆肿瘤生长最快(上图a)。相反只有白细胞介素11 (IL11) 和趋化因子 (C-C motif) 配体5在单克隆肿瘤能够促进肿瘤生长。我们还确定了表达IL11和低聚果糖诱导生长因子(FIGF也被称为VEGFD)的亚克隆两者的混合物在很大程度上能够复制肿瘤这种生长特点。克隆之间合作导致多克隆转移Nature Cell Biology :Published: 01 July 2019https://www.nature.com/articles/s41556-019-0346-xIL11缺失的多克隆肿瘤阻止了肿瘤的生长,揭示了IL11和FIGF因子在肿瘤生长中的协同作用。此外,多克隆肿瘤和仅包括IL11和FIGF亚克隆的肿瘤具有高度的转移性(上图b)。本文首先验证含有IL11+和FIGF+驱动因子的原发性转移瘤MDA-MB-468的克隆能力,像中性子亚克隆。单克隆或绿色荧光蛋白 (GFP)的多克隆混合物荧光素酶表达亲本细胞,红色荧光蛋白 (RFP)植入v5标记的IL11+细胞、RFP+FIGF+细胞植入到免疫缺陷NOG小鼠的乳腺脂肪垫。我们每周用卡尺测量原发肿瘤的生长情况并通过每周生物发光观察转移病灶成像。多克隆肿瘤(含5% IL11+、5%的FIGF+RFP+细胞和90%的GFP+亲本细胞)生长较快,转移性更强与单克隆和亲本肿瘤相比(如下图a)。中性粒细胞的系统性表达降低抑制了由IL11+和FIGF+亚克隆驱动的多克隆肿瘤的转移扩散(或生长),因此,中性粒细胞的表型和功能特点取决于宿主环境。CD45+细胞群的单细胞分析鉴于作者之前的结果表明,中性粒细胞促进肿瘤转移。作者比较了DOX+或DOX-诱导小鼠血液和肺中性粒细胞单细胞转录组特点。IL11和FIGF诱导上调了几个信号通路如:TGFβ和JAK-STAT信号通路,它们与中性粒细胞的免疫系统中肿瘤预生成和预转移有关,这些特征来自肺部,而不是来自血液。尽管中性粒细胞在肺部有变化,作者通过single-cell RNA-seq没有检测到IL11或GIGF受体的表达。然而,IL11RA的细胞转录本在单独的细胞组中明显存在,这些细胞不能归为中性粒细胞或其他白细胞亚群。这些IL11RA阳性细胞表达编码GP130和SATA3的IL6ST基因,GP130是IL11信号通路中所必需的共同受体。STAT3是LI11下游的作用因子。基于细胞群中基因表达情况,其中还包括细胞外基质和发育相关蛋白,作者将该群体标记为和IL11反应的间充质基质细胞 (MStrCs)。虽然这个群体没有表达典型的间充质干细胞 (MSC)标记物,但其表现了普遍存在于干细胞相关基因的显著特征,这表明它可能是一种未特征化的间充质干细胞前体。之前的研究已经描述过间充质干细胞与白细胞之间的相互作用由多种细胞因子和趋化因子调节的。在本文的研究中,作者着重于研究两个分泌因子,选择的基础是基于作者之前的数据,它是由较小的亚克隆表达的且协同作用促进转移。IL11属于IL6家族的细胞因子,并在多种癌症的耐药性进展中起着重要的作用,包括前列腺癌和结肠癌。在乳腺癌中,IL11被认为和治疗的耐药性和骨转移相关,以及作为不良预后的标志物。FIGF是VEGFR2和VEGFR3的配体,可以刺激血管生成和淋巴管生成。本文发现白细胞可能不是IL11直接作用的细胞靶点,但可通过间充质基质细胞分泌因子(MStrCs)间接影响IL11。有趣的是,这些基质细胞也表达PLXDC2和ANTXR1,这在肿瘤相关的内皮细胞中是高表达的。因此,这些IL11RA阳性的间充质基质细胞可能是产生多种细胞类型的祖细胞。对中性粒细胞亚型的进一步认识和开发导致肿瘤转移的中性粒细胞靶向工具结合抗肿瘤细胞靶点的药物,有可能被用于预防乳腺癌转移研究。PerkinElmer IVIS小动物活体成像系统在该研究中提供了支持,如需了解详情欢迎与我们的工程师取得联系。点击链接了解IVIS小动物活体成像系统:https://url.cn/5fSl2r4关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 科研成果|全新的微环境因子对肿瘤恶性演化的作用机制
    10月6日,中国科学院上海营养与健康研究所孙宇研究团队在Oncogene上,发表了题为Targeting epiregulin in the treatment-damaged tumor microenvironment restrains therapeutic resistance的研究论文。该研究发现了微环境中全新的衰老相关分泌因子在组织微环境中的产生基础以及其对肿瘤恶性进展的作用机制。细胞衰老是一种独特的细胞状态,具有多种明确且稳定的细胞特征。其中,衰老相关分泌表型(Senescence-associated secretory phenotype,SASP),使其在微环境中可对其他细胞发挥复杂的信号传递功能。老年人群中,包括慢性炎症形成过程以及肿瘤微环境的局部空间内,SASP这一分泌表型对多种疾病的进展均造成重要的病理作用。因而,探究SASP相关因子以及其在肿瘤等疾病的组织微环境中发挥功能的分子机制和干预途径,对老年疾病的临床治疗具有深远的指导意义。该研究通过对人类原代基质细胞进行基于结合当前临床化疗胁迫压力的体外药物模拟处理,确认了epiregulin(EREG)在DNA损伤类型的衰老诱导条件下显著表达上调,而尚未有报道该因子与微环境中衰老细胞之间存在关联。同时,研究对临床前列腺癌及乳腺癌患者化疗前后癌症样本的分析,发现EREG在衰老的癌旁基质细胞中显著上调表达。机制上,DNA损伤导致基质细胞中转录因子NF-κB等发生核转位并结合在EREG启动子区多个位点,进而促进EREG在细胞衰老后表达上调。研究人员注意到其他衰老相关因素(转录因子C/EBP激活,DNA空间开放度变化及表观遗传修饰改变)对EREG转录具有促进作用。 在肿瘤微环境中,衰老细胞释放的EREG通过与其附近的癌细胞表面EGFR受体结合激活包括MAPK、AKT/mTOR及JAK/STAT等多条下游信号通路,从而诱发癌细胞增殖、迁移、侵袭等恶性表型,并造成癌细胞显著的耐药能力。RNA-Seq分析发现,一种泛素连接酶MARCHF4在基质EREG激活的癌细胞中显著表达上调。MARCHF4可使癌细胞E-cadherin表达下调并抑制癌细胞凋亡,导致肿瘤耐药现象发生。小鼠模型中,EREG单克隆抗体及EGFR单克隆抗体的联用显著降低肿瘤体积,并显著延长了小鼠无病进展生存期。癌症患者体内微环境中EREG的表达水平与其临床治疗后阶段的长期生存之间存在显著的负相关,并可作为对患者(包括多种癌型)预后的新型的标记物。 该工作发现并阐释了微环境中的衰老相关分泌因子EREG在肿瘤微环境中的病理功能及调控机制,并揭示了其在将来转化医学和临床应用中的潜力和价值。研究工作得到科技部、国家自然科学基金、中科院战略性先导科技专项和上海市科学技术委员会等的支持。复旦大学中山医院的科研人员参与研究。 论文链接 当代临床药物等治疗方式(尤其基因毒化疗)诱导损伤的肿瘤微环境中,基质细胞EREG表达上调并通过旁分泌方式激活附近癌细胞,促进其恶性表型并加速疾病进展;EREG将可作为患者疗后阶段的监测指标和临床抗癌治疗的新靶点。
  • 肿瘤微环境响应磁共振纳米诊疗剂研究取得进展
    p   近期,中国科学院合肥物质科学研究院技术生物与农业工程研究所研究员吴正岩课题组与上海交通大学医学院教授邹多宏团队合作,利用磁性氧化铁与硅酸锰纳米复合物制备出一种对肿瘤微环境响应的纳米磁共振造影剂和药物递送系统,相关工作已被生物材料期刊Biomaterials 接收发表(DOI: 10.1016/j.biomaterials. 2018.12.004)。 /p p   纳米诊疗一体化是当前研究肿瘤个性化治疗的主要研究方向之一,但是现有的纳米诊疗体系对病灶组织识别度差,对肿瘤微环境响应不足,使纳米诊疗剂难以精确观察和高效治疗肿瘤组织。对此,研究团队基于肿瘤微环境低pH值和谷胱甘肽高表达的特性,合成了对肿瘤组织pH和谷胱甘肽敏感的硅酸锰多孔纳米球,在其表面沉积磁性氧化铁纳米颗粒,制备出磁性氧化铁与硅酸锰的纳米复合物。该纳米复合物在正常组织和血液中,不会发挥造影功能,而一旦进入肿瘤组织,即可释放出锰离子,发挥高效肿瘤T1磁共振造影功能。同时,该纳米复合物装载的抗癌药物顺铂也释放出来,与锰离子和磁性氧化铁协同杀死癌细胞,达到肿瘤协同治疗效果。 /p p   该研究工作得到国家自然科学基金、中科院青年促进会项目、安徽省重大专项、安徽省自然科学基金等的资助与支持。 /p p style=" text-align: center " img title=" W020181219620098020563.png" alt=" W020181219620098020563.png" src=" https://img1.17img.cn/17img/images/201812/uepic/4e531ec7-7d15-4248-b1c2-7d6dec45a79d.jpg" / /p p /p
  • 肿瘤免疫微环境中的金属蛋白酶|附相关会议
    金属蛋白酶(MP)是一个在其活性中心具有金属离子的大型蛋白酶家族。根据结构域的不同,金属蛋白酶可分为多种亚型,主要包括基质金属蛋白酶(MMPs)、解整合素金属蛋白酶(ADAMs)以及具有血栓反应蛋白基序的ADAMs(ADAMTS)。它们具有蛋白质水解、细胞粘附和细胞外基质重塑等多种功能。相关会议推荐点击可免费报名金属蛋白酶在多种类型的癌症中表达,并通过调节信号转导和肿瘤微环境参与涉及肿瘤发生、发展、侵袭和转移的许多病理过程。因此,更好地了解MP在癌症免疫调节中的表达模式和功能将有助于开发更有效的癌症诊断和免疫治疗方法。MP的结构和表达基质金属蛋白酶(MMP)在脊椎动物中,MMP家族由28个成员组成,至少23个在人体组织中表达,其中14个在脉管系统中表达。基质金属蛋白酶通常根据其底物和其结构域的组织结构分为胶原酶(MMP1、MMP8、MMP13)、明胶酶(MMP2、MMP9)、溶血素(MMP3、MMP10、MMP11)、基质溶素(MMP7、MMP26)、膜型MMPs(MT MMPs)或其他MMPs。MMP家族有一个共同的核心结构。典型的MMPs由大约80个氨基酸的前肽、170个氨基酸的金属蛋白酶催化结构域、可变长度的连接肽或铰链区和约200个氨基酸的血红素蛋白结构域组成。不同类型的MMP具有不同于典型MMP的特定结构特征。例如,MT MMPs缺乏前结构域,而MMP7、MMP26和MMP23缺乏Hpx结构域和连接肽。此外,MMP2和MMP9包含纤连蛋白的三个重复。MMPs中的这些不同结构域、模块和基序参与与其他分子的相互作用,从而影响或决定MMP活性、底物特异性、细胞和组织定位。MMPs已在多种人类癌症中检测到,MMPs的高表达通常与大多数癌症的生存率降低有关,包括结直肠癌、肺癌、乳腺癌、卵巢癌和胃癌。其中MMP2和MMP9,能够降解基底膜中的IV型胶原,是研究最广泛的金属蛋白酶,与各种癌症患者的疾病进展和生存率降低相关。解整合素金属蛋白酶(ADAM)ADAMs是锚定在细胞表面膜上的I型跨膜蛋白,迄今已发现30多种。与MMPs类似,ADAMs包括前结构域和锌结合金属蛋白酶结构域。ADAM还包括一个在细胞表面蛋白中独特的去整合素结构域。ADAM的金属蛋白酶结构域高度保守,大多数ADAM都有一个富含半胱氨酸的结构域和跨膜区域相邻的EGF样结构域,然后是一个长度和序列在不同ADAM家族成员之间变化很大的胞内区。由于这些结构域的存在,ADAM可以结合底物并影响细胞粘附和迁移的变化,以及细胞表面分子的蛋白水解释放。它们的主要底物是完整的跨膜蛋白,如生长因子、粘附分子和细胞因子的前体形式。癌细胞通常表达高水平的ADAM,ADAM17是所有ADAM蛋白中研究最广泛的。一项评估ADAM17作为卵巢癌潜在血液生物标志物的研究表明,与对照组相比,培养的卵巢癌细胞系的培养基上清液以及卵巢癌患者的血清和腹水中的ADAM17水平明显更高。具有血栓反应蛋白基序的ADAM(ADAMTS)ADAM不同,ADAMTS是一种分泌型金属蛋白酶,其特征在于辅助结构域包含血栓反应蛋白1型重复序列(TSR)和间隔区,并且缺少跨膜区、胞内域和(EGF)样结构域,人ADAMTS家族包括19种蛋白。ADAMTS蛋白酶参与前胶原和von Willebrand因子的成熟,以及与形态发生、血管生成和癌症相关的ECM蛋白水解。研究表明,不同的ADAMTS具有不同的生物学功能,并且个体ADAMTS可以在不同的癌症中或根据临床环境发挥不同的作用。与MMPs和ADAMs相比,ADAMTS在TME中的参与研究较少,因此迫切需要系统地研究其在癌症中的功能。涉及癌细胞免疫相关MP的信号通路信号转导途径由多个分子组成,它们相互识别和相互作用,并传递信号以调节许多重要的生物学过程,如肿瘤细胞增殖、转移和免疫调节。三种信号通路尤其与免疫调节中的MP密切相关。肿瘤坏死因子信号肿瘤坏死因子-α(TNF-α)是一种重要的促炎细胞因子,参与免疫系统的维持和稳态,以及炎症和宿主防御。可溶性TNF-α通过蛋白水解酶ADAM17,也称为TNF-a转换酶(TACE),从跨膜TNF-α(tmTNF-α)裂解,该酶可通过激活TNF-α来协调免疫和炎症反应。鉴于ADAM17对TNF信号通路的受体和配体的作用,ADAM17被认为以多种方式影响TNF-α信号传导。例如,可溶性TNF-α产生的减少将导致tmTNF-α的积累,其将与TNFR2结合并导致不同的生物学结果。转化生长因子–β转化生长因子-β(TGF-β)作为肿瘤行为的关键调节因子,在肿瘤侵袭和转移、免疫调节和治疗抵抗中发挥重要作用。TGF-β也是TME免疫抑制的核心,根据具体情况对免疫系统具有多效性功能。MMP9和MMP2是已知的两种金属蛋白酶,可切割未激活的TGF-β前体并产生不同的TGF-β蛋白水解切割产物,从而导致TGF-β活化。此外,与CD44结合的MMP9降解纤连蛋白导致活性TGF-β的释放。癌细胞中MMP9的水平不仅可能影响TGF-β的蛋白水解,还可能影响TGFβ和TGF信号通路下游物质的表达。对乳腺癌中MMP9与TGF信号通路之间关系的研究表明,乳腺癌细胞中MMP9的过表达不仅显著上调了SMAD2、SMAD3和SMAD4的表达,还增强了SMAD2的磷酸化。Notch信号通路Notch信号涉及肿瘤生物学的多个方面,其在免疫应答的发展和调节中的作用比较复杂,包括塑造免疫系统和TME的组成部分,例如抗原呈递细胞、T细胞亚群和癌细胞之间的复杂串扰。特别是,Notch在不同免疫细胞的发育和维持中发挥着关键作用。配体与Notch受体结合后,下游信号由包括ADAM家族成员在内的一些蛋白酶介导。首先,受体/配体相互作用暴露了蛋白水解切割位点S2,其被ADAM金属蛋白酶切割。γ-分泌酶介导的S3处的后续裂解发生在跨膜区,导致Notch胞内结构域(NICD)的释放,该结构域转移到细胞核中,并将MAML与RBPJ结合,触发靶基因如Myc、P21和HES1的转录。已知ADAM10和ADAM17参与裂解S2,而ADAM17导致配体非依赖性Notch激活,ADAM10导致配体依赖性激活。MP对肿瘤微环境的调节TME是指肿瘤细胞周围的微环境,包括血管、免疫细胞、成纤维细胞、骨髓源性抑制细胞、各种信号分子和ECM。TME在调节癌症的免疫反应中起着关键作用。MP对ECM的影响ECM是TME基质的非细胞成分,ECM的重塑在癌症的发展和体内稳态以及免疫细胞募集和组织转移中起着重要作用。癌症进展过程中ECM的广泛重塑导致其密度和组成发生变化,具体而言,蛋白酶诱导的ECM成分的分解对于肿瘤细胞跨越组织屏障至关重要。MMPs和ADAMs是参与ECM降解的主要酶,参与ECM降解的MMPs可大致分为膜锚定MMPs和可溶性MMPs。ECM降解主要通过MT1 MMP激活的可溶性MMP(如MMP2、MMP9和MMP13)实现。ECM有三个主要成分:纤维、蛋白聚糖和多糖。MMPs通过与这些基质结合以促进各种ECM蛋白的周转,在组织重塑中发挥重要作用。MMPs降解ECM的具体机制尚不清楚,需要进一步研究。MP与免疫细胞之间的关系MP在促进免疫细胞活性和调节免疫细胞迁移方面发挥重要作用。MP和免疫细胞之间的关系如下图所示。ADAM10和ADAM17在静止的CD4+Th细胞表面表达,对调节CD4+Th的发育和功能很重要。ADAM10/17在T细胞共刺激受体以及共抑制受体的脱落中发挥关键作用。例如,CD154(CD40L)是一种II型膜共刺激受体,在T细胞和APC之间的相互作用后,CD154表达在几个小时内迅速上调,随后在ADAM10和ADAM17裂解后从T细胞表面释放。此外,ADAM10和ADAM17还作用于共刺激受体CD137,以及抑制性受体LAG-3、TIM-3,sLAG-3和sTIM-3的可溶性形式都是在ADAM10和ADAM17蛋白水解裂解后形成的。B细胞是体液免疫的关键细胞成分,位于脾脏中边缘区B细胞(MZB)表达高水平的CD80/86共刺激分子,导致T细胞活化。Notch2信号传导是MZB细胞发育所必需的,在MZB的发育过程中,Notch2异二聚体与基质细胞和APC上的DLL1等配体结合,这启动了一种未知的金属蛋白酶水解受体,导致Notch胞内结构域的释放,该结构域转移到细胞核并触发下游靶基因的表达。这种未知的金属蛋白酶可能是ADAM10。NK细胞表达IgG Fc受体FcγRIII(CD16),CD16分子可被ADAM17从活化的NK细胞表面裂解,ADAM17的抑制会削弱CD16和CD62L的胞外脱落,从而显著增加细胞内TNF-α和IFN-γ的水平。此外,MMPs和ADAMS可以从肿瘤细胞表面切割活化受体NKG2D的配体。这些裂解蛋白的可溶性形式与NKG2D结合,并诱导该受体的内吞和降解,导致肿瘤逃避监控。总的来说,ADAM17裂解的多种底物与NK细胞的不同作用有关。肿瘤相关巨噬细胞(TAM)有助于癌症的发生和恶性进展,高水平的TAM与预后不良和总体生存率降低有关。在多种癌症中,发现TAM通过分泌MMPs促进肿瘤血管生成和侵袭,并调节免疫反应。MMP的调节与TAM分泌的趋化因子密切相关。与MPs相关的免疫调节细胞因子多种来源于肿瘤细胞的细胞因子,包括TGF-β、EGF、HGF和TNF-α,介导许多MP的表达。其中最重要的是MMP9,其在血清和与肿瘤相关的组织中升高,并参与ECM的降解,以促进癌症中免疫细胞的迁移。此外,这些细胞因子必须被MP切割以参与肿瘤免疫过程。例如,被ADAM17切割的TmTNF-α产生活性sTNF-α。IL-12在T细胞发育和扩增中也起着关键作用,未激活的IL-12前体需要在被MMP14切割之后在TME中转变为活性状态。金属蛋白酶和血管生成迄今为止,已经报道了几种类型的肿瘤血管生成,包括萌芽血管生成和血管生成拟态(VM)。萌芽血管生成是通过血管基底膜中各种水解酶(如MP和组织纤溶酶)的上调实现的,这导致基底膜和ECM的降解和重塑。例如,在胰腺神经内分泌肿瘤中,MMP9分泌增加会从基质中释放出隔离的VEGF,从而将血管静止转变为活跃的血管生成。在肺癌细胞中,MMP2活性的抑制减少了其与整合素AVB3的相互作用,并抑制了下游PI3K/AKT信号介导的VEGF的表达,导致血管生成减少。VM是侵袭性肿瘤形成新血管的新模型,为肿瘤生长提供血液供应。研究表明,实体瘤的初始缺氧环境与VM密不可分,缺氧与MMPs的表达和活性密切相关。低氧诱导因子-1α(HIF-1α)已被证明直接调节MMP14、MMP9和MMP2的表达。靶向MP的免疫治疗鉴于MP在癌症免疫调节中的作用,人们开始探索靶向MP的免疫治疗,临床试验中出现了多种广谱MP抑制剂。然而,由于药物的非特异性靶向和MP在免疫调节中的复杂作用,MP抑制剂迄今未能改善癌症患者的生存和预后。最近,有报道称MP抑制剂可用于联合治疗,以提高免疫治疗的疗效。SB-3CT作为一种MMP2/9抑制剂,被认为可以提高抗PD-1和抗CTLA-4治疗黑色素瘤和肺癌小鼠模型的疗效。SB-3CT治疗不仅通过减少多种致癌途径导致PD-L1表达减少,而且与抗PD-1治疗相结合,显著改善了免疫细胞浸润和T细胞的细胞毒性。此外,SB-3CT与抗CTLA-4的组合增强了PD-L1表达的下调,并增加了肿瘤中活化的肿瘤浸润CD8+T细胞的丰度。Andecaliximab(GS-5745)是一种选择性抑制MMP9的单克隆抗体,GS-5745通过与MMP9前体结合并阻止MMP9活化来抑制MMP9,而与活性MMP9的结合则抑制其活性。Fab 3369作用于MMP14,阻断细胞表面表达的内源性MMP14,并抑制三阴性乳腺癌(TNBC)中ECM的降解。此外,有多种抗体可有效抑制ADAM17,包括A12、A9和MED13622。还有一些小分子抑制剂在临床开发中,在临床试验中显示出积极的效果。小结MP在TME中的免疫调节中发挥重要作用,包括ECM重塑、信号通路转导、细胞因子脱落和释放以及促进血管生成。与MP相关的新兴技术和药物在癌症诊断和治疗中得到了越来越多的探索。因此,更好地了解MP在癌症免疫调节中的表达模式和功能将有助于开发更有效的癌症诊断和免疫治疗方法。基于MP的探索和新技术具有巨大潜力,它们可能会为未来的癌症诊断和治疗提供有效的策略。参考文献:1.Immunomodulatory role of metalloproteases in cancers: Current progress and future trends. Front Immunol.2022 13: 1064033.
