当前位置: 仪器信息网 > 行业主题 > >

在线打印

仪器信息网在线打印专题为您整合在线打印相关的最新文章,在在线打印专题,您不仅可以免费浏览在线打印的资讯, 同时您还可以浏览在线打印的相关资料、解决方案,参与社区在线打印话题讨论。

在线打印相关的资讯

  • 再现奇迹,科学家打印一颗会跳动的心!
    人造器官再现奇迹科学家打印出会跳动的心近期,美国卡耐基梅隆大学(CMU)的研究人员找到了解决方案。他们开发了一种叫做Freeform Reversible Embedding of Suspended Hydrogels(FRESH)技术,以胶原蛋白为生物墨水,3D生物打印了人类心脏的功能性部件(血管、瓣膜和心室搏动),并实现了前所未有的分辨率和保真度。相关研究结果发表在《Science》杂志上。在最新的研究中,Feinberg实验室开发的FRESH 3D生物打印方法允许胶原蛋白在支持凝胶中逐层沉积,使胶原蛋白有机会在从支持凝胶中取出之前固化。使用FRESH技术,打印完成后,通过将凝胶从室温加热至体温,即可将支持凝胶融化。这样,研究人员就可以在不破坏胶原蛋白或细胞打印结构的前提下移除支持凝胶。▲卡内基梅隆大学研究人员开发出一种3D生物打印胶原蛋白技术,可以制造人体心脏的全功能成分。( 图片来源:CMU )FRESH这种方法对于3D生物打印领域来说是非常令人兴奋的,因为它允许胶原支架打印大尺寸的人体器官。而且它不限于胶原蛋白,纤维蛋白、藻酸盐、透明质酸等多种软性生物材料均可作为生物墨水。通过FRESH技术进行3D生物打印,为组织工程提供了一个强大且适应性强的平台。更重要的是,研究人员还做了开源设计,这样任何人都可以构建并获得低成本、高性能的3D生物打印机。Feinberg表示,近期会进行例如因心脏病或肝脏受损而丧失功能的心脏修补工作。展望未来,从伤口修复到器官生物工程,FRESH在再生医学的许多方面都会有所应用。目前仍然存在的挑战是打印大型组织需要数十亿的细胞,如何实现制造规模以及遵循监管程序,以便能在动物和人类中进行测试。尽管任重道远,但我们距离实现3D生物打印全尺寸人类心脏的梦想又近了一步。您的首选3D打印技术综合解决方案供应商CELLINK在这领域中所扮演的角色使用FRESH 3D生物打印实现更复杂的几何形状FRESH 已迅速成为许多组织工程师首选的生物打印平台。FRESH 能够以更高的分辨率使用任何软凝胶生物材料进行生物打印,而不受几何复杂性的限制。FRESH 可以集成到标准生物打印工作流程中,并在 BIO X™ 等挤压式生物打印机上实现。FRESH 彻底改变了生物打印,使研究人员能够应对复杂组织结构和功能的紧迫挑战。例如,FRESH 消除了特定墨水打印优化这种繁琐的任务,让研究人员可以更专注于生物打印真正的 3D 支架和组织。在 BIO X™ 上进行 FRESH 3D 生物打印非常简单,只需将准备好的 LifeSupport™ 盘放在打印平台上,然后将打印针放入盘的中心即可开始制造复杂的几何形状。探索一些最有潜力的潜在研究方向:第一:类组织的复杂打印第二:形成血管化组织第三:多材料生物打印通过将 BIO X™ 生物打印机与 FRESH 相结合,研究人员可以迈入以往梦寐以求的打印复杂性和功能新领域。
  • 默克网红打印机可以一键订购啦!
    有这么一款打印机,它带着标准化的使命,旨在解决实验室标签的痛点。它一经推出,便备受关注,一跃成名变成网红。它就是MilliSentials™ 实验室标签打印系统! 它可以做到:耐高温(100℃)耐低温(-196℃)耐常用化学试剂支持WIFI预设计打印模板可手机操作 拥有它!您将不再有实验室标签识别的烦恼,可以快速准确的找到自己的样品。快点击下方视频来感受它的魅力! 好消息!该产品一键订购功能已上线,您可以随时随地自主在线订购,无需留言等待! 一键订购:货号产品描述MISELLABSCMilliSentialsTM 实验用标签打印系统,含打印机,标签纸,碳带,软件MISELADLAMilliSentialsTM 标签打印纸,一卷(1615张标签)MISELPRRIMilliSentialsTM 热转印碳带,一卷(可达6000张标签) 更多信息,欢迎访问:https://www.sigmaaldrich.cn/CN/zh/technical-documents/technical-article/cell-culture-and-cell-culture-analysis/cell-culture-troubleshooting/millisentials-lab-labeling-system
  • 看!我国科学家实现生物3D打印技术重要突破
    生物3D打印是利用3D打印机,将含有细胞、生长因子和生物材料的生物墨水打印出仿生组织结构的新兴技术,但目前仍无法制备具有生理功能并且可以长期存活的复杂组织。中国科学院遗传与发育生物学研究所和清华大学的研究团队突破了相关技术瓶颈,研究成果在《Bioactive Materials》发表,题为:A multi-axis robot-based bioprinting system supporting natural cell function preservation and cardiac tissue fabrication。 研究团队将六轴机器人的设计原理融入到生物3D打印技术中,因为六轴机器人具有六个可以360°自由转动的关节,所以改进后的3D打印机可以在空间内以任意角度进行细胞打印,解决了传统技术逐层累加地打印细胞导致细胞和血管网络无法有机融合的问题。研究人员设计了循环式“打印-培养”的实验方案,在血管支架上打印出若干层细胞后,将其进行一段时间的共培养以诱导打印细胞之间形成具有生理功能的胞间连接和新生毛细血管网,然后再进行新一轮细胞打印,这种方法可以保证打印组织的长期存活。该项目最终研发出具有毛细血管网络、能够在体外存活并且起搏超过6个月的心肌组织。 该研究不仅突破了已有技术的发展瓶颈,也为生物3D打印技术相关研究提供了新启示。 注:此研究成果摘自《Bioactive Materials》,文章内容不代表本网站观点和立场。 论文链接,点击查看:https://www.sciencedirect.com/science/article/pii/S2452199X22000743 6月20日,我们也有幸邀请到此项目的主要负责人之一——中科院遗传发育所王秀杰研究员,为我们在线分享,现场答疑!快来报名吧!点击参会!
  • 大国之材|戴尅戎院士:3D打印吸引了我的后半生
    p   3D打印技术也称之为“快速成型技术”或“增材制造技术”。它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。自20世纪90年代中期面世以来,3D打印在模具制造、工业设计等领域被广泛用于制造模型,其后逐渐用于产品的直接制造。 /p p   近年来,3D打印技术的发展在医疗领域做出了不小贡献。例如,制作医学模型、辅具、假肢、手术导引装置、骨头、软骨,或用于血管、胆道、气管、尿道内的支撑物或替代品,以及多种组织和脏器。那么,3D打印是通过什么原理实现扁鹊之术?它的存在对于医疗产业而言有着怎样的意义?其发展目前又面临哪些问题? /p p   在寻材问料& reg 联手新材料在线& reg 打造的大型纪录片《大国之材· 3D打印》中,中国工程院院士、上海交大医学院附属第九人民医院3D打印创新研究中心主任戴尅戎教授(以下简称“戴院士”)对上述问题作了较详尽的解答。 /p p strong   用3D打印解决医学界百年难题——“个性化”需求 /strong /p p   “3D打印是一种手段,通过3D打印技术,可以创造出各式各样独具一格的产品,而促进医学与3D打印紧密联系在一起的根本原因,就是医学上自古以来面临的极大需求——‘个性化’。”戴院士谈及3D打印便打开了话匣子,他的后半生,与3D打印有着千丝万缕的联系。 /p p   据戴院士回忆,37年前,他曾接触到一位需要做全距骨切除的肿瘤病人,而当时国际上根本没有替换距骨的假体,主治医师团队只能给患者定制一个人工距骨。这也是戴院士第一次接触到足部骨骼需要“个性化”定制的病例。 /p p   “距骨是位于脚踝十几块骨头里最重要的一块,这个人工距骨还要附带上面、下面和前面的关节面,同时还要有足够的承载能力和稳定性,而距骨大小和形态是人人不同的。”通过多次数据计算、修改,团队最终成功将定制的人工距骨替换下被切除的距骨,时至今日,这位患者仍能自如行动,无跛行、能骑车,甚至还能做轻体力劳动。 /p p   第一次圆满完成“个性化”定制病例给了戴院士极大的鼓舞。1982年以后,戴院士带领团队专门给一些患者陆续定做了膝关节、髋关节、肩关节,甚至还定做了半个骨盆。 /p p   时光推进到90年代,人工定制满足患者的“个性化”需求逐渐成为常态,而此时戴院士遇到了一个棘手的病例。 /p p   一位首席会计师因自幼双侧髋关节先天性异常,两侧髋关节严重脱位导致双侧剧烈疼痛,严重影响工作生活,最终只能依靠轮椅才能出行。据戴院士回忆,这位患者的髋部解剖结构和几何形态与常人差异极大,并伴有严重的继发性病变,各医疗器械公司均无法提供符合需求的关节假体,这让他头一次感到无从下手。 /p p   难以进退之时,上海交通大学王成焘教授给戴院士带来一个好消息。“王成焘教授第一次告诉我们,原来世界上有一种设备叫‘快速原型机’,可以轻而易举地把病人的关节、骨腔的大小、位置和相关关系,用模型准确‘复制’出来。” /p p   在当时看来,戴院士感觉“快速成型机”简直是为这个棘手病例量身定做的产物!为了一探究竟,主治团队将经由快速成型机定制的关节假体安装在假肢模型上进行反复演练,确定无误后才为患者安排手术。最终,患者在模型的帮助下获得了真正量身定制的假体。 /p p   手术成功后,这位当年无法行走的患者不仅重新恢复了首席会计师的工作,还亲自游玩天安门广场、攀登长城,如今已经成为周游世界的旅游爱好者。 /p p   经由此事后,3D打印个性化定制逐渐发展为戴尅戎团队不可或缺的医用技术。与此同时,经手数百个病例的戴院士深刻认识到:在医疗产业中,“个性化”需求是一个拥有巨大市场的发展方向。 /p p   用他的话来说:“固定骨折的接骨板和不同关节的人工假体每个部位只有5-7种尺寸,这仅有的这几个尺寸每年要满足几十万人甚至于上百万人的需求,导致很多病例都是将就着用,因此满足个性化需求将成为提高医疗质量的重要努力方向。” /p p   回顾整个医学发展之路,“个性化”需求一直是该行业存在的最大难题之一,3D打印技术的进步和推广无异于为个性化医疗打开了一扇充满想象与希望的大门。时至今日,戴院士都时常感慨:“3D打印确实太神奇了,它深深吸引了我们,因为很多医生的梦想都能够借以实现。凡是放进病人身上的东西,如果大多数都能定制,那是一个什么场面!” /p p strong   3D打印的出现可以跟蒸汽机、互联网相提并论 /strong /p p   2003年,上海九院的合作公司获批我国国内第一份、也是至今唯一一份定制式人工关节生产许可证。2013年,戴院士与上海交大的工科教授联合组建了上海九院3D打印技术临床转化研发中心 2015年,建立了上海交通大学医学院3D打印技术临床转化协同创新中心 并于2016年又升格为上海交通大学医学3D打印技术创新研究中心,并获得三项“十三五”国家重点研发项目支持。 /p p   “在整个发展过程中,九院的骨科、口腔科、眼科、整形科,耳鼻喉科乃至神经科,都与3D打印结下了不解之缘。3D打印是一项制造技术,但往深处去看,其医学应用的核心保证,应该是‘医工结合’或‘医工产结合’。”将3D打印应用于医学20余载的戴院士对新材料在线& reg 说出了心里话。 /p p style=" text-align: left "   戴院士进一步解释道,“医工结合”是唯一能够把3D打印在医疗行业推行得更深更好的路径。如果医生不懂3D打印技术,何来快速原型?又假如工程师掌握了3D打印技术,却不知在医疗上能够发挥什么作用以及如何去发挥作用,何来“个性化”定制? br/ img src=" https://img1.17img.cn/17img/images/201809/uepic/dfa08341-fa47-4bd4-b48a-4eec0d76d480.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center "   戴尅戎院士早年间在研究制作形状记忆医疗产品 /p p   众所周知,3D打印技术诞生之初主要被应用于制造业中的模具制造、工业设计等工序。当时,这一技术被视为“有可能是扭转美国制造业持续走下坡路的衰败之象的一个转机”。美国前总统奥巴马也曾在国情咨文中谈到,“3D打印有可能使我们制造几乎所有产品的方式革命化”。 /p p   对此,戴院士同样深以为然,“从古到今,我们所做的制造加工都属于‘减材制造’或‘等材制造’,一块大木头用斧头砍、用刀子雕,最后制出一个我们需要的产品,浪费了很多材料。做一个金属的碗,需要在一块立体的金属方块上,用车床、铣床、磨床削出一个碗来,这个碗可能只占了整块材料的20%左右,这造成大量的材料浪费,大量的多余加工。” /p p   而3D打印技术则相对更快速、简化,也更加环保。3D打印只需在一个一无所有的平台上铺上第一层材料粉末,通过加温或粘接剂固定后,再铺第二层、第三层、第四层材料粉并逐层粘结。全部完成后,再把多余的材料粉收集起来进行二次利用。所有采用的材料粉可能90%以上都能被利用。 /p p   因此,3D打印在医疗领域和制造业的创新应用,被认为是一种革命性颠覆。不少3D打印的支持者认为:“3D打印是对旧有加工技术的颠覆,是制造业前所未有的革命,它的出现可以跟蒸汽机、互联网相提并论。” /p p strong   3D打印发展之路亟待“开绿灯” /strong /p p   与3D打印技术发展得如火如荼相对应的,是国内所面临的3D打印设备和材料的大量进口、科技成果转化率低的尴尬局面。 /p p   “不管这个技术是多么的高端,它要真正成为大家心目当中优秀的科技成果的话,就必须实现落地。只有实现了临床转化才能体现科学的伟大,将科学用于为广大人民谋福利,才是我们最终的目的。”戴院士表示,临床转化始终是3D打印发展的核心主题,也是国家目前正在积极推动的方向。 /p p   让戴院士既遗憾又着急的问题则是3D打印设备和材料进口比例偏高,虽然国内有不少国产3D打印机,但直接用于生产置入体内的医疗器械时,往往还是采用国外设备。值得欣喜的是,国产设备与材料的应用率正在不断上升。 /p p   “如今国家高度重视3D打印的发展,在该行业倾注了大量的关注和财力,希望我国的3D打印行业能够走在世界的最前列。应该要为新技术、新设备、新产品‘开绿灯’,但这个‘绿灯’必须开得有科学性、严肃性,因为产品的使用对象是病人。”戴院士表示,任何科学技术的改革创新都应一杆子走到底,‘开绿灯’鼓励国内3D打印行业健康快速发展是必经之路。 /p p   据报道,在生物医学领域,3D打印目前已发展至4D、5D打印。5D打印增加了时间和组织形成两个变量,活性细胞经过打印后,逐步形成一块皮肤、一段气管或者一个脏器。戴院士认为,生物打印是再生医学发展中解决组织、脏器来源最为可能的途径,用于再生医学的前景十分诱人。 /p p strong   人物介绍 /strong /p p   戴尅戎,上海交通大学医学院附属第九人民医院终身教授,中国工程院院士,法国国家医学科学院外籍通信院士。目前担任上海交通大学医学3D打印创新研究中心主任、数字医学临床转化教育部工程研究中心主任、上海交通大学转化医学研究院干细胞与再生医学转化基地主任。 /p p   先后担任华裔骨科学会会长、亚太人工关节学会会长、世界多学科生物材料学会副会长、世界内固定(AO)基金会理事等。先后当选美国骨科学会通讯会员,国际髋关节学会正式会员。戴尅戎院士通过医学与工程学、生物学、材料学的交叉合作,研发新型骨科植入物和新技术,并积极推动3D打印的医学应用、人工关节与骨再生等基础研究与临床技术。 /p p br/ /p
  • 发挥您的想象力!一起见证生物打印的力量!
    发挥您的想象力!如果我可以让盲人恢复视力、重见光明。如果我可以提供癌症病患更好的治疗。如果我可以使脊柱再生、恢复行走能力。如果我可以拯救更多心脏病患者。如果可以。。。如果可以 我想。。。捕捉每一个心跳利用3D生物打印重建活体心脏组织 所面临的挑战 心脏病发作和心力衰竭等心血管疾病是全世界死亡的主要原因之一。心脏是血液在全身循环的重要器官。开发3D模型以了解这些疾病的原因和机制将有助于治疗方法的发展。从干细胞生成的生物打印心脏组织模型可以在体外成熟,以了解各种刺激下的心肌细胞功能,以模拟疾病条件。 解决方案 通过获取iPSC衍生的心肌细胞簇并在层粘连蛋白生物墨水中打印它们,CELLINK的研究人员创造了一种长期培养的有效载体,使心肌细胞能够发展并表现出体内行为,如一致收缩。心脏病是现代世界最普遍的疾病之一。通过开发此类成熟模型以及在BIONOVA X上开发的模型,研究人员在他们的武器库中拥有更多生理相关模型。可用于准确洞察细胞对药物的反应的模型,加速救生治疗的发展。培养三周后,生物打印心脏组织模型显示CELLINK的LAMININK 521 生物墨水中心脏聚集物的钙的细胞内动员。 医学影响 心脏病是现代世界最普遍的疾病之一。通过开发此类成熟模型以及在BIONOVA X上开发的模型,研究人员在他们的武器库中拥有更多生理相关模型。可用于准确洞察细胞对药物的反应的模型,加速救生治疗的发展。 那么我可以拯救更多心脏病患者。 个性化癌症治疗方法打印稳定球体以模拟癌症侵袭 所面临的挑战 为了成功地治疗世界上最致命的疾病之一,必须建立有效的模型。模型再现了体内条件,展示了癌症如何进展和在体内移动,同时也为个性化方法提供了选择。 解决方案 CELLINK的科学家验证了一项方案,该方案利用液滴中液滴的方法来研究不同水凝胶浓度的影响。该测定需要嵌入细胞的中心核心液滴,由无细胞外液滴覆盖。医学影响 通过以高通量方式开发此类模型,可以在癌症治疗中取得更快的进展。创建可复制的模型,可以轻松添加到药物筛选和图像分析的自动化工作流程中,从而在全球范围内实现更好的治疗,描绘健康的未来。 如果我可以提供癌症病患更好的治疗。 ———————————————— 出版物《聚光灯》感谢我们的客户德克萨斯大学埃尔帕索分校,他们使用BIO X 3D 生物打印机制造了更坚固的心脏组织支架。与对照组相比,他们所新制造的生物打印平台产生的心脏类器官在长期维持细胞活力和功能方面表现得更好。组织模型还促进了肌细胞和成纤维细胞之间的异细胞耦合,帮助研究人员分析疾病进展过程中的细胞行为、信号和功能。希望这些生物标志物能对导致心脏功能不全有更好的理解并起到能够的早期检测的作用。 长按以下二维码阅读完整的出版物 释放生物打印的力量———————————————— 未来的医学影响将有无限的可能 “如果可以 我想。。。” 已经有研究家把他们曾经的“如果” 转变成现实!他们都在用自己的努力迈向创造更佳的医疗方式的道路。希望通过他们的研究能确保患者安全,促进现代医疗个性化发展为医学未来创造更多奇迹! 希望阅读到这里的你也有自己对医学未来的憧憬与目标!你也有想发展的 ”如果“ 吗?
