当前位置: 仪器信息网 > 行业主题 > >

质量排名

仪器信息网质量排名专题为您整合质量排名相关的最新文章,在质量排名专题,您不仅可以免费浏览质量排名的资讯, 同时您还可以浏览质量排名的相关资料、解决方案,参与社区质量排名话题讨论。

质量排名相关的仪器

  • 一、系统概述智易时代环保网格化管理系统根据国家环境部门发布的《环境信息网络建设规范》(HJ460-2009)、《环境保护应用软件开发管理技术规范》(HJ622-2011)、《污染源在线自动监控监测系统数据传输标准2122005》、《环境污染源自动监控信息传输、交换技术规范》(HJ-T352-2007)等国家标准协议,以环境监测点位数据传感体系为基础,针对不同环境企事业单位需求,运用最新的环保理论研究成果和信息技术,建立智能化环保网格在线监测系统数据平台。平台数据中心可提供所属地区各监测点位数据的实时采集传输、实时监控空气环境质量,实现在线数据查询及报表统计、数据自动预警、环保信息综合分析、数据归集和排名反馈等,为环保的研究提供信息资源和手段,为环保业务管理提供统一的管理平台。二、功能特点2.1 WEB端2.1.1 监测点位GIS地图在线显示 系统内所有监测点位按所属行政区域进行归类和展示,监测点位图标颜色按其当前空气质量指数AQI表示颜色动态显示,图标上方注有具体的地理位置,方便用户直观、一目了然掌握各个行政区域内监测点位的部署情况和空气环境质量现状,系统提供多种方式的地图效果(矢量、卫星、三维)来实时显示空气子站的位置和实时数据。2.1.2站点数据实时状态查看 用户点击监测点位图标后系统自动显示空气质量指数AQI、站点地理位置、首要污染物、发布时间、各项监测因子实时数据等信息,空气质量指数AQI数值与表示颜色搭配显示,直观展示站点当前污染情况,监测因子可以按照不同需求进行定制,显示时间段分为实时状态值、最近一小时值、最近24小时值等。2.1.3 站点环境远程视频实时监控 监测现场可以安装视频监控设备,通过窗口视图直观了解监测站点的周边情况和污染物实时排放数据,当周围污染源浓度超标时自动抓拍,为公众和环保部门监督与执法提供依据,同时可以了解监测设备的实时状况。当数据异常提醒之后,可以通过回传影像资料判断现场情况(需人工进行),当发生不可抗力因素时,同样可以根据影像资料来判定事故详情。2.1.4 预警、日报通知 系统提供预警、日报通知功能,预警包括超标预警、断线预警和异常值预警,在监测数值超标、数据连接中断和出现异常值时,自动给设定联系人发送提醒信息,保证系统的正常、稳定运行,日报通知将辖区内各个行政区空气质量指数日均值以短信形式发送给站点负责人或主管领导,让环境管理者及时掌握环境空气质量变化情况,在空气质量恶化时第一时间知道详细信息。2.1.5 数据图表展示 数据展示支持折线图、柱状图、表格等多种形式,展示的内容包括空气质量指数和各项监测因子浓度的分钟值、小时值,方便用户查看时间段内空气质量变化趋势和污染物浓度变化情况,同时可以进行监测点位之间的各项参数的对比分析,用户可以自主设定展示的时间区间,导出打印时支持选用JPG图片、PDF、EXCEL、WORD文档多种格式。2.1.6 环境质量数据排名 针对相关环境管理部门以及用户个性化定制需求,系统设置独立排名系统,目前采用AQI(空气质量指数),提供日排名、小时排名数据,用户可以查询当天排名信息和历史数据,除了空气质量指数AQI外,还列出了PM10、PM2.5、CO等监测因子小时值、日均值、首要污染物、空气质量类别等信息。2.1.7 AQI实时报、日报自动生成 按照HJ633-2012环境空气质量指数(AQI)技术规定要求,自动生成实时报、日报数据报表,发布的指标包括各监测站点的监测站点信息、空气质量指数(AQI)、首要污染物、空气质量指数类别以及空气质量指数说明等信息,可自动生成word、Excel、PDF多种格式格式的报表格式,日报格式如下表:2.1.8 污染物来源分析 收集点位数据后,平台对各项污染物统计值进行计算分析,初步建立点位污染源模型(当前采用方法为首要污染物比重饼状图解析),如果监测点位条件允许,能够实现现场采样,则可以更加精确的进行污染物对比分析,通过各时间段污染物比重模型结合地区现状来分析具体污染源和现场实际情况,并提供针对性治理方案。2.1.9设备监控 系统可以实现实时监视在线监测仪器是否正常工作,数据上传是否正常,从而清楚设备的运行状况及运行进度,当前端数据采集设备或仪器出现故障时,系统自动提供报警信息方便站点负责人及时知晓,并采取相应的解决措施,保证系统的正常、稳定运行。2.1.10 环境数据动态云图展示 由于区域间空气质量状况的差别,系统基于各个区域内监测数值实时以污染物浓度云图形式渲染这种差别,云图取每小时点位数值,颜色采用空气质量指数AQI表示颜色,实现由“点”到“面”全面展示大范围内空气质量状况。2.1.11 空气质量、气象数据导出 系统提供空气质量、气象数据导出功能,用户在设置时间类型、站点、时间段以后即可实现数据导出,内容包括点位信息、数据更新时间、常规6参数浓度值、主要污染物、空气质量指数AQI。其中数据有效率按照国家标准进行计算,分钟值以后端数据传输判定为准,小时值以每小时收集45个分钟值为准,日均值以每天收集22个小时值为准,其余时间区间以日均值有效天数为准。2.1.12 站点管理 用户在此模块可以实现监测点位信息的增、改、查、删等基本操作,点位信息包括监测点位名称、地址、经纬度、站点ID、所在区域名称等内容,实现点位信息的动态管理,区域与编号为锁定状态,可自行配置名称、经纬度、排名、公开、掉线预警等选项。2.1.13 短信配置 此功能可以查看短信配置详情,添加条目可以新增加短信推送人员信息和发送内容,编辑选项可对接收短信用户推送内容进行管理操作,配置的信息内容包括预警信息、日报、状态预警、掉线预警,完成设置以后,列表中人员可以收到短信信息。 2.1.14 污染物浓度预警 一旦空气质量状况出现异常波动时,系统启动超标报警。此功能中分数据上下限与预警上下限,数据上下限为数据有效性判定标准值,超过界限的则被判定为无效。预警上下限为当监测因子不在设定值范围内一定时间之后,则会发送预警短信。选择站点便捷,将预警上下限设定临界值,即可使用预警功能(0为默认)。2.1.15 数据修约 此功能可对程序中未拣出的有误数据进行人工修正,点击数据修约选项即可进行修正,当值被设定为无效时,数据被拣出,不参与统计运算。(因系统计算规则因素,只可提供分钟值与小时值的修约功能,目前只开放分钟值修约)2.1.16 用户管理 对于不同的角色设置相应权限管理,一个角色关联了一套操作权限。系统共提供了三种操作权限。系统用户:拥有系统的所有功能操作权限;管理用户:拥有部分业务相关 的功能操作权限;普通用户:只能进行系统中相关内容的查询操作,实现不同级别操作人员对数据访问范围和数据读写性的严格控制,建立统一用户管理平台实现所有用户的身份管理,包括用户个人身份信息、角色信息、电子邮箱、个人账号和密码。2.2 用户APP 手机版发布系统支持Android、IOS等主流的手机操作系统,系统界面简洁、大方,易于操作。发布各个监测站点的PM2.5、PM10、SO2、NO2、O3、CO小时、日均、月均浓度值,提供查看辖区内各站点空气质量排名功能,并绘制过去24小时的浓度曲线图。发布城市、区域的环境质量AQI、首要污染物、环境质量指数类别、环境质量指数说明以及健康提示等信息。按照《HJ633-2012环境质量指数(AQI)技术规定》,根据环境质量AQI进行颜色标识。2.2.1 用户权限控制根据用户级别不同,分别设定不同权限,普通用户登入后只可查看账号所属站点详情,以管理员身份登入之后,则可查看全部点位状况与其均值显示。 2.2.2 数据查看与分析主界面可查看权限范围内点位数据详情,点击不同监测因子所在方格,下方折线图则对应显示其最近24小时内污染因子变化情况。 2.2.3 GIS地理信息显示点位状况与web端同步,获取坐标信息后即可在地图上显示,支持当前总体数据情况与单项指数切换,污染指数根据等级不同以不同颜色显示。 如果点位信息过多时,可切换至列表进行搜索,一目了然,快捷高效。2.2.4 历史数据查询 移动端在web端基础上提供简单的查询功能,该模块按照权限不同所属辖区不同,可以查看站点最近24小时、或最近30天、或最近12个月,综合指数或者分项指数的均值状况。2.2.5环境质量指数排名查看 移动端可以便捷的为环境管理人员提供服务,管理者账号登录后,开放排名信息功能,提供当日辖区内站点排名,明确污染方向。2.2.6 系统设置、功能标准、预警处理 辅助功能全部归集于侧边栏内,APP向用户推送通知,个人设置中可以设置是否接收消息、提醒方式等。三、平台架构与系统工作原理3.1 环境数据采集监听服务器使用公网固定IP,监测仪器发送数据至此IP地址对应端口,系统自动采集并通过内置协议将字符串解析为需要的信息,实现数据包的校验、检查、解析和入库(数据存储),采用多线程异步通信技术与各监测点通信,可查看原始数据,实现数据同步转发。当监测点位断线或者出现异常时,线程保留五分钟对接期,五分钟之内不上传数据系统关闭线程,降低占用率,直至重新连接再次打开。3.2 环境数据存储数据库服务器对接收到的环境数据进行整体规划,对环保业务涉及的众多数据资源进行科学合理的分类,在此基础上建立数据体系和数据库体系,形成基础数据库、专业数据库、元数据库和标准数据库。由于环境大数据的保密性,数据库服务器需要关闭公网服务和外接端口,与监听服务器接入同一局域网,使用内网IP。监听服务器解析完成后,通过局域网将数据存储至此。数据库定期备份、定期杀毒、定期更新软件服务与相关插件,以保证存储数据的安全。3.3 环境数据分析处理中心服务器针对各项数据库进行数据管理,严格按照相关法律法规及环保行业规定进行统计分析运算处理,得出最符合标准的环境数值。统计功能支持根据原始值值计算小时值、日报、月报、年报等。分析功能包括,对大气、水质、烟气等不同行业进行规则整合判断、如烟尘,烟气的含量跟氧气关系,COD与浊度及溶解氧的关系等高级功能,根据用户需求定制开发。经过算法运行生成数据模型,实现系统建模分析的关键功能。3.4 环境数据报表生成与排名中心服务器生成各项报表后,根据空气质量指数从低到高进行排名,指数越低排名越靠前。支持总体排名、区域排名、单站点排名。服务器与EXCEL报表、WORD文档、JPG图片、PDF等接口进行对接,使前端页面可以顺利导出打印。3.5 环境监测指标预警预警服务器中置入交互模块,每30分钟采集监测子站的运行状态、设备状态、监测数据,对服务器进行信息交互传输、读取操作日志,连续两次出现异常,系统启用预警提醒。同时可以将监测因子标准接入检测程序中,如果超标或者出现恒值,则提示相关人员并将信息传输至前置服务器。所有预警信息在前端页面展示。3.6 CMAQ空气质量模型建模分析CMAQ是美国国家环境保护局研制的第三代空气质量预报和评估系统(Models-3)。系统采用灵活的模块化思想,由气体模式、污染排放模式、空气质量模式组成。基于CMAQ的空气质量模拟过程可实现设置可视化和运行自动化,以准确的MM5气象场数据、污染排放清单数据为基础,运用CMAQ模型,实现空气质量预报结果的自动生成,并支持对结果的核对统计与对比分析,减少人工操作,通过适量定制化开发,可以作为区域臭氧、能见度、酸沉降等过程的整合应用平台。3.7 环境质量趋势预判中心服务器处理数据,结合实际数据建立源解析模型,结合天气系统分析环境质量趋势。充分利用积累的海量监测数据,结合环境空气污染指数法(API)、环境空气综合污染指数法、主要污染物污染物浓度评价法、污染变化趋势的定量分析方法-秩相关系数法等方法,对区域内空气质量状况和变化趋势进行综合分析和预判。四、系统硬件构成1、 环境指标监测仪器子站2、 GPS子站定位模块3、 数据采集设备4、 无线传输设备5、 数据监听前置服务器6、 数据库服务器7、 WEB应用服务器
    留言咨询
  • 空气质量在线监测预警预报解决方案v2.3一、背景介绍 2015年7月26日,国务院办公厅以国办发〔2015〕56号印发《生态环境监测网络建设方案》。该《方案》分为:(1)总体要求;(2)全面设点,完善生态环境监测网络;(3)全国联网,实现生态环境监测信息集成共享;(4)自动预警,科学引导环境管理与风险防范; (5)依法追责,建立生态环境监测与监管联动机制;(6)健全生态环境监测制度与保障体系。(共6部分20条) 主要目标是:到2020年,全国生态环境监测网络基本实现环境质量、重点污染源、生态状况监测全覆盖,各级各类监测数据系统互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管协同联动,初步建成陆海统筹、天地一体、上下协同、信息共享的生态环境监测网络,使生态环境监测能力与生态文明建设要求相适应。二、系统概述 智易时代环保网格化管理系统根据国家环境部门发布的《环境信息网络建设规范》(HJ460-2009)、《环境保护应用软件开发管理技术规范》(HJ622-2011)、《污染源在线自动监控监测系统数据传输标准2122005》、《环境污染源自动监控信息传输、交换技术规范》(HJ-T352-2007)等国家标准协议,以环境监测点位数据传感体系为基础,针对不同环境企事业单位需求,运用最新的环保理论研究成果和信息技术,建立智能化环保网格在线监测系统数据平台。 平台数据中心可提供所属地区各监测点位数据的实时采集传输、实时监控空气环境质量,实现在线数据查询及报表统计、数据自动预警、环保信息综合分析、数据归集和排名反馈等,为环保的研究提供信息资源和手段,为环保业务管理提供统一的管理平台。三、功能特点3.1 WEB端3.1.1 监测点位GIS地图在线显示系统内所有监测点位按所属行政区域进行归类和展示,监测点位图标颜色按其当前空气质量指数AQI表示颜色动态显示,图标上方注有具体的地理位置,方便用户直观、一目了然掌握各个行政区域内监测点位的部署情况和空气环境质量现状,系统提供多种方式的地图效果(矢量、卫星、三维)来实时显示空气子站的位置和实时数据。 3.1.2站点数据实时状态查看 用户点击监测点位图标后系统自动显示空气质量指数AQI、站点地理位置、首要污染物、发布时间、各项监测因子实时数据等信息,空气质量指数AQI数值与表示颜色搭配显示,直观展示站点当前污染情况,监测因子可以按照不同需求进行定制,显示时间段分为实时状态值、最近一小时值、最近24小时值等。3.1.3 站点环境远程视频实时监控 监测现场可以安装视频监控设备,通过窗口视图直观了解监测站点的周边情况和污染物实时排放数据,当周围污染源浓度超标时自动抓拍,为公众和环保部门监督与执法提供依据,同时可以了解监测设备的实时状况。当数据异常提醒之后,可以通过回传影像资料判断现场情况(需人工进行),当发生不可抗力因素时,同样可以根据影像资料来判定事故详情。 3.1.4预警、日报通知 系统提供预警、日报通知功能,预警包括超标预警、断线预警和异常值预警,在监测数值超标、数据连接中断和出现异常值时,自动给设定联系人发送提醒信息,保证系统的正常、稳定运行,日报通知将辖区内各个行政区空气质量指数日均值以短信形式发送给站点负责人或主管领导,让环境管理者及时掌握环境空气质量变化情况,在空气质量恶化时第一时间知道详细信息。3.1.5 数据图表展示 数据展示支持折线图、柱状图、表格等多种形式,展示的内容包括空气质量指数和各项监测因子浓度的分钟值、小时值,方便用户查看时间段内空气质量变化趋势和污染物浓度变化情况,同时可以进行监测点位之间的各项参数的对比分析,用户可以自主设定展示的时间区间,导出打印时支持选用JPG图片、PDF、EXCEL、WORD文档多种格式。 3.1.6 环境质量数据排名 针对相关环境管理部门以及用户个性化定制需求,系统设置独立排名系统,目前采用AQI(空气质量指数),提供日排名、小时排名数据,用户可以查询当天排名信息和历史数据,除了空气质量指数AQI外,还列出了PM10、PM2.5、CO等监测因子小时值、日均值、首要污染物、空气质量类别等信息。 3.1.7 AQI实时报、日报自动生成 按照HJ633-2012环境空气质量指数(AQI)技术规定要求,自动生成实时报、日报数据报表,发布的指标包括各监测站点的监测站点信息、空气质量指数(AQI)、首要污染物、空气质量指数类别以及空气质量指数说明等信息,可自动生成word、Excel、PDF多种格式格式的报表格式,日报格式如下表:3.1.8 污染物来源分析 收集点位数据后,平台对各项污染物统计值进行计算分析,初步建立点位污染源模型(当前采用方法为首要污染物比重饼状图解析),如果监测点位条件允许,能够实现现场采样,则可以更加精确的进行污染物对比分析,通过各时间段污染物比重模型结合地区现状来分析具体污染源和现场实际情况,并提供针对性治理方案。 