当前位置: 仪器信息网 > 行业主题 > >

影像技术

仪器信息网影像技术专题为您整合影像技术相关的最新文章,在影像技术专题,您不仅可以免费浏览影像技术的资讯, 同时您还可以浏览影像技术的相关资料、解决方案,参与社区影像技术话题讨论。

影像技术相关的资讯

  • 国内最先进影像技术实验室落户天津
    人民网天津视窗9月19日电:记者从市科委获悉,日前中科院理化所与天津世纪天感影像科技发展有限公司签署协议,双方将携手打造中国最先进的影像技术实验室。不久的将来,质量可媲美神六、神七飞船影像设备的“天津造”影像材料,将为百姓生活增添更多的亮色。   据介绍,无论是国家重大项目还是群众日常生活,照相胶卷、数码相纸等影像感光材料的应用范围都极其巨大。但在我国某些重点领域却被国外品牌占得先机。仅以工业射线胶片为例,在“西气东输”等大工程中国外品牌占领了80%的市场。该影像技术联合实验室成立之后,双方将强强联手,在信息、技术、人才、设备等诸多方面实现共享。预计未来3年内,该实验室将汇聚国内最顶尖的科研团队,大幅提升津产影像材料的品质,力争短期内赶超国际一线品牌,进军国际市场。
  • 新技术可捕捉材料波动的高清影像
    德国马克斯玻恩研究所、亥姆霍兹中心、美国布鲁克海文国家实验室和麻省理工学院研究人员组成的团队,开发出一种革命性的新方法,利用强大的X射线源捕获纳米级材料波动的高分辨率图像。这种新技术允许创建清晰、详细的影像,而不会因过度辐射损坏样本。研究结果近日发表在《自然》杂志上。世界的微观领域是不断运动的,并以不断变化为标志。即使在看似不变的固体材料中,这些波动也可能产生不寻常的性质;高温超导体中电流的无损传输就是一个例子。在相变过程中,波动尤其明显,材料会改变其状态,例如在熔化过程中从固体变成液体。然而,详细研究这些过程是一项艰巨的任务,捕捉到这些波动模式的影像就更具挑战性。联合研究团队开发出一种新的无损成像方法,称为相干相关成像。为了制作一段影像,他们快速连续地拍摄样本的多个快照,同时降低足够的光照以保持样本的完好无损。尽管这会导致个别图像中样品的波动模式变得不清晰,但这些图像仍包含足够的信息以将它们分成几组。研究团队首先创建一种新的算法来分析图像之间的相关性。每个组中的快照非常相似,因此可能来自相同的特定波动模式。只有当一组中的所有镜头一起观看时,才会出现样本的清晰图像。科学家们现在能将每一张快照与样本当时状态的清晰图像联系起来。该团队在由薄磁性层制成的样品上展示了相干相关成像。他们创建了一张地图,显示了被称为磁畴的区域之间边界的首选位置。这张地图和运动的影像使人们更好地理解了材料中的磁性相互作用,促进了未来在先进计算机体系结构中的应用。
  • 院士专家共商智能影像技术趋势,推动产学研用深度融合
    9月16日,以智能影像技术发展趋势及产学研用探讨为主题的2022年未来影像行业峰会在北京召开,峰会由智能图像处理北京市工程研究中心(以下简称“中心”)举办,邀请院士专家以及50余家企业的近百位行业精英,进行了12场专题分享。工程研究中心主任、小米集团高级副总裁曾学忠介绍了中心过去一年取得的成绩,并对未来影像技术在手机、机器人、汽车、XR(扩展现实)以及AIoT等多个行业出现的新需求做了深入分析,并提出对于未来影像的三个思考点:在多维传感,增强影像方向,拓宽影像传感的维度,突破视觉的限制;在AI赋能,计算摄影领域,用AI算法与硬件进行深入结合,突破硬件的限制;在影像互联,计算互通技术上,用互联互通的计算,打破影像采集以及计算的限制。中国工程院院士、中心专家委主任丁文华院士肯定了中心在影像行业的科研牵引作用,并指出影像多媒体领域对前端基础图像处理技术存在极大需求及市场空间,希望今后中心能够持续发挥平台作用,加深影像行业的产学研用协同创新的深度与广度,为产业的进一步发展起到示范带头作用。中心研究中心常务副主任、清华大学脑与认知科学院院长季向阳教授分享了计算影像的技术发展,介绍了计算影像在光谱成像,多传感器融合,光路编码等多个维度上的突破建议,后续将利用中心的平台创新科研机制,更好地将高校科研技术转化到行业。影像硬件技术企业豪威科技、丘钛微电子、奥比中光分别从图像传感器、相机模组、3D相机领域进行了专题分享。豪威科技总经理刘志碧梳理了当前各个行业对图像传感器的技术需求,并对全局快门、Hybrid EVS、微型化相机等行业新技术做了全面分享。丘钛微电子副总裁胡三木分享了相机模组硬件的发展趋势,并对大光圈、防抖、大推力马达、moding等模组工艺的演进进行了分析。奥比中光高级副总裁江隆业分享了3D视觉在各新兴行业的应用情况,并对3D视觉未来的技术发展方向进行展望。新型影像技术企业与光科技、灵明光子、普诺飞思分别从光谱相机、深度相机及动态相机的技术发展路线以及应用场景切入,进行了专题分享;与光科技CEO王宇认为小型化的光谱传感器是未来的技术趋势,并详细介绍了小型化光谱传感器在辅助色差还原、健康检测上的重要作用;灵明光子CTO张超阐述了dToF替代iToF在远距离深度探测场景的明确趋势,并介绍了dToF在汽车、消费、工业等多个领域的应用价值。普诺飞思中国区GM杨雪飞阐述了这种新型传感器相比于FBS相机的巨大优势,并介绍了DVS在超慢动作检测、边缘跟踪以及高级驾驶辅助等场景下的价值。北京邮电大学、极感科技、黑芝麻智能就影像算法进行了主题分享。北京邮电大学计算机学院执行院长马华东教授就视频处理各算法的发展状况做了介绍,并指出了AI视频算法模型轻量化的发展路径。极感科技高级总监林曦在深度计算和分割算法的现状和发展做了分享,提出了未来影像算法芯片化和工程化的方向。黑芝麻智能总监王超就视觉算法在自动驾驶上的应用做了技术分享,从低噪声、大动态、低延迟等场景举例,提出了视觉算法的需求方向。小米手机部副总裁、相机部总经理易彦博士分享了小米在手机、机器人、XR、智能汽车、智能制造五大主要应用场景中影像技术的深度积累,他表示,未来将依托中心持续加大资源投入,联合更多的上下游产业伙伴,围绕影像行业的系统性需求,做好产业协同,提升行业整体竞争力。据了解,智能图像处理北京市工程研究中心由小米集团牵头,联合清华大学等高校与企业于2021年共同组建,该中心的主要发展目标为联合上下游企业、高校和科研院所等机构,开展图像处理软硬件核心技术的开发、验证以及成果转化等全链路的创新,以推动行业共同发展。
  • 东胜创新分子影像技术进展与应用研讨班邀请
    诚邀出席: 为推动国内分子影像技术应用的发展,继2008年Carestream Health公司与东胜创新公司首次成功举办之后,组织者今年特邀请更多位国内外著名的分子影像领域专家带来精彩报告,介绍分子影像领域最新技术进展和应用。 如果您对于使用分子影像最新技术开展研究感兴趣,我们诚挚地邀请您出席本次研讨班,与报告专家开展研讨。 主办单位:美国Carestream Health公司分子影像部(原Kodak公司分子影像部) 北京东胜创新生物科技有限公司(Kodak活体成像系统中国总代理) 时间/地点/议程: 【第一站】:2009年4月7日 上海 13:30—16:30 上海好望角大酒店宗洛厅 主讲人1:特邀美国专家——Dr.Ke Shi (美国Baylor医学院教授) 报告主题: 分子影像技术在生物基础研究和临床个体化用药研究方面的应用 主讲人2:Bill Mclaughlin (Kodak资深应用专家) 报告主题:Kodak活体成像系统及其应用概览 主讲人3: 本站特邀中国专家——彭江教授(解放军总医院(301医院)骨科研究所) 报告主题:分子影像技术在组织工程研究中的应用 【第二站】:2009年4月9日 武汉 9:00—12:00 武汉洪广大酒店湖光厅 主讲人1、2:同第一站 主讲人3: 本站特邀中国专家——张福君教授(中山大学附属肿瘤医院影像介入科) 报告主题:分子影像学在临床研究和基础研究中的价值 【第三站】:2009年4月10日 北京 (会后安排参观Kodak活体成像仪) 9:00—12:00 清华大学医学院科学楼B323会议室 主讲人1、2:同第一站 主讲人3: 本站特邀中国专家——史春梦教授(第三军医大学全军复合伤研究所) 报告主题:纳米技术在肿瘤造影中的应用 席位有限,请提前与我们联系预约确认。【参会须知】 如您希望参会,请将以下回执填写后发送电子邮件至:marketing@bio168.net,或填写后交给东胜创新公司的联系人,我们将优先向预约的老师提供会议资料(报告人幻灯片等)。 如您不能亲自参会,但又需本次研讨班的资料,请告知东胜创新公司的联系人,我们将在会后提供。 咨询电话:010-51663168-转市场部闫小姐
  • “十二五”项目“分子影像前沿技术和产品开发”通过结题
    “十二五”国家科技支撑计划项目“分子影像前沿技术和产品开发”通过了科技部近日组织的项目结题。  恶性肿瘤的早期检测效果会直接影响癌症病人的治疗效果和五年生存率,对于癌症病人临床诊疗具有十分重要的意义。该项目深入研究传统成像技术中探测肿瘤灵敏度高的核素PET成像和光学成像这两种模态的物理成像原理和关键成像技术,提出将两种成像方式在成像原理上进行深度融合的新型成像技术,即新型光学-核素多模融合放射性药物激发荧光成像。该成像技术弥补了PET成像的分辨率不足和光学成像的信噪比不足等缺陷,成功突破了常规单模态成像的灵敏度极限,将动物活体肿瘤无创成像检测的灵敏度,由5毫米的最小病灶探测直径缩小到了2毫米。相关研究成果发表在Nature Communications,Nature Protocols等国际著名科研期刊上。  发挥超高灵敏度的光学-核素融合成像技术在早期微小肿瘤病灶探测的优越性,该项目研究团队通过研发光学分子影像智能手术机器人,实现了该项新技术的临床医学转化和应用。研发的手术机器人系统将高灵敏度光学分子影像技术与智能手术机器人精准定位技术相结合,在手术实施的过程中,高灵敏度、高精确度地实时成像定位癌症病灶的位置和范围,客观导航医生对其进行精细切除,其成像空间分辨率达到了亚毫米级,时间分辨率可达30帧每秒以上,对于癌症的探测灵敏度达到了最小探测直径1-2毫米。项目还针对不同的癌症种类,先后研制了手持式、开放式和内窥式光学分子影像智能手术机器人系统,目前已获得了美国发明专利授权2项,国家发明专利授权20余项,构建了完整的核心自主知识产权体系。
  • 时间和测量技术不停步----- RGM手表公司影像测量系统案例研究
