当前位置: 仪器信息网 > 行业主题 > >

中子射线

仪器信息网中子射线专题为您整合中子射线相关的最新文章,在中子射线专题,您不仅可以免费浏览中子射线的资讯, 同时您还可以浏览中子射线的相关资料、解决方案,参与社区中子射线话题讨论。

中子射线相关的资讯

  • 日本团队利用中子射线开发全息成像技术成功获得轻元素的超精密原子三维图像
    p   日本熊本大学近日发布消息称,该大学与多家日本大学和研究机构组成的联合团队利用包含各类波长中子射线的“白色”中子束(所谓“白色”的比喻,是因为白色可见光是由各种不同波长的光波所构成)开发出新型全息显微镜,可用于在原子水平对半导体、传感器等高性能材料中添加的微量轻元素进行精密结构分析。其中子束来自位于茨城县东海村的“大强度质子加速器”(J-PARC)。这项成果的突破点在于: /p p   一是能够分析微量轻元素掺杂物。以往采用的X射线及电子束,对于氢、锂、氧等轻元素的敏感度很低,无法用于成像。而上述轻元素在今后开发新能源材料时,将有重要用途。 br/   二是对破解功能性材料的作用机理具有重大意义。在研发过程中,团队成功对萤石结晶中掺入稀土元素铕(Eu)的情况进行了验证,通过超精密成像,对稀土元素周边的特殊结构成功进行了解析。萤石是放射线传感器中的核心材料。这是世界上首次对这种结构进行解析,这一技术将有望大幅度提高放射线传感器的性能。 /p p   此外,由于利用这种“白色”中子射线对掺杂物进行研究时,只需进行一次拍照即可对100种波长形成全息图,从而极大地缩短了研究周期。今后,通过对各类功能材料调整掺杂物成份,进行成像分析,将可能带来众多其它材料性能的重大突破。 br/   参加这一工作的有熊本大学、名古屋工业大学、茨城大学、广岛市立大学、高辉度光科学研究中心等九个单位的研究人员。 /p
  • 【网络研讨会】X射线衍射技术及应用进展
    Webinar仪器信息网:网络讲堂X射线衍射技术是通过对物质进行X射线衍射,分析其衍射图谱,获得物质的成分、内部原子或分子的结构或形态等信息的研究手段。物质结构分析尽管可以采用中子衍射、红外光谱、穆斯堡尔谱等方法,但X射线衍射技术是最有效、应用最为广泛的手段,应用范围已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中。仪器信息网将于2022年7月15日组织“X射线衍射技术及应用进展”主题网络研讨会。在X射线衍射分析中,不同靶材的特征辐射会激发与之对应的某些元素极强的荧光效应,引起测试数据整体背景偏高,弱衍射峰检测灵敏度降低,干扰样品的精确分析。马尔文帕纳科在锐影衍射仪上搭建了独特的高清光路,以准单色化入射光路模块BBHD或聚焦光反射镜模块配合全新的全波长能量色散检测器1Der,为用户提供全元素无荧光干扰的高质量衍射数据。高清光路技术适用于衍射仪中常用的铜、钴、钼、银等靶材,用户可根据样品情况自由选择靶材,获得最佳可能测试结果。此外,传统台式衍射仪受体积限制,一般仅用于常规粉末衍射测试。马尔文帕纳科新一代台式衍射仪Aeris可配备基于PreFIX预校准概念设计的薄膜掠入射附件和透射衍射附件,将样品测试范围拓展至多晶薄膜、高分子、药物等受困于择优取向的轻吸收样品,为空间受限的用户提供更多选择。7月15日(周五),马尔文帕纳科将参与仪器信息网网络讲堂“X射线衍射技术及应用进展主题网络研讨会”,由XRD产品经理王林博士为大家带来《X射线衍射技术多功能化在不同衍射系统上的发展》为主题的报告,向您介绍不断发展的功能附件搭配PreFIX专利技术,解锁立式或台式XRD的新技能。主题网络研讨会现已开放报名通道,期待您的关注和参与!■ 会议日期:2022年7月15日(周五)■ 会议时间:09:30-17:00■ 报告时间:14:30-15:00■ 活动类型:网络会议直播,需提前注册可以通过微信公众号“马尔文帕纳科”在线报名免费会议~ 报告嘉宾介绍 王 林 博士中国区 XRD 产品经理马尔文帕纳科王 林 博士,马尔文帕纳科中国区XRD产品经理。2004年毕业于清华大学物理系获学士学位,2011年于澳大利亚University of Wollongong伍伦贡大学获得博士学位,博士期间研究方向为超导薄膜材料。毕业后即加入帕纳科公司,从事XRD应用研究及技术支持。微观世界大有可为We' re BIG on small!Info关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物理和结构分析,打造出客户导向型创新解决方案和服务,从而提高效率和产生切实的经济影响。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如大程度地提高生产率、开发更高质量的产品及帮助产品更快速地上市。联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn收录于合集 #XRD 12个下一篇【网络研讨会】线上线下同步直播,金属行业X射线分析技术高级培训班
  • 众星携新一代光子计数x射线探测器亮相第二届射线成像会议
    得益于第一届射线成像会议的完美呈现,第二届射线成像会议于期望中在合肥顺利开展。仅仅两天(2018年11月3日-4日)的会议报告时间,来自全国各地的老师百花齐放,各显神通,围绕射线成像领域呈现精彩的报告内容。 本次大会围绕X射线光源和探测器;X射线成像方法及技术;中子、质子及伽马射线成像方法及技术;应用研究等多个议题展开,邀请到来自三大同步辐射光源、中国原子能科学研究院、中国工程物理研究院、中国科学院上海光学精密机械研究所、上海科技大学等多家国家重点研究单位该领域的知名专家和学者到会共同交流,深入探讨以及分享射线成像技术领域取得的最新研究成果。为该领域的发展又增加了一把新的力量。 本次会议北京众星联恒科技有限公司作为赞助商,强势推出代理产品-来自捷克advacam厂家基于Timepix芯片的混合光子计数探测器,并于会议中做了精彩报告。 Advacam公司生产的Timepix光子计数x射线探测器拥有高动态范围,无噪声,高灵敏度,能量甄别-阈值扫描(技术/阈值扫描模式)以及过阈时间分析(TOT模式)以及大面积无缝拼接等特点,在多个领域如小动物显微CT,微米/纳米CT,K边成像,全光谱成像进行材料厚度测量、能量/空间分辨X射线荧光成像拥有显著特点和性能优势。本次报告吸引多位成像用户对本产品的关注,纷纷于会后到我司展台进行咨询,由我司技术支持进行了逐一解答。大会现场图片 我司技术经理于大会中介绍ADVCAM产品 专家学者莅临我司展会深度咨询产品信息 北京众星联恒科技有限公司代理的德国GREATEYES的科学级相机;捷克ADVACA的光子技术x射线探测器(成像);德国X-SPECTRUM的光子计数探测器(衍射)、德国INCOATEC公司光源、德国Microworks的光栅等光学组件、覆盖了X射线领域从光源到探测器的整个产品线,在物质超快过程研究、精细分辨成像等多个领域研究提供重要科学支持,广泛用于光谱和成像等应用。 更多产品信息欢迎来电咨询!
  • “双剑合璧”:双色X射线激光提供新探针
    为满足先进的科学实验需求,双色自由电子激光(FEL)成为了国际上高增益自由电子激光研究发展的前沿方向。近些年来,回声增强高次谐波产生(EEHG)、这一全相干FEL新运行机制发展迅速,该机制可以有效提高外种子FEL 的高次谐波转换效率,在正常能量调整深度条件下,可以产生种子激光波长的几十次谐波的微聚束,进而有可能利用单级 EEHG、通过常规的紫外波段的种子激光,产生软 X 射线波段的全相干FEL。上海软 X 射线自由电子激光装置(SXFEL)是我国第一台X射线自由电子激光装置,EEHG也是SXFEL的基本运行模式之一。在这些背景下,我们在SXFEL装置上开展了基于EEHG模式的全相干软 X 射线双色FEL研究。本研究课题提出了在 SXFEL 装置上、基于 EEHG产生双色 FEL 的新方案,利用双色双脉冲的种子激光系统,采用 EEHG 运行模式,产生软 X 射线波段的全相干双色 FEL,基本布局如图1中所示。在该方案中,由于所用种子激光包含两个中心波长不同的脉冲,因此最终通过EEHG产生的也是两个中心波长不同的软X射线FEL脉冲,也即产生了双色FEL。图1 双色FEL方案基本布局双色双脉冲种子激光是该方案的关键核心技术之一,其设计如下图2所示,基本方案是将 800 nm 常规激光分到两路三倍频系统,通过调节两路三倍频中 BBO 晶体的角度来独立调节输出紫外激光的中心波长,并且在一路三倍频系统中加入可调的时间延迟机构,之后将两路紫外激光合束,得到实验所需的双色双脉冲种子激光。图2 双色双脉冲种子激光系统研究团队首先搭建了该种子激光系统,测试了两路三倍频产生紫外激光脉冲的能力,给出了三倍频的转换效率,同时测试了种子激光的中心波长如图3(a)中所示,得到了中心波长分别为 264.85 nm 和 266.28 nm的双色种子激光,在图3(b)中还展示了双脉冲种子激光的时间延迟,采用互相关法测量了双脉冲激光的脉宽以及时间间隔,单个紫外激光的脉冲宽度均为 170 fs,两个脉冲之间的时间间隔约为2 ps,通过调节光契角对,可以在 0-1 ps 之间连续改变两束紫外光的时间间隔。图3 双色双脉冲种子激光光谱(a)与脉冲时间延迟(b)测试结果最后,根据 SXFEL 装置的实际束流参数,利用该双色双脉冲种子激光,进行了三维的 FEL 数值模拟,模拟结果表明,最终可以获得中心波长分别为 5.884 nm 和 5.894 nm、峰值功率约 300 MW的全相干软 X 射线双色 FEL 辐射脉冲,如图4中所示。图4 全相干软X射线双色FEL功率(a)和光谱(b)
  • X射线透过人体时 给你带来了什么?
    X射线对人体的影响及危害*节辐射损伤的概述 辐射损伤是一定量的电离辐射作用于机体后,受照机体所引起的病理反应。急性放射损伤是由于一次或短时间内受大剂量照射所致,主要发生于事故性照射。在慢性小剂量连续照射的情况下,值得重视的是慢性放射损伤,主要由于X线职业人员平日不注意防护,较长时间接受超允许剂量所引起的。 电离辐射不仅能引起全身性急慢性放射损伤,而且也能引起局部的皮肤损害。在发现X线后第二年,X线管的制造者格鲁贝的手就发生了特异性皮炎。1899年史蒂文斯首先报道了X线对皮肤的伤害。 人类的经验已证明,X线的应用可以给人类带来巨大的利益(如放射诊断、放射治疗等),但是在应用中如果不注意防护或使用不当。也可造成一定的危害(如个体受到损伤或人群中癌症发病率增高等)。因此,本章从辐射防护的需要出发,介绍辐射损伤的有关基本知识,以便深入理解辐射防护标准的制定依据和搞好防护的必要性。一、辐射损伤机理 X线照射生物体时,与机体细胞、组织、体液等物质相互作用,引起物质的原子或分子电离,因而可以直接破坏机体内某些大分子结构,如使蛋白分子链断裂、核糖核酸或脱氧核糖核酸的断裂、破坏一些对物质代谢有重要意义的酶等,甚至可直接损伤细胞结构。另外射线可以通过电离机体内广泛存在的水分子,形成一些自由基,通过这些自由基的间接作用来损伤机体。 辐射损伤的发病机理和其它疾病一样,致病因子作用于机体之后,除引起分子水平,细胞水平的变化以外,还可产生一系列的继发作用,zui终导致器官水平的障碍乃至整体水平的变化,在临床上便可出现放射损伤的体征和症状。对人体细胞的损伤,只限于个体本身,引起躯体效应。而对生殖细胞的损伤,则影响受照个体的后代而产生遗传效应。单个或小量细胞受到辐射损伤(主要是染色体畸变,基因突变等)可出现随机性效应。辐射使大量细胞或受到破坏即可导致非随机性效应。在辐射损伤的发展过程中,机体的应答反应则进一步起着主要作用,首先取决于神经系统的作用,特别是神经活动,其次是取决于体液的调节作用。由此可知,高等动物的疾病不能仅仅归结于那些简单的或孤立的细胞中所产生的过程,它包含着十分复杂的过程。二、影响辐射损伤的因素 射线作用于机体后引起的生物效应与很多因素有关。如射线的性质和强度;个人特性,如敏感性、年龄、性别、既往病史和健康状况,工作环境等。(一)辐射性质 辐射性质包括射线的种类和能量。不同质的射线在介质中的传能线密度(LET)不同,所产生的电离密度不同,因而相对生物效应有异。X线和射线的生物效应基本一样。而中子的LET大得多,1—10兆电子伏的快中子产生的生物效应比x线、r射线大10倍。同一类型的射线,由于射线能量不同产生的生物效应也不同。例如,低能x线造成皮肤红斑所需照射量小于高能X线。这是因为低能x线主要被皮肤所吸收,而高能x线照射时,能量可达深层组织,这不仅对放射治疗有价值,而且在射线防护中很有意义。(二)X线剂量 射线作用于机体后,所引起的机体损伤直接与X线剂量有关。以不同剂量照射动物,可以发现当剂量达到一定量时才开始出现急性放射病征象,继续增加剂量时,则可出现死亡,剂量越大,死亡率越高,当增加到一定大的剂量时,则100%的动物发生死亡。(三)剂量率 剂量率即单位时间内的吸收剂量。一般说来,总剂量相同时,剂量率越高,生物效应越大。但当剂量率达到一定值时,生物效应与剂量率之间失去比例关系。在极小的剂量率条件下,当机体损伤与其修复相平衡时,机体可长期接受照射而不出现损伤。小剂量长期照射,当累积剂量很大时,便可产生慢性放射损伤。(四)照射方式 总剂量相同,单方向照射和多方向照射产生的效应不同。一次照射和多次照射,以及多次照射之间的时间隔不同,所产生的效应也有差别。(五)照射部位和范围 机体各部位对于射线的辐射敏感性不同,所谓辐射敏感性是指机体由电离辐射的抵抗能力,即辐射的反应强弱程度或时间快慢,辐射敏感性高的组织容易受损伤。细胞对辐射的一般规律是,处于正常分裂状态的细胞对辐射是敏感的,而正常不分裂的细胞则是抗辐射的。
  • 微区X射线残余应力仪
    成果名称 微区X射线残余应力仪 单位名称 北京师范大学 联系人 常崇艳 联系邮箱 changcy@bnu.edu.cn 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 合作方式 □技术转让 □技术入股 &radic 合作开发 □其他 成果简介: 基于毛细管的微区X射线残余应力仪样机 国内首台基于毛细管X光透镜的应力仪样机研制成功,并在第三届全国喷丸强化学术会议中成功展示,吸引了广大国内国外学者的关注,成为了本次大会的一大亮点,填补了我国微区便携式残余应力仪的空白,相关实验成果被国外杂志Instrumentsand Experimental Techniques接收。 研发关键 现有国产X光残余应力仪的X光源焦斑尺寸大大超过常规衍射仪的焦斑尺寸,毛细管传输X射线的效率要大大降低。在如此苛刻的条件下完成提高应力仪的光强增益,必定要经过毛细管几何参数的优化设计。具体而言,要先建立正确的光源计算模型;根据光束焦斑尺寸,确定透镜的后焦距;透镜的前焦距、透镜长度和外形曲线,以出射光强最大化为基准依次确定。 研究出低粗糙度的毛细管制作工艺条件是另一项研发关键。通过对拉丝温度、拉丝温度梯度分布、送料速度和拉丝速度等多种参数对毛细管内表面粗糙度的影响研究,以获得宽波段、高效率传输大面积发散X光束的最佳制备工艺条件,可使毛细管的效果发挥至最佳。 仪器创新点 可归纳为以下两方面: 微区X射线残余应力仪是首次使用X射线聚焦元件,真正实现微区的残余应力测定功能的技术产品。 在残余应力测定技术方面,通过毛细管X光透镜的使用,首次在国际上提供以发散和会聚为主要光束成分的两种入射X射线,为研究和发展残余应力测定技术提供了新手段。 性能指标 在微区X射线残余应力仪工作距离160mm处,由金属刀口扫描法测量的微分曲线结果显示,该处的光斑尺寸(FWHM)约0.38mm,光斑全宽约0.9mm。计算得到照射在样品的FWHM面积约为0.113,整个光斑面积约为0.636,达到了微区照射效果。 当使用微区X射线残余应力仪测量直径&Phi 2.5mm的钱江弹簧轴向应力(微曲面样品)时,对比常规X射线残余应力仪(配备&Phi 0.63mm光阑准直器),在不同计数时间下&psi 0° 方向衍射峰高增强10.66倍。同理,衍射强度在&psi 0° 方向增强13.45倍。 当使用微区X射线残余应力仪测量直径&Phi 4mm钢珠(曲面样品)的应力时,应力值测量效果良好,平均应力值在-1295.6MPa左右。而使用常规X射线残余应力仪(配备&Phi 0.4mm光阑准直器)测量样品残余应力则预估值偏差较大,平均应力值仅为-261.8MPa。 应用研发 目前国外品牌X射线残余应力仪产品是以提供微焦斑作为其产品的核心支撑,其优势在于它的焦斑面积小,可使单位面积上的光子数增多,进而提高相对光强。如加拿大PROTO公司旗下诸多产品,焦斑大小仅在0.5mm*0.5mm左右。未来结合微焦斑光源,毛细管X光透镜的优势将得以完全发挥。为此,毛细管X光透镜在微区残余应力方面的研究也会逐步向微焦斑类应力仪倾斜,有望达到微区光强增益在20倍以上。目前已有的实验效果来看,经反复进行优化设计的毛细管X光透镜将很有希望完成这一新目标,前景乐观。 应用前景: 微区X射线残余应力仪将重点应用在轻质合金,细焊缝加工件及弹簧,钢珠等工件的应力测试分析上,涉及领域则既包括高新技术,同时又涵盖常规制造业。如在现代航空航天制造业中,轻质合金部件研制的先进性和可靠性等因素决定着轻质合金材料在现代航空航天制造业中的应用,因此测试分析过程显得尤为必要。而弹簧及其它曲面零件的应力测定,则对确保我国汽车、内燃机、火车、飞机等整机的安全与可靠性,具有极为重要的工程应用价值。 掌握窄焊缝、高应力梯度的残余应力分布规律,需将测试面积控制在极小范围,但这对本身衍射强度极低的钛合金等轻质合金而言,几乎是无法实现的。从国际上最新的测试手段看,中子衍射强度高较为可行,但其运行依赖于中子反应堆,目前仅在法国及德国建有实验基地。因此在我国现有条件下,经济实惠地解决该类问题,微区X射线残余应力仪则是较好的发展方向。而且,随着现代机械领域的迅猛发展,弹簧制造行业无论在生产规模还是产量方面均获得了极大促进,弹簧服役条件的苛刻要求与日俱增,急需研究新的弹簧质量检测方法,微区X射线残余应力仪无疑将成为新选择。 知识产权及项目获奖情况: &ldquo 一种应力仪&rdquo ,专利号ZL201320272397.0, 授权时间:2013年11月06日.