  • 一种可用于3D生物打印的抗菌ε -聚赖氨酸衍生生物墨水
    凭借其个性化定制的优势,3D生物打印受到了组织工程研究人员的广泛关注。生物墨水在打印过程中起着保护细胞,并在打印后提供促进细胞生长和组织再生的支架的作用。此外,不同的3D生物打印方法需要具有不同特性的生物墨水。然而目前用于3D生物打印的生物墨水是不足的,这限制了3D生物打印在组织工程中的应用。另一方面,细菌感染严重威胁着3D生物打印及后续组织工程技术的实现,并可能导致移植物植入失败和术后严重并发症。因此,引入一种具有固有抗菌特性的新型生物墨水用于组织工程,将促进3D生物打印在组织工程中的发展。近日,湖南大学刘海蓉教授课题组提出了一种新型可用于3D生物打印的抗菌ε-聚赖氨酸衍生生物墨水。体外抗菌实验表明,基于ε-聚赖氨酸的水凝胶对大肠杆菌和金黄色葡萄球菌均具有较强抗菌性能。通过使用面投影微立体光刻技术(nanoArch S140, 摩方精密),该研究成功打印了不同形状的高保真载软骨细胞水凝胶。在体内异位成软骨实验中,载细胞水凝胶经过4周培养形成了软骨样组织。总的来说,此项研究提出了一种很有前景的3D生物打印抗菌生物墨水,为3D生物打印在组织工程中的应用提供了一个新的选择。相关论文在线发表在《Journal of Materials Chemistry B》,湖南大学何亚辉为本文第一作者,刘海蓉、周征为通讯作者,韩晓筱课题组为本文3D生物打印提供了支持。图1 (a)EPLGMA-H水凝胶制备工艺示意图。(b)EPLGMA-1、EPLGMA-2和EPLGMA-3在D2O中的1H NMR谱。(c)蓝光照射后的EPLGMAs凝胶化照片。(d)EPLGMA-H凝胶过程的动态实时流变学分析。图2 大肠杆菌和金黄色葡萄球菌分别与PBS、EPLGMA-1H、EPLGMA-2H、EPLGMA-3H共混后的(a)生长情况,(b)细菌存活率,(c)活/死细菌染色照片。图3 (a-c)3D生物打印制备的细胞负载EPLGMA-3H的3种不同形状的俯视图。(d-i)3D生物打印载细胞EPLGMA-3H培养3天后的活细胞照片,(g-i)分别为(d-f)的放大照片。 原文链接:https://doi.org/10.1039/D1TB02800F
  • 兰州化物所在高性能3D打印PDMS研究方面获进展
    p style=" text-align: justify text-indent: 2em " 聚二甲基硅氧烷(PDMS)具有优异的柔弹性、透明性、流动性和生物相容性等优点,因此在微流体器件、柔性电子、微结构模板复制以及医学工程等方面得到了广泛应用。近年来,因在自由设计、快速制造、高精度无模具成型等方面的优势,3D打印PDMS研究备受关注且发展迅速。 /p p style=" text-align: justify text-indent: 2em " 中国科学院兰州化学物理研究所王晓龙团队,近期发展了一种通用的光热两步固化方法,实现了高精度PDMS结构件3D打印成型。如图1所示,研究人员以Sylgard 184硅橡胶为例,通过向其前驱体溶液中加入一定量的(≤20%)可光固化的甲基乙酰氧基丙基甲基硅氧烷和二甲基硅氧烷的共聚物(M-PDMS)赋予其光固化能力;然后,使用紫外光辅助的直书写3D打印机,在墨水挤出的过程中边打印边紫外光照射使M-PDMS固化获得高精度的三维结构打印件;最后,将打印样品在120oC高温下热固化交联实现高性能PDMS结构件。 /p p style=" text-align: justify text-indent: 2em " 研究表明,紫外光辅助固化直书写成形的线材具有优异的自支撑性,可形成最小尺寸在100μm以下的大跨度结构,并可层层堆积形成如空心圆柱体、晶格以及蜂巢结构等的打印件,而且所得PDMS打印件在热交联后具有优异的机械性能,其断裂强度和断裂伸长率分别为3.86 MPa 和123%,优于已报道的3D打印PDMS。研究人员采用同轴打印Sylgard 184制备的微孔道证明该方法可应用于微液体器件构筑等领域。更为重要的是,这种光热两步固化方法具有较好的普适性,可以实现其他硅橡胶材料包括人体硅胶、模具硅胶、灌封胶等的3D打印成型,因此在生物医疗、柔性电子、软机器人等领域具有应用潜能。 /p p style=" text-align: justify text-indent: 2em " 以上工作近期在线发表在Macromolecular Rapid Communication& nbsp (DOI: 10.1002/marc.202000064)上,相关研究得到国家自然科学基金、中科院前沿科学研究重点项目和“西部之光”人才培养计划项目的资助。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/a5ed2632-5f2d-48b8-a001-ea54f7219199.jpg" title=" 3D打印.png" alt=" 3D打印.png" / /p p style=" text-align: center text-indent: 0em " strong 图:紫外固化辅助直书写3D打印PDMS示意图及打印件力学性能、成型精度以及应用展示 /strong /p p br/ /p
  • 浅谈国内医用3D打印技术及材料研究现状
    p style=" text-align: justify text-indent: 2em " 3D打印技术与生物医用材料的结合,可以实现个性化治疗,降低医疗成本,减少对人体的伤害,必将引领医疗领域的革命潮流。以生物医用材料及细胞为新型离散材料,利用3D打印技术,组织器官紧缺的问题。因此,医用3D打印技术及材料在医疗领域具有巨大的临床需求和科学意义。本文主要从临床应用和打印材料两方面介绍了国内医用3D打印技术及材料的研究现状与水平。 /p p style=" text-align: justify text-indent: 2em " strong 临床应用方面 /strong /p p style=" text-align: justify text-indent: 2em " 随着医用3D打印技术与材料的发展,国内的有关临床应用也越来越成熟。 /p p style=" text-align: justify text-indent: 2em " 西安第四军医大学采用金属3D打印技术打印出与患者锁骨和肩胛骨完全一致的钛合金植入假体,并通过手术成功将钛合金假体植入骨肿瘤患者体内,成为世界范围内肩胛带不定形骨重建的首次应用,标志着3D打印个体化金属骨骼修复技术的进一步成熟。 /p p style=" text-align: justify text-indent: 2em " 北京工业大学开发的数字化医疗3D打印模板导向技术,在内蒙古自治区肿瘤医院微创介入中心,成功地为一名上颌窦癌患者实施了放射性粒子植入术,即组织间放疗,首次将3D打印技术用在肿瘤的放射性粒子植入术中,是临床治疗的一次新的突破。 /p p style=" text-align: justify text-indent: 2em " 江西省人民医院应用3D打印技术制作出的导板,成功应用于无柄髋关节置换术中,并取得了最佳的定位效果。从脱位股骨头、扣上导航模板,到钻孔中心定位,仅仅用了5分钟,就成功实现了精准定位。按照常规定位方法,不仅要多花数倍时间,即使反复调整钻孔并经环锯削骨检验,也难免因偏心锯骨产生不同程度的骨缺损,影响关节安装的位置和强度。 /p p style=" text-align: justify text-indent: 2em " 浙江大学医学院采用立体喷射成型系统,以琥珀酸树脂为基本成型材料,制作下颌骨3D打印模型,根据下颌骨模型再制作术前预弯重建钛板。此钛板完全贴合于模型表面,省去了在术中弯制钛板的步骤,减少了手术时间,同时达到很好贴合效果。 /p p style=" text-align: justify text-indent: 2em " strong 打印材料方面 /strong /p p style=" text-align: justify text-indent: 2em " 3D打印制品结构表面的生物相容性和功能性不足,阻碍了3D打印技术和打印材料在生物医学领域的广泛应用。3D打印技术与传统的表面修饰技术相结合,可极大地增加和拓宽3D打印技术的应用,尤其在生物医用材料领域。 /p p style=" text-align: justify text-indent: 2em " 中国科学院上海陶瓷研究所将3D打印骨架和旋涂表面修饰结合,对骨架表面进行功能化修饰,结果显示MBG-β-TCP骨架具有了更高的成骨和骨再生基因表达,并改善了磷灰石的钙化及骨形成效率。 /p p style=" text-align: justify text-indent: 2em " 南昌大学利用等离子体增强原子层沉积技术,以及水热处理3D打印复杂结构表面,制备出了均匀和有序的功能纳米阵列,此过程没有有毒添加剂或有毒物残留,从而满足了高纯度产品制造的要求。另外,该团队还实现了精确打印人工耳塞,并进行了动物实验和人体试验,实验结果显示,这种耳塞具有优异的耐磨性、隔音效果,以及抑制病原体的生长能力;实验也进一步表明精确3D打印构架结合表面功能化修饰技术在医疗设备中具有一定的应用发展潜力。 /p p style=" text-align: justify text-indent: 2em " 国家对生物医用3D打印技术及装备等方面也给予了大力支持,国家重点研发计划“增材制造与激光制造”重点专项已部署了多个相关项目,取得了国内首次实现高生物相容性材料钽材料3D个性化打印成型等进展。 /p p style=" text-align: center text-indent: 0em " img style=" max-width: 100% max-height: 100% width: 450px height: 300px " src=" https://img1.17img.cn/17img/images/202004/uepic/d808cc47-dea1-4660-877f-a8cc1f6a2b86.jpg" title=" 1.png" alt=" 1.png" width=" 450" height=" 300" border=" 0" vspace=" 0" / /p p style=" text-align: justify text-indent: 2em " 就目前来看,生物医用3D打印技术方面的研究成果正如雨后春笋般不断涌现。医用3D打印材料,特别是在组织工程支架材料方面已经取得了诸多成就。然而,生物医用3D打印技术及其材料还是一个新兴的领域,各种研究仍处于初始阶段,要想真正实现临床上的应用还有很长的一段距离,还存在很大的挑战。 /p p style=" text-align: justify text-indent: 2em " 随着3D打印技术在机械方面的快速发展,生物医用3D打印技术的发展也出现了很多的机遇。未来,可以利用3D打印技术打印出具有生物活性的人体器官,实现人造器官的临床应用,用于个性化治疗,降低治疗成本。将来也有望开发出更多的生物相容性和生物降解材料与3D打印技术相结合,以减轻因材料的不足而对人体产生的伤害。 /p p style=" text-align: justify text-indent: 2em " i span style=" color: rgb(127, 127, 127) " 注:本文摘自 张梦月,雷瑾亮,赵政.医用3D打印技术及材料发展现状与趋势[J].科技中国,2020(03):21-24. /span /i /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/BMM/" target=" _self" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/e430bf9e-f1dd-4168-a53c-a2f653c23f54.jpg" title=" 1920_420.jpg" alt=" 1920_420.jpg" / /a /p p style=" text-align: justify text-indent: 2em " 生物医用材料又称生物材料,是用于诊断、治疗、修复、替换人体组织及器官或增进其功能的一类高技术新材料,是人工器官和医疗器械发展的基础,多应用在骨科、心外科、齿科、神经外科、整形外科、药物释放载体治疗和医疗美容等医学分支领域。由于生物医用材料与人体健康密切相关,因此,对其化学结构组成、物理机械等性能,及其与人体接触时的生物相容性、安全性等指标进行分析检测和评估,具有非常重要的实际意义。 /p p style=" text-align: justify text-indent: 2em " 为促进全国各地高校、科研院所、企业等生物医用材料相关从业人员进行检测技术交流,仪器信息网网络讲堂将于2020年5月12日举办“生物医用材料检测技术应用与进展”主题网络研讨会,邀请领域内杰出专家和业内人士带来精彩报告,并为参会人员搭建网络互动平台。 span style=" text-decoration: underline color: rgb(255, 0, 0) " strong a href=" https://www.instrument.com.cn/webinar/meetings/BMM/" target=" _self" style=" text-decoration: underline " (点击报名在线听会) /a /strong /span /p p style=" text-align: center text-indent: 0em " /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/4d505388-d466-4f3b-ab18-db11eb5bc07a.jpg" title=" 1.PNG" alt=" 1.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/3c46575f-4f7f-4472-818d-c205c3bc733a.jpg" title=" 2.PNG" alt=" 2.PNG" / /p p style=" text-align: center " strong span style=" text-align: justify text-indent: 2em " 参会方式(手机电脑均可参会) /span /strong /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/BMM/" target=" _self" style=" color: rgb(255, 0, 0) text-decoration: underline " strong span style=" color: rgb(255, 0, 0) " 1、点击进入报名页面。 /span /strong /a /p p style=" text-align: justify text-indent: 2em " 2、报名成功,通过审核后您将收到通知;态度敷衍乱填将不予审核。 /p p style=" text-align: justify text-indent: 2em " 3、会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。 /p p style=" text-align: center text-indent: 0em " strong 扫一扫,也可报名 /strong /p p style=" text-indent: 0em text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/36291ea3-daec-49be-b586-fa298dcb5acd.jpg" title=" 3.PNG" alt=" 3.PNG" / /strong /p
  • 华中科技大学张海鸥教授破解3D打印世界性难题
    “我们的技术将在先进制造领域掀起新一轮的革命。”日前,华中科技大学机械科学与工程学院教授张海鸥携其研发的“智能微铸锻铣复合制造技术”,与法国空客公司举行了技术合作签约仪式,这是法中两国在先进制造领域的一项重要合作。这位年过60岁的老人和夫人王桂兰一起,带领团队用14年的时间,破解了困扰金属3D(三维)打印的世界级技术难题,实现了我国首超西方的微型边铸边锻的颠覆性原始创新。  不仅是空客,美国通用电气公司不久前也主动上门洽谈合作。创新成果被航空业巨头竞相追逐,表明了我国在3D打印技术上已经由“跟跑”开始进入“领跑”阶段。  将金属铸造、锻压技术合二为一,改变西方引领的制造模式  在华中科技大学,张海鸥、王桂兰夫妇就像一段传奇。跟电弧光打交道十余年,他们被称为“华科居里夫妇”。其实,张海鸥的科研路颇为曲折,刚起步时,他埋头于轧钢研究。但“这项技术,日本已经研究得差不多了”,导师的话如当头一棒,他懵了。考虑再三,他于1987年东渡日本“取经”。  王桂兰说,在日本工作之余,她做得最多的就是收集资料,从课程配置到最前沿的技术,无所不有。“回国的时候,资料整整打包了31个大箱子。”  十几年科研路,就是不断试错的过程。“唯有创新才有未来,跟在别人后面是不会有太大出路的。”1998年,张海鸥被引进到华中科技大学,致力于高效低成本无模快速制造技术研究,4年后开始主攻金属3D打印。  试错之后迎来创新。2016年7月,张海鸥团队创造性地将金属铸造、锻压技术合二为一,成功制造出世界首批3D打印锻件,实现3D打印锻态等轴细晶化、高均匀致密度、高强韧、形状复杂的金属锻件,全面提高了制件强度、韧性、疲劳寿命及可靠性,降低设备投资和原材料成本,大幅缩短制造流程与周期,全面解决常规3D打印成本高、工时长,打印不出经久耐用材质的世界性难题。  专家表示,这项技术改变了长期以来由西方引领的“铸锻铣分离”的传统制造历史,将开启实验室制造大型机械的历史。  攻克传统技术难题,推动金属3D打印制件进入高端应用  最近几天,在华中科技大学数字制造装备与技术国家重点实验室的实验基地,张海鸥团队正在加紧制造一批应用于航空领域的高端金属锻件。目前由“智能微铸锻” 打印出的高性能金属锻件,已达到2.2米长约260公斤。现有设备已打印飞机用钛合金、海洋深潜器、核电用钢等8种金属材料,是世界上唯一可以打印出大型高可靠性能金属锻件的增材制造技术装备。  据介绍,在传统机械制造中,浇铸后的金属材料不能直接加工成高性能零部件,必须通过锻造改造其内部结构,解决成型问题。但是对超大锻机的过度依赖,导致机械制作投资大、成本高且制作流程长、能耗大、污染和浪费严重的问题。正因如此,金属3D打印技术因能解决以上弊病而成为前沿性的先进制造技术。作为全球新一轮科技革命和产业革命的重要推动力,目前已经在航空航天、医疗、汽车等领域开始获得大规模应用。  “常规金属3D打印存在致命缺陷:一是没有经过锻造,金属抗疲劳性严重不足 二是制件性能不高,难免存在疏松、气孔和未熔合等缺陷 三是大都采用激光、电子束为热源,成本高昂。所以形成了中看不中用的尴尬局面。”张海鸥介绍,正因如此,全球金属3D打印行业一直处在“模型制造”和展示阶段,无法进入高端应用。  2016年7月,张海鸥团队研发出微铸锻同步复合设备,并打印出全球第一批锻件:铁路关键部件辙叉和航空发动机重要部件过渡锻。专家表示,这种新方法制件 “强度和塑性等性能及均匀性显著高于自由增材成形,并超过锻件水平”,“将为航空航天高性能关键部件的制造提供我国独创国际领先的高效率、短流程、低成本、绿色智能制造的前瞻性技术支持。”  “常规3D打印金属零件的过程是打印算一层,铸造算一层,锻压又一层,三者要分开依次进行,即前一个步骤完了,后一个步骤方可进行,中间还要腾出金属冷却的时间”。张海鸥介绍,智能微铸锻技术可以同时进行上述步骤,打印完成了,铸锻也就同时完成了。  “我们将原先需要8万吨力才能完成的动作,降低到八万分之一,也就是不到1吨的力即可完成,同时一台设备完成了过去诸多大型设备才能完成的工作,绿色又高效。”他说。  从“跟跑”到“领跑”,为先进制造业带来深刻的技术变革  张海鸥介绍,我国3D打印产业一直处于“跟跑”阶段,与发达国家相比,我国3D打印产业大多停留在科研层面。要摆脱“跟跑”的尴尬,必须创新。在他的研究方向上,处处都体现了创新精神。  “当时国内外的金属3D打印主要以激光、电子束为热源,我们想降低成本,就选择了等离子束为热源,发现效率很高。”张海鸥介绍,等离子和激光做热源都是通过高能束来熔化金属粉末,制造金属模具,但两者的发生装置和加工方式不同,等离子具有成本低、成形率高等优点。  十几年前,金属3D打印做出的制件非常粗糙,经过后期机械加工后才能当做零件使用,而要打印复杂制件,则几乎不可能实现。张海鸥带领团队反复实验,在金属3D打印中加入了铣削环节,边打印边进行机械加工,攻克了此项难题,获得国家发明专利。  选择铸锻合一的方向是更大的创新。“他首次跟我提出‘铸锻铣一体化’构想时,我认为是异想天开,两人为此进行了激烈的争吵。”王桂兰说,很多时候,创新是在夫妇俩的争吵中产生的。  反复实验、不断试错之后,研究方向愈加清晰。2010年,大型飞机蒙皮热压成形模具的诞生,验证了在金属3D打印中复合锻打的可行性。  铸锻一体化3D打印技术发布后,国外航空工业巨头纷纷上门洽谈合作。据介绍,美国通用公司不久前巨资收购了德国和瑞典两家3D打印公司,但对于许多需要锻造性能的大中型承力构件仍无能为力,而张海鸥团队的研究成果可弥补这个缺陷。  北京工业大学教授陈继民认为,张海鸥发明的技术在航空航天、核电、舰船、高铁等重点支柱领域的应用前景广阔,比如对于长寿命、高可靠性的航空发动机关键部件的制造有显著优势。  在我国研制的新型战斗机上,一种新型复杂钛合金接头的制造也已经开始和张海鸥团队合作,用该技术打印出来的钛合金抗拉强度、屈服强度、塑性、冲击韧性均超过传统锻件。  目前,该技术正在西航动力公司、西安飞机制造公司等新产品开发中应用,已经试制了高温合金双扭叶轮、铝硅合金热压泵体、发动机过渡段等零件,以及大型飞机蒙皮热压成形双曲面模具、轿车翼子板冲压成形FGM模具等,应用前景广阔。  目前,根据空客公司对飞机零部件的需求,张海鸥团队正在进行研发,“一旦继续获得认可,我们将赢得空客的零部件生产的订单,同时还可能获得更多国际民用航空巨头的青睐。”张海鸥说。