3.1.9 设备监控 系统可以实现实时监视在线监测仪器是否正常工作,数据上传是否正常,从而清楚设备的运行状况及运行进度,当前端数据采集设备或仪器出现故障时,系统自动提供报警信息方便站点负责人及时知晓,并采取相应的解决措施,保证系统的正常、稳定运行。 3.1.10 环境数据动态云图展示 由于区域间空气质量状况的差别,系统基于各个区域内监测数值实时以污染物浓度云图形式渲染这种差别,云图取每小时点位数值,颜色采用空气质量指数AQI表示颜色,实现由“点”到“面”全面展示大范围内空气质量状况。(图案仅供参考)3.1.11空气质量、气象数据导出 系统提供空气质量、气象数据导出功能,用户在设置时间类型、站点、时间段以后即可实现数据导出,内容包括点位信息、数据更新时间、常规6参数浓度值、主要污染物、空气质量指数AQI。其中数据有效率按照国家标准进行计算,分钟值以后端数据传输判定为准,小时值以每小时收集45个分钟值为准,日均值以每天收集22个小时值为准,其余时间区间以日均值有效天数为准。 3.1.12 站点管理 用户在此模块可以实现监测点位信息的增、改、查、删等基本操作,点位信息包括监测点位名称、地址、经纬度、站点ID、所在区域名称等内容,实现点位信息的动态管理,区域与编号为锁定状态,可自行配置名称、经纬度、排名、公开、掉线预警等选项。3.1.13短信配置 此功能可以查看短信配置详情,添加条目可以新增加短信推送人员信息和发送内容,编辑选项可对接收短信用户推送内容进行管理操作,配置的信息内容包括预警信息、日报、状态预警、掉线预警,完成设置以后,列表中人员可以收到短信信息。3.1.14污染物浓度预警 一旦空气质量状况出现异常波动时,系统启动超标报警。此功能中分数据上下限与预警上下限,数据上下限为数据有效性判定标准值,超过界限的则被判定为无效。预警上下限为当监测因子不在设定值范围内一定时间之后,则会发送预警短信。 选择站点便捷,将预警上下限设定临界值,即可使用预警功能(0为默认)。3.1.15 数据修约 此功能可对程序中未拣出的有误数据进行人工修正,点击数据修约选项即可进行修正,当值被设定为无效时,数据被拣出,不参与统计运算。(因系统计算规则因素,只可提供分钟值与小时值的修约功能,目前只开放分钟值修约)3.1.16 用户管理 对于不同的角色设置相应权限管理,一个角色关联了一套操作权限。系统共提供了三种操作权限。系统用户:拥有系统的所有功能操作权限;管理用户:拥有部分业务相关 的功能操作权限;普通用户:只能进行系统中相关内容的查询操作,实现不同级别操作人员对数据访问范围和数据读写性的严格控制,建立统一用户管理平台实现所有用户的身份管理,包括用户个人身份信息、角色信息、电子邮箱、个人账号和密码。3.2 用户APP 手机版发布系统支持Android、IOS等主流的手机操作系统,系统界面简洁、大方,易于操作。发布各个监测站点的PM2.5、PM10、SO2、NO2、O3、CO小时、日均、月均浓度值,提供查看辖区内各站点空气质量排名功能,并绘制过去24小时的浓度曲线图。发布城市、区域的环境质量AQI、首要污染物、环境质量指数类别、环境质量指数说明以及健康提示等信息。按照《HJ633-2012环境质量指数(AQI)技术规定》,根据环境质量AQI进行颜色标识。 3.2.1 用户权限控制 根据用户级别不同,分别设定不同权限,普通用户登入后只可查看账号所属站点详情,以管理员身份登入之后,则可查看全部点位状况与其均值显示。 3.2.2 数据查看与分析 主界面可查看权限范围内点位数据详情,点击不同监测因子所在方格,下方折线图则对应显示其最近24小时内污染因子变化情况。 3.2.3 GIS地理信息显示 点位状况与web端同步,获取坐标信息后即可在地图上显示,支持当前总体数据情况与单项指数切换,污染指数根据等级不同以不同颜色显示。 如果点位信息过多时,可切换至列表进行搜索,一目了然,快捷高效。 3.2.4 历史数据查询 移动端在web端基础上提供简单的查询功能,该模块按照权限不同所属辖区不同,可以查看站点最近24小时、或最近30天、或最近12个月,综合指数或者分项指数的均值状况。 3.2.5 环境质量指数排名查看 移动端可以便捷的为环境管理人员提供服务,管理者账号登录后,开放排名信息功能,提供当日辖区内站点排名,明确污染方向。 3.2.6 系统设置、功能标准、预警处理 辅助功能全部归集于侧边栏内,APP向用户推送通知,个人设置中可以设置是否接收消息、提醒方式等。 四、平台架构与系统工作原理 4.1 环境数据采集 监听服务器使用公网固定IP,监测仪器发送数据至此IP地址对应端口,系统自动采集并通过内置协议将字符串解析为需要的信息,实现数据包的校验、检查、解析和入库(数据存储),采用多线程异步通信技术与各监测点通信,可查看原始数据,实现数据同步转发。 当监测点位断线或者出现异常时,线程保留五分钟对接期,五分钟之内不上传数据系统关闭线程,降低占用率,直至重新连接再次打开。4.2 环境数据存储 数据库服务器对接收到的环境数据进行整体规划,对环保业务涉及的众多数据资源进行科学合理的分类,在此基础上建立数据体系和数据库体系,形成基础数据库、专业数据库、元数据库和标准数据库。 由于环境大数据的保密性,数据库服务器需要关闭公网服务和外接端口,与监测听服务器接入同一局域网,使用内网IP。监听服务器解析完成后,通过局域网将数据存储至此。数据库定期备份、定期杀毒、定期更新软件服务与相关插件,以保证存储数据的安全。4.3 环境数据分析处理 中心服务器针对各项数据库进行数据管理,严格按照相关法律法规及环保行业规定进行统计分析运算处理,得出最符合标准的环境数值。统计功能支持根据原始值值计算小时值、日报、月报、年报等。分析功能包括,对大气、水质、烟气等不同行业进行规则整合判断、如烟尘,烟气的含量跟氧气关系,COD与浊度及溶解氧的关系等高级功能,根据用户需求定制开发。经过算法运行生成数据模型,实现系统建模分析的关键功能。4.4 环境数据报表生成与排名 中心服务器生成各项报表后,根据空气质量指数从低到高进行排名,指数越低排名越靠前。支持总体排名、区域排名、单站点排名。服务器与EXCEL报表、WORD文档、JPG图片、PDF等接口进行对接,使前端页面可以顺利导出打印。4.5 环境监测指标预警 预警预报服务器中置入交互模块,每30分钟采集监测子站的运行状态、设备状态、监测数据,对服务器进行信息交互传输、读取操作日志,连续两次出现异常,系统启用预警提醒。同时可以将监测因子标准接入检测程序中,如果超标或者出现恒值,则提示相关人员并将信息传输至前置服务器。所有预警信息在前端页面展示。4.6 CMAQ空气质量模型建模分析 CMAQ是美国国家环境保护局研制的第三代空气质量预报和评估系统(Models-3)。系统采用灵活的模块化思想,由气体模式、污染排放模式、空气质量模式组成。基于CMAQ的空气质量模拟过程可实现设置可视化和运行自动化,以准确的MM5气象场数据、污染排放清单数据为基础,运用CMAQ模型,实现空气质量预报结果的自动生成,并支持对结果的核对统计与对比分析,减少人工操作,通过适量定制化开发,可以作为区域臭氧、能见度、酸沉降等过程的整合应用平台。4.7 环境质量趋势预判 中心服务器处理数据,结合实际数据建立源解析模型,结合天气系统分析环境质量趋势。充分利用积累的海量监测数据,结合环境空气污染指数法(API)、环境空气综合污染指数法、主要污染物污染物浓度评价法、污染变化趋势的定量分析方法-秩相关系数法等方法,对区域内空气质量状况和变化趋势进行综合分析和预判。五、系统硬件构成环境指标监测仪器子站GPS子站定位模块数据采集设备无线传输设备数据监听前置服务器数据库服务器WEB应用服务器
    留言咨询
  • GridAIR网格化环境空气质量管理服务平台是针对网格化管理分析的云服务平台,基于微信企业号的互联网+数据服务模式, 助力监管工作模式转变,提升监管效率。力争让每一级网格都有自己的空气质量管理分析云平台。主要功能应用包含:数据分析包含气质图、空气质量、监测排名、时段分析、点位分析、关联分析、微预警、微解析七大数据分析功能, 移动办公包含培训学习、考试测评两大功能。
    留言咨询
  • 市县级环保局环境空气质量自动监测平台zwin-2.1、 总体设计 系统设计遵循技术先进、功能齐全、性能稳定、节约成本的原则。并综合考虑施工、维护及操作因素,并将为今后的发展、扩建、改造等因素留有扩充的余地。通过对环境空气质量自动监测联网平台工作的内容及专业技术进行了深入的研究和分析,对比分析国内最新研究成果和应用成果,并结合我国国情,参照相关国家标准和部门颁布标准,遵照超前性和客观性相结合,信息技术和自动化技术相结合,现代技术和急促设施改造相结合,以及先进性与经济性相兼顾,管理手段与应用效果相兼顾的指导思想,最终设计并开发了该套县级环境空气质量网络化质控平台。 在系统开发中,综合运用了计算机自动控制技术、计算机网络技术、通讯技术、GIS开发技术、物联网技术、数据库技术等。2、 设计原则(1)先进性 采用当前成熟且先进的技术,保持系统硬件、软件、技术方法和数据管理的先进性,保证系统建成后再技术层次上5~8年内不落后。同时具有较强的可移植性、可重用性,在将来能迅速采用最新技术,以长期保持系统的先进性。(2)可靠性 以可靠成熟的软件产品为基础,结合具体需求进行配置、定制和二次开发的方式进行实施,保证有效 缩短项目实施时间,降低项目实施的风险。系统应能够支持较大并发用户同时进行浏览、操作等与数据库的交互式的操作,并且相对占用较少的硬件资源。当意外事件发生时,能通过快速的应急处理,实现故障修复,保证数据的完整性,避免丢失重要数据。系统具有较强的应变能力和容错能力,确保系统在运行时反应快捷。安全可靠。(3)安全性 系统安全是系统稳定运行至关重要的因素,本系统采用如下安全机制: 应用服务器应部署在安全防护等级二级以上的机房。 软件采用数字认证技术实现严格的权限控制,未授权人员无法登陆系统或进行相应操作。桌面端和移动端均采用数据证书进行网络安全认证,以便保证数据操作及传输等相关环节的安全。采用身份识别技术,保护系统配置和注册的服务不被非授权请求访问。对系统重要数据进行加密,确保系统数据的安全性和保密性。软件采用强大的日志功能,记录用户的各种重要操作和系统的异常信息。(4)扩展性 随着系统长期的使用,数据量会逐步增大,各地信息化程度越来越高以后,访问压力也可能逐步增大,因此需要系统在设计时就考虑良好的可扩展性,能够支撑将来扩容的需求,能够以较小的代价升级系统,提升系统支撑能力。软件系统的建设能够适应不断发展的业务需求,能够灵活扩充,提供系统功能进一步扩大的基础技术支撑。(5)易用性 系统具有一致的、友好的客户化界面,易于使用和推广,并具有实际可操作性,使用户能够快速地掌握系统的使用。除特殊的、必须的应用外,用户终端全部采用浏览器的方式 快速部署:可以再最短的时间里,进行应用结构和功能的定义、设计、实现。 零客户端维护:除特殊的、必须的应用外,整个系统采用B/S结构,所有的数据及应用都统一在服务器端维护,用户端只要支持浏览器就可以完成全部操作。 操作简便:采用成熟的产品和先进的系统设计理念,同时应用设计遵循简单实用的原则,做到对操作人员、使用人员最低的技术门槛,简单培训就可以进行操作。 系统易于维护:使用该系统如同使用IE浏览器一样容易,且易于系统管理员维护。(6)可维护性 本系统采用插件化、面向服务的设计体系,使系统有适应业务不断变化的能力,易于调整、扩充和组合,最大限度满足业务要求。选用符合国际标准的通信协议和设备技术参数,使系统的硬件系统、软件系统、操作平台之间的相互依赖减至最小,保证没有单点故障,提供完整的应急预案和恢复预案。 本系统采用集群配置,并且确保客户端能够透明访问集群。同时本系统还采用容错或容灾配置,对系统可能出现的故障有处理预案,并有必要的技术手段支持。 在系统预期的寿命周期内,可以升级和修改,以满足操作和技术变化的需要;售后服务体系要确保系统在规定的使用寿命周期内能连续运行。3、 设计依据 系统建设严格执行系统的标准化和规范化,以保证信息系统工作过程的规范化和信息系统数据的标准化。所遵从的主要标准有: 《中华人民共和国环境保护法》 《中华人民共和国大气污染防治法》 《大气污染防治行动计划》(国发〔2013〕37号) 《大气污染防治目标责任书》 《关于开展环境保护重点城市环境空气质量预报工作的通知》(环发〔2000〕231号) 《污染源自动监控管理办法》(国家环保总局令第28号) 《国控重点污染源自动监控能力建设项目建设方案》(国家环保总局函241号 《污染源在线自动监控信息传输、交换技术规范》(HJ/T355-2007) 《环境空气质量标准》(GB 3095-2012) 《污染源在线自动监控(监测)系统数据传输标准》(HJ/T212-2005) 《环境污染源在线自动监控信息传输、交换技术规范》(HJ/T352-2007) 《大气污染物综合排放标准》(GB16297-1996)4、建设内容 环境空气质量自动监测联网平台是指环境保护部门通过通信传输线路与自动监控设备链接,用于对环境空气质量实施自动监控的软件和硬件,硬件主要包括子站数采仪、子站VPN、子站交换机、数据库服务器、VPN、机柜等。 软件部分包括数据审核处理系统、大气在线监测系统、环境地理信息系统、手机APP。4.1 数据审核处理系统 数据审核处理系统的建设主要为实现县级监测中心数据资源的管理。根据信息管理运行的方式与特点,系统的功能应该满足监测数据的审核、处理、查询、统计、分析等等。数据综合管理平台的应用能够为环境部门进行环境空气质量综合管理、环境规划、决策分析提供支持。 数据审核处理系统通过利用大型关系型数据库在数据安全、一致性和分布式处理等方面的优势,将常规6参数、气象五参数等数据集中起来,使用户通过单一界面就可以方便的管理、查询、分析大量的环境数据,从而简化环境数据管理的难度,提高环境数据管理水平。 系统建设遵循《环境数据库设计与运行管理规范》相应要求。采用Web Service数据访问技术、ETL数据加工分析技术等整合环境质量监测各项数据,并通过对数据的整理、加工、分析,提取综合、有效的环境数据结果,为环境质量数据的发布提供支撑,为环境管理决策提供数据支持。架构如下图所示: 4.2 大气在线监测系统大气在线监测系统主要作用是采集、存储、处理、审核、统计、分析、展示SO2、NO2、O3等气体分析仪和PM2.5、PM10粉尘分析仪等的实时环境空气质量原始监测数据,其工作原理是:传感器和分析仪将多路测试信号按序通过接口协议进入无线通讯节点设备DVR的独立(DTU)传输通道,经避雷处理后输入到单元内数据采集器,采集器将采集的数据经过无线数据传输终端通过 TCP/IP 网络传入到大气在线监测系统,系统按照《国家空气监测网子站监测数据报送传输协议》规定的内容接收和存储子站上传的监测数据,将接收到的数据进行解析、存储、处理、审核及上传等处理工作,以及在平台上进行数据统计、分析和展示。系统负责市、县内所有空气质量监测站点的实时数据接收、处理、审核、展示等工作,数据的审核、处理遵循《环境空气质量标准》(GB3095-2012)、《环境空气质量评价技术规范(试行)》、《环境空气PM2.5和PM10自动监测有关问题的技术规定(试行)》以及《环境空气质量指数(AQI)技术规定(试行)》等规范或标准文件,并符合市级传输协议的相关标准,按照新标准和评价技术规范的要求,实现监测数据评价的标准化和规范化,实时数据经过审核后才可用于评价及上报,系统具备数据自动审核、人工修正、分段审核、检出限控制功能,审核后的结果自动上报给市、省级监测站,保证数据上报的准确性和一致性。能实现对大范围内多源、多种类环境要素质量进行自动连续在线的实时接收、处理、审核、上传、备份等功能,在将分布于不同地方的采集设备的监测数据在线接收的同时,具备1点多发功能,向市级监测联网平台采用POST方式将按照传输格式和协议要求的数据实时发送,同时通过VPN专用网络向总站、省站等多级、多个环境监测监控中心转发环境监测数据,并与其它职能部门的物联网平台对接,实现数据资源的互联共享,系统结构图如下:图 大气在线监测系统结构图 系统基于市县级环境监测站现有监测设备及业务系统的实际需求设计,充分利用已有的软硬件系统及相关数据,对已有的支撑性应用软件系统通过系统集成或数据接口的方式将其纳入本系统并提供良好的系统和数据接口,便于数据实时更新和系统间的平滑应用。 数据的上传将严格按照《污染源在线自动监控(监测)系统数据传输标准》(HJ/212-2005)和《污染源在线自动监控(监测)数据采集传输仪技术要求》(HJ 477-2009)以及《山西省污染源监控系统数据采集和传输协议》的相关规定,设定传输软件程序,实现相关监测数据向上级环保部门相应系统的自动上报功能,具备一点多传功能,提供监测数据定时上传、自动补传功能,并可以自由设置数据上传点和上传时间间隔。 系统与现有国家、省、市平台接收软件可实现对接,可同时向国家、省、市、县环保业务部门和多级、多个环境监控中心转发原始环境自动监测数据,系统中数据在向上传输的同时,可将现场的原始数据自动存储在本地数据库中,实现数据备份功能。