  • 新突破!我国观测到迄今最亮伽马射线暴
    图①:科学载荷“高能爆发探索者”(示意图)。  图②:“慧眼”卫星(示意图)。  图③:中国高海拔宇宙线观测站(“拉索”)。  以上均为中科院高能所供图  制图:张丹峰中国科学院高能物理研究所负责建设和运行管理的中国高海拔宇宙线观测站(“拉索”)、科学载荷“高能爆发探索者”和“慧眼”卫星三大科学装置,近日同时探测到迄今最亮的伽马射线暴(GRB 221009A)。这是我国首次实现对伽马射线暴的天地多手段联合观测,打破了伽马射线暴亮度最高、光子能量最高、探测能量范围最高等多项伽马射线暴观测纪录,对于揭示伽马射线暴的爆发机制具有重要价值。  比以往最亮伽马射线暴亮10倍以上  伽马射线暴是宇宙中最剧烈的天体爆发现象,首次发现于上世纪60年代。伽马射线暴短至几毫秒,长达数小时,释放的能量超过太阳在其一生辐射能量的总和。持续时间较长的伽马射线暴产生于比太阳大几十倍的恒星星体坍缩爆炸,而持续时间较短的伽马射线暴则产生于两个致密天体(如黑洞或中子星)合并爆炸,还可能伴随发射引力波。  伽马射线暴的观测研究是天文前沿领域,近年来不断取得重大突破。2017年8月17日,在一个由两颗中子星合并爆炸产生的伽马射线暴之前观测到伴随产生的引力波,这是人类首次在电磁波和引力波窗口同时观测宇宙天体,开启了多信使天文学的新时代。  此次,迄今最亮的GRB 221009A伽马射线暴,近日被三大科学装置同时探测到。在这个伽马射线暴发生之前,人类探测到的伽马射线暴亮度纪录保持者是2013年4月27日发生的编号为GRB 130427A的一个伽马射线暴,全世界几乎所有重要望远镜都进行了观测。  本次观测中,“拉索”将伽马射线暴光子最高能量纪录提升近20倍,在国际上首次打开10万亿电子伏波段的伽马射线暴观测窗口,并与“慧眼”卫星和“高能爆发探索者”一起,发现这个爆发事件比以往人类观测到的最亮伽马射线暴亮了10倍以上。  实现对伽马射线暴的天地多手段联合观测  本次探测到的高强度爆发,发生在距离地球24亿光年处。如此明亮的伽马射线爆发,预计每几十年甚至百年才会出现一次。本次“拉索”探测到了大量的高能光子,最高光子能量达到了18万亿电子伏,在国际上首次打开了10万亿电子伏波段的伽马射线暴观测窗口。  “拉索”实验中科院高能所团队首席科学家曹臻研究员说:“这次‘拉索’在千亿电子伏以上的甚高能区记录到几万个光子信号,将给出伽马射线暴最高能段的光变曲线最精细的测量。”  凭借先进的探测器设计,“高能爆发探索者”成功对伽马射线暴GRB 221009A的软伽马射线光变特征进行高精度观测,展现出初期爆发和后随闪耀的演化过程。“慧眼”卫星的高能、中能和低能X射线望远镜首次在伽马射线暴观测中同时探测到信号,而且因为“慧眼”卫星当时正在扫描观测该天区,从而对这个迄今最亮伽马射线暴的余晖进行了及时监测。  得益于中科院高能所近些年天地一体化观测能力建设的高速发展,尤其是“拉索”的成功建造和运行占据国际领先地位,高能所首次实现对伽马射线暴的天地多手段联合观测,并独家实现从最高的十几万亿电子伏光子(“拉索”)到百万电子伏伽马射线(“高能爆发探索者”)和千电子伏X射线(“慧眼”卫星)的多谱段精细测量,跨越超9个量级。  曹臻说:“在过去半个多世纪探测到的数千个伽马射线暴中,最高能量光子达到大约1万亿电子伏(TeV)。本次‘拉索’探测到大量的高能光子,最高光子能量达到18万亿电子伏。”  引发巨大反响,大量相关研究迅速展开  “拉索”是以宇宙线观测研究为核心的国家重大科技基础设施,由中国自主提出并设计建造。该观测站位于四川省稻城县海拔4410米的海子山,主体工程于2021年7月完成建设并投入科学运行,是目前世界上灵敏度最高的超高能伽马射线天文台,其运行开启了“超高能伽马天文学”观测时代。捕捉和高统计量观测伽马射线暴是“拉索”的重要科学目标之一,此次亮度空前的爆发正好发生在“拉索”视场的中心附近,为完成该项科学目标奠定了强大的观测基础。  “慧眼”卫星是我国第一颗空间X射线天文卫星,于2017年6月发射运行,在轨观测5年多来,已在黑洞、中子星、快速射电暴等方面取得一大批重要原创成果。  “高能爆发探索者”是今年7月发射的空间新技术试验卫星的主要科学载荷之一,它采用“怀柔一号”卫星所开创的新型探测技术以及基于北斗短报文的准实时星地通信方案,能够迅速下传观测数据。“高能爆发探索者”目前处于在轨测试阶段,预计将获得更多重要成果。  伽马射线暴GRB 221009A发生后,“拉索”实验中科院高能所团队迅速展开数据分析,在爆发后不到两天就通过伽马射线暴协同观测网(GCN)向国际同行发布初步观测结果。进一步的数据分析和科学研究正由“拉索”国际合作组成员全力开展。中科院高能所“慧眼”卫星和“高能爆发探索者”观测运行团队、载荷团队和数据分析团队正迅速投入观测分析,并及时启动机遇观测。在项目团队密切协作下,“慧眼”卫星和“高能爆发探索者”已得到初步分析结果,并通过天文电报和伽马射线暴协同观测网向国际同行发布。  目前,探测结果已在国际引发巨大反响,大量相关研究展开,涌现出关于新物理可能性的许多讨论。这些测量对宇宙中存在的背景光场等基本物理参数和模型将作出强烈的限制,预计会产生重要的认知水平提升。
  • 丹东射线仪器进军高端市场 打破欧美垄断
    近日辽宁省国家重大科学仪器设备开发专项监理工作推进会在丹东举行,丹东市首批列入该专项的&ldquo 中子活化多元素分析仪器研发与应用&rdquo 项目取得阶段性成果,具有自主知识产权的&ldquo 中子活化水泥多元素在线分析仪&rdquo 成功打破欧美国家对国内同类产品市场的垄断。   据介绍,中子活化水泥多元素在线分析仪仅是该项目第一阶段研发的产品,目前已申报了10项发明专利,经辽宁省有关部门组织专家鉴定该产品已达到国际先进水平。第二、三阶段还将针对国外垄断的有色金属和环保领域研发中子活化分析仪,预计今明两年可陆续投产,仅此一项年产值可达10亿元左右。   令人欣喜的是,致力于打破进口产品垄断&ldquo 坚冰&rdquo 的并非一家企业。从2012年至今,丹东市先后有7个企业承担的5个项目获得国家重大科学仪器设备开发专项资金支持,累计得到国家专项经费上亿元。这些项目瞄准的无一例外都是由国外仪器垄断的顶级高端市场,不仅填补国内空白,同时至少具有国际先进技术水平。   据悉,这7家企业大都是科技型中小企业。随着这些项目陆续投产见效,不仅会给企业自身带来巨大的经济效益,推动企业做大做强,更重要的是将带动丹东射线仪器产业整体技术水平的提升。丹东市科技局相关负责人表示,过去丹东射线仪器基地的美誉主要体现在中低端产品上,现在我市射线仪器产品将要进入最高端的进口垄断市场,说明我们有了与国外同行相抗衡的底气和能力,成为真正的全国&ldquo 射线仪器基地&rdquo 指日可待。
  • 北京市核与辐射安全中心343万采购伽马射线成像谱仪等设备
    项目编号:11000022210200005753-XM001项目名称:核与辐射环境应急监测能力建设项目预算金额:343 万元(人民币)采购需求:序号标的名称数量交货地点简要技术需求或服务要求1伽马射线成像谱仪1套采购人指定地点分析特定区域辐射强度空间分布、快速确定放射性场所同位素种类及其热点所在方位。详见第四章采购需求书。2便携式特殊核(中子)材料甄别仪1套采购人指定地点对样品中的γ射线和中子进行测量,实现放射性预警的同时,通过后端算法分析进行特殊核材料及中子材料的甄别。详见第四章采购需求书。3低本底α、β测量仪1套采购人指定地点用于环境实验室、保健物理、放化实验室、工业安全、食品安全、核医学等领域的样品中α、β放射性测量。详见第四章采购需求书。4液氮回凝制冷系统2套采购人指定地点为顶部插拔式高纯锗探测器的工作提供高可靠的冷却系统。详见第四章采购需求书。5碘采样器2套采购人指定地点采集空气中气溶胶、微粒碘(或其它碘成份)等成分,详见第四章采购需求书。6应急移动单兵系统1套采购人指定地点用于采集核事故应急情况下单兵检测人员在应急现场的音/视频信息、核与辐射应急检测数据及GPS 定位信息,详见第四章采购需求书。7大流量气溶胶采样器1套采购人指定地点高效地收集室内外空气中的气溶胶成分。详见第四章采购需求书。8长杆γ剂量率仪1套采购人指定地点用于对难以接近区域或对热点作长距离测量γ剂量率。详见第四章采购需求书。9氚采样器1套采购人指定地点对环境中气态氚和气态氚水收集,详见第四章采购需求书。注:投标人必须针对本项目所有内容进行投标,不允许拆分投标。合同履行期限:合同签订后6个月内交货,并通过采购人验收。本项目不接受联合体投标。
  • 第五届X射线衍射技术及应用进展网络研讨会即将召开,报名进行中
    X射线衍射技术是通过对物质进行X射线衍射,分析其衍射图谱,获得物质的成分、内部原子或分子的结构或形态等信息的研究手段。物质结构分析尽管可以采用中子衍射、红外光谱、穆斯堡尔谱等方法,但X射线衍射技术是最有效、应用最为广泛的手段,应用范围已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中。为促进相关人员深入了解X射线衍射技术发展现状,掌握相关应用知识,仪器信息网将于2024年6月4日组织召开第五届X射线衍射技术及应用进展网络研讨会,邀请业内技术和应用专家,聚焦X射线衍射前沿技术理论、分析方法、热点应用领域等分享报告。 会议日程(拟定) 线上参会指南 1、进入会议官方页面(https://www.instrument.com.cn/webinar/meetings/xrd2024)进行报名。扫描下方二维码,进入会议官网报名2、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。3、本次会议不收取任何注册或报名费用。4、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)
  • 科学家利用地基广角相机阵GWAC探测到伽马射线暴的瞬时光学辐射
    4月10日,《自然-天文》发表了中国科学院国家天文台中法天文小卫星SVOM科研团队完成的一项重要研究成果。该团队利用位于国家天文台兴隆基地试运行中的地基广角相机阵(GWAC),成功探测到一例伽马射线暴(GRB 201223A)的瞬时光学辐射及其向极早期余辉的转变过程。  伽马暴源于大质量恒星晚期坍缩或双中子星并合瞬间伴随着新生黑洞或磁陀星的极端相对论喷流,短时间内辐射出巨大能量,包括喷流内激波导致的暴发瞬时辐射和喷流撞击外部介质产生的余辉。典型的高能暴发仅持续豪秒到几十秒,但地面光学设备接收到高能卫星的伽马暴触发警报时,很难做到实时跟进,故目前只有几例瞬时光学辐射探测——对应高能暴发的持续时间较长(30秒),且观测数据中存在反向激波的污染成分,难以明确从瞬时光学辐射到余辉的转变。   SVOM首席科学家、国家天文台研究员魏建彦提议并带领研制的GWAC具有超大的观测视场和15秒的高时间采样分辨率,作为卫星项目的重要地基设备,探测深度达到星等16等,并计划对SVOM发现的伽马暴的瞬时光学辐射开展系统性研究。   伽马暴GRB 201223A同时被Swift卫星和Fermi卫星在伽马射线波段探测到,其时,试运行中的GWAC正对所在的上千平方度天区做实时监测,成功在光学波段完整记录下暴发的全过程(图1)。这是国际上首次将瞬时光学辐射的探测突破到暴发持续不到30秒的伽马暴,远短于之前的事例。GWAC的观测实际上在高能暴发之前便已开始,在探测极限内未发现任何前驱(precursor)信号,但在整个高能暴发阶段均探测到明显的光学辐射(图2),结合60cm望远镜的后随观测数据,清晰地记录了从瞬时光学辐射到余辉的完整的演变过程。   GRB 201223A是高能波段的中等亮度伽马暴,其瞬时光学辐射的观测亮度比从高能能谱外延到光学波段的值高4个数量级(图3)。该特性与超亮伽马暴GRB 080319B类似。更具意义的是,对多波段数据的联合分析表明,GRB 201223A前身星的暴前质量损失率远低于后者,可能是一颗不大于3.8倍太阳质量的沃尔夫-拉叶星,恒星演化模型所对应的主序阶段质量不大于20倍太阳质量。   由于伽马暴发生在时间和空间上的随机性,通过GWAC对SVOM卫星的实时监测天区开展高帧频观测,将为探索极端相对论喷流、暴周环境及前身星特性提供独特数据,并具有捕获中子星并合引力波事件电磁对应体的重要潜力。   上述工作由国家天文台、美国内华达大学拉斯维加斯分校、广西大学、南京大学、中国科技大学、法国原子能署、淮北师范大学、北京师范大学等合作完成。 图1.GWAC对GRB 201223A高能爆发前后的连续观测图像。时间分辨率是15秒。中间黄色箭头指向的是光学对应体。第一行第三列是覆盖高能警报触发时刻的图像。 图2.GRB 201223A光学、X射线、伽马射线暴联合观测光变曲线。横坐标是相对于警报触发的时间,单位是秒。纵坐标流量或者星等。红色点是GWAC和F60A的观测数据。在高能警报触发前,GWAC没有探测到任何暴前辐射成分,在爆发开始后,探测到一个明亮的光学辐射,并清晰解析出从瞬时辐射到余晖的相变过程。 图3.GRB201223A瞬时辐射能谱图。横坐标是观测频率,做坐标是流量。GWAC探测到瞬时辐射光学亮度远远高于高能最佳能谱的预期。