  • 探索科技未知:微纳3D打印技术赋能软体机器人
    当前智能制造正在席卷全球,加之工业自动化技术的迭代发展,推动了生物医疗、航空航天、环境监测等行业对机器人应用需求的增加,软体机器人应运而生。软体机器人就是模仿自然界中的软体动物柔软结构和运动方式,基于柔性材料制造出的一种新型机器人。它具备无限自由度和连续变形能力等特性,对于传统机器人无法到达或正常工作的特殊环境有着极强的适应能力,柔软的构型材料使机器人具备更强的人机交互能力,使其具有广泛的应用前景。01合作共赢:Pµ SL技术与软体机器人在生物医疗领域,软体机器人可以作为手术机器人,为手术提供更加精准的控制和操作;在航空航天领域,软体机器人可以用于维修和保养太空舱等设施;在环境监测领域,软体机器人可以用于勘探地质和救援行动。当然,在内窥镜、智能传感器和仿生结构领域也具有前瞻性和创新性的应用场景。据Market Data Forecast研究表示,2022年全球软机器人市场规模为4.0143亿美元,预计2028年估值将达到56.5797亿美元,预计2023-2028年的年复合增长率为39%。图片来源于Market Data Forecast其中Markets and Markets报告指出,3D打印机器人市场在2023年的价值为16亿美元,预计到2028年将达到32亿美元,预测期内的年复合增长率为14.6%。发展至今,软体机器人已经逐渐进步到更精密的行业应用。目前,摩方精密在软体机器人应用已有着丰富的科研经验,在研究生物体和软体机器人结构与特性之间的相关性中,设计制备出具有该特性的结构和材料,通过独有的面投影微立体光刻(Pµ SL)技术,可完成复杂三维微结构的快速成型制作,摩方精密制备出的软体机器人相关精细零件被应用于内窥镜、手术机器人、仿生结构、智能传感器等众多领域。图片来源于Markets and Markets02创新突破:Pµ SL技术助力科研案例在软体机器人的应用领域,摩方精密已经与众多科研机构建立了紧密的合作关系,共同完成了许多具有突破性的科研成果。混合驱动手术机器人香港城市大学生物医学工程系申亚京教授带领的研究团队开发了一款毫米级的软连续体机器人,其在线控和磁场的混合驱动模式下同时拥有大转角和高精度操作能力,解决了在狭长受限环境下操作的问题。为了实现毫米级外形尺寸的混合驱动,该团队基于摩方精密超高精度光固化3D打印机nanoArch® P140打印出超薄的镂空型机器人骨架(长度30mm,外径3.0mm,壁厚300μm),并在薄壁上形成150μm的贯穿孔用于腱索的布置。论文链接:https://doi.org/10.1002/aisy.202000189分级互锁结构型柔性压力传感器南方科技大学的郭传飞教授团队设计了由微穹顶阵列与带有次级微柱的微穹顶阵列而形成的一种分级互锁结构,降低了结构硬化给传感器带来影响的问题。该研究团队使用摩方精密nanoArch® S130,打印具有微穹顶结构以及分级微穹顶结构的树脂作为模具。PμSL技术可实现分级互锁结构的高精度、定制化打印,进一步可助力于高灵敏和宽线性传感的柔性压力传感器的制备。论文链接:https://doi.org/10.1021/acsnano.1c10535柔性双模态智能传感器北京航空航天大学文力课题组提出的基于双模态智能传感界面的软体机器人非接触交互示教方法。在该研究中,基于研究团队所研发多模态柔性传感界面,可在不接触软体机器人、无任何穿戴设备的情况下利用裸手交互地示教软体机器人,使其实现复杂三维运动。课题组基于摩擦纳米发电机原理和液态金属的压阻效应提出了一种能够对非接触信号和接触信号进行实时感知和解耦的柔性双模态智能传感器。该团队利用摩方精密nanoArch® S140,实现了柔性介电层表面微型金字塔模具的3D打印,该传感器自身具有较强的柔性和可拉伸性。论文链接:https://doi.org/10.1038/s41467-022-32702-5仿蠓虫软体机器人(多运动步态)香港中文大学张立教授课题组联合北京计算科学研究中心丁阳教授课题组以及美国卡耐基梅隆大学Carmel Majidi教授课题组提出一种磁性软体机器人平台用于重建和解耦复杂生物运动,解决了平台缺乏解耦复杂生物行为的问题。该磁性软体机器人可以通过模板法或者3D打印工艺制造。该工作中使用了摩方精密nanoArch® S130,打印一种节肢型的水凝胶磁性机器人,借助高精度光固化成型方式可制备高深宽比软体机器人,复刻蠓幼虫的多种运动步态,并结合编程,进一步实现智能驱动、控制等。论文链接:https://doi.org/10.1002/adma.202109126机器人的出现为人类打开了无限的想象空间,帮助人类深入极端环境,探索宇宙和生命的奥秘,完成许多人类无法完成或难以完成的任务。只有善用机器人的力量,才能推动社会的进步,实现人类文明的跨越式发展。
  • 上海微系统所实现集成3D打印编码滤波器的超导单光子光谱仪
    近日,中科院上海微系统所尤立星、李浩团队,陶虎团队以及上海交通大学王增琦团队合作,结合超导纳米线单光子探测技术、双光子3D打印编码滤波技术、计算重构技术等实现单光子计数型光谱分析仪。相关成果以“Superconducting Single-Photon Spectrometer with 3D-Printed Photonic-Crystal Filters”为题于2022年9月27日在线发表在中科院一区学术期刊ACS Photonics上,并被选为当期副封面论文。 图1 集成3D-打印滤波器的超导单光子光谱仪概念图   光谱作为物质的指纹,是人类认知世界的有效手段,在科学研究、生物医药等领域已经有了较为普遍的应用。目前,在单光子源表征、荧光探测、分子动力学、电子精细结构等领域的光谱测量,已经达到了量子水平,例如,在生物、化学和纳米材料领域需要对单个原子、分子、杂质等微弱光谱进行探测分析,这些光谱覆盖范围广,强度弱,因此,对宽谱、高灵敏度、高分辨率的光谱探测器存在迫切需求。   传统的半导体探测器如光电倍增管(PMT)、雪崩二极管(SPAD)等虽然实现了单光子灵敏度的探测,但是存在近红外探测效率低,噪声大,探测谱宽有限等问题。近年来快速发展起来的超导纳米线单光子探测器(SNSPD)因其高效率(90%)、低暗计数(0.1cps)、低抖动(~3ps )、宽谱(可见~红外)的优异性能,在众多领域都得到了应用。将SNSPD集成到光谱分析仪中,不仅能够实现极弱光的光谱测量,还具备非常宽的工作范围,在量子信息技术、天文光谱、分子光谱等领域具有重要的应用价值。该工作中,合作团队利用超导单光子探测器的高效、宽谱等性能优势,首先设计制备4*4阵列型偏振不敏感超导单光子探测器,然后借助双光子3D打印技术的灵活性在每个探测器像元上制备光子晶体编码滤波器,最后通过分析探测像元光谱响应特性等建立了计算光谱重构问题的数学模型,最终实现光子计数型光谱分析仪。   文中该光谱分析仪工作范围覆盖 1200~1700nm,灵敏度达到-108.2dBm,分辨率~5nm。相比当前商业光谱仪的灵敏度(一般灵敏度在-60~90dBm),具有两个数量级以上的提升,为单光子源表征、前沿天文光谱学、荧光成像、遥感、波分复用量子通信等微弱光谱分析领域的研究提供了有效的解决方案。论文第一作者为上海微系统所博士研究生肖游,第二作者为上海微系统所博士研究生维帅,第三作者为上海交通大学徐佳佳。通讯作者为上海微系统所陶虎研究员、李浩研究员、尤立星研究员。该研究得到了国家自然科学基金(61971408 、61827823), 重点研发计划 (2017YFA0304000), 上海市量子重大专项 (2019SHZDZX01), 上海市启明星(20QA1410900)以及中科院青促会 (2020241、2021230)等项目的支持。论文致谢清华大学张巍教授、郑敬元博士的讨论。
  • 兼顾超强韧性和延展性 首款3D打印纳米结构高熵合金问世
    美国马萨诸塞大学阿默斯特分校和佐治亚理工大学科学家在最新一期《自然》杂志在线版发表论文称,他们采用3D打印方法,制作出一种双相纳米结构高熵合金(HEA),其强度和延展性优于现有其他先进的3D打印材料,有望催生可用于航空航天、医学、能源和运输等领域的高性能部件。通过先进3D打印制造的高熵合金在多个尺度上具有层次结构,表现出更高强度和良好的延展性。图片来源:佐治亚理工学院官网过去15年,HEA越来越受欢迎。HEA是由5种或5种以上等量或大约等量的金属制成的合金,具有许多理想的性质,因此在材料科学及工程领域备受重视。3D打印技术目前已用于材料开发领域,基于激光的3D打印可以产生大的温度梯度和高冷却速率,而传统方法很难做到这一点。此次,研究人员将HEA与先进的3D打印技术——激光粉末床熔融结合,开发出具有前所未有性能的新材料。由于该工艺使材料熔化和凝固速度非常快,所得到材料的微观结构与传统方法制造出的材料大相径庭。新材料的微观结构看起来像一种网状结构,由名为面心立方(FCC)和体心立方(BCC)的纳米层状结构交替组成,这些层被嵌入微尺度共晶团中,分级纳米结构HEA使两相能够协同变形。研究人员表示,这种不寻常微观结构的原子重排使其拥有超高强度和更高的延展性,与传统金属铸件相比,新材料的强度提升了3倍,延展性不减反增。使HEA拥有更强韧性和更好延展性有助于研制出机械效率高且节能的轻质结构。研究团队还开发出了双相晶体塑性计算模型,以了解FCC和BCC纳米片层所起的作用,以及它们如何协同工作以增加材料的强度和延展性。结果显示,BCC纳米片层具有极坚固的特性,这对于实现合金卓越的强度—延展性协同作用至关重要。未来,科学家们有望利用3D打印技术和HEA研制出可广泛应用于生物医学、航空航天等领域的高性能部件。
  • 生物打印肝脏模型评价药物的肝脏毒性研究
    背景介绍 药物性肝损伤(DILI)会影响肝脏代谢和解毒能力,但其根本机制仍有很多未知。为了准确和可再现地预测人的DILI,非常需要体外肝脏模型来替代昂贵和低通量的2D细胞培养系统、动物研究和芯片实验室模型。我们提出了一种新的“droplet in droplet”(DID)生物打印方法,该方法可以产生用于肝毒性研究的生理相关肝脏模型。这些模型,或称微型肝脏,是用BIO X微滴打印包裹在ⅰ型胶原中的肝(HepG2和LX2 肝星状细胞)和非肝(HUVEC 人脐静脉血管内皮细胞)细胞制成的。培养7天后,将微型肝脏暴露于急性和高剂量的对乙酰氨基酚或氟他胺,然后评估细胞活力、白蛋白分泌、丙氨酸氨基转移酶(ALT)活性和脂质积累的变化。微型肝脏ALT活性增加,白蛋白和脂质生成减少,表面这两种药物均有细胞毒性反应。这项研究的结果进一步验证了3D生物打印是一种可行的、可用于模拟肝组织和筛选特异性药物反应的中到高通量的解决方案。 材料和方法 细胞准备根据建议的方案培养两种肝细胞(HepG2和LX2)和一种非肝细胞(HUVEC)细胞系,并每3-4天传代一次。HepG2在含有谷氨酰胺的MEMα中生长,并补充1%丙酮酸钠(Gibco,Cat#11360070)和1%MEM非必需氨基酸溶液(Gibco,Cat-#11140050)。LX2细胞在IMDM(Gibco,Cat#12440053)中生长,HUVEC在EGM-2生长培养基(Lonza,Cat#CC-3156)中培养,并添加单体补充剂(Lonza,Cat#CC-4176)。所有培养基均添加10%的FBS(Gibco,16000044类)和1%的青霉素链霉素(Gibco,参考文献1509-70-063)。.生物墨水的制备和DID生物打印中和并制备3mg/mL浓度的Coll I bioink(CELLINK,SKU#IK4000002001)用于生物打印。以1:1:2(LX2:HUVEC:HepG2)的比例将5x106个细胞/毫升装入冷冻墨盒。在未经处理的96孔板(Thermo Fisher Scientific)中,使用BIO X(CELLINK,SKU#0000000 2222)上的液滴打印功能对微型肝脏进行生物打印。使用设置为8°C的温控打印头(TCPH,SKU#0000000 20346)将胶原液滴分配到设置为8°C–10°C的冷却打印床上。在第一轮液滴打印后,样品在37°C下培养3分钟,然后返回BIO X,使用相同参数进行第二轮液滴打印。在37°C条件下,将得到的封装液滴热交联20分钟,并为每个孔提供200微升混合培养基(25%IMDM+25%DMEM+50%MEM)。培养液每2-3天更新一次。药物处理和分析培养7天后,用不同浓度的APAP[0.1,0.5,1,5,10,25,50 mM](Abcam)或FLU[10,25,50,75,100,150,200µM](Selleckchem)处理微型肝脏72小时。采用比色溴甲酚绿(BCG)测定法(Sigma-Aldrich)、ALT活性测定法(BioVision)和活/死染色试剂盒(Invitrogen)分别检测白蛋白产生、肝损伤和细胞活力。所有分析均按照制造商的说明进行。 结论 胶原I中的细胞生长和球体形成胶原I中的细胞生长和球体形成在这项研究中,我们评估了Coll I bioink中的细胞生长、球体形成和迁移模式。到第2天,HepG2和LX2已紧密组装成小簇,HUVEC已拉长,形成同心网络(图1)。使用胶原蛋白作为支架可以在整个培养过程中进行细胞重组、球体极化和细胞增殖(数据未显示)。此外,根据图1,很明显,细胞在整个培养过程中渗透DILI模型,并可能在内部和外部液滴层之间迁移。生物打印微型肝脏的药物治疗和细胞毒性第10天的毒性评估结果表明,生物打印微型肝脏对APAP(图2A)和FLU(图2B)具有细胞毒性和剂量依赖性反应。这种肝功能下降表现为白蛋白分泌和脂质生成减少,ALT活性上调。同样明显的是,基于ALT活性的增加,两种药物的毒性剂量都会对细胞活力产生破坏性影响。后者在图3中尤为明显,其中活/死图像表明,在较高浓度的APAP或流感病毒下,细胞活力显著降低。药物治疗的动态细胞内反应研究了APAP和FLU如何调节细胞内脂肪含量。肝组织的ORO染色通常用于识别脂肪酸或药物引起的不同阶段纤维化或脂肪变性(Pingitore,2019)。在我们的研究中,经处理的微型肝脏的ORO染色显示,在高剂量药物处理的样本中,脂肪积累最小,而在未经处理或低剂量药物治疗的样本中,脂肪积累显著(图4A)。一种解释是APAP和FLU与脂质过氧化有关,其中毒性药物水平引起的氧化应激可能引发脂质降解和膜损伤(Behrends,2019)。图4B中未处理样品的详细观察提供了液滴模型中液滴的横截面图。这张图片显示了大量细胞向液滴外壳迁移并产生脂肪,可能表明存在营养和氧气梯度,并验证了细胞重组模式和胶原内的球体极化。▶ 作为2D细胞培养系统、动物研究和芯片实验室原型的可靠替代品,BIO X可作为中高通量工具,用于制作功能性3D生物打印肝脏模型,实现药物筛选和分析,并减轻药物消耗的成本。▶ CELLINK Coll I作为DID模型的支架,为模型提供了一个稳定、可调和高度相容的环境,且具有丰富的肝细胞重排和球体形成的结合位点。▶ 基于脂质过氧化、白蛋白分泌减少和ALT活性上调的证据,我们的研究结果表明,DID微型肝脏具有功能性,并且对APAP和FLU具有剂量依赖性和细胞毒性反应。▶ DID模型允许组织层之间的细胞间相互作用,并为研究不同硬度层之间的迁移模式提供了独特的机会。未来的毒性研究可以采用该模型复制纤维化的各个阶段,或研究药物治疗后肝脏组织的再生能力。参考文献:1.Behrends, V., Giskeødegård, G. F., Bravo-Santano, N., Letek, M., & Keun, H. C. Acetaminophen cytotoxicity in HepG2 cells isassociated with a decoupling of glycolysis from the TCA cycle, loss of NADPH production, and suppression of anabolism. Archivesof Toxicology. 2019 93(2): 341–353. DOI: 10.1007/s00204-018-2371-0.2.Chen, M., Suzuki, A., Borlak, J., Andrade, R. J., & Lucena, M. I. Drug-induced liver injury: Interactions between drug properties andhost factors. Journal of Hepatology. 2015 63: 503–514. DOI: 10.1016/j.jhep.2015.04.016.3.Pingitore, P., Sasidharan, K., Ekstrand, M., Prill, S., Lindén, D., & Romeo, S. Human multilineage 3D spheroids as a model of liversteatosis and fibrosis. International Journal of Molecular Sciences. 2019 20(7): 1629.