    RGM手表公司是由美国手表制造商罗兰墨菲创立的。他的职业生涯和对钟表(计时设备的艺术或科学)的兴趣始于十几岁时在一家钟表公司做兼职工作时。后来,他进入了鲍曼制表技术学校,1986年他被WOSTEP(瑞士制表师培训和教育计划)录取。完成WOSTEP后,他在汉密尔顿手表公司的产品开发工作,直到他创建了RGM手表。RGM手表销售是在个人一对一的基础上进行的。参观该公司的客户和潜在客户经常会受到罗兰• 墨菲本人的欢迎。他在谈到客户经常要求的定制设计功能时,分享了自己对经典手表设计、创新和工艺的热情。RGM拥有一支11人的团队,每年生产“几百块”手表,根据设计和材料的不同,手表的价格从3500美元到9.5万美元不等。 进入RGM工厂,您会立即被多个经典的钟表匠长椅和一些古董玫瑰发动机车床包围。这些百年的车床可以生产复杂和华丽的金属图案使用切削雕刻技术。RGM表的这种水平的装饰细节对客户是非常诱惑的。 在开始时,由于缺乏合适的金属加工机械来生产非常小的零件,也没有精密的非接触测量手段,RGM产品的开发往往非常缓慢。瑞士的公司有这些设备,但对与一家没有经验的初创公司合作没有特别的兴趣——尤其是这样一家来自美国的公司。凭借进取的决心,在当地一家机械修理店和一批二手金属加工机械的帮助下,墨菲于2007年推出了Caliber 801机械运动系统。“在我们能够依赖可靠准确的零部件之前,我们会制造小于名义尺寸孔的零件,然后制表师会修正夹具镗床上的孔… … 这是一个非常耗时的过程… … ” 在一台老式的光学比较仪上对Caliber 801的小零件进行检查和测量。这样的检查需要花费相当多的时间来定位和测量,并且不是非常自动化,但对于处理最初几个低等级的系列手表零组件已经足够了。今天,有七个版本的Caliber 801,需要对一系列复杂的零组件进行测量。这时,使组成零件始终精确就变得至关重要了。这意味着制表师在组装过程中通过使小孔变大来单独制造太耗费时间。墨菲解释说。那么他们是如何解决生产和检测的问题的呢? 2016年6月,RGM购买了QVI® StarLite150影像测量系统,用于完成之前由光学投影仪测量的尺寸和检查任务。“StarLite 150很快就展示了优势所在,这个系统可以在不需要操作人员干预的情况下持续测量小而复杂的手表部件,”微机械设计总监Benoit Barbe说。近年来,生产和机型需求增加,StarLite 150通过其与公司的3D CAD系统和数控铣床的兼容性,已经成为开发过程中不可或缺的检测手段的一部分。一旦CAD模型完成,它可以下载到影像测量系统,在几秒钟内完成测量。“我们对测量结果的准确性有很高的信心,而在使用光学比较仪时是存有疑虑的,”Barbe评论道。 “我们对StarLite 150测量系统了解得越多,我们的工作效率就越高。”StarLite150特别受到RGM制造团队赞赏的一个特点是它的VectorLightTMLED可编程环形灯。Barbe说:“高亮度的光源使得在两个盲孔之间检查尺寸变得非常快速和简单“。”定制手表功能的需求越来越大,需要独特的,复杂的设计与数控机床生产运行的数量越多。“我们现在定期测量和检查定制的微型机蚀刻,用小到0.02毫米的立铣刀。用了StarLite以后,测量变得从来没有这么简单,也没有这么准确。
  • PerkinElmer2014亚太巡讲携手专家共探影像技术新应用
    探寻生命奥秘 提高人类健康 珀金埃尔默2014亚太区巡讲持续推进 携手中外专家共探影像技术新应用   中国,北京(2014年10月28日)&mdash &mdash 专注于提高人类健康及其生存环境安全的全球领先企业珀金埃尔默(PerkinElmer Inc.)公司(NYSE:PKI)举办的主题为&ldquo 从分子到机体,探寻人类生命的奥秘&rdquo 的2014亚太区城市巡讲将于10月起继续登陆北京、上海,围绕&ldquo 珀金埃尔默影像技术在肿瘤和相关药物研究中的应用&rdquo 掀起新一轮的讨论热潮。   巡讲将于10月28日在北京举办,10月30日移师上海。届时,每站将有来自国内外在肿瘤和相关药物研究领域的十多名专家和学者参加,其中包括三位国外专家,以及近十位国内顶级科研单位的专家和学者。与会专家将结合具体应用就细胞水平研究、组织水平研究和动物水平研究三个领域分别进行交流,分享最新研究成果,探讨未来发展方向。   影像技术是近年来生命科学领域最为重要和活跃的技术,在肿瘤的发生、发展、转移的机理研究和治疗探索,相关药物的分布、靶向、代谢、毒理、药理等药物学研究,以及细胞水平、组织水平研究和活体水平内研究等方面都有广泛应用。   作为该领域的领导者和创新者,珀金埃尔默是唯一能够提供从分子到细胞,到组织切片多标技术,再到小动物活体成像完整解决方案的公司,在影像技术领域和仪器平台上拥有多项专利、创新和领先技术,包括高内涵成像平台、组织切片的多标技术、小动物活体成像技术和独特的定性定量分析技术、集多模式检测与细胞影像技术于一体的检测平台等。   珀金埃尔默城市巡讲活动于2013年始发于中国,邀请来自生命科学研究领域的知名专家和学者就多个特定主题进行分享和探讨,旨在打造一个生命科学研究领域的应用知识和实践经验分享平台,帮助生命科学研究者开发并优化创新应用、产品和研究流程。本年度巡讲活动于5月份在北京启动,巡讲范围扩展到包括澳大利亚、日本、等其他亚太国家。   更多巡讲详情及珀金埃尔默生命科学研究应用解决方案 ,请访问:   http://go.perkinelmer.com/2014citytour   关于珀金埃尔默   珀金埃尔默(PerkinElmer, Inc.)公司是致力于改善人类及环境健康和安全的全球领先企业。2013年,该公司收入约为22亿美元,拥有约7,600名员工,服务于全球150多个国家和地区的客户,同时该公司还是标准普尔(S&P)500指数的成员。欲知详情,请致电800-820-5046 或登录我们的网站:www.perkinelmer.com.cn。
  • 蔡司与您共赢系列——“血管稳态重点实验室-蔡司影像技术中心”揭牌
    携手共进,合作共赢——血管稳态重点实验室-蔡司影像技术中心”揭牌 春回大地,万象更新。2017年3月2日,河北省心脑血管病防治协同创新中心与世界光学领航者——德国蔡司强强联合,共建“血管稳态重点实验室-蔡司影像技术中心”,揭牌仪式在河北石家庄成功举行。 中国工程院院士李春岩,河北医科大学校长崔慧先,河北医科大学第二医院院长王晓路,实验室主任张祥健,河北省科技厅平台与基础处处长李志平、副处长梁超,蔡司中国显微镜部副总裁张育薪、市场总监郑欣、医疗负责人孙学宁、高级销售专员刘敬忠等多位领导出席了揭牌仪式。 王晓路院长和张祥健主任就中心建立的重大意义作了三点阐释:第一、搭建起了临床科研与企业研发、生产的桥梁;第二、技术中心作为一个新产品展示和技术培训的平台,将推动科研工作的开展,更好地为全院的科研工作服务;第三、中心的建立符合国家产学研协同创新的思路,是顺势而为。 随后,蔡司中国副总裁张育薪先生致辞,他强调中心的成立为双方的技术合作搭建了一个绝佳的技术平台,也为双方进一步的合作打下坚实基础,只要精诚合作,共谋发展就一定能实现共赢。 “血管稳态重点实验室-蔡司影像技术中心”,是蔡司在中国大陆医疗系统首个影像技术中心,依托河北省血管稳态重点实验室的研究优势和河北医科大学第二医院的临床优势,结合蔡司享誉世界的高科技显微镜影像技术优势,强强联合。该中心拥有超高分辨率双光子系统、宏观变焦成像系统、电生理系统、倒置和正置成像系统等目前在世界范围内领先的技术仪器。 河北医科大学第二医院近年来在继续巩固基础研究的基础上,不断加大对临床研究、转化研究的支持力度;同时,鼓励广大科研工作者走出去,多交流,多协作,共同发展。此次协同创新中心与蔡司公司的合作,就是在这一大背景下实现的。 此次合作的成功也是蔡司显微镜在中国区加强重点客户合作系列工作的开始,此举必将推动蔡司扎根中国,与客户共赢,并保持更加强劲和长期的增长,实现蔡司2020年远景战略目标。
  • 沃特世在Pittcon 2015隆重发布分子影像及实验室管理等众多新技术
    新奥尔良-2015年3月9日-沃特世公司(纽约证券交易所代码:WAT)今日开启了2015年匹兹堡会议之旅,沃特世将在会上推出最新的技术和创新成果,推动分析科学进入令人期待的全新发展方向。 “在今年的匹兹堡会议上,我们将向客户展示沃特世如何依靠所取得的创新成果为健康科学领域提供崭新的解决方案、突破生物制药生产过程中的束缚壁垒、重新塑造实验室数据管理概念,带领我们的用户进入全新的前沿技术领域,”沃特世全球营销副总裁Rohit Khanna博士说道,“这些新技术和创新成果来源于沃特世以科研为中心、与客户们协同合作、实现产品的全面把控后对解决方案各个方面做出的优化,包括:从硬件到软件,再到耗材以及服务。这也秉承了我们一直坚持的‘The Science of What’s Possible.’理念”。 全谱图分子影像系统 全新的全谱图分子影像系统是Waters?的最新技术中最重要的一项,迄今为止,它是首套能够帮助科学家们在一个质谱平台上结合离子淌度分离(IMS)执行高级基质辅助激光解吸电离(MALDI)和电喷雾解吸电离(DESI)操作的系统。 新型全谱图分子影像系统以沃特世SYNAPT? G2-Si质谱仪为基础,它的成像功能将帮助科研实验室以更高的分析特异性精确定位组织样品中的大分子和小分子分布。从成像实验中获取的信息可用于测定细胞和组织中的分子分布,这将为癌症、心血管疾病以及神经退行性疾病的研究提供极大帮助。通过MS影像,研究人员还可根据分子组成对不同的组织类型进行鉴定。 “通过在同一台仪器上结合MALDI、DESI和离子淌度技术,沃特世将分子影像技术成功带入了新的领域,”沃特世健康科学部高级主管Jeff Mazzeo博士说道,“我们致力于为细胞生物学家、生物化学家、临床研究人员以及分析科学家们提供最优质的分析工具,帮助他们获得最详细的信息,全力推动他们在人类健康领域中的研究。这款新型的全谱图分子影像系统结合并优化了沃特世的质谱技术,将带来其他任何单个影像技术都无法媲美的详细分子信息。” 沃特世计划于2015年第三季度开始发售这款全谱图分子影像系统。 NuGenesis实验室管理系统 现已面世的NuGenesis?实验室管理系统设计独特且功能强大,可作为传统实验室信息管理系统(LIMS)的替代方案,它在功能方面具有诸多显著改进,可对科学难题进行深入探究,加速决策的制定,获得更出色的分析结果并满足政府法规的要求。 NuGenesis实验室管理系统可提供更强大的功能性,新的改进包括: NuGenesis SampleShare,用于样品提交和结果管理的安全网络客户端选件;NuGenesis Stability,稳定性研究方案管理和测试的完整解决方案,便于将多种实验室操作形成一致而严格的工作流程;NuGenesis Conectors,在实验室系统和商业应用之间建立双向连接;以及Paradigm? Scientific Search,用于搜索文本、文档和科学对象的全面集成的科学搜索解决方案。 NuGenesis实验室管理系统是一款以用户为中心的平台,涵盖了科学数据管理系统(SDMS)、电子实验室记录本(ELN)和实验室执行系统(LES),将数据、工作流程和样品管理的能力进行了独特的结合,为产品的整个生命周期(从开发到生产)提供支持。 “NuGenesis实验室管理系统在同类产品中功能最为全面,它将最新的改进功能与重要的现有功能进行结合,摆脱了传统LIMS操作复杂、成本昂贵且耗时的限制”,沃特世公司实验室管理信息学部门高级产品营销经理Garrett Mullen说道,“这款系统非常适用于现有的信息学环境,使公司实验室与商业运营之间的数据连接变得流畅,从而使科研型机构能够获得更多数据、了解更多信息,完成更多操作。” GlycoWorks? RapiFluor-MS? N-糖分析试剂盒 2015年,在华盛顿的生物精神病学世界大会(WCBP 2015)上,沃特世隆重发布了用于糖蛋白表征分析的开创性新技术。此项技术包括新型GlycoWorks RapiFluor-MS N-糖分析试剂盒以及沃特世ACQUITY UPLC?、ACQUITY? UPLC FLR检测器和ACQUITY QDa?检测器,它们将帮助科学家们准确分析游离N-糖,并将分析速度、灵敏度和简便性提升到更高水平,为科学家们带来前所未有的详细结构信息。 此项新型技术系列能够实现快速糖基释放和标记,并且可将工作流程中的样品制备时间从一天缩短至一小时以内;使表征和开发分析中的质谱检测灵敏度提升至当前方法的100至1000倍;还可为常规实验室提供简便可靠的方案支持,即使没有MS专家,也能顺利完成分析。 “这款新型GlycoWorks RapiFluor-MS N-糖分析试剂盒为蛋白糖基分析提供了开创性的方法思路,它的出现意味着科学家们将能够对游离N-糖进行前所未有的准确监测和表征分析,”沃特世消耗品业务部门副总裁Mike Yelle说道,“这些全新的工作流程承担了过去专业且复杂的操作,实现了流程一体化,使科学家们和实验室在成功的道路上更近一步。” ACQUITY UPC2 Trefoil和Torus技术色谱柱 沃特世最新研制的手性和非手性分离分析色谱柱专用于优化合相色谱。为解决手性分离中的难题,沃特世ACQUITY UPC2? Trefoil?色谱柱采用了2.5 μm粒径的填料,有效提升了分离速度和选择性,大大缩短了方法开发时间。用于非手性分离的沃特世ACQUITY UPC2 Torus?色谱柱则采用1.7 μm粒径的填料,可在分离度、分离速度、选择性和耐用性方面为非手性SFC分离提供更高的性能水平。新型色谱柱已在SFC 2014上正式推出,现在已向全球发售。 这款新型色谱柱可与沃特世ACQUITY UPC2系统联用,该色谱系统采用有效、无毒且经济的压缩二氧化碳作为主要流动相(载液)成分。压缩二氧化碳同时还是昂贵有机溶剂的“绿色”替代品。ACQUITY UPC2系统与新型色谱柱相结合,可为色谱实验室提供强大、稳定和可靠的分析平台,从而提高其开发分析方法的速度、提升选择性并缩短运行时间。同时,转换为更加环保的技术后,将有效降低碳排放量。自2012年推出以来,使用此系统的科学家们已撰写并发表了80余篇科学期刊文章。 “在将合相色谱打造为稳定分离的强大平台方面,沃特世仍将继续引领行业发展趋势,”沃特世消耗品业务部门副总裁Michael Yelle说道,“新型Trefoil和Torus色谱柱是运用二氧化碳进行分离的里程碑式固定相。这些色谱柱专为沃特世ACQUITY UPC2系统而设计,并进行了优化,在稳定性和可靠性方面树立了新的性能标杆,满足了科学家们对分析型SFC的期望。” 超临界植物萃取系统沃特世今日宣布:即刻开始发售装备全新10L萃取釜的超临界植物萃取系统。这是一款多萃取釜的超临界流体萃取(SFE)系统,可从多种植物基质中快速分离和提取大量所需组分。 新装10 L萃取釜的容量是当前容量的两倍,并可用作已安装系统的附加装置,这款设备将于2015年3月随新系统开始发售。 “超临界植物萃取系统作为首选的萃取系统,仅需一次运行,即可实现高效萃取,并可对萃取物进行选择性分离,”沃特世美洲分公司运营副总裁Mark Groudas说道,“促使我们扩增系统容量的直接原因是为了满足客户的需求,他们希望能够在萃取过程中实现更长时间的自动操作。此外,我们的用户还期望在批次提取时,获得最终萃取产物更高的一致性,这一点对于他们而言与运行时间一样重要。” 关于沃特世在匹兹堡会议上的更多信息 有关沃特世在2015年匹兹堡分析化学和应用光谱学会议上的全部相关信息,包括所有产品列表、展位活动以及技术介绍,请访问http://www.waters.com/pittcon。 关于沃特世公司(http://www.waters.com/) 50多年来,沃特世公司通过提供实用、可持续的创新,使全球范围内的医疗服务、环境管理、食品安全、水质监测、消费品和高附加值化学品领域有了显著进步,从而为实验室相关机构创造了业务优势。 作为一系列分离科学、实验室信息管理、质谱分析和热分析技术的开创者,沃特世技术的重大突破和实验室解决方案为客户的成功创造了持久的平台。 2014年沃特世公司拥有19.9亿美元的收入,它将继续带领全世界的客户探索科学并取得卓越成就。
  • 生态环境部发布《环境影响评价技术导则 大气环境》
    p   为进一步深化环境影响评价制度改革,将建设项目环境影响评价工作重点聚焦在环境影响和环境保护对策措施上,从技术层面优化建设项目环境影响评价工作,生态环境部近日发布了《环境影响评价技术导则大气环境》(HJ 2.2-2018),替代2008版大气导则。 /p p   修订后的导则参考国际先进的大气质量环境影响评价技术方法以及我国相关环境质量标准、技术导则规范进行优化和调整,改进了评价等级判定方法、简化了环境空气质量现状监测内容和三级评价项目的评价内容,对大气环境影响预测模型、参数、计算方法和评价内容等方面都进行了细致、系统和规范的规定,增加了达标区和不达标区的环境影响评价要求,改进了大气环境防护距离的确定方法,大大提高了大气环境影响评价的科学性和可操作性,将对建设项目和规划项目的大气环境影响评价工作起到更好的指导作用。 /p p   修订后的导则同时结合排污许可证制度的推广实施,规范了大气环境影响评价结果及结论,满足排污许可证制度与环境影响评价制度有效衔接的管理要求。 /p
  • 中国科学影响力瓶颈 关键在技术还是在人
    “提高中国科学的影响力,需要改善科研评价体系,把创新性摆在首要位置,尽快落实高校‘教授治校’,为科研人员创造一个良好的创新氛围。”   近年来,中国科技论文的数量迅速持续上升,引起了世界各国越来越多科技政策分析家的关注。但中国的科技实力在世界范围内,究竟处于一个什么样的位置?影响力又如何呢?   日前,中国科学技术信息研究所(简称中信所)发布了一则报告——《中国在世界科学中的地位和影响评估》。“通过这则报告,大家可以看到,近些年来,我国的科学实力大幅提升。”中信所副所长、报告主要负责人赵志耘说。   报告评价了自2002年以来,包括中国、印度、英国、美国等19个主要国家,在科学实力和科学影响力指标上的变化情况。结果显示,2006年,中国的科学实力排名第4,比2002年上升了3个名次。   赵志耘说,评估一个国家的科学实力,主要看的是以下几个指标,一是科学潜力和科学实际能力,二是科学基础条件、科学投入、科学产出和科学对技术的促进作用,三是科研经费、论文数量、国际权威科学大奖获奖人数。   报告认为,中国科学实力提升的主要原因,是我国的科学投入较大。一直以来,我国科研经费的总支出都不到GDP(国内生产总值)的1%,而近几年,已经逐渐增加到接近1.5%,在13个主要国家中排名第3,仅次于美国和日本。   另外,专利的数量和质量快速增长,也是科学实力提升的一个重要因素。近十年来,我国专利申请量始终保持在年均增长20%左右,截至2009年9月底,我国专利申请总量超过了548万件,是1986年的80倍。   赵志耘指出,与日本、德国、英国相比,我国的科学实力还只是属于“潜力”型。目前许多理论上的科研成果已经完成,但有一大批被积压,高校科研成果的转换率不到10%。也就是说,100个科研成果中,能够应用到实际的不足10个。   不过,一些专家对中信所的科学实力评估结果表示质疑。   对于中信所的科学实力排名,武汉大学中国科学评价研究中心的邱均平教授并不认同。在他看来,中国目前的科学实力,还远达不到第4名,有可能进入前10名,但至少排在西方7个发达国家之后。   邱均平说,国家虽然增加了科技投入,但科研投入经费在GDP(国内生产总值)中的比例还不够高,因为人均科研经费很少。“科研人员常常感觉经费不足,一些高校老师为拿到科研经费,不得不跑关系申请科研项目,而由于没钱购置先进的科研设备和仪器,导致一些科研成果推迟甚至无法完成。”   比如2006年,西南大学成功研制“家蚕基因芯片与表达图谱”,被列为当年“中国十大科技新闻”榜首。然而,这样一个对家蚕产业带来大好机遇的科研成果,在进行应用转化时,却因为资金难以到位,迟迟不能产业化。   对中信所的科学实力评估方法,中国科学院科技政策与管理科学研究所研究员段异兵也提出了不同的意见。他说,目前对科学实力的评价,采取的研究方法是文献计量学和科学计量学,这次中信所另辟蹊径,用指标的形式来评估科学实力,是一种新的研究方式,“采取的指标是否全面、合理,还需要进一步探讨。”   段异兵认为,评估不应忽视科学“软实力”的指标,这包括科研单位的管理体制和运行机制。管理上,我国创新机制不够完善,不能调动科研人员的积极性,缺乏鼓励创新、学术自由等氛围 运行上,行政干预学术的影响太大,一个小科长都会有很多人去争,埋头潜心于科研的人很少。“这势必会影响我国的科学实力。”   “如果科学实力增强了,科学影响力也应该增强,但事实上,中国科学在世界上的影响力并不高。”邱均平说。中信所的报告结果也显示,我国的科学影响力不仅低于传统科学强国,甚至还低于瑞士、以色列等小国,仅排在第13位。对中国科学影响力的评估,主要是看获得国际权威科学大奖的情况、成为国际权威科学院会员的数量、SCI论文被国际引用的次数。   赵志耘说,科学影响力排名前三位的国家,分别是美国、英国和德国,这些国家有一个共同的特点,就是获得国际权威科学大奖(诺贝尔奖、沃尔夫奖、菲尔兹奖、图灵奖和泰勒环境成就奖)的科学家较多。例如,在1980~2008年,美国科学家获国际权威科学大奖的总人数,就达到了306.5人次。   而在同时期,我国获得国际权威科学大奖的人很少,只有杂交水稻之父袁隆平在2004年度获沃尔夫农业奖,中国科学院院士刘东生获得2002年度泰勒环境奖。此外,我国科学家在国际权威科学组织中出任外籍院士的人数,不仅低于发达国家,也低于印度。   邱均平认为,我国科学在世界上的影响力不高,原因在于中国科研人员发表的大量论文中,可以看出大多数人都在重复地做低层次、简单的研究工作,中国的基础研究缺少原始性创新成果。   根据中国科技论文统计结果显示,截至2007年,我国科技人员发表的期刊论文为7.82万篇,占世界论文总数的19.6%,首次超过美国,居世界第一。“但这些科技人员在国际上热门领域发表的论文并不多,在国际知名期刊上发表的论文也很少。”邱均平说。   我国在基础研究方面的不足,也影响了中国科学的影响力。赵志耘说,世界上基础学科体系较为完备的国家,只有美国、英国等少数几个,中国已成为其中之一,这主要反映在,中国科学家发表的有关基础研究的国际论文,其数量增长迅速。但国际上有重大影响的基础研究成果,鲜有中国科学家参与。   赵志耘也坦言,当前很多重要的研究领域仍然是由欧美发达国家主导,而我国科学家的基础研究,总体上还属于跟踪、积累到酝酿突破的阶段,原始创新的研究较少,有分量的成果也十分有限,这造成中国科学在世界上的影响力不高。   “中国科学影响力低是中国科研质量不高的反映,由此带来的直接后果,就是技术创新缺乏基础研究的支撑,我国的技术研究只能跟随模仿国外或者从国外引进技术,从而使我国具有自主知识产权的技术相对较少,关键技术受制于人。”赵志耘说。   邱均平认为,提高中国科学的影响力,需要改善科研评价体系,把创新性摆在首要位置,尽快落实高校“教授治校”,为科研人员创造一个良好的创新氛围。
  • 利用光谱技术分析纳米材料环境影响取得进展