  • 全新一代10+1肿瘤免疫微环境多色解决方案
    TissueGnostics公司推出的10+1肿瘤免疫微环境多色解决方案,在类流式分析方法的基础上,构建了整套肿瘤免疫微环境大数据深度挖掘体系,拥有1.成熟的多标记染色试剂盒体系 2.大尺寸高倍率全自动连续光谱全景成像 3.可原位追溯的大数据AI深度空间量化分析功能。一体化解决方案优势在于简化了数据的流转环节,允许应用定制APP,全自动的无人值守大大提高了组织原位数据分析操作的效率。a) 基于全新一代TSA染色技术同时标记10种生物标志物后,使用TissueFAXS Spectra系统进行连续全光谱高倍率成像,构建全景(多光谱)虚拟切片。b) Tissue Cytometry技术,能够获取10色独立的真实染色标志物数据,还可以去除背景自发荧光或血细胞/胶原等自发荧光,实现10+1色的独立通道采集。c) 免疫微环境信号量化分析,可提供多种自动化解决方案APP,实现AI大数据深度空间量化分析功能。(APP包括但不限于:核酸分子/亚细胞结构/细胞/组织等目标中的形态学识别、 强度量化统计分析、结构/空间分布关系分析),以及正反向回溯数据(双向)校验机制,对大数据分析结果进行校验。d) 针对创新研发型的肿瘤微环境量化分析需求,可选配量化分析软件StrataQuest,不但可以同时实现所有APP功能,还可以针对稀有样本进行数据获取,其可追溯校验的数据分析模式也获得NCS等期刊的一致认可。
  • Cell丨人体微生物群:重编程肿瘤微环境,扫除免疫疗法障碍
    肿瘤的发展与肿瘤微环境息息相关,肿瘤微环境高度动态且复杂,其中有许多还未发现的作用。而免疫细胞作为肿瘤微环境的关键角色,已经为肿瘤治疗带来了前所未有的突破,例如免疫检查点阻断以唤醒T细胞。然而如此之好的疗效仅有部分个体受益,其他个体仍存在治疗抵抗。在导致治疗抵抗的因素中,肿瘤微环境尤为关键,比如肿瘤微环境中的先天免疫细胞包括吞噬细胞,即单核细胞和巨噬细胞,以及树突状细胞等,在宿主防御、组织内稳态和修复中发挥重要作用。癌症治疗最令人畏惧的障碍就是克服免疫抑制性肿瘤微环境。人体肠道微生物群影响肿瘤微环境中抗肿瘤免疫及对免疫治疗的反应,最近有研究表明癌症患者微生物群对免疫检查点阻断反应存在关联【1,2】,但是分子基础不明。究其原因可能是因为前期研究的着眼点都放在了T细胞上,而对于微生物群是否调节先天免疫细胞的功能还不清楚。2021年10月7日,美国国立卫生研究院国家癌症研究所的Romina S. Goldszmid研究小组在Cell杂志上发表题为The microbiota triggers STING-type I IFN-dependent monocyte reprogramming of the tumor microenvironment的研究论文,在这篇研究论文中,作者发现人体微生物群通过STING-type I IFN依赖机制调节肿瘤微环境的促肿瘤/抗肿瘤平衡,重编程肿瘤内单核吞噬细胞以促进抗癌免疫和免疫检查点阻断法的疗效。在这项研究中,作者在临床前淋巴瘤中进行了单细胞分析、微生物群扰动(microbiota perturbation)分析和功能细胞表征分析。作者首先发现单核吞噬细胞的可塑性很强,微生物信号将肿瘤微环境中的单核吞噬细胞重编程为免疫刺激性单核细胞和树突状细胞。单细胞RNA测序显示,微生物群的缺失以牺牲单核细胞和树突状细胞为代价,使肿瘤微环境向致瘤性巨噬细胞转移。作者接下来的机制探索表明,微生物群衍生的干扰素基因刺激因子(STING)激动剂(例如c-di-AMP)引起了单核吞噬细胞重编程,通过肿瘤内单核细胞诱导I型干扰素(IFN-I),从而调节巨噬细胞极化,以及自然杀伤(NK)细胞-树突状细胞相互作用。由此作者提出疑问,对微生物群进行饮食控制是否能成为临床上重编程肿瘤微环境的新方法?于是作者给小鼠饲喂了高纤维的饮食,发现IFN-I的产生增加了,肿瘤微环境中的单核吞噬细胞也得到了重塑,增加了树突状细胞并改善了抗肿瘤反应,同时,免疫检查点阻断的疗效也大幅提高。这项发现与最近的一些临床研究相符【3,4】。后续研究发现,富含纤维的阿克曼菌(Akkermansia muciniphila)能够产生c-di-AMP并出现和高纤维饮食相同的结果。在黑色素瘤患者中,作者再次验证了前面的发现。免疫检查点阻断应答者的微生物群诱导 IFN-I产生,并重塑先天免疫肿瘤微环境;同时,通过粪便微生物群移植也可以触发IFN-I产生,并重编程肿瘤内单核吞噬细胞以促进抗癌免疫和免疫检查点阻断疗效(图2)。这些观察结果强有力地支持微生物群、IFN-I和免疫检查点阻断反应之间的因果关系。人体微生物群协调肿瘤中IFN-I和先天免疫肿瘤微环境重编程。综上所述,这项研究发现微生物群衍生的STING激动剂通过肿瘤内的单核细胞诱导IFN-I的产生,从而使肿瘤微环境更加有利于抗肿瘤;这些单核细胞调节NK细胞的募集和激活、以及随后的NK细胞-树突状细胞相互作用(图3左);当微生物群受到破坏时,单核细胞-IFN-I-NK细胞-树突状细胞的级联反应停止,单核细胞分化为促肿瘤巨噬细胞(图3右);通过高纤维饮食调节微生物群、或通过产c-di-AMP菌、或来自免疫检查点阻断应答者个体的微生物群移植都能够促进IFN-I途径、改善抗肿瘤反应、加强疗效。这项研究填补了微生物群如何调节肿瘤内单核吞噬细胞的空白。该研究揭示了微生物群与先天免疫细胞之间的复杂相互作用,以及微生物群形成肿瘤微环境先天免疫以调节抗肿瘤免疫的机制,为利用微生物群进行癌症治疗带来了启发。原文链接:https://doi.org/10.1016/j.cell.2021.09.019
  • Nature:成像质谱流式细胞术发现肿瘤微环境特征预测肺癌结果
    来自麦吉尔大学和多伦多大学等研究人员已经开发出一种方法,可以仅通过一个微小肿瘤组织样本来预测肺癌患者在手术后的发展状况。研究人员将成像质谱流式细胞术与深度学习技术相结合,分析了400 多名来自肺腺癌患者的肺癌样本的肿瘤微环境。肿瘤微环境已被确定为影响治疗进展的异质性来源。通过在空间和单细胞水平上表征肿瘤微环境,研究人员揭示了与临床特征(如生存率)相关的不同细胞状态和特征。正如他们在Nature杂志上报道的那样,他们使用了人工智能来识别肿瘤微环境的某些特征来高精度地预测疾病进展。  Fig. 1: IMC defines the spatial landscape of LUAD.  “总的来说,这些数据表明空间分辨的单细胞转录组在未来可能具有非常大的价值,有助于为个性化的围手术期护理计划提供有价值的信息,以最大限度地减少那些能被治愈的人在治疗过程中产生的毒副作用,或提高那些会复发的人的治愈率”,麦吉尔大学的共同资深作者 Daniela Quail 和 Logan Walsh 以及拉瓦尔大学的 Philippe Joubert 领导的研究人员在论文中写道。研究人员使用 Fluidigm(现为 Standard BioTools)企业的成像质谱流式细胞技术系统,分析了 1996 年 2 月至 2020 年 7 月期间收集的 426 名肺腺癌患者的小组织核心样本。他们使用 35 重抗体组来识别各种细胞他们样本的成分,包括癌细胞本身以及基质细胞、适应性和先天性免疫细胞。研究人员总共检测到超过 160 万个细胞,并发现了 14 个不同的免疫细胞群。他们特别关注免疫细胞群与患者的临床数据之间的关联。例如,肥大细胞与延长生存期有关,虽然它们在非吸烟者和患有早期疾病的患者中更为常见。研究人员进一步注意到某些免疫细胞的频率与特定临床亚组之间的联系—例如,CD4 阳性辅助性 T 细胞在女性患者的样本中富集,她们往往会有更好的总体存活率,而老年患者的肿瘤内 CD8 较少- 阳性 T 细胞。与此同时,他们探索了肿瘤微环境中不同的细胞表型如何与生存相关,例如,发现 H1F1-α 阳性中性粒细胞将会产生不利于生存的环境。观察具有相似局部细胞类型组成的区域(邻近细胞),研究人员进一步指出,不同的组织结构与生存差异有关。例如,富含 B 细胞的邻近细胞与存活显着相关,尤其是 CN-25 邻近细胞,它也富含 CD4 阳性辅助性 T 细胞。通过应用深度学习方法,研究人员发现他们生成的空间信息可以改善对临床结果的预测。他们报告说,创建的模型(包括空间信息)预测进展的准确率高达 95.9%,而基线评分的准确率为 75%,而且他们仅仅使用了一个 1 mm²的肿瘤样本。此外,研究人员使用成像质谱流式细胞术分析了 60 名原发性肺腺癌患者的单独验证队列,并在数据集中发现该模型以 94% 的准确度预测进展。研究人员将他们模型的预测能力追溯到六个标记的组合:CD14、CD16、CD94、αSMA、CD117 和 CD20。总体来讲,准确率为 93.3%,精密度和召回率为 95.6%。研究人员写道:“我们的研究结果代表了对使用临床和病理变量的现有预测工具的重要进步,并且可以更有效地利用不断增长的围术期辅助系统来改善癌症结果。”  来源:  1.Sorin, M., Rezanejad, M., Karimi, E. et al. Single-cell spatial landscapes of the lung tumour immune microenvironment. Nature (2023). https://doi.org/10.1038/s41586-022-05672-3.  2.基因网
  • 科学家发现微生物群重塑肿瘤微环境的新机制
    近期,美国国家癌症研究所(National Cancer Institute)的研究团队发现肠道微生物群可通过影响单核吞噬细胞系统重塑肿瘤微环境。该研究在《Cell》上发表,题为:Microbiota triggers STING-type IFN-dependent monocyte reprogramming of the tumor microenvironment。  单核吞噬细胞(Mononuclear phagocytes, MPs)系统是固有免疫的重要成分,包括单核细胞(Mo)、巨噬细胞(Mac)和树突状细胞(Dc),其在宿主防御和组织修复中发挥着重要作用。MPs也是肿瘤微环境中(Tumor Microenvironment, TME)的关键组成部分之一,既可以增强抗肿瘤效应,也可以导致肿瘤免疫抑制状态。该研究发现,高纤维饮食后的肠道微生物源信号可将TME中的MPs编程为具有免疫活性的Mo和Dc,从而改善肿瘤免疫检查点阻断治疗的效果。  该研究揭示了肠道微生物群影响TME的新机制,为肿瘤免疫治疗提供了新方向。  注:此研究成果摘自《Cell》,文章内容不代表本网站观点和立场。  论文链接:https://doi.org/10.1016/j.cell.2021.09.019
  • Front Immunol专题: 肿瘤微环境免疫代谢的特点和机制
    p    strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 导读: /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " 受Frontiers in Immunology杂志邀请,陆军军医大学第二附属医院(新桥医院)临床医学研究中心李咏生教授与肿瘤科朱波教授一起主编了“Metabolism of Cancer Cells and Immune Cells in the Tumor Microenvironment”专题,于2019年3月21日正式发表。本专题旨在汇集一系列肿瘤免疫代谢的优秀论文,回顾癌细胞和免疫细胞代谢的进展和前景,激发研究人员对未来肿瘤免疫代谢的研究,以及为临床癌症治疗提供线索。 /span /p p   免疫编辑协调肿瘤的发生和发展。尽管最近免疫疗法的进展令人鼓舞,并且无数患者已经从中显著获益,但由于肿瘤微环境(tumor microenvironment,TME)的复杂性和多样性,大部分患者仍然对免疫疗法反应较弱。探索TME驱动的肿瘤发生和发展的潜在机制对于开发癌症治疗的潜在精确方法是亟待解决的科学问题。 /p p   细胞需要能量来维持其存活,并且多种代谢物自身也具有生物活性。代谢调节细胞的表型和生物学功能已被广泛认知。在TME中,肿瘤细胞和免疫细胞重编程其代谢模式以适应缺氧、酸性和低营养的微环境。例如,肿瘤细胞显示增强的有氧糖酵解(Warburg效应)但减少氧化磷酸化(OXPHOS)。巨噬细胞倾向于M2极化,表现出上调的脂肪酸合成和β-氧化。细胞毒性T淋巴细胞显示出下调的糖酵解,但OXPHOS增强。因此,肿瘤微环境中各种细胞的代谢重编程对肿瘤免疫编辑具有重要意义。了解肿瘤细胞和免疫细胞的代谢重编程将为调节肿瘤免疫提供新的方向。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/4c17f871-5c6d-449f-bdda-7274907c4744.jpg" title=" 1.png" alt=" 1.png" width=" 460" height=" 600" border=" 0" vspace=" 0" style=" width: 460px height: 600px " / /p p style=" text-align: center " strong 《肿瘤免疫代谢》专题电子书封面 /strong /p p   在这种背景下,受Frontiers in Immunology杂志邀请,陆军军医大学第二附属医院(新桥医院)临床医学研究中心 strong 李咏生 /strong 教授与肿瘤科 strong 朱波 /strong 教授一起主编了“ strong Metabolism of Cancer Cells and Immune Cells in the Tumor Microenvironment /strong ”专题,于2019年3月21日正式发表(电子书链接: a href=" https://www.frontiersin.org/research-topics/5072/metabolism-of-cancer-cells-and-immune-cells-in-the-tumor-microenvironment" target=" _self" https://www.frontiersin.org/research-topics/5072/metabolism-of-cancer-cells-and-immune-cells-in-the-tumor-microenvironment /a )。本专题旨在汇集一系列肿瘤免疫代谢的优秀论文,回顾癌细胞和免疫细胞代谢的进展和前景,激发研究人员对未来肿瘤免疫代谢的研究,以及为临床癌症治疗提供线索。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/661bc123-fa6c-4ca4-b61b-6a30f3023e23.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center " strong 电子书内容目录 /strong /p p   缺氧有助于致癌基因的激活和肿瘤抑制因子的丧失,这些抑制因子构成了Warburg效应的主要调节因子和许多其他代谢途径,例如谷氨酰胺酶水解。缺氧诱导因子通过增加血管内皮生长因子促进血管生成并调节TME中的细胞表型。 strong Sormendi和Wielockx总结了目前在癌症发展过程中缺氧重编程TME中癌细胞和免疫细胞代谢的进展及机制。内皮细胞(EC)介导血管新生用于向肿瘤组织输送氧气和营养物质。Zecchin等讨论了EC如何调整其代谢以在TME中形成血管。 /strong /p p   免疫和线粒体彼此紧密相关。线粒体是细胞能量代谢最重要的细胞器。它们调节免疫细胞的活化,分化和存活,以及释放信号,如线粒体DNA(mtDNA)和线粒体ROS(mtROS),以调节免疫细胞的转录。 strong Angajala等讨论了线粒体协调驱动不同免疫反应的潜在机制。 /strong /p p   甲羟戊酸代谢常由糖酵解推动,它是癌症干细胞和免疫细胞的关键代谢途径,可调控免疫监视。 strong Gruenbacher和Thurnher讨论了激活和分化诱导的代谢重编程如何影响免疫和癌细胞中胆固醇生物合成的甲羟戊酸途径。他们得出结论,虽然抑制肿瘤细胞中甲羟戊酸代谢可能会减弱生长和增殖,但先天免疫细胞如巨噬细胞中的甲羟戊酸途径可能有助于肿瘤免疫。 /strong /p p   芳烃受体(AhR)是一种重要的胞浆中配体依赖性转录因子,并且在癌症的起始、进展、侵袭和转移中起关键作用。AhR和免疫系统之间的相关性已被认识并被建议作为免疫抑制效应物。 strong Xue等综述了AhR在肿瘤免疫中的作用及其在TME中的潜在机制。 /strong /p p   T细胞是抗肿瘤免疫的主要成分。他们动态的代谢程序决定了其分化、激活和功能。目前,操纵T细胞代谢途径的重编程是一种治疗方法,特别是用于抗肿瘤免疫。 strong Kouidhi等介绍了一些与T淋巴细胞功能和分化有关的潜在细胞代谢途径。他们还总结了T细胞亚群特定的代谢需求和信号通路的前沿进展。 /strong /p p   总之,构成该专题的八篇文章提供了对TME中癌细胞和免疫细胞代谢的关键机制的见解。该专题将有助于激发研究人员探索代谢免疫学的问题,并有助于在临床癌症治疗中制定有效的策略。 /p p   span style=" font-family: " times=" " new=" "  References /span /p p span style=" font-family: " times=" " new=" "   1. https://www.frontiersin.org/research-topics/5072/metabolism-of-cancer-cells-and-immune-cells-in-the-tumor-microenvironment /span /p p span style=" font-family: " times=" " new=" "   2. Garaude J. Reprogramming of mitochondrial metabolism by innate immunity. Curr Opin Immunol. 