  • “网络化智能全彩色3D打印机的研制与产业化”等3个项目公示综合绩效评价结论
    近日,国家科技管理信息公共服务平台公示了国家重点研发计划“增材制造与激光制造”重点专项“网络化智能全彩色3D打印机的研制与产业化”等3个项目的综合绩效评价结论。附件:国家重点研发计划“增材制造与激光制造”重点专项项目综合绩效评价结论_20210414152657.pdf以下为公示信息:关于国家重点研发计划“增材制造与激光制造”重点专项“网络化智能全彩色3D打印机的研制与产业化”等3个项目综合绩效评价结论的公示发布时间: 2021年04月13日 来源:科学技术部根据科技部《国家重点研发计划项目综合绩效评价工作规范(试行)》等文件的相关要求,国家重点研发计划“增材制造与激光制造”重点专项“网络化智能全彩色3D 打印机的研制与产业化”等3个项目已完成综合绩效评价。现将项目综合绩效评价结论予以公示。公示时间:2021年4月13日至4月17日。对于公示内容有异议者,按照有关申诉程序,于公示期内通过国家科技管理信息系统在线提交申诉材料,逾期不予受理。 科技部高技术研究发展中心2021年4月13日
  • 中科院苏州纳米所钱波团队《AMT》:一种3D打印层状石墨烯气凝胶的新策略
    中科院苏州纳米所钱波团队的郭浩等人提出一种3D打印层状石墨烯气凝胶的新策略。应用3D打印定制的针对不同氧化石墨烯墨水的狭缝挤出头,并在墨水中加入叔丁醇,抑制冰晶生长,最后应用定制挤出头3D打印制备得到层状石墨烯气凝胶,实现相比同类材料更高的电导率和电磁屏蔽性能,以及高灵敏压阻传感性能。图1 3D打印层状石墨烯气凝胶及其电磁屏蔽和压力传感特性 二维材料气凝胶因其在电磁屏蔽、传感器、柔性器件、超级电容器及油污吸附等方面的应用吸引了人们广泛的研究兴趣。由于二维材料本身的各向异性特性,相比各向同性结构,层状二维材料气凝胶在特定方向展示出优异的机械、电子、热性能。然而,目前制备层状结构二维材料气凝胶的方法较少,比较常用的是定向冷冻方法,但该制备方法在尺寸和形状上尚缺乏自由度,在性能上也仍有提升的空间。同时由于,二维材料分散液具有剪切变稀的特性,在剪切力的作用下,可以实现液晶形态的取向分布,如果能充分利用这一特性,将有望通过挤出装置实现取向结构二维材料气凝胶的制备,从而提升样品制备的自由度,并进一步提升材料性能。中科院苏州纳米所钱波团队的郭浩等人针对这一问题,提出一种3D打印层状石墨烯气凝胶的新策略。为充分利用氧化石墨烯墨水的剪切变稀特性,研究团队根据不用配方墨水的剪切变稀特性定制设计并应用摩方精密nanoArch S140高精度光固化3D打印机制备了可使对应氧化石墨烯墨水实现长程有序液晶形态的狭缝挤出头,狭缝尺寸50 μm,应用该挤出头在冷冻衬底上逐层3D打印相对应墨水。由于氧化石墨烯水基墨水中的水在冷冻衬底上结晶生成大尺寸冰晶,这将破坏狭缝挤出氧化石墨烯的液晶形态,为解决这一问题,团队通过调节叔丁醇在墨水中的含量,减小了冷冻衬底上冰晶生长的尺寸,从而降低了冷冻过程对于取向结构的破坏,最终通过冷冻干燥和化学还原实现了层状结构石墨烯气凝胶的制备。图2 根据墨水的流变性能设计并打印挤出头 研究显示,通过3D打印新策略制备的石墨烯气凝胶的层状结构清晰。得益于该层状结构,本研究3D打印的石墨烯气凝胶展示出比同类石墨烯气凝胶更高的电导率(705.6 S m−1)、更高的电磁屏蔽性能(3 mm样品在X波段可实现最高电磁屏蔽能效68.75 dB),并可实现高灵敏的压阻传感性能(清晰的语音和脉搏信号传感分辨能力)。图3 通过墨水配方调控获得良好层状结构的石墨烯气凝胶图4 3D打印层状石墨烯气凝胶的电导率和电磁屏蔽性能图5 3D打印层状石墨烯气凝胶的力学和传感性能研究者相信,此项研究将为具有剪切变稀性能的材料制备层状取向结构材料提供一条新的路径,为纳米材料通过3D打印有序可控组装并实现更高的性能提供一个新的思路。相关论文在线发表在《Advanced Materials Technologies》上。苏州纳米所郭浩为本文第一作者,钱波为本文通讯作者,苏州大学石学军为本文的软件模拟提供了支持。论文信息:A New Strategy of 3D Printing Lightweight Lamellar Graphene Aerogels for Electromagnetic Interference Shielding and Piezoresistive Sensor ApplicationsHao Guo, Tianxiang Hua, Jing Qin, Qixin Wu, Rui Wang, Bo Qian, Lingying Li, Xuejun ShiAdvanced Materials TechnologiesDOI: 10.1002/admt.202101699原文链接:https://doi.org/10.1002/admt.202101699官网:https://www.bmftec.cn/links/7
  • 3D打印高精度微针模具助力微针物理治疗增生性瘢痕的构效关系研究
    增生性瘢痕(HS)是一种病理性瘢痕,表现为异常僵硬、肿胀、抗拉强度降低和色素沉着,可引发瘢痕患者机体功能障碍、情绪焦虑、抑郁等症状。因此,增生性瘢痕的防治一直是创伤后面临的一个重要挑战。聚合物微针(MNs)已成为一种的非常有效的透皮物质交换介质,其可以最小的侵入性帮助在疾病治疗如肿瘤、糖尿病、细菌生物被膜、真菌感染和疤痕中提供各种药物的透皮传递。但换个角度看,微针可穿透表皮层角质层,在组织中形成微孔阵列,往往会改变疤痕组织的生物力学环境和超微结构,这给增生性瘢痕的临床管理寻找一新的方便、耐受性好和可用性强的治疗策略提供了应用可能性。近日,陆军军医大学第一附属医院烧伤科罗高兴教授/谭江琳教授团队的张庆博士联合加拿大曼尼托巴大学Malcolm Xing院士在ACS Nano在线发表了最新研究成果:Down-Regulating Scar Formation by Microneedles Directly via a Mechanical Communication Pathway。该研究提出了微针介导的物理干预调节局部机械应力以改善瘢痕病理特征的增生性瘢痕机械治疗新策略,以阵列密度和三维尺度为变量因素探究聚合物微针微结构对瘢痕治疗效果影响的规律性来提升治疗效率,借助高精度3D打印平台(nanoArch S140,摩方精密)制造不同阵列密度和针体深度的微针阵列三维模型,以丝素蛋白为基础材料通过两步倒模法制造出对应规格的微针贴片。研究团队仅通过调整微针的纵深尺寸和阵列密度,即实现了增生性瘢痕外观和组织力学性能的显著改善。其核心的作用机制:微针的物理干预减少了成纤维细胞产生的收缩和机械应力,减弱整合素- fak通路中机械力信号的传导,下调TGF-β1、α-SMA、I型胶原和纤维连接蛋白的表达,进而产生一个低压力的微环境,有助于显著减少疤痕的形成。这种物理作用与微针的长度和阵列密度密切相关,表现为:微针尺寸太短(≤500μm)无法实现有效的组织穿透,随着针长增加,穿透力提高,但刺入深度太深(≥150μm)存在出血、炎症反应等不良反应,有加剧瘢痕增生的风险。在阵列密度效应方面,研究结果显示,结合有限元分析模型进一步预测,随着阵列密度的增加,有利于机械微环境重构,微针的治疗效果显著增加,但过高的阵列密度(≥20×20) 导致的空间压缩,胶原基质受到明显挤压,反而不利于机械微环境重构。因此,研究团队提出,基于不同瘢痕中的组织厚度分布范围,优先选择组织厚度中位值作为微针尺寸设计的参考值;而微针阵列密度为15×15/cm2时更为合适。这一研究结果与当前其他报道的微针介导的增生性瘢痕治疗策略(主要是透皮给药)显著不同。图 1. 高精密3D打印微针阳模与PDMS翻模流程图2. 微针通过干扰机械力传导下调瘢痕形成的尺寸效应图3. 微针通过干扰机械力传导下调瘢痕形成的阵列密度效应此外,研究团队还指出,与临床上常用的商用张力减压带通过减少线性切口周围的张力来防止疤痕形成相比,微针诱导的物理干预倾向于减少瘢痕组织中细胞与细胞、细胞与细胞外基质之间的机械通信(mechanical communication),从而重构一个有利于瘢痕逆转的低应力微环境。因此,微针贴片除适用于线性手术瘢痕外,对宽片状瘢痕的适应性也优于商用张力减压带。由此可以看出,作为一种微创无痛的选择,这种微针介导的机械治疗策略有很大的潜力为患者提供一种具有成本效益和方便的增生性瘢痕管理。原文链接:https://doi.org/10.1021/acsnano.1c11016
  • 打印未来,不可不知的3D打印“黑科技”
    随着人工智能技术的不断发展,2016年3D打印界“黑科技”频出,  超级跑车、3D打印手套、心脏模型、子弹......  年终之际,带你盘点的便是那些你不可不知的3D打印“黑科技”。  仅就图片来看,Blade无愧“超级跑车”的名号,简直酷到没朋友。但我们不能做“看脸党”,还是一起去了解下Blade身上有哪些科技含量。据Blade的设计者Czinger介绍,这款跑车的最关键点在于一个由碳纤维管制成的模块化底盘。70个3D打印铝制连接点+碳纤维管+轻量的碳纤维车身,这三个部分赋予了Blade一个坚固的结构。  得益于3D锻造工艺与轻量碳纤维材料,Blade全车重量仅为1400磅,比类似超级跑车轻50%,这使其比同等汽油车少用了约66%的燃料,甚至还影响到它在路面上的磨损量。但轻并不意味着脆弱,事实上Blade比市面上的其他钢制汽车更坚固,并且速度还异常快。  可欺骗扫描仪的3D打印手套  近日,密歇根州立大学的研究人员开发出一种可成功骗过指纹扫描仪的3D打印手套。据悉,此款手套是一种可模仿真实皮肤(包括精确的指纹纹理)的专有材料通过3D打印技术制成的。使用一台高精度的3D打印机,研究人员能精确地模仿出指纹凸起。在传感器的施压下,这些凸起会“张开”,就像真实的皮肤一样。  MSU研究人员称,开发这项技术并不是为了窃取数据,而仅仅是想找到新的方法来准确测试指纹扫描仪。虽然该3D打印手套不是为了推动反欺诈技术的发展而开发的,但MSU研究人员认为在未来它可能会对这一领域做出贡献,他们已将这项新技术分享给了其他研究反欺诈技术的科学家。  Delft理工大学的“生物启发”科研小组与3D打印公司Materialise合作制造了心脏模型,现在他们正在对导管进行测试。此次测试,他们为3D打印的心脏模型基于现实世界的数据配备了大量的传感器,再加上新开发的导管,使得心脏模型具有了“改进的机动性”,由此打开了导管心脏手术的大门。  心脏模型  据该项目背后的工程师Ali介绍,3D打印模型提供了一种全新的方式来测试仪器,让它们能在科学有效的模型中进行测试,而且还能轻松应对出现额外需求的情况。这对于导管心脏手术来说是一个巨大的改变,意味着医生可以在导管方面进行更复杂的手术,而不是具有高风险的开刀手术。  随着新技术的不断研发,3D打印的应用越来越广泛。跑车、人体器官、可穿戴设备跟接下来要介绍的3D打印子弹比起来,就显得逊色了点。近期,俄罗斯视角研究基金会已经开始着手3D打印子弹的测试,并发现3D打印子弹在某些方面的表现和现有的子弹一样好。  据了解,这些被测试的3D打印子弹是采用的类似于传统子弹的制造方式生产的,可为国家的军队提供一种新型的弹药。据俄罗斯视角研究基金会透露,这是俄罗斯最新的国防应用技术——利用激光烧结的形式来创建3D打印子弹,通过层层金属粉末融合,以创建一个完整的子弹,与传统子弹相比,没有接缝。  一直以来,3D打印建筑因其技术的独特性导致抗张强度有所欠缺,甚至有时候还会出现碎裂的情况。针对这一问题,德国发明家KaiParthy给出了一个解决方案——网状钢纤维填充物。Kai解释说:“混凝土填充物的研发已经持续了数十年,无论是钢纤维还是塑料纤维,加入混凝土后,都只能用于地面建筑结构,无法作为承重结构。因此,这种网状钢纤维填充物的出现,无疑是建筑界的突破。”  网状钢纤维填充物  据悉,这种网状钢纤维填充物呈环状,每个尺寸在1-10cm之间,能在3D打印建筑时,通过喷头或者手工,填入混凝土之中。从内部增加混凝土的抗张强度,从而提升建筑整体强度,组合得当的话甚至可以在混凝土内部形成一种类似“金属泡沫”的结构。  当前,食品3D打印仍是一个刚刚起步的全新领域。但小编相信用不了多久,食品3D打印机就会像微波炉一样进入常规家电的行列中,进驻到许多家庭的厨房中。
  • 比较 2D 培养和 3D 生物打印肿瘤模型中的药物反应
    导读在癌症生物学中,肿瘤微环境(TME)是肿瘤细胞和免疫系统之间的一个关键。TME是细胞外基质(ECM)、免疫细胞、信号分子、血管和成纤维细胞,它们包裹肿瘤并影响癌症进展。TME的成分通过分泌小信号分子相互作用,影响肿瘤行为的各个方面,包括细胞增殖、侵袭、转移和抗肿瘤治疗的耐药性(Bremnes,2011)。因此,重建TME对抗癌研究至关重要,但一个主要的痛点是无法开发出可预测的3D肿瘤模型用于高通量药物评估。3D肿瘤模型应再现肿瘤间质内细胞间的相互作用,并克服2D细胞培养系统的局限性。在这里,3D生物打印为预测体内结果、建模TME和评估药物反应提供了一个有前景的解决方案。肿瘤转移和化疗耐药性威胁着肿瘤患者的生存。在癌症治疗领域,化疗是一种很有效的治疗方式,它利用小的抗癌分子攻击特定的生长途径并杀死癌细胞。在这些分子中,顺铂(CIS)和吉非替尼(GEF)是FDA批准的靶向DNA和EGFR通路的抗癌药物。简而言之,CIS通过抑制细胞分裂和 mRNA的产生导致细胞凋亡,而GEF干扰癌细胞中EGFR信号的上调。有趣的是,虽然CIS和GEF都被用于治疗致命的胰腺癌和乳腺癌,但它们也与体外假阴性或假阳性预测有关,这表明它们在2D和3D中对细胞的影响不同(Reynolds, 2017)。为了进一步解决这一差异,我们使用两种乳腺癌(MCF7, MDA MB 231)和两种胰腺癌(BxPC3, Panc-1)细胞系,比较了CIS和GEF对2D单层细胞和3D生物打印类肿瘤模型的作用。材料和方法生物墨水制备和生物打印根据CELLINK方案制备3 mg/mL Coll 1 (CELLINK, Ref #IK4000002001)和5% GelMA (CELLINK, Ref #IK3051020303)用于生物打印。共3ml Coll 1或GelMA与5 x 106 cells/100µL培养基(10:1)混合,分别装入透明和琥珀色墨盒(CELLINK, Ref #CSO010311502),以~ 3kpa进行液滴打印。使用温度控制的打印头(TCPH, SKU #000000020346)设置为8℃,气动打印头分别在8℃的打印床上对Coll 1和GelMA液滴进行生物打印。使用BIO X (CELLINK, SKU #000000022222)上的液滴打印功能,将每种生物墨水打印在未经处理的96孔板(Thermo Fisher Scientific, Cat #267427)上。打印完成后,Coll 1液滴在37℃下热交联20分钟,GelMA液滴在365 nm下紫外交联6秒。每孔加100µL培养基,每2 ~ 3天更换一次。2D单层培养为了进行2D比较,将每个细胞株接种在处理过的96孔板上(Thermo Fisher Scientific, Cat #167425)。优化各细胞培养48小时后的细胞密度,达到90%的一致性。Panc-1细胞接种1.2 × 104个细胞/孔,BxPC3细胞接种1.7 × 104个细胞/孔,MCF7细胞接种2.0 × 104个细胞/孔,MDA MB 231细胞接种2.0 × 104个细胞/孔。药物治疗与分析生物打印类肿瘤细胞和2D细胞分别用不同浓度的吉非替尼(LC Laboratories,#G-4408)或顺铂(Cayman Chemical Company)处理96小时和48小时。