    2020年4月1日,中国科学院合肥物质科学研究院官网发布“纳米材料环境转化过程对生态毒性影响及机制研究取得进展”。近期,中科院合肥研究院技术生物所黄青课题组以水生生态系统初级生产者藻类为受试对象,应用光谱技术对纳米氧化锌在含磷水体中的转化过程进行定性和定量分析,阐明了环境物质转化过程对小球藻毒性效应影响及其机制。相关成果已被英国皇家化学会期刊Environmental Science: nano接收发表。 随着纳米科技迅速发展,纳米材料对环境和生物潜在影响日益受到关注。纳米毒理学研究表明,环境过程对纳米材料毒性效应影响显著,使其毒性区别于原始状态纳米材料,但环境转化过程对毒性效应影响规律尚待阐明,这对纳米材料环境安全性评价非常重要。 研究人员利用拉曼光谱和XRD等光谱手段,发现随水体中磷含量的增加,纳米氧化锌先部分转变成晶体状磷酸锌,再转变成无定型磷酸锌。毒性效应检测结果表明,原始状态纳米氧化锌的毒性主要源自其释放的锌离子;在含磷水体中,纳米氧化锌发生物理化学转变,生成了低毒性的磷酸锌,使其毒性显著区别与原始状态的纳米氧化锌。此外,结合光合作用相关基因表达分析,研究人员揭示了纳米氧化锌物态变化对藻类光合作用产生影响,是纳米毒性效应差异的重要原因。 研究结果为利用光谱技术分析纳米材料环境转化的理化过程,阐明环境转化过程对毒性效应的影响及机制,以及合理评价纳米材料在真实环境水体中生态安全性提供了理论和实验基础。  该研究受到国家重大研究计划、国家自然科学基金以及安徽省自然科学基金等课题的资助。光谱分析技术由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10^-10(10的负10次方)克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.光谱分析在科学技术中有广泛的应用.光谱技术根据物质的光谱来鉴别物质及确定它的化学组成和相对含量的方法叫光谱分析.其优点是灵敏,迅速.根据分析原理光谱分析可分为发射光谱分析与吸收光谱分析二种;根据被测成分的形态可分为原子光谱分析与分子光谱分析。光谱分析的被测成分是原子的称为原子光谱,被测成分是分子的则称为分子光谱。按波长区域不同,光谱可分为红外光谱、可见光谱和紫外光谱;按产生的本质不同,可分为原子光谱、分子光谱;按产生的方式不同,可分为发射光谱、吸收光谱和散射光谱;按光谱表观形态不同,可分为线光谱、带光谱和连续光谱。现代光谱分析仪器有原子发射光谱仪、原子吸收光谱仪(原子吸收分光光度计)、红外光谱仪等。
  • 珀金埃尔默与军事医学科学院野战输血研究所共建 “小动物活体影像技术服务与研发中心”
    2014年8月27日,专注于提高人类健康及生存环境安全的全球领先企业珀金埃尔默(PerkinElmer,Inc.)公司(NYSE:PKI)宣布,与军事医学科学院野战输血研究所合作组建的“军事医学科学院野战输血研究所——珀金埃尔默小动物活体影像技术服务与研发中心”正式挂牌,并举行揭幕仪式。 开幕式在军事医学科学院野战输血研究所学术报告厅举行,来自国内外相关领域的专家学者一百多人参加了本次开幕式。上午8时45分开幕仪式正式开始,参加揭幕仪式的有野战输血研究所所长王东根、副所长周虹、科技处副处长贾向志、PerkinElmer公司大中华区总监郭求真先生以及PerkinElmer公司大中华区影像事业部经理冯起先生。野战输血研究所所长王东根、政委隋炳山、副所长周虹在共建中心主任詹林盛研究员的陪同下,视察了共建中心并高度赞扬了中心的内部设置。揭幕仪式后,开展了“小动物活体影像技术交流会”。交流会上,共建中心主任詹林盛研究员带领的科研团队就基因及细胞治疗分子成像、肿瘤体内增殖和转移分子成像、病原感染与炎症反应分子成像、药物及疫苗临床前评价分子成像、肝脏疾病分子成像、输血及创伤分子成像等方面进行了交流,旨在推进小动物活体影响平台建设,强化小动物活体影像技术产品研发优势,提高技术服务和科技支撑能力。 共建中心坐落于军事医学科学院野战输血研究所内,配备了国际顶尖的小动物活体光学成像硬件设备和软件工具。双方将在活体成像技术服务、平台服务、课题合作及应用开发等方面展开合作,以带动国内小动物活体成像技术的推广和应用开发,成为辐射全国的活体动物影像技术服务平台。关于珀金埃尔默:珀金埃尔默(PerkinElmer, Inc.)公司是致力于改善人类及环境健康和安全的全球领先企业。2012年,该公司收入约为21亿美元,拥有约7,500名员工,服务于全球150多个国家和地区的客户,同时该公司还是标准普尔(S&P)500指数的成员。欲知详情,请致电800-820-5046 或登录我们的网站:www.perkinelmer.com.cn。共建中心联系方式:军事医学科学院野战输血研究所—珀金埃尔默小动物活体影像技术服务与研发中心,联系人:周老师;联系电话010-66931292;E-mail: amms91@126.com.
  • 环评司解读《规划环境影响评价技术导则 产业园区》(HJ 131-2021)
    生态环境部近日修订发布了《规划环境影响评价技术导则 产业园区》(HJ 131-2021)(以下简称《规划环评导则 产业园区》)。为全面深入了解《规划环评导则 产业园区》的主要内容、实施重点,记者采访了生态环境部环评司有关负责人,对《规划环评导则 产业园区》进行了详细解读。  问:《规划环评导则 产业园区》修订的背景和意义是什么?  答:2003年9月1日实施的《中华人民共和国环境影响评价法》(以下简称《环评法》)确立了规划环境影响评价制度。《开发区区域环境影响评价技术导则》(HJ/T 131-2003)(以下简称“2003版导则”)作为环评法配套规章之一,是继《规划环境影响评价技术导则(试行)》(HJ/T 130-2003)之后的第二个规划环境影响评价行业标准,在当时的背景和条件下,规范和指导了我国开发区区域环评。  为适应新形势生态文明建设和环境保护新要求,《环评法》和《规划环境影响评价技术导则 总纲》(以下简称《总纲》)均进行了多次修订或修正。同时,《“十三五”生态环境保护规划》《中共中央国务院关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》《关于进一步加强产业园区规划环境影响评价工作的意见》等对园区规划环评工作提出了新的要求。2003版导则已不适应当前环境管理方式转变、环境管理要求及园区规划环评需求。为此,生态环境部启动了2003版导则的修订,并更名为《规划环境影响评价技术导则 产业园区》,以提高导则的针对性和可操作性,并为进一步规范、加强产业园区规划环评管理提供技术支撑。  问:与“2003版导则”相比,《规划环评导则 产业园区》有哪些突出特点?  答:修订后的《规划环评导则 产业园区》是产业园区规划环境影响评价工作的重要技术性指导文件,较2003版导则,主要有以下三方面突出特点:  一是《规划环评导则 产业园区》兼顾技术标准统一性和差异性的关系,明确了产业园区规划环评最基本、最普适的技术规定,突出了对各类产业园区的指导性,对涉及易燃易爆和有毒有害危险物质、以重点碳排放行业为主导等类型园区提出了差异化技术要求,强调了导则的实用性和可操作性。  二是《规划环评导则 产业园区》准确把握技术标准与法规、政策的关系,落实生态文明建设和“放管服”改革要求、衔接区域生态环境分区管控体系、强化规划和项目环评联动、推动减污降碳协同共治,新增简化入园建设项目环境影响评价建议,以及园区环境准入、园区碳减排等技术要求,并将生态文明、高质量发展的目标导向转化成技术要求,为实现园区高质量发展和环境高水平保护提供了技术方法。  三是《规划环评导则 产业园区》精准把控在环评技术导则体系、环境管理体系中的定位,纵向上承接《总纲》、“三线一单”要求,横向上与环境要素及专项环境影响评价技术导则相协调,着力解决技术标准体系、环境管理体系的传导、协调、衔接等关键问题。完善了上下贯通、左右衔接的技术标准体系构建,促进了各环评导则的协同发力。  问:《规划环评导则 产业园区》重点修订内容有哪些?  答:修订后《规划环评导则 产业园区》主要包括前言,以及试用范围、规范性引用文件等15部分技术内容,与现行导则相比,修订内容主要体现在以下几方面:  一是适应园区环境管理需求,扩大适用范围。鉴于当前产业园区类型繁多,各地管理实际情况各异,比如浙江的产业集聚区、上海和广东的工业地块等均比照园区管理,有明确的责任主体,修订后的《规划环评导则 产业园区》扩大了适用范围,适用于《中国开发区审核公告目录》的各类法定园区,即国务院及省、自治区、直辖市人民政府批准设立的产业园区;国务院有关部门批准设立的各类园区、根据地方规定需要开展规划环评的其他各类产业园区可参照执行。  二是强调“协同联动”,优化评价技术路径。衔接《总纲》,针对《规划环评导则 产业园区》承上启下的功能定位,把握“联”的思路,技术流程体现上下传导的架构衔接逻辑,向上衔接“三线一单”对园区的刚性约束,并融合至评价各环节;向下结合现状调查、影响预测评价结果,基于区域“三线一单”,细化园区环境准入,对建设项目形成刚性约束和精准指导。评价中通过结果与评价过程的反馈,全程与规划编制部门互动,开展公众参与工作,及时调整、修正各阶段评价成果,形成闭环,保证评价结论的科学性。为区域、园区、建设项目环境影响评价的系统衔接和协同管理,产业园区规划实施与区域生态环境质量目标、管理要求的动态衔接提供了技术保障。  三是深化环境污染防治,突出生态环境质量改善核心。修订后的《规划环评导则 产业园区》围绕园区生态环境质量改善这一核心目标,按摸清现状、找准问题,预测影响、明确趋势、提出对策,改善质量、跟踪监测、实施保障的技术路径展开。现状调查与评价专题通过调查、评价、溯源,厘清环境质量改善短板。环境影响预测与评价专题通过预测新增环境影响、分析环境质量变化趋势,明确了园区生态环境质量改善方向。环境影响减缓对策、措施与协同降碳专题从预防和治理两个维度协同推进,对园区既有环境问题及规划方案实施后可能产生的不良环境影响,基于优化调整后的规划方案,提出资源节约与碳减排、园区环境风险防范对策、生态环境保护与污染防治对策和措施,以推进生态环境质量的改善。  四是突出园区特色,新增环境风险评价防控、强化基础设施评价优化等技术要求。对涉及易燃易爆和有毒有害危险物质的园区,按环境风险现状调查、预测与评价、风险防控的技术思路开展环境风险评价防控。重点关注环境风险物质、风险源及风险受体调查,各类突发性环境事件的环境风险影响,以环境风险预警体系建设、突发性环境风险事故应急响应、环境应急保障体系建设及与区域风险防控体系衔接为核心的环境风险防范对策。  突出污染集中治理基本要求,基础设施关注类型扩展至污水集中处理、固废(含危废)集中处置、中水回用、集中供热(供冷)、余热利用、集中供气(含蒸汽)、供水、供能(含清洁低碳能源供应)等设施;调查、分析内容进一步深化,包括基础设施规模、布局、服务范围、处理工艺、处理能力、实际运行效果、达标排放及配套管网建设等;根据环境可行性论证,对可能产生重大不良环境影响,或无法满足规划实施需求、难以有效实现园区污染集中治理的基础设施建设方案,提出选址、规模、建设时序及处理工艺、排污口设置、提标改造、中水回用及配套管网建设等优化调整建议,或区域基础设施共建共享的建议。  问:《规划环评导则 产业园区》如何实现与“三线一单”制度衔接?  答:根据《中共中央 国务院关于全面加强生态环境保护 坚决打好污染防治攻坚战的意见》《区域空间生态环境评价工作实施方案》《关于进一步加强产业园区规划环境影响评价工作的意见》等有关规定,2025年要基本建立区域环评制度,现有规划环评需要和区域环评制度有效衔接,完善源头防控体系。修订后的《规划环评导则 产业园区》将“三线一单”融入各评价技术环节,现状调查与评价、规划分析需结合区域生态保护红线、环境质量底线、资源利用上线、生态环境准入要求等,明确规划实施的制约因素、分析园区规划的符合性;环境影响识别需依据区域生态保护红线、环境质量底线、资源利用上线,结合环境影响识别确定规划环境目标,并以此作为环境影响预测评价的基准;规划方案的合理性论证环节,以区域“三线一单”为标尺,综合论证规划合理性,提出优化调整建议、环境影响减缓对策和措施、园区环境准入。其中,园区环境准入衔接“三线一单”基本框架系统综合、总结、提炼现状调查评价及环境影响预测评价成果,细化园区空间管制分区及管控要求,形成的准入要求作为园区开发必须遵循的基本规则。  问:《规划环评导则 产业园区》如何实现减污降碳协同增效?  答:根据《关于统筹和加强应对气候变化与生态环境保护相关工作的指导意见》《关于加强高耗能、高排放建设项目生态环境源头防控的指导意见》要求,将碳排放评价纳入环境影响评价体系,衔接落实有关区域和行业碳达峰等政策要求,推进减污降碳协同增效。《规划环评导则 产业园区》以园区能源利用为核心,将碳减排融入到规划分析、现状调查与评价、环境影响预测评价、规划方案综合论证和优化调整、不良环境影响减缓对策和措施各章节。