  • 科学家首次实现大视场龙虾眼X射线成像观测
    近日,中国科学院空间新技术试验卫星SATech-01的首个正式发表的成果在线刊出。利用卫星上搭载的EP-WXT探路者“龙虾眼天文成像仪”莱娅( LEIA,图1)的在轨测试首光,科学家成功获得了一批天体的真实大视场X射线实测图像和能谱。这是国际上首次获得并公开发布的大视场X射线聚焦成像观测结果。该成果标志着我国率先掌握了X射线龙虾眼聚焦成像技术,并实现了在轨实验验证。首批结果以《首次龙虾眼聚焦望远镜的大视场X射线在轨观测》(First Wide Field-ofview X-Ray Observations by a Lobster-eye Focusing Telescope in Orbit)为题,发表在《天体物理学快报》(Astrophysical Journal Letter)上。传统的X射线聚焦望远镜观测视场很小,一般在1度以下。40多年前,国际上提出了微孔龙虾眼成像的概念,可以实现大视场的X射线聚焦成像。尽管光子接收面积远小于传统的望远镜,龙虾眼望远镜具有大观测视场的优势,可以对一个大的天区范围内天体的活动同时进行监测,是X射线时域天文学追求的下一代设备。然而,由于研制困难,这一目标长期未能实现。近二十年多来,国际上几个空间科学机构及实验室均在开展微孔龙虾眼技术的研发。以中科院国家天文台张臣和凌志兴为带头人的团队自2011年开展了关于这一技术的研发工作,通过自主创新,掌握了该技术的原理和应用,具有完全自主知识产权。在国家自然科学基金和中科院天文联合基金支持下,国家天文台与北方夜视集团有限公司合作,突破关键技术,研制出指标国际领先的微孔龙虾眼器件。在中科院空间科学先导专项的支持下,国家天文台研制出龙虾眼聚焦镜,并由中科院上海技术物理研究所集成研制出完整的宽视场X射线望远镜,作为中科院爱因斯坦探针(EP)卫星WXT载荷的实验模块之一。该设备的关键器件,包括龙虾眼聚焦镜和由大阵列CMOS传感器组成的焦面探测器,均为我国自主研发。这也是我国科学家首次将创新性的CMOS应用于空间X射线天文探测。7月27日,该实验模块(后命名为莱娅)搭载由中科院微小卫星创新研究院抓总研制的空间新技术试验卫星(SATech-01)发射升空。作为EP卫星WXT探路者,莱娅的观测视场可达340平方度(18.6度x18.6度),是国际上首个宽视场X射线聚焦成像望远镜,其视场大小比国际上传统的聚焦望远镜提高了至少100倍。国家天文台EP卫星科学中心利用莱娅的在轨开机测试观测,首次获得了一批天体的大视场X射线实测图像和能谱。图2展示了莱娅的首光图像——对银河系中心天区单次观测获得的X射线图像(左图)和地面仿真图像(右图)。结果显示,单次(约13分钟)的观测能够同时探测到多个方向上的X射线源,包含黑洞和中子星X射线双星。同时,科研人员从数据中可获得这些天体X射线辐射强度随时间变化的信息以及天体的X射线能谱。观测结果与仿真结果高度一致。莱娅创新的、独一无二的宽视场聚焦成像能力及其所验证的龙虾眼望远镜的广阔科学潜力,引起了国际同行关注。在轨测试完成后,莱娅迄今已开展了三个多月的在轨定标实验和部分科学观测,并开始取得初步科学成果。例如,莱娅发现了一例恒星的超级X射线耀发,并引导了NASA的SWIFT和NICER空间望远镜进行跟踪观测;探测到迄今最亮的伽马射线暴的余辉辐射;完成了1/2全天X射线天图的测绘。未来,莱娅将开展常规科学观测,预计每半年可获取一次完整的全天X射线天图,发现新的X射线暂现天体和爆发天体,并将开展引力波X射线对应体的搜寻。中科院空间新技术试验卫星(SATech-01)的目标是通过快速发射验证空间新材料、新器件、新技术,助力空间科技创新;孵化出具有重大科学意义、面向国家战略需求的空间探测仪器和项目。卫星平台及载荷的经费均为自筹。莱娅的这一成果也表明空间新技术试验卫星达到了预期目标。图1.中科院空间新技术试验卫星(SATech-01)和搭载的莱娅龙虾眼望远镜,搭乘力箭1号火箭于7月27日在酒泉发射(图片来源中科院)。图2.莱娅对银河系中心天区单次观测获得的X射线图像(左图)和地面仿真图像(右图),左右图的观测时长同为798s,能段为0.5-4 keV,视场18.6度x18.6度。(左图中标记为4U 1826-24的源是捕捉到的一个变亮的中子星X射线双星)。
  • 第一届射线成像新技术及应用研讨会在无锡成功举办
    2016年11月21日- 23日,由中国光学工程学会联合国内三大光源举办“射线成像新技术及应用研讨会”,在位于无锡中国饭店成功举办。会议以x射线光源、伽马射线、中子光源及其应用研究等为主要方向,吸引了来自中科院高能所,中科院上海应物所,中国科学技术大学,中国工程物理研究院,中国原子能科研院、台湾中央研究院、中科院上海光机所、中科院动物研究所、上海交通大学、北京师范大学、清华大学、北京航空航天大学、深圳大学等多所高校以及企业等逾150名专家和技术人员参会。北京众星联恒科技有限公司精心组织参加第一届射线成像新技术及应用研讨会。本次会议期间,我公司向与会专家和技术人员介绍本公司新产品femtox ii,该产品具有超短(短于100fs脉宽)、超亮(优于1011/s光子通量)、超微(微米量级的光源焦斑)等特点,在超微x射线源静态成像、超快x射线动态衍射、超快x射线动态吸收谱学、超快x射线时间动态成像等方向具有较为广阔的应用前景。同时公司代理德国incoatec微焦源及光学镜片针孔、德国greateyes ccd相机、德国x-spectrum光子计数探测器、捷克advacam光子计数探测器等产品也得到相关专家与技术人员的关注与咨询。
  • 这台发射宇宙射线的神秘设备,能给西安古城墙做“CT”
    ◎ 采写丨科技日报记者 王迎霞 颉满斌◎ 策划丨赵英淑 滕继濮 林莉君吴春至今记得第一次做CT的情景。被推进舱里的那一刻,她紧张、害怕,担心查出问题,也担心射线对身体造成影响。多年过去,她再次经历了这样的不安,只不过,这次做CT的是古城墙。吴春是陕西省西安城墙管理委员会副主任,在她的积极联系和鼎力支持下,兰州大学核技术创新与产业化团队带着研发的国内首套塑闪宇宙射线缪子成像设备,给西安古城墙做了一次“CT”。“一定不要给城墙造成损伤,但也一定要知道‘五脏六腑’都有啥毛病。”吴春提出要求。这是她作为历史文化遗产守护者的底线。叫缪子的宇宙射线有着600多年历史的西安古城墙,也像人体一样,会随着时间的推移出现“健康”问题。北方夏季雨水较多,西安古城墙被雨水长时间浸泡后,部分墙面出现了快速裂缝和沉陷的现象。尽管城墙管委会一直都在高度关注城墙的各类安全问题,但有些损害在墙体内部,仅凭肉眼无法观测。如何检测古城墙内部情况,进而有针对性地展开修复工程,成为摆在西安城墙管委会面前的重要难题。西安城墙正北门—安远门在现代医学技术的加持下,要想掌握人体的病灶情况,我们可以使用B超、CT、核磁共振等各种影像仪器。想知道一座几十米高的古城墙的健康状况,该怎么办?“以往,我们用得最多的是钻孔法,就是通过在墙体上打孔取材的方式,来判断其内部情况。但这种勘探方式会直接破坏墙体,后期还需要对损坏部分进行修复。”吴春说。另一种是雷达监测法。雷达的频率越小,穿透程度便会越深,但其精度会相应变差,成像可能出现偏差;而如果探测太浅,又不能够满足古建筑、山脉等大型物体的探测深度需要。“钻孔法对城墙有损,而使用雷达法,基本上70%的情况都探不出来。”吴春做梦都想找到能够无损探测的方法。一个偶然的机会,她结识了兰州大学核技术创新与产业化团队。在给城墙南门的一面墙做三维激光扫描的过程中,吴春不由地感慨:“这激光扫描呀,如果能透视到里面就好了。省得我们苦苦找隐患点,又无计可施。”这时,操作扫描的老师说自己认识一位兰州大学教授,他能用一种宇宙射线对物体进行成像,或许可以帮到她。是物探,还是遥感?对方说好像都不是,是一种新方法,具体是什么,他也说不清。这下吴春来了兴致:“刚好58号马面(在城墙外侧依一定距离修建的凸出墩台,平面有长方形和半圆形,因外观狭长如马面,故名)出了一些问题,我联系试试!”他们说的宇宙射线,就是缪子。星际空间有很多高能粒子,其中最主要的是质子。高能的质子通过大气层时会发生核反应、电离等级联反应,从而一生二、二生四,从上往下越来越多,有点像烟花,也像射灯。到达海平面时,里面就富含各种组分,缪子只是其一,还有中子、β射线和γ射线等。它们都被称为“宇宙射线次级射线”。“根据估算,海平面上每平方米面积上每分钟会落下10000个缪子,也就是说,每秒钟就会有一个缪子穿过我们的手掌。”兰州大学核技术创新与产业化团队相关负责人打比方道,“它们就像下雨一样浇着我们,淋着我们,时时刻刻穿透我们的身体。”作为宇宙中的基本粒子之一,缪子的带电量为一个负电荷,质量为电子的207倍,它与物体发生相互作用的方式与电子类似。相比于中子、X射线和γ射线等,宇宙射线缪子具有更强的穿透能力。很多人都好奇这种神奇的物质,究竟是如何为我所用的。原来,科研人员在被测物体周边放置缪子探测器,根据缪子射线在物体中不同方向的穿透情况,搜集肉眼看不见的缪子计数,进而在计算机上进行分析,通过数据分析计算实现被测物体的三维成像。工作人员正在组装探测器“对于城墙这样十几米甚至几十米厚的物体来说,如果里面有个一米大的空洞,我们完全可以通过缪子成像技术检测到。”该团队成员刘军涛从团队2018年着手干这件事开始,他就跟着全程参与了缪子成像系统的研发。藏着秘密的“冰柜”2021年9月,兰州大学核科学与技术学院两位骨干教师,带着由两位工程师以及四五位学生组成的团队,向着古都西安出发。与他们同行的,是一个长1.6米形状酷似冰柜的仪器。“之所以看起来像一台冰柜,是因为我们给原来只能在实验室使用的探测仪器增设了金属外壳,使设备可以防潮、避光,方便移动。”刘军涛说。正在作业中的探测器刘军涛告诉吴春,仪器定型的时间不长,没有成熟商业产品那样漂亮的外观,但探测效果不受影响。吴春的话给他吃了很大一颗定心丸:“不管啥方法,只要是科学的,我们都欢迎!”这台貌不惊人的方疙瘩,隐藏着能给城墙看病的秘密。它包括多对探测器层和采集板,负责收集从宇宙中散落下来的缪子与信息转换;一个用于数据传输监测与存储的主机系统;一台移动电源,可确保仪器在野外运行时有稳定的供电;一个用于调控设备内温度和湿度的空调系统……缪子成像技术研究,目前国内也有少数同行团队在做。兰州大学核技术创新与产业化团队的不同之处在于,他们已经从实验室测试阶段走向了实际应用。2020年11月,该团队成功研发我国首套塑闪宇宙射线缪子成像系统,并顺利完成专家验收。“‘塑闪’是塑料闪烁体的简写。缪子通过塑料闪烁体后会产生光,有闪烁光就代表有缪子通过这个材料。我用光电转换的器件,可以把光信号转为电信号,看到脉冲后,表示已经捕捉到了缪子。”刘军涛说。采集缪子只是第一步。随后,他们不断完善软件模型,模拟成像场景,调整各类参数,最终将其带到西安古城墙下,开始“首秀”。缪子成像技术主要有两种成像原理,即角度散射成像和强度衰减成像。此次西安古城墙探测运用的便是强度衰减成像法。这一成像方法的原理是,缪子在物体内部穿行过程中会损失能量,而当其能量损失殆尽时便会被物体吸收,这将使探测到的缪子强度减小,所以宇宙射线缪子强度减小量取决于物体的厚度及材料密度。因此,在已知物体外部轮廓的情况下,通过探测缪子强度衰减,可以推导得到被探测物体的密度,从而对物体的内部结构与物质组成进行重构。“这就像人们利用X射线扫描身体,通过透视人体骨骼从而成像一样。”刘军涛介绍说,山体、建筑物、历史遗迹等大型物体的内部结构成像,用的也是这一原理。吴春给他们指定的测试段是城墙58号马面处。正如给人体做三维影像检查会采用放射源与探测器旋转多角度成像,想要给城墙做“CT”,也需要从不同角度采集多组数据。团队采取了环绕马面设置6个观测点的方案,放置探测器进行数据采集。正在作业中的探测器没想到,刚把机器安放好,又一波全国范围的新冠疫情席卷而来。那是2021年秋,实验面临的最大问题是,因为防疫政策需要,探测器不能按照计划不停地变换位置。团队只能因陋就简,顺势而为,及时改变了测量计划。终于在2022年春节前夕,他们将仪器带回兰州。让吴春吃惊的是,这个团队成功测试出了城墙中的低密度区域——也就是一个配电室。在测试团队事先并不知道的情况下,他们通过宇宙缪子成像技术清晰地呈现出它的位置、形状、大小。“这一高精度成像再次验证了使用缪子成像技术能够完成被测物体三维成像的可行性。”刘军涛表示。他们和58号马面科研从来无坦途。兰州大学核技术创新与产业化团队虽然首战告捷,但在实际探测过程中,还是遇到了不少困难。