MTS Assay(Sigma-Aldrich)和LIVE/DEAD染色试剂盒(Invitrogen)用于评估2D和3D条件下的细胞活力。所有的检测都是按照制造商的说明进行的。图1:该测定的优点显示了抗肿瘤药物对所有4种细胞系的强大作用,并描述了每种细胞类型和ECM的细胞形态变化。比例尺:1000m或650m。绿色:LIVE,红色:DEAD肿瘤根据细胞类型和培养条件适应不同的形态(Nath, 2016)。在GelMA和Coll 1中培养7天后,癌细胞聚集形成各种形态的球体。如图1所示,MDA MB 231细胞形成同心星形网络,MCF7细胞形成圆形椭球,BxPC3细胞形成葡萄状椭球,Panc-1细胞形成团块状椭球。使用GelMA和Coll 1作为肿瘤支架,由于孔隙度、刚度和成分的不同,也影响了球状体的形成。有趣的是,2D培养的癌细胞缺乏所描述的形态,可能是因为它们缺乏支持细胞间相互作用、紧密连接、营养和氧梯度的ECM(数据未显示)。3D模型的缺氧效应缺氧是药物反应的另一个变量,这是3D模型和体内组织所特有的。Warburg效应将缺氧描述为癌细胞的一种生存模式,它们从生产氧气和ATP转换为上调EGFR和AKT信号以促进增殖。这种转换增加了毒性、酸度和3D模型中的废物堆积,从而产生了一个三环低氧梯度。图1显示了低氧梯度,其中靠近球体中心的细胞呈死亡状态(红色),边缘的细胞呈存活状态(绿色)。最外面的环是一层增殖细胞,中间的环是一层活细胞,最里面的环是坏死细胞的核心,这是由于废物堆积和缺氧造成的(Nath, 2016)。顺铂在2D和3D模型的疗效分别在第2天和第7天,将低到高剂量的CIS添加到2D单层细胞和3D生物打印类肿瘤细胞中。2D细胞处理治疗48小时,3D生物打印类肿瘤治疗96小时。MTS试验显示,2D单层对所有细胞株的细胞毒性均呈剂量依赖性,3D乳腺癌类肿瘤细胞也是如此(图2A)。有趣的是,BxPC3和Panc-1细胞株在3D中比在2D中显示更高的IC50。换句话说,这两种胰腺癌细胞株在3D生物打印类肿瘤中基本上不受CIS的影响。这里,一种解释是胰腺癌细胞对CIS浓度的增加表现出了耐药性(Wang, 2016 凯兰,2007 Sangster-Guity, 2011)。针对药物治疗,胰腺癌细胞可能已经诱导了他们的生存途径,上调衰老、DNA损伤反应信号转导和跨损伤DNA合成(Gomes, 2019年)。吉非替尼在2D和3D模型的疗效EGFR癌蛋白常在乳腺癌和胰腺癌细胞系中表达。因此,药物抑制EGFR通路可导致细胞周期阻滞、衰老或凋亡(Jacobi, 2017)。如图2B所示,在3D和2D中,吉非替尼显著降低了细胞活力。对于所有细胞类型,3D Coll 1和GelMA的IC50均低于2D培养的IC50,这表明GEF在3D生物打印类肿瘤细胞中比在2D培养中造成更多的死亡。2D细胞培养的局限性2D细胞培养系统不能模拟体内肿瘤的内在特性,包括自然屏障、低氧梯度和紧密的细胞-细胞连接,这些都减缓了药物扩散。此外,它们缺乏支持3D生长和癌蛋白上调的组织特异性环境和ECM (Reynolds, 2017)。图2A的另一项研究显示,3D胰腺癌细胞比2D单层细胞对CIS的抗性更强。很明显,2D研究对于胰腺癌的体内治疗是一种误导和不准确的预测。结论使用CELLINK GelMA和Coll 1作为类肿瘤支架,为球状形成和药物扩散提供了稳定的肿瘤微环境(TME)。用GelMA和Coll 1构建的不同杀伤曲线模型表明,细胞外基质(ECM)在药物反应中起关键作用。未来的研究需要确定哪种支架适合特定的肿瘤模型。我们的研究结果显示,在2D和3D肿瘤模型中,顺铂(CIS)和吉非替尼(GEF)治疗具有剂量依赖性和细胞特异性反应。乳腺癌和胰腺癌细胞株在3D条件下比2D条件下对GEF更敏感。同样,乳腺癌细胞株3D对CIS治疗的敏感性高于2D,而胰腺细胞株对CIS治疗的敏感性则相反,提示3D模型的耐药水平升高。3D生物打印类肿瘤模型用于药物筛选,可用于减少假阴性和假阳性预测。未来的研究可以使用BIO X来扩大类肿瘤的生产,用于高通量药物测试。
  • 综合大气采样器双路恒温恒流 自带热敏蓝牙打印机 即是热敏又是蓝牙
    综合大气采样器 自带热敏蓝牙打印机 即是热敏又是蓝牙XY-1350A综合大气采样器 自带热敏蓝牙打印机 即是热敏又是蓝牙    适用范围  采样器应用溶液吸收法采集环境大气、室内空气中的各种有害气体;采用滤膜称重法捕集环境大气中的总悬浮微粒(TSP)和可吸入微粒(PM10)或(PM2.5)、氟化物、重金属、SVOC等。可供环保、卫生、劳动、安监、、科研、教育等部门用于气态物质和气溶胶的常规及应急监测。    3.采用标准  HJ 618-2011 《环境空气PM10和PM2.5的测定 重量法》  HJ 656-2013 《环境空气颗粒物(PM2.5)手工监测方法(重量法)技术规范》  HJ 93-2013 《环境空气颗粒物(PM10和PM2.5)采样器技术要求及检测方法》  HJ/T 374-2007 《总悬浮颗粒物采样器技术要求及检测方法》  HJ/T 375-2007 《环境空气采样器技术要求及检测方法》  HJ/T 376-2007 《24小时恒温自动连续环境空气采样器技术要求及检测方法》  JJG 956-2013 《大气采样器》  JJG 943-1998 《总悬浮颗粒物采样器》  HJ 955-2018 《环境空气氟化物的测定 滤膜采样/氟离子选择电极法》  HJ 657-2013 《空气和废气 颗粒物中铅等金属元素的测定电感耦合等离子体质》  4.技术特点  一机多用,两路恒温恒流大气采样,一路TSP采样,独立控制、配置灵活;  采用7.0寸宽温高亮彩色触摸显示屏,阳光下清晰可见、界面美观、操作方便;  按键、触摸双操作模式,适应多种用户的操作习惯;  可选配内置可充电锂电池,单次充电工作时间大于4小时;  海量数据存储,数据存储量大于100000组;  颗粒物采样流量可设置,选配合相应的采样头使用可用于氟化物、重金属、SVOS等的采样;  选用进口采样泵,负载能力高、噪音低,流量稳定,使用寿命长;  自动测量温度、气压,自动计算标况采样体积;  体积小、重量轻,携带方便;  采样过程中断电数据自动保护,来电后继续采样;  双数据输出模式,可蓝牙打印或可U盘导出;  铝合金材质采样头,抗静电吸附;  整机采用优异的防尘、防水设计,可以保证在雨雪天气正常工作;  整机考虑电磁兼容性设计,具有较强的抗干扰、抗辐射能力。  生态环境标准化建设仪器  为进一步约束企业污染排放,规范环保流程,生态环境部制定了生态环境保护综合行政装备标准化建设指导标准方案,方案中主要要求各地根据当地情况,按需配置移动执勤专用车、车载样品保存设备、车载电源转换器、移动包、移动终端、现场记录仪、个人防护包、测距仪、流量计(超声波明渠流量计)、采样设备(水质采样器、真空气袋采样器、土壤采样器等)、数码照相机(防爆照相机)、红外摄像机、快检试剂包(含常见土壤重金属快检)、热成像仪、粉尘快速测定仪、多参数气体检测仪、恶臭监测仪、手持扩音器、暗管探测仪、管道探测仪、手持式光离子化检测仪(PID)、油气回收三项检测仪、微风风速计(热球风速仪等)、便携式水污染物监测设备、便携式油烟检测仪、防爆对讲机、溶解氧仪、红外热成像气体泄漏检测仪、便携式氢火焰离子化检测仪(FID)、柴油车尾气分析仪、林格曼黑度检测仪、烟尘烟气测试仪、烟气分析仪、水质采样器、车载冷藏运输箱等仪器。  我是一个环境仪器仪表的业务员,每天的时间过的很快,觉得不够用,每天早上我是五点二十起床,开始给大宝做饭,大宝吃饭时间是五点四十五,饭后六点去学校上早课,六点我就开始收拾自己,然后六点四十左右开始做饭,七点多做好了饭,叫二宝起床,吃饭,八点送二宝上幼儿园,然后自己来公司上班。这是风风火火的早上。  早上上班后发现昨晚十点有个未接电话,我就连忙打过去,客户说需要个人防护和设备,中间沟通了一个多小时,关于配置和拉杆箱的尺寸大小,运费,什么的,还没有忙活完来了一个贵州要在线测汞仪的客户,发了一些技术参数给我,我这边尽快的给个人防护箱客户落实好了价格和配置,又开始了在线水质检测仪的技术对比,经过对比客户需要的是阳极溶出伏安法在线汞仪,我按照客户的要求,给客户报价了,客户还要了一些安装实际客户名单,中午比较忙一点,来了一个第三检测公司的客户要孔口流量校准仪,范围:中流量校准器(70.00-140.0)L/min,核实好给客户推荐了设备,报了价格,然后山西的客户代理商给我发信息说要便携式油气回收检测仪的视频,然后安排技术对接售后,忙忙的到吃饭时间了,就这样一上午的时间过去了。  下午上班一般就是安排发货,今天的安排是发一台紫外臭氧分析仪,湖南电厂采购的,车间那边检查合格后我自己有对比了一下数据,检查无误安排顺丰发货,接下来就是两台便携式明渠流量计公司主打产品,检测数据稳定,联系青岛计量院发货过去做校准证书,下午四点左右开始回访一下年前和年后有意向的客户,还没完全回访完,有客户拜访,我就放下了手中的工作,接待客户到接待室,这个客户是环境设备给终端供货的,让我给他推荐一下,我带客户参观了厂区,给他说了一下项目的大类,给客户做方案等等,就这样我一天的工作到下班时间了,其实昨晚销售业务员,也没有下班点,正常来说就是到了点下班在家里正在炒菜做饭的时候,客户来客户,也得把火关了,给客户沟通和报价,以客户至上嘛哈哈,主要是喜欢这份工作,不然也不会这样认真负责的去做事情。销售仪器仪器这个行业我已经做了七八年了,所以我的老客户很多,我们相处的不仅是客户与业务员的关系,基本上都是朋友的关系了,年前有些仪器给客户报价,等年后客户采购的时候公司已经调价格了,不过已经给客户报出去了,价格我肯定不会给客户涨价,那样太没有原则了,即便自己没有利润,也不能让客户觉得我们不讲诚信,这就是我一个实实在在的仪器仪表业务销售员嘻嘻,欢迎新老客户支持青岛新业环保科技有限公司业务销售:单礼美
  • 全新升级|在线式颗粒计数器 现场测量油液污染度
    霍尔德上市新品啦!2024年01月09日上市了一款在线式颗粒计数器【在线式颗粒计数器←点击此处可直接转到产品界面,咨询更方便】配电变压器多暴露在露天环境中,其绝缘油(变压器油)受外部杂质、空气接触以及设备高温运行的影响,逐渐变质。一旦绝缘油变质,它原有的灭弧、冷却和绝缘功能就会丧失。为了防止因油质变差导致的安全运行问题,我们必须对正常运行的配电变压器定期进行油样化验分析,并根据分析结果采取相应的处理措施,确保油质的稳定,从而保障变压器的正常运行。在线式颗粒计数器是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场在线测量的、油液污染度等级检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油、水基类(水基液压油、水乙二醇等)、醇类、酮类等一切透光溶剂,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于现场的在线检测,可实时监测用油系统中的颗粒污染度;3.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;4.标准款可直接耐压100公斤,可选配减压阀用于在线高压测量;5.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;6.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;7.内置校准功能,可按GB/T21540、ISO4402、ISO11171、GB/T18854等标准进行校准,一次测试可以给出所有内置标准结果;8.可独立设定所有标准任意报警级别,实现污染度或洁净度检测;9.RS232或RS485接口,支持标准Modbus协议可连接电脑、上位机、打印机、PC系统或其它设备进行数据监控、处理;10.超大存储,可选择存储在仪器内部或外部存储设备中;11.坚固外型结构,适合复杂工作环境;12.下进上出的模式有利于限度减小在线气泡对测试结果的干扰;13.可连续测试也可任意设置测试时间间隔;14.中英文双系统,客户可自由切换,适合外销出口;15.触屏或者薄膜按键操作,可自由切换,仪器界面可自由控制远端打印机的开关;16.可选接4G/5G模块,支持手机或电脑端远程数据监控、历史数据、曲线查询(选配);17.内置水分和温度传感器模块,可同时输出四种参数信息(选配)技术指标:光源:半导体激光器;流速范围:5-500m/min;检测样品粘度:≤650cSt;在线检测压力:0.1~10Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~600μm;接口:USB接口、RS232接口、RS485接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵敏度:1μm或4μm(c);极限重合误差:40000粒/m;计数体积:1~999m;计数准确性:±0.5个污染度等级。
  • 世界3D打印大会开幕 国内3D打印产值三年将达百亿
    世界3D打印大会开幕 全球顶尖专家畅想3D梦   备受瞩目的“2013世界3D打印技术产业大会”将于29日正式开幕。上证报记者从在昨日召开的媒体见面会上获悉,本次大会邀请了全世界从事3D打印行业的知名专家和重要企业,与会代表共500多人,媒体约60余家,规格之高为业界罕见。   28日的媒体见面会由亚洲制造业协会首席执行官、中国3D打印技术产业联盟秘书长罗军主持,一同出席的还有全球3D打印行业享有盛誉的专家之一Terry Wohlers,英国增材制造联盟主席、中国3D打印技术产业联盟首席顾问Graham Tromas,华中科技大学教授史玉升等知名专家。   本次会议将讨论全球3D打印技术的发展现状和趋势,并对3D打印在文化创意、生物医学、工业制造等领域的应用前景进行展望和分析,同时也为国内外企业3D打印合作项目对接、洽谈搭建一个高端平台。   作为全球最知名的3D打印行业研究机构,Wohlers Associates公司已连续18年发表年度Wohlers报告,该报告被视为全球3D打印行业的风向标。媒体见面会上,公司主席Terry Wohlers介绍了刚于上周发表的2013年Wohlers报告。   该报告汇集了包括中国在内的全球70余个国家3D打印公司的相关数据。2012年,全世界3D打印行业总产值增长了28%,达22亿美元。3D打印机的全球销量同比增长25%,其中38%产自美国,中国占8.5%。   英国增材制造联盟主席Graham Tromas表示,3至5年内,中国有潜力成为世界最大的3D打印市场。关于3D打印的发展方向,Graham Tromas认为,从机型上说,真正能够推动生产力发展的是大型打印机,“中国想达到世界领先水平,应在此方向上取得突破。”   作为国内最早从事工业3D打印技术研发的专家,史玉升教授认为,中国制造业产值居世界首位,但想要长期保持优势地位,依靠传统技术难以为继,必须借助3D打印等先进技术。他甚至认为,在中国制造业中,能够从起步阶段就与世界处于同一水平的只有3D打印。   史玉升坦言,中国工业级3D打印技术和设备与国际先进水平还存在差距,主要体现在两方面:一是,设备功能的可靠性较低 二是,从材料的性能到品种,都与国外有一定差距。不过,他乐观认为,随着国家近期启动一系列科技支撑计划, 国内3D打印设备在可靠性、材料性能和品种等方面,将逐步与国际水平并驾齐驱。   