同时,对电力、钢铁、建材、有色、石化和化工等重点碳排放行业为主导产业的园区,导则还要求考虑重点碳排放行业的生产工艺过程的碳减排,调查园区现状碳排放控制水平与行业碳达峰要求的差距和降碳潜力,从资源能源利用管控约束,与区域、行业碳达峰、碳减排要求的符合性,资源与环境承载状态等方面,论证园区产业定位、产业结构、能源结构、重点涉碳行业规模的环境合理性。为把好碳源头减排关、构建园区碳减排实施路径提供了技术支撑,将有力推进园区能源低碳化转型和工业绿色发展。  问:《规划环评导则 产业园区》中如何落实“放管服”要求,指导项目环评简化?  答:根据《全国深化“放管服”改革优化营商环境电视电话会议重点任务分工方案》《关于全面开展工程建设项目审批制度改革的实施意见》《关于加强规划环境影响评价与建设项目环境影响评价联动工作的意见》,要求深化建设项目环境影响评价“放管服”改革,强化规划环评、项目环评联动。修订后的《规划环评导则 产业园区》落实环评“放管服”改革精神,将管理要求转化为技术要求,进一步强化宏观层面技术指导,新增了入园建设项目环评的简化要求,规定符合园区环境准入的建设项目环评简化的三种情形为:对不涉及园区保护区域、环境敏感区,且满足重点管控区域准入要求的建设项目,可提出简化选址环境可行性和政策符合性分析,生态环境调查直接引用规划环境影响评价结论的建议;对区域环境质量持续改善、且不新增特征污染物排放的建设项目,可提出直接引用符合时效的园区环境质量现状和固定、移动污染源调查结论,简化现状调查与评价内容的建议;对依托园区供热、清洁低碳能源供应、废气集中处理、污水集中处理、固体废物集中处置等公用设施的建设项目,可提出正常工况环境影响直接引用规划环评结论的建议,为简化项目环评提供了支撑。  问:生态环境部将采取哪些措施保障《规划环评导则 产业园区》的顺利实施?  答:为保障《规划环评导则 产业园区》顺利实施,我们将重点开展以下工作。一是加强宣贯和培训,组织对地方生态环境主管部门、规划环评编制机构、规划编制机关、相关专家等的培训工作。二是在产业园区规划环评中开展碳排放评价试点工作,进一步探索碳排放评价的技术路径和方法,源头促进园区减污降碳、绿色高质量发展。三是做好产业园区规划环评的跟踪监管工作,我部将建立健全规划环评质量监管长效机制,定期调度产业园区规划环评及跟踪评价开展、落实情况;同时指导各级生态环境主管部门加强监管工作,发现规划环评编制质量问题的,依法依规对产业园区管理机构及其委托的规划环评技术机构予以处理。
  • 分子影像是研究病毒的重要手段——访中科院武汉病毒所公共技术服务中心高级工程师高丁博士
    p    span style=" font-family: 楷体, 楷体_GB2312, SimKai " 作为人类疾病的主要病原体之一,病毒结构简单,可作为某些遗传性疾病治疗、肿瘤治疗、基因疫苗等药物研发的基因工程载体 此外,病毒基因简单,对病毒基因进行研究可揭开生物界细胞基因调控和表达的许多未解之谜。可以说,病毒研究对人类社会有着广泛而重要的意义,应用覆盖生物医药、疾控、农业、畜牧业等领域。那么做病毒研究的一般工作流程是怎样的呢?都需要用到哪些高精尖的科学仪器呢? /span /p p span style=" font-family: 楷体, 楷体_GB2312, SimKai "   近日,仪器信息网来到中国科学院武汉病毒研究所公共技术服务中心(以下简称“公共技术服务中心”),就以上问题采访了公共技术服务中心高级工程师高丁博士。 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/3b1bca23-d97b-4cf2-b2b7-411799af38ac.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong 中科院武汉病毒所公共技术服务中心高级工程师 高丁 /strong /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 特色的分子影像技术平台 /strong /span /p p   据高丁博士介绍,分子影像是贯穿病毒研究工作的主线。“比如病毒与宿主细胞之间的相互作用,还有病毒本身的形态、结构分析等,在分子生物学基础上,每一步实验最后都要由显微成像技术来进行验证。” /p p   目前,公共技术服务中心具备从高分辨率显微成像一直到活体动物成像的技术平台。包括: /p p    span style=" color: rgb(79, 129, 189) " 光学显微成像系统: /span 超高分辨率荧光显微镜、双碟片活细胞荧光共聚焦显微镜、双光子超分辨点扫描共聚焦显微镜 /p p    span style=" color: rgb(79, 129, 189) " 组织切片成像分析系统: /span 多光谱病理切片成像系统、数字切片扫描分析系统 /p p    span style=" color: rgb(79, 129, 189) " 活体成像系统: /span 2D/3D小动物活体成像系统 /p p   span style=" color: rgb(79, 129, 189) "  电子显微成像系统: /span 300KV冷冻透射电子显微镜、200KV透射电子显微镜、100KV透射电子显微镜、场发射扫描电镜 /p p    span style=" color: rgb(79, 129, 189) " 流式细胞分析系统: /span 分选流式细胞仪、分析流式细胞仪、质谱流式细胞仪 /p p   武汉病毒所的分子影像平台是其特色的技术平台。“我们这一套东西已经发展了几十年,在技术积累和传承方面都很成熟和完善,比较有优势。” /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 从高分辨率显微成像到动物活体影像,横跨微观到宏观的多尺度研究手段 /strong /span /p p   近几年来,武汉病毒所仪器平台建设在最早的以电子显微镜技术为特色的科研服务基础上,扩展了荧光显微镜方向和一些生物大分子分析仪器,先后引进了珀金埃尔默(PerkinElmer)公司的Operetta高内涵筛选系统、UltraVIEW VoX双碟片活细胞荧光共聚焦显微镜、IVIS Spectrum小动物活体三维成像系统、Vectra多光谱组织成像系统等仪器,涵盖从细胞到活体到组织的各研究对象,完成了从微观到宏观各尺度科研手段的覆盖。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/391966ef-787a-4ac0-a6d6-1878340029a2.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " strong Operetta 高内涵筛选系统 /strong /p p   引进这些仪器是出于何种考虑呢?高丁解释说:“我们在做平台建设时,主要是考虑到从生物学的尺度上来完善仪器的使用链,包括从分子成像一直到活体动物成像,中间跨度从分子、病毒、细菌、细胞器、细胞、组织、器官到小动物这样横跨纳米到厘米级尺度的成像。所以我们一直在补充完善整个平台,就是为了实现整个跨尺度的研究。研究病毒是从它的生物大分子开始,一直研究到它对活体的影响,所以这个仪器链也是必须的。” /p p   从尺度上来讲,双碟片活细胞荧光共聚焦显微镜可以用来研究病毒侵染、细胞内病毒与细胞器之间相互作用关系的实验,观察病毒的动态。高内涵筛选系统可以在稍微宏观一点的基础上看药物对病毒侵染的影响,并且可以在细胞学水平对药物的抗病毒效果进行评价。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/014d9be3-3b5b-43e6-8a21-3b788f1a6031.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 0, 0) " strong Vectra多光谱组织成像系统 /strong /span /p p   从前做药物筛选就是做一些生化试验,比如在96孔板上加各种药物、病毒蛋白和宿主蛋白,来分析它们之间的相互作用,是用化学手段或者是分子生物学手段间接测得一些数据,并不能完全反应真实的相互作用关系。这时就需要双碟片活细胞荧光共聚焦显微镜、高内涵筛选系统在活细胞内或者组织细胞内对几万甚至几十万个细胞做进一步可视化分析,用可视化的数据来进一步验证实验结果。“借助双碟片活细胞荧光共聚焦显微镜,我们实现了在活细胞水平对病毒侵染细胞过程的实时观测 借助Opereta高内涵筛选系统,我们建立基于细胞表型的抗病毒药物筛选平台,并基于我们完善的抗病毒药物评价体系,我们跟很多药企建立了横向合作关系,产生了良好的社会效益,同时也发挥了我们所的病毒库资源优势。” /p p   做完细胞水平的研究后,就可以进入到活体小动物水平的研究了。用小动物活体成像系统观察病毒在小动物体内的繁殖、侵染过程,以及药物与病毒之间的相互作用。 /p p   “我们做实验就是要从体外做到细胞级,再做到动物级。这三个层级是完全不同的情况,不能互相替代,所以整个仪器链条一定要补充完整才行。”高丁博士如是说。 /p p   仪器用在工业领域往往是在做重复的工作,而科学研究则有很大差别。生物学研究涉及各种各样的实验,科研院所内不同课题组、不同研究人员的研究方向都不一样,因此要求共享的大型仪器性能要尽可能高,功能要尽可能丰富。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 病毒研究要求更高灵敏度、成像速度及安全性 /strong /span /p p   那么现有技术是否能完全满足病毒研究的要求呢?高丁博士表示,还需进一步提升荧光显微镜的灵敏度和成像速度。“对于病毒学来说,要做一些病毒侵染、示踪实验,观察病毒在细胞内的一些些动态行为,以及病毒与细胞内细胞器或蛋白的相互作用。因为病毒在细胞内运动速度非常快,这就需要荧光显微镜在很短的曝光时间内捕捉到细小的相互作用关系。病毒非常小,能染上的荧光也比较弱,现有技术的成像速度和灵敏度还是不够,这样就会丢失很多信息。所以需要提升荧光显微镜的灵敏度和成像速度来捕捉病毒的行为。” /p p   高丁博士介绍说,中心现在用的UltraVIEW VoX双碟片活细胞荧光共聚焦显微镜,可以在保持高分辨率的同时实现快速成像。“UltraVIEW VoX的成像速度大概是30帧/秒,分辨率大概是250纳米左右。这个速度比以前已经提高很多了,灵敏度也得到了保证,已经初步能实现我们想拍的一些画面和视频。但是对于病毒学研究来说,对于成像的速度和灵敏度以及分辨率还有更高的要求,对仪器供应商来说还有更大的提升空间。” /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/16a8c880-2f1b-4514-81c7-df7eb6bdffdf.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " strong UltraVIEW VoX双碟片活细胞荧光共聚焦显微镜 /strong /p p   高丁博士承担了中科院仪器研制项目。“我们这个所比较特殊,有高等级生物安全实验室,里面摆放不了高精密的大型仪器。所以我们根据这个需求,想设计一套方案来实现P3以下的实验可以在生物安全实验室外面做。因为生物安全实验室对场地和仪器有要求,日常消毒会破坏摆放在里面的高精密仪器。