宇宙射线缪子成像技术利用的是不需要人工放射源产生的天然射线,具有无接触勘探、不受时空限制、不会对勘探物体造成任何伤害、绿色环保等特点,但它的使用受客观条件影响较大。“不像医院里使用人工射线源,环境比较单纯,我们的仪器往往放置在室外,得经历风吹日晒等自然环境的考验。”兰州大学2020级能源动力专业硕士研究生姚凯强说。在室外使用就会出现各种问题,比如电路短路,或者电压波动较大等,设备接收到的信号也会跳动不稳。整个墙体的勘探过程耗时将近4个月,为了应对各种环境的考验,团队对实验室内原来使用的平板探测器进行了升级与调整。姚凯强和另一名师兄专门留在了西安,隔两天就得去现场调整仪器。另外,后期也需要处理那些不稳定环境下接收到的杂乱数据。与数据收集相比,更大的挑战在于开发反演成像的算法平台。“我们在进行文物探测的过程中总会遇到一个问题,就是测量到的数据比待解的未知量少很多。比如有两个变量一个方程的情况下,方程的解是无穷多的。”对2021级核技术专业硕士研究生刘国睿来说,这就需要她和小伙伴在庞杂的结果中挑选出能够同时满足多个方程的模型,选择最合理的结果。来西安之前,刘国睿、姚凯强等人首先根据描述对城墙进行了可行性分析,几何模型比较简单,仅仅知道城墙的长宽高,里面可能有什么情况。在仿真中,他们需要先把城墙的模型大致建好,再进行正演计算,用正演的结果去反演成像。“相当于我们先算一个可能得到的测量结果,然后用这个测量结果做反演,看能不能给里面的防空洞成出一个三维图像来。”刘国睿说。确定做58号马面后,他们把模型更加细化了。初期建的模型特别简单,就是一个矩形的堆,后来又加上马面,对尺寸进行调整。激光测绘把整个城墙的轮廓描绘清楚之后,他们决定换模型,尽管那时6个探测点都已确定。最后一次模拟时,探测点位早已敲定,团队更新了非常细化的城墙轮廓,决定重新建模再做一次。根据优质成像的分辨率,他们在马面里假设了一个防空洞,看能不能成像。另一个难题是遇到密度异常部分时的演算。刘国睿念大三时就加入该课题组学习,后继续在此攻读研究生,在她看来,整体测算并不困难,但密度异常体与周边部分衔接地带,算起来有难度。“这些地方的密度解出来可能会带有系统偏差。”她说。最终的研究结果就是,这次试验精度可以对城墙内部一个长宽高均为1米的防空洞成像出来。“我们还测到马面北面比较空虚,当时比较质疑这个结果,为此做了好多验证。”刘国睿强调,他们必须排除是不是自己技术方面的原因,比如数据处理不当、测量问题之类。排除过后,得出结论——58号马面北墙附近的夯土密度确实较低。回想起这一幕,这个性格沉静的女孩,终于有了笑意。追寻“中国方案” 兰州大学师生付出的所有努力,吴春都看在眼里。实际上,58号马面的情况,她早有掌握。她就想看看这宇宙射线缪子成像技术,到底行不行。刘国睿在分析马面数据的过程中发现,砖和夯土之间好像有空腔,因为不确定,就反复向吴春求证。“小姑娘问,里面是不是有空腔?为什么会有?是真的有,还是我们收集的数据不够、计算方法不对而导致的偏差?我当时就欣慰地笑了。”但吴春并没有挑明,而是让她继续往下做。后来的成果报告会上,吴春正式向有关部门汇报称,兰州大学核技术创新与产业化团队的缪子成像结果,跟西安城墙管委会掌握的情况基本吻合。从此,她对他们更加信任了。这份信任,源于科研人员对自身的严格要求。在所有人看来,大胆质疑、小心求证是科学精神最重要的品格之一,他们恪守这一理念,初心不改。“为什么是这个,而不是那个?哪一步出了错,都无法导出正确结果。”刘军涛深谙其研究之复杂,意义之深远。刘军涛给学生们讲解缪子探测系统如今,团队已经扩展至30余人,每个人分工明确。导师的悉心培养和团队的互帮互助,让青年科研人员受益匪浅。在读研二的刘国睿,已在物理学经典期刊上发表研究论文,内容便是针对宇宙射线缪子技术在实地应用中出现的问题,并提出探索性的解决方案。每一位成员的心里,都有浩瀚宇宙。中华文明上下五千年,源远流长,在悠悠岁月中厚重沉淀。当前,随着科技已经成为考古发展新动力,他们在完成西安城墙成像工作的过程中,逐渐感受到缪子成像技术未来在科技考古领域的广阔前景。“这项技术以后在大型遗迹考古中一定会发挥作用,我们也想在科技考古领域做成标杆性的亮点。”刘军涛告诉记者,今年,敦煌研究院也与团队接触并计划建立合作关系,他们将在深入探测石窟内部结构的工作中共同努力。与不断发展的成像技术相辅相成的,是持续更新的应用场景。一直以来,缪子成像技术应用的瓶颈主要在于探测系统现场应用场景的适应性、成本控制等。在团队不断优化完善下,这项技术也从考古探测发展到了地质勘查、矿产勘探、集装箱检测等更广阔的空间。前段时间,团队又有了新思路:是否可以使用缪子成像技术探测青藏高原的冰川厚度,明晰岩石边界?对他们来说,制作轻量化、耐低温的缪子成像仪器,正在成为新的探索方向。值得一提的是,从仪器组装所需要的材料等硬件到算法系统软件,兰州大学核技术创新与产业化团队都致力于将其本土化。是啊,要想获得“中国方案”、作出“中国贡献”,必须实现技术国产化,这是每位科研人员肩负的重大使命。刘军涛欣喜地透露,现在团队这项技术的国产化率已经达到了95%左右。今年,一直致力于文物保护高质量发展的吴春,又与兰州大学团队取得了联系,看实验能否深入开展。她寄希望于下一步的合作能够证实这种技术更安全、更准确,同时辅以地质勘查,为墙体的修缮工程提供可靠参考,使得预防性保护更具前瞻性。“经过这样完整的检验之后,我们希望这种技术能够得到广泛应用。可以相信,科技将助力中国考古迎来‘黄金时代’。”吴春说。考古科技化,技术国产化,归根到底都是高水平科技自立自强。这是一条遥远而艰辛的路。每个人都渴望化身滴水,汇入时代的海河,信念灼灼。科技日报•深瞳工作室出品文中图片均由受访者提供微信编辑丨宋慈审核丨朱丽终审丨王郁
  • 中国科学家获得国际上首批宇宙大视场X射线聚焦成像天图
    2022年8月27日,在太原举行的第二届中国空间科学大会上,来自中国科学院国家天文台的研究人员发布了 EP-WXT 探路者的首批在轨实测结果。该设备是爱因斯坦探针(EP)卫星宽视场X射线望远镜(WXT)的一个实验模块,于北京时间2022年7月27日搭载由中科院微小卫星创新研究院抓总研制的空间新技术试验卫星(SATech-01)发射升空。该项实验旨在开展一系列在轨测试和观测实验,为未来EP-WXT尽早开展科学运行奠定基础。EP卫星是由中科院主导的卫星,欧洲空间局和德国马普地外物理研究所参与合作,计划于2023年底发射。该仪器采用了先进的微孔龙虾眼X射线聚焦成像技术,观测视场可达340平方度(18.6度x18.6度),是国际上首个宽视场X射线聚焦成像望远镜。相比国际上其它X射线聚焦成像望远镜,其视场大小提高了100倍左右。截至目前,仪器已开展了为期4天的在轨测试观测,成功获得了一批天体的真实X射线实测图像和能谱。这是国际上首次获得并公开发布的宽视场X 射线聚焦成像天图。仪器的关键器件包括36片微孔龙虾眼镜片组成的X射线聚焦镜组件和4片大阵列CMOS传感器组成的焦面探测器,均为我国自主研发。这也是首次将CMOS传感器应用于空间X射线天文探测。EP卫星将搭载12个相同的 WXT望远镜模块,总视场可达3600多平方度。科学家利用该仪器首先观测了银河系中心天区(图1)。结果显示,单次观测就能够同时探测到多个方向上的X射线源,包含了恒星级质量黑洞和中子星。观测也捕捉到一个X射线辐射增亮数倍的中子星X射线双星(图2左)。同时,从数据中还能获得这些天体X射线辐射强度随时间变化的信息,以及天体的X 射线能谱。观测结果与仿真结果(图2右)相比高度一致。该仪器也观测了银河系的近邻星系——大麦哲伦云(图3),单次观测即可覆盖整个星系,同时探测到包含黑洞和中子星的多个X射线源。通过未来更多的观测,宽视场望远镜将能高效地监测天体的X射线光变,预期将发现新的暂现源。图4展示了对著名的天鹅座超新星遗迹的成像结果,表明了龙虾眼望远镜对弥散源的成像能力。对超新星遗迹Cas A的观测,则充分展示了CMOS探测器优秀的X射线能谱分辨率(图5)。仪器还探测到距离8.14亿光年的遥远类星体的X射线,证明其对较暗弱的X射线源的探测能力(图6)。初步测试结果表明,仪器功能正常,为满足EP宽视场望远镜的科学需求奠定了坚实的基础。EP卫星首席科学家、中科院国家天文台袁为民博士表示,“这些结果十分激动人心,表明我们的仪器能够获得预期科学数据,为此我们付出了十多年的努力。我对未EP的科学能力充满信心“。国际上该领域著名专家,英国莱斯特大学P. O’Brien教授和R. Willingale教授表示:“WXT的首光结果令人印象深刻。这是第一个宽视场X射线聚焦望远镜,创造了一个新记录。… … 几十年来,我们一直在期待一个真正的宽视场软X射线望远镜,EP-WXT探路者的成功运行令人振奋。这项技术将对X射线天空的监测带来变革性的推动,这项试验也表明了EP卫星巨大的科学潜力。”该仪器由中科院国家天文台和中科院上海技术物理研究所联合研制,国家天文台X射线成像实验室于2011年开始研发龙虾眼X射线成像技术,与北方夜视技术股份有限公司开展密切合作,联合研发核心微孔光学器件,器件由北方夜视提供。中科院国家空间科学中心和中科院电工研究所也参与仪器的研制。SATech-01是中科院空间新技术试验卫星系列的首发星,由中科院立项。EP卫星由中科院空间科学(二期)战略性先导专项支持,中科院国家空间科学中心是空间科学(二期)先导专项总体单位,卫星由中科院微小卫星创新研究院抓总研制。图1 宽视场X射线望远镜模块对银河系中心天区单次观测获得的X射线图像(视场18.6度x18.6度)。背景为Gaia的光学全天图像(银河系Gaia图片来自https://www.sci.news/astronomy/gaia-second-release-05950.html)。 图2 对银河系中心天区单次观测获得的X射线图像(左图)和仿真图像(右图),左右图的观测时长同为800秒,视场18.6度x18.6度。(左图中红色标记的是捕捉到的一个变亮的中子星X射线双星)。图3 左图:近邻星系大麦哲伦云的DSS光学图像(https://archive.eso.org/dss/dss);右图:宽视场X射线望远镜对大麦哲伦云进行700秒观测后得到的X射线图像(1个CMOS视场,9.3度x9.3度)。图4 观测到的天鹅座环状星云 (角直径2.5 度) 的X射线伪彩色图像(颜色代表光子的能量,红色0.3-0.6 keV 绿色0.6-0.8 keV 蓝色0.8-2.0 keV),观测时长为600秒。图5 观测到的超新星遗迹Cas A 的X射线能谱,观测时长为1100秒。分析表明能谱分辨率为150 eV图6 对遥远的类星体3C 382(红移0.056,距离8.14亿光年)的探测,表明仪器具有对较暗弱X射线源的探测能力
  • 意大利通过X射线衍射、电子探针等技术首次获得白磷钙矿结构完整表征
    意大利国家研究委员会晶体学研究所(CNR-IC)与罗马一大、罗马三大以及英国ISIS脉冲介子和中子源合作开展了一项研究,详细分析了白磷钙矿(whitlockite)的结构,并首次获得完整表征,这一研究也将有助于改进生物医学材料的性能。相关论文发表在《Crystals》上。白磷钙矿是一种稀有的天然磷酸钙,存在于陆地花岗岩岩石和球粒陨石中,可作为合成磷酸三钙的天然替代物。合成磷酸三钙是一种生物材料,用于骨科和牙科领域的填料和涂料。合成磷酸三钙是合成羟基磷灰石的替代品,后者与人类骨骼与牙齿的矿物质成分非常相似,但在某些情况下(例如用作骨假体)表现得很脆弱。研究人员在通过X射线衍射对白磷钙矿进行初步分析,利用中子衍射氢原子进行定位,使用电子探针以确认其化学成分,并使用红外光谱法对衍射结果进行补充。研究人员表示,基于对天然材料的研究,可以进一步改进与其类似的合成材料的性能,降低其脆弱性以及用作假体时的排斥风险,从而改善假体的安全性及整体表现,更好地应用于生物医学等领域。
  • 2021数理科学部发布X射线反射镜等10个重大项目指南,拟资助5个