在现场数据遭到破坏的情况下,直接调用最新备份数据实现数据恢复功能。系统接收数据包时采用CRC校验等多种校验方式,确保了上传的实时数据的准确性。 实现各监测站点实时环境质量发布(含评价时段、监测点位置信息、各污染物浓度及空气质量分指数、空气质量指数、首要污染物及空气质量级别等信息),并可根据各监测点各项污染物实时浓度的不同对底图进行渲染展示,同时,并采用多种形式例如列表、地图、表格等展示。 本系统完全采用B/S结构,客户端无需安装、无需配置任何软件,通过浏览器就可以实现全部操作;瘦客户端设计,无需在客户端下载任何插件,可以使得系统在窄带网络上运行流畅。 本系统实现将GIS技术应用到环境质量在线监测的管理,实现空间数据和环境质量在线监测数据的深度融合。建立环境质量监测空间数据库一体化的编码方案,实现环境质量信息的综合管理。将各种环境质量监测因子与电子地图融合在一起,用户通过简单地在地图的点击可以直接显示区域范围内监测点监测数据等,实现数据的综合查询与分析。 结合地理信息系统(GIS)对空气质量监测信息(位置信息、各项污染物实时浓度、空气质量分指数等)进行更直观的展示。GIS地图具有放大、缩小、漫游等通用功能,并能方便维护空气质量监测点位信息的增加、删除、修改等。 AQI数据发布系统基于GIS系统,实现实时环境空气质量指数(AQI)发布,并可根据各监测点各项污染物实时浓度的不同对底图进行渲染展示,同时,并采用多种形式例如列表、地图、表格等展示。系统建设充分考虑可拓展性原则,为未来数据接入预留足够的接口,在不用对系统做任何更改的情况下,可以自由增加监测站点数据资源,能够与扩展的监测站点进行无障碍对接。系统建设完成后,具有以下功能特点: 1) 数据采集 人工设置一定的数据接收时间间隔后,系统自动按照设定的接收频率采集各类监测数据,包括分钟、小时监测数据以及状态数据、设备参数等,过程中无需人工干预,全天自动采集。 2) 数据存储 系统接收实时监测数据的同时,将采集的大量数据统一存储到本地数据库中,实现数据备份功能,保障系统的安全运行,以及各种系统故障的及时排除和数据库的及时恢复。 3) 分段审核 数据审核过程支持分段审核,审核人员在审核小时值时,可随时分段进行,便于发现连续出现的无变化的异常值,数据审核人员如果需要进一步查看数据有效性的时候,可查看该小时内的质控结果数据,作为审核的参考依据。 4) 人工修正 在自动审核的过程中,系统无法识别处于有效范围区间内的异常值,人工修正就是要实现数据的第二次过滤和筛查,日报人员可以按国家的技术规范修改污染物的监测值、标记位,修改时可以填写“备注信息”对修改原因进行注释,对于修改过的数据可以与原始数据进行对比查看,还可以还原原始数据。 5) 数据上传 实时监测数据完成审核后,将通过传输网络自动上传到市、省级监测平台,保证数据审核结果的一致性和准确性。传输网络主要利用VPN网络,用户通过接入内部虚拟专网的方式与Internet进行隔离,可对整个数据传送过程进行加密保护,保证数据传输的安全性和可靠性。 6) 数据补传 当网络通讯中断或设备故障等原因造成数据缺失时,系统将自动对子站数采系统下达远程数据补传指令,向相应的缺数平台进行数据补传,还可以对市、省级监测站缺失数据进行数据回补,只需要在系统上对总站数据回补IP地址进行简单配置,本地就可以向子站数采下发远程回补指令对总站数据库进行补传。 7) 检出限控制 因仪器设备故障、运行不稳定或其他监测质量不受控情况下出现的负值和低于检出限时,按相关技术规范对监测值进行标记;在环境空气均处于极低水平的条件下,部分仪器设备小时监测结果出现负值或零值时,对于低浓度未检出,取监测仪器最低检出限作为监测结果参加统计。 8) 监测点位GIS地图在线显示 系统内所有监测点位按所属行政区域进行归类和展示,监测点位图标颜色按其当前空气质量指数AQI表示颜色动态显示,图标上方注有具体的地理位置,方便用户直观、一目了然掌握各个行政区域内监测点位的部署情况和空气环境质量现状,系统提供多种方式的地图效果(矢量、卫星、三维)来实时显示空气子站的位置和实时数据。 9) 站点数据实时状态查看 用户点击监测点位图标后系统自动显示空气质量指数AQI、站点地理位置、首要污染物、发布时间、各项监测因子实时数据等信息,空气质量指数AQI数值与表示颜色搭配显示,直观展示站点当前污染情况,监测因子可以按照不同需求进行定制,显示时间段分为实时状态值、最近一小时值、最近24小时值等。 10) 预警、日报通知 系统提供预警、日报通知功能,预警包括超标预警、断线预警和异常值预警,在监测数值超标、数据连接中断和出现异常值时,自动给设定联系人发送提醒信息,保证系统的正常、稳定运行,日报通知将辖区内各个行政区空气质量指数日均值以短信形式发送给站点负责人或主管领导,让环境管理者及时掌握环境空气质量变化情况,在空气质量恶化时第一时间知道详细信息。 11) 数据图表展示 数据展示支持折线图、柱状图、表格等多种形式,展示的内容包括空气质量指数和各项监测因子浓度的分钟值、小时值,方便用户查看时间段内空气质量变化趋势和污染物浓度变化情况,同时可以进行监测点位之间的各项参数的对比分析,用户可以自主设定展示的时间区间,导出打印时支持选用JPG图片、PDF、EXCEL、WORD文档多种格式。 12) 环境质量数据排名 针对相关环境管理部门以及用户个性化定制需求,系统设置独立排名系统,目前采用AQI(空气质量指数),提供日排名、小时排名数据,用户可以查询当天排名信息和历史数据,除了空气质量指数AQI外,还列出了PM10、PM2.5、CO等监测因子小时值、日均值、首要污染物、空气质量类别等信息。 13) AQI实时报、日报自动生成 大气在线监测系统发布平台按照HJ633-2012环境空气质量指数(AQI)技术规定要求,小时报时间周期为1小时,日报时间周期为24小时,时段为当日零点前24小时。发布的小时报数据的指标包括PM2.5、PM10、SO2、NO2、O3、CO的1小时平均,以及O3的8小时滑动平均数据和PM10、PM2.5的24小时滑动平均数据,日报指标包括各监测站点的监测站点信息、监测因子浓度、空气质量指数(AQI)、首要污染物、空气质量指数类别以及空气质量指数说明等信息。还有空气质量监测站点之间日报的单点、多点对比分析,导出打印时支持选用EXCEL、WORD文档多种格式。 14) 月报、年报发布 系统提供各类月报、年报报表自动生成功能,包括污染物参数月报表、子站日均浓度值月统计表以及各子站月平均浓度值、年报图表,多种维度表示空气质量变化情况和趋势,月报、年报发布的指标包含监测站点信息、6项参数的监测因子浓度、主要污染物、空气质量综合指数等信息,数据输出采用曲线图、柱状图等多种形式展示,支持选用EXCEL、WORD文档多种格式导出。 15) 污染物来源分析 收集点位数据后,平台对各项污染物统计值进行计算分析,初步建立点位污染源模型(当前采用方法为首要污染物比重饼状图解析),如果监测点位条件允许,能够实现现场采样,则可以更加精确的进行污染物对比分析,通过各时间段污染物比重模型结合地区现状来分析具体污染源和现场实际情况,并提供针对性治理方案。 16) 设备监控 具备对仪器运行状况、数据采集状态、数据传输网络状态进行自动故障诊断和报警的能力,通过在线实时监控仪器运行状况,实现对仪器全天候运行状态和运行进度的全面感知,能够对数据采集状态、数据传输网络状态异常情况进行自动故障诊断,并可以及时通过手机短信给预先设置的联系人发送报警信息。 17) 环境数据动态云图展示 受地理位置、气象条件、污染企业类型和数量等因素影响,区域间空气质量及污染状况具有不同程度的差别,系统基于各个区域内监测数值实时以污染物浓度云图形式渲染这种差别,云图取每小时点位数值,颜色采用空气质量指数AQI表示颜色,实现由“点”到“面”全面展示大范围内空气质量状况。 (图案仅供参考) 18) 空气质量、气象数据导出 系统提供空气质量、气象数据导出功能,用户在设置时间类型、站点、时间段以后即可实现数据导出,内容包括点位信息、数据更新时间、常规6参数浓度值、主要污染物、空气质量指数AQI。其中数据有效率按照国家标准进行计算,分钟值以后端数据传输判定为准,小时值以每小时收集45个分钟值为准,日均值以每天收集22个小时值为准,其余时间区间以日均值有效天数为准。 19) 站点管理 用户在此模块可以实现监测点位信息的增、改、查、删等基本操作,点位信息包括监测点位名称、地址、经纬度、站点ID、所在区域名称等内容,实现点位信息的动态管理,区域与编号为锁定状态,可自行配置名称、经纬度、排名、公开、掉线预警等选项。 20) 短信配置 此功能可以查看短信配置详情,添加条目可以新增加短信推送人员信息和发送内容,编辑选项可对接收短信用户推送内容进行管理操作,配置的信息内容包括预警信息、日报、状态预警、掉线预警,完成设置以后,列表中人员可以收到短信信息。 21) 污染物浓度预警 一旦空气质量状况出现异常波动时,系统启动超标报警。此功能中分数据上下限与预警上下限,数据上下限为数据有效性判定标准值,超过界限的则被判定为无效。预警上下限为当监测因子不在设定值范围内一定时间之后,则会发送预警短信。 选择站点便捷,将预警上下限设定临界值,即可使用预警功能(0为默认)。 22) 用户管理 对于不同的角色设置相应权限管理,一个角色关联了一套操作权限。系统共提供了三种操作权限。系统用户:拥有系统的所有功能操作权限;管理用户:拥有部分业务相关 的功能操作权限;普通用户:只能进行系统中相关内容的查询操作,实现不同级别操作人员对数据访问范围和数据读写性的严格控制,建立统一用户管理平台实现所有用户的身份管理,包括用户个人身份信息、角色信息、电子邮箱、个人账号和密码。 4.3 环境地理信息(GIS)系统 环境地理信息系统是在整合地理信息数据和环境监测数据的基础上,将传统的静态记录以多样化的地图形式展现给用户。通过地理信息系统的可视化地图展示,实现大气监测系统发布平台和手机APP按地理位置进行显示和查询,可以帮助环保部门工作人员直观地获取环境要素的空间分布,以及各要素间的空间关系等信息。 本项目地图采用百度开源地图数据,系统可在线调用百度地图接口,地图矢量数据完全依照百度地图的矢量数据。 在GIS系统前端界面上,显示各监测、监控点位置分布状况,并对各监测监控点实施监控,实现在线监测数据的实时刷新、临界提示、超标报警。实时调用刷新现在在线监控监测数据。用户可以通过空气质量的查询定位后,直接查看大气质量相关的监测数据。 GIS用户通过部署一个集中式的GIS服务器在大型组织之内以及Internet的用户之间发布和共享地理信息。服务端的GIS软件适用于任何集中执行GIS计算,并计划扩展支持GIS数据管理和空间处理的场合。除了为客户端提供地图和数据服务,GIS服务器还在一个共享的中心服务器上支持GIS工作站的所有功能,包括制图,空间分析,复杂空间查询,高级数据编辑,分布式数据管理,批量空间处理,空间几何完整性规则的实施等等。 本着“全局性,时效性,智能化”的原则归纳出包括环保部门基础地理信息数据库建库、相关专题数据库建库、空间数据库管理、业务数据库管理、专题统计分析等。 (1)地图基本操作 全图:在任何状态下,当点击工具栏上按钮,地图自动缩小至全图(最小比例尺)的状态。 地图的放大、缩小:能够通过选择工具来放大、缩小和平移地图,改变地图的中心和视野,可以进行局部放大和缩小。 漫游:当点击工具栏上图标时,将激活地图平移的功能,此时只需在地图窗口中按住鼠标左键并拖拽地图,即可查看在当前地图窗口以外的地图内容,此操作不会引起对地图的缩放。 (2)大气质量监控点位置 在GIS系统前端界面上,显示各监测、监控点位置分布状况,并对各监测监控点实时监控,实现临界提示、超标预警。通过放大、缩小功能可以查看区域内所有监控点部署情况,监控点图标颜色采用空气质量指数AQI的表示颜色,地图下方提供空气质量等级区间条,方便用户对比查看各个监测点的空气质量状况。 (3)大气质量监测因子数据显示 实现在线监测数据的实时刷新、实时调用,用户可以通过点击监控点图标,直接查看空气质量SO2、CO、O3、NO2、PM10、PM2.5以及气象参数的实时监测数据。 系统利用GIS技术把大气质量应用软件构筑于污染源数据库管理系统和图形库管理系统之上,提供具备空间信息管理、信息处理和直观表达能力的应用。本项目环境地理信息系统预留二次开发端口,充分满足后期平台升级、功能完善的需要。 4.4 手机APP 手机版发布系统支持Android、IOS等主流的手机操作系统,系统界面简洁、大方,易于操作。系统基于地理信息系统,实时发布各个监测站点的PM2.5、PM10、SO2、NO2、O3、CO小时浓度值,以及O38小时的滑动平均值,PM10、PM2.5 24小时滑动平均值,并绘制过去24小时的浓度曲线图。发布各监测站点的监测站点信息、环境质量AQI、首要污染物、环境质量指数类别、环境质量排名等信息,不仅可以查看实时数据,还可以查询历史数据。按照《HJ633-2012环境质量指数(AQI)技术规定》,根据环境质量AQI进行颜色标识。 1) 实时数据显示 打开应用程序进入主界面后,主界面可查看各个点位数据详情,点击不同监测因子所在方格,同时可以对当前监测点根据实际需要进行自由切换,下方折线图则对应显示其最近24小时内污染因子变化情况,方便了解监测因子的变化趋势和规律,显示的信息包括: 1、监测点位描述:名称、时间、空气污染程度(优、良好、轻度污染、中毒污染、重度污染)、实时温度、当前时段(白天/晚上); 2、小时浓度均值:包括PM2.5、PM10、 CO、SO2、O3、NO2、 AQI等。 2) 历史数据查询 移动端在web端基础上提供简单的查询功能,通过选择监测点名称、始末时间、单站多参/多站单参、数据名称多种形式查询各项参数的时均值、日均值、月均值、年均值,查询结果备注各项数据的污染程度(优、良好、轻度污染、中度污染、重度污染),采用列表形式直观展现。 3) GIS地图显
    留言咨询
  • 实验室装修哪家好?实验室装修设计多少钱一平米?实验室装修设计市场在国内目前仍处于发展中状态,即使是上海,目前也是在艰难的摸索阶段,因此实验室装修市场鱼龙混杂、乱收费的现象比比皆是。作为实验方在选择设计装修公司时应擦亮眼睛,摸清实验室建设公司的专业能力和价格是否合理。上海实验室装修公司哪家好?上海实验室装修多少钱一平米?如何合理筛选实验室装修公司?SAREN三仁为您详解。 一、上海实验室装修设计价格由哪些因素决定?1. 实验室类型:生物安全实验室、食品理化实验室、GMP实验室、恒温恒湿实验室、医疗医院实验室等。根据实验室洁净等级、通风要求等要素,实验室装修价格也有所不同。至于实验室设计费用,一般出入不会太大。2. 装修方式:新建最贵,改建次之,扩建价格低。3. 建材与设备:建材设备的选择对实验室装修价格和质量都起着主要作用,在方案大同小异的前提下,各公司报价不同,通常是针对实验室建工用料不同。作为实验方,应理性判断,避免价格虚高、虚低等情况。SAREN三仁在价格方面从不打价格战,因为我们从来是以品质为首要前提,绝不做为多争取一两个工程而卷入价格战、工程质量当儿戏这样的自砸招牌的事情。二、实验室装修公司筛选过程中常见的有三种类型的风险。首先,要明白并不是所有的实验室装修公司都是EPC总包公司或者专业做装修的公司,据SAREN市场调研了解,实验室装修行业常见风险有:1. 有些公司只是做实验室设计,然后将装修工程分包出去,这样导致的结果可能是信息不对等,且一层层的利润剥削导致实验方成本提高。2. 有些公司原本是做实验室家具设备的,发展到后来做实验室装修工程,这样的缺点是无法保障施工质量,且实验室装修施工是需要资质的,在开工前还需要报有关部门审批、办理施工许可证才可进行施工,如果不是正规的实验室装修公司,则在走流程等方面容易出现问题,对后期项目的验收审批等也有一定影响。SAREN三仁作为上海专业实验室装修设计公司,具有10年装修设计经验,国家建筑设计与施工二级资质、净化工程设计与施工一级资质、钢结构三级资质等,我们提供的不仅是专业的保障,更是标准的考量。3. 有些公司不是专业做实验室设计的,业务范围囊括了商业空间、住宅、办公室、实验室等。这样就存在一个专业性不足的问题,对于实验室装修设计来说,绝不仅仅是设计实验室各房间的家具摆放、设备安装等,更重要的是合理布线、人流物流导向要依据科学及行业规范、气路水路等管道安装施工图纸比平面设计图纸更加重要。三、如何在上海挑选到一家靠谱的实验室装修设计公司呢?1. 网络撒网。在百度搜索自己的需求关键词,例如“实验室装修”“实验室设计”“实验室工程EPC”等,搜索出来的结果在百度前几页的一般是比较靠谱和优质的选择,相对来说,公司有规模有实力,能保证专业性和担责任。2. 查看信息。即使是在百度前几位的百度推荐公司,也可能是付费推广的企业,具体公司实力还是要自行核查,先进入公司网站查看资质、案例等基本信息,然后通过国家企业信用公示系统及天眼查、启信宝等查看其工商信息,进行进一步筛选。3. 实地约见。实地约见的作用不光是考察公司真实规模及实力,还可要求参观过往工程质量,以此判断企业真实可信度。另一方面,约见设计师及相关负责人,也可以感知该公司的企业文化是实干型还是务虚,这对于挑选符合自身需求的实验室装修公司也是一个重要筛选途径。4. 货比三家。自行比对这些公司的专业性、报价合理性。通过上述渠道,基本能挑选出合适靠谱的实验室装修设计公司了,接下来只要根据实地需求,让设计公司出方案、报价、签订合同就能开始后续建设工作准备了。注意在签订合同中应明确装修的具体要求和完工日期,标明使用的装饰材料的具体品牌和型号、售后保修服务等