中国3D打印技术产业联盟秘书长罗军:未来三年 国内3D打印市场力争上百亿   如能顺利跨上百亿台阶,此后几年,3D打印技术无论是在国内市场,还是国外市场都有望保持几何级数增长   当业内企业、科研机构“各自为战”、一盘散沙之际,   他发起倡议成立了中国3D打印技术产业联盟,以期扭转国内3D打印市场“小而散”的格局   当国内众多企业嗅到3D打印技术的巨大商机、蜂拥而入之际,他以“业内人”的身份呼吁大家保持理性,给予3D打印产业健康、良性的发展环境   当业界为“如何实现3D打印产业化”愁眉不展之际,他适时提出“建设3D打印技术产业创新中心”的良策,集结成员单位充分发挥自身优势,共谋产业发展之路。   亚洲制造业协会首席执行官、中国3D打印技术产业联盟秘书长罗军,就这样闯入了公众的视野。在首届“世界3D打印技术产业大会”召开前夕,罗军在百忙之中接受了上证报记者的独家专访,就外界关注的诸多热点话题进行了详尽阐述。   谈“3D打印热”:盲目介入不可取   记者:随着3D打印技术在各领域的应用逐步成熟,国内众多企业也嗅到了背后的潜在巨大商机,以各种方式进入以期抢占市场先机,其中不乏一些上市公司的身影。您如何看待资本涌入3D打印产业的现象?   罗军:任何一项新兴技术在发展初期都需要激情的推动,但单靠激情是远远不够的,还需要切实可行的思路和措施。3D打印技术作为一项前沿性、先导性很强的技术,的确具有很好的发展前景,上下游相关配套企业尽早涉足这个产业,是为了抢占先机,做好战略布局,这种思路是值得充分肯定的。上市公司具有较强的融资能力,抢先进入新兴技术领域,有利于加快新兴技术产业化进程。   但必须指出,作为公众企业,出于对投资者负责的角度考虑,上市公司进入一个新兴领域还需结合实际,发挥自身优势,盲目冒进与自身产业关联度不强的产业,很可能得不偿失。   记者:那么,您认为哪些行业内的企业开展3D打印比较有先发优势?   罗军:由于3D打印技术与激光制造、材料等领域关联度很大,这方面优势明显的企业,其涉足3D打印产业或具有一定的先发优势。如中航激光便掌握了大型金属结构件直接制造方面的技术,并在钛合金等特殊金属材料方面取得重大突破。另外,据我了解,一直密切关注各类激光应用技术的光韵达,在客户积累和市场应用方面积聚了许多经验,并且在红外、紫外等各种激光的加工特性,金属、非金属等各种材料的加工方面取得了突破,加之其与电子、通信和汽车等领域众多客户建立的长期合作关系,该类公司若介入3D打印领域的门槛应不会太高。   记者:如今3D打印热,不由让我们联想到前几年的光伏产业,彼时光伏产业前景也是一片光明,但短短几年过后,随着各路资本涌入,产能过剩问题凸显,光伏景气度也急转直下。未来,3D打印行业是否也会重蹈覆辙?如何促进这一产业健康、有序发展?   罗军:其实,作为清洁能源,光伏产业的发展前景还是比较乐观的,糟糕的是产能严重过剩,短期内难以消化,而成本居高不下、市场需求不旺,导致光伏业内外交困。在我看来,关键原因在于光伏产业在起步阶段缺乏行业组织的引导,企业间互不沟通甚至互相排斥,等到大家认为行业需要规范自律的时候为时已晚。3D打印产业应该不会重蹈覆辙,原因在于起步阶段就有了一个产业联盟来引导并促进行业自律。在对话合作的框架下,各方加强沟通维护行业整体利益,促使行业健康、可持续发展。   谈产业化:建创新中心是关键   记者:不可否认,3D打印技术有很多优点,如耗时短、成本低等,但反过来看,这项技术目前是否也存在一些缺陷或瓶颈?若要实施大规模产业化,需要克服哪些障碍?   罗军:任何一项技术都不可能十全十美,优势和劣势往往是并存的。3D打印技术具有节约材料、节省时间、节能环保等诸多优点。但与传统制造技术相比也有许多缺点,比所用材料限制较多、精度不够,尚不能规模化生产等。   要推动3D打印技术规模化、产业化运用,我认为,首先需要打开用户市场,使更多传统制造业企业增进对3D打印技术的认识。只有市场打开了,3D打印产业才有发展的基础 其次,要攻克材料难关,使更多材料能够满足3D打印技术的需求,只有市场需求起来了,3D打印技术得到广泛应用以后,材料价格才可能降下来 第三,加工服务和配套服务业务也要跟上。   记者:围绕上述目标,我们是否已经着手制定一些切实可行的对策?   罗军:目前,我们正在通过联盟的力量组织成员企业,集中优势资源在国内主要工业城市建设10家中国3D打印技术产业创新中心,首批选择在南京、青岛等重点城市运行,并计划明年将产业创新中心扩至10家。由于我们成员单位都是国内3D打印的佼佼者,以此为支撑,产业创新中心未来将主要发挥四项功能:一是3D打印产品的集中展览展示中心 二是3D打印技术的科普、教育、培训中心 三是3D打印技术加工服务中心 四是,3D打印技术研发中心。若产业创新中心能按照上述目标稳步推进,那么市场需求弱、应用空间窄的难题将迎刃而解。在我看来,产业创新中心大规模成功运行,将是国内3D打印机实现产业化的强力助推剂。   记者:能否大胆设想一下,比如5年后的今天,国内3D打印产业将呈现怎样一番景象?   罗军:我国目前尚处于3D打印产业化的起步阶段,今明两年将是产业发展的关键时期,将直接影响到3D打印的未来走向。今明两年的发展核心是要推动3D打印与传统产业的深度结合,把3D打印技术的应用市场快速开拓。总体而言,我们要把握以下几点:一是必须改变当前“小而散”的产业状况,抱团发展,集群发展,这样行业才有希望、才会得到市场的认可。二是3D打印技术必须与加工服务结合起来,通过服务来拓展市场 三是必须加强与国际间的对话合作。   以3D打印技术产业创新中心为平台,乐观预测,我们力争3年时间将3D打印市场规模扩至100亿元人民币,将3D打印技术更广泛地与传统制造业、文化创意产业、生物医学等产业结合。如果我们能够顺利跨上百亿台阶,此后几年3D打印技术无论是在国内市场还是国外市场都有望保持几何级数的增长。
  • 徐铭恩:生物3D打印是3D打印技术研究最前沿领域
    首届世界3D打印技术产业大会于5月29-31日在北京中国大饭店隆重举行。在会上,杭州电子科技大学生物制造研究所教授徐铭恩发表演讲称,生物3D打印是3D打印技术研究最前沿的领域。“说到生物3D打印还有一个概念叫生物制造,这也是我国生物3D打印的前驱颜永年教授提出的一个概念,就是以3D打印为基础的生物医学,为制造技术在生物医学方面的应用开辟了新的领域。”   做生物3D打印的原因有两点:一、生物医学领域的市场规模特别巨大 二、生物3D打印在医学领域应用前景特别巨大。   目前在生物3D打印领域的研究和应用:一、细胞3D打印 二、细胞3D打印技术在药物研发领域的应用也非常广泛 三、细胞芯片 四、手术器械的3D打印。   杭州电子科技大学生物制造研究所教授徐铭恩   以下为杭州电子科技大学生物制造研究所教授徐铭恩演讲实录:   徐铭恩:女士们、先生们,大家上午好!下面由我简要给大家介绍一下生物医学的3D打印,初步给我们介绍一下我们在这个领域做的一些工作。   所谓的生物3D打印,首先面向的问题是生物医学的问题,以三维设计模型为基础,通过软件分层离散和数控成型的方法,用3D打印的方法成型生物材料,特别是细胞等材料的方法,就叫生物3D打印。生物3D打印是3D打印技术研究最前沿的领域,说到生物3D打印还有一个概念叫生物制造,这也是我国生物3D打印的前驱颜永年教授提出的一个概念,就是以3D打印为基础的生物医学,为制造技术在生物医学方面的应用开辟了新的领域。   为什么做生物3D打印?我想在今天的《对话》节目中已经提到了一些,我这里总结了一下,有两点,第一个是生物医学领域的市场规模特别巨大,这是2009年美国卫生部做的一个调查,2009年美国在医疗卫生方面的开支达到2.5亿美元,约占美国GDP的17.6%,国民收入的40%。美国卫生部进一步预测,到2018年美国在医疗方面的支出将达到GDP的20.3%,所以这个领域非常巨大。我想任何一个技术出来,有两个最赚钱的领域,一个就是医学、一个就是军事。   第二点,生物3D打印在医学领域应用前景特别巨大。为什么呢?因为生物3D打印技术所具有的快速性、准确性,及擅长制作复杂形状实体的特性使它在生物医学领域有着非常广泛的应用前景。为什么?每个人的身体构造、病理状况都存在特殊性和差异化,当3D打印与医学影像建模、与仿真技术结合之后,就能够在人工假体、植入体、人工组织器官的制造方面产生巨大的推动效应。   下面,我来讲一下我们实验室在过去几年在生物3D打印领域的研究和应用。第一个,我们来介绍细胞3D打印。这是我们实验室的一个年轻的研究生,他手里拿的是刚刚打印出来的肝单元的结构。在组织器官三维模型指导下,由3D打印机接受控制指令,定位装配或细胞材料单元,制造组织或器官前体的新技术。我们看到,图上这些细胞自发的迁移、扩散、自组织,重新形成了一个器官,也就是说如果我们能将细胞定位的放在我们所需要的位置上,那么我们就可以制造出我们所需要的器官。   细胞3D打印技术经历了这么一个发展的历程,有很多大学,包括清华大学、Slemson大学都是这方面的先驱者。这是第一种技术,叫Cell Printing技术,它的技术原理是将细胞打印在一层一层的特殊热敏材料上,打印完之后将材料叠加起来就得到我们需要的结构,第一台3D细胞打印机是由正常的打印机改的,这是它的喷头,这是打印出来的结构,由细胞组成。这是3D Bioplotter,是将细胞与琼斯基复合材料共混,挤出成型在具有交联剂的底板上,层层叠加。这个是孙伟教授做的平台,集成了基于气动使能连续挤出成型3个喷头,打印一层喷射一次交联剂,可以进行药物毒性试验的肝单元结构。这个是清华大学的细胞组装技术,它是将细胞与水凝较材料共混,挤出成型在低温成型腔内。   细胞3D打印的应用领域有这么几个,第一个是实验室的领域,它可以为再生医学、组织工程、干细胞、癌症等等领域提供非常好的一个研究工具。我们在跟一些学者聊的时候,甚至认为它可以做到像PCR技术和膜片钳技术的推动作用,由于它的这样一个推动作用,获得了诺贝尔奖。第二个可以为构建和修复组织器官提供新的临床医学技术,第三是开发全新的高成功率的技术,这个市场也是非常巨大的。这是我们前段时间做的人工肝单元的3D打印,因为我们打印好这个结构后,并不知道内部设计的通道是否通畅,我们建立了全新的一套3D成型系统。我们可以看到,我们所构建的这项通道有没有产生。这个是我们细胞培养两周之后所看到的细胞在这个结构内生长非常良好,而且我们要构建的通道也形成了。这个是我们开发的一台专门用来进行肝脏肝单元培养的设备,它可以控制温度、流量等等这些参数,这个也是组织工程中非常重要的一个东西,就是这个生物反应器。这个是我们对肝脏做的大概持续8周的肝功能检测,可以看到,在我们的这个结构里,肝脏功能维持得非常好。这是我们另外的一些尝试做的人工组织器官的工作,这是3D打印细胞的软骨组织,这是我们细胞3D打印的皮肤组织,都是用相应的皮肤或者软骨细胞来打印的。   第二个,除了做人工的组织器官以外,细胞3D打印技术在药物研发领域的应用也是非常广泛的。这是一个数据,这是2011年美国制药工业协会新药研发投入,大概是674亿美元,而其中光辉瑞一家就投资了94亿美元,一年这样投下去能产生几个药呢?大概0.5个药还不到,这几年真正原创型新药的产生速度很慢,大概只有2—3个,有3个已经很不错了。所以说,药物的开发产业是一个投入非常大,但是成功率很低的产业。原因是什么呢?这是一个典型的药物筛选图,我们可以看到,首先,进行的一个叫做高通量的筛选,高通量筛选是基于什么呢?基于蛋白质和单细胞水平的,然后,当高通量筛选完后,我们筛选出一些所谓的候选药物,然后进行动物试验。在动物试验中,我们有发现一万个化合物,筛选出一百个候选物,可能在动物试验中只有一个有效果,等的它到了人体以后,一个都没有了,原因是什么?是因为这里有一个缺口,什么缺口?在单细胞、蛋白质以及动物之间,缺乏一个中间过渡阶段的筛选。我们知道,人内部的调控网络是很复杂的,单个蛋白质的增加或降低,并不能说明这个化合对人体有什么效果,有的时候可能效果是完全截然相反的。所以说,我们认为如果用3D打印技术构建人工的组织器官,这个东西可以用来进行药物的筛选。   这是我们做的一部分工作,这是我们用细胞3D打印技术打印了一个代谢综合症的模型,包括糖尿病、肥胖、高血压、高血脂、心肌梗塞一系列的疾病。大概人口死亡的40%以上是死于代谢综合症,正因为这个病那么重要,所以我们在体外构建了一个代谢综合症的模型,这是一个体内调控系统的结构,我们在体外构建了一个这样的结构。这是我们构建的细胞打印获得的能量代谢的系统模型图,可以看到细胞在里面的生长非常良好,我们把人类的胰岛细胞也放在这个结构中,形成了一个我们所需要的有通讯的三维模型。这是我们模型做的一些结果,可以看到,在这个模型中,人类的胰岛素的分泌跟我们的基体的分泌是非常一致的,而且在长时间的葡萄牙的刺激之后,相当于是仿着我们人体糖尿病的病理,我们可以发现,分泌峰降低而且延迟。这是我们对相关的葡萄牙代谢、脂肪酸代谢,以及脂肪细胞分泌素的研究,相对于传统的模型,这个更接近体内的真情况。   除此以外,我们还做了细胞芯片的工作,这是我们设计的细胞芯片,现在的芯片加工工艺,可以在细胞上加工各种芯片传感器。虽然我们可以做出这样的复杂的结构来,但是目前来说,在往上面放细胞的过程中,有点像是一个撒种子的时候,就这样盲目地撒下去,哪里有、哪里没有,并不能控制,所以我们做的工作就是细胞三维打印技术,在芯片上打印细胞,这是我们做的一部分工作,在不同位置打印不同的细胞,图上这个我们打印的是心肌细胞,这两个刺激点产生刺激,心肌会产生一个动作电位的传递,其他我们测的是一种肾上腺素来源的细胞,这些细胞的工作,它们的增值都能够被芯片同步检测到。   这是我们后来跟一个杭州细胞芯片公司合作的一个芯片,到后来,我们做下去之后,放弃了其他的传感器,只用一种IDA的传感器。但是每个位置都能够打印上不同的细胞,这就允许我们同步检测,在同一种物理因子或者化学因子刺激下,不同细胞的不同生理反应。这是我们当时做的研究,我们用这种方式非常准确地进行了肿瘤药物的筛选,而且这个筛选过程中同时做到两件事情,第一个,我们把最有效的药物筛选出来,第二个,我们把毒副作用最小的药物也筛选出来。在这个系统中,我们可以同步做到这两点。   第二部分是组织工程支架和植入物的3D打印。在美国,骨植入修复材料市场每年超过200亿美元,这是一个个性化骨组织工程支架的工程,首先是3D数据的获取,在获取之后,是3D数据的处理,包括3D模型的建立,包括一个有限源的分析,根据有限源分析的结构和受力类型,我们可以对材料的不同部位进行一个复制,最后在打印过程中可以采取不同的编制方法,从而用最少的材料达到最大的机械强度。   这是一台打印的设备,是清华大学一套低温沉积系统,这是我们做的一些结构。这个是我们用骨支架材料做的生物学的检测,我们给它种上了一种干细胞,经过几周培养之后,我们发现骨胶原的分泌非常的旺盛,而且出现了钙结节。这是我们做的动物试验,可以看到,我们的支架是有孔的,每一个孔里面都长进去一到两根血管,这在骨组织工程上是非常重要的,所以说,在12周后,可以看到我们的材料全部降解了,而且形成了大量的软骨,而且骨细胞还在快速的增殖,这是我们对于植入的骨支架的研究。当然,这部分研究刚刚开始,我们还尝试在个性化的假体的3D打印。   这是参加残疾人运动会一个很有名的运动员,他的旁边有一假肢,在我国,肢体残疾人有800多万,至少有70万需要安装假肢,假肢结构和外形的设计制造都直接影响多患者使用假体的舒适度和功能。目前,美国一家公司提供的假肢大概是5000美元一个。   这是我们的工作,和一个研制机械手的教授合作的,我们做了一个机械手,这个机械手有很好的力量控制和空间多维度的力量控制,但是机械手还是需要跟人的真手有一个非常好的接受腔。   第四个工作是手术器械的3D打印,齿科手术模板,这是一个种牙的过程,在螺钉打进去的过程中需要避开旁边的血管和神经,以前得靠医生的经验来完成,我们可以用3D打印技术做一个模型,只要放到病人的嘴巴里面,根据那些孔你打下去,位置就对了。   最后,我们最近还做了一个下颚修复手术的模板。这是猴子的下颚修复手术,我们打印了模板之后,就可以做相应的加工。谢谢大家!