    8月5日,国家自然科学基金委员会发布“十四五”第一批重大项目指南及申请注意事项。其中,2021年数理科学部共发布10个重大项目指南,拟资助5个重大项目,项目申请的直接费用预算不得超过1500万元/项。2021年数理科学部共发布10个重大项目指南如下:“超大型航天结构空间组装动力学与控制”重大项目指南“材料长效使役性能高通量表征的力学理论与实验方法”重大项目指南“活动星系核反馈在星系演化中的作用”重大项目指南“致密天体活动与爆发的宽能段时变与能谱研究”重大项目指南“基于强太赫兹源的声子调控诱导电子新结构与物性研究”重大项目指南“基于铌酸锂薄膜的超高速多维光场调控及其应用基础研究”重大项目指南“粲夸克衰变中标准模型的精确检验”重大项目指南“基于LHAASO实验的粒子天体物理前沿问题研究”重大项目指南“先进核能系统中材料的若干协同损伤作用机理研究”重大项目指南“高精度X射线反射镜的关键科学与技术问题”重大项目指南10个重大项目指南关键内容如下:“超大型航天结构空间组装动力学与控制”重大项目指南一、科学目标瞄准超大型航天结构的减重设计和空间组装需求,提出满足在轨动力学要求的组装结构轻量化设计新理论;建立空间组装过程的“轨道-姿态-结构”耦合动力学新模型,揭示空间组装过程的耦合动力学演化新规律;提出空间组装过程的“轨道-姿态-结构”一体化稳定控制新理论;探索解决超大型航天结构动力学试验“天地一致性”问题的新方案。二、研究内容(一)超大型航天结构的轻量化和可控性设计。(二)超大型航天结构空间组装过程的动力学演化。(三)空间组装过程轨道-姿态-结构一体化稳定控制。(四)空间组装过程动力学与控制的地面模拟试验。“材料长效使役性能高通量表征的力学理论与实验方法”重大项目指南一、科学目标建立基于全场分析的梯度材料表征力学理论,发展多重物性宏微观高通量测试技术,通过结构与性能关系的多尺度机理研究和机器学习,构建材料短时数据与长效使役性能之间的映射关系,实现对其使役寿命的精准预测,应用于具有重要战略意义的高速列车车轴材料和全固态电池材料。二、研究内容(一)基于梯度样品全场分析的高通量表征力学理论。(二)梯度样品宏观层次高通量表征实验方法。(三)梯度样品微观层次高通量表征实验方法。(四)机理驱动的使役行为跨时空尺度映射。“活动星系核反馈在星系演化中的作用”重大项目指南一、科学目标获得不同光度活动星系核风的观测证据、以及风的速度、质量流与活动星系核光度的定量关系;将低红移星系气体的探测深度和中高红移星系的光谱数量提高一个数量级,并结合数值模拟,得到在不同红移处星系以及星系际介质的各种性质,特别是星系的恒星形成率、气体含量、星系际介质的X射线、发射和吸收线,及其与活动星系核反馈的内在关系;发展并完成星系尺度上的高分辨率数值模拟程序,获得不同的反馈模式分别对星系中气体和恒星形成率的影响以及风与辐射各自在反馈中起到的作用;将基于最真实和准确的活动星系核物理,完成一组包含新模型的宇宙学数值模拟,大幅改进目前的宇宙学尺度星系形成与演化研究。二、研究内容(一)活动星系核风的观测研究:反馈的内边界条件。(二)星系尺度上的活动星系核反馈:观测研究。(三)星系尺度上的活动星系核反馈:数值模拟研究。(四)星系外大尺度上的研究:观测约束以及宇宙学数值模拟。“致密天体活动与爆发的宽能段时变与能谱研究”重大项目指南一、科学目标发现几百个伽马射线暴,建立MeV能区高统计性的伽马暴样本,理解伽马暴相对论喷流的伽马射线辐射机制;监测上百例引力波、高能中微子、快速射电暴等爆发现象,揭示它们的爆发机制以及黑洞、中子星等致密天体的并合物理过程和机制;系统地获得十余个吸积中子星双星和黑洞双星的高能X射线时变和能谱演化特征和分类,理解黑洞周围的吸积过程、相对论喷流的产生以及硬X射线辐射机制;测量约十个致密星(中子星或者黑洞)的基本参数(质量、磁场、自转),理解致密天体的基本性质;开展银道面巡天,监视约200个X射线天体的活动,发现致密天体硬X射线新的活动并且开展后随观测证认研究。二、研究内容(一)极端天体爆发的物理机制。(二)黑洞X射线双星系统吸积与喷流过程。(三)中子星X射线双星系统吸积盘与中子星相互作用。(四)河内宽能段的巡天监测和后随观测研究。“基于强太赫兹源的声子调控诱导电子新结构与物性研究”重大项目指南一、科学目标围绕声子调控诱导电子新结构与新奇物性的研究目标,在研究手段上发展必要的突破现有太赫兹光源性能极限的强场产生新方法,实现具有宽频(整体频谱范围覆盖0.1-50 THz)、强场(场强突破GV/m)、高重复频率、频谱连续可调等优异特征的强场太赫兹光源,并通过人工微结构实现太赫兹近场强光场微区再增强条件;重点开展强场下非平衡态电子的多自由度(电、热、磁、光、谷、轨道)动力学物理过程研究,揭示光子与各量子激发在超强太赫兹光场范畴内的相互作用新机理(如电子、声子及光子复合激发机理);探索实现声子态调控的远离平衡态的新型量子态(如高温超导相、拓扑量子相、Floquet量子态等)及化学反应(如合成氨反应)的远离平衡态相干操控新效应。二、研究内容(一)强场太赫兹源调控电子行为的理论研究。(二)超强太赫兹光场构筑及实验方法研究。(三)强场太赫兹源对量子材料相干调控研究。“基于铌酸锂薄膜的超高速多维光场调控及其应用基础研究”重大项目指南一、科学目标针对片上全域光场快速调控的需求,通过超限制备技术突破铌酸锂薄膜新微纳结构、少层结构加工工艺,利用铌酸锂材料自身的多重特性,实现对光场以及部分相干光场的多维度超高速调控,实现对光场的强局域与非线性调控;发展基于电光效应的人工微结构光场多维调控新方法,并阐明其物理机理。从基础铌酸锂薄膜材料微纳加工技术开始,到片上集成光子器件,最后到片上光场快速调控,建立不同于现有光场调控的新体系。二、研究内容围绕基于铌酸锂薄膜的超高速多维光场调控技术,发展基于电光效应的人工微结构光场多维调控新机理与方法;突破现有微纳加工技术的能力限制,开展铌酸锂薄膜刻蚀机理及微纳芯片制造工艺研究,利用高品质铌酸锂薄膜光场调控芯片实现超高速多维光场调控及其应用。(一)铌酸锂刻蚀机理及铌酸锂薄膜微纳芯片制造技术。(二)铌酸锂薄膜莫尔晶格结构中光场局域及片上非线性增强。(三)铌酸锂薄膜少层微纳体系时空光场多维联合调控。(四)基于铌酸锂薄膜的光场相干性快速调控及应用。“粲夸克衰变中标准模型的精确检验”重大项目指南一、科学目标利用BESIII采集的海量粲强子样本,特别是在3.773 GeV采集的20 fb-1的数据,充分发挥近阈粲强子成对产生、背景低和量子关联等独特优势,开展中性粲介子量子关联特性的研究,精确测量相关不同末态的平均强相位差和CP本征态成分比例,为CKM矩阵的相角的精确测量提供关键参数;精确测量CKM矩阵元和,检验CKM矩阵的幺正性,探索新的CP破坏来源;精确测量粲强子衰变常数和半轻衰变形状因子,与格点QCD理论计算值比较,刻度格点QCD计算,探寻超出标准模型新现象;系统地研究粲强子的强子末态衰变,研究强子谱学和末态相互作用,检验夸克味对称性;研究粲强子衰变,高精度检验轻子普适性,寻找稀有或禁戒的衰变过程,精确检验标准模型理论、寻找超出标准模型的新物理;在理论上发展和完善非微扰能区的格点QCD计算和有效理论模型,理解粲强子弱衰变的动力学,检验相关的唯象模型,提高对粲强子衰变中CP破坏、衰变常数和形状因子等理论预言的精度。二、研究内容(一)阈值处中性粲介子量子关联性研究。(二)粲强子的强子末态衰变机制研究。(三)精确测量CKM矩阵元和粲介子衰变常数。(四)精确测量粲介子半轻衰变形状因子和检验轻子普适性。(五)粲强子衰变中探索新粒子和新相互作用。“基于LHAASO实验的粒子天体物理前沿问题研究”重大项目指南一、科学目标瞄准银河系内1015eV宇宙线起源这一重大问题,基于LHAASO实验数据精确测量每个超高能伽马射线源的辐射能谱、空间分布和时变,联合国内外射电、光学、X射线等设备数据完成相应天体源的多波段观测和分析,建立和优化多波段辐射模型,研究带电粒子在天体中的加速过程与辐射特征,寻找宇宙线起源和加速证据,同时基于LHAASO数据完成银盘弥散伽马射线、膝区宇宙线分成分能谱和宇宙线大尺度各向异性测量,建立宇宙线在银河系内的起源、加速和传播的整体图像。二、研究内容(一)超高能伽马射线源的搜寻与测量。(二)伽马射线源多波段多信使研究。(三)伽马射线源内的粒子加速、辐射与输运过程的研究。(四)星际介质中弥散伽马射线相关物理研究。(五)基于宇宙线的能谱和各向异性测量研究其起源和传播。“先进核能系统中材料的若干协同损伤作用机理研究”重大项目指南一、科学目标瞄准服役于聚变能等先进核能的典型材料,充分利用国内大型托克马克、高热负荷测试和多束离子辐照等装置,厘清高能中子-嬗变氢氦、中子辐照-粒子流-热负荷两类协同损伤作用的耦合机制;阐明多种因素作用下材料遭受的协同损伤效应的机理;建立能够模拟上述协同损伤作用的实验与计算模拟方法;基于计算和实验模拟,实现在聚变堆等综合服役环境下国产低活化钢、氧化物弥散强化(ODS)钢、钨基合金等关键材料的筛选及性能评估。二、研究内容(一)高能中子辐照的离位损伤与氢、氦对材料的协同损伤作用机制研究。(二)高能中子辐照离位损伤与热负荷、粒子流对聚变堆第一壁协同损伤的作用机制研究。(三)多因素协同损伤效应的长时大尺度计算模拟方法建立。(四)聚变中子-氢-氦协同效应的多离子束模拟实验方法建立。“高精度X射线反射镜的关键科学与技术问题”重大项目指南一、科学目标基于超高精度反射镜表面形貌对相干X射线波前传输的影响,研究单晶硅纳米形貌的原子级构建规律,揭示超强X射线辐照下单晶硅材料和薄膜的损伤机理及力热变形机制;建立跨尺度全频谱纳米表面形貌的在线和离线高精度表征方法,发展大尺寸超高精度反射镜的复合加工技术和集成技术,实现相干X射线波前的在线实时操控和自适应主动补偿;形成具有自主知识产权的X射线高精度反射镜的全链条创新技术体系。二、研究内容(一)大尺寸复杂轮廓单晶硅纳米精度表面形貌构造规律研究。(二)全频谱纳米形貌的综合检测评估方法研究。(三)高亮度相干X射线与材料表面相互作用机制。(四)光机集成系统中跨尺度表面形貌的多物理场影响规律研究。
  • Advacam公司 Minipix X射线探测器样机免费试用
    MiniPIX是一款来自捷克的掌上型光子计数X射线探测器,内含由欧洲核子研究组织(CERN)研发的Timepix芯片(256 x 256 ,像素大小55 μm)。传感器支持硅厚度300μm/500微米,碲化镉厚度1000μm可选。采用USB2.0的接口读出,速率为45帧/秒。MiniPIX探测器可实现粒子和电离辐射的可视化,内置的能量敏感成像能力为射线成像带来了一个新的维度。紧凑的尺寸使MINIPIX可内置于用于难以成像的管道或受限的空间里。MiniPIX不仅为广大科研工作者提供了更多的选择,也可作为教学工具,为高校课堂的实用教学提供了更多的可能性。产品主要特点:物超所值,与传统X射线探测器相比更高的性价比;体积小巧,形似U盘;通过USB接口连接,笔记本电脑即可运行 (支持Windows, MacOS or Linux);人性化软件操作界面应用方向:能量色散XRD 太空辐射监测 氦离子照相 激光康普顿散射伽玛射线瞄靶 电子背散射衍射北京众星联恒科技有限公司为advacam公司在中国的独家代理,现可提供MiniPIX样机免费试用,如有需要,请联系我司工作人员预约时间。Advacam S.R.O.源至捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微包装、电子产品设计和X射线成像解决方案。Advacam最核心的技术特点是其X射线探测器(应用Timepix芯片)没有缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系,其产品及方案也应用于航空航天领域。
  • 阔别四年,终于再见面了!第三届射线成像新技术及应用研讨会
    第三届射线成像新技术及应用研讨会将于 2022 年 11 月 2 - 11 月 4 日在上海举行,射线成像技术应用与发展在军用和民用领域发挥了关键作用,随着技术的发展,传统的射线成像方法不能满足现有的需求,射线成像新技术通过新颖的物理检测原理、先进的探测技术、新的射线成像方法、图像重建和定量分析相结合,提高了成像质量和效率。前沿射线成像技术被广泛地应用于国防、生物医学、材料科学等领域。大会每两年举办一届,众星联恒作为成像大会的老朋友,一直期待着第三届的到来。本次会议我们将依旧作为赞助商参与。同时,我司技术总监将于在大会上分享关于实验室 X 射线相衬成像技术核心调制和探测器件的技术分析,我们诚挚邀请各位专家学者莅临大会和我司展位交流洽谈,期待与您不见不散!壹 /会议时间地点时间:2022 年 11 月 2 日—11 月 4 日(11 月 2 日报到)地点:上海大华虹桥假日酒店(上海市闵行区七莘路 3555 号)贰 /会议议题 X 射线光源和探测器先进 X 射线光源研究成像探测器技术时间、空间、能谱分辨探测技术探测器标定其它相关技术X 射线成像方法及技术同步辐射 X 射线成像方法及技术X 射线自由电子激光成像方法及技术实验室 X 射线光源成像方法及技术人工智能在射线成像中的应用中子、质子及伽马射线成像方法及技术中子成像方法及技术质子成像方法及技术伽马射线成像方法及技术其它相关射线成像技术(电子、μ 子等)应用研究生物和医学应用安全检查无损检测材料科学辐射计量ICF、深空探测新型 CT 技术应用土壤微结构与功能电化学其它应用叁 /会议日程
  • 【喜讯】热烈祝贺中国散裂中子源微小角中子散射谱仪通过验收