2018 Oct 1 56:17-23. /span /p p span style=" font-family: " times=" " new=" "   3. Stienstra R, Netea-Maier RT, Riksen NP, Joosten LAB, Netea MG. Specific and Complex Reprogramming of Cellular Metabolism in Myeloid Cells during Innate Immune Responses. Cell Metab. 2017 Jul 5 26(1):142-156. /span /p p span style=" font-family: " times=" " new=" "   4. Biswas SK. Metabolic Reprogramming of Immune Cells in Cancer Progression. Immunity. 2015 Sep 15 43(3):435-49. /span /p p span style=" font-family: " times=" " new=" "   5. Kelly B, O& #39 Neill LA. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015 Jul 25(7):771-84. /span /p p span style=" font-family: " times=" " new=" "   6. Li Y, Wan YY, Zhu B. Immune Cell Metabolism in Tumor Microenvironment. Adv Exp Med Biol. 2017 1011:163-196. /span /p p span style=" font-family: " times=" " new=" " ------------------------------- /span /p p style=" text-align: center " strong span style=" font-family: " times=" " new=" " 欢迎关注 3i生仪社 公众号,了解更多生命科学资讯! /span /strong /p p style=" text-align: center " span style=" font-family: " times=" " new=" " img src=" https://img1.17img.cn/17img/images/201903/uepic/1ed19b9c-4c7b-4e26-81bb-7d9c586dfca6.jpg" title=" 3i生仪社二维码.jpg" alt=" 3i生仪社二维码.jpg" / /span /p
  • 【讲座】“肿瘤微环境与免疫治疗检测”新方法及新思路
    p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/YOLOTME2020/" target=" _blank" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/083f9a84-0735-4bd8-a388-595401d5c2ce.jpg" title=" 192042020200705.jpg" alt=" 192042020200705.jpg" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/YOLOTME2020/" target=" _blank" 点击图片即可报名 /a /p section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " overflow-wrap:=" " break-word=" " section powered-by=" xiumi.us" style=" margin: 10px 0px 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important font-size: 0px overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 473.891px vertical-align: top height: auto overflow-wrap: break-word !important " section powered-by=" xiumi.us" style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important background-color: rgba(29, 131, 255, 0.568627) height: 1px line-height: 0 overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /section /section /section /section section powered-by=" xiumi.us" style=" margin: -7px 0px 4px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: right justify-content: flex-end font-size: 0px overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 446.813px height: 13px vertical-align: top overflow: hidden background-color: rgba(29, 131, 255, 0.0470588) border-style: solid border-width: 0px border-radius: 0px border-color: rgb(62, 62, 62) line-height: 0 overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /section /section section powered-by=" xiumi.us" style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 677px vertical-align: top background-color: rgba(29, 131, 255, 0.0470588) overflow-wrap: break-word !important " section powered-by=" xiumi.us" style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important overflow-wrap: break-word !important " section style=" margin: 0px padding: 10px 7px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 677px vertical-align: top overflow-wrap: break-word !important " section powered-by=" xiumi.us" style=" margin: 0px padding: 0px 10px max-width: 100% box-sizing: border-box word-wrap: break-word !important letter-spacing: 1px line-height: 1.8 font-size: 15px color: rgb(99, 99, 99) overflow-wrap: break-word !important " p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " 肿瘤微环境(Tumor microenvironment, TME)不仅包括了肿瘤细胞本身,还有与肿瘤细胞有密切联系的成纤维细胞、免疫和炎性细胞、胶质细胞等各种细胞,同时也包括附近区域内的细胞间质、微血管以及浸润在其中的生物分子。而免疫和炎症是构成肿瘤微环境的两大核心。 /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " 近年来, 随着多个PD-1免疫检查点抑制剂的获批上市以及多个肿瘤免疫临床试验获得的成功,带动了肿瘤免疫治疗的发展,然而肿瘤免疫治疗领域还存在很多未解决的问题, 如只针对某些特定的肿瘤有作用,总体临床应答率低, 肿瘤免疫联合治疗的安全性, 肿瘤免疫治疗后的复发等。 /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " 针对肿瘤的耐药现象,医学研究做了大量的工作,包含耐药基因突变研究,肿瘤异质性等,目前肿瘤微环境作为一种新的概念也逐渐得到了临床的重视。肿瘤微环境长期以来都是肿瘤研究当中一个关键和核心的方向,对于认识肿瘤的发生、发展、转移等过程有着重要的意义,而且对于肿瘤的诊断、防治和预后亦有着重要的作用。 /p /section /section /section /section section powered-by=" xiumi.us" style=" margin: -3px 0px 5px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: right justify-content: flex-end font-size: 0px overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 406.188px vertical-align: top height: auto overflow-wrap: break-word !important " section powered-by=" xiumi.us" style=" margin: 2px 0px 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important background-color: rgba(29, 131, 255, 0.568627) height: 1px line-height: 0 overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /section /section /section /section section powered-by=" xiumi.us" style=" margin: 2px 0px 10px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important background-color: rgba(29, 131, 255, 0.568627) height: 1px line-height: 0 overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /section /section /section p /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-size: 14px letter-spacing: 0.5px overflow-wrap: break-word !important " 仪器信息网将举办“肿瘤微环境与免疫治疗检测方法专题网络研讨会”,为广大肿瘤、免疫研究领域用户提供一个突破时间地域限制的免费学习、交流平台。 /span /strong span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-size: 14px letter-spacing: 0.5px overflow-wrap: break-word !important " /span /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " white-space:=" " background-color:=" " line-height:=" " text-align:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-size: 15px " 会议微信群 /span br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 160px height: 213px " src=" https://img1.17img.cn/17img/images/202008/uepic/393f3e4e-31b8-4421-ac13-3ce9ed7e76c1.jpg" title=" 微信群 肿瘤微环境.jpg" alt=" 微信群 肿瘤微环境.jpg" width=" 160" height=" 213" / /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-size: 14px letter-spacing: 0.5px overflow-wrap: break-word !important " 会议时间:2020年8月19日 13:30(周三) /span /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-size: 14px letter-spacing: 0.5px overflow-wrap: break-word !important " 会议开设300个免费席位 /span /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-size: 14px letter-spacing: 0.5px overflow-wrap: break-word !important " 每位主讲人的报告环节包含【ppt报告分享】+【互动答疑】 /span /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /p p /p section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " overflow-wrap:=" " break-word=" " section powered-by=" xiumi.us" style=" margin: 10px 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: center justify-content: center overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: auto vertical-align: top min-width: 10% height: auto overflow-wrap: break-word !important " section powered-by=" xiumi.us" style=" margin: 0px 0px 3px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: right font-size: 0px justify-content: flex-end overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 25px height: 8px vertical-align: top overflow: hidden background-color: rgb(179, 221, 233) line-height: 0 overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /section /section section powered-by=" xiumi.us" style=" margin: 0px padding: 5px 10px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 110px vertical-align: top border-style: solid border-width: 1px border-radius: 0px border-color: rgb(179, 221, 233) overflow-wrap: break-word !important " section powered-by=" xiumi.us" style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: left justify-content: flex-start overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: center color: rgb(255, 255, 255) font-size: 17px letter-spacing: 5px line-height: 1.8 text-shadow: rgb(120, 169, 184) 1px 1px, rgb(120, 169, 184) 1px -1px, rgb(120, 169, 184) -1px 1px, rgb(120, 169, 184) -1px -1px, rgb(120, 169, 184) 0px 1.4px, rgb(120, 169, 184) 0px -1.4px, rgb(120, 169, 184) -1.4px 0px, rgb(120, 169, 184) 1.4px 0px, rgb(255, 222, 23) 2px 2px, rgb(255, 222, 23) 3px 3px, rgb(255, 222, 23) 3px 1px, rgb(255, 222, 23) 1px 3px, rgb(255, 222, 23) 1px 1px, rgb(255, 222, 23) 2px 3.4px, rgb(255, 222, 23) 2px 0.6px, rgb(255, 222, 23) 0.6px 2px, rgb(255, 222, 23) 3.4px 2px overflow-wrap: break-word !important " p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important overflow-wrap: break-word !important " 会议日程 /span