    留言咨询
  • 1、总体设计 系统设计遵循技术先进、功能齐全、性能稳定、节约成本的原则。并综合考虑施工、维护及操作因素,并将为今后的发展、扩建、改造等因素留有扩充的余地。通过对环境空气质量自动监测联网平台工作的内容及专业技术进行了深入的研究和分析,对比分析国内最新研究成果和应用成果,并结合我国国情,参照相关国家标准和部门颁布标准,遵照超前性和客观性相结合,信息技术和自动化技术相结合,现代技术和急促设施改造相结合,以及先进性与经济性相兼顾,管理手段与应用效果相兼顾的指导思想,最终设计并开发了该套县级环境空气质量网络化质控平台。 在系统开发中,综合运用了计算机自动控制技术、计算机网络技术、通讯技术、GIS开发技术、物联网技术、数据库技术等。 2、设计原则 (1)先进性 采用当前成熟且先进的技术,保持系统硬件、软件、技术方法和数据管理的先进性,保证系统建成后再技术层次上5~8年内不落后。同时具有较强的可移植性、可重用性,在将来能迅速采用最新技术,以长期保持系统的先进性。 (2)可靠性 以可靠成熟的软件产品为基础,结合具体需求进行配置、定制和二次开发的方式进行实施,保证有效缩短项目实施时间,降低项目实施的风险。 系统应能够支持较大并发用户同时进行浏览、操作等与数据库的交互式的操作,并且相对占用较少的硬件资源。当意外事件发生时,能通过快速的应急处理,实现故障修复,保证数据的完整性,避免丢失重要数据。 系统具有较强的应变能力和容错能力,确保系统在运行时反应快捷。安全可靠。 (3)安全性 系统安全是系统稳定运行至关重要的因素,本系统采用如下安全机制: 应用服务器应部署在安全防护等级二级以上的机房。 软件采用数字认证技术实现严格的权限控制,未授权人员无法登陆系统或进行相应操作。桌面端和移动端均采用数据证书进行网络安全认证,以便保证数据操作及传输等相关环节的安全。采用身份识别技术,保护系统配置和注册的服务不被非授权请求访问。 对系统重要数据进行加密,确保系统数据的安全性和保密性。 软件采用强大的日志功能,记录用户的各种重要操作和系统的异常信息。 (4)扩展性 随着系统长期的使用,数据量会逐步增大,各地信息化程度越来越高以后,访问压力也可能逐步增大,因此需要系统在设计时就考虑良好的可扩展性,能够支撑将来扩容的需求,能够以较小的代价升级系统,提升系统支撑能力。 软件系统的建设能够适应不断发展的业务需求,能够灵活扩充,提供系统功能进一步扩大的基础技术支撑。 (5)易用性 系统具有一致的、友好的客户化界面,易于使用和推广,并具有实际可操作性,使用户能够快速地掌握系统的使用。除特殊的、必须的应用外,用户终端全部采用浏览器的方式 快速部署:可以再最短的时间里,进行应用结构和功能的定义、设计、实现。 零客户端维护:除特殊的、必须的应用外,整个系统采用B/S结构,所有的数据及应用都统一在服 务器端维护,用户端只要支持浏览器就可以完成全部操作。 操作简便:采用成熟的产品和先进的系统设计理念,同时应用设计遵循简单实用的原则,做到对操作人员、使用人员最低的技术门槛,简单培训就可以进行操作。 系统易于维护:使用该系统如同使用IE浏览器一样容易,且易于系统管理员维护。 (6)可维护性 本系统采用插件化、面向服务的设计体系,使系统有适应业务不断变化的能力,易于调整、扩充和组合,最大限度满足业务要求。选用符合国际标准的通信协议和设备技术参数,使系统的硬件系统、软件系统、操作平台之间的相互依赖减至最小,保证没有单点故障,提供完整的应急预案和恢复预案。 本系统采用集群配置,并且确保客户端能够透明访问集群。同时本系统还采用容错或容灾配置,对系统可能出现的故障有处理预案,并有必要的技术手段支持。 在系统预期的寿命周期内,可以升级和修改,以满足操作和技术变化的需要;售后服务体系要确保系统在规定的使用寿命周期内能连续运行。 3、设计依据 系统建设严格执行系统的标准化和规范化,以保证信息系统工作过程的规范化和信息系统数据的标准化。所遵从的主要标准有: 《中华人民共和国环境保护法》 《中华人民共和国大气污染防治法》 《大气污染防治行动计划》(国发〔2013〕37号) 《大气污染防治目标责任书》 《国家环境保护“十二五”科技发展规划》(环发〔2011〕63号)《关于开展环境保护重点城市环境空气质量预报工作的通知》(环发〔2000〕231号) 《污染源自动监控管理办法》(国家环保总局令第28号) 《国控重点污染源自动监控能力建设项目建设方案》(国家环保总局函241号 《污染源在线自动监控信息传输、交换技术规范》(HJ/T355-2007) 《环境空气质量标准》(GB 3095-2012) 《污染源在线自动监控(监测)系统数据传输标准》(HJ/T212-2005) 《环境污染源在线自动监控信息传输、交换技术规范》(HJ/T352-2007) 《大气污染物综合排放标准》(GB16297-1996) 4、建设内容 环境空气质量自动监测联网平台是指环境保护部门通过通信传输线路与自动监控设备链接,用于对环境空气质量实施自动监控的软件和硬件,硬件主要包括子站数采仪、子站VPN、子站交换机、数据库服务器、VPN、机柜等。 软件部分包括数据审核处理系统、大气在线监测系统、环境地理信息系统、手机APP。 4.1 数据审核处理系统 数据审核处理系统的建设主要为实现县级监测中心数据资源的管理。根据信息管理运行的方式与特点,系统的功能应该满足监测数据的审核、处理、查询、统计、分析等等。数据综合管理平台的应用能够为环境部门进行环境空气质量综合管理、环境规划、决策分析提供支持。 数据审核处理系统通过利用大型关系型数据库在数据安全、一致性和分布式处理等方面的优势,将常规6参数、气象五参数等数据集中起来,使用户通过单一界面就可以方便的管理、查询、分析大量的环境数据,从而简化环境数据管理的难度,提高环境数据管理水平。 系统建设遵循《环境数据库设计与运行管理规范》相应要求。采用Web Service数据访问技术、ETL数据加工分析技术等整合环境质量监测各项数据,并通过对数据的整理、加工、分析,提取综合、有效的环境数据结果,为环境质量数据的发布提供支撑,为环境管理决策提供数据支持。架构如下图所示: 数据审核处理系统采用四层设计,主要有标准层、审核处理层、数据库层、服务层。在标准层采用《环境空气质量标准》(GB3095-2012)、《环境空气质量评价技术规范(试行)》以及《环境空气质量指数(AQI)技术规定(试行)》等规范或标准文件,并符合市级传输协议的相关标准,按照新标准和评价技术规范的要求,实现了监测数据评价的标准化和规范化,通过这些标准和规范的制定,系统就能够实现各个层面的良好交流。 审核处理层主要实现对数据的审核和处理。数据审核的方式主要有两种:自动审核和人工复审。数据处理主要是对采集上来的数据进行汇总、集成、日均值修约等等,合格后才能入库,保证上报的监测数据的代表性和准确性。 数据库层主要用于元数据、基础数据的存储和管理等功能,对于已经建设空气自动监测管理数据库的县来说,保持现有数据库管理体系,在现有数据库管理体系作进一步开发,作好与省、市级数据库管理系统的借口与数据交换功能,数据库管理系统的主要功能包括建库管理、数据输入、数据查询输出、数据维护管理、代码维护、数据库安全管理、数据库备份恢复、数据库外部接口等,是数据更新、数据库建立和维护的主要工具,也是在系统运行过程中进行原始数据处理和查询的主要手段 (1)、元数据库 元数据是关于数据的描述性数据信息,大量地反映数据集自身的特征规律,方便于用户对数据集的准确、高效与充分的开发与利用。通过元数据可以检索、访问数据库,可以有效利用计算机的系统资源。 (2)、配置数据库 配置数据库主要是针对数据库所支撑的各个平台的相应系统配置做数据支撑,如:系统的后台管理模块等。 (3)、基础数据库 基础数据库存储空气质量监测点基础信息等,是其业务模块运行的基础,系统提供功能对这些基础信息进行管理维护,保证基础数据在整个业务系统中的一致性和准确性,避免基础数据前后不一致造成的系统功能异常。 (4)、业务数据库 根据国标的相关要求以及业务系统相对应标准搭建,在确保数据格式的准确以及可更新性的基础上搭建。采用国际标准及国家标准对输入数据标准化,采用标准编码,使进入数据库的数据格式共享,实现数据库之间的数据从技术上可完全交互。 对空气质量在线监测数据进行整合,形成统一的空气质量监测数据库,为数据分析、数据的实时发布提供基础支撑。 在数据服务层主要有数据查询、统计分析以及AQI日报自动生成这些功能,通过Web Service接口与数据库相连。 1)自动审核 在数据传输过程中,针对各项数据上报类型和规范要求,可以预定义数据校验规则,有效保证数据质量,自动审核能够基于《国家空气监测网监测数据标识体系》对异常数据进行筛选剔除,能够对离群数据和PM10、PM2.5倒挂数据进行筛选剔除。对数据项有效值的上、下限以及表达格式按规范进行设置;监测项目的数值间逻辑关系也是审核的重点,进一步校对数据的合理性和准确性。当上述审核过程中未出现异常情况,则数据审核通过并即可入库,整个检验审核过程由系统程序完成,接收数据时通过采用CRC校验等多种方式,避免了数据录入时的很多错漏状况。对于任何的标记或剔除操作,系统自动记忆,作为日志备查。 2)人工复审 在自动审核的过程中,系统按照设定程序进行数据质量的审核,但由于缺乏对整个运行平台宏观掌控,可能会将无效数据标识为有效数据,或将有效数据标识为无效数据。人工复审就是要实现数据的第二次过滤和筛查,通过对分析仪的运行状态、子站维护情况、数采情况、网络等信息的了解,来确定自动审核数据的客观性和准确度,对自动审核未做标识的无效数据记为无效并说明无效原因,对自动审核误标识的数据,要将其还原为有效数据并按审核技术要求进行修约,对数据审核操作进行详细记录,包括审核人、审核时间、审核的监测项目、审核所采取的操作等。 人工复审时整个数据审核过程中最重要的一环,对审核人员提出了较高的要求,包括一致性检查、无效数据审核为有效、有效数据审核为无效、负值与零值数据的处理四部分。 数据一致性检查 数据一致性检查要求待上报的数据与市站、省站的数据一致。进入检查界面后,点击“一致性检查”,可以查看当日数据的缺失情况,若本地数据或总站数据有缺失,需要进行数据回补操作,下达数据回补指令后,系统将自动向本地缺数平台进行数据回补,对于市、省站数据的回补操作,要在下发回补指令之前对市、省站回补IP地址进行配置,该地址主要用于本地向子站数采下发远程回补指令向总站数据库进行数据回补,只有完成了所有的回补操作并等待所有缺失数据回补完成后,才可以进行审核数据的下一步操作。 无效数据审核 对于某个站点预审核后的无效数据,查看依据国家数据平台软件对无效数据自动标识相关要求和标准对应的标识类型,结合实际情况逐个分析,比如:某站点PM2.5的13:00数据标记为PS,那么就要查看当天的站点维护日志该时刻是否确实做过PM2.5的跨度检查操作,从而确定该标识数据的有效性。最后,将判定为有效的数据重新标识为有效数据,完成无效数据的审核过程。 有效数据审核 系统自动审核可能会将部分无效数据判定为有效,这就需要审核人员充分了解站点的运行情况,通过经验以及与其他时段数据以及历史数据的对比等方法来仔细甄别出未标识的无效数据,实例:某一时段的SO2校准操作过程未做标识,那么这一时段的数据出现了明显高于其他时段或历史数据水平的情况,那么该数据就该判定为无效数据。对于未标识的无效数据的判断有一定的难度,这就要求审核人员具有高度的责任感和丰富的审核经验才能较好地完成有效数据审核为无效的操作过程。 零负值数据处理 因仪器设备故障、运行不稳定、监测质量不受控或者空气质量较好条件下气态污染物的浓度相对较低时,致使监测数据出现零负值的情况时有发生。系统自动审核过程会将所有的零负值标识为无效数据,容易出现日报中某个污染物有效样本不足的情况,以致影响了数据的采集率。因此需要人工复审所有的零负值数据,努力找出导致零负值的原因,如何排除了设备故障、仪器运行不稳定、监测质量不受控的情况,就要依据修约规则将零负值数据还原为有效数据。 3)AQI日报自动生成 系统根据《环境空气质量评价技术规范(试行)》(HJ 663-2013)自动生成相关日、周、月、季和年报,并能够以word、excel、PDF的形式导出。 4.2 大气在线监测系统 大气在线监测系统主要作用是采集、存储、处理、审核、统计、分析、展示SO2、NO2、O3等气体分析仪和PM2.5、PM10粉尘分析仪等的实时环境空气质量原始监测数据,其工作原理是:传感器和分析仪将多路测试信号按序通过接口协议进入无线通讯节点设备DVR的独立(DTU)传输通道,经避雷处理后输入到单元内数据采集器,采集器将采集的数据经过无线数据传输终端通过 TCP/IP 网络传入到大气在线监测系统,系统按照《国家空气监测网子站监测数据报送传输协议》规定的内容接收和存储子站上传的监测数据,将接收到的数据进行解析、存储、处理、审核及上传等处理工作,以及在平台上进行数据统计、分析和展示。 系统负责市、县内所有空气质量监测站点的实时数据接收、处理、审核、展示等工作,数据的审核、处理遵循《环境空气质量标准》(GB3095-2012)、《环境空气质量评价技术规范(试行)》、《环境空气PM2.5和PM10自动监测有关问题的技术规定(试行)》以及《环境空气质量指数(AQI)技术规定(试行)》等规范或标准文件,并符合市级传输协议的相关标准,按照新标准和评价技术规范的要求,实现监测数据评价的标准化和规范化,实时数据经过审核后才可用于评价及上报,系统具备数据自动审核、人工修正、分段审核、检出限控制功能,审核后的结果自动上报给市、省级监测站,保证数据上报的准确性和一致性。 能实现对大范围内多源、多种类环境要素质量进行自动连续在线的实时接收、处理、审核、上传、备份等功能,在将分布于不同地方的采集设备的监测数据在线接收的同时,具备1点多发功能,向市级监测联网平台采用POST方式将按照传输格式和协议要求的数据实时发送,同时通过VPN专用网络向总站、省站等多级、多个环境监测监控中心转发环境监测数据,并与其它职能部门的物联网平台对接,实现数据资源的互联共享。 系统基于市县级环境监测站现有监测设备及业务系统的实际需求设计,充分利用已有的软硬件系统及相关数据,对已有的支撑性应用软件系统通过系统集成或数据接口的方式将其纳入本系统并提供良好的系统和数据接口,便于数据实时更新和系统间的平滑应用。 数据的上传将严格按照《污染源在线自动监控(监测)系统数据传输标准》(HJ/212-2005)和《污染源在线自动监控(监测)数据采集传输仪技术要求》(HJ 477-2009)以及《山西省污染源监控系统数据采集和传输协议》的相关规定,设定传输软件程序,实现相关监测数据向上级环保部门相应系统的自动上报功能,具备一点多传功能,提供监测数据定时上传、自动补传功能,并可以自由设置数据上传点和上传时间间隔。 系统与现有国家、省、市平台接收软件可实现对接,可同时向国家、省、市、县环保业务部门和多级、多个环境监控中心转发原始环境自动监测数据,系统中数据在向上传输的同时,可将现场的原始数据自动存储在本地数据库中,实现数据备份功能。在现场数据遭到破坏的情况下,直接调用最新备份数据实现数据恢复功能。系统接收数据包时采用CRC校验等多种校验方式,确保了上传的实时数据的准确性。 实现各监测站点实时环境质量发布(含评价时段、监测点位置信息、各污染物浓度及空气质量分指数、空气质量指数、首要污染物及空气质量级别等信息),并可根据各监测点各项污染物实时浓度的不同对底图进行渲染展示,同时,并采用多种形式例如列表、地图、表格等展示。 本系统完全采用B/S结构,客户端无需安装、无需配置任何软件,通过浏览器就可以实现全部操作;瘦客户端设计,无需在客户端下载任何插件,可以使得系统在窄带网络上运行流畅。 本系统实现将GIS技术应用到环境质量在线监测的管理,实现空间数据和环境质量在线监测数据的深度融合。建立环境质量监测空间数据库一体化的编码方案,实现环境质量信息的综合管理。将各种环境质量监测因子与电子地图融合在一起,用户通过简单地在地图的点击可以直接显示区域范围内监测点监测数据等,实现数据的综合查询与分析。 