  • 标签打印 - 效率提升的必选方案
    随着时代的发展,面对着越来越细化的工作分工,标签打印机正以前所未有速度进入到我们的工作中,合理运用标签打印机的功能,可以有效的实现文件管理,归类,特殊物品的识别,管理等,让我们的工作变成有条不紊。 随着时代的发展,面对着越来越细化的工作分工,标签打印机正以前所未有速度进入到我们的工作中,合理运用标签打印机的功能,可以有效的实现文件管理,归类,特殊物品的识别,管理等,让我们的工作变成有条不紊。在工业生产制造中,标签打印也同样起着非常重要的作用,应用在很多的称重场景,如物料入库,材料分选,配料配方,质检以及成品出库等等,称重与标签打印的需求息息相关。针对标签打印的需求,奥豪斯为您提供完善的解决方案。Defender 5000中精度电子台秤, Defender 6000 XW系列超级防水台秤以及Ranger 7000系列高精度秤均可支持标签打印,其打印内容除毛重、皮重、净重等基础信息外,还可打印产品批次号,时间日期,交易号,称重模式,输出状态,操作人,物料编号,物料名称,平均单重,流水号,条码,二维码及品牌Logo等信息。Defender 5000,Defender 6000™ (XW)与Ranger 7000产品均预设有六个模板,其中一个为简单模板,可打印称重结果,满足客户的打印需求;另外有五个自定义模板,可以根据用户的需求来调整打印尺寸与内容。配合ScaleMate*软件使用,可为客户提供最大程度上的便利去设计标签模版,提高工作效率。 在生物制药行业,食品饮料等行业中使用标签打印机,有助于满足数据管理和记录的相关规定。手动记录称量结果可能会出现抄录错误,同时还会因字迹不佳等导致结果释义不一致! 奥豪斯Explorer天平能为实验室提供灵活的记录和贴标选项,有助于消除抄录误差、加速工作流程并确保可追溯性,天平内置5个自定义打印模板,其中2个预设模板方便客户直接使用。 任何带有串口的斑马标签打印机均可连接以上OHAUS产品,同时我们还支持可以使用ZPL语言的串口标签打印机。配D52加斑马打印机的图片* ScaleMate软件 可在PC端读取、设置以及备份天平或秤的菜单,管理库信息、用户信息以及更加方便地设置打印模板
  • 实现打印毛发令3D打印更进一步 提高功能性材料性能
    p   虽然3D打印技术在近几年发展迅速,但在此前,3D打印机就很难打印出毛发、毛皮和毛刷等物品。不过,这一技术难题的根源不在硬件。相反,这纯粹是个软件问题,因为你需要在CAD软件中精细地设计出每一根头发,而这会大大提高设计人员的工作量。 /p p style=" TEXT-ALIGN: center" img title=" 1-1.jpg" src=" http://img1.17img.cn/17img/images/201606/insimg/92b2d0cc-96b5-4611-a7d0-5217e1e26ab9.jpg" / /p p   现在这个问题可以迎刃而解了,麻省理工学院媒体实验室的软件工程师找到了快速有效的解决方案。他们可以短时间内在曲面和平面上打印出无数的细丝结构,也就是我们所说的3D打印头发。 /p p   这款能打印头发的软件名为Cilllia,用户可以在数分钟内打印数千根定制的生长角度、厚度、密度和高度的头发。 /p p   一旦这项技术转向商用,3D打印的假发很快就能上市。不过研究人员的目标可没这么简单,这些3D打印的头发还有其他用途。在自然界中,类似头发的细丝结构有很多作用,如感知、粘附异物和运送物品等。 /p p style=" TEXT-ALIGN: center" img title=" 1-2.jpg" src=" http://img1.17img.cn/17img/images/201606/insimg/ff17c39a-8b7f-4dfc-bdf6-5972c3e06adc.jpg" / /p p   眼下,这些3D打印头发已经可以像魔术贴一样粘在一起并通过重量进行分类。 /p p   “ strong 我们专注于3D打印头发就是为了释放3D打印技术的潜力,此外,这种功能性材料拥有很强的弯曲性和可控性,未来可用在多个领域 /strong 。”媒体实验室的研究人员说道。 /p p   “通过我们的软件平台,3D打印头发变得小菜一碟,”参与该项目的人说道。“而此前,这完全是不可能完成的任务,因为整个设计过程要花上一天以上,想将其打印出来,你还需要再花一天时间。” /p p /p
  • 【霍尔德】液体在线式颗粒计数仪保障机械设备正常运行
    【液体在线式颗粒计数仪←点击此处可直接转到产品界面,咨询更方便】根据国内外资料统计,液压润滑系统故障中,70%~85%是由油液中的颗粒污染引起的。因此,液压润滑行业对油液的颗粒污染问题给予了高度重视,对油液的监控也变得至关重要。油液的清洁度直接关系到液压润滑系统的正常运行。液体在线式颗粒计数仪是采用国际液压标准委员会指定的光阻(遮光)法计数原理,专门用于现场在线测量的、油液污染度等级检测装置。具有体积小、质量轻、检测速度快、精度高、重复性好等优点,可在高温高压等及其恶劣的条件下工作。适用于发动机油、齿轮油、变压器油(即绝缘油)、液压油、润滑油、合成油、水基类(水基液压油、水乙二醇等)、醇类、酮类等一切透光溶剂,可广泛应用于电力电厂、航空航天、石油化工、交通港口、钢铁冶金、汽车制造等领域。主要特点:1.采用光阻(遮光)法原理,使用高精度激光传感器,体积小、精度高、性能稳定;2.适用于现场的在线检测,可实时监测用油系统中的颗粒污染度;3.内置数据分析系统,能显示各通道粒径的真实数据并自动判定样品等级;4.标准款可直接耐压100公斤,可选配减压阀用于在线高压测量;5.具有体积冲洗和时长冲洗模式,方便用户对设备的使用和维护;6.内置ISO4406、NAS1638、SAE4059、GJB420A、GJB420B、ГOCT17216、GB/T14039等颗粒污染度等级标准;7.内置校准功能,可按GB/T21540、ISO4402、ISO11171、GB/T18854等标准进行校准,一次测试可以给出所有内置标准结果;8.可独立设定所有标准任意报警级别,实现污染度或洁净度检测;9.RS232或RS485接口,支持标准Modbus协议可连接电脑、上位机、打印机、PC系统或其它设备进行数据监控、处理;10.超大存储,可选择存储在仪器内部或外部存储设备中;11.坚固外型结构,适合复杂工作环境;12.下进上出的模式有利于限度减小在线气泡对测试结果的干扰;13.可连续测试也可任意设置测试时间间隔;14.中英文双系统,客户可自由切换,适合外销出口;15.触屏或者薄膜按键操作,可自由切换,仪器界面可自由控制远端打印机的开关;16.可选接4G/5G模块,支持手机或电脑端远程数据监控、历史数据、曲线查询(选配);17.内置水分和温度传感器模块,可同时输出四种参数信息(选配)技术指标:光源:半导体激光器;流速范围:5-500m/min;检测样品粘度:≤650cSt;在线检测压力:0.1~10Mpa(选配减压装置最高压力可达42Mpa);粒径范围:1~600μm;接口:USB接口、RS232接口、RS485接口;数据存储:提供1000组数据存储空间,并支持优盘存储;灵敏度:1μm或4μm(c);极限重合误差:40000粒/m;计数体积:1~999m;计数准确性:±0.5个污染度等级。
  • 3D打印——高端制造的利器
    3D打印是制造业热门技术,应用范围极广。它既可以打印塑料、陶瓷等非金属材料,也可以打印钢铁、铝合金、钛合金、高温合金等金属材料,以及复合材料、生物材料甚至是生命材料,成形尺寸从微纳米元器件到10米以上大型航空结构件,为现代制造业发展及传统制造业升级转型提供了巨大契机。相较传统制造方法,3D打印在理念上大为不同。我们经常使用的产品都是三维的,传统制造方法是模具成形或者切削加工,也被称作是等材制造及减材制造。等材制造就是人们熟知的铸锻焊,已经有数千年历史。无论是四川的三星堆,还是陕西的兵马俑,都能看到用等材制造方法制成的精美铜器。电动机问世后,以其为动力,可以对材料进行切削加工。因为在车铣刨磨的加工过程中材料逐渐被切掉,所以被称为减材制造。与上述两种传统制造方法相比,我们俗称的3D打印技术是上世纪80年代发明的新制造方法,类似燕子衔泥造窝,材料一点一点累加,造出三维物体来,因此又称增材制造。虽然从理念上说,燕子衔泥、万里长城都可以视作增材制造,但是只有在计算机控制下,把需要的材料按照设计累加到需要的地方,实现控形控性,才是真正的增材制造。赋能产品设计制造,推动高端制造业长足进步经过多年研究与发展,人们发明了光固化、粉末烧结、丝材累加等3D打印技术。这3种技术分别利用激光扫描液态光敏树脂表面,使之固化,或者高能束扫描材料粉末,使之烧结,或者采用热/电弧/高能束熔融丝材按照图形剖面铺设等方法,在剖面上一层层累加,制成三维实体零件。信息技术日新月异,3D打印技术在计算机控制下,可以打印出多种材料、任意形状,因此在工业及日常生活中,正带来许多重大变化。不同的制造技术有不同的技术特点。比如等材制造的铸锻焊过程,需要模具、砂型,如果我们只做一件样品,成本上就划不来,它更适合于批量制造。当然,也可以用减材制造进行切削加工,但加工过程会造成材料浪费。比如航空航天制造中,为实现轻量化,一些零件很大却很轻,形状复杂,要把材料尽可能地分布在边沿,这就需要切掉很多材料。对一些像铝合金、钛合金这样贵重的金属来说,付出的成本高昂。3D打印技术摆脱了模具、工装夹具等生产准备工作,在新产品开发、首件制造等方面,极大缩短了周期,降低了成本。而且通过计算机控制,完全实现数字化,哪里需要材料,就可以把材料堆积到哪里,做到节材制造。目前,我国不少企业的制造能力强,但产品开发能力相对不足,制约了制造业向价值链顶端的发展。3D打印可以帮助我们补足这一短板,缩短设计迭代、样机制作、评价、分析、改进、量产等流程。如在航空航天等高端装备的快速开发和迭代升级方面,3D打印已成为新产品开发的有力工具。3D打印还为创新设计拓展出巨大空间。过去设计师虽然有很好的构想,但由于模具制造的复杂性、切削加工空间的可达性,不能按照原构想来设计,只能把大的零件拆成几十、上百个小零件,设计与制造的成本随之增加。对于传统制造难以实现的零件形状或结构,3D打印可以胜任,通过结构一体化制造,实现最优设计构想。这就为设计创新、产品创新、装备创新提供巨大空间,由此为制造业带来不可估量的效益。比如,一家生产飞机发动机的大型公司,原来在制造发动机燃油喷嘴过程中,由于制造技术的局限,需要把喷嘴分成20多个零件去制造。这20多个零件中的每一个都要达到微米级,装配在一起时需要焊接,然而一焊接,就达不到微米级的精度了。结果,燃油喷嘴的制造缺乏一致性,燃油效率很难优化。而现在,可以把20多个零件一体化地3D打印出来,化繁为简,提高了零件的燃油效率,大大增强产品竞争力。除了擅长复杂零件的设计制造,3D打印还可以在个性化制造上大显身手。伴随信息化进程,个性化制造在越来越多的领域替代流水线式大批量制造。家电、可穿戴电子设备乃至汽车等消费品越来越呈现个性化趋势,而3D打印尤为擅长个性化制造。比如为运动员3D打印一双最适合其脚型的鞋子,将有助于改善穿着体验,提高运动成绩。在精准医疗领域,如骨科手术辅具、牙科正畸、手术模型等方面,能够越来越多地看到3D打印的应用。3D打印医疗器械新产品层出不穷,已从最初用于制造生物假体,扩展至细胞、组织和器官打印研究,未来或将用于人体器官再创,为人类带来福祉。产业链不断扩展,“3D打印+”迈上新台阶全球增材制造产业链正在不断扩展。航空航天、航海、能源动力、汽车和轨道交通、电子工业、模具制造、医疗健康、数字创意、建筑等领域的企业和服务厂商不断涌入增材制造产业。汽车行业超越航空航天、医疗等领域,成为3D打印技术的第一大应用行业,包括原型设计、模具制造和批量化3D打印零件等。3D打印在前沿科学研究方面,也发挥着越来越重要的作用。3D打印技术能在可控条件下,快速将不同材料混合在一起,打印试件或零件,因此可以按照材料基因组方法,实验与发明新合金、新复合材料,为工业应用快速开发出更多更好的新材料,满足高端装备、新产品的多方面需求。近年来,功能梯度材料越来越受到重视。用多种不同材料打印零件,将材料分层,不同材料打印在不同层,零件就可以实现表面是耐磨、耐腐蚀的,里面是高强度、韧性好的,再里面就像人体的骨头一样,是疏松的蜂窝状结构。如此一来,产品在增强刚性的同时减轻了重量。当前,人们正致力于增材制造技术开发与产业化。3D打印已经应用于我国航空航天开发和小批量制造、汽车快速开发及轻量化、精准医疗、文化创意等领域。在材料制备、3D打印主流工艺与装备、关键零部件、控制软件及各领域工程应用等方面,初步形成创新链与产业链。去年,我国增材制造产业规模增速高于全球同期增速。我国已将3D打印应用于飞机起落架这类高负荷承力件;中国首枚火星探测器“天问一号”的运载火箭发动机上,安装了许多3D打印零件。作为一种短流程的制造技术,3D打印在抗击新冠肺炎疫情中也发挥了作用,如3D打印医疗方舱、护目镜、呼吸阀等。经过近40年发展,增材制造已经迈向“3D打印+”阶段。从开始的原型制造逐渐发展为直接制造、批量制造;从以形状控制为主要目标的模型模具制造,到形性兼具的结构功能一体化的部件组件制造;从微纳米尺度的功能元器件制造到数十米大小的民用建筑物打印… … 增材制造作为一项变革性技术,是先进制造的有力工具,是智能制造不可分割的重要组成部分。随着“3D打印+”的深入开展,增材制造、减材制造与等材制造将走向互融互通。不同制造技术各显其长,发挥合力,共同推动我国由制造大国向制造强国迈进。(作者为中国工程院院士、西安交通大学教授)
  • 智易时代油烟在线监测仪助力环保监测建设
    随着城市化进程的加快和餐饮业的蓬勃发展,油烟污染问题日益凸显,不仅影响空气质量,更对人们的身体健康造成威胁。为应对这一挑战,国家及各地区纷纷出台有关政策,致力于加强源头污染整治,提高在线监测能力,智易时代凭借先进的科技实力和敏锐的市场洞察,推出了一系列高效的油烟在线监测设备,为环境保护事业贡献了坚实的力量。产品介绍:智易时代ZWIN-YY06油烟在线监测仪是一款高度集成可利用物联网传输实现油烟排放浓度实时监测的设备在线仪器,由一体探头和主机构成,实现油烟浓度、颗粒物浓度、非甲烷总烃浓度、烟道温度、湿度、净化器风机工况的实时监测。ZWIN-YYM06便携式油烟监测仪可实现油烟各组分浓度实时检测,同时检测烟道内温压流湿等数据,全自动测量,一体式设计,重量轻,配置蓝牙打印机,便于携带,实现即检即出结果,适用于执法人员对餐饮业油烟的排放管理,同时告别了传统油烟检测采样难、检测周期长、误差大等弊病。搭载我司在线监测平台,可将设备实时监测数据上传至管理平台,满足相关企业监测需求。 智易时代油烟在线监测设备,以其高精度、高稳定性、高智能化等特点,赢得了市场的广泛认可。该设备采用先进的传感器技术,能够实时监测油烟排放的浓度、温度、湿度等关键参数,确保数据的准确性和可靠性。同时,设备具备远程监控、数据分析、报警提示等功能,为用户提供了便捷、高效的管理手段。智易时代油烟在线监测设备广泛应用于餐饮企业、食品加工企业、学校食堂等场所。通过对油烟排放的实时监测,企业能够及时了解油烟排放情况,采取相应的措施降低排放浓度,保障环境质量。未来我司将继续加大产品研发力度,深化提升产品服务品质,为客户提供更多优质产品,助力油烟监测发展建设。
  • 港理工/港大/港城大《Nature Communications》:亚微米精度单光子3D打印熔融石英
    透明熔融石英玻璃作为一种不可或缺的重要材料,在现代社会中具备广泛应用价值。其卓越性能使得它在日常生活、科学和工业领域均发挥着重要作用。尽管熔融石英玻璃具备卓越的光学性能、热稳定性和化学耐久性等优异特点,但其高硬度和高脆性使得其可加工能性备受诟病。目前,传统熔融石英玻璃微结构制备工艺面临着流程复杂、成本高昂以及材料易碎等诸多挑战,并且在实现复杂三维(3D)结构方面仍然存在巨大困难。这给新型玻璃微纳米器件的开发、高效制造和在先进功能领域的应用带来了巨大的挑战。近年来,以3D打印/增材制造为代表的先进制造技术为玻璃加工行业带来了全新变革和重大突破。相较于传统的减材及等材成型工艺,这些新兴技术以数字设计和逐层累积为手段,成为赋予玻璃构件极高设计自由度和精确成型能力的强大工具,使得制造任意熔融石英玻璃三维结构成为可能。德国Karlsruhe理工学院科学家利用立体光刻(SLA)技术制备玻璃已取得重要突破(Nature, 2017, 544),成功实现了玻璃制品在质量、复杂度和精确度诸多方面的显著提升。这一里程碑式的进展也预示着通过3D打印技术制造具有出色光学性能的玻璃结构离普及更近了一步。随着时间的推移,全球范围内的研究者一直在不断努力提升玻璃打印技术的精确性。通过采用双光子飞秒激光直写(TPP-DIW)技术,实现了微纳米尺寸3D分辨率的玻璃结构的有效成形(Adv. Mater., 2021, 33)。然而,尽管立体光刻和双光子飞秒激光直写已分别实现了约50 μm和约100 nm的成型分辨率,并在宏观及纳观尺度上显著扩展了玻璃三维构件的应用领域,但由于3D打印技术在精度和效率方面存在固有矛盾,迄今为止,已有文献中报道的方法无法有效地制造出既具有毫米/厘米级尺寸又带有亚微米级特征的复杂玻璃三维结构。这一限制严重影响了该技术在微光学、微流控、微机械及微表面等先进领域上的应用。有鉴于此,香港理工大学3D打印中心温燮文教授联合香港大学机械工程系陆洋教授,在此前工作(Nat. Mater., 2021, 20, 1506)基础上更进一步,提出了一种通过摩方精密面投影微立体光刻(PμSL)3D打印技术制备同时具有亚微米特征及毫米/厘米级尺寸的熔融石英玻璃三维构件的方法。研究者选择了聚乙二醇功能化的二氧化硅纳米颗粒(平均直径~11.5 nm)胶体和两种丙烯酸酯作为聚合物前驱体,保证二氧化硅纳米颗粒良好的相容性和分散性。结合面投影微立体光刻3D打印灵活地创建具有复杂的三维亚微米结构的高性能透明熔融石英玻璃,其分辨率、构建速度及成型幅面均超越了目前大多数其他3D打印玻璃技术几个数量级。 图1:通过面投影微立体光刻3D打印所得透明熔融石英玻璃。(a)面投影微立体光刻3D打印示意图,呈现了打印所得熔融石英玻璃制成微缩维多利亚港的光学和电子显微镜图像。(b)复合纳米前驱体的各化学组分。(c)面投影微立体光刻3D打印透明熔融石英玻璃微透镜阵列在高温环境下展示了出色的稳定性。(d)4 × 6阵列的透明熔融石英玻璃蜂窝结构的光学和电子显微镜图像,其中央的细长悬线具有亚微米级别尺寸。(e)该方案所制备的熔融石英玻璃在分辨率及成型速度上的关系图,及与已报道的其他同类技术的比较。 图2:面投影微立体光刻3D打印所得具有多尺度临界特征的透明熔融石英玻璃多层级点阵。(a)多层级点阵结构;(b)多层级点阵网络;(c & d)单个多层级点阵胞元;(e)多层级架构;(f)基础点阵;(g & h)基础杆件及其具备的亚微米特征。尺寸跨度由mm逐步减少到nm,接近5个数量级。利用面投影微立体光刻3D打印透明熔融石英玻璃微透镜阵列,其具有亚纳米级别的表面粗糙度(Ra≈0.633 nm)。同时,研究者展示了通过3D打印制造的熔融石英玻璃微透镜阵列在成像方面的出色能力,具备优良的均匀性、清晰度、对比度和锐度。 图3:面投影微立体光刻3D打印的具有亚纳米级别表面粗糙度的熔融石英玻璃微透镜阵列。单个透镜的高精度光学显微镜图像,方框区域显示了白光干涉共聚焦显微镜测试结果,沿XY方向均能实现亚纳米级别表面粗糙度,以此制备高均匀性、高清晰度、高对比度和高锐度的微透镜阵列。面投影微立体光刻3D打印技术赋予了熔融石英玻璃微流体器件高精度、简化工艺、高直视性、大结构尺寸及复杂三维设计自由度,进一步展现出该器件出色的液滴/流体操控能力。 图4:面投影微立体光刻3D打印具备超疏水性能的仿生三维熔融石英玻璃微表面结构,以及具有Y型流道的免键合三维熔融石英玻璃微流控芯片。超疏水仿生三维熔融石英玻璃微表面展现了极佳的液滴黏附能力(即“花瓣效应”),即使在翻转180°后仍能牢固锁住液滴;在免键合Y型流道三维熔融石英玻璃微流控芯片,由于表面张力占主导,两种流体呈现了不互溶的“层流”现象。该工作进行于香港城市大学深圳研究院纳米制造实验室,相关成果以“One-photon Three-dimensional Printed Fused Silica Glass with Sub-micron Features”为题发表于国际期刊《自然通讯》(Nature Communications)上,课题组2020级博士研究生黎子永为该论文第一作者。在该研究中,熔融石英玻璃三维微纳样品由摩方精密2 μm精度的nanoArch® P130超高精密3D打印系统制备。相关技术已申请专利,后续将与摩方精密合作进行商业化应用。