br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important overflow-wrap: break-word !important " / /p /section /section /section section powered-by=" xiumi.us" style=" margin: 3px 0px 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: left font-size: 0px justify-content: flex-start overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 25px height: 8px vertical-align: top overflow: hidden background-color: rgb(179, 221, 233) line-height: 0 overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /section /section /section /section /section p /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/343ea222-30a0-498b-92aa-9fd8b5b769cd.jpg" title=" 0819 日程.png" alt=" 0819 日程.png" / /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /p p /p section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " overflow-wrap:=" " break-word=" " section powered-by=" xiumi.us" style=" margin: 10px 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: center justify-content: center overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: auto vertical-align: top min-width: 10% height: auto overflow-wrap: break-word !important " section powered-by=" xiumi.us" style=" margin: 0px 0px 3px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: right font-size: 0px justify-content: flex-end overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 25px height: 8px vertical-align: top overflow: hidden background-color: rgb(179, 221, 233) line-height: 0 overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /section /section section powered-by=" xiumi.us" style=" margin: 0px padding: 5px 10px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 110px vertical-align: top border-style: solid border-width: 1px border-radius: 0px border-color: rgb(179, 221, 233) overflow-wrap: break-word !important " section powered-by=" xiumi.us" style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: left justify-content: flex-start overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: center color: rgb(255, 255, 255) font-size: 17px letter-spacing: 5px line-height: 1.8 text-shadow: rgb(120, 169, 184) 1px 1px, rgb(120, 169, 184) 1px -1px, rgb(120, 169, 184) -1px 1px, rgb(120, 169, 184) -1px -1px, rgb(120, 169, 184) 0px 1.4px, rgb(120, 169, 184) 0px -1.4px, rgb(120, 169, 184) -1.4px 0px, rgb(120, 169, 184) 1.4px 0px, rgb(255, 222, 23) 2px 2px, rgb(255, 222, 23) 3px 3px, rgb(255, 222, 23) 3px 1px, rgb(255, 222, 23) 1px 3px, rgb(255, 222, 23) 1px 1px, rgb(255, 222, 23) 2px 3.4px, rgb(255, 222, 23) 2px 0.6px, rgb(255, 222, 23) 0.6px 2px, rgb(255, 222, 23) 3.4px 2px overflow-wrap: break-word !important " p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important overflow-wrap: break-word !important " 会议嘉宾 /span br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important overflow-wrap: break-word !important " / /p /section /section /section section powered-by=" xiumi.us" style=" margin: 3px 0px 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: left font-size: 0px justify-content: flex-start overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 25px height: 8px vertical-align: top overflow: hidden background-color: rgb(179, 221, 233) line-height: 0 overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /section /section /section /section /section p /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/5b0b6790-fd22-4dc2-bfc6-32c33a3799af.jpg" title=" 专家 0819.png" alt=" 专家 0819.png" / /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /p p /p section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " overflow-wrap:=" " break-word=" " section powered-by=" xiumi.us" style=" margin: 10px 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: center justify-content: center overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: auto vertical-align: top min-width: 10% height: auto overflow-wrap: break-word !important " section powered-by=" xiumi.us" style=" margin: 0px 0px 3px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: right font-size: 0px justify-content: flex-end overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 25px height: 8px vertical-align: top overflow: hidden background-color: rgb(179, 221, 233) line-height: 0 overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /section /section section powered-by=" xiumi.us" style=" margin: 0px padding: 5px 10px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 154px vertical-align: top border-style: solid border-width: 1px border-radius: 0px border-color: rgb(179, 221, 233) overflow-wrap: break-word !important " section powered-by=" xiumi.us" style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: left justify-content: flex-start overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: center color: rgb(255, 255, 255) font-size: 17px letter-spacing: 5px line-height: 1.8 text-shadow: rgb(120, 169, 184) 1px 1px, rgb(120, 169, 184) 1px -1px, rgb(120, 169, 184) -1px 1px, rgb(120, 169, 184) -1px -1px, rgb(120, 169, 184) 0px 1.4px, rgb(120, 169, 184) 0px -1.4px, rgb(120, 169, 184) -1.4px 0px, rgb(120, 169, 184) 1.4px 0px, rgb(255, 222, 23) 2px 2px, rgb(255, 222, 23) 3px 3px, rgb(255, 222, 23) 3px 1px, rgb(255, 222, 23) 1px 3px, rgb(255, 222, 23) 1px 1px, rgb(255, 222, 23) 2px 3.4px, rgb(255, 222, 23) 2px 0.6px, rgb(255, 222, 23) 0.6px 2px, rgb(255, 222, 23) 3.4px 2px overflow-wrap: break-word !important " p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important overflow-wrap: break-word !important " 特邀嘉宾介绍 /span br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important overflow-wrap: break-word !important " / /p /section /section /section section powered-by=" xiumi.us" style=" margin: 3px 0px 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: left font-size: 0px justify-content: flex-start overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 25px height: 8px vertical-align: top overflow: hidden background-color: rgb(179, 221, 233) line-height: 0 overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /section /section /section /section /section p /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-size: 16px overflow-wrap: break-word !important " strong style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important letter-spacing: 0.5px overflow-wrap: break-word !important " 李咏生 /span /strong /span span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-size: 14px letter-spacing: 0.5px overflow-wrap: break-word !important " (重庆大学附属肿瘤医院—教授、主任医师)美国哈佛医学院博士后,现任重庆大学附属肿瘤医院肿瘤内科教授、博士生导师、主任医师,兼任陆军军医大学博士生导师,美国哈佛医学院博士后,现任重庆大学附属肿瘤医院肿瘤内科教授、博士生导师、主任医师,兼任陆军军医大学博士生导师,海外高层次人才、重庆市杰出青年基金获得者、中国临床肿瘤学会CSCO首批“35岁以下最具潜力青年肿瘤医生”入选者、国家自然科学基金二审专家肿瘤组副组长、重庆市学术技术带头人、重庆市首批“青年专家工作室”领衔专家、重庆市高校创新研究群体负责人。 /span /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-size: 14px letter-spacing: 0.5px overflow-wrap: break-word !important " 任中国抗癌协会肿瘤代谢专委会免疫代谢学组组长、中国抗癌协会肿瘤与微生态专委会常务委员、重庆市免疫学会代谢免疫专委会主任委员、重庆市医学会精准医疗与分子诊断专委会副主任委员;美国免疫学家协会(AAI)、美国微生物学会(ASM)、美国癌症研究协会(AACR)、欧洲肿瘤免疫协会(EATI)会员;Frontiers in Immunology副编辑;STTT、Cancer Research、Theranostics、Critical Care Medicine、J Hematol Oncol等20多个SCI杂志特邀审稿人。 /span /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-size: 14px letter-spacing: 0.5px overflow-wrap: break-word !important " 主持国家自然科学基金重点国际合作项目、面上项目等课题12项,经费2000余万元,发表文章60余篇,累计影响因子(IF)大于300,以第一/通信作者在Immunity、Ann Rheum Dis、Sci Adv、Nat Commun、STTT、J Hematol Oncol、Cancer Res等杂志共发表SCI论文30余篇,论文被Nature、Science、Cell、PNAS等著名杂志引用3000余次,多篇论文被F1000收录。 /span /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important " / /p p /p section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " letter-spacing:=" " text-align:=" " white-space:=" " background-color:=" " overflow-wrap:=" " break-word=" " section powered-by=" xiumi.us" style=" margin: 10px 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: center justify-content: center overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: auto vertical-align: top min-width: 10% height: auto overflow-wrap: break-word !important " section powered-by=" xiumi.us" style=" margin: 0px 0px 3px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: right font-size: 0px justify-content: flex-end overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 25px height: 8px vertical-align: top overflow: hidden background-color: rgb(179, 221, 233) line-height: 0 overflow-wrap: break-word !important " br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /section /section section powered-by=" xiumi.us" style=" margin: 0px padding: 5px 10px max-width: 100% box-sizing: border-box word-wrap: break-word !important display: inline-block width: 308px vertical-align: top border-style: solid border-width: 1px border-radius: 0px border-color: rgb(179, 221, 233) overflow-wrap: break-word !important " section powered-by=" xiumi.us" style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: left justify-content: flex-start overflow-wrap: break-word !important " section style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box word-wrap: break-word !important text-align: center color: rgb(255, 255, 255) font-size: 17px letter-spacing: 5px line-height: 1.8 text-shadow: rgb(120, 169, 184) 1px 1px, rgb(120, 169, 184) 1px -1px, rgb(120, 169, 184) -1px 1px, rgb(120, 169, 184) -1px -1px, rgb(120, 169, 184) 0px 1.4px, rgb(120, 169, 184) 0px -1.4px, rgb(120, 169, 184) -1.4px 0px, rgb(120, 169, 184) 1.4px 0px, rgb(255, 222, 23) 2px 2px, rgb(255, 222, 23) 3px 3px, rgb(255, 222, 23) 3px 1px, rgb(255, 222, 23) 1px 3px, rgb(255, 222, 23) 1px 1px, rgb(255, 222, 23) 2px 3.4px, rgb(255, 222, 23) 2px 0.6px, rgb(255, 222, 23) 0.6px 2px, rgb(255, 222, 23) 3.4px 2px overflow-wrap: break-word !important " p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% box-sizing: border-box clear: both min-height: 1em overflow-wrap: break-word !important " 扫码报名 /p /section /section /section /section /section /section p /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/d4e9b392-e4df-4520-93ca-b092f875b56f.jpg" title=" 报名.png" alt=" 报名.png" / /p p style=" margin-right: 8px margin-left: 8px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) text-align: center " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " white-space:=" " background-color:=" " text-align:=" " line-height:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " span style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important font-size: 14px overflow-wrap: break-word !important " 参会二维码 /span br style=" margin: 0px padding: 0px max-width: 100% box-sizing: border-box !important word-wrap: break-word !important overflow-wrap: break-word !important " / /p p style=" margin-top: 0px margin-bottom: 0px padding: 0px max-width: 100% clear: both min-height: 1em color: rgb(51, 51, 51) font-family: -apple-system-font, BlinkMacSystemFont, " helvetica=" " pingfang=" " hiragino=" " sans=" " microsoft=" " yahei=" " font-size:=" " letter-spacing:=" " white-space:=" " background-color:=" " text-align:=" " box-sizing:=" " border-box=" " overflow-wrap:=" " break-word=" " br/ /p p br/ /p
  • Nature亮点 | Phenoptics™ 组织微环境分析方案深度解析肿瘤免疫细胞分型
    最近数十年以来肿瘤的免疫治疗相关研究取得了革命性的突破,特别是基于PD-1、CTLA-4等类似的免疫检查点抑制剂的治疗方案表现尤为突出。但是即便如此,肿瘤的免疫治疗领域仍然面临巨大的挑战,比如治疗效果的不确定性、患者反应的不可预估性、免疫治疗耐药抵抗及检测生物标志物缺乏等都制约了对肿瘤患者的精准有效治疗。Balkwill F R, Capasso M, Hagemann T. The tumor microenvironment at a glance.当前大量的临床案例和科学研究表明肿瘤免疫微环境的深度解析将是破除肿瘤免疫治疗障碍的关键所在。肿瘤免疫微环境在肿瘤发生、侵袭、转移及治疗耐受过程中占据重要位置,细化免疫微环境的细胞免疫分型,切实有效的分子分型定量研究是指导肿瘤精准治疗的基础,也是在精准医学时代背景下亟需解决的难题。独特的PhenopticsTM多光谱组织微环境景观分析方案融合了Opal多色荧光样品标记、Vectra多光谱成像和inForm智能组织定量分析技术,可以实现传统分析方案难以解决的技术难题,从而更好的实现对于肿瘤患者的精准诊断和治疗。2019年6月26日,Nature杂志在线发表了巴黎大学Jér?me Galon教授研究组题为Immune evasion before tumor invasion in early lung squamous carcinogenesis的研究论文,该文利用了PhenopticsTM组织微环境分析方案对于肺癌病人样本的肿瘤免疫细胞进行了深度的分型分析,阐述了肺鳞状细胞癌发生过程在侵袭前病变组织和肿瘤微环境的细胞分型改变以及相关免疫细胞空间分布定位的差异性变化,从而揭示肿瘤免疫微环境的重塑有利于对肿瘤的发生发展进行调控和精准治疗,为提高肿瘤免疫治疗的有效率提供了新的技术思路和方法。Nature. 2019 Jun 26. doi: 10.1038/s41586-019-1330-0该研究工作的领导者Jér?me Galon教授利用PhenopticsTM组织微环境分析方案进行肿瘤免疫治疗研究和新的免疫治疗组合策略方案开发。附图来自Jér?me Galon教授基于Opal多色荧光标记技术获取的肿瘤组织免疫微环境描绘图片,为肿瘤免疫诊断和精准治疗提供重要的参考依据。来源:https://www.epo.org/learning-events/european-inventor/finalists/2019/galon.html全新的PhenopticsTM组织微环境分析方案可以实现在组织切片样本上实现多达9色的靶点抗原荧光标记和检测,并且进行多种类型细胞的分型定量研究深度挖掘组织微环境所蕴含的生物学信息,从而为肿瘤的免疫学研究和精准治疗提供可靠依据。Phenoptics™ 组织微环境分析方案—Opal 9色荧光标记示例图关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • JAMA热点 | 肿瘤免疫微环境分析方案助力PD-1/PD-L1疗效预测
    近年来肿瘤免疫治疗取得了一系列突破性成果,成为继肿瘤手术治疗、放化疗及靶向治疗之外的革命性治疗手段,特别是基于PD-1、CTLA-4等免疫检查点抑制剂的治疗方案表现尤为突出。即便如此,肿瘤的免疫治疗仍面临巨大挑战,如疗效不确定性、总体有效率低、耐药抵抗及检测生物标志物缺乏等都制约了对患者的精准治疗。大量的临床案例和科学研究表明肿瘤免疫微环境的深度解析将会是突破免疫治疗障碍的关键所在,独特的Phenoptics分析方案可以完美的解决这一难题。该方案可以实现对肿瘤样本内多达9种生物标志物的原位标记和描绘,同时实现多种生物标志物的联合分析及空间分布分析,从而实现生物学数据的深度挖掘,为肿瘤精准诊疗提供重要依据。 接下来跟随小编一起来看几篇发表在顶尖杂志的相关研究论文,一探究竟吧!1、JAMA Oncology2019年7月18日来自美国约翰霍普金斯大学、耶鲁大学、范德堡大学及西北大学等科研单位联合在肿瘤学权威期刊JAMA Oncology(IF 22.4)发布了一项肿瘤学免疫诊疗重要研究成果(Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade A Systematic Review and Meta-analysis),系统阐述了利用Phenoptics免疫标志物mIHC/IF多重免疫组化(即Opal多重免疫组化)分析方案对于肿瘤微环境进行深度分析,其结果对比传统检测手段对于疗效预测有着更为突出的优势,可以更好地为肿瘤的诊断和免疫治疗提供可靠依据。文章对比了广泛应用的几种肿瘤学生物标志物检测方案,如传统PD-L1免疫组化检测、TMB肿瘤突变负荷分析、GEP基因表达谱分析及mIHC/IF多重免疫组化检测等方案与临床案例的诊断准确性及免疫治疗应答率进行了深度整合分析。研究人员通过Meta分析统计了2013年-2018年间公开发表及重大学术会议公布的肿瘤免疫治疗及免疫检查点抑制剂56篇研究案例,包含 10种以上不同类型的肿瘤样本总计8135份的完整临床数据(包括黑色素瘤、肺癌、尿路上皮癌、头颈癌、结肠癌、肝细胞肝癌、宫颈癌、胃癌、默克细胞瘤、肾细胞癌等),系统关联分析了肿瘤治疗应答率和生物标志物的表达水平,根据其比值权重依据敏感性和准确度统计出sROC曲线并分析计算曲线下面积AUC数据进行准确度评估用于判断该检测方案的敏感度和特异度,这两项指标与肿瘤的免疫治疗应答率具有高度相关性。数据统计分析显示,mIHC/IF多重组化检测方案的数据结果权重分析条件下AUC=0.79显著优于其他分析方案,PD-L1传统免疫组化IHC检测(AUC=0.65,P2、Nature近来关于肿瘤微环境分析与免疫治疗相关研究成果接连发表,2019年6月26日Nature发表了巴黎大学Immune evasion before tumor invasion in early lung squamous carcinogenesis的研究论文,该文利用Phenoptics组织微环境分析方案对于肺癌病人样本的肿瘤免疫细胞进行了深度的分型分析,阐述了肺鳞状细胞癌发生过程相关免疫细胞空间分布定位的差异性变化,从而揭示肿瘤免疫微环境的重塑有利于对肿瘤的精准治疗。3、Nature Immunology2019年7月8日来自美国希望之城癌症中心的科研人员在Nature Immunology发文同样阐述了Phenoptics肿瘤微环境分析方案在乳腺癌的诊断和治疗方面具有极大的潜力和价值(Connecting blood and intratumoral Treg cell activity in predicting future relapse in breast cancer),可以有效的对乳腺癌病人治疗后的复发风险进行预测,从而为患者的精准诊疗提供重要的数据支持。4、Nature Communications2018年度诺贝尔奖生理学或医学奖得主James Allison教授早在2017年领导的一项研究就应用Phenoptics多重免疫组化方案深度分析了胰腺癌病例肿瘤组织微环境与临床预后信息具有极高的相关性,该研究成果发表在Nature子刊 Nature Communications (Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer),而相关的研究方案将为肿瘤的免疫治疗提供新的诊疗依据从而更好的给肿瘤患者制定有效的治疗方案。总结:独特的Phenoptics多光谱组织微环境景观分析方案融合了Opal多重免疫组化染色、Vectra多光谱成像和inForm智能组织定量分析技术,可以完美实现传统肿瘤检测方案难以解决的技术难题,从而更好的实现对于肿瘤患者的精准诊断和治疗。网络讲座讲座时间:2019年8月27日12:00 PM(北京时间)讲座题目:Comprehensive Meta-analysis of Biomarker Technologies for Predictive Response of PD-1/PD-L1 Checkpoint Therapies主讲人:霍普金斯大学 Steve LuAkoya Biosciences Cliff Hoyt内容简介:详细分享Phenoptics分析方案的特点和技术优势,包括多种生物标记技术预测PD-1/PD-L1免疫治疗的预测指标分析,免疫细胞亚群定量蛋白检测的重要性以及疾病状态下细胞空间分布差异比较与应用,用于稳定且高通量临床研究的多重免疫荧光方法的最新进展等内容。会议地址:https://www.labroots.com/ms/webinar/akoya-biosciences-series-comprehensive-metaanalysis-biomarker-technologies-predictive-response-pd-1参考文献1. Wang L, Simons D L, Lu X, et al. Connecting blood and intratumoral T reg cell activity in predicting future relapse in breast cancer[J]. Nature immunology, 2019: 1.2. Lu S, Stein J E, Rimm D L, et al. Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade: A Systematic Review and Meta-analysis[J]. JAMA oncology, 2019.3. Carstens J L, De Sampaio P C, Yang D, et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer[J]. Nature communications, 2017, 8: 15095.4. Mascaux C, Angelova M, Vasaturo A, et al. Immune evasion before tumour invasion in early lung squamous carcinogenesis[J]. Nature, 2019: 1.5. Soo R A, Lim J S Y, AsuncionB R, et al. Determinants of variability of five programmed death ligand-1 immunohistochemistry assays in non-small cell lung cancer samples[J]. Oncotarget, 2018, 9(6): 6841.关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 珀金埃尔默助力肿瘤治疗创新|7月24日昆明国际肿瘤研究论坛