结合地理信息系统(GIS)对空气质量监测信息(位置信息、各项污染物实时浓度、空气质量分指数等)进行更直观的展示。GIS地图具有放大、缩小、漫游等通用功能,并能方便维护空气质量监测点位信息的增加、删除、修改等。 AQI数据发布系统基于GIS系统,实现实时环境空气质量指数(AQI)发布,并可根据各监测点各项污染物实时浓度的不同对底图进行渲染展示,同时,并采用多种形式例如列表、地图、表格等展示。 系统建设充分考虑可拓展性原则,为未来数据接入预留足够的接口,在不用对系统做任何更改的情况下,可以自由增加监测站点数据资源,能够与扩展的监测站点进行无障碍对接。系统建设完成后,具有以下功能特点: 1)数据采集 人工设置一定的数据接收时间间隔后,系统自动按照设定的接收频率采集各类监测数据,包括分钟、小时监测数据以及状态数据、设备参数等,过程中无需人工干预,全天自动采集。 2)数据存储 系统接收实时监测数据的同时,将采集的大量数据统一存储到本地数据库中,实现数据备份功能,保障系统的安全运行,以及各种系统故障的及时排除和数据库的及时恢复。 3)分段审核 数据审核过程支持分段审核,审核人员在审核小时值时,可随时分段进行,便于发现连续出现的无变化的异常值,数据审核人员如果需要进一步查看数据有效性的时候,可查看该小时内的质控结果数据,作为审核的参考依据。 4)人工修正 在自动审核的过程中,系统无法识别处于有效范围区间内的异常值,人工修正就是要实现数据的第二次过滤和筛查,日报人员可以按国家的技术规范修改污染物的监测值、标记位,修改时可以填写“备注信息”对修改原因进行注释,对于修改过的数据可以与原始数据进行对比查看,还可以还原原始数据。 5)数据上传 实时监测数据完成审核后,将通过传输网络自动上传到市、省级监测平台,保证数据审核结果的一致性和准确性。传输网络主要利用VPN网络,用户通过接入内部虚拟专网的方式与Internet进行隔离,可对整个数据传送过程进行加密保护,保证数据传输的安全性和可靠性。 6)数据补传 当网络通讯中断或设备故障等原因造成数据缺失时,系统将自动对子站数采系统下达远程数据补传指令,向相应的缺数平台进行数据补传,还可以对市、省级监测站缺失数据进行数据回补,只需要在系统上对总站数据回补IP地址进行简单配置,本地就可以向子站数采下发远程回补指令对总站数据库进行补传。 7)检出限控制 因仪器设备故障、运行不稳定或其他监测质量不受控情况下出现的负值和低于检出限时,按相关技术规范对监测值进行标记;在环境空气均处于极低水平的条件下,部分仪器设备小时监测结果出现负值或零值时,对于低浓度未检出,取监测仪器最低检出限作为监测结果参加统计。 8)监测点位GIS地图在线显示 系统内所有监测点位按所属行政区域进行归类和展示,监测点位图标颜色按其当前空气质量指数AQI表示颜色动态显示,图标上方注有具体的地理位置,方便用户直观、一目了然掌握各个行政区域内监测点位的部署情况和空气环境质量现状,系统提供多种方式的地图效果(矢量、卫星、三维)来实时显示空气子站的位置和实时数据。 9)站点数据实时状态查看 用户点击监测点位图标后系统自动显示空气质量指数AQI、站点地理位置、首要污染物、发布时间、各项监测因子实时数据等信息,空气质量指数AQI数值与表示颜色搭配显示,。 (1)地图基本操作 全图 在任何状态下,当点击工具栏上按钮,地图自动缩小至全图(最小比例尺)的状态。 地图的放大、缩小、漫游 能够通过选择工具来放大、缩小和平移地图,改变地图的中心和视野,可以进行局部放大和缩小。 漫游 当点击工具栏上图标时,将激活地图平移的功能,此时只需在地图窗口中按住鼠标左键并拖拽地图,即可查看在当前地图窗口以外的地图内容,此操作不会引起对地图的缩放。 (2)大气质量监控点位置 在GIS系统前端界面上,显示各监测、监控点位置分布状况,并对各监测监控点实时监控,实现临界提示、超标预警。 通过放大、缩小功能可以查看区域内所有监控点部署情况,监控点图标颜色采用空气质量指数AQI的表示颜色,地图下方提供空气质量等级区间条,方便用户对比查看各个监测点的空气质量状况。 (3)大气质量监测因子数据显示 实现在线监测数据的实时刷新、实时调用,用户可以通过点击监控点图标,直接查看空气质量SO2、CO、O3、NO2、PM10、PM2.5以及气象参数的实时监测数据。 系统利用GIS技术把大气质量应用软件构筑于污染源数据库管理系统和图形库管理系统之上,提供具备空间信息管理、信息处理和直观表达能力的应用。 本项目环境地理信息系统预留二次开发端口,充分满足后期平台升级、功能完善的需要。 4.4 手机APP 手机版发布系统支持Android、IOS等主流的手机操作系统,系统界面简洁、大方,易于操作。系统基于地理信息系统,实时发布各个监测站点的PM2.5、PM10、SO2、NO2、O3、CO小时浓度值,以及O38小时的滑动平均值,PM10、PM2.5 24小时滑动平均值,并绘制过去24小时的浓度曲线图。发布各监测站点的监测站点信息、环境质量AQI、首要污染物、环境质量指数类别、环境质量排名等信息,不仅可以查看实时数据,还可以查询历史数据。按照《HJ633-2012环境质量指数(AQI)技术规定》,根据环境质量AQI进行颜色标识。 1)实时数据显示 打开应用程序进入主界面后,主界面可查看各个点位数据详情,点击不同监测因子所在方格,同时可以对当前监测点根据实际需要进行自由切换,下方折线图则对应显示其最近24小时内污染因子变化情况,方便了解监测因子的变化趋势和规律,显示的信息包括: 1、监测点位描述:名称、时间、空气污染程度(优、良好、轻度污染、中毒污染、重度污染)、实时温度、当前时段(白天/晚上); 2、小时浓度均值:包括PM2.5、PM10、 CO、SO2、O3、NO2、 AQI等。 2)历史数据查询 移动端在web端基础上提供简单的查询功能,通过选择监测点名称、始末时间、单站多参/多站单参、数据名称多种形式查询各项参数的时均值、日均值、月均值、年均值,查询结果备注各项数据的污染程度(优、良好、轻度污染、中度污染、重度污染),采用列表形式直观展现。 3)GIS地图显示 移动端点位状况与web端同步,在地图上显示所有站点的实时数据,站点图标根据空气质量指数AQI颜色标识,用户点击站点图标即可浏览到该点位的各项监测因子浓度、空气质量指数AQI等信息,还可以通过下拉菜单选择数据名称,实现所有监测站点图标显示同一项参数信息,图标根据监测因子或参数的污染等级进行颜色标识。 4)站点关注 此功能主要是为了方便用户浏览关注站点的空气质量状况,可以添加或删除所关注站点名称,用户设置关注站点列表完成后,打开程序后地图上自动显示所关注站点及所在区域,同时提供查询关注站点最近的监测站点功能。 5)空气质量指数排名 移动端可以便捷的为环境管理人员提供服务,提供辖区内站点空气质量指数AQI时均值、日均值、月均值排名,显示的内容包括排名名次、点位名称、空气质量指数AQI、首要污染等信息,显示内容
    留言咨询
  • 震动试验台 技术参数: 震动试验台 产品特点: 1、同一台面实现X、Y、Z(六度空间一体机)三轴同时振动,程序控制,频率精准、平衡,长期运转不漂移;2、PCB板虚焊测试震动试验台具有单点、段、多段的时间定时;3、增加抗干扰电路,解决因强电磁场对控制电路干扰;4、无级调整振幅,具有定频、扫频、对数及1oct/倍频、随机PSD、正弦宽带、可程式等功能,适应不同行业的测试要求;5、采用复合型工业材料制造,精密加工,台体美观大方,人性化操作及控制,采用专用测控变频器,使设备工作更稳定。 震动试验台 软件功能:Longdate振动台软件系统采用自主开发的CIMS+FCS,可拓展配置振动测量仪,PCB板虚焊测试震动试验台引用国际最新振动测试标准,实现定频、扫频、倍频、程式、对数、随机多种振动模式选择。 震动试验台 引用标准:ISO 2247包装.满装的运输包装和单元货物.固定低频率振动试验ISO 13355包装-全部,填充运输包装和单位承载-垂直任意振动试验IEC 60068基本环境试验规程ASTM D999船运集装箱振动测试的试验方法ASTM D4728运输集装箱随机震动试验方法ASTM D3580产品振动试验(垂直线性运动)的标准GB/T 4857包装 运输包装件基本试验GB/T 2423电工电子产品环境试验 若有疑问,请来电咨询;
    留言咨询
  • 震动试验台 技术参数: 震动试验台 产品特点: 1、同一台面实现X、Y、Z(六度空间一体机)三轴同时振动,程序控制,频率精准、平衡,长期运转不漂移;2、PCB板虚焊测试震动试验台具有单点、段、多段的时间定时;3、增加抗干扰电路,解决因强电磁场对控制电路干扰;4、无级调整振幅,具有定频、扫频、对数及1oct/倍频、随机PSD、正弦宽带、可程式等功能,适应不同行业的测试要求;5、采用复合型工业材料制造,精密加工,台体美观大方,人性化操作及控制,采用专用测控变频器,使设备工作更稳定。 震动试验台 软件功能:Longdate振动台软件系统采用自主开发的CIMS+FCS,可拓展配置振动测量仪,PCB板虚焊测试震动试验台引用国际最新振动测试标准,实现定频、扫频、倍频、程式、对数、随机多种振动模式选择。 震动试验台 引用标准:ISO 2247包装.满装的运输包装和单元货物.固定低频率振动试验ISO 13355包装-全部,填充运输包装和单位承载-垂直任意振动试验IEC 60068基本环境试验规程ASTM D999船运集装箱振动测试的试验方法ASTM D4728运输集装箱随机震动试验方法ASTM D3580产品振动试验(垂直线性运动)的标准GB/T 4857包装 运输包装件基本试验GB/T 2423电工电子产品环境试验 若有疑问,请来电咨询;
    留言咨询
  • 大气监测网格化管理系统ZWIN-AQMS06-PLAT 一、背景介绍2015年7月26日,国务院办公厅以国办发〔2015〕56号印发《生态环境监测网络建设方案》。该《方案》分为:(1)总体要求;(2)全面设点,完善生态环境监测网络;(3)全国联网,实现生态环境监测信息集成共享;(4)自动预警,科学引导环境管理与风险防范;(5)依法追责,建立生态环境监测与监管联动机制;(6)健全生态环境监测制度与保障体系。(共6部分20条)主要目标是:到2020年,全国生态环境监测网络基本实现环境质量、重点污染源、生态状况监测全覆盖,各级各类监测数据系统互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管协同联动,初步建成陆海统筹、天地一体、上下协同、信息共享的生态环境监测网络,使生态环境监测能力与生态文明建设要求相适应。二、系统概述智易时代环保网格化管理系统根据国家环境部门发布的《环境信息网络建设规范》(HJ460-2009)、《环境保护应用软件开发管理技术规范》(HJ622-2011)、《污染源在线自动监控监测系统数据传输标准2122005》、《环境污染源自动监控信息传输、交换技术规范》(HJ-T352-2007)等国家标准协议,以环境监测点位数据传感体系为基础,针对不同环境企事业单位需求,运用最新的环保理论研究成果和信息技术,建立智能化环保网格在线监测系统数据平台。平台数据中心可提供所属地区各监测点位数据的实时采集传输、实时监控空气环境质量,实现在线数据查询及报表统计、数据自动预警、环保信息综合分析、数据归集和排名反馈等,为环保的研究提供信息资源和手段,为环保业务管理提供统一的管理平台。 三、功能特点3.1 WEB端3.1.1 监测点位GIS地图在线显示系统内所有监测点位按所属行政区域进行归类和展示,监测点位图标颜色按其当前空气质量指数AQI表示颜色动态显示,图标上方注有具体的地理位置,方便用户直观、一目了然掌握各个行政区域内监测点位的部署情况和空气环境质量现状,系统提供多种方式的地图效果(矢量、卫星、三维)来实时显示空气子站的位置和实时数据。 3.1.2 站点数据实时状态查看用户点击监测点位图标后系统自动显示空气质量指数AQI、站点地理位置、首要污染物、发布时间、各项监测因子实时数据等信息,空气质量指数AQI数值与表示颜色搭配显示,直观展示站点当前污染情况,监测因子可以按照不同需求进行定制,显示时间段分为实时状态值、最近一小时值、最近24小时值等。 3.1.3 站点环境远程视频实时监控监测现场可以安装视频监控设备,通过窗口视图直观了解监测站点的周边情况和污染物实时排放数据,当周围污染源浓度超标时自动抓拍,为公众和环保部门监督与执法提供依据,同时可以了解监测设备的实时状况。当数据异常提醒之后,可以通过回传影像资料判断现场情况(需人工进行),当发生不可抗力因素时,同样可以根据影像资料来判定事故详情。 3.1.4 预警、日报通知系统提供预警、日报通知功能,预警包括超标预警、断线预警和异常值预警,在监测数值超标、数据连接中断和出现异常值时,自动给设定联系人发送提醒信息,保证系统的正常、稳定运行,日报通知将辖区内各个行政区空气质量指数日均值以短信形式发送给站点负责人或主管领导,让环境管理者及时掌握环境空气质量变化情况,在空气质量恶化时第一时间知道详细信息。 3.1.5 数据图表展示数据展示支持折线图、柱状图、表格等多种形式,展示的内容包括空气质量指数和各项监测因子浓度的分钟值、小时值,方便用户查看时间段内空气质量变化趋势和污染物浓度变化情况,同时可以进行监测点位之间的各项参数的对比分析,用户可以自主设定展示的时间区间,导出打印时支持选用JPG图片、PDF、EXCEL、WORD文档多种格式。 3.1.6 环境质量数据排名针对相关环境管理部门以及用户个性化定制需求,系统设置独立排名系统,目前采用AQI(空气质量指数),提供日排名、小时排名数据,用户可以查询当天排名信息和历史数据,除了空气质量指数AQI外,还列出了PM10、PM2.5、CO等监测因子小时值、日均值、首要污染物、空气质量类别等信息。 3.1.7 AQI实时报、日报自动生成按照HJ633-2012环境空气质量指数(AQI)技术规定要求,自动生成实时报、日报数据报表,发布的指标包括各监测站点的监测站点信息、空气质量指数(AQI)、首要污染物、空气质量指数类别以及空气质量指数说明等信息,可自动生成word、Excel、PDF多种格式格式的报表格式,日报格式如下表: 3.1.8 污染物来源分析收集点位数据后,平台对各项污染物统计值进行计算分析,初步建立点位污染源模型(当前采用方法为首要污染物比重饼状图解析),如果监测点位条件允许,能够实现现场采样,则可以更加精确的进行污染物对比分析,通过各时间段污染物比重模型结合地区现状来分析具体污染源和现场实际情况,并提供针对性治理方案。 3.1.9 设备监控系统可以实现实时监视在线监测仪器是否正常工作,数据上传是否正常,从而清楚设备的运行状况及运行进度,当前端数据采集设备或仪器出现故障时,系统自动提供报警信息方便站点负责人及时知晓,并采取相应的解决措施,保证系统的正常、稳定运行。 3.1.10 环境数据动态云图展示由于区域间空气质量状况的差别,系统基于各个区域内监测数值实时以污染物浓度云图形式渲染这种差别,云图取每小时点位数值,颜色采用空气质量指数AQI表示颜色,实现由“点”到“面”全面展示大范围内空气质量状况。(图案仅供参考)3.1.11 空气质量、气象数据导出 系统提供空气质量、气象数据导出功能,用户在设置时间类型、站点、时间段以后即可实现数据导出,内容包括点位信息、数据更新时间、常规6参数浓度值、主要污染物、空气质量指数AQI。其中数据有效率按照国家标准进行计算,分钟值以后端数据传输判定为准,小时值以每小时收集45个分钟值为准,日均值以每天收集22个小时值为准,其余时间区间以日均值有效天数为准。3.1.12 站点管理 用户在此模块可以实现监测点位信息的增、改、查、删等基本操作,点位信息包括监测点位名称、地址、经纬度、站点ID、所在区域名称等内容,实现点位信息的动态管理,区域与编号为锁定状态,可自行配置名称、经纬度、排名、公开、掉线预警等选项。3.1.13 短信配置 此功能可以查看短信配置详情,添加条目可以新增加短信推送人员信息和发送内容,编辑选项可对接收短信用户推送内容进行管理操作,配置的信息内容包括预警信息、日报、状态预警、掉线预警,完成设置以后,列表中人员可以收到短信信息。 3.1.14 污染物浓度预警 一旦空气质量状况出现异常波动时,系统启动超标报警。此功能中分数据上下限与预警上下限,数据上下限为数据有效性判定标准值,超过界限的则被判定为无效。预警上下限为当监测因子不在设定值范围内一定时间之后,则会发送预警短信。选择站点便捷,将预警上下限设定临界值,即可使用预警功能(0为默认)。3.1.15 数据修约 此功能可对程序中未拣出的有误数据进行人工修正,点击数据修约选项即可进行修正,当值被设定为无效时,数据被拣出,不参与统计运算。(因系统计算规则因素,只可提供分钟值与小时值的修约功能,目前只开放分钟值修约)3.1.16 用户管理 对于不同的角色设置相应权限管理,一个角色关联了一套操作权限。