    热烈祝贺中国散裂中子源微小角中子散射谱仪通过验收NEWS 近日,经过来自华南理工大学、中国科学院长春应用化学所、中国科学院上海高研院、中国原子能科学研究院、香港城市大学等单位的验收组专家的一致同意,世界首台基于散裂中子源的微小角中子散射谱仪项目顺利通过了验收。图片来源于https://ihep.cas.cn/xwdt2022/gnxw/hotnews/2023/202307/t20230717_6810784.html重要意义 微小角中子散射谱仪将应用于关系国计民生的重大前沿科学问题攻关,为粤港澳大湾区和我国的相关产业技术升级提供先进的研究支撑平台。解决方案 中国散裂中子源的科研工作者在能量分辨中子成像谱仪上开发了小角中子散射和小角X射线散射(SAXS)的联用方法学。 其中,由Xenocs公司提供的Nano-inXider作为重要基础硬件,根据科研工作者对联用SAXS技术参数和相关结构的要求,Xenocs公司的专业SAXS工程师在标准版Nano-inXider做出了以下改造:针对面向线站轨道及中子真空管道的物理结构,对Nano-inXider进行了整体框架及底部轨道的重新设计及改造;为了更好地使用联用方法学对样品进行测试,Xenocs团队同时对样品腔及样品台进行了联用改造,考虑到固体样品、粉末样品及液体样品等不同形态下的测试需求,满足了实时原位同步采集中子散射及X射线散射结果的要求;另外为了最大提升Nano-inXider的测试效率,对其进行了联用模式和离线模式的不同适配。在联用模式下,通过电子学器件的联动,使其可与中子谱仪实现安全联锁联控,并通过软件的控制实现联用模式测试结果的一键触发及同步采集。硬件部分- 整体框架- 底部轨道- 样品台- 样品腔软件、电子学部分- 安全联锁- 测试模块 Nano-inXider因其简单易用的特点,以及智能化、集成化的设计使其适用于各种实验室环境。Xenocs致力于为客户提供全方位、专业化、实时且周到的服务,满足您多样化的需求。
  • 美宇航局筹划更先进的望远镜——X射线成像偏振探测器
    美国宇航局预计在2017年初宣布概念研究方案,航天器的科学仪器预算为1.25亿美元  据腾讯太空(罗辑/编译):在地球轨道上,美国宇航局所管辖的空间望远镜是全球最多的,性能也最为先进,几乎覆盖了所有的观测波段。2018年,美国宇航局将发射迄今最先进的空间望远镜,詹姆斯-韦伯望远镜,这是一具红外线天文台。不过,美国宇航局又在筹划一种更先进的望远镜,主要工作波段为X射线,被命名为X射线成像偏振探测器,目前已经入围了三个方案,预计在2020年底会发射升空,将作为X射线天文学观测上的主力。  目前入围的三个方案都是目前X射线观测上的顶尖水平,比如来自加利福尼亚技术研究所的SPHEREX望远镜,美国宇航局马歇尔太空飞行中心提出的IXPE计划,以及美国宇航局戈达德太空飞行中心的PRAXyS方案。每个科学小组会获得100万美元的资金支持,美国宇航局也会进行为期11个月的任务概念研究。预计在2017年初宣布概念研究方案,航天器的科学仪器预算为1.25亿美元,并安排了5000万美元的发射费用。  IXPE和PRAXyS这两个方案主要目标是个宇宙中高能事件,比如恒星工厂和恒星死亡后的情景,这些过程可产生强大的X射线信号。此外,科学家还希望收集黑洞周围的X射线信号,超致密的中子星、恒星爆炸、遥远星系中央内核的X射线信号等。IXPE采用X射线偏振技术,可以对中子星、脉冲星星云、恒星、黑洞等主要宇宙天体进行研究,符合美国宇航局的任务要求。  PRAXyS方案则使用了一种不同的方法来研究X射线天文学,PRAXyS任务的首席研究员基思认为PRAXyS方案类似于GEMS引力与极端磁场研究项目,后者在2012年被美国宇航局取消。SPHEREX任务概念将对天空进行全面扫描,时间至少持续两年,还可以观测宇宙中的引力波。此外,SPHEREX任务还可以对一些恒星系统演化的早期阶段进行研究,比如冰是否存在于恒星周围。
  • 我科学家发布首批大视场X射线聚焦成像天图
    除了用于医学检测,X射线还可以作为宇宙信使,用来探索遥远而神秘的星河。  在第二届中国空间科学大会上,中科院国家天文台研究人员发布EP-WXT探路者观测到的首批天体宽视场X射线图像和能谱。这是国际上首次获得并公开发布的宽视场X射线聚焦成像天图。  “EP-WXT探路者是爱因斯坦探针(EP)卫星宽视场X射线望远镜(WXT)的一个实验模块,于北京时间2022年7月27日搭载中科院的空间新技术试验卫星发射升空。”8月28日,EP卫星首席科学家、中科院国家天文台袁为民博士告诉记者,该仪器正在开展一系列在轨测试和观测实验,目的是为未来EP卫星开展科学运行奠定基础。  EP卫星是一颗空间天文探测卫星,其任务是在软X射线波段开展大视场时域巡天监测,旨在系统性地发现宇宙高能暂现天体,监测天体活动。该卫星计划于2023年底发射。  而该仪器则是国际上首个真正的宽视场X射线聚焦成像望远镜。相比其他X射线聚焦成像望远镜,它的观测范围扩大了100倍或更多,其关键器件均由我国自主研发。  利用该仪器,科学家首先观测了银河系中心天区。  结果显示,该仪器的“视野”足够宽广,一次观测就能够同时探测到多个方向上的X射线源。其中,包括恒星级质量黑洞和中子星。  更重要的是,从观测数据中,研究人员还能获得这些天体X射线辐射强度随时间变化的信息,以及天体的X射线能谱。  “该仪器还观测了银河系的近邻星系——大麦哲伦云,一次观测即可覆盖整个大麦哲伦云星系。”袁为民说,同时也探测到包含黑洞和中子星在内的多个X射线源。  此外,该仪器还探测到距离地球8.14亿光年的类星体的X射线。这证明,它具有探测较暗弱X射线源的能力。  初步测试结果表明,仪器功能正常,为未来EP卫星宽视场望远镜成功开展观测工作奠定了坚实的基础。  对此,袁为民说:“这些结果十分激动人心,表明我们的仪器能够获得预期科学数据。为此,我们付出了十多年的努力。我对未来EP卫星的科学能力充满信心。”  在视频会上首次看到仪器观测结果后,X射线观测领域著名专家、英国莱斯特大学奥布赖恩教授表示:“这是第一个宽视场X射线聚焦望远镜,创造了一个新纪录。几十年来,我们一直在期待一个真正的宽视场软X射线望远镜,EP-WXT探路者的成功运行令人振奋。这项技术将对X射线天空的监测带来变革性的推动,这项试验也表明了EP卫星巨大的科学潜力。”  “未来通过更多的观测,宽视场望远镜将能高效地监测天体的X射线光变,预期将发现新的暂现源,特别是更暗弱、遥远或稀有的剧变天体。”袁为民解释,暂现源是指在短时间内出现,然后很快消失的天体。
  • 日本将发射能精确测量深空X射线的太空天文台
    X射线成像和光谱任务(XRISM)将于8月28日在日本种子岛航天中心由H-IIA火箭发射升空。该任务旨在观察来自深空的X射线,并以前所未有的精度识别它们的波长。这将使研究人员更深入地了解从星系团如何形成到黑洞如何产生高能粒子喷流的天体物理现象。  XRISM是日本宇宙航空研究开发机构(JAXA)和美国国家航空航天局(NASA)的一项联合任务,欧洲空间局(ESA)也将有进一步的贡献,预计将运行3年左右。  据悉,该火箭还将发射智能探月着陆器SLIM,其目的是展示在月球表面精确选择着陆点的能力。如果成功,这将是JAXA首次登陆月球。  XRISM的独特之处在于它的X射线量热计,这是NASA在20世纪80年代开发的一项技术,可以通过百万分之一度的温度变化探测电磁辐射。单个X射线光子的能量与其波长有关,了解这一点将使天文学家能够区分化学元素的特征,帮助天体物理学家重建宇宙的历史。  XRISM的量热计还能够获取天体的光谱,包括星系间气体和黑洞吸积盘。而现有的X射线天文台只能采集点状光源的光谱,比如单个恒星。对于运动中的X射线源,光谱会因多普勒效应而发生偏移,例如,这可以揭示一个星系团是否由两个较小的星系团合并而成。星系间的物质也经常被位于星系中心的超大质量黑洞产生的物质喷流搅动。绘制这些漩涡的地图可以帮助天体物理学家了解喷流的神秘起源,以及它们是如何影响星系演化的。  XRISM将是日本第四次尝试在太空中部署X射线量热计。  2016年2月,JAXA发射了ASTRO-H卫星,后来更名为“瞳”。仅仅5周后,当仪器仍在进行校准和测试时,一个软件错误导致航天器失去控制并解体。  XRISM科学团队成员、美国芝加哥大学天体物理学家Irina Zhuravleva参与了“瞳”的研究。她说,2016年发表的研究结果“非常非常惊人”,而真实数据要比理论预测更详细。  “我们的模型缺少一些线条,观测结果表明我们对简单原子跃迁的理解是多么地不完整。这也激发了我们在实验室环境中研究等离子体的新兴趣。”Zhuravleva说,“我们终于有望开启X射线天文学的一个全新时代。”
  • 光子计数、像素化X射线探测器用于无损检测
    无损检测(NDT)无损检测(NDT)是指在不破坏样品可用性的条件下,对材料、部件或组件的裂缝等不连续性或特性差异进行检查、测试或评估。基于光子计数X射线能谱成像的无损检测技术提供了样品的额外材料信息,以及卓越的对比度和空间分辨率。标准射线照相X射线成像可以提供被检样品的黑白强度或密度图像,如果图像分辨率和信噪比合适,则可观察到何处有缺陷、杂质或裂纹。而基于光子计数X射线能谱成像的无损检测技术提供了样品的材料信息,同时具有良好的对比度和高空间分辨率。光谱信息可以用于区分不同的材料,可识别感兴趣的材料或计算其在样品中的含量。下图是用WidePIX 5x5 CdTe光子计数探测器获取的一张单次曝光的高分辨率谱图像,不同的材料用不同的颜色表示。ADVACAM推出了一系列为复合材料测试而优化的光子计数X射线探测器,探测器对低能段探测也具有优秀的灵敏度和探测效率,同时有很高的动态范围,十分有利于轻质材料,如碳纤维、环氧树脂等的检测。即使是具有挑战性的缺陷,如深层层压褶皱、弱连接、分层、孔隙率、异物和软材料中的微小裂纹,也可以在55μm或更高的空间分辨率下检测到。搭载Advacam探测器的机器人系统进一步扩展了光子计数X射线探测器的功能。轻质材料及复合材料机器人系统正在检查滑翔机副翼,右侧机械臂上装有Advacam探测器。该机器人系统可以从不同角度进行X光检查,以更好地定位缺陷。高帧率的光子计数X射线探测器还可以对样品进行实时检测,可用于质量控制实验室或在生产线上使用。最后得到的X射线图像揭示了副翼内部复合结构有空洞和杂质。X射线光子计数探测器不仅适用于检测轻质材料,基于高灵敏度的 CdTe 传感器(1mm厚)的探测器也可用于焊缝检测。根据ISO 17636-2标准,可以达到Class B的的图像质量。焊缝检查成像质量在带有像质计IQI和DIQI的BAM-5和BAM-25钢焊接试样上,测试WidePIX 1x5 MPX3 光子计数X射线探测器延迟积分TDI模式下的成像质量。TDI模式是探测器操作的其中一种模式,设备会生成沿探测器运动的物体的连续X射线图像。BAM-5 8.3mm钢焊缝BAM-25 6mm 钢焊缝BAM-5样品背面D13线对的信号BAM-5样品背面10FEEN IQI线对用DIQI测量空间分辨率。分辨出的最窄线对是D13(线宽50μm,间距50μm)。探测器对比度用10FEEN像质计测量。置于8.3mm钢制样品背面包括16号线(0.1 mm厚)在内的线都被分辨出来。8.3mm厚BAM-5样品和6 mm厚BAM-25钢的信噪比测量值SNRm分别为148和190。信噪比受限于X射线管功率。探测器具有24位计数器深度,信噪比可高达4000。归一化信噪比SNRn(根据探测器分辨率归一化),6mm厚钢为336,8.3mm厚钢为262。总结 光子计数探测器能够提供更高的灵敏度、空间分辨率、对比度和信噪比;能量范围从 5 keV 到数百 keV 甚至 MeV,可检测非常轻的复合材料到厚的焊接部件。此外,直接转换光子计数型X射线探测器能够进行X射线能量甄别,即,仅高于一定能量的光子会被记录,此方法能够抑制较低能量的散射辐射并提高图像对比度。通过这种X射线新成像技术,可以检测到过去无法通过传统X射线进行无损检测的样品,无损检测设备制造厂家可以将系统中的探测器升级为光子计数X射线探测器,以扩展系统类型和客户群。Advacam S.R.O.源至捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像相机和X射线成像解决方案。Advacam最核心的技术特点是其X射线探制器(应用Timepix芯片)没有拼接缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,也在积极探索和推广光子计数X射线探测技术在中国市场的应用,目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。同时我们也有数台MiniPIX样机,及WidePIX 1*5 MX3 CdTe的样机,我们也非常期待对我们探测器感兴趣或基于探测器应用有新的idea的老师联系我们,我们可以一起尝试做更多的事情。
  • 第四届X射线衍射技术及应用进展网络研讨会日程公布,报名进行中!