  • 数字新浙商专访先临三维李涛:让3D打印走进亿万家庭
    从初生到成熟,3D打印行业走过了短短的三十年。这项新兴技术曾刷爆朋友圈,时至今日人们对3D打印的认识却依旧停留在“盲人摸象”的阶段,众说纷纭,褒贬不一。由于入门级的桌面3D打印机率先在教育领域得到普及,更多人仍将3D打印和“玩具”联系到一起。当我们走进位于杭州湘湖边「先临三维」的展厅内,桌面3D打印机却只是整个展厅的“冰山一角”。眼前大到比人高的金属打印机、用于航空航天的金属器件,小到精密的手持扫描仪器、用于齿科矫正的材料… … 把我们带进了一个3D打印的真实世界。作为国内3D打印行业营收领先的先临三维,从单项技术发展到建立装备、数据、服务集成体系;从单个领域应用拓展到高端制造、精准医疗、创新教育、定制消费等多领域的深度应用,沉浸行业15年。在工大学弟周青的牵线下,我们见到了几乎不曾接受公开采访的先临三维CEO李涛。这位毕业于浙大金融系的80后,低调和冷静背后,暗藏热切的呼喊:“我希望大家能真正认识到3D打印不是噱头,不是玩具,而是一套从数字化的信息采集开始,到面向性能的数字设计,最后到柔性的数字制造业全链条的技术系统。掌握好这套工具,就能突破想象力的束缚,真正带来效率、性能和品质的提升。”最终,李涛和先临三维想实现的,是让设计更加智能化、简单高效,让基于3D打印制造的个性化产品不再昂贵,能像家电一样走进亿万家庭。「数字新浙商」访谈现场洞见消费行为正呈现出“个性化”的新趋势,制造模式也从过去的标准化、规模化向高性能、多品种小批量、个性化方向发展。3D打印行业的未来不是一家独大,一定会有很多企业形成整体生态,整个链条正在经历一轮设计和制造思路的变革。个性化一定是建立在高水平的标准化、模块化和数字化应用的基础上,智能化也同理。3D打印行业会成长为现代制造业生态中不可或缺的一个子系统。它会和当前主流的制造设计生态系统相互融合,并非简单取代。 有一本书叫《跨越鸿沟》,很多新技术在初期很吸引眼球,在初期创新市场向主流规模市场过渡时,中间会经历一段时间的沉寂,3D打印技术现在就在这个鸿沟里,跨越鸿沟,才会走向规模化和普及化应用。——李涛谈行业发展:3D打印正经历设计和制造思路的变革章丰:从全球市场看,目前中国的3D打印产业处于怎样的水平?李涛:从数据来看,还是挺耐人寻味的。根据市场研究机构IDC预计,2019年全球3D打印的市场规模将达到138亿美元,中国预计将花费近20亿美元。从地域看,美国仍是全球最大市场,德国、英国、法国、意大利等国家紧随其后。国内的3D打印市场起步晚于国际市场十几年,但大致上也会沿着国外市场发展的轨迹追赶,从规模上讲还很小,但从增长速度来看,国内市场会超越大部分国家。过去我们大量进口国际先进3D打印设备和技术,现在国内自主研发的设备、材料和软件也纷纷走向国际市场。 章丰:中国是制造大国,而且在大部分细分行业形成了全球领先的产业链,为什么3D打印的市场份额比较小? 李涛:目前3D打印的最大市场是在美国、欧洲等主要的经济发达区域。首先,从产品消费市场来看,经济发达的地方,消费水平会高一些,人工成本也高,对于产品制作效率、品质的要求更高,这助推了对设计和制造工具的高要求。比如在康复和医疗领域,3D数字设计和3D打印的应用在国外的用量明显比国内大,我们只有在解决常规手段或经验完全无法解决的疑难杂症时,医生才会不得已用到3D打印。原因是其中的结构太复杂,需要事先演练、验证,避免出现意外;同时,国内各地因为收费标准不明确,有些医生甚至自己掏腰包来承担这笔打印费用。 章丰:可以这么理解,3D打印行业的发展是由消费市场的成熟度决定的? 李涛:消费市场的成熟度是一方面,还包括认知度和必要性,对3D打印的认知到不到位、是否刚需以及消费水平,几个因素共同形成了消费市场的差异,这是最主要的原因。在业内大家还有其他观点,一些制造业企业用户提出材料的种类不够丰富、性能不够好等原因。但是他们忽略了一点,近年来许多材料巨头把眼光转向了3D打印,纷纷推出专门的3D打印材料,可以说现有材料已经可以广泛应用于各领域,我们可以从设计上进行优化,充分发挥材料的性能。过去我们在制造中遇到高性能要求的时候,习惯从材料上想办法,能不能有更高强度、高耐用度的材料?3D打印提供了一种新的思路——将现有材料通过结构变化来实现目标性能,计算机仿真出物体在实际运行环境中的受力变形和散热状况,优化出最适宜的几何结构,最终得到一样的性能。 我个人认为,设计意识也是一个非常大的瓶颈。很多时候,工程师的思路受限于原有的加工工艺。以我们打印服务中心接到的订单为例,几乎99%以上都是面向开模、切削加工工艺来做设计的产品,只是想在加工前用3D打印来快速验证,缩短开发验证时间。验证迭代以后,产品量产还是用原有工艺,他们没有考虑面向3D打印的特点,做高性能的结构来解决问题。但从我们国外的订单来看,有些零件一看就是非3D打印不能制造,也就是说它是为了将来以3D打印方式来量产做准备。这方面主要靠大公司推动,像航空航天和能源系统的公司。比如说发动机领域,劳斯莱斯、GE航空,包括spaceX开发的火箭推行系统,都在用3D打印开发新一代发动机。最典型的例子,2016年GE开发团队宣布把一款涡轮螺旋桨发动机的845个部件合并为只有11个3D打印部件。不仅成本大大削减,而且减少了复杂性,缩短了生产周期,并且新技术可以把发动机大修时间间隔延长30%以上。 章丰:刚才讲到的几点原因中,设计能力的制约占多大比重? 李涛:我认为设计的瓶颈远远超过材料和其他因素。3D打印是一个风向标,帮助我们看到了当前中国创新所处的阶段。中国确实是制造大国,但和其他制造强国相比,自主创新的企业所占比重仍偏低。在先临三维的用户分布上,国外从大公司、中型公司到小型公司,都在使用3D打印技术。但国内的客户群主要集中在超大型公司和超小型公司。为什么?大型企业在研发下一代新产品和新应用时追求高性能,使用3D打印技术来进行优化迭代。而超小型企业不具备一开始就制造量产的能力,先打印5个、10个,然后投放市场、验证反馈、快速迭代。消费行为正呈现出“个性化”的新趋势,制造模式也从过去的标准化、规模化向高性能、多品种小批量、个性化方向发展。3D打印行业的未来不是一家独大,一定会有很多企业形成整体生态,整个链条正在经历一轮设计和制造思路的变革,所以整个思路都要重构。谈个性化:辩证看待 个性化也基于标准化之上足部3D扫描仪在个性化定制领域,先临三维也积极展开尝试,将3D数字化技术和3D打印技术应用于精准的个性化定制解决方案。比如在“鞋”这件小事上,公司自主研发了固定式足部3D扫描仪及手持式足部3D扫描仪,可以快速获取高精度脚型数据,结合3D打印技术,可应用于个性化定制鞋、医疗支具及矫形器定制等众多领域。章丰:高性能、小规模、个性化也随之带来一个问题,成本造价会不会升高? 李涛:要辩证地看。我们作为制造业企业,习惯性考量某个零件单体制造成本,现在一些公司开发新产品时,不仅考量制造成本,还要联动前期的设计成本、时间成本,后期的维护成本、回收成本。如果以全周期来看,会发现成本和量产规模有关。国外曾有分析表明,某个零件的制造,相比开模,在制造数量低于某个临界点后是3D打印更划算。所以整个3D打印在国外的大型企业的应用,已经覆盖到了整个产品的周期,从前期的概念验证到制造过程中的工装、模具,再到部分产品的直接生产。章丰:随着材料工艺、软件设计能力,包括计算机视觉智能化水平的提高,未来3D打印的成本曲线是否会呈现往下走的趋势?而传统的制造工艺已经成熟,它的成本曲线可能更趋向平滑。这两条曲线在未来的演变过程中,有没有可能在相当程度上实现交叉?李涛:一定会。传统制造方式随着量增加,成本会线性下降,因为它的初期投入会被摊薄。3D打印的成本也是向下的,只是没那么陡,为什么?材料成本、设备成本在下降,设计工艺带来的整体成本也下降了。所以两者一定会在某个目标制造量下出现交叉点。当然最后根据产品是否用金属材料、尺寸大小,成本会有不同。但总得来说,产品尺寸越小、结构越复杂,3D打印的成本越低;越大越简单,用3D打印的相对成本越高。章丰:近两年制造业经常提C2M(Customer-to-Manufacturer,用户直连制造),强调消费者端的定制化生产。鞋子就很典型,因为每个人的脚型都有差异。未来如果C2M模式逐渐普及,在工业制造端的3D打印会是怎样的面貌?李涛:个性化也是分级的,好比我们买车,也有个性化定制,但厂商提供了几个配置组合,这些配置就是相对标准化的,只是通过消费者的选择组合,变成了个性化。拿鞋举例,可能100万人中,按传统的尺码分成10个尺码,经过三维扫描建立起3D足型数据,这100万个数据通过软件自动计算和分类之后,可以归类出100个尺码。如果再往下细分,意义就不大了,就像圆周率的精确度。章丰:个性化也是“优化的个性化”,过度个性化的边际效应已经很小了。 李涛:没错,实际上采用数字化的再分类方式更智能,同样可以提供舒适度。这100万个人当中,和这100个尺码100%吻合的人,会超级合脚舒适,剩下的误差脚感上也是微乎其微。高度的个性化一般应用于康复领域,比如脚受伤了,通过建模打印一双和脚型完全一致的鞋,这类产品随着3D打印材料成本的下降,也可以控制在几百块以内,不再高不可攀。谈研发投入:高薪高水平 胜过人海战术 2018年,先临三维的研发投入高达1.405亿,相对于4.12亿元的营收,占比达到34%,相当之高。财报显示,从2012年开始,公司每年投入研发的资金都维持在较高的水平,超过营收的20%。章丰:多年来研发费用占比保持在20%以上,这在科技公司中也是一个很高的水平。 李涛:主要出于几点考虑。首先,公司的综合毛利相对可观,可以保证这部分研发费用。第二,因为我们所做的是图形图像领域软硬件结合的产品,对于人工智能领域的高端人才是刚需,所以待遇水平占了支出的很大一块。第三,尤其最近三年投入比重特别大,因为我们在做技术结构的调整,建立了一种梯度型的研发投入。我们把研发分成三个层次:底层是面向未来的核心算法和软件技术储备。由我们的首席科学家带着研究院的教授及员工在开发,他们做的是探索性的工作。中间层叫基础研发。基础软件和基础硬件部门负责整个公司的软硬件平台的搭建,把那些可以在近期用到产品中的软件进行架构化和标准化,把研究院的成果做成更加稳健的软件模块和算法模块,供我们的产品部门调用,实现三维扫描跟3D打印共性的技术的平台和成熟组件的开发。最后就是产品层面的开发,各产品线的研发团队面向不同行业应用,面向客户需求的产品功能开发和用户体验优化。我们坚持每年都会发布几款新产品,每年每个产品线都有新产品,现有的成熟产品,最慢两年内会更新一代。章丰:这么高频? 李涛:随着行业发展,用户需求是越来越多样化的。比如有的是拿来做零件,有的用以维修,那么维修就要用到三维视觉,如何识别它维修部位,帮助用户精准地自动定位。再举金属打印的例子,早期我们的金属打印机只有一台。后来我们发现,金属打印机用在不同的领域,有不同的需求——有的侧重效率,有的侧重强度,有的侧重成本,那么就要对它做细致的分类,进行迭代。另一方面,我们的用户结构也在发生变化。以前的设备主要提供给科研型的单位、高端制造业的工程师用,他们经过培训就可以按照流程使用。但是近几年,随之设备的普及,操作者可能是模具厂的工人,那么我们在软件上就要根据用户场景和使用需求做简化和一键式操作。 章丰:3D打印是一种跨学科的交叉技术,对团队人才的要求是复合型的,需要计算机、光学、机械制造、材料等等学科背景,而且很多技术处于行业演进的前端,这样的人好招吗? 李涛:很不好招,所以我们注重高薪高水平胜过人海战术,而且要人尽所长。我们的主管在行业里沉淀了多年的经验,以他们的架构能力,把需要的能力拆分成几种类型的,招相应专业的人才,进公司后还需要培训磨合。我们投入了很大一部分精力,把内部的软件架构做了模块化梳理。我认为,个性化一定是建立在非常高水平的标准化、模块化和数字化应用的基础上才能实现。章丰:这个观点我很赞同,否则个性化很难走得远。李涛:智能化也是同理。智能化如果不是建立在非常高水平的数字化,以及数字化下的高度的数据结构化的基础上,靠散乱的数据、垃圾数据拿去学习,就难以得到准确的结果,就像是我们常说的“Garbage in,Garbage out”(无用输入,无用输出)。谈应用领域:大众的想象真的太高了 短期内打印器官肯定不行目前3D打印技术已经广泛应用于工业及消费领域,但在风口来临之前,先临三维已经在行业内深耕了15年,为高端制造、精准医疗、定制消费、启智教育等领域用户提供 “3D数字化—智能设计—增材制造”智能制造解决方案。作为业务模块之一的3D打印服务,打造 C2M 和线上线下相结合的分布式服务模式,并在全国建立了布局了十几家线下服务中心。 章丰:这些3D打印服务中心分布在哪里? 李涛:一般在制造业相对较发达的地方,我们和地方政府合作,作为块状产业的配套。但这一块现阶段看,尝试并不太成功,原因是我们忽略了当前制造业用户所处的状态。原来我们认为在制造业发达的地方,用户需求会高,现在看需要同时满足设计、创新都发达的条件,而且这些企业的需求还不一定连贯,没有办法保证服务中心的高频运转。所以我们认为当前服务中心的模式还是集中优于分散,相应地我们做了一些调整,加强总部的服务能力,通过物流触达各地。 章丰:未来3D打印会在哪些领域形成较大规模的应用场景? 李涛:根据规模,依次是先进制造、医疗健康、教育文创几大领域。在接下来相当一段时间内,规模也会按照相类似的比重放大。在制造领域,目前主要是一些超大型企业和初创企业在使用,会逐渐形成辐射效应,加上设计软件门槛下降之后,越来越多的工程师可以基于这项技术做一些这种高性能的零件。 章丰:生物3D打印的应用,也是很多人关注的领域。按照你的估计,未来5年生物3D打印能达到什么样的水平? 李涛:我怕让大家失望。因为大众的想象真的太高了。短期内打印器官肯定不行,但是在人体的一些局部个性化修复领域,比如骨骼、皮肤、血管,应该会越来越多。当然这方面也需要相关的制度供给。现有的医疗器械的管理里,3D打印植入体的认证,包括一些个性化的认证,还没有被纳入。国外的认证就会快一些,美国每周都会有相关的认证性产品发出来。如果在制度供给上能跟进的话,推进会更快。谈行业图景:3D打印是制造业生态不可或缺的系统章丰:很多人对3D打印的整个行业没有一个整体认知,包括我,因为这里面有很多角色,能不能解读一下?李涛:这个问题很好,我一直想讲的就是,我们公司虽然是3D打印的一员,但我们不能代表整个行业。因为这个行业未来会是一种新生态,里面会有设计、应用、材料、设备制造单位。光制造设备,根据材料和工艺种类的不同,应用方向的不同,可能都有成百上千家不同类型的专用设备的企业产生。所以3D打印行业以后会成长为现代制造业生态中不可或缺的一个子系统。它会和当前主流的制造设计的生态系统相互融合,并非简单取代,而是解决传统方式做不了的东西,相当于制造业的增量市场。 章丰:相对于你描述的理想生态,目前行业的发展处在哪个阶段?李涛:有一本书叫《跨越鸿沟》,很多新技术在初期很吸引眼球,然后开始应用,在初期创新市场向主流规模市场过渡时,中间会经历一段时间的沉寂,就叫鸿沟,跨越鸿沟才会走向规模化和普及化应用,3D打印技术现在就在鸿沟里。我个人认为,整个行业需要系统的推进,有几大因素可以助推:一是大企业的辐射效应。二是3D数字设计和制造工具会越来越简单,使用体验越来越好,学习成本会低。第三,我认为教育领域所能起到的作用非常大的。我们投入了很多经历和资金在教育上,因为我们希望让大家认识到,3D打印不只是打印制造本身,它实际上是一个从数字化的信息采集开始,到面向性能的数字设计,最后到柔性的数字制造业全链条的技术系统。这一套工具掌握好了之后,你能打破想象力的束缚,创造出很多很好的产品。而这些产品,因为它的复杂性,除了3D打印,没有其他手段能制造和生产。快问快答章丰:你最得意的事情是什么?李涛:我们从2012年开始,能得到董事会股东的认可,支持原创性技术的高投入,而且坚持这么多年,也不会因为财务报表的压力给我们施压。 章丰:最期待发生什么? 李涛:我希望大家能真正认识到3D打印不是噱头,也不是玩具,而是能真正带来效率、性能和品质的提升的一项技术。希望国内也能用好这项技术,从设计层面去跨越鸿沟。 章丰:最害怕发生什么? 李涛:为了3D打印而3D打印。 章丰:你会如何解读“数字新浙商”? 李涛:一直以来,大众对“数字”形成的理念主要是互联网、大数据、云计算、机器学习等等。很多时候,大家不会把我们做的领域认为是跟数字化有关的,但我个人认为,我们在做的事恰恰代表着未来整个数字经济发展的非常重要的支撑力量——3D打印是集数字化的设计、应用和制造一体化发展的行业。 数字化固然重要,它是未来智能化的根基,但未来不单单是数据层面的数字化。互联网完成了人与人之间的连通,未来设备与设备、人与设备的关系连通,也是数字经济非常重要的环节。当然现在很多互联网企业在提工业互联网、云计算,如果说他们做的是“云”是“脑”的部分,完成机器本身的数字化,我们在做的就是“端”和“手脚”,让各种工具也数字化,才能真正实现互联互通。“数字新浙商”既然来采访我,说明你们看到了整个数字化的大生态,未来应该是所有产业无处不数字化,只有无处不数字化,才能无处不智能化。来源: 数字经济发布微信公众号
  • 我国首次完成太空3D打印
    p style=" text-align: justify text-indent: 2em " 首飞成功的长征五号B运载火箭搭载的我国新一代载人飞船试验船,目前已完成五次变轨。科研人员在新一代载人飞船试验船上搭载了一台“3D打印机”,这是我国首次太空3D打印实验。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 525px height: 322px " src=" https://img1.17img.cn/17img/images/202005/uepic/89d519f5-521e-4e11-9322-7bf1bf953434.jpg" title=" 3D打印首次.jpg" alt=" 3D打印首次.jpg" width=" 525" height=" 322" / /p p style=" text-align: justify text-indent: 2em " 据报道,此次在试验船上搭载的是一台我国自主研制的“复合材料空间3D打印系统”,科研人员将这台“3D打印机”安装在了试验船返回舱之中,飞行期间该系统自主完成了连续纤维增强复合材料的样件打印,并验证了微重力环境下复合材料3D打印的科学实验目标。 /p p style=" text-align: justify text-indent: 2em " 航天科技集团五院529厂复合空间材料3D打印系统负责人祁俊峰介绍,这台3D打印机的上面的打印区,下面是供配电和控制区,我们开了个窗口,舱内的图像能实时传回来。 /p p style=" text-align: justify text-indent: 2em " 那么,这台打印机,在飞船上打印了什么呢? /p p style=" text-align: justify text-indent: 2em " 祁俊峰说,这次打印的对象有两个,一个是一种蜂窝结构;另外一个是CASC航天的一个标志。 /p p style=" text-align: justify text-indent: 2em " 据了解,连续纤维增强复合材料是当前国内外航天器结构的主要材料,密度低,强度高,开展复合材料3D打印技术研究对于未来空间站长期载在轨运行、发展空间超大型结构在轨制造具有重要意义。 /p p style=" text-align: justify text-indent: 2em " 祁俊峰表示,目前第一目标就是要支持空间站的在轨长期有人照料的运行和维护,我们具备了在空间站里造东西的能力的话,那么我们就可以实现按需制造。第二个目标是要支持我们空间站在轨扩建。 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制