系统共提供了三种操作权限。系统用户:拥有系统的所有功能操作权限;管理用户:拥有部分业务相关 的功能操作权限;普通用户:只能进行系统中相关内容的查询操作,实现不同级别操作人员对数据访问范围和数据读写性的严格控制,建立统一用户管理平台实现所有用户的身份管理,包括用户个人身份信息、角色信息、电子邮箱、个人账号和密码。3.2 用户APP手机版发布系统支持Android、IOS等主流的手机操作系统,系统界面简洁、大方,易于操作。发布各个监测站点的PM2.5、PM10、SO2、NO2、O3、CO小时、日均、月均浓度值,提供查看辖区内各站点空气质量排名功能,并绘制过去24小时的浓度曲线图。发布城市、区域的环境质量AQI、首要污染物、环境质量指数类别、环境质量指数说明以及健康提示等信息。按照《HJ633-2012环境质量指数(AQI)技术规定》,根据环境质量AQI进行颜色标识。 3.3.2.1 用户权限控制根据用户级别不同,分别设定不同权限,普通用户登入后只可查看账号所属站点详情,以管理员身份登入之后,则可查看全部点位状况与其均值显示。 3.3.2.2 数据查看与分析主界面可查看权限范围内点位数据详情,点击不同监测因子所在方格,下方折线图则对应显示其最近24小时内污染因子变化情况。 3.3.2.3 GIS地理信息显示点位状况与web端同步,获取坐标信息后即可在地图上显示,支持当前总体数据情况与单项指数切换,污染指数根据等级不同以不同颜色显示。 如果点位信息过多时,可切换至列表进行搜索,一目了然,快捷高效。 3.3.2.4 历史数据查询移动端在web端基础上提供简单的查询功能,该模块按照权限不同所属辖区不同,可以查看站点最近24小时、或最近30天、或最近12个月,综合指数或者分项指数的均值状况。 3.3.2.5 环境质量指数排名查看移动端可以便捷的为环境管理人员提供服务,管理者账号登录后,开放排名信息功能,提供当日辖区内站点排名,明确污染方向。 3.3.2.6 系统设置、功能标准、预警处理辅助功能全部归集于侧边栏内,APP向用户推送通知,个人设置中可以设置是否接收消息、提醒方式等。 四、平台架构与系统工作原理 4.1 环境数据采集监听服务器使用公网固定IP,监测仪器发送数据至此IP地址对应端口,系统自动采集并通过内置协议将字符串解析为需要的信息,实现数据包的校验、检查、解析和入库(数据存储),采用多线程异步通信技术与各监测点通信,可查看原始数据,实现数据同步转发。当监测点位断线或者出现异常时,线程保留五分钟对接期,五分钟之内不上传数据系统关闭线程,降低占用率,直至重新连接再次打开。4.2 环境数据存储数据库服务器对接收到的环境数据进行整体规划,对环保业务涉及的众多数据资源进行科学合理的分类,在此基础上建立数据体系和数据库体系,形成基础数据库、专业数据库、元数据库和标准数据库。由于环境大数据的保密性,数据库服务器需要关闭公网服务和外接端口,与监听服务器接入同一局域网,使用内网IP。监听服务器解析完成后,通过局域网将数据存储至此。数据库定期备份、定期杀毒、定期更新软件服务与相关插件,以保证存储数据的安全。4.3 环境数据分析处理中心服务器针对各项数据库进行数据管理,严格按照相关法律法规及环保行业规定进行统计分析运算处理,得出最符合标准的环境数值。统计功能支持根据原始值值计算小时值、日报、月报、年报等。分析功能包括,对大气、水质、烟气等不同行业进行规则整合判断、如烟尘,烟气的含量跟氧气关系,COD与浊度及溶解氧的关系等高级功能,根据用户需求定制开发。经过算法运行生成数据模型,实现系统建模分析的关键功能。4.4 环境数据报表生成与排名中心服务器生成各项报表后,根据空气质量指数从低到高进行排名,指数越低排名越靠前。支持总体排名、区域排名、单站点排名。服务器与EXCEL报表、WORD文档、JPG图片、PDF等接口进行对接,使前端页面可以顺利导出打印。4.5 环境监测指标预警预警服务器中置入交互模块,每30分钟采集监测子站的运行状态、设备状态、监测数据,对服务器进行信息交互传输、读取操作日志,连续两次出现异常,系统启用预警提醒。同时可以将监测因子标准接入检测程序中,如果超标或者出现恒值,则提示相关人员并将信息传输至前置服务器。所有预警信息在前端页面展示。4.6 CMAQ空气质量模型建模分析CMAQ是美国国家环境保护局研制的第三代空气质量预报和评估系统(Models-3)。系统采用灵活的模块化思想,由气体模式、污染排放模式、空气质量模式组成。基于CMAQ的空气质量模拟过程可实现设置可视化和运行自动化,以准确的MM5气象场数据、污染排放清单数据为基础,运用CMAQ模型,实现空气质量预报结果的自动生成,并支持对结果的核对统计与对比分析,减少人工操作,通过适量定制化开发,可以作为区域臭氧、能见度、酸沉降等过程的整合应用平台。4.7 环境质量趋势预判中心服务器处理数据,结合实际数据建立源解析模型,结合天气系统分析环境质量趋势。充分利用积累的海量监测数据,结合环境空气污染指数法(API)、环境空气综合污染指数法、主要污染物污染物浓度评价法、污染变化趋势的定量分析方法-秩相关系数法等方法,对区域内空气质量状况和变化趋势进行综合分析和预判。五、系统硬件构成1、 环境指标监测仪器子站2、 GPS子站定位模块3、 数据采集设备4、 无线传输设备5、 数据监听前置服务器6、 数据库服务器7、 WEB应用服务器
    留言咨询
  • 智易时代移动端APP系统ZWIN-VOCs-APP智易时代移动端APP系统ZWIN-VOCs-APP通过在手机端安装安装包,根据操作指南安装后可在移动端查看VOCs监测数据等多功能操作,远程移动监测各涉气企业 VOCs 的实时情况,通过查看显示各个现场监测点的地图、排名、数据、分析等信息,可对VOCs对空气质量的污染状况进行溯源分析,方便快速针对污染问题做出响应,且APP系统软件操作简单,数据获取高效快捷,满足了用户移动管理、不受时间地点约束的需求。系统功能:地图:进入地图界面后,可查看各点位在地图中的标记位置,以及所有点位中总数、离线、正常、预警、超标等状态的实时数量,可通过操作指示按钮进行放大或缩小地图操作。点击地图中任一点位标记,即可查看该点位的实时数据,包括点位编号、点位名称、点位lian系人、最近发布时间、TVOC 实时监测值等信息。排名:排名界面可通过设置数据类型和排名方式的查询条件,查看各点位的数据列表排名,包含排名、点位、监测值等信息。且数据自动按照监测值的大小进行排名,方便用户直观的查看点位监测实情。 数据:数据界面通过自定义设置数据类型、监测点位、开始时间以及结束时间的查询条件,查看任一点位在所选时间段内的数据列表信息,数据按照时间顺序进行排列,监测值的直观显示可以有效对比同一点位的数据变化状况。 分析:分析界面可查看任一监测点位最近 24 小时污染变化趋势分析图、最近 30 天污染变化趋势分析图以及污染日历图;其中趋势分析图标记了zui da值、zui xiao值和平均值,而日历图则显示所属月份已有日期的平均浓度值。用户:用户界面可查看登陆账号、 真实姓名、lian系dian化、电子you xiang、软件版本等信息,还可通过点击退出登录按钮,退出本系统。
    留言咨询
  • 管理系统web端平台ZWIN-AQMS-PLAT 驾驶舱系统登录进入之后为驾驶舱界面,实时一览所有监测点位情状。 GIS实时地图点击电子地图上的设备图标就可以查看设备采集的实时监测因子,方便用户掌握区域内各监测点位的部署情况和环境历史及现状。 视频监控/视频叠加双击视频播放界面可以实现放大或缩小,方便用户直观查看区域内所有监测点的部署情况和环境质量状况,还具有视频扬尘叠加功能。 AQI排名显示日排名、小时排名数据,历史数据,还列出了PM10、PM2.5、CO等监测因子小时值、日均值、首要污染物、空气质量类别等信息。 数据查询系统具备历史数据查询功能,用户通过相关设置即可查看所选择站点的历史数据信息。该功能不仅可以显示同一监测点位1到24小时的均值情况,还支持排序展示。 数据分析系统提供污染源走势图形展示分析,用户可查看各个点位的综合指数某一时间段内变化趋势和对比,数据生成以曲线图或柱形图形式进行展示,同时结果提供以图片形式下载功能。 用户管理用户可以对监测设备进行位置查看、修改以及对点位进行增、删、改的管理与编辑,同时治理设施的增、删等相关操作也在此模块进行。
    留言咨询
  • 智易时代出租车走航在线监测系统ZWIN-ZH是可以在后台对出租车走航监测数据进行查看、分析、汇总的网络平台,基于地理信息技术、互联网技术、云计算技术等高科技技术,以“一张图”的形式将出租车走航实时采集的数据进行空间展示,通过实时地图、历史监控、数据统计、数据分析、运维管理等功能,将静态的数据以多样化形式展示(报表、图表、饼形图、轨迹图等),实现数据可视化。通过出租车走航在线监测系统的建立,对全域进行监管覆盖,为执法者提供jing准的环境监测数据和多元智能化的监管服务,科学监管。出租车走航在线监测系统驾驶舱:驾驶舱是将多个功能直观全面的集中在一个面板上,为领导、管理者展示监测数据情况,方便监督指挥。GIS地图快速定位,绘制出租车行动轨迹,利用多样化图表展示综合分析结果,实现城市AQI、主干道污染排名、车数量统计、行政区域排名、超标滚动播放分析汇总。 实时地图:将系统内所有监测点位以水滴、车标形分布在实时地图中展示,清晰绘制出租车实时轨迹,可显示车辆车牌号、PM2.5、PM10、SO2、NO2、CO、O3、发布时间等信息。通过搜索名称、编码定点查询,掌握监测仪在线、离线、正常、超标、异常信息,助力管理者及时了解点位部署情况及空气质量现状。 历史监控:历史监控是记录车辆过去行驶轨迹信息,通过搜索车牌号、起始时间查询过去某段时间车辆行驶路线、起始点、监测因子浓度值(包含:PM1、PM10、SO2、NO2、CO、O3、发布时间等),以不同颜色轨迹表示污染程度,清晰明确掌控污染区域。 实时数据:实时数据是以列表的形式将数据更新时间、各个污染物监测因子实时浓度值列出,一目了然,列表支持以EXCEL表格形式导出进行本地存储。 历史数据:历史数据功能可通过车牌号、点位名称、时间等条件查询一个设备的多个参数或所有设备的历史数值列表,为后期预测、对比分析提供数据支持,可以通过表格形式进行数据导出存储,数据存储时间至少三年。 报警管理(数据预警、超标报警):报警管理功能是对污染浓度超标区域进行预警、报警,通过设定预警、报警限值,实现对出租车走航监测实时预警报警信息推送,数据统计以列表形式展示,包含车牌号、车主信息、车辆状态、数据上报时间等信息,方便管理者、各层级管理员第一时间掌握异常情况,做出应急措施。 数据排名:数据排名实现对街道、行政区环境空气质量进行智能、自动排名。利用出租车道路走航以及主干道在线监测数据进行考核,依照街道、各区考核排名。根据起始时间条件筛选,按照评分由高至低原则排序,协助管理者全局掌控污染严重街道、行政区,靶向治理。 运维管理:运维管理记录设备维护信息,根据管理员设置权限进行运维信息增、改、查、删操作,通过记录车牌号、车主、VIN号、状态、维护人员、维护情况信息把运维管理细致化,帮助了解设备情况,为出租车走航监测工作正常进行做支撑。
    留言咨询
  • 智易时代扬尘在线监测管理系统平台ZWIN-YC- P LAT 智易时代扬尘在线监测管理系统平台ZWIN-YC- P LAT为我司自主研发改善空气质量对颗粒物污染程度实时监控的解决方案,通过远程数据监测系统对污染区域实现实时有效的监管,将污染区域所采集的数据进行分析、整理,以报告、报表的形式展示,支持导出留存凭证及提供数据基础,清晰明了,将监测区域纳入监管范围,真正实现有效管理和标准化执法。 实时地图展示:系统内所有监测点位按所属行政区域进行归类和展示,电子地图确切的知道每个设备所在位置,通过点击电子地图上的设备图标就可以查看设备所带各项传感器采集的实时监测因子,方便用户直观查看区域内所有监测点的部署情况和环境质量状况。 实时数据:用户点击监测点位图标后系统自动显示站点名称、安装位置、点位负责人、发布时间、各项监测因子实时数据等信息,数值通过折线图与表示颜色搭配显示,直观展示站点当前污染情况,监测因子可以按照不同需求进行定制,显示时间段分为实时状态值、最近一小时值、最近24小时值等。 监测因子图形展示:数据展示支持折线图、柱状图、表格等多种形式,展示的内容为各项监测因子浓度的实时与历史分钟值、小时值,方便用户查看时间段内各项监测因子变化趋势,同时可以进行监测点位之间的各项参数的对比分析,用户可以自主设定展示的时间区间,导出打印时支持选用JPG图片、PDF、EXCEL、WORD文档多种格式。 历史数据查询:系统提供历史数据查询功能,用户通过设置时间类型、站点、查询时间选项后,即可查看到所选择站点的历史数据信息,包括各项监测因子、数据更新时间等,查询结果支持选用EXCEL文档形式导出。 污染排名:系统是根据类型选择小时,对应日期及所要查询的监测因子,查看污染排名,排名参与所有监测点位,以报表形式展示,显示排名顺序、点位名称、发布时间、各个监测因子数值。 站点管理:用户在此模块可以实现监测点位信息的增、改、查、删等基本操作,点位信息包括监测点位名称、地址、经纬度、站点ID、所在区域名称等内容,实现点位信息的动态管理,区域与编号为锁定状态,可自行配置名称、经纬度、排名、公开、掉线预警等选项。
    留言咨询
  • 城市道路环保智能抑尘除霾系统ZWIN-YC-PLAT1.0道路扬尘,是指公路上的积沉在一定的动力作条件(风力、机动车碾压或人群活动)的作用下,一次或多次扬起并混合,进入到空气中形成一定粒径分布的颗粒物。随着车辆的增多,道路四通八达的建设,城市道路环境的扬尘污染也成为扬尘治理的重点问题之一。城市道路环保智能抑尘除霾系统ZWIN-YC-PLAT1.0能够有效监控道路扬尘和雾霾的污染,并为污染治理提供基础数据,随时随地掌握城市道路空气质量污染情况,利用合理的结构、先进的控制系统实现监测和治理设备的智能化管理,达到“边监测、边治理”的目的,并且使安装区域空气质量大大的提升,同时减少交通源和城市外界输送源对城市大气的污染。整个软件平台采用B/S架构,基于Web-GIS数据可视化平台将监测数据汇入可视化平台,结合GIS的应用,以业务信息和环境信息的空间化、可视化为目的,对监控因子、监控数据进行立体、可视化展示,真正实现环境管理的全F位监管,界面友好,易操作。 城市道路环保智能抑尘除霾系统ZWIN-YC-PLAT1.0以驾驶舱界面布局,清晰展示出GIS地图、数据分析图、视频监控图、数据排名、日历报表等多类型内容。同时界面顶端包含在线监控、统计分析、数据报表、报警管理四个操作功能,每个按钮都有相应的下拉菜单,通过点击操作实现点位数据信息的实时监控、历史监控查询查看,污染信息的数据排名,时间排放特征折线分析图,对比、同比、环比等图形分析图,AQI实时报、日报、月报等数据报表,预警报警信息管理查询等多方面内容。
    留言咨询
  • 智易时代扬尘在线监测APP系统ZWIN-YC-APP 扬尘是大气污染的四大关键环节之一,目前城市扬尘污染治理,共有三大问题突出:一、建筑工地等污染源,企业普遍缺乏主体责任意识,需要24小时不间断监控;二、监控点多,面广,线长,而管理人员数量少,疲于应付;三、信息不共享,治理环节多,协同成本高,治理效果反复。为全面监管治理,高效、便捷、智能化的扬尘在线监测系统应运而生,其中可在移动端安装使用的监测APP系统也受到了Z法人员的欢迎。智易时代扬尘在线监测APP系统ZWIN-YC-APP可根据不同权限账户登陆后查询,主要展示所监测点位的实时位置、各监测因子数值,通过远程数据监测系统对污染区域实现实时有效的监管,将污染区域所采集的数据进行分析、整理,以图表、报表的形式展示。在移动端查看操作,实现了颗粒物扬尘的在线监测,实时显示各个现场监测点的数据等信息,接受用户提出的历史查询、曲线分析、数据排名等任务。 系统包含地图、历史、曲线、排行、个人等功能,通过物联网以及云计算技术,实现了实时、远程、自动监控颗粒物浓度,并通过算法实现数据历史查询、曲线分析、点位排名、报警信息接收查看等功能;数据通过网络传输,可以在电脑、手机、iPad等多个终端访问,应用于各建筑施工工地、道路施工、旅游景区、码头、大型广场等现场实时数据的在线监测。手机APP系统的使用,J大方便了项目人员对扬尘无组织排放现场的环境质量监控 无论是在上班路上还是在办公室里,随时随地都能通过手机看到工地等现场的情况。配置上视频监控系统,可对现场扬尘等排放状况进行全天24小时实时跟踪监控,大大提升了管理效率,真正实现了大气污染防治的联防联控。
    留言咨询