但是实验室进出非常麻烦,而且需要频繁进行过氧化氢腐蚀性消毒,价值几百万的仪器遇到腐蚀的东西很快就坏掉了。所以我们就希望能研究出满足生物安全等级的仪器,把实验带到常规实验室去做。” /p p    span style=" font-family: 宋体, SimSun " strong span style=" color: rgb(0, 0, 0) " 高丁简历 /span /strong /span /p p span style=" font-family: 宋体, SimSun "   高丁,男,博士,高级工程师,2012年毕业于中科院武汉病毒研究所。现为中国科学院武汉病毒研究所分析测试中心负责人。负责研究所大型仪器平台的管理、维护、开发工作。长期从事病毒蛋白纳米自组装及其应用研究,包括SV40病毒衣壳蛋白包装纳米颗粒机制 多层级复杂杂合病毒纳米结构的构建 基于病毒衣壳蛋白的多尺度微纳米包装颗粒细胞递送系统 包装颗粒的病毒抗体检测应用等。 /span /p p span style=" font-family: 宋体, SimSun "    strong 关于中科院武汉病毒所所级公共技术服务中心 /strong /span /p p span style=" font-family: 宋体, SimSun "   武汉病毒所公共技术服务中心由50年代电镜室发展而来,经历电镜室、分析测试中心、所级中心三个阶段,是研究所下属独立建制的技术支撑平台。中心实行“科学管理、开放共享、服务科研”的运行机制,由分管所领导担任中心主任,实行主任负责制。中心下设平台管理委员会、公共技术平台管理办公室,以及五个专业技术实验室(中心),包括分析测试中心、实验动物中心、BSL-3实验室、放射性同位素实验室。 /span /p p span style=" font-family: 宋体, SimSun "   中心作为研究所公共技术服务平台,负责统一管理研究所公用科研设施和仪器设备,确保这些设施设备在高度共享公用的机制下运行,同时参与制定研究所公用科研设施和仪器设备的发展规划、购置方案,面向所内外开展各类实验技术培训。 /span /p p span style=" font-family: 宋体, SimSun "   中心共有工作人员25人,其中正高2人,副高4人 拥有博士学位3人,硕士学位9人。中心现有共享仪器设备228台套,设备总价值达12941万元,共享设备年有效总机时数117244小时,其中由中心集中管理的仪器设备共36台/套(5254万元),年有效机时数达53290小时 委托学科组管理的仪器设备共192台/套(7687万元),年有效总机时:63954小时,总平均共享率79%。 /span /p p span style=" font-family: 宋体, SimSun "   其中分析测试中心包含电子显微平台、荧光显微平台和生物大分子分析平台等。主要仪器有:300KV冷冻透射电子显微镜、200KV透射电子显微镜、100KV透射电子显微镜、场发射扫描电镜、超高分辨率荧光显微镜、双碟片共聚焦显微镜、双光子荧光显微镜、病理切片全景扫描系统、光谱型病理切片成像仪、小动物活体成像仪、质谱流式细胞仪、分选流式细胞仪、分析流式细胞仪、生物大分子相互作用分析仪,分析型超速离心机、冷冻超速离心机等。 /span /p
  • 山东省医学影像研究会分子影像学分会在潍成立
    山东新闻网12月31日潍坊讯(记者王晓莉 通讯员田玉胜)山东省医学影像研究会分子影像学分会和山东省医学会放射学分会分子影像学学组成立大会暨潍坊市放射学会2008年年会于2008年12月27日至28日在潍坊召开。会议由潍坊医学院医学影像学系和潍坊医学院附属医院(影像中心)主办。潍坊医学院副院长王滨教授当选山东省医学影像研究会分子影像学分会主任委员(组长)。   全省各医疗和科研单位代表近200名代表出席会议。中华医学会放射学会前主任委员、天津医科大学第一中心医院副院长祁吉教授,全国高等医学影像教育研究会副理事长、黑龙江省医学影像学会主任委员、哈尔滨医科大学第四医院院长申宝忠教授,山东省医学影像学研究会理事长、山东省医学影像研究所副所长赵斌教授,山东省中西医结合学会影像学专业委员会主任委员、山东大学齐鲁医院马祥兴教授等专家到会祝贺并做学术报告。潍坊市卫生局张本水调研员到会祝贺。   会上祁吉教授、申宝忠教授分别作了《中国放射学发展现状及展望》、《分子影像学概论》的专题报告,潍坊医学院6位中青年专家及有关代表分别做学术报告,针对分子影像学的发展等进行热烈讨论。   据了解,分子影像学作为一门在基因组学、蛋白质组学和常规医学影像技术的基础上发展起来的新兴学科,其突出特点是采用影像学技术实现活体显示、可测量生化过程、明确病变性质与发展、及药效评估等,从而在临床上达到早期、更早期、及疾病前期的诊断治疗,干预阻断,评估疗效,预后估计等。因此分子影像学在临床医学、应用生物学及相关领域有重大应用前景。在我国尚未有成形的分子影像学学会组织的背景下,我省的分子影像学同仁在王滨教授的倡导下,率先成立山东省分子影像学学会组织。这对我省和全国的分子影像学发展和进步具有里程碑意义,同时标志着我省和潍坊医学院在分子影像学研究已到达国内领先水平,潍坊医学院分子影像学研究在此平台上将会有更大的突破和进展。
  • 【Hanson】评估多种取样技术对Hanson溶解测试仪结果的影响
    一、背景:溶解度测试的样品收集典型的溶解设备由6到14个容器组成,可安装或不安装自动取样器。在溶解度测试期间,会在预定的时间间隔内提取样品,并将收集到的样品与已知浓度的标准溶液进行比较评估。这种评估使用适当的分析技术进行,如高效液相色谱法或紫外光谱法。 最常见的取样技术涉及移除固定体积的样品,可能会用等量的溶液替换,也可能不替换。取样程序可以由自动取样器执行,在这种情况下,非常重要的是在收集样品进行分析之前清洗取样管。一些自动取样器设计为在收集样品前短暂保存已清洗的溶液。一旦样品被移除,已清洗的溶液会返回到容器中。二、实验在位于纽约切斯特努特岭的Teledyne Hanson分析研究中心,进行了多项实验以评估不同的取样技术及其对结果的影响。这些测试是在2022年2月到2022年3月期间进行的,使用了从美国一家零售药店购买的市售对乙酰氨基酚片剂,USP,批号# P119534,有效期至2022年3月。 溶解度测试是使用当前批准的USP专论进行的。次级参考标准购自美国的Sigma-Aldrich® 品牌。根据当前USP专论中的描述,制备了pH值为5.8的磷酸盐缓冲液作为溶解介质,并使用了从Sigma-Aldrich购买的化学品。 将900毫升的溶解介质转移到六个溶解容器中。一旦溶解介质的温度达到所需的37.0° ± 0.5 °C,测试就以50 RPM的速度使用装置II(桨叶)开始。每个容器中使用一片药片,并且多次重复实验以检查下面展示的四种取样技术。图片1:带有自动取样器的Hanson溶解度测试仪的图片 测试的技术1. 手动取样,不替换,在5、10、15、20和30时间点。2. 自动取样,不替换,在5、10、15、20和30时间点。3. 自动取样,替换,在5、10、15、20和30时间点。4. 使用回收储存器组件*,不替换,在5、10、15、20和30时间点。*回收储存器组件用于在取样过程中暂时保存样品。图片2:回收储存器组件 回收储存器是Teledyne Hanson AutoPlus&trade Maximizer&trade 的可选配件,它使得在多浴应用中能够将样品和清洗体积返回到溶解容器中。这种方法适用于两个带介质替换的溶解浴或三个不带介质替换的溶解浴。从溶解容器中收集的清洗体积通过样品路径被收集并分配到回收储存器中,在那里暂时保存。在从溶解容器中收集预定的样品体积后,对其进行检测并或分配到多填充收集架中,回收储存器中的样品和清洗体积(加上空气清洗)被分配回溶解容器中。 对于这项研究,采用了以下协议:&bull 在分析前,使用45 µ m、25 mm尼龙注射器过滤器对收集的溶液进行过滤。&bull 在相同的溶解介质中制备了已知浓度为0.01 mg/mL的参考标准溶液。&bull 样品溶液被稀释了10倍,以使用10 mm光程的石英细胞在243 nm波长下获得适当的吸光度读数。&bull 所有样品均使用Shimadzu UV-1800分光光度计进行分析。三、结果表1:取样技术#1结果 表2:取样技术#2结果 表3:取样技术#3结果 表4:取样技术#4结果图片3:通过使用四种不同的取样技术,对溶解的对乙酰氨基酚平均百分比进行了图形比较。四、讨论这项研究的结果表明,测试的取样技术对溶解的对乙酰氨基酚百分比结果没有显著影响。此外,是否取出并替换溶液或不替换溶液也对最终结果没有影响。当在采样前从容器中暂时移除4 mL的溶解介质,然后在采样后将其返回到容器中时,未观察到对最终结果的显著影响。应注意以下观察:&bull 用户应确保使用正确的计算方法(根据样品技术)来获得溶解百分比数据。具体来说,当从溶解容器中移除一定量然后替换时,应考虑稀释效应。&bull 当配置使用自动取样器的取样技术时,应考虑管长和替换管内溶液所需的体积。这项研究中使用了4 mL的回收体积。&bull 根据USP专论,每片溶解的对乙酰氨基酚百分比的限制是不少于(NLT)Q=80%。本研究中的所有样品都满足这一要求。五、结论基于本研究获取的数据,可以得出结论:依照美国药典专论的规定,所测试的溶解装置能够产生准确且稳定可靠的数据。在本研究中评估的任一样品采集技术均可在溶解度分布测试(或单一时间点测试)中采用。通过适当的取样技术公式,本研究获得的数据与Teledyne Hanson自动取样器平台保持一致。 相较于单一时间点或延长释放药物产品在较长时间点的采样,即时释放药物产品在早期时间点的样品采集更易受变异性影响。因此,日复一日、批次之间以及分析师之间的差异均可能对即时释放药物产品的分析结果产生影响。本研究中评估的任一取样技术均可便捷地应用于当前获批准的任何溶解度测试方法中。需要注意的是,在对现有取样技术进行修订前,应开展包括两种方法的交叉研究。 本研究是在Teledyne Hanson分析研究中心进行的,严格遵守了所有相关的内部标准操作程序,并按照美国食品和药物管理局制定的良好生产规范要求进行准备。这些设施可供协助开发客户协议。
  • 2001~2011最具影响力的创新技术产品奖
    2012年10月16日晚在上海卓美亚喜马拉雅酒店由德国慕尼黑国际博览集团和弗戈工业媒体 《实验与分析》杂志共同举办的&ldquo 感怀· 传承分析测试这十年&rdquo 暨&ldquo analytica China十周年盛典&rdquo 活动,出席庆典活动的嘉宾有原中国分析测试协会副理事王顺昌先生、国家环境分析测试中心POPs研究室主任董亮先生、原上海分析测试中心主任郑吉元先生、上海食品学会程裕东先生、BCEIA姜瑞平先生、《实验与分析》德文版主编Marc Platthaus先生等,三百余名行业顶尖专家、学者、优秀企业代表及用户欢聚一堂,共同回顾中国分析测试行业的黄金十年,并见证analytica China的十年发展历程。 上图:METTLER-TOLEDO热分析部门经理陆立明先生领取奖项证书及奖牌 METTLER-TOLEDO受邀参加了此次活动,超快速差示扫描量热仪(闪速DSC1) 荣获了2001~2011年物性测试类创新技术产品奖,梅特勒托利多热分析部门经理陆立明先生参加了此次颁奖仪式,从慕尼黑展览(上海)有限公司董事总经理罗维强先生手中接过奖状和奖杯。 上图:2001~2011年物性测试类创新技术产品奖 METTLER-TOLEDO超快速差示扫描量热仪(闪速DSC1)。这是目前世界上速率最快的商品化DSC仪器,升温速率达到10的7次方数量级(K/min),降温速率达到10的6次方数量级(K/min)。Flash DSC是创新型的超高速扫描量热仪,该技术能分析之前无法测量的结构重组过程。Flash DSC与常规DSC是理想的互补工具。极快的降温速率可制备明确定义的结构性能的材料,例如在注塑过程中快速冷却时出现的结构;极快的升温速率可缩短测量时间从而防止结构改变。Flash DSC也是研究结晶动力学的理想工具,不同的降温速率的应用可影响试样的结晶行为和结构。 上图:超快速差示扫描量热仪 Flash DSC 1 的特点与优点: 超高降温速率 &ndash 能够制备具有确定结构属性的材料; 超高升温速率 &ndash 减少测量时间与防止重组过程; 快速响应传感器 &ndash 允许研究极为快速的反应或结晶过程动力学; 高灵敏度 &ndash 可以使用低升温速率; 广泛的温度范围 &ndash 可在 &ndash 95° C 至 450 ° C 范围内进行测量; 用户友好型人体工程学与功能 &ndash 快速与轻松制备样品; 更多信息,请登录梅特勒-托利多网站:cn.mt.com