    肿瘤治疗已有250多年的历史。自传统的化疗起,肿瘤治疗经历了传统化疗/放疗时代,基于小分子和抗体的靶向药时代,肿瘤免疫治疗时代,和当下的精准医疗时代。与此同时,珀金埃尔默一直致力于——“为了更健康的世界,不断创新”,从传统化疗/放疗-基因组学-高通量筛选-单细胞组学-生物制药多个方向全面助力肿瘤治疗创新之路。在此,我们盘点肿瘤治疗历史的大事件,并从应用角度介绍珀金埃尔默对肿瘤治疗的贡献。传统治疗传统治疗兴起于90年代,主要包括手术切割,放射疗法和化学治疗等。通过近三十年的努力,美国于1937年建立National Cancer Institute (NCI) 用于开展肿瘤研究,深入了解肿瘤发病原因并开发有效的治疗方案。同年, Richard Perkin 和 Charles Elmer 合伙创建珀金埃尔默(PerkinElmer)并涉足分析仪器领域,推出原子吸收光谱仪用于追踪顺铂类化疗药物的摄取。PerkinElmer 于1987年推出首个商业化PCR系统Perkin-Elmer Cetus DNA Thermal Cycler,助力分子克隆研究。尽管近年来新的抗癌疗法不断涌现,传统疗法依然是当下肿瘤治疗的中流砥柱和一线手段。基于传统疗法,我们致力于耐药研究和联合用药等方向的前沿应用,如单细胞ICP-MS联合高内涵在单细胞组学水平研究肿瘤耐药机制[1],基于Alpha技术的高通量筛选则为靶向耐药的联合用药治疗方案打下基础(下图)[2]。图片源自文献:Cell. 2019 Jun 27 178(1):152-159.e11.靶向治疗上个世纪80-90年代的分子研究,包括针对癌症相关基因如P53和HER2基因的鉴定和克隆,为靶向药物开发打下了基础。1997年罗氏Roche药厂研发靶向CD20的利妥昔单抗(Rituximab)成为首个获批的单克隆抗体。次年著名的曲妥珠单抗(Trastuzumab)在美国获批,用于 HER-2阳性乳腺癌治疗。曲妥珠单抗的获批显著提升治疗效果的同时,也极大的推动针对乳腺癌的靶向治疗开发。2001年FDA批准首个激酶抑制剂格列卫(Imatinib mesylate),标志着肿瘤治疗进入靶向治疗时代。针对含有费城染色体融合基因 (BCR-ABL)的慢性骨髓性白血病病人,格列卫治疗可达到惊人的90%反应率,并能做到对疾病的持久控制。2001年也同时见证了首个Magic bullet抗体药物偶联物(Antibody Drug Conjugates ,ADCs)的获批。与后期兴起的免疫治疗不同,ADCs在病人免疫系统受损的情况下依然能发挥抗癌效果。随着格列卫的获批,多种著名的小分子靶向药物,尤其是激酶抑制剂进入抗癌市场[3]。同时,珀金埃尔默的小动物产品线也发挥活体成像的优势,助力多个小分子药物获批,其中包括由舒尼替尼(Sunitinib)和尼罗替尼(Nilotinib)。除了激酶抑制剂外,珀金埃尔默的活体成像平台也参与了首个,也是目前唯一获批的蛋白酶体抑制剂硼替佐米(Bortezomib)的研发。图片源自文献:Trends Pharmacol Sci. 2015 Jul 36(7):422-39.针对靶向治疗,珀金埃尔默参与了多个领域的进展。在基因水平研究,GeneAmp Thermo Cycler和ABI PRISM 310 Genetic Analyzer可用于分析描述BCR-ABL[4]。在激酶抑制剂研究领域,1998年我们推出了均相免疫检测LANCE平台,并进一步在2006年推出LANCE Ultra 平台,专注体外激酶活性筛选,除了分子水平外,我们的激酶解决方案还涵盖了细胞和活体水平研究,例如新一代TRK抑制剂研究的案例[5]。同时,我们一直致力于高通量药物筛选及药物研发应用,推出行业金标准多模式读板仪Envision和高内涵成像分析平台Opera 和Operetta,以及对应的试剂耗材和移液工作站平台,并在今年收购拥有HTRF® 免疫检测技术的生命科学领域尖端企业Cisbio Bioassays,以加速药物筛选、靶向药物发现和联合用药研究[6]。图片源自文献:Nat Biotechnol. 2009 Jul 27(7):659-66.肿瘤免疫新兴的肿瘤免疫主要包括两个大板块:以免疫检查点抑制剂为代表的肿瘤免疫治疗和以CAR-T疗法为代表的免疫细胞治疗。除此之外,免疫疗法还包括个性化肿瘤疫苗,溶瘤病毒和改造抗体例如BITE等。在肿瘤免疫治疗领域,靶向细胞毒性T细胞抗原-4(CTLA-4)的伊匹单抗(Ipilimumab,Yervoy)成为首个获批的免疫检查点抑制剂,并开启了肿瘤免疫时代。2014年同时见证了两款靶向PD-1的肿瘤免疫治疗明星药:帕博利珠单抗(Pembrolizumab, Keytruda,K药)和欧狄沃(Nivolumab, Opdivo,O药)的成功上市。值得一提的是,珀金埃尔默的DELFIA平台参与了O药的体外研发过程中的ADCC检测[7]。肿瘤领域免疫治疗带来的里程碑式的突破也让两位先驱 James P. Allison 和Tasuku Honjo,摘得2018年诺贝尔生理学或医学奖桂冠。在他们的研究成果中,不乏看到珀金埃尔默的身影。例如,我们的核酸解决方案协助Tasuku Honjo研究PD-1激活机制[8]。在解析肿瘤免疫微环境的研究过程中,James P. Allison作为MD Anderson癌症中心的一线科学家,多次使用多光谱组织病理成像系统进行肿瘤免疫微环境全景分析[9-10]。图片源自文献:NatRev Drug Discov. 2018 Dec 17(12):922.在细胞治疗领域,2017年由诺华推出的首个CAR-T细胞疗法Kymriah™ 的获批上市无疑是一针强心剂,激励肿瘤治疗方向细胞疗法的研发投入。当下,在肿瘤治疗领域,细胞治疗增长最为迅猛,成为最火热的研发管线[11]。靶向包括CAR-T和CAR-NK在内的细胞治疗,我们同样提供多个维度的金标准解决方案,主要包括体外水平的细胞功能评价[12]和体内水平研究[13]。在细胞功能描述上,我们支持细胞因子检测、细胞增殖追踪和基于高内涵以及多模式检测平台细胞杀伤效力评价。在体内水平研究,强大的IVIS活体成像平台则可协助监测体内肿瘤进展以及追踪免疫细胞体内的分布和迁移[14]。进一步在组织水平,多光谱组织病理成像系统则可通过其多标和成像优势深入解析细胞治疗对肿瘤免疫微环境带来的变化[15]。精准医疗肿瘤治疗的变革的背后也贯穿着精准医疗的演化。精准医疗(Precision Medicine)于2011年首次被定义,并因2015年精准医疗计划(Precision Medicine Initiative)的宣布成为覆盖全球的热门话题。在2016年的美国国家癌症射月计划(Cancer Moonshot)中再次强调利用精准医疗进行药效预测。同年中国也正式启动精准医疗计划,并将其列为国家重大战略性新兴产业。图片源自文献:Comprehensive Medicinal Chemistry III 2017, Pages 388-415虽然从定义上来看精准医疗不依赖于某个特定的技术平台,但测序技术,尤其是二代测序的兴起对精准医疗的推动不言而喻。在测序技术的引领下,我们已从基因测序时代步入大数据时代。然而,现阶段肿瘤治疗依然难以复制格列卫的临床效果。肿瘤细胞的高度异质性和持续进化能力让基于终点法的测序技术很难有效的预测肿瘤细胞-药物相互作用。与此同时,免疫治疗的成功更是向我们强调了细胞间相互作用的重要性。为了克服这些挑战,并将精准医疗推向新的高度,珀金埃尔默主要致力于两个方向开发应用:(1)基于ICP-MS和高内涵等平台的单细胞组学研究和(2)以新兴类器官和病人来源原代细胞为基石的个性化指导用药研发[16-18]。类器官结合了表型筛选和3D水平研究于一体,最大程度提高生理/病理相关性的同时支持中高通量的筛选,为精准用药,肿瘤基因型-药物相互作用研究和样品库制备开辟了新的道路[19]。会议邀请会议时间:2019年7月24日会议地点:恒盛酒店二楼恒盛厅(昆明市龙泉路77号)欲了解更多大会咨询,请点击下面链接http://www.kiz.ac.cn/qt/tzgg/sygg/201906/t20190625_5328203.html参考文献[1]单细胞ICP-MS联合HCS为您揭秘顺铂化疗耐药机制https://mp.weixin.qq.com/s/foZlyjWWXddY5FK0woqy2A[2] Wojtaszek JL, et al. A Small Molecule Targeting Mutagenic Translesion Synthesis Improves Chemotherapy. Cell. 2019 Jun 27 178(1):152-159.e11.[3] Wu P, et al. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci. 2015 Jul 36(7):422-39.[4] Chasseriau J, et al. Characterization of the Different BCR-ABL Transcripts with a Single Multiplex RT-PCR. J Mol Diagn. 2004 Nov 6(4):343-7.[5] 精准医疗案例速递 | TRK抑制剂拉罗替尼开启泛癌种治疗新篇章https://mp.weixin.qq.com/s/-ZjWrUBnj2nqOG6hXBhRuQ[6] Lehár J, et al. Synergistic drug combinations improve therapeutic selectivity. Nat Biotechnol. 2009 Jul 27(7):659-66.[7] Wang C, et al. In Vitro Characterization of the Anti-PD-1 Antibody Nivolumab, BMS-936558, and In Vivo Toxicology in Non-Human Primates. Cancer Immunol Res. 2014 Sep 2(9):846-56.[8] Freeman GJ, et al. Engagement of the PD-1 Immunoinhibitory Receptor by a Novel B7 Family Member Leads to Negative Regulation of Lymphocyte Activation. J Exp Med. 2000 Oct 2 192(7):1027-34.[9] 2018诺贝尔奖得主James P. Allison桂冠之下的荆棘与赤诚https://mp.weixin.qq.com/s/s773rk2aWrmVP0r5TpUg-Q[10] Jianjun Gao, et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 2017 May 23(5): 551–555.[11] Tang J, et al.Trends in the global immuno-oncology landscape. Nat Rev Drug Discov. 2018 Dec 17(12):922.[12] 细胞治疗干货 | 免疫细胞杀伤经典案例https://mp.weixin.qq.com/s/47krDPy-vsxS5AP91T1GDw[13] IVIS视角——回顾2018年Carl H. June教授团队在CAR T领域的相关研究成果https://mp.weixin.qq.com/s/NMukfK6zcG8foSc7l4q6_w[14] Smith EL, et al.GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells.Sci Transl Med. 2019 Mar 27 11(485).[15] Ng SSM, et al.Heterodimeric IL15 Treatment Enhances Tumor Infiltration, Persistence, and Effector Functions of Adoptively Transferred Tumor-specific T Cells in the Absence of Lymphodepletion. Clin Cancer Res. 2017 Jun 1 23(11):2817-2830.[16] Snijder B, et al.Image-based ex-vivo drug screening for patients with aggressive haematological malignancies: interim results from a single-arm, open-label, pilot study. Lancet Haematol. 2017 Dec 4(12):e595-e606.[17] Lee JK, et al.Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat Genet. 2018 Oct 50(10):1399-1411.[18] Vlachogiannis G, et al.Patient-derived organoids model treatment response of metastatic gastrointestinal cancers.Science. 2018 Feb 23 359(6378):920-926.[19] L.Li, et al.P 3D High-Content Screening of Organoids for Drug Discovery. Comprehensive Medicinal Chemistry III 2017, Pages 388-415关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • Nature子刊:口服类肿瘤疫苗有望实现
    近日,国家纳米科学中心聂广军研究员与赵潇研究员在口服肿瘤疫苗方面取得重要进展。相关研究成果以Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria为题发表在《自然-生物医学工程》(Nature Biomedical Engineering)杂志上。作为体内最大的免疫器官,肠道内分布着机体70%-80%的免疫细胞,因此相比于常规的注射类疫苗,口服疫苗有望通过刺激肠道内丰富的免疫细胞,从而激活强大的免疫反应来预防和治疗疾病。此外,口服疫苗具有更好的患者依从性和更低的应用成本。然而,严苛的消化道环境和复杂的肠道上皮屏障是口服疫苗面临的主要挑战;尽管有如脊髓灰质炎等基于减毒活疫苗技术的口服疫苗成功用于传染病防治,但通用的可设计抗原的口服疫苗体系仍十分有限。聂广军和赵潇研究团队长期致力于疫苗体系的开发,特别是基于细菌外膜囊泡(outer membrane vesicles,OMVs)的疫苗体系研究。在前期研究中,利用基因工程技术、多肽分子胶水技术以及RNA结合蛋白技术,分别构建了可快速展示多肽抗原或mRNA抗原的“即插即用”式OMV肿瘤疫苗载体(Nat. Commun. 2021;Adv. Mater. 2022);通过基因工程技术和载体表面工程改造,构建了DC细胞摄取增强型OMV疫苗载体以及携带PD1免疫检查点抑制剂的OMV疫苗载体(Fund. Res. 2022;ACS Nano 2020);借助点击化学原理,设计了可主动捕获肿瘤抗原的原位OMV肿瘤疫苗(Small 2022)。在前期工作基础上,研究团队设计了一种基于在体工作细菌机器人的口服疫苗体系,并负载了肿瘤特异性抗原用于肿瘤的预防和治疗。该口服疫苗体系通过控制基因工程细菌在肠道内原位生产携带抗原的细菌外膜囊泡来实现免疫刺激。首先通过基因工程将肿瘤抗原融合表达在OMVs的表面,使这种基因工程改造的细菌机器人能够在阿拉伯糖的诱导下分泌带有肿瘤抗原的OMVs。该细菌机器人在口服后能够克服严苛的消化道环境抵达肠道,此时通过口服阿拉伯糖能够诱导细菌机器人在肠道内原位生产携带有肿瘤抗原的OMVs。作为肠道菌群与机体免疫系统相互作用的天然媒介,OMVs可以有效地穿透肠道黏液层和肠上皮屏障并被固有层中的抗原递呈细胞摄取,最终在多种临床前肿瘤模型中激活强烈的抗肿瘤免疫反应和免疫记忆效应。总之,该团队建立了一种基于在体工作细菌机器人的口服疫苗体系,通过负载肿瘤抗原能够高效激活适应性抗肿瘤免疫应答;该体系将极大推进口服疫苗的开发,提高疫苗依从性并降低成本,在未来研究中根据需要也可用于传染病防治。基于在体工作细菌机器人的口服疫苗体系的工作原理及其抗肿瘤免疫效果评估
  • 肿瘤细胞中不同的糖代谢途径|附相关会议
    人们早在20世纪初就观察到肿瘤细胞群体的一个有趣且独特的性质:大多数肿瘤细胞的能量代谢与正常细胞相比呈现出巨大的差异性。1924年Otto Warburg首先报道了这一现象,后来他由于发现呼吸酶(即细胞色素c氧化酶)而获得了诺贝尔奖。相关会议推荐点击可免费报名大多数不增殖的正常细胞通过获取氧分子,将葡萄糖通过葡萄糖转运蛋白(GLUT)运输入胞内,在胞质中有氧条件下能通过糖酵解途径将葡萄糖分解成丙酮酸。在糖酵解的最后一步,丙酮酸激酶的M1亚型的存在,可以确保产物丙酮酸被运送到线粒体,再在丙酮酸脱氢酶(PDH)的作用下进行氧化,生成乙酰辅酶A,进入三羧酸循环。通过这种方式,线粒体每分解一个葡萄糖分子就能产生36个ATP分子。而在肿瘤细胞中,即使在有充足氧供应的肿瘤细胞中,GLUT1将大量葡萄糖运输至胞质中进行糖酵解。它依赖丙酮酸激酶的M2亚型,将丙酮酸盐转化为乳酸脱氢酶(LDH-A)的底物,生成大量乳酸,分泌到胞外。由于只有极少量的葡萄糖被运输至线粒体进行分解,故每个葡萄糖分子只分解得到2个ATP分子。此外,糖酵解途径中的大量中间产物被用于其他生化合成途径中。被Warburg称为肿瘤细胞“有氧糖酵解”的这种代谢方式,由于其每分解一个葡萄糖分子只能得到两个ATP分子,在能量学上显得很不经济。因为在三羧酸循环中有氧分子参与的情况下,一个葡萄糖分子的有氧糖酵解途径能提供36个ATP分子。机体中的大多数正常细胞正是通过这种由血液系统带来氧分子、进而进行有氧糖酵解的途径获得高效供能的。而即使子提供充足氧气的情况下,肿瘤细胞也不使用常规糖酵解方式,这实在是一种非常与众不同的生物学行为。由于肿瘤细胞使用的是一种很不经济的糖代谢方式,因此它们需要大量的葡萄糖进入胞内进行分解。在多种肿瘤中,如上皮来源的癌和血液系统肿瘤,都能观察到这种行为。它们高表达葡萄糖转运蛋白,如GLUT1等,以便能跨膜转运大量葡萄糖。那么为什么80%的肿瘤细胞要采取这种糖酵解的方式,而不采用到线粒体中进行三羧酸循环的方式对葡萄糖进行分解呢,并且明显后者能提供更多的ATP以供肿瘤细胞的生长和增殖?有氧糖酵解是否是肿瘤细胞维持其表型必需的?又或它只是细胞转化后的一个无意义的副效应,对细胞转化和生长并没有因果作用。有关有氧糖酵解的一个解释是肿瘤块内部的肿瘤细胞通常都呈现缺氧的状态,这种缺氧状态导致细胞不能进行充分的糖酵解进而提供充足的ATP,就像正常细胞在缺氧状态时的反应一样。由于具备Warburg效应,肿瘤细胞很好地适应了这种缺氧环境,但这依然不能解释为什么在提供充足氧气的条件下,肿瘤细胞依然不加以利用以合成更多的ATP。关于有氧糖酵解另一个合理的解释是,除了产生ATP,糖酵解还有第二个作用:糖酵解途径的中间产物可以作为很多涉及细胞生长(如核酸和脂类的合成)的分子的前体。肿瘤细胞通过糖酵解途径的负反馈机制,阻断糖酵解途径的最后一步,使细胞内积累了大量早期中间代谢物。这些糖酵解途径的中间产物能参与许多重要的生化合成反应。较肿瘤细胞而言,正常细胞没有那么强的增殖活性,也不需要大规模的生化合成反应,葡萄糖主要用来产生ATP以维持其正常代谢。正是这种肿瘤细胞异常的葡萄糖代谢为其创造了生长和增殖的生理学环境。参考文献: 1. 《The biology of CANCER》second edition. Robert.A Weinberg 2. 《癌生物学》詹启敏 刘芝华 主译
  • 第七届P4肿瘤精准医疗大会定档12月北京,热议肿瘤早筛/诊断,药物转化/开发!