  • 产品概述烟气在线监测远程质控系统(CQCS-1000)是雪迪龙开发的具有可溯源性和符合环保认证的污染源排放监测质控系统,与烟气排放监测系统SCS-900系列产品配合使用,可确保污染气体排放与温室气体排放测量结果的准确性。以在线监测数据为基础,通过智能质控分析平台,建立企业监测预警系统,动态监控企业温室气体和污染气体排放情况,提高数据质量,提升数据监管能力,为企业碳排放核算提供准确的数据基础,协助企业更好地管理污染排放。应用场景与烟气排放监测系统SCS-900系列产品配合使用,可确保污染气体排放与温室气体排放测量结果的准确性,提高数据质量,提升数据监管能力,为企业碳排放核算提供准确的数据基础。产品特点标气具有标准物质认定证书,动态稀释校准仪具有校准证书,可溯源;占地面积小,仅0.4m2,移动方便,可对多套CEMS系统进行质控;自动清洗管路、标气压力报警、系统断电报警、智能门禁和安防监控系统;可自动、手动、随机和超标质控;具有数据记录、智能分析和排名等功能。
    留言咨询
  • 工业健康在线监测仪 400-860-5168转2090
    产品简介XHAQSN-306工业健康在线监测仪是一款在线监测环境空气中总尘、呼尘、TVOC、噪声等参数的仪器。适用于园区、企业、车间内工作岗位环境的监测。企业管理人员可通过企业管理平台实时查看监测点位污染情况,随时调整、优化作业环境,保护劳动者的身心健康。环境执法部门可通过管理平台,对辖区内各个企业进行实时监测,同时可查看企业环境的历史数据,对不同企业和企业的不同点位进行环境质量排名,为环境执法提供数据支持。性能特点v 基于光学传感器实现对环境颗粒物的测量;v 采用PID原理,可实现对TVOC等有机物污染的监测;v 传感器测试精度高,响应迅速,出数准确;v 拥有GPS定位功能,便于查源和数据分析;v TVOC 具有自动校零功能;
    留言咨询
  • 一、产品应用:质量比较器/仪主要应用于:砝码的检定、国家标准质量实验室、法定的计量检定机构、校准实验室等,目前,在工业质量领域质量比较仪也越来越显示出其重要性,比如:质量标准的密度和体积的测定、由于机械作用而导致的涂层的磨损、化学工业中的大滤膜称量和涂层称量、贵重气体的气体填充称量、涡轮叶片的称量等。二、什么是质量比较器介绍:质量比较器/仪是一种特殊的电子天平,主要用于对精度要求较高的砝码或物体的质量比较。一般来说,质量比较仪不能直接读出砝码的质量,而是显示被测砝码或物体与标准砝码或物体相比较得出的数值。若我们已知标准砝码的质量,则可通过质量比较仪将被测砝码与标准砝码多次比较,得出被测砝码与标准砝码的差值,从而得到被测砝码的值。由于质量比较器/仪具有极高的分辨率和非常好的重复性,所以即使被测砝码与标准砝码的差值很小,也能得到准确的数值。三、产品选型:  型号    称量    小读数    重复性误差    ZF-005    500g    0.2mg    0.4mg    ZF-001K    1kg    0.5mg    0.8mg    ZF-002K    2kg    1mg    1.6mg    ZF-005K    5kg    2mg    4mg    ZF-010K    10kg    5mg    8mg    ZF-020K    20kg    10mg    16mg    ZF-050K    50kg    20mg    32mg  四、产品特点:1、超高分辨率和极好的重复性;2、标准双向RS232通讯端口;3、全量程毫克到吨级砝码的测量对比;4、可用于F1级及以下砝码质量的校准;5、可选配先进的自动加载机构,保证称量的重复性;
    留言咨询
  • 智易时代报警式挥发性有机物监控系统智易时代报警式挥发性有机物监控系统是针对企业、园区等多个领域挥发性有机物监测点位进行归纳统计的WEB端平台系统,通过云计算、物联网、大数据、地理信息等多种高、新科技技术联合应用,将各个监测点位设备信息进行录入,实时接收采集到的数据信息。同时强大地智能系统可以按照算法、逻辑对数据进行整合,最终以图表、报表等多种多样化形式进行展示甲烷、非甲烷总烃、风速、风向、温度、湿度、气压等监测因子信息。报警式挥发性有机物监控系统在功能设计上除了实时地图、实时监控、历史监控、基础配置、系统配置等基础功能,还建设了污染排名、时间排放特征、对比分析、同比分析、环比分析、报警管理等功能,并可以依据使用需求进行定制化服务建设。污染排名污染排名是将所有监测点位的污染因子信息进行统计,按照浓度值的高低进行排列,可以清楚直观的看出各个点位污染情况排名,对各个点位污染因子浓度进行掌握。且在本功能模块的界面右侧显示监测点位排名信息,可通过数据类型(小时、日)、污染因子以及时间进行污染排名信息展示筛选。 时间排放特征时间排放特征是系统对监测点位污染因子浓度进行梳理,展示各个污染物各时间段的整体排放特征情况,根据数据类型(分钟、小时、日)、起止时间选择,在功能界面以折线图的形式展示污染物的时间排放特征,将鼠标移动到图表中任意点位,可以显示发布时间以及污染物浓度。 数据分析数据分析包含对比分析、同比分析、环比分析,对各个污染物监测值进行统计,根据使用者需求进行对比、同比以及环比分析建设,可以明确掌握污染点位污染因子情况,可以根据不同的数据类型进行选择,通过折线、曲线等形式进行内容展示,同时支持将鼠标移动到图表中任意点位,可以显示发布时间以及污染物浓度。报警管理报警管理可以分为报警限值、报警查询两个子功能,报警限值是对各个污染因子报警值的设置和查询,点击“报警限值”,界面右侧可以显示监测因子的限值信息,并以列表的形式将指标编码、指标名称、计量单位、小数位数、预警限值、报警限值、量程、备注、操作等内容展示,可以进行增改删查操作。点击“报警查询”则可以在界面右侧展示各监测点位的报警情况,以列表的形式在界面中进行展示,将报警事件、情况等详细记录。
    留言咨询
  • 无组织排放管控治一体化平台建设的意义 新世纪以来的十几年间,我国钢铁工业迅猛发展,粗钢产量快速增加,常年位居世界D一,据统计,2019年我国粗钢产量逼近10亿吨大关,作为国民经济基础产业,其污染程度同样不啻于其对经济的贡献,随着燃煤电厂污染控制成效的显现,钢铁行业成为我国工业部门目前Z大的污染物排放来源,经调查分析,钢铁行业实施超低排放改造,对改善大气环境质量具有重要的意义。因此2019年4月,生态环境部、国家发展改革委等5部门联合印发《关于推进实施钢铁行业超低排放的意见》,要求到2020年底前,重点区域钢铁企业超低排放改造取得明显进展,力争60%左右产能完成改造,有序推进其他地区钢铁企业超低排放改造工作;到2025年底前,重点区域钢铁企业超低排放改造基本完成,全GUO力争80%以上产能完成改造。 而无组织排放管控治一体化平台建设是一套集中管控平台,可对企业厂区内有组织、无组织等排放源中所有监测、治理设备及其相应数据进行汇集并分析展示,并通过关联分析、溯源分析、预警分析、智能管控等实现对污染源排放的精细化管控。综合运用智能分析技术进行海量数据的汇总、统计、分析,并将分析结果以多W度的方式进行综合展现,对无组织和有组织污染物的排放实行监测、清洁运输设备进行管理、对舞泡灯联动治理进行控制的一体化操作,为降低污染物浓度提供远程治理,为环境管理决策者提供数据支持。 平台可实现的功能:①无组织排放源清单的展示,排放点实时数据、历史数据展示及排名功能。②环境质量与国控点、省控点对比展示功能。③手机APP推送功能。④环保车辆调度、GPS记录功能。⑤车辆违规识别抓拍、推送、处罚功能。⑥门禁系统功能。⑦监控点位的实时及历史数据展示功能。⑧大数据分析功能。⑨扩展和升级的功能。
    留言咨询
  • 无组织排放管控治一体化平台介绍 智易时代无组织排放管控治一体化平台有效利用在线监测、物联网、视觉AI、大数据相关技术,实现污染物源头减排、过程控制、全流程实时系统管理,提高企业整体治理效率、达到环保超低排放标准。通过对厂区有组织排放、无组织排放的实时监测,结合厂区空气质量微站、视频监控、车辆监管、门禁系统、能源消耗、三维GIS地图等各类数据,有效掌握并科学分析有组织和无组织排放分布浓度、变化规律等,依据分析结果进行智能化、信息化、科学化的管控,为企业治理工作提供有力支撑。1.管理展示平台系统(总览)管理展示平台系统总览界面可实现将企业相关重要环保数据在平台当中综合展示,直观了解企业环保相关管控治情况,是实现信息的全面、立体、形象、明确展示,建立集“动态立体感知、远程监管应用、智能信息管理、智慧分析展示”为一体的可视化展示界面,包含所有模块主要数据参数及控制、显示功能,能够快速调阅某一模块分控界面,并以3D建模的方式显示所有点位,通过某一点位快速调阅该点位所有设备的情况。其中3D厂区模块主要通过倾斜摄影技术实现厂区在地图中以3D可视化形式呈现,本模块中可以通过滑动、放大等操作在3D模型建筑上进行参观,并以3D建模的方式显示所有政策要求安装的环境质量监测仪表位置,通过某一点位快速调阅该点位所有设备的情况,对全厂、区域、污染源可以热力图,POI等方式展现,并自由切换。 2.无组织排放监测管理无组织排放监测管理模块可对环境空气、TSP等监测数据进行排放管控,并支持对监测结果进行分析、排名。3.无组织排放治理管控无组织排放治理管控模块可对记录风机、干雾抑尘、车辆清洗装置等无组织排放治理设施等进行管控,并支持联动设置。4.其他本系统平台,还支持有组织排放监测管理、清洁运输系统、排放源清单管理、设备台账管理、数据研报管理、视频监控管理、报警信息管理以及系统配置、数据接口等功能。
    留言咨询
  • 质量流量计是利用科里奥利原理进行流量测量的仪表。可直接测量流体的质量流量、体积流量、密度和温度等参数。可通过LED屏显示瞬间及累计质量流量、体积流量、温度、密度等参数。可输出脉冲信号和电流信号,具有485通讯功能。我公司生产的质量流量计,结构设计简单合理、质量稳定、使用方便。对现场管道安装及介质清洁度等条件要求不高。可测量介质:常规液体、高粘度液体、化工类、腐蚀性液体介质等。精度有:0.1级、0.2级、0.3级。广泛应用于石油、化工、冶金、船舶、电力、制药、食品、环保和能源等行业,工艺过程检测和贸易计量等场合。
    留言咨询
  • 药物研发分析检测的一站式服务依托配备齐全的分析检测技术平台,汇智泰康在药品含量分析、杂质分析和稳定性研究方面积累了非常丰富的药品标准建立和质量控制方面的经验。汇智泰康承诺为客户所执行的委托研究工作完全遵照国际协调组织(ICH)的指导要求、《中国药典》的标准要求和国内外医药监管机构的GLP/cGMP管理要求来执行。服务项目1.药品质量标准方法学验证和转移验证方法开发 根据委托方需求,定制方法开发,建立适合委托方检测项目的各种检测方法。方法学验证 准确度;精密度(重复性、中间精密度、重现性);专属性;检测限;定量限;线性;范围;耐用性等。方法学转移验证 支持药厂建立质量控制检测方法,并进行部分转移验证。2.药品杂质含量检测有机杂质 起始物料、副产物、中间体、降解产物、试剂、配位体和催化剂等;无机杂质 试剂、配位体、催化剂;重金属或其它残留金属;无机盐,其它物质(如过滤介质、活性炭等); 起始物料、原料药、中药材和成品药中的铅、镉、铬、汞、砷、钒、钼、锡、钴等重金属检测。药品基因毒性杂质检测 常见已知基因毒杂质的含量检测:磺酸酯类;挥发性亚硝胺类;溶剂残留类;肼类;环氧化物类;硫酸烷基酯类;高沸点类;卤 代烃类等;其它未知基因毒杂质的鉴定。其它杂质 外源性污染物(如微生物,内毒素等);晶型杂质等。3.药品杂质成分鉴定利用完备的气质,液质,高分辨质谱和元素分析ICP-MS等技术平台开展药品中未知成分杂质的鉴定工作。未知杂质的结构解析;未知杂质的含量检测。4.药品溶剂残留检测第Ⅰ类溶剂(应该避免使用) 苯四氯化碳;1,2-二氯乙烷;1,1-二氯乙烯 ?1,1,1-三氯乙烷 第Ⅱ类溶剂(应该限制使用) 乙腈;氯苯;三氯甲烷;环己烷;1,2-二氯乙烯;二氯甲烷;1,2-二甲氧基乙烷等;第Ⅲ类溶剂(药品GMP或者其他质量要求限制使用) 戊烷、甲酸、乙酸、乙醚、丙酮、苯甲醚、乙酸丁酯、3-甲基-1-丁醇、甲基异丁酮、2-甲基-1-丙醇、乙酸丙酯等;其它 催化酶残留检测等。5.中药材农残检测常见有机氯、有机磷、除虫剂、除草剂等农药检测。6.药品包材相容性试验药包材相容性研究;一次性使用系统或组件相容性研究;药包材的可提取物谱研究;制剂的浸出物研究;特定浸出物检测方法开发及验证;可提取物和浸出物的毒理评估及PDE推导。7.稳定性测试试验影响因素试验(高温、高湿、强光);加速稳定性研究;长期稳定性研究;稳定性持续服务。8.异构体检测 顺反异构体分离和检测;结构互变异构体分离和检测;官能团互变异构体分离和检测;手性异构体分离和检测。主要设备液相色谱-质谱联用仪,高分辨质谱LC-MS, LC-MS/MS和LC-TOF-MSTriple TOF 5600+, API5500,API5000,API4500 Q-Trap,API4000 Q-Trap、API4000高效液相色谱仪(HPLC) HPLC-UV/DAD/FLD气相色谱仪(GC)及气相质谱(GC-MS)GC-FID/ECD/FPD/NPDGC-MS元素分析仪电感耦合等离子炬质谱(ICP-MS),原子吸收(AAS),原子荧光(AFS)
    留言咨询
  • 梅特勒全自动质量比较器可读性为0.1μg/60个库位/校准范围:OIML等级E1;E2 F1 F2 提产量 全自动处理可提升砝码校准的有效性,连续24小时的运行提供了产量。 减少误差 全自动质量比较器更好的减少错误,例如砝码混淆、放置错误的抄写。 简化组合传递 通过自动执行组合砝码的测量,可确保您的质量标准实现无缝及追溯性。全自动质量比较器 质量校准 使用自动化砝码操作工具。 效率、产量和精度是a_Line全自动质量比较器。 使用自动装置和内装100个砝码的砝码槽,校准砝码组或单个砝码会自动运行,而无需手动干预。提工作效率并减少不确定性。 可靠而快速 自动化与质量比较器相结合,提供经过验证的可靠性和出色的测量性能。利用内含100个砝码的砝码槽和分辨率达1.1亿点的称重传感器,梅特勒-托利多a_Line系统的性能得到调整。 误差来源 分离式称重架可阻止振动到达质量比较器。这可使称重传感器在操作中充分发挥性能,可重复性。 大效率 结合多4套自动系统提效率,包括从0.1μg至20kg的完整系列。每个系统100个位置,4套同步系统提效率和减少人为误差。 通过无振动砝码操作顺利完成过程 我们的自动装置采用三轴滚珠轴承。保在数秒钟内进行超精确定心和平稳的无振动砝码操作。 环境记录 KlimetA30或ClimaLog30准确地测量和记录环境参数。然后,结合EfficiencyPack计算空气密度,实现空气浮力影响的补偿。 EfficiencyPack 通过预编程的多项任务提处理量,由自动质量比较器循序执行。通过后处理空气浮力数据获得准确性。 产品和规格产品量程可读性OIML 等级Material Number正常加载下的重复性 ABAAX6400464260.0 g0.1 mgE1 E2 F1 F2111158750.4 mgAX3200432260.0 g1.0 μgE1 E2 F1 F2111158450.2 mgAX1600416260.0 g0.1 mgE1 E2 F1 F2111158150.2 mgAX1000510011.0 g10.0 μgE1 E2 F11111578520.0 μgAX10061011.0 g1.0 μgE1 E2 F1111157252.0 μgAX106H111.0 g1.0 μgE1 E2 F1111157551.5 μgAX107H111.0 g0.1 μgE1 E2 F111115765800.0 nanograms
    留言咨询