  • 7月1日施行,火电行业建设项目温室气体排放环境影响评价技术指南(试行)发布
    5月29日,为进一步规范和完善重点行业温室气体排放环境影响评价技术体系,统一适用对象和核算因子、明确核算边界与方法、确定评价指标与要求,全面统筹温室气体与污染物排放环境影响评价工作内容,生态环境部研究制定了《火电行业建设项目温室气体排放环境影响评价技术指南(试行)》,现予印发,自2024年7月1日起施行。《技术指南》规定了火电行业建设项目开展温室气体排放环境影响评价的适用范围、一般工作内容和程序、评价方法、技术要求等。本指南适用于《建设项目环境影响评价分类管理名录》中“火力发电 4411”和“热电联产4412”类别编制环境影响报告书的新建、改建、扩建项目(含异地迁建项目)温室气体排放环境影响评价。执行《火电厂大气污染物排放标准》(GB 13223)的其他火力发电(含热电)项目可参照执行。附:火电行业建设项目温室气体排放环境影响评价技术指南(试行).pdf《火电行业建设项目温室气体排放环境影响评价技术指南(试行)(征求意见稿)》编制说明.pdf
  • 我国机电仪器受国外技术性贸易措施影响最严重
    2015年6月29日,质检总局召开例行新闻发布会。质检总局新闻办公室主任、新闻发言人李静在新闻发布会上发布了2014年国外技术性贸易措施对中国出口企业影响调查结果。   2015年2月,质检总局在全国范围内开展了2014年国外技术性贸易措施对中国出口企业影响的问卷调查。调查采用了双层复合不等比例抽样法,依据HS编码,将被调查的出口企业划分为七大产品类别(农食产品类、机电仪器类、化矿金属类、纺织鞋帽类、橡塑皮革类、玩具家具类、木材纸张非金属类),从全国随机抽取了3146家出口企业,分布于全国31个省、自治区、直辖市,从企业所属行业、地区、性质、规模、出口国别、贸易损失、技术性贸易措施的表现形式等方面调查分析了企业遭遇国外技术性贸易措施情况,并了解了出口企业获取国外技术性贸易措施信息的途径、遭遇国外技术性贸易措施时采取的做法、希望获取国外技术性贸易措施的形式和途径以及在应对国外技术性贸易措施方面对政府主管机构和中介组织的期望等。   此次调查共收到有效问卷3134份,回收率达到99.6%。根据调查结果推算,2014年有36.1%的出口企业受到国外技术性贸易措施不同程度的影响 全年出口贸易直接损失755.2亿美元,比2013年增加93.2亿美元,占同期出口额的3.2%,比2013年上升0.2个百分点 企业新增成本222.2亿美元,比2013年下降20.3亿美元。   对中国企业出口影响较大的国家和地区排在前五位的是欧盟、美国、东盟、拉美、日本,分别占直接损失总额的32.8%、29.9%、8.1%、4.9%和4.6%。   受国外技术性贸易措施影响较大的产品类别排在前五位的是机电仪器、化矿金属、纺织鞋帽、玩具家具、橡塑皮革,分别占直接损失总额的41.3%、20.4%、9.6%、8.2%、7.2%。   受国外技术性贸易措施影响较大的省份排在前五位的是广东、浙江、山东、天津、江苏,分别占直接损失总额的31.4%、15.6%、13.9%、8.7%和6.1%。   抽样显示,主要贸易伙伴影响我国工业品出口的技术性贸易措施类型集中在认证要求、技术标准要求、标签和标志要求、包装及材料要求、工业产品中有毒有害物质限量要求等五个方面 影响农产品(19.40, -2.15, -9.98%)出口的技术性贸易措施类型集中在食品中农兽药残留限量要求、重金属等有害物质限量要求、微生物指标要求、加工厂和仓库注册要求以及食品标签要求等五个方面。   抽样还显示,技术性贸易措施被认为是继汇率之后企业在出口中遇到的主要障碍,继续受到企业的高度关注,出口企业在应对国外技术性贸易措施的问题上普遍表现得更为积极、主动,&ldquo 加强管理、自主创新,提高产品竞争力&rdquo 成为企业在遇到国外技术措施或技术要求限制时的首选做法。   下一步,质检总局将继续做好技术性贸易措施的收集和分析工作,重点开展对欧盟、美国等对我国影响较大的国别技术性贸易措施研究 积极推动技术性贸易措施公共信息综合服务平台建设,不断完善技术性贸易措施应对体系,推动各级政府、行业协会发挥重要作用,帮助企业更有效的应对技术性贸易措施。
  • 奕枫仪器参加2016细颗粒物污染防治技术与环境健康影响研讨会
    2016年12月29-30日,“2016细颗粒物污染防治与环境健康影响研讨会”在河北省石家庄市顺利召开。本次会议围绕大气环境与健康领域中的热点问题进行了广泛的交流和研讨,吸引了众多医疗、疾控、环保等领域的专家学者,政府环境部门管理者,企业单位的工程技术人员等前来参会。应主办方中国环境科学学会邀请,上海奕枫仪器设备有限公司参加并赞助了此次研讨会。当前,我国大气环境污染形势严峻,以细颗粒物(PM2.5)为特征污染物的区域性大气环境复合污染突出,已成为许多地区的重大民生问题之一。本次会议旨在深入交流大气细颗粒物污染组分、污染源及治理技术,推广大气环境治理与监测方面的新技术和新成果,探讨细颗粒物对人体健康危害影响的研究。会议邀请了清华大学贺克斌院士、中国环境科学研究院柴发合副院长、华南理工大学叶代启教授等知名专家学者,就细颗粒物污染控制技术及环境健康影响风险评价等领域作特邀主旨报告。与会期间,上海奕枫仪器设备有限公司展出了气溶胶粒径谱仪、健康风险评价系统、纳米级颗粒物与PM1.0采样系统、半挥发性有机物采样与监测系统等众多细颗粒物采集与监测设备。此外,现场展出的法国BERTIN CORIOLIS@ μ生物气溶胶采样器受到了医疗、疾控、环保等领域的专家学者的广泛关注,为细颗粒物对人体健康危害影响的研究提供了更加便捷的方式。上海奕枫仪器设备有限公司长期致力于国外先进仪器技术的引进与推广,并提供系统的解决方案,公司代理的产品涉及环境颗粒物采样与监测、环境气体采样与监测、高温烟气烟尘采样与监测、生物与药物气溶胶研究等领域,为推动环境科技创新、持续发展做贡献。
  • 技术前沿|冻干过程中微塌陷如何影响冻干产品的强度?
    之前我们在《干货分享 | 冻干样品配方的关键温度的测量》中,就已经聊到过关键温度对于冻干工艺的重要性。在冷冻干燥过程中,产品应保持在其关键温度以下,如玻璃化转变温度(Tg’),共晶点(Teu)和塌陷温度(Tc),以确保一个安全和稳健的循环,并减少产品冷冻干燥后出现的有害缺陷的风险。缺陷可能包括但不限于产品内的物理塌陷或微塌陷、活性丧失和高水分含量。微塌陷程度是最具挑战性的量化缺陷之一,许多配方由于药物活性丧失而在*个周期失效。一、如何量化微塌陷程度?MicroPress 微压力冻干饼分析仪 MicroPress 微压力冻干饼分析仪是一款由Biopharma公司完全开发的创新仪器,用于量化低密度材料中的原位微观缺陷,特别是在所有冻干产品中。例如,甘露醇经常用于配方中,它具有较高的关键温度,可以掩盖具有明显较低关键温度的产品的塌陷。葡萄糖的关键温度在-41℃左右,当与甘露醇结合时,如果干燥超过关键温度,就会塌陷。然而,由于甘露醇的膨胀性,该混合物尽管可能存在结构缺陷,但一旦冷冻干燥,就具有良好的外观。在保持甘露醇浓度不变的同时,可以通过改变葡萄糖的浓度来确定微塌陷的程度和饼状结构的影响。通常, 由于高温,用来冷冻干燥这种溶液的循环不会使葡萄糖足够冷冻干燥,因此可能会发生塌陷。相反,甘露醇会干燥足够的量来保持蛋糕的结构。然而, 由此产生的,看似不明显的微观的塌陷,会影响复水性,以及药物本身的稳定性和活性。以下是结合使用了MicroPress 微压力冻干饼分析仪的具体实验方法。二、具体实验方法1、配方溶液制备样品溶液的制备方法见表1。所有化学品均来自Sigma Aldrich。使用6ml西林瓶灌装2ml。表1:起始溶液的浓度2、样品冷冻干燥这些小瓶用表2所示的方法冷冻干燥。预冻让所有的样品被冷冻,使晶体尺寸增加,样品进入下一个阶段干燥。在干燥阶段,压力降低,使冰升华,干燥产品。所有样品都放置在冻干机的同一个托盘上,以控制干燥过程中的可见变量。 表2:在SP Scientific冷冻干燥机上使用的冻干工艺3、MicroPress测量与分析所有的样品都在MicroPress上使用相同的一组参数进行分析 ,通过用户友好的软件设计,参数很容易设置,并可以更改以适应任何要求。参数设置情况见表3。表3:MicroPress测试阶段及相应的速度Extend阶段的速度为10mm/s,与估计的蛋糕高度的距离在5mm以内。Seek阶段找到蛋糕的顶部,一旦感觉到力,Compress阶段开始,然后记录施加在蛋糕上的力。4、结果分析下表4显示了从配方分析获得的结果。配方1具有最高的杨氏模量,因此是最强的蛋糕。表4:获得的3种配方的强度结果● 配方1的平均杨氏模量为0.969 kPa,配方1中最强的值为图1中的橙色。该蛋糕的杨氏模量为1.246 kPa,*应力为17.600 kPa;● 图1中的另外两条曲线分别表示配方2 (灰色) 和配方3 (蓝色) 。配方2的杨氏模量为0.473 kPa,*应力为7 kPa;● 配方3(蓝色)看似比配方2(灰色)有一个更高的*应力,实际上真正的*应力在应变51%左右,杨氏模量为0.017 kPa,*应力为2.660 kPa,是所有被分析的蛋糕中最弱的。 图1:使用MicroPress分析的三种配方图(配方1-橙色,配方2-灰色,配方3-蓝色)三、关于实验的讨论表4中为本次实验中获得的数据。甘露醇/葡萄糖样品溶液中的葡萄糖浓度越高,蛋糕的强度就越弱。传统的甘露醇被用作赋形剂,已知它对许多配方的关键温度有积极 的影响。然而,这可能掩盖了一个配方可能具有的一些关键温度。葡萄糖的塌陷温度为-41.0℃,当甘露醇冻干时,塌陷在甘露醇支架上。这种蛋糕看起来很结实, 眼见的外观良好,但当用扫描电镜或类似的技术分析时 ,晶格看起来更“湿润”,孔隙更宽。当用MicroPress分析时,增加葡萄糖浓度对材料强度的影响是非常明显的。蛋糕内的葡萄糖越多,物质强度就会减弱。当使用冷冻干燥显微镜(FDM)或差示扫描量热法(DSC)进行分析时,发现样品往往只显示甘露醇的结晶和熔化,而甘露醇有着强大的外部结构,掩盖了葡萄糖的玻璃化转变。关键温度分析只揭示了甘露醇的熔化,因此当产品冻干保持样品在-10℃以下,葡萄糖在主体材料中塌陷。因此, 由于葡萄糖的关键温度较低,甘露醇通常能够在标准的初级干燥条件下很好地干燥,而葡萄糖则不能。此外,当配方中的葡萄糖浓度增加时,蛋糕内的微塌陷程度增加,从而产生较弱的蛋糕。在储存或运输过程中,有微塌陷的材料更容易损坏或减少活性成分。四、*结论传统上,冻干样品的质量是由一些定性技术来确定的,包括;视觉评估,复水时间,与参考文献相比的外在强度,水分含量。然而,这是一种主观的分析,数据的质量可能取决于操作者的经验。Biopharma公司开发了这种压痕技术 ,并将其应用于冻干蛋糕,以减少主观性,并提供冻干产品的定性数据,以确定样品中是否存在产品缺陷。 配方中每个成分的关键温度与配方的整体关键温度同样重要,冻干产品在一个看似安全的温度会导致弱蛋糕由于冻干期间结构减弱和微塌陷影响蛋糕的强度。一旦材料被冻干,MicroPress可以用来测试得到的蛋糕的物理特性,以及它们是否在整体强度的所需参数范围内。在MicroPress上分析的蛋糕还可以使用卡尔-费休法测试水分含量, 如果需要玻璃化转变温度或熔点温度也可以使用mDSC进行测试。一旦确定了冻干样品的初始曲线,可以改变配方,增加其它辅料,这可能会影响冻干蛋糕强度。如表4所示,增加材料的浓度并不一定会增加蛋糕的强度。因此,如果在运输过程中发现蛋糕破裂或破碎的问题,则应进行轻微的改变,或包含或排除一种或多种辅料可能是有益的。