    P4 2023(第七届肿瘤精准医疗大会)将于2023年12月7-8日(周四-周五)在北京隆重升级上线,作为精准定位于肿瘤精准领域的年度专业品牌盛会,本届会议将继续邀请1000+来自肿瘤精准领域的监管、诊断、药企、科研、临床各界专家与从业人士,聚焦以下行业焦点内容,展开丰富交流:肿瘤的精准医疗离不开筛查/诊断技术的发展,那么当行业大踏步进入临床试验、注册申报、商业化落地阶段,如何应对“院内”市场存量增长乏力,院外LDT试点医疗,如何加速细则规划化落地,如何加速推进早筛/诊断产品临床/注册等,早筛/诊断技术产品还有哪些可行的商业化路径?诊断/检测技术如何切实转化以推动临床精准诊疗?等等已成为行业亟需探讨的方向。另一方面,我国抗肿瘤药物的研发已获得蓬勃发展,在靶向药物,免疫治疗等多个领域全面开花,然而同时我们也看到,国内企业在创新靶点开发及差异化满足临床需求等方面还有待提升,如何利用精准检测技术发现更多新靶点?如何进一步寻找更高质疗效标志物加速药物转化?如何更高效协同伴随诊断获得更高临床成功,面对耐药痛点,ADC/联合疗法等还有哪些创新思路?转化医学与合成致死/不可成药/细胞疗法等新兴疗法进展如何?等等也是众多行业专家关注要点。大会将深度探讨行业痛点与年度热门议题,与行业专家共探讨肿瘤精准医疗最新法规、早筛/诊断技术革新与商业化路径、免疫疗法/靶向药物精准开发、临床精准用药/诊疗之路!扫码了解更多详情9月28日前,为感谢行业同仁对P4一直以来的大力支持,特面向P4的往届参会嘉宾与参展企业,开放惊喜参会/参展折扣!详情欢迎联系组委咨询:13122785593(微信同号)~~~大会框架~~~12月7日肿瘤早筛精准诊断论坛-技术革新/标志物发现/规范与产品落地/商业化模式探索早筛早诊会场单癌/多癌/泛癌种早筛最新进展/商业化模式良恶性鉴别技术革新/产品落地临床科研/科研转化会场应用单细胞/时空等多组学技术/类器官/AI等前沿方法发现诊断新型标志物/肿瘤学临床科研与科研转化肿瘤创新靶向/免疫药物论坛—生物标志物/转化医学/伴随诊断协同靶点发现及更高临床成功率ADC/XDC/新型靶向会场生物标志物研究与ADC/XDC转化开发ADC/XDC开发中的伴随诊断考量多抗/CGT/新兴免疫会场双多抗/细胞疗法与转化医学/伴随诊断新型ICLs/基因疗法中的标志物研究/伴随策略12月8日主会场一监管/政策解读与指导MRD临床应用病理诊断/标志物临床规范...主会场二监管/政策解读与指导联合疗法最新探索靶向/免疫药物新靶点转化~~~谁来参会~~~25% 体外诊断、第三方检验机构:液体活检、基因检测/测序服务企业25% 药企:肿瘤免疫/靶向等药物企业12% 医院:肿瘤诊疗相关临床专家10% 肿瘤诊断/药物研究相关科研院所8% 上游试剂耗材/仪器设备提供方8% Biomarker/动物模型/伴随诊断等药企研发服务供应方5% 注册申报咨询/实验室搭建/数据服务等其他服务供应方4% 体外诊断/药物研发所属法规监管机构3% 其他~~~论坛亮点~~~肿瘤早筛/精准诊断论坛一技术革新/标志物发现/规范与产品落地/商业化模式探索《医疗器械临床试验质量技术规范》解读及IVD临床试验指导“消费医疗"模式--肿瘤早筛的可行商业化探索代谢组/蛋白质组学等技术下的泛癌种早筛最新进展MRD的临床应用及LDT探索进展单细胞维度下的肿瘤异质性/肿瘤微环境研究与转化表观遗传学/多组学与MRE下的癌症精准诊疗圆桌讨论:肿瘤早筛产业推进和商业化落地前路在哪?• IVD注册申报规范化与挑战• LDT进展及规范化指导• 商业模式选择考量:ToH、ToB(体检中心)、ToG和ToC等• 出海肿瘤基因检测/测序中原料解决方案相关PCR/测序等仪器及相关解决方案助力肿瘤精准检测三代/单细胞测序/组学等临床科研解决方案相关。MRD等标志物/基因突变检测临床/临床科研解决方案相关病理图像/材料/软件等临床/临床科研解决方案相关..更多肿瘤创新靶向/免疫药物论坛—生物标志物/转化医学/伴随诊断协同靶点发现及更高临床成功率生物标志物精准指导抗肿瘤药物的临床研发最新案例解析《人类遗传资源管理条例》对于药物-伴随开发的指导解读安全性biomarker研究与更优毒素选择策略肿瘤特异性靶点ROR1与biomarker研究下的ADC临床转化泛KRAS抑制剂靶向药物精准临床开发最新案例USP1抑制剂-新星合成致死靶点及标志物研究IO+ADC联合疗法开发转化及策略考量双免疫联合疗法转化进展及biomarker研究CAR-T细胞治疗的biomarker研究与临床转化预测性生物标志物及基因疗法临床转化圆桌讨论:伴随诊断在新药研发临床试验中的价值及药械合作开发CDX的路径和难点圆桌讨论:如何利用转化医学/生物标志物研究提高药物开发/临床试验成功机会?PDX/动物模型在肿瘤新药转化/精准用药等方面的应用类器官/基因检测解决方案助力肿瘤药物靶点发现/筛选与转化质谱/时空等多组学等技术助力新药生物标志物发现/验证与转化伴随诊断开发相关策略助力新药临床成功..更多~~~部分在邀讲者单位~~~肿瘤早筛/精准诊断论坛CMDE器审中心、国家临检中心、中检院、中国医学科学院肿瘤医院、北京大学肿瘤医院、北京协和医院、北京医院、北京大学人民医院、中国人民解放军总医院、中日友好医院、首都医科大学附属北京朝阳医院、天津医科大学肿瘤医院、吉林大学第一医院、哈尔滨血液病肿瘤研究所、北京大学国际癌症研究院、北京大学生物医学前沿创新中心、中国科学院北京生命科学研究院、中国科学院北京基因组研究所、诺辉健康、燃石医学、世和基因、鹍远生物、泛生子、和瑞基因、华大数极、基准医疗、思勤医疗、觅瑞、路胜生物、思勤医疗、海普洛斯、迪安诊断、武汉艾米森...肿瘤创新靶向/免疫药物论坛CDE药审中心、人遗办、BMS、罗氏、诺华、礼来、阿斯利康、辉瑞、默沙东、拜耳、武田、BI、第一三共(中国)开发总部、恒瑞医药、荣昌生物、复星医药、复宏汉霖、康方生物、信达生物、百济神州、宜明昂科、普方生物、科伦博泰、浙江新码、石药集团、华东医药、百利天恒、应世生物、百力司康、传奇生物、科济药业、药明巨诺、乐普生物、礼新医药、智康弘义、迪哲医药、炎明生物、新契生物、和黄医药、泽璟制药、劲方医药、轩竹生物、同宜医药、索元生物、合源生物、君实生物、基石药业、新景智源、再鼎医药、康宁杰瑞、和铂医药、科望医学...届重磅嘉宾(部分)赞助火热进行中!论坛开放特装展位,主题演讲、卫星会、晚宴赞助,插页广告,吊绳&名卡、手提袋、瓶装水、椅套广告等多种形式、全方位供您展示肿瘤精准“诊+疗”产品与技术!详情欢迎咨询:180 1793 9885(同微信)嘉宾火热征集中!演讲摘要/论文投稿,经组委评估并确认的嘉宾将享受以下福利:• 获得一张免费全程参会证;• 会议期间午餐券、嘉宾招待晚宴;• 在会议期间专享演讲嘉宾休息室;• 组委会官方宣传与推广。投稿邮箱:p4china@bmapglobal.com扫码了解更多详情9月28日前,为感谢行业同仁对P4一直以来的大力支持,特面向P4的往届参会嘉宾与参展企业,开放惊喜参会/参展折扣!详情欢迎联系组委咨询:13122785593(微信同号)媒体合作康硕成 Connor Kang电话:13122785593(微信同号)邮箱:p4china@bmapglobal.com网站:www.bmapglobal.com/p4china2023
  • 构建分子机器用于肿瘤复合治疗
    近日,华东理工大学化学与分子工程学院副教授钱若灿与美国伊利诺伊大学香槟分校教授陆艺合作,设计了一种基于DNAzyme分子机器的肿瘤复合治疗策略,可同时调控T细胞/癌细胞间相互作用以及诱导肿瘤细胞内线粒体聚集,促使肿瘤细胞凋亡。相关成果近日发表于《德国应用化学》。  近年来,肿瘤复合治疗作为一种高效癌症治疗策略,得到了高速发展。尽管如此,开发对正常细胞无毒的靶向复合治疗方法仍是一项挑战。金属离子特异激活的DNAzyme在细胞调控方面具有独特优势,被广泛用于细胞相关研究。在此前工作中,双方团队基于金属离子特异性的DNAzyme和相关底物构建细胞调控模块,设计了多种逻辑控制开关,实现了细胞间动态行为的人工调控,包括单个细胞和多细胞球体的细胞间连接与解离。但上述工作采用胆固醇作为锚定剂,缺乏肿瘤靶向能力。  为克服以上限制,研究人员构建了具备在细胞间与细胞内调控功能的DNAzyme分子机器,可分别从细胞外与细胞内对肿瘤细胞进行靶向杀伤。在细胞外,该策略可实现T细胞与肿瘤细胞间的动态调控,包括肿瘤细胞识别、T细胞-肿瘤细胞密接以及肿瘤杀伤后的T细胞解离。在乏锌肿瘤细胞内,DNAzyme分子机器可诱导线粒体聚集并促进肿瘤细胞凋亡。在酸性环境下,凋亡荧光成像实验证明,基于DNAzyme分子机器的肿瘤复合治疗策略对乏锌肿瘤细胞的杀伤效果显著。  该研究展示了一种基于DNAzyme分子机器的细胞动态调控方法,为肿瘤联合治疗提供了新策略。  相关论文信息:https://doi.org/10.1002/anie.202210935
  • 杭州市肿瘤医院组织微环境多标记实验室落成——暨Bio-Techne与PerkinElemr战略合作签署仪式
    2018年6月12日,杭州市肿瘤医院与PerkinElmer公司就共建的“组织微环境多标记实验室——暨Bio-Techne与PerkinElemr战略合作签署仪式”举办签约及揭牌活动。杭州市肿瘤医院、珀金埃尔默公司、Bio-Techne公司三方近20人参加了本次活动。杭州市肿瘤医院院长吴式琇、党委书记汪利民、副院长杨国平、医务科科长江明凤、院办主任谢瑞飞、科教科副科长张红芳;PerkinElmer DAS 事业部生命科学全国业务总监严洁敏、Bio-techne大中华区董事总经理裴立文、领航基因总经理夏江悉数出席。活动由PerkinElemr东区市场部经理刘文苑主持。 活动中,杭州市肿瘤医院、PerkinElmer和Bio-techne分别就各自的情况进行简要介绍。活动现场,杭州市肿瘤医院、PerkinElmer就组织微环境多标记联合实验室进行了签约仪式和揭牌仪式;PerkinElmer和Bio-techne签署了组织原位微环境领域战略合作。杭州市肿瘤医院院长 吴式琇吴院长在致辞中表示,很高兴能够在组织微环境多标记领域与PerkinElemr公司达成共识、合作推进产业发展,也能够将PerkinElemr的技术应用到肿瘤研究的相关领域中,并对双方未来的合作前景进行了展望。PerkinElmer DAS 事业部生命科学全国业务总监 严洁敏严洁敏表示,今年PerkinElemr成立已经超过80周年,近些年也进行了一系列收购与广泛的医院、高校、研究所与行业内上下游领军企业,在肿瘤、转化医学领域有着很多解决方案,希望能够与杭州市肿瘤医院合作将这些技术得到更好的拓展,同时对与Bio-techne的战略合作前景非常期待。Bio-techne大中华区董事总经理 裴立文裴立文致辞中追溯Bio-Techne的历史并展望了未来的发展方向,着重强调了其对于临床诊断领域的重视程度的提升和投入的逐年加大,同时对与PerkinElmer的战略合作前景寄予厚望。杭州市肿瘤医院组织微环境多标记PerkinElmer共建实验室签约Bio-Techne与PerkinElmer战略合作签署三方领导盖契约章杭州市肿瘤医院-珀金埃尔默组织微环境多标记共建实验室揭牌合影留念关于杭州肿留医院杭州市肿瘤医院坐落于风景秀丽的吴山景区南麓,毗邻旖旎西湖,是按三级肿瘤专科医院标准建设和管理,融医疗、教学、科研、预防和社会保健于一体的肿瘤防治医学中心。现为国际抗癌联盟(UICC)成员,浙江省卫生计生委批准的浙北肿瘤区域专病中心建设单位,杭州市癌症中心、杭州市肿瘤防治办公室、杭州市肿瘤研究所、杭州市肿瘤诊治质控中心的挂靠单位。关于珀金埃尔默作为全球领先的科研仪器和服务提供商,珀金埃尔默公司致力于为创建更为健康的世界而不懈努力。我们的业务涵盖医学诊断、科研和分析仪器等。我们在全球拥有11000名专业技术人员,时刻准备着为客户提供最优质的服务,帮助客户解决各项科学难题。我们在分析检测、医学成像、信息技术和售后服务方面的专业知识,以及深入的市场洞察力,可协助客户为改善我们的生活环境而不懈探索。2017年,珀金埃尔默年应收达23亿美元,为超过150个国家和地区提供服务,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默公司的信息,请访问PerkinElmer官方网站。关于Bio-TechneBio-Techne 是生物公司中率先登陆纳斯达克(Nasdaq)的拓荒者之一,2007 年,在上海成立中国分公司,助力中国生命科学事业的发展与腾飞,目前旗下已拥有 R&D Systems、Novus、Tocris、ProteinSimple、PrimeGene、和 ACD 等众多一线品牌。
  • 我国首家“肿瘤精准医学大数据中心”在津成立
    1月15日,全国首家“肿瘤精准医学大数据中心”在天津落成。天津市肿瘤医院院长、肿瘤精准医学大数据中心主任王平教授介绍,该中心将以推进我国“精准医学”建设为核心,打造肿瘤生物医疗大数据科研平台,通过对海量肿瘤样本数据的分析研究,发现与中国人密切相关的肿瘤早期诊断的标志物,为肿瘤的早期筛查、诊断和药物研发提供科学依据,更好地为患者提供具有针对性的个性化诊疗服务。  当前的肿瘤治疗正逐渐从对“症”治疗向对“基因”治疗转变,肿瘤的诊疗观念也经历了从经验医学到循证医学的过渡,已经步入了“精准医学”的发展阶段。“精准医学”是以个体化医疗为基础,考虑到每个人基因、环境和生活方式等个体化差异,用于疾病的预防和治疗的新兴医学概念与医疗模式,可以为临床医生提供更为准确的病因及用药指导,向患者提供更加准确、安全、高效的医疗健康服务。  但肿瘤的成因非常复杂,即使是同一种癌症,患病原因和治疗方式也不尽相同。要想做到做到个性、高效的精准医疗,前提是要发展基因测序和大数据应用,进行疾病的筛查和诊断。  “我国是人口大国,也是肿瘤高发国家,癌症患病人数约占全球的1/5,无论是疾病病例数量,还是疾病的多样性,对于发展精准医疗大数据科研平台都具有得天独厚的优势。但国内目前尚缺乏一个针对中国人的、高质量、大规模、可以有效支撑精准医疗科学研究的肿瘤生物医疗大数据中心和科研平台。” 王平表示,此次成立的“肿瘤精准医学大数据中心”将填补这项空白,可以对肿瘤生物医疗数据信息进行有效规范的收集、分析、利用,是发展精准医疗的强大助推器和战略性基础设施。  作为国内最大的肿瘤生物医疗大数据平台,“肿瘤精准医学大数据中心”融合了基因组学、临床数据、健康评估等多元信息,是一个方便高效查询和分析的全方位数据库。该中心可通过规范有效的运算和推导,提取出可直接应用于临床诊疗或科研的模型或模式,找到基因变异与肿瘤发生、预后、治疗反应之间的关系,准确反映出分子诊断信息、治疗方案、疗效评价、药物反应等肿瘤治疗现状,有助于深度挖掘肿瘤治疗的规律。未来,肿瘤患者可以在该中心通过基因测序等高科技手段,结合大数据的分析,实现精准的疾病分类和诊断,制定出具有针对性的肿瘤预防及治疗的方案,进行精准化诊治,最大程度提高肿瘤治疗的疗效。  王平介绍,该中心还将开发覆盖全国的精准医疗大数据云平台,并最终建立包含生物样本库、组学数据、临床数据、随访数据、知识库、文献库在内的“肿瘤精准医疗联盟网络”,形成国际一流的精准医学研究平台和保障体系,尽早将基础研究转化为临床应用,实现分子预警和药物靶点设计,助力研发适合中国人的国产新型肿瘤治疗药物和设备,最终为我国制定肿瘤个体化精准医疗的临床标准和应用指南提供依据,进而为我国肿瘤防治研究做出积极贡献。
  • Nature Cancer|北大张泽民团队合作利用单细胞技术揭示卵巢癌腹水对肿瘤原发和转移病灶微环境的重塑作用
    高级别浆液性卵巢癌(HGSOC)是最常见的卵巢癌病理亚型,75%以上的患者首诊时已是晚期,常伴有广泛的网膜转移和腹水产生。此外,免疫检查点阻断等免疫治疗手段仅在10%左右的卵巢癌病人中起效。研究表明,卵巢癌腹水中的成纤维细胞亚群可以通过激活肿瘤细胞中的JAK/STAT通路以影响患者的预后及其对免疫治疗的响应。然而,卵巢癌腹水环境中的其它细胞类群对其肿瘤微环境的影响方式和途径仍不明确。7月24日,北大张泽民教授课题组与上交大附属新华医院汪希鹏课题组、上海免疫学研究所李子逸博士以“Single-cell analyses implicate ascites in remodeling the ecosystems of primary and metastatic tumors in ovarian cancer”为题在Nature Cancer杂志联合发表了研究论文,揭示了卵巢癌腹水对肿瘤原发和转移病灶微环境的重塑作用。研究人员对5个肿瘤相关部位,包括原发性卵巢肿瘤(Pri.OT)、网膜转移瘤(Met.Ome)、腹水、盆腔淋巴结(PLN)和外周血(PB),进行了单细胞转录组测序和T细胞受体(TCR)测序,共将223,363个高质量单细胞编入五个主要细胞谱系,并通过规范标记表达进行注释,从而描画出了 OC TME 的综合图谱。B细胞和CD4 T细胞在PLN中占主导地位;而淋巴细胞和单核细胞构成了PB样本的主要细胞成分;在Pri.OT和Met.Ome中鉴定出了五种主要细胞系,而且大多数细胞类型的富集模式在这两个部位之间没有明显差异,这表明原发性和转移性肿瘤细胞的发展都需要类似复杂的TME。腹水经常出现在晚期卵巢癌患者中,与化疗反应有关,腹水中含有大量免疫细胞和基质细胞,其中,CD8 T 细胞、巨噬细胞和树突状细胞(DCs)是腹水的主要成分,表明腹水中存在炎性微环境。5个部位的单细胞测序描画了晚期卵巢癌图谱与非恶性细胞不同,由推断拷贝数变异(inferCNV)定义的肿瘤细胞表现出很强的患者间异质性。值得注意的是,所有腹水样本中都发现了肿瘤细胞,平均比例为 2.7%(53499 个样本中的 1444 个),这与 OC 肿瘤细胞更倾向于 "播种"到腹腔而不是通过血管扩散的观点一致,凸显了腹水与 OC腹腔内扩散之间的紧密联系。此外,推断CNV分析表明,在Met.Ome中发现的肿瘤细胞亚克隆也可在Pri.OT中检测到,表明这些亚克隆是腹膜转移的致瘤群体。通过对单细胞转录组和 T 细胞受体(TCR)的系谱追踪和轨迹推断,研究人员鉴定了多个具有不同分布模式的T细胞群,并揭示了OC中T细胞从腹水到肿瘤组织的潜在动态特征。他们发现腹水富集的记忆T细胞(CD8 GZMK T++EM和 CD4 T+CM)可能是TIL的潜在重要补充库,包括CD8 T+EX和 CD4 T+H1样细胞,特别是对于Met.Ome。这些结果暗示了腹水在T细胞浸润期间塑造OC的TME的潜在作用。此外,作者描述了腹水和肿瘤组织中巨噬细胞的功能状态和本体,肿瘤富集的巨噬细胞偏向于单核细胞来源的本体,而腹水中的巨噬细胞更多来源于组织驻留巨噬细胞(RTM)。HGSOC 中肿瘤富集巨噬细胞和腹水富集巨噬细胞的两种不同功能状态此外,研究人员还鉴定了恶性腹水中的 MAIT细胞和树突状细胞,以及原发性肿瘤中的两个内皮亚群,通过比较不同化疗响应情况的患者治疗前样本中细胞亚群的分布情况,发现肿瘤原位灶中VCAM+内皮细胞占比较高的HGSOC患者对化疗敏感,而IL13RA1+内皮细胞的占比高则提示患者对化疗耐药,这可能是治疗效果的一个重要评价指标。总之,该研究提供了女性恶性腹水生态系统的全貌,为其与肿瘤组织的联系提供了有价值的见解,并为OC疗效评估和治疗耐药性的潜在标志物的开发提供了重要参考。卵巢癌(OC)是一种异质性疾病,由具有不同组织学亚型、分子生物学和微环境特征的恶性肿瘤组成,是致死率最高的妇科恶性肿瘤,占女性癌症死亡人数的 5%。在所有 OC 类型中,高级别浆液性卵巢癌(HGSOC)是最常见的组织学亚型,占 OC 患者的 70%以上。一旦确诊,超过 75% 的 HGSOC 患者病情已到晚期,并伴有广泛转移和腹水。据报道,由于网膜的脂肪结构和腹膜循环,OC 患者通常会向网膜转移。虽然化疗加贝伐单抗的治疗可延长患者的 5 年生存期,但总体疗效仍然有限。此外,免疫检查点抑制剂等免疫疗法在临床试验中的客观反应率仅为 10%,而由于肿瘤浸润淋巴细胞(TILs)的比例和质量不同,OC 亚型往往对免疫疗法表现出不同的反应。因此,描述 OC 的肿瘤微环境(TME)特征至关重要,因为肿瘤微环境中的多种细胞成分在疾病进展和治疗反应中发挥着重要作用。
  • 基于免疫细胞的肿瘤诊断新方案
    癌症仍然是威胁人类健康最大的敌人之一,虽然目前针对癌症的治疗方案有了很大的发展,但是癌症治愈难并且治疗费用高的现状仍然不会在短时间内得到改善。因此,除了在治疗阶段应对癌症外,早期的诊断检出仍然是降低肿瘤死亡率的重要手段。除常规筛查外,内源性肿瘤标志物的检测成为当前发展的新兴技术,其中包括CTC,ctDNA以及肿瘤外泌体等的检测。内源性标志物检测的难点在于体内标志物会快速清除且检测背景高以及体内无法富集都是导致它们应用难以推广的重要原因。为解决这个难题,美国斯坦福大学医学院的Sanjiv Gambhir博士团队对免疫细胞中的巨噬细胞进行改造,成功在小鼠肿瘤模型中实现肿瘤细胞的早期检测和跟踪标记。其主要策略是:通过对巨噬细胞进行改造,在肿瘤诱导产生的M2型巨噬细胞的启动子后面标记上生物发光的标记。当在肿瘤环境中,可以更加诱导巨噬细胞向M2型分化,并启动荧光素酶基因的表达。利用该策略可以检测出转移瘤以及皮下瘤的发生。目前,这项技术可用于检测直径小至4毫米大小的肿瘤,不仅更加优于常规肿瘤体积检测,而且与常见生物标志物检测相比,如体外RLU方案,CEA指标检测方案 ,ctDNA,qtPCR方案等检测,表现出更高的灵敏度。参考文献Sanjiv S. Gambhir et al. Engineered immune cells as highly sensitive cancer diagnostics. Nature Biotechnology (2019).