  • 一、智能扬尘监测系统 集扬尘与噪声实时监测于一体的网络终端仪器,实现工地扬尘污染情况(PM2.5/PM10/TSP)24小时不间断的全面监控。推荐产品:光散扬尘监测仪*对PM2.5/PM10/TSP/噪声实时监测*支持接入气象五参、监控视频、LED屏等子系统*智能功能:远程自动检测设备门开关状态,振动功能检测位置偏移,蓝牙上传运维记录推荐产品:β射线扬尘监测系统*β射线法+DHS动态加热系统组成的扬尘在线监测系统*对PM2.5/PM10/TSP实时监测*支持接入噪声、气象五参、视频监控、高浓度报警等子系统二、远程视频监控系统 在施工现场出入口、制高点、关键施工区域等位置安装枪机、半球机和球机,实施工地现场全方位覆盖,不间断监控,结合物联网、数据采集与远程数据传输等技术对现场可视化管理。 *大功率无线充电接受装置,自动变焦球机摄像头,无线网桥*可通过监控大屏、计算机、手机随时远程浏览监控画面*支持图像抓拍用于取证,及时发现和制止违章作业*实时掌握工地施工形象面貌和工程进度,杜绝安全事故发生三、人员管理系统 对建筑工程项目建筑工人和现场管理人员进行监管,实现在建项目人员管理智能化。*人脸智能识别度高,白天晚上均适用,快速通行*人脸打卡考勤数据实时上传至云端*后台考勤数据汇总,自动生成报表四、运渣车管理系统 利用智能识别技术对进出工地的车辆识别(车牌、车型和车身清洁度等),识别结果与备案库车辆数据比对,未备案车辆报警提醒,并通知项目部整改回复,对报警多次且长期不回复的工地进行排名分析,为随机检查或重点监管提供支撑。 *实时监测进出工地运渣车辆是否为备案车辆*实时监测运渣车出场是否冲洗*实时监测运渣车辆出场是否覆盖、是否冒装*实时监测运渣车辆出场时车头、车身、轮胎清洁度五、塔机安全系统 实时监控塔机运行状态,监控塔吊运行安全指标,包括吊重、起重力矩、变幅、高度、工作回转角及作业高度风速等, 具备实时报警、制动、塔机黑匣子功能。六、塔机吊勾可视化系统 通过在塔机大臂前端或小车上安装高清红外摄像头,对塔机变幅和高度实时监测,将画面实时传送至司机室屏幕显示,对吊钩位置智能追踪,也可通过4G或无线网桥客户端远程实时查看。七、升降机安全管理系统 前端感知传感器采集升降机运行数据,具备楼层呼叫功能,同样实时显示施工升降机运行时速度、重量等数据,当载物载人超载时预报警,保障施工安全。八、智慧工地管控平台 瞭望智慧工地平台由工程项目综合管理、大气环境监测管理、人员管理、视频监控管理、施工设备设施安全管理等功能模块组成。智慧工地之“鼻” 平台实现扬尘实时监控、扬尘超标记录、超标处理跟踪、项目空气质量排名、数据统计分析、扬尘监测报表等监督管理功能。智慧工地之“眼” 对出入口、制高点、关键施工区域实现智慧工地的安全监控。监管者可通过监控大屏、计算机、手机随时远程预览监控画面,监控塔吊、塔机、升降机等施工设备的运行安全指标,避免施工死角,监控运渣车的出入及违规情况,支持图像抓拍用于取证,及时发现和制止违章作业。智慧工地标化加分项 结合标化工地加分项的市场需求,四川瞭望进一步升级智慧工地方案,可提供安全设施体验馆、VR安全教育体验系统、质量样板间等服务,为项目加分增亮。1、安全设施体验馆通过安全帽撞击体验、综合用电体验、防护用品展示、灭火器演示体验、钢丝绳展示体验、平衡木行走体验等设施,直观地向使用者培训安全操作规范,提高其安全意识,生动灵活地学习建筑职业知知识。2、VR安全教育体验系统模拟多种危险环境,使用三维动态视景仿真,加强5D身体感知科技,以虚拟的感观真实体验坠落、颠覆、倾斜、重击等感觉,让体验者身临其境感知到危险伤害,从而加深安全警报意识。3、质量样板间提供标准化、模块化、通用化的新型建筑工艺样板,展示本工程所采用的材料以及施工质量、施工工艺、施工流程、技术水平等。总结 瞭望智慧工地系统,运用物联网、信息数字化技术,助力解决工地“管理现场复杂、决策层看不清、管理层管不住、执行层做不好”等管理问题;推动工地的数字化、数据网络化、管理智慧化转型,让工地长出智能的“眼睛”和“鼻子”,看得到违规、听得到噪音、闻得到粉尘,变得“聪明”;实现工程施工可视化智能管理,以提高工程管理信息化水平,从而逐步实现绿色建造和生态建造的目标。
    留言咨询
  • 一、智能扬尘监测系统 集扬尘与噪声实时监测于一体的网络终端仪器,实现工地扬尘污染情况(PM2.5/PM10/TSP)24小时不间断的全面监控。推荐产品:光散扬尘监测仪*对PM2.5/PM10/TSP/噪声实时监测*支持接入气象五参、监控视频、LED屏等子系统*智能功能:远程自动检测设备门开关状态,振动功能检测位置偏移,蓝牙上传运维记录推荐产品:β射线扬尘监测系统*β射线法+DHS动态加热系统组成的扬尘在线监测系统*对PM2.5/PM10/TSP实时监测*支持接入噪声、气象五参、视频监控、高浓度报警等子系统二、远程视频监控系统 在施工现场出入口、制高点、关键施工区域等位置安装枪机、半球机和球机,实施工地现场全方位覆盖,不间断监控,结合物联网、数据采集与远程数据传输等技术对现场可视化管理。 *大功率无线充电接受装置,自动变焦球机摄像头,无线网桥*可通过监控大屏、计算机、手机随时远程浏览监控画面*支持图像抓拍用于取证,及时发现和制止违章作业*实时掌握工地施工形象面貌和工程进度,杜绝安全事故发生三、劳务考勤管理系统 对建筑工程项目建筑工人和现场管理人员进行监管,实现在建项目劳务管理智能化。*人脸智能识别度高,白天晚上均适用,快速通行*人脸打卡考勤数据实时上传至云端*后台考勤数据汇总,自动生成报表四、运渣车管理系统 利用智能识别技术对进出工地的车辆识别(车牌、车型和车身清洁度等),识别结果与备案库车辆数据比对,未备案车辆报警提醒,并通知项目部整改回复,对报警多次且长期不回复的工地进行排名分析,为随机检查或重点监管提供支撑。 *实时监测进出工地运渣车辆是否为备案车辆*实时监测运渣车出场是否冲洗*实时监测运渣车辆出场是否覆盖、是否冒装*实时监测运渣车辆出场时车头、车身、轮胎清洁度五、塔机安全系统 实时监控塔机运行状态,监控塔吊运行安全指标,包括吊重、起重力矩、变幅、高度、工作回转角及作业高度风速等, 具备实时报警、制动、塔机黑匣子功能。六、塔机吊勾可视化系统 通过在塔机大臂前端或小车上安装高清红外摄像头,对塔机变幅和高度实时监测,将画面实时传送至司机室屏幕显示,对吊钩位置智能追踪,也可通过4G或无线网桥客户端远程实时查看。七、升降机安全管理系统 前端感知传感器采集升降机运行数据,具备楼层呼叫功能,同样实时显示施工升降机运行时速度、重量等数据,当载物载人超载时预报警,保障施工安全。八、智慧工地管控平台 瞭望智慧工地平台由工程项目综合管理、大气环境监测管理、劳务考勤管理、视频监控管理、施工设备设施安全管理等功能模块组成。智慧工地之“鼻” 平台实现扬尘实时监控、扬尘超标记录、超标处理跟踪、项目空气质量排名、数据统计分析、扬尘监测报表等监督管理功能。智慧工地之“眼” 对出入口、制高点、关键施工区域实现智慧工地的安全监控。监管者可通过监控大屏、计算机、手机随时远程预览监控画面,监控塔吊、塔机、升降机等施工设备的运行安全指标,避免施工死角,监控运渣车的出入及违规情况,支持图像抓拍用于取证,及时发现和制止违章作业。智慧工地标化加分项 结合标化工地加分项的市场需求,四川瞭望进一步升级智慧工地方案,可提供安全设施体验馆、VR安全教育体验系统、质量样板间等服务,为项目加分增亮。1、安全设施体验馆通过安全帽撞击体验、综合用电体验、防护用品展示、灭火器演示体验、钢丝绳展示体验、平衡木行走体验等设施,直观地向使用者培训安全操作规范,提高其安全意识,生动灵活地学习建筑职业知知识。2、VR安全教育体验系统模拟多种危险环境,使用三维动态视景仿真,加强5D身体感知科技,以虚拟的感观真实体验坠落、颠覆、倾斜、重击等感觉,让体验者身临其境感知到危险伤害,从而加深安全警报意识。3、质量样板间提供标准化、模块化、通用化的新型建筑工艺样板,展示本工程所采用的材料以及施工质量、施工工艺、施工流程、技术水平等。总结 瞭望智慧工地系统,运用物联网、信息数字化技术,助力解决工地“管理现场复杂、决策层看不清、管理层管不住、执行层做不好”等管理问题;推动工地的数字化、数据网络化、管理智慧化转型,让工地长出智能的“眼睛”和“鼻子”,看得到违规、听得到噪音、闻得到粉尘,变得“聪明”;实现工程施工可视化智能管理,以提高工程管理信息化水平,从而逐步实现绿色建造和生态建造的目标。
    留言咨询
  • 一、智能扬尘监测系统 集扬尘与噪声实时监测于一体的网络终端仪器,实现工地扬尘污染情况(PM2.5/PM10/TSP)24小时不间断的全面监控。推荐产品:光散扬尘监测仪*对PM2.5/PM10/TSP/噪声实时监测*支持接入气象五参、监控视频、LED屏等子系统*智能功能:远程自动检测设备门开关状态,振动功能检测位置偏移,蓝牙上传运维记录推荐产品:β射线扬尘监测系统*β射线法+DHS动态加热系统组成的扬尘在线监测系统*对PM2.5/PM10/TSP实时监测*支持接入噪声、气象五参、视频监控、高浓度报警等子系统二、远程视频监控系统 在施工现场出入口、制高点、关键施工区域等位置安装枪机、半球机和球机,实施工地现场全方位覆盖,不间断监控,结合物联网、数据采集与远程数据传输等技术对现场可视化管理。 *大功率无线充电接受装置,自动变焦球机摄像头,无线网桥*可通过监控大屏、计算机、手机随时远程浏览监控画面*支持图像抓拍用于取证,及时发现和制止违章作业*实时掌握工地施工形象面貌和工程进度,杜绝安全事故发生三、人员管理系统 对建筑工程项目建筑工人和现场管理人员进行监管,实现在建项目人员管理智能化。*人脸智能识别度高,白天晚上均适用,快速通行*人脸打卡考勤数据实时上传至云端*后台考勤数据汇总,自动生成报表四、运渣车管理系统 利用智能识别技术对进出工地的车辆识别(车牌、车型和车身清洁度等),识别结果与备案库车辆数据比对,未备案车辆报警提醒,并通知项目部整改回复,对报警多次且长期不回复的工地进行排名分析,为随机检查或重点监管提供支撑。 *实时监测进出工地运渣车辆是否为备案车辆*实时监测运渣车出场是否冲洗*实时监测运渣车辆出场是否覆盖、是否冒装*实时监测运渣车辆出场时车头、车身、轮胎清洁度五、塔机安全系统 实时监控塔机运行状态,监控塔吊运行安全指标,包括吊重、起重力矩、变幅、高度、工作回转角及作业高度风速等, 具备实时报警、制动、塔机黑匣子功能。六、塔机吊勾可视化系统 通过在塔机大臂前端或小车上安装高清红外摄像头,对塔机变幅和高度实时监测,将画面实时传送至司机室屏幕显示,对吊钩位置智能追踪,也可通过4G或无线网桥客户端远程实时查看。七、升降机安全管理系统 前端感知传感器采集升降机运行数据,具备楼层呼叫功能,同样实时显示施工升降机运行时速度、重量等数据,当载物载人超载时预报警,保障施工安全。八、智慧工地管控平台 瞭望智慧工地平台由工程项目综合管理、大气环境监测管理、人员管理、视频监控管理、施工设备设施安全管理等功能模块组成。智慧工地之“鼻” 平台实现扬尘实时监控、扬尘超标记录、超标处理跟踪、项目空气质量排名、数据统计分析、扬尘监测报表等监督管理功能。智慧工地之“眼” 对出入口、制高点、关键施工区域实现智慧工地的安全监控。监管者可通过监控大屏、计算机、手机随时远程预览监控画面,监控塔吊、塔机、升降机等施工设备的运行安全指标,避免施工死角,监控运渣车的出入及违规情况,支持图像抓拍用于取证,及时发现和制止违章作业。智慧工地标化加分项 结合标化工地加分项的市场需求,四川瞭望进一步升级智慧工地方案,可提供安全设施体验馆、VR安全教育体验系统、质量样板间等服务,为项目加分增亮。1、安全设施体验馆通过安全帽撞击体验、综合用电体验、防护用品展示、灭火器演示体验、钢丝绳展示体验、平衡木行走体验等设施,直观地向使用者培训安全操作规范,提高其安全意识,生动灵活地学习建筑职业知知识。2、VR安全教育体验系统模拟多种危险环境,使用三维动态视景仿真,加强5D身体感知科技,以虚拟的感观真实体验坠落、颠覆、倾斜、重击等感觉,让体验者身临其境感知到危险伤害,从而加深安全警报意识。3、质量样板间提供标准化、模块化、通用化的新型建筑工艺样板,展示本工程所采用的材料以及施工质量、施工工艺、施工流程、技术水平等。总结 瞭望智慧工地系统,运用物联网、信息数字化技术,助力解决工地“管理现场复杂、决策层看不清、管理层管不住、执行层做不好”等管理问题;推动工地的数字化、数据网络化、管理智慧化转型,让工地长出智能的“眼睛”和“鼻子”,看得到违规、听得到噪音、闻得到粉尘,变得“聪明”;实现工程施工可视化智能管理,以提高工程管理信息化水平,从而逐步实现绿色建造和生态建造的目标。
    留言咨询
  • TBZ科氏力质量流量计, 实现流体质量流量的直接精密测量,而无需任何压力、温度、粘度、密度等换算或修正。其结构是由传感器单元和变送器单元两部分组成。仪表按本质安全防爆型的国家标准设计与制造。性能技术参数适用范围液体、气体、液固、气固的质量流量或体积流量的测量测量管材质316L 不锈钢或哈 C 合金 压力等级标准配置见下表,其他高压可以特殊订货介质温度-50℃~+150℃;-50℃~+250℃;-50℃~+350℃;-200℃~+150℃;环境温度传感器:-41℃~+150℃; 变送器:-41℃~+80℃流量测量精度±0.5%、±0.2% 、±0.1%流量±[(零点稳定性/流量值) 00000000000000×100]% 流量密度测量精度±0.002g/cm3、±0.001g/cm3重复性±0.10% 、±0.05%流量±[?(零点稳定性/流量值)×100]% 流量 流量输出信号:4~20mA 负载电阻500Ω(瞬时流量或密度可选);0~10kHz 瞬时流量脉冲信号; 485 通讯信号HART(需定制)防爆等级:EX d ib II C T5 Gb电气接口M20×1.5语言中文/英文供电电源24V DC(电流不小于 500mA)或 220V AC防护等级IP65
    留言咨询
  • 产品名称:多路质量流量供气系统产品简介:质量流量供气系统用于对气体的质量流量进行精密测量和控制,结合我公司的管式炉,可用作CVD系统和退火炉去研究气体环境影响材料。在半导体和集成电路工业、特种材料学科、化学工业、石油工业、医药、环保和真空等多种领域的科研和生产中有着重要的作用,广泛应用于电子工艺设备,如扩散、氧化、外延、CVD、等离子溅射以及镀膜设备、光纤熔炼、混气配气系统及其它分析仪器。 我公司供应的产品符合国家有关环保法律法规的规定(含采购商ISO14000环境体系要求),不会造成环境污染; 该产品符合采购商OHSMS18000职业安全健康管理体系标准的要求,不会对接触产品的人员健康造成损害!主要特点:精度高、运作稳定可靠、工作压力范围宽(可在高压或真空条件下工作)、操作使用方便技术参数:可根据客户要求特殊订制 型号 标准量程 GSL-2Z 100sccm、200sccm GSL-3Z 100sccm、200sccm、500sccm GSL-4Z 100sccm、200sccm、200sccm、500sccm 质量流量控制器 工作电压:185-245V/50HZ 工作温度:5-45℃ 工作压强:3× 106Pa 最大输出功率:18W 准确度:± 1%FS 线性:± 0.5~1.5% 重复精度:± 0.2% 响应时间:气特性:1~4 Sec,电特性:10 Sec 工作压差范围:0.1~0.5 MPa 机械压力表 量程范围:-0.1-0.15MPa(0.01MPa/grid) 针阀:316不锈钢 管件:不锈钢1/4〞,尼龙管L12〞 ID 1/4〞 气体混料罐:&Phi 80× 120mm 截止阀:316不锈钢针阀&Phi 1/4〞 产品规格: 容积:600× 600× 650mm
    留言咨询
  • 随着电力系统的不断发展和扩大,电能质量问题日益凸显,对电力设备的正常运行和电网的安全稳定产生了严重影响。为了解决这一问题,深圳恒峰智慧电能质量监测装置HFQ-SPC2000应运而生,它是一种能够实时、准确地监测和评估电能质量的设备,对保障电力系统的稳定运行具有重要意义。一、电能质量监测装置的重要性1. 提高电力系统效率深圳恒峰智慧电能质量监测装置HFQ-SPC2000可以实时监测电力系统中的各种参数,如电压、电流、频率、功率因数等,通过分析这些参数,可以发现电力系统中存在的问题,及时进行调整和优化,从而提高电力系统的运行效率。2. 保障电力设备安全电能质量问题可能导致电力设备过热、损坏甚至引发火灾,对电力设备的安全造成威胁。电能质量监测装置可以及时发现这些问题,防止事故的发生。3. 促进电力市场的发展电能质量的好坏直接影响到电力市场的供需平衡和价格形成。电能质量监测装置可以帮助电力公司更好地了解电力市场的需求,优化电力资源的配置,从而促进电力市场的发展。二、电能质量监测装置的主要功能1. 实时监测电能质量监测装置可以实时采集电力系统中的各种参数,并将其传输至监控中心,实现对电力系统的远程监控。2. 数据处理与分析通过对采集到的数据进行处理和分析,电能质量监测装置可以判断电力系统有无存在电能质量问题,并提出相应的解决方案。3. 报警功能当检测到电能质量异常时,电能质量监测装置会自动发出报警信号,提醒相关人员采取措施解决问题。4. 历史数据存储与查询电能质量监测装置可以对采集到的历史数据进行存储和管理,方便用户随时查询和分析。三、电能质量监测装置的应用前景随着电力系统对电能质量要求的不断提高,电能质量监测装置在未来将得到更广泛的应用。同时,随着科技的发展,电能质量监测装置的功能也将不断完善,为电力系统的稳定运行提供更加有力的保障。四、技术参数电压、电流:0.2% 功率、功率因数:0.2% 频率偏差:±0.01Hz 闪变:≤5%电压偏差:0.2% 三相电压不平衡0.2% 三相电流不平衡0.2%谐波:符合GB/T14549-1993中附录D中的要求间谐波:符合GB/T24337-2009中的要求输入方式:电流额定值In:5A/1A 电压额定值Un:57.7V/100V/400V电源:220V【交直流两用】,偏差:-20%~20%
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制