    X射线衍射技术是通过对物质进行X射线衍射,分析其衍射图谱,获得物质的成分、内部原子或分子的结构或形态等信息的研究手段。物质结构分析尽管可以采用中子衍射、红外光谱、穆斯堡尔谱等方法,但X射线衍射技术是最有效、应用最为广泛的手段,应用范围已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中。为促进相关人员深入了解X射线衍射技术发展现状,掌握相关应用知识,仪器信息网将于2023年7月18日组织召开第四届X射线衍射技术及应用进展网络研讨会,邀请业内技术和应用专家,聚焦X射线衍射前沿技术理论、分析方法、热点应用领域等分享报告。 会议日程 报告嘉宾及报告内容(按报告时间排序)《原位X射线衍射技术及其应用》报告嘉宾:程国峰(中国科学院上海硅酸盐研究所研究员)报告摘要:原位X射线衍射结构表征技术,即在样品上加载温度场、电场、力场、磁场等外场,或在样品发生电催化、电化学、光催化等反应时采集X射线衍射信号,该技术可以应用在粉末衍射仪、单晶衍射仪、高分辨衍射仪、和二维衍射仪上,通过数据分析,就可以得到材料结构信息与温度、力、电、磁等的关系,电化学、电催化等反应的实时结构变化。本报告对原位X射线衍射技术及相关应用进行介绍。《安东帕全自动粉末X射线衍射仪先进技术及其应用介绍》报告嘉宾:郭健宁(安东帕(上海)商贸有限公司 应用工程师)报告摘要:自20世纪50年代以来,安东帕在X射线技术领域持续开展研发,1957年推出全球首台商业化实验室SAXS仪器Kratky camera。安东帕延续SAXS的创新精神,凭借着精密加工技术, 成为非环境XRD附件的市场领导者,有着最广泛的产品组合。后相继推出高亮度光源Primux系列,高精度多层膜光学元件和X射线衍射仪。本次报告介绍安东帕全新的自动化多功能粉末X射线仪- XRDynamic 500。这是一款多功能粉末衍射仪,提供全自动的和真空的光学器件以及自动化仪器和样品校准程序,结合了无与伦比的数据质量和最高的测试效率,使初学者和专家都可以轻松快速地收集高质量地XRD数据。《掠入射X射线衍射原理、测试方法及其应用》报告嘉宾:张吉东(中国科学院长春应用化学研究所研究员)报告摘要:掠入射X射线衍射是一种用于薄膜材料结晶结构表征的高级测试方法,具有可以消除或减小基底信号的影响、增强衍射信号、得到薄膜的三维结晶结构信息等优点,目前被广泛应用于功能薄膜材料的研究中。本报告将介绍掠入射X射线衍射的原理和测试方法以及数据分析方法,并结合其在有机高分子薄膜材料中的典型性结果展示该方法的应用。《布鲁克全新台式XRD-D6 Phaser跨界而来》报告嘉宾:王通(布鲁克(北京)科技有限公司 XRD销售经理)报告摘要:布鲁克全新台式XRD-D6 Phaser,突破了台式XRD的限制,对大型落地式仪器发起挑战,拥有与大型设备相同甚至超过大型设备的信号强度 原位变温测试、薄膜掠入射衍射、薄膜反射率、应力测试、织构测试、毛细管透射、甚至PDF测试这些以前只能在大型仪器上实现的功能,如今D6 Phaser都可以实现!本报告详细介绍了布鲁克新款D6 Phaser台式衍射仪的特点和功能。《XRD研究单晶超导薄膜过热熔化机制》报告嘉宾:饶群力(上海交通大学表面与性能分析平台副主任/研究员)报告摘要:在熔融织构法制备超导块材过程中,需要高质量的超导薄膜作为籽晶。具有高过热熔化能力的超导薄膜是这一制备工艺的关键。通过X射线衍射技术,揭示了过热熔化的微观机制,利用该机制成功制备了世界最大的单晶超导块材。《X射线原理及其应用技术》报告嘉宾:董学光(中铝材料应用研究院高级工程师)报告摘要:本报告主要涉及以下内容:X射线的发现;X射线的产生机制-普通X光;X射线的产生机制-同步辐射X光;X射线衍射应用技术;X射线衍射的核心原理;X射线应用举例;X射线残余应力测试技术难点解析。《基于XRD数据精修晶体结构模型的数学原理》报告嘉宾:贺蒙(国家纳米科学中心正高级工程师)报告摘要:晶体结构精修过程本质上是一个不断调整结构模型参数以使结构模型与XRD数据最为吻合的过程,本报告将讲述这一过程背后的数学原理。通过了解相关数学原理,加深对于结构精修本质的认识,了解单晶结构精修和Rietveld法粉末衍射结构精修的区别,并正确理解各种结构精修残差因子(R因子)的意义。《XRD数据分析--物相鉴定和定量分析》报告嘉宾:徐春华(国际衍射数据中心中国区首席代表)报告摘要:利用粉末X射线衍射仪来分析物相的种类和含量已经成为材料分析的重要手段之一,本报告主要围绕粉末XRD数据的分析展开,包含XRD数据物相分析的来源、物相鉴定方法和定量分析方法的介绍等。《X射线衍射技术在药品研发和申报环节中的应用》报告嘉宾:周丽娜(天津大学化工学院国家工业结晶技术研究中心高级工程师)报告摘要:2020年版药典通用技术方法0451明确指出单晶X射线衍射技术是检测样品成分与分子立体结构的绝对分析方法,它可独立完成对样品化合物的手性或立体异构体分析、及共晶物质成分组成及比例分析(含结晶水或结晶溶剂、药物不同有效成分等)、纯晶型及共晶物分析(分子排列规律变化)等。粉末X射线衍射法适用于对晶态物质或非晶态物质的定性鉴别与定量分析。常用于固体物质的结晶度定性检查、多晶型种类、晶型纯度、共晶组成、晶型稳定性等分析。报告将结合药物申报过程中的具体要求,重点介绍x射线衍射技术在药品申报过程中的应用。《X射线衍射技术的应用要点、常见问题以及解决方法》报告嘉宾:黎爽(北京市科学技术研究院分析测试研究所高级工程师)报告摘要:X射线衍射技术具备无损、便捷、测量精度高等优点,如今已成为研究人员获得材料晶体结构等信息的重要手段,已广泛应用于航空航天、地质、医药研发、新能源、化工等领域。在科研表征过程中,需要根据样品特性以及表征目的进行样品制备、仪器参数设置以及数据分析等相关操作。本次报告主要就X射线衍射技术在表征过程中的应用要点、常见问题以及解决方法进行介绍。 参会指南 1、进入会议官方页面(https://www.instrument.com.cn/webinar/meetings/xrd2023)进行报名。扫描下方二维码,进入会议官网报名2、报名开放时间为即日起至2023年7月17日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)6、赞助联系人:周老师(微信号:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • CSNS微小角中子散射谱仪成功出束
    2023年1月4日下午,中国散裂中子源(CSNS)微小角中子散射谱仪成功出束,开始带束调试。微小角中子散射谱仪由广东省科技厅资助,是国际首台飞行时间多狭缝微小角中子散射谱仪,兼具常规小角、极化小角和多狭缝微小角模式,配备液体、高温、流变、停-留、磁场、小角/广角X射线等样品环境和实验条件,可同时测量0.3-1000纳米的多尺度范围,获取样品的中子衬度分布、绝对质量、基本形状以及散射体之间相互作用等信息。微小角中子散射谱仪是CSNS第四台出束的合作谱仪,2019年11月开始建设,时逢疫情,微小角中子散射谱仪项目组、中子科学部相关专业组、高能所东莞研究部相关部门团结奉献,协力创新,克服谱仪建设期间疫情的多重影响,攻克激光辅助多狭缝位置调节、陶瓷基体高位置分辨GEM探测器等首创关键技术,保证了谱仪设计、研制、安装与调试的顺利实施。首次出束测试获得的小角模式样品处中子飞行时间谱、微小角模式VSANS探测器处中子强度分布等结果表明谱仪光路与设计相符,标志着谱仪多狭缝技术方案有效实现,机械设备研制与安装成功。微小角中子散射谱仪将应用于关系国计民生的重大前沿科学问题攻关,例如:生命科学领域信使疫苗结构和作用机理、化学领域高分子基特种纤维加工成型关键技术、材料科学领域量子材料结构和性能关系、能源科学领域电池隔膜形貌调控等。微小角中子散射谱仪也将与CSNS已运行的小角散射谱仪互补,广泛应用于生物、医药、化学、材料、环境、物理等多学科领域研究,为粤港澳大湾区和我国的相关产业技术升级提供先进的研究平台支撑。
  • 质检总局:首次截获中子辐射超标的旧机电设备
    记者从国家质检总局了解到,近日,质检总局所属山东黄岛检验检疫局在口岸核生化因子监测时,发现一批来自土耳其的进口集装箱中子超标报警,经二次复查仍报警,检测值为17cps。按照质检总局有关口岸核生化有害因子监测技术方案规定,进口货物中检出中子,即为放射性超标。现场检验检疫人员立即按照规定程序对该集装箱实施隔离。经与收货企业沟通,企业提供情况说明称设备元件中含有放射性同位素镅。目前该批中子超标集装箱已经退运至发货地土耳其。   据质检总局有关负责人介绍说,经查,该批集装箱为纤维梳理机、细纱机共3台,属进口旧机电设备,货值64000美元。经核素鉴别,报警的货物含镅铍中子源,其中镅为人造放射性元素,铍可被中子、 粒子、氘核或射线撞击或照射时产生中子,且有化学性剧毒。   因收货企业不能提供放射性同位素与射线装置进口合法手续,山东黄岛检验检疫局在向收货企业宣讲了中子辐射的危害和处置依据后,对该批货物做出退运处理决定。收货企业对该处置措施表示理解。据了解,核生化有害因子监测与应急处置是质检总局及所属检验检疫部门口岸反恐工作中的重要内容。   近年来,全国口岸多次发现和有效处置放射性超标事件,仅2013年上半年就发现放射性超标情况1038起。各口岸检验检疫部门均按照相关规定实施了排查放行、退运等处理。质检总局表示,要求各级检验检疫机构进一步加强口岸核生化因子监测,特别是中子监测,严防核辐射超标物质通过口岸入境,造成放射性污染或者被恐怖分子所利用,切实保障国门安全和社会稳定。   有关研究核生化的专家介绍说,中子辐射是由中子组成的,呈电中性,因此很难被探测到,也很难防护,中子放射源可以被用来制造核武器或脏弹,造成巨大伤害和社会恐慌。中子辐射可将人体内正常元素转变为放射性同位素,产生内照射,可致人体严重的急性放射损伤,如造血器官衰竭,消化系统损伤,中枢神经损伤,甚至造成恶性肿瘤、白血病等。中子辐射还会产生遗传效应,影响受辐射者后代发育,危害极大。   该专家同时表示,质检总局及所属检验检疫机构承担的以核生化因子监测为主要内容的口岸反恐工作任务重、风险大,他特别提醒出入境检验检疫人员在进行口岸核生化因子监测工作中,要充分做好自身防护,把辐射危害降到最低。
  • “短波长X射线体应力无损分析仪”通过鉴定
    p    strong 仪器信息网讯 /strong 2015年10月17日,由中国工程物理研究院材料研究所、四川艺精科技集团有限公司、中国兵器工业第五九研究所等单位承担的国家科技部重大科学仪器设备开发专项“短波长X射线体应力无损分析仪开发及应用”的研究成果,顺利通过了四川省科技厅、四川省经济和信息化委员会组织的科技成果及新产品鉴定。 /p p style=" TEXT-ALIGN: center" img title=" 现场.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/0320ff88-b9a6-43a1-a3b3-8557088232ef.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: 楷体, 楷体_GB2312, SimKai" strong “短波长X射线衍射分析技术暨短波长X射线体应力无损分析仪新产品鉴定会”现场 /strong /span /p p   按照鉴定会程序,鉴定委员会听取了研制工作报告、技术报告,观看了技术研发视频,审核了第三方机构检测报告,考察了仪器现场,并进行了充分讨论、质疑。最后,鉴定委员会一致认为“短波长X射线衍射分析技术及短波长X射线体应力无损分析仪新产品”属于国际首创的技术与仪器,获得了多项国际、国内专利授权,对我国重大装备制造业水平的提升具有推动作用。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 400px HEIGHT: 455px" title=" image002.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201510/insimg/8971472e-bb72-4eae-b3d8-d8216642d878.jpg" width=" 400" height=" 455" / /p p style=" TEXT-ALIGN: center" strong span style=" FONT-FAMILY: 楷体, 楷体_GB2312, SimKai" 短波长X射线体应力无损分析仪新产品 /span /strong /p p   材料及工件的应力分布特征是影响物理化学性能的重要因素,在国防军工、航空航天等各个领域,由于材料、工件内部应力导致失败的案例很多,给国家和人民造成重大损失。目前,虽然 a href=" http://www.instrument.com.cn/zc/77.html" target=" _self" title=" " strong X射线(衍射)应力仪 /strong /a 已经得到商业化普及,但其功能只可测定试样约10微米深度表层的应力,无法完成体应力的测定。中子衍射和同步辐射高能X射线应力装置能够开展材料体应力测试,但该类仪器都是以反应堆或同步辐射光源等大型装置为基础,这些装置设备庞大、造价昂贵,无法市场化推广。 /p p   针对此现状,中国工程物理研究院材料研究所在“国家科技部重大科学仪器设备开发专项”支持下,研制了实验室用短波长X射线体应力无损分析仪,体积相对较小、价格较低,既可测定体应力,又可市场化推广,在一定程度上填补了以上两类装置之间的空白。 /p p   “短波长X射线体应力无损分析仪”采用钨靶发出的波长短、穿透性强的特征X射线,测试材料的内部应力、物相、织构等 利用能量法,改善了入射X射线强度的衰减 采用透射式和反射式的光路设计,获取材料内部结构沿深度分布的信息。该仪器高精度的测角仪、欧拉环等部组件,以及自动控制和应力分析软件等皆是项目组自主研发。样品台最大可承重20Kg 测试铝材当量厚度大于40毫米,无应力铁粉测试误差小于正负20兆帕 空间分辨能力可调,最小空间分辨率为0.1× 0.2× 2mm sup 3 /sup (宽× 高× 厚),对具有一定厚度的样品能够获得三维空间应力分布。 /p p   据介绍,项目组实施了边研制边应用、销售的策略,该仪器已在兵器工业、航空航天、交通运输领域及科研院所得到应用 初步实现仪器的销售,可对外提供材料工件体应力检测服务,目前已创造经济效益696万元。 /p p style=" TEXT-ALIGN: center" img title=" 专家组.jpg" src=" http://img1.17img.cn/17img/images/201510/insimg/9f7dfd71-eb8a-403a-a7bb-26d116d3c3fe.jpg" / /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: 楷体, 楷体_GB2312, SimKai" strong 项目负责人与鉴定委员会成员合影 /strong /span /p p   此次鉴定会的鉴定委员会成员包括:中科院物理研究所/中国物理学会X射线衍射联合委员会主任麦振洪研究员、清华大学材料学院院长张政军教授、中国工程物理研究院高级顾问/院士武胜研究员、全国无损检测协会副理事长/爱德森(厦门)电子有限公司总经理林俊明研究员、西南交通大学材料学院院长黄楠教授、中国核动力研究设计院二所书记兼副所长/核工业西南无损检测中心主任唐月明研究员、重庆大学材料学院/全国残余应力学术委员会副秘书长叶文海教授、中国东方电气集团有限公司核电设计所所长唐伟研究员、中航工业贵州黎阳航空发动机(集团)有限公司冶金处处长朱明研究员。麦振洪研究员、张政军教授分别为鉴定委员会正、副主任。 /p p   此次鉴定会还邀请了中国工程物理研究院科技委前副主任孙颖研究员等12位专家作为见证嘉宾。国家科技部、四川省科技厅、四川省经济和信息化委员会、绵阳市经济和信息化委员会、中国工程物理研究院、中国工程物理研究院材料研究所、四川艺精科技集团有限公司相关领导,该项目负责人中国工程物理研究院材料研究所副总工程师张鹏程研究员及其他项目骨干等出席了本次鉴定会。 /p p style=" TEXT-ALIGN: right" 撰稿:刘丰秋 /p p br/ /p
  • “X射线衍射技术及应用进展” 线上会议日程公布
    p style=" white-space: normal text-align: justify text-indent: 2em " 通过对材料进行X射线衍射,分析其衍射图谱,可获得材料的成分、材料内部原子或分子的结构或形态等信息。物质结构分析尽管可以采用中子衍射、红外光谱、穆斯堡尔谱等方法,但X射线衍射技术是最有效、应用最为广泛的手段。其应用范围,现已渗透到物理、化学、地球科学、材料科学以及各种工程技术科学中,成为一种重要的实验方法和结构分析手段。 /p p style=" white-space: normal text-align: justify text-indent: 2em " 为促进相关从业人员深入了解X射线衍射技术的发展和应用现状,仪器信息网将于2020年7月23日举办“X射线衍射技术及应用进展”主题网络研讨会,依托成熟的网络会议平台,为X射线衍射技术相关研究、应用等人员提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。 /p p style=" white-space: normal text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/29192d2d-4ced-4546-b08d-98097450e5af.jpg" title=" 1920-420.jpg" alt=" 1920-420.jpg" / /p table border=" 1" cellspacing=" 0" cellpadding=" 0" style=" white-space: normal border: none " tbody tr class=" firstRow" td width=" 595" colspan=" 4" valign=" middle" align=" center" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" color: rgb(227, 108, 9) " strong “X射线衍射技术及应用进展”主题网络研讨会(07月23日) /strong /span /p /td /tr tr td width=" 90" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 13:30-14:00 /p /td td width=" 195" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 原位X射线衍射技术在材料研究中的应用 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 程国峰 /p /td td width=" 178" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 中国科学院上海硅酸盐研究所研究员 /p p & nbsp /p /td /tr tr td width=" 95" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 14:00-14:30 /p /td td width=" 198" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 赛默飞实时XRD系统及其特色应用 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 居威材 /p /td td width=" 178" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 赛默飞世尔科技(中国)有限公司应用工程师 /p /td /tr tr td width=" 95" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 14:30-15:00 /p /td td width=" 198" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 高分子材料的X射线衍射表征 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 张吉东 /p /td td width=" 178" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 中国科学院长春应用化学研究所研究员 /p /td /tr tr td width=" 95" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 15:00-15:30 /p /td td width=" 198" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 单晶X射线衍射技术及其在药物研究中的应用 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 钟家亮 /p /td td width=" 178" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 中国医药工业研究总院副研究员 /p /td /tr tr td width=" 95" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 15:30-16:00 /p /td td width=" 198" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p X射线衍射技术在药物晶型研究方面的应用 /p /td td width=" 65" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p 周丽娜 /p /td td width=" 178" valign=" top" style=" word-break: break-all border: 1px solid rgb(0, 0, 0) padding: 5px " p 天津大学工程师 /p /td /tr /tbody /table p style=" white-space: normal text-align: center " span style=" color: rgb(227, 108, 9) " strong 报告嘉宾介绍 /strong /span /p p style=" white-space: normal text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/202007/uepic/986020bf-822e-4dd9-925d-e1a70eb38106.jpg" title=" 程国峰1.png" alt=" 程国峰1.png" style=" max-width: 100% max-height: 100% " / /strong /span /p p style=" white-space: normal " span style=" color: rgb(0, 112, 192) " strong /strong /span /p p style=" white-space: normal text-align: justify text-indent: 2em " 程国峰,中国科学院上海硅酸盐研究所研究员,X射线衍射结构表征课题组组长。中国晶体学会粉末衍射专业委员会委员、中国物理学会固体缺陷专业委员会委员、上海市物理学会X射线衍射与同步辐射专业委员会秘书长。主要研究领域为X射线衍射与散射理论及应用、拉曼光谱学等。曾先后主持国家自然科学基金、上海市和中国科学院项目多项,主编出版《纳米材料的X射线分析》、《同步辐射X射线应用技术基础》等专译著4部,发布国家标准和企业标准5项,获专利授权6项,在Nat. Mater.,J. Appl. Phys.,Mater. Lett.等SCI期刊上发表论文80余篇。 /p p style=" white-space: normal " span style=" color: rgb(0, 112, 192) " strong /strong /span img src=" https://img1.17img.cn/17img/images/202007/uepic/984274bc-49dd-4ed9-9aa6-73f44a2c34d6.jpg" title=" 张吉东1.png" alt=" 张吉东1.png" style=" max-width: 100% max-height: 100% " / /p p style=" white-space: normal text-align: justify text-indent: 2em " 张吉东,中科院长春应化所高分子物理与化学国家重点实验室仪器平台任研究员、博士生导师。98年本科毕业于吉林大学化学系,03年博士毕业于中科院长春应化所,之后到加拿大Carleton大学化学系做博后。06年回到中科院长春应化所高分子物理与化学国家重点实验室仪器平台任副研究员,负责仪器管理与方法学开发。16年12月晋升为研究员,17年6月被聘为博士生导师。目前为中国晶体学会X射线粉末委员会委员,北京同步辐射光源用户委员会委员,吉林省物理学会X射线委员会副主任,吉林省分析测试技术学会副秘书长。至今承担过11个基金委、中科院等的科研项目,发表文章65篇,包括通讯作者文章19篇,参与撰写专著3部。主要的研究方向是高分子薄膜凝聚态结构表征,依托实验室X射线衍射仪及同步辐射装置开展相关方法学研究。 /p p style=" white-space: normal text-align: center " img src=" https://img1.17img.cn/17img/images/202007/uepic/3dc5cfa0-c240-4324-873f-c6c95895fcf6.jpg" title=" 钟家亮1.png" alt=" 钟家亮1.png" style=" max-width: 100% max-height: 100% " / /p p style=" white-space: normal text-align: justify text-indent: 2em " 钟家亮,中国医药工业研究总院副研究员,硕士生导师。中国晶体学会永久会员,中国晶体学会药物晶体学委员会常务委员,上海市科委专家库专家。主要从事药物固态化学研究,包括药物晶型/盐型研究、药物共晶/复合物研究、药物晶型一致性评价研究、手性药物的绝对构型分析研究、结晶工艺优化研究等。主持或参与完成多项十一五、十二五国家新药创制重大专项,国家自然科学基金青年基金项目及企业委托项目等研究课题;已发表研究论文30余篇,申请专利4项(授权2项)。 /p p style=" white-space: normal text-align: center " img src=" https://img1.17img.cn/17img/images/202007/uepic/c83d8d0f-50bb-4e2e-aa05-e34b51aff957.jpg" title=" 周丽娜1.png" alt=" 周丽娜1.png" style=" max-width: 100% max-height: 100% " / /p p style=" white-space: normal text-align: justify text-indent: 2em " 周丽娜,天津大学化工学院国家工业结晶技术研究中心工程师,长期从事药物晶型研究以及固体材料分析等,承担国家自然科学基金项目一项,作为主要参与人累计参加国家自然科学基金项目十余项,作为负责人完成多个关于药物晶型研究分析鉴定方面的企业委托项目,作为一作或通讯作者累计发表相关SCI论文十余篇,并为多个期刊审稿人。 /p p style=" white-space: normal text-align: center " img src=" https://img1.17img.cn/17img/images/202007/uepic/1f35ea59-5bed-43a6-9362-bcbd877a2f3a.jpg" title=" 局威材.png" alt=" 局威材.png" style=" max-width: 100% max-height: 100% " / /p p style=" white-space: normal text-align: justify text-indent: 2em " 居威材,赛默飞世尔科技应用工程师,现主要从事XRD及XRF相关应用开发工作。在XRD方面有着丰富的应用经验,多篇研究成果被中文核心期刊及SCI收录:2015年11月在《Journal of Chemical Crystallography》期刊发表《Hydrogen-Bond Reorganization of a Solid-State Dehydration Process in a Salt of Tris(hydroxymethyl)aminomethane and Sulfosalicylic Acid, Investigated by Powder X-ray Diffraction》;2016年9月在《Powder Diffraction》 期刊发表《Molecular reorientation in a dehydration process of an organic polar salt of 2,4-diaminotoluene/L(+)-tartaric acid》等。 /p p style=" white-space: normal text-align: justify text-indent: 2em " span style=" color: rgb(227, 108, 9) " strong 点击链接或扫描下方二维码,即可进入报名页面,获得与专家及时交流的机会! /strong /span /p p style=" text-align: justify text-indent: 2em " 1、报名链接: /p p style=" white-space: normal text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/X0723/" target=" _self" span style=" color: rgb(0, 112, 192) " span style=" color: rgb(0, 0, 0) " https://www.instrument.com.cn/webinar/meetings/X0723/ /span /span /a /p p style=" text-align: justify text-indent: 2em " 2、参会报名二维码 /p p style=" white-space: normal text-align: justify text-indent: 2em " img src=" https://img1.17img.cn/17img/images/202007/pic/15f59e8e-4a82-4c71-865f-8173a9fe0267.jpg" style=" max-width: 100% max-height: 100% width: 250px height: 250px " width=" 250" height=" 250" border=" 0" vspace=" 0" title=" " alt=" " / /p p style=" white-space: normal text-align: justify text-indent: 2em " br/ /p p br/ /p
  • 跨向理想X射线探测器的一小步-高分辨、非晶硒X射线探测器及其应用
    “对于相干衍射成像(CDI),微米级像素的非晶硒CMOS探测器将专门解决大体积晶体材料中纳米级晶格畸变在能量高于50 keV的高分辨率成像。目前可用的像素相对较大的(〜55μm像素),基于medipix3芯片光子计数、像素化、直接探测技术无法轻易支持高能布拉格条纹的分辨率,从而使衍射数据不适用于小晶体的3D重建。” 美国阿贡国家实验室先进物理光子源探测器物理小组负责人Antonino Miceli博士讲到。相干X射线衍射成像作为新兴的高分辨显微成像方法,CDI方法摆脱了由成像元件所带来的对成像分辨率的限制,其成像分辨率理论上仅受限于X射线的波长。利用第三代同步辐射光源或X射线自由电子激光,可实现样品高空间分辨率、高衬度、原位、定量的二维或三维成像,该技术在材料学、生物学及物理学等领域中具有重要的应用前景。作为一种无透镜高分辨、无损成像技术,CDI对探测器提出了较高的要求:需要探测器有单光子灵敏度、高的探测效率和高的动态范围。目前基于软X射线的相干衍射成像研究工作开展得比较多,在这种情况下科研工作者通常选用是的基于全帧芯片的软X射线直接探测相机。将CDI技术拓展到硬X射线领域(50keV)以获得更高成像分辨率是目前很多科研工作者正在尝试的,同时也对探测器和同步辐射光源提出了更好的要求。如上文提到,KAimaging公司开发了一款非晶硒、高分辨X射线探测器(BrillianSe)很好的解决的这一问题。下面我们来重点看一下BrillianSe的几个主要参数1. 高探测效率 如上图,间接探测器需要通过闪烁体将X射线转为可见光, 只有部分可见光会被光电二极管阵列,CCD或CMOS芯片接收,造成了有效信号的丢失。而BrillianSe选用了具有较高原子序数的Se作为传感器材料,可以将大部分入射的X射线直接转为光电子,并被后端电路处理。在硬X射线探测效率远高于间接探测方式。BrillianSe在60KV (2mm filtration)的探测效率为:36% at 10 cycles/mm22% at 45 cycles/mm10% at 64 cycles/mm非晶硒吸收效率(K-edge=12.26 KeV)BrillianSe在60KV with 2 mm Al filtration的探测效率,之前报到15 μm GADOX 9 μm pixel 间接探测器QE 为13%。Larsson et al., Scientific Reports 6, 20162. 高空间分辨BrillianSe的像素尺寸为8 µm x8 µm,在60KeV的点扩散为1.1 倍像素。如下是在美国ANL APS 1-BM光束线测试实验室布局使用JIMA RT RC-05测试卡,在21keV光束下测试3. 高动态范围75dB由于采用了100微米厚的非晶硒作为传感器材料。它具有较大满井为877,000 e-非晶硒材料,不同入射光子能量光子产生一个电子空穴对所需要电离能BrillianSe主要应用:高能(50KeV)布拉格相干衍射成像低密度相衬成像同步辐射微纳CT表型基因组学领域要求X射线显微CT等成像工具具有更好的可视化能力。此外需要更高的空间分辨率,活体成像的关键挑战在于限制受试者接收到的电离辐射,由于诱导的生物学效应,辐射剂量显着地限制了长期研究。可用于X射线吸收成像衬度低的物体,如生物组织的相衬X射线显微断层照相术也存在类似的挑战。此外,增加成像系统的剂量效率将可以使用低亮度X射线源,从而减少了对在同步辐射光源的依赖。在不损害生物系统的情况下,在常规实验室环境中一台低成本、紧凑型的活体成像设备,对于加速生物工程研究至关重要。同时对X射线探测器提出了更高的要求。KAimaging公司基于独家开发的、专利的高空间分辨率非晶硒(a-Se)探测器技术,开发了一套桌面高效率、高分辨的微米CT系统(inCiTe™ )。可以从inCiTe™ 中受益的应用:• 无损检测• 增材制造• 电子工业• 农学• 地质学• 临床医学• 标本射线照相 基于相衬成像技术获得优异的相位衬度相衬成像是吸收对比(常规)X射线成像的补充。 使用常规X射线成像技术,X射线吸收弱的材料自然会导致较低的图像对比度。 在这种情况下,X射线相位变化具有更高的灵敏度。因为 inCiTe™ micro-CT可以将物体引起的相位变化转为为探测器的强度变化,所以它可以直接获取自由空间传播X射线束相位衬度。 同轴法相衬X射线成像可将X射线吸收较弱的特征的可检测性提高几个数量级。 下图展示了相衬可以更好地显示甜椒种子细节特征不含相衬信息 含相衬信息 低密度材料具有更好的成像质量钛植入样品图像显示了整形外科的钛植入物,可用于不同的应用,即检查骨-植入物的界面。 注意,相衬改善了骨骼结构的可视化。不含相衬信息 含相衬信息 生物样品inCiTe™ 显微CT可实现软组织高衬度呈现电子样品凯夫拉Kevlar复合材料样品我们使用探测器在几秒钟内快速获取了凯夫拉复合材料的相衬图像。可以清楚看到单根纤维形态(左图)和纤维分层情况(右图)。凯夫拉尔复合物3维透视图 KA Imaging KA Imaging源自滑铁卢大学,成立于2015年。作为一家专门开发x射线成像技术和系统的公司,KA Imaging以创新为导向,致力于利用其先进的X射线技术为医疗、兽医学和无损检测工业市场提供最佳解决方案。公司拥有独家开发并自有专利的高空间高分辨率非晶硒(a-Se)X射线探测器BrillianSeTM,并基于此推出了商业化X射线桌面相衬微米CT inCiTe™ 。我们有幸在此宣布,经过双方密切的交流与探讨,众星已与KA Imaging落实并达成了合作协议。众星联恒将作为KA Imaging在中国地区的独家代理,全面负责BrillianSe™ 及inCiTe™ 在中国市场的产品售前咨询,销售以及售后业务。KA Imaging将对众星联恒提供全面、深度的技术培训和支持,以便更好地服务于中国客户。众星联恒及我们来自全球高科技领域的合作伙伴们将继续为中国广大科研用户及工业用户带来更多创新技术及前沿资讯!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制