  • 基因组学推进肿瘤研究未来发展——访Illumina肿瘤业务营销副总裁John Leite
    基因组学正在改变肿瘤研究,其最终目标是推进癌症的诊断、治疗、监控及最终的筛查方式。Illumina的肿瘤业务营销副总裁John Leite介绍了这一领域的最新进展,以及随着今天的研究转化为临床,他对未来的期望。  基因组学如何影响肿瘤学未来的发展?  癌症通常是按照其形态来分类的,这指的是病理学家在显微镜下看到的内容。如今,我们的癌症分类依据开始从形态特征转变为更有效治疗的方式,而发生的主要转变在很大程度上归功于基因组研究。  我喜欢用的一个例子是骨髓增生异常综合征(MDS),这是白血病的一种。MDS可分成很多亚类,包括根据奥氏小体(auer rod)或环形铁粒细胞(ring sideroblast)来分类。这些子分类对病理学家有用,因为他们在显微镜下能看到小的亚结构。不过这些分类对主治医生的价值其实是相当有限的。  与之相对的是根据Deletion 5q来分类,这是MDS的一种,其中5号染色体部分缺失。这种分类对医生如何治疗患者是十分有意义的,因为根据遗传组分,患者通常对来那度胺(Revlimid)这种药物反应良好。随着更多癌症有了遗传分类,我们看到这一趋势涌现。基因组学正帮助我们根据遗传标志物来定义疾病,这些标志物可能激发肿瘤恶变,可作为治疗靶点。  Illumina正成为这一领域的领导力量,它开发从试剂盒到仪器和软件的研究方案,同时也在努力进步,以改善未来的肿瘤诊断、预后、治疗和监控。我们追求获监管批准的产品,参与一些临床试验,并与制药公司合作,以开发与他们的疗法相配合的伴随诊断。  谁是Illumina的主要客户?  我们总体来说将目标放在转化研究市场,我们在努力满足研究人员的需求,他们正帮助建立新一代的癌症干预、癌症诊断工具和癌症疗法。我们的目标是为他们提供解决方案,这些方案将经受临床市场所需的严峻考验。我们希望向我们的转化客户合理地保证,尽管他们今天用的是仅供科研使用(RUO)的解决方案,但在不久的将来将看到体外诊断(IVD)检测,正如TruSight Tumor试剂盒。  TruSight Tumor 15是一个项目中的一部分,其中技术、平台和方案作为一个整体的IVD路线。TruSight Tumor 15利用新一代测序(NGS)技术对15个实体瘤中常常突变的基因进行全面评估。我们最近向合作伙伴宣布,我们有这个检测的仅供临床试验使用(IUO)版本,适合临床试验使用。Amgen是我们最近签约的合作伙伴,它将在肿瘤发展计划中使用TruSight Tumor 15的IUO版本。  肿瘤学是一个如此广泛的领域。就应用而言,Illumina关注哪一方面?  体细胞变异是Illumina肿瘤业务的基础。我们这方面的产品包括TruSight Tumor 15。我们也在开发另一种检测,TruSight Tumor 170,它将在今年晚些时候推出,作为我们简化、标准化和整合体细胞变异鉴定的整个过程中的一部分。体细胞变异的鉴定对患者分配到适当的靶向治疗或组合治疗至关重要。我们期待成为这一领域的市场领导者。  我对免疫肿瘤学也感到很兴奋,我们正非常迅速地在这个新兴应用上打造核心能力。最近一些侧重于不同免疫疗法的临床试验表明,一些本来预后较差的患者有了非常有希望的治疗结果。  在免疫肿瘤学,人们必须评估许多不同的参数,才能从整体上了解患者的免疫系统如何与癌症相互作用,并确定他们是否适合免疫治疗。例如,新抗原检测可能表明一些患者适合接种疫苗或T细胞疗法,并利用全外显子组测序(WES)来确定。Illumina是WES的市场领导者,我们的定位是提供最有竞争力的研究工具,帮助您开发方案,确定免疫治疗的良好候选目标。  肿瘤浸润淋巴细胞是另一个参数,可协助预测患者将如何应答治疗。包含这些淋巴细胞(也就是渗透到肿瘤的免疫细胞)的肿瘤,通常意味着更积极的结果,因为它们的存在意味着患者的免疫系统参与对抗癌症。这个参数可通过基因表达来评估,而研究人员也可利用Illumina的转录组或RNA-Seq方案来开发诊断工具,在今后用于此类分析。  现在的整体问题还有哪些炎症过程参与了个别病例。这也是基因表达的问题,研究人员可利用Illumina产品线中的RNA-Seq或RNA Access这两种方案开展研究。  此外,还有一些免疫调控基因被癌症所利用,以“规避”个体的免疫系统。这些基因包括PD1、PDL 1和CTLA-4。这些基因的表达是肿瘤采用的一种策略,以逃避免疫细胞的检测。Illumina的RNA-Seq和RNA Access同样适用于这一领域的研究。  我认为,WES和Illumina RNA方案的组合是一种非常强大的研究工具,因为你可以研究免疫系统的多个参数,广泛了解癌症的环境,以及癌症可能如何应对某些免疫疗法。我认为Illumina有望独家为免疫肿瘤学带来简化而强大的研究方案。  基因组学是否将在患者旅程的每一步发挥作用?如何发挥作用?  第一个问题始终是– 这名个体是否患有癌症?我认为,与之前讨论过的形态学相比,基因组学将提供方案,对疾病分类,并真正告知医生– 这名特定患者的疾病驱动因素是什么,从而实现更好的诊断。  具体而言,我们希望提供的是体细胞变异的评估,利用TruSight Tumor 15的IVD版本对组织进行评估,若没有足够的活检材料,可利用循环肿瘤DNA(ctDNA)的方案。  在诊断之后,下一个问题是– 患者的整体风险状况怎样?这是一种低风险、中等风险还是高风险的癌症?许多基因具有预后意义。你可以利用临床因素的组合,以及检测到的突变,了解患者的整体风险状况。  我们相信,这些知识最终将带来更多个性化的治疗选择,这是旅程的下一步。我们希望能快速准确地分配疗法。例如,在诊断出Deletion 5q的情况下,MDS患者可根据遗传图谱来选择使用药物Revlimid。这样的例子还有很多,如肺癌,其中多个基因(如EGFR、ALK)的突变可能需要选择特定的抑制剂。  越来越多的靶向药物出现,终有一天,我们能使用IVD版本的TruSight Tumor 170这样的工具,为患者选择适当的疗法,或确定适合的临床试验。  一旦患者接受治疗,你随后想知道,这是不是依据患者的一切信息而选择的适当疗法?根据疾病的特定遗传驱动因素,根据任何生殖系变异,它们可能改变患者响应或代谢药物的方式,或者对药物有某种不良反应。  我们也在评估ctDNA,以监控治疗后或手术后的干预。如果我们能确定患者癌症的单个突变克隆,我们也能监控血液中的这些相同变异。在连续治疗或干预后,我们期望变异被清除,不会再次出现,因为这可能与复发相关。如果我们再次看到变异,这也许是一个早期警告信号,提示人们改变疗法或以不同的方式干预。  您认为这个领域接下来将如何发展?  Illumina正致力于扩大我刚才讨论的“持续关怀”。部分得益于ctDNA的工作,我们如今能够考虑这个持续过程的较早期阶段– 筛查。这是成立GRAIL的主要推动力。GRAIL的目标是利用ctDNA鉴定癌症,在任何成像或组织学证据出现之前对癌症的分子证据进行筛查。对于肿瘤学而言,这是十分激动人心的,因为我们知道早期检测与最终的成功结果密切相关。  还有其他的问题。一个人的癌症将如何发展?他们是否会复发?整体的生存概览如何?除了患者,他们的家人是否有风险?如果我负责一个癌症中心或国家的医疗保健计划,我从群体的角度看待这些患者,那么我会问,我该如何适当且经济地管理这个群体?  这些类型的问题真正激励着我在Illumina的工作,虽然它们目前只是潜在的方向,仍处于理论阶段,但有着巨大的社会意义。
  • 【视频回放】肿瘤诊断进入全新时代
    p   2019年8月1日-2日,由仪器信息网与中国分析测试协会标记免疫分析专业委员会联合举办的“ strong 第二届体外诊断技术发展及应用网络会议(iConferenceonIVD,iCIVD2019 /strong )”圆满召开。 /p p   会议为期2天,共有17位资深临床检验科主任和3位优秀的仪器企业技术人员,针对 strong 肿瘤诊断、分子诊断、质谱及新技术、临床POCT /strong 四个热门研究领域作了精彩报告。 /p p   本篇为【肿瘤诊断】会场专家视频回放。 /p p style=" text-indent: 2em " 报告专家: /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 407px " src=" https://img1.17img.cn/17img/images/201908/uepic/31dc80aa-b4f4-4e40-a5b2-bdfdc471e234.jpg" title=" zhongliuzhenduan.jpg" alt=" zhongliuzhenduan.jpg" width=" 600" height=" 407" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " strong style=" text-indent: 2em " /strong /p p style=" text-indent: 2em " strong style=" text-indent: 2em " script src=" https://p.bokecc.com/player?vid=554FBAD41460FBC19C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script 徐国宾 /strong span style=" text-indent: 2em " :传统肿瘤标志物包括CEA、细胞角蛋白、SCC、Ca125、Ca153、Ca242、Ca199、AFP和激素类物质 新型肿瘤标志物包括ctDNA、CTC和自身抗体等。在选择肿瘤标志物时,应该注意以下特性:灵敏度、特异性(良性、器官)、与肿瘤负荷、治疗决策、能进行疗效评价和复发监测、具有可靠的预测价值。徐国宾分别以胃癌和结直肠癌为例进行了说明,手术前后肿瘤标志物对于胃癌复发具有重要价值,作用与标志物相关也与胃癌分期相关。最后得出结论是,传统的多项血清蛋白类肿瘤标志物联合CTC、自身抗体在肿瘤无创诊断上具有价值。血清肿瘤标志物联合对于可手术病人术前、术后水平对于复发或生存预测具有意义。术后或术后辅助治疗后,ctDNA检测联合血清肿瘤标志物、CTC对于残留、筛选出预后不良患者的决策辅助治疗具有意义。血清肿瘤标志物结合影像学评效,可以解释更多的肿瘤生物学行为。CTC监测对晚期肿瘤治疗效果的评价和生存评估具有价值。 /span /p p    /p p style=" text-indent: 2em " script src=" https://p.bokecc.com/player?vid=062FB1901724F6569C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script strong 王斌 /strong :NGS技术在肿瘤领域的应用日益成熟,从靶向用药基因检测到肿瘤耐药机制探索及预测疗效,NGS技术正在发挥越来越重要的作用。肿瘤的发展经历了从临床肿瘤到病理肿瘤再到分子肿瘤。分子肿瘤时代的一大特点是发现了各类部位肿瘤(无论是肠癌、肺癌还是其他实体瘤)的Pan-cancer预测指标。目前已经有临床证据很多的公认的Pan-cancer指标——MSI和NTRK,还有一些新兴的、逐渐展现潜力的指标——TMB和OTHERS。多基因平行检测大PANEL在临床中主要用于帮助临床提供更多可干预的变异信息。基于NGS的大PANEL,可全面分析各类靶向用药基因以及免疫药物疗效预测因子,如SNV、Indel、TMB及MSI等。Illumina NGS 大PANEL- TruSight Oncology 500 可全面分析523 肿瘤基因,同时对DNA和RNA的检测,全面覆盖癌症重要变异,并经过严格的实验评估验证,保证其优异的变异检测性能。 /p p    /p p style=" text-indent: 2em " script src=" https://p.bokecc.com/player?vid=0612D07F32A9B2D29C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script strong 宗金宝 /strong :以免疫检查点抑制剂为基础的肿瘤免疫治疗引领肿瘤的治疗进入全新时代,然而,肿瘤的药物治疗虽然延长了肿瘤患者的无进展生存时间(progression-freesurvival,PFS),但因为肿瘤异质性和肿瘤竞争性播散,患者的整体生存时间(overall survival,OS)似乎并不能改变。因此,寻找免疫检查点抑制剂的疗效预测因子是提高肿瘤免疫治疗效果和推进肿瘤精准免疫治疗的重要方法。本文介绍了程序性死亡受体配体1(PD-L1)、肿瘤突变负荷(TMB)、微卫星不稳定性(MSI)、肿瘤微环境中的肿瘤浸润免疫细胞。宗金宝对肿瘤患者的免疫相关标志物、Treg细胞亚群及细胞因子等疗效预测因子进行了介绍,以期对肿瘤免疫治疗疗效进行指导。 /p p    /p p style=" text-indent: 2em " script src=" https://p.bokecc.com/player?vid=B7E1515EE02EA0CF9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script strong 武多娇 /strong :几十年的研究告诉我们,癌症治疗普遍适用的原则很少,但有一些概念获得主流认可:第一,恶性转变与细胞代谢的显著变化齐头并进;第二,免疫系统对肿瘤的控制和清除至关重要。因此,我们对肿瘤、免疫细胞功能和代谢的理解可能是开发更有效的癌症疗法的关键。武多娇重点探讨肿瘤微环境中的营养供应如何塑造免疫反应,并基于目前最新免疫代谢调控机制的研究进展提出在肿瘤免疫中可能的应用。 /p p    /p p style=" text-indent: 2em " script src=" https://p.bokecc.com/player?vid=751AC7F6F682354E9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script strong 崔丽艳 /strong :肿瘤标志物在临床上广泛使用,但是如何合理选择项目以及做好分析前中后的质量控制对临床的诊疗至关重要。对于首次就诊患者建议多项联合检测,不作为常规筛查项目,主要用于疗效监测、复发判断以及预后判断的指标。肿瘤标志物应该观察动态变化结果,来判断患者病情,其检测可能会受到患者既往疾病以及全身状态的影响。肿瘤标志物特异性相对比较差,影响因素较多,结果解释一定是综合多方面因素。 /p
  • 肿瘤标志物联合检测法应用指南
    肿瘤标志物联合检测法在早期发现、病程监控、机制研究、肿瘤转移及预后监测中应用 据统计,我国每年新患癌症的病人约160万人,每年因癌症死亡的人数约130万人。我国大、中城市居民的许多死亡原因中,癌症是第一位死因。 世界卫生组织作出最新权威性结论,癌症患者如能早期发现,治愈率可达80%以上。肿瘤标志物可以比影像学更早的发现肿瘤,因而对于治疗癌症意义深远。肿瘤标志物的分泌来源于肿瘤微环境的基质细胞以及肿瘤细胞,存在于细胞、组织或体液中,能用化学或免疫方法定量证实肿瘤存在,监测肿瘤治疗和预后的物质。 图1:常见肿瘤标志物联合检测方案 目前为止,还没有找到灵敏度、特异性100%的肿瘤标志物。单一指标、单一因子的检测很难准确的实现肿瘤早期检测、病程监控及预后治疗效果的评估等。如传统的Elisa方法,仅能进行单一蛋白因子的检测。若要提高检测的准确性和特异性,需要进行多个Elisa实验检测不同的蛋白因子。以10个蛋白因子检测为例,需要10个Elisa试剂盒,至少1ml的样本,一周时间才能得到结果。无论从人力、财力还是时间和样本量来说,都不是很好的选择。而且10个因子不是同时检测也可能造成结果的误差。图2 检测对象越丰富疾病区分度越好(class代表指标分类,marker代表具体指标) 目前,实现肿瘤标志物联合检测的最便捷最高效的技术手段之一就是xMAP技术。xMAP技术基于不同荧光编码的微珠。每一种编码微珠标记一种可捕获相应目标分子的抗体,根据检测靶标的数量,选择1-100种标记的微珠,混合后与样品中待测的靶标分子作用,然后在液流驱动下逐个通过检测窗口,两束不同波长激光对每个微球进行检测,635nm激光检测微球的色标编码从而确定检测的靶标,532nm激光检测相应靶标上的荧光标记进行定量,通过计算机分析和标准曲线拟合,直接对每一种目标分子进行定量。该技术利用Luminex多功能液相芯片平台实现了对蛋白、核酸等靶标分子的多重检测,是唯一被纳入美国临床实验室质控的高通量技术,被誉为真正的临床型生物芯片。 图3 xMAP技术原理图 视频1:xMAP技术原理及Milliplex技术平台介绍基于xMAP技术的多重检测平台的优势:- 多重检测:实现1-500重因子同时检测,为微量样本的精确检测提供技术保障;- 高灵敏度:精密的光学设计提升检测灵敏度,可低至0.04pg/ml;- 快速/高通量:96/384孔板自动化高通量检测,每小时数据量可达9,600个结果;- 微量样本:仅需10-50ul的样本量使得跟踪动物模型的阶段性变化成为可能,避免个体差异带来的实验误差。 目前,已有几千篇文献报道利用xMAP技术进行肿瘤标志物联合检测以提高肿瘤检查准确性和特异性。例如,Irene等人采用非侵入性方法(血清)对卵巢癌6个标志物进行检测,发现6个标志物联合诊断比原来的单个CA-125检测准确率明显提升(95.3% vs 72%),从而能够展开卵巢癌的早期治疗(图2)。 图4:Irene等人卵巢癌早期检测研究已发表于Clinic Cancer Research(IF: 8.19) 作为Luminex 最早的全球合作伙伴,Merck提供包括Luminex仪器、Milliplex高通量多因子检测试剂盒、Milliplex Analyst 软件和Biomarker service在内的一整套高通量多因子检测平台。Merck始终致力于生物标志物多重检测技术与研发,拥有三十多年的研发和服务经验。目前可以提供8个种属超过1200个蛋白因子的检测,涉及免疫、代谢、肿瘤、神经、信号通路、干细胞等多个热门研究领域,能够满足多数肿瘤标志物开发与诊断需求。此外,Merck已与全国各地肿瘤医院与研究所合作,提供检测平台和服务,积累了二十年检测与分析的经验,因此开设肿瘤标志物联合检测法应用专题,分享成功经验给广大临床及诊断研究工作者。 本专题将分成多期探讨肿瘤的早期发现、病程监控、机制研究、肿瘤转移及预后监测等方面的标志物多重检测应用。欢迎订阅Merck生物标志物期刊,掌握最新研究进展。 点击此处订阅 若以上链接无法点击,请扫描二维码。专题下一期预告:肿瘤早期诊断之多重生物标志物检测法默克生命科学Tel: 021-38529074Email: china.marketing.online@merckgroup.comweibo: 默克生命科学新浪微博wechat: 公众号默克生命科学
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制