  • Protein A材质对生物分离传化的影响 ,微球精准制造技术应运而生
    早前,江必旺博士分享了《浅谈令人“爱恨交加”的Protein A亲和层析介质》、《盘点Protein A亲和填料质控必看的重要参数》,本期带大家了解Protein A 亲和层析介质的制备过程中需要考虑的那些影响因素以及纳微科技带来的创新成果,也欢迎大家在评论区留言讨论。纯化后的Protein A配基可以通过其分子上的氨基或末端的巯基与微球上的功能基团偶联制备成Protein A 层析介质。Protein A层析介质的性能与其本身的配基性能,基球材料组成,基球孔径大小,孔容积及表面功能化等都有关系。为了高效率把目标生物分子从复杂样品里分离出来,并保持其生物活性,用于分离纯化的层析介质材料必须满足苛刻的要求如介质材料组成、形貌、粒径大小、粒径分布、孔径大小和分布、功能基团、及表面亲水性能等。 Protein A材质的影响 目前Protein A 亲和层析介质基球主要由两大类材料组成:第一类是以琼脂糖,葡聚糖为代表的多糖层析介质;第二类是以聚丙烯酸酯和聚丙烯酰胺为代表的合成高分子层析介质。其中天然多糖高分子改性介质由于具有亲水强,生物兼容性好,能减少对生物分子的非特异性吸附等特点,因此在分离过程中容易保持生物分子的生物活性。另外交联天然多糖介质在溶胀状态下其多糖分子链可以舒展开来形成网状孔道结构,因此多糖介质表面积大,容易做成高载量的介质。软胶是生物大分子分离纯化应用历史最悠久,最广泛的亲和层析介质。但天然多糖改性高分子介质因其基质柔软而被称为软胶,其主要缺陷是机械强度差、压缩比大、柱床不稳定、操作困难、流速慢、生产效率低等,另外软胶在干燥状态下脱水容易导致孔道结构塌陷从而失去分离性能,因此,软胶填充的层析柱床一般不能脱水。相反,合成多孔高分子层析介质微球具有机械强度高,化学稳定性好等特点,因此可以耐受更大的压力、更快的流速,从而提高分离效率,虽然其在市场应用的晚但其市场增速最快。另外合成高分子微球粒径大小,粒径均匀性更容易控制,使得合成高分子介质更容易装柱,柱效和分辨率也更高。同时聚合物介质孔道结构是通过无数高度交联的纳米粒子堆积而成。这些纳米粒子不溶胀,分子进不去,因此其表面积比琼脂糖基质的小,但孔径通透性更好,因此分子传质速度快,在高流速下载量可以保持的更好。但合成高分子层析介质的缺点是其疏水往往比软胶大,导致非特异性吸附大,容易使生物分子失去活性。因此聚合物微球表面需要进行亲水化改性以降低其非特异性吸附才能满足层析分离的需求。无论是以交联琼脂糖为基质的离子交换介质还是以表面亲水化改性的聚合物为基质的离子交换介质都有各自的优缺点,但它们的目标都是一致的,都是往高载量、高机械强度,高分辨率、高回收率方向发展。因此为了生产更理想的层析介质,交联琼脂糖层析介质要解决的问题是在保持它亲水性优势下如何提高其机械强度,而聚合物介质问题是在保持其机械强度优势条件下如何解决亲水化问题并降低非特异性吸附。 介质孔径大小及孔隙率对生物分离的影响 除了粒径大小和分布会影响层析介质分离性能外,孔径大小、比表面积及孔隙率也是生物分离纯化介质最重要参数之一。层析分离模式主要是分子与介质表面功能基团作用的结果,层析介质可及比表面积是影响其吸附载量的主要因素之一,可及比表面积是分子可到达的内孔表面积加上介质外表面积。由于内孔表面积占据整个比表面积的90%以上,而内孔表面积主要由孔径大小,孔隙率来决定。孔径越小比表面积越大,但如果孔径太小,目标生物分子进不去,这样的小孔及其表面积对分离是没有作用的。孔径太大,比表面积也会降低,因此对于不同分子量大小的生物分子,有个最优的孔径大小,其可及表面积最大,分离效果最好。比如说用于抗生素这类分子量小的生物分子,孔径一般选择小于30纳米以下,而对于抗体蛋白分离纯化的介质一般选择孔径在100纳米左右,而对于病毒这种大尺寸的生物,需要400纳米以上超大孔的介质。另外孔隙率越大,比表面积越大,载量也会越大,同时机械强度越差,因此选择孔隙率也需要平衡机械强度和载量的要求 Protein A 配基的影响 Protein A 亲和层析分离是基于Protein A 配基与抗体的特异性结合。天然Protein A 来源于金黄色葡萄球菌的一个株系,它含有5个可以和抗体IgG 分子Fc 段特异性结合的结构域。由于天然的Protein A 配基耐碱性差,为了提高Protein A 耐碱性,延长其使用寿命,因此现在市场上使用的Protein A都是经过天然Protein A序列改造过的重组蛋白。每家重组蛋白A的序列不同,亲和力不同,洗脱pH 条件不同,耐碱性能不同。Protein A 配基对抗体纯度,回收率等有重要影响。 粒径大小和粒径均匀性的影响 粒径大小和均匀性不仅影响柱效,分离效率,对Protein A 载量影响也很大。粒径越小,分子传递路径越短,Protein A 与抗体结合的效率越高,载量就越大,比如说以琼脂糖为基质的Protein A 介质,如果粒径是90微米,载量只有50毫克/毫升,如果粒径减小到50微米,载量可高达90毫克/毫升,因此粒径与载量成反比,但粒径越小,反压越大,因此选择粒径大小需要考虑压力和载量。另外粒径越均一,其洗脱越集中。粒径分布均匀,形貌规整的球形填料填充柱床的紧密程度一致性好,流动相在柱床中的流速均匀,流动相经过柱床的路径长短一致,从而有效降低涡流扩散系数,使色谱峰宽变窄,理论塔板数升高。纳微十多年坚持不懈的研究开发出世界领先的微球精准制造技术,该技术可以对微球的材料组成、粒径大小、粒径均匀性、孔径大小及表面性能达到前所未有的精准控制。纳微利用这一技术平台开发出新一代单分散多孔聚丙烯酸酯为基质的Protein A 亲和层析介质克服了传统Protein A 软胶的缺点。纳微Protein A 介质创新点主要有以下几点:首先,纳微Protein A 介质具有精准的粒径大小和高度的粒径均一性,使其具有流速均匀、洗脱集中、流动相用量少而且装柱容易、柱效高、柱床稳定、压力低、柱与柱重复性好等优点;图4 纳微单分散Protein A介质与传统软胶基质微观结构对比图5 传统多分散Protein A亲和软胶与UniMab液流路径对比示意图第二,纳微Protein A 基球经过优化筛选专门设计的大孔结构,其孔径远大于GE Protein A 产品。因此该介质具有蛋白传质速度快,使得介质在高流速下具有高载量。从实验测试数据可以看到,纳微UniMab与GE MabSelectSuRe在驻留时间大于4分钟时,载量都差不多,当驻留时间小于2分钟时UniMab的载量高于MabSelectSuRe载量50%以上, 而且速度越快UniMab载量优势越明显。抗体生产效率是由载量和流速共同决定,但流速越快载量越低,因此对于每个亲和层析来说有个最优的流速。实验证明对于批次亲和层析,驻留时间是2分钟时生产效率达到最高,对于连续层析驻留时间是1分钟时生产效率最高;图6 UniMab与MabSelectSuRe产品不同驻留时间动态载量对比图7 不同Protein A 层析介质驻留时间与抗体生产效率与关系对比从抗体流穿曲线对比图也可以看出具有大孔结构及高度粒径均匀性的单分散Protein A亲和层析介质与进口软胶相比具有更陡的穿透曲线,说明纳微单分散层析介质具有更畅通的孔道结构,分子在介质里扩散速度快。抗体流穿少,回收率高。图8 抗体流穿曲线对比图第三,纳微Protein A 基球是高度交联的聚丙烯酸酯组成,与市场上软胶或低交联度聚丙烯酸酯为基质的Protein A 介质相比具有溶胀系数小,压缩比例低,而且具有优异机械性能,可以承受更高流速条件产生的压力,并装更高的柱床,有利于增加抗体批处理量,提高抗体生产效率,减少设备投资。UniMab在2公斤压缩比例只有5%,而市场上Protein A 介质压缩比例往往超过15%。图9 UniMab与软胶与压力流速曲线对比第四,纳微用于Protein A 介质的基球是通过多步表面亲水化改性,因此表面亲水性能好,非特异性吸附低,在抗体分离过程中,HCP去除效果好。一般来说聚合物基质的Protein A 因为亲水性问题,HCP 去除效果往往比软胶差,但UniMab可以达到软胶Protein A 的同等水平。图10 纳微UniMab与对照填料的HCP去除效果第五,除了创新基球外,纳微又经过多年的努力通过优化组合不同片段的Protein A 设计出有自主知识产权的耐碱性Protein A 配基,并实现大规模生产。最后通过优化偶联工艺成功地生产出世界首个单分散Protein A 亲和介质产品,不仅实现该产品的国产化,而且克服了现有市场上Protein A 介质的主要缺陷。纳微单分散Protein A 介质不仅可以提高抗体的生产效率,降低抗体的生产成本,更是下一代连续层析理想的介质。亲和层析分离条件影响ProteinA亲和条件相对简单,无需繁琐参数优化。平衡阶段,盐浓度及pH是两个重要参数。由于ProteinA与抗体分子核心区域主要作用力依靠组氨酸疏水性介导,所以增加平衡盐浓度一般可增加3-5mg载量。pH则通常控制在6-7.5,若低于5.0以下,可能会降低动态结合载量,从而降低了回收率。上样后清洗是去除结合于填料的宿主蛋白(HCP)及核酸(DNA)等杂质的主要过程。清洗pH较为关键,在抗体分子未清洗掉的前提下,选择尽可能低的pH作为清洗条件,以去除更多的HCP等杂质。若常规pH条件无法奏效,可以加入高盐(1M氯化钠)或添加剂如精氨酸、吐温80、尿素及异丙醇等。pH是洗脱过程中最关键工艺参数,在确保回收率的前提下,尽可能选择更高的pH进行洗脱。较低pH会导致洗脱的抗体浓度过高,产生更多的聚集体。另外,洗脱buffer类型也会对洗脱浓度及杂质含量有影响,如相同pH的柠檬酸洗脱强度高于醋酸。表4 不同Buffer洗脱液效果比较缓冲液洗脱体积(ml)洗脱浓度(mg/ml)收率(%)HCP(ppm)洗脱液20mM HAc pH3.546.591.5129洗脱液20mM Gly pH3.563.880.3167洗脱液20mM Citric pH3.53.77.395.186另外,洗脱液加入精氨酸、氯化钠、聚乙二醇、尿素、组氨酸、咪唑等皆有助于减缓低pH的破坏作用,提高洗脱液纯度。下图是UniMab50纯化过程中在淋洗及洗脱步骤加入了1%聚乙二醇PEG3350,SEC纯度提示PEG可显著降低聚集体含量。
  • 新一代测序技术用户调查:瓶颈与影响购买的因素
    今年The Scientist杂志与另外一家国际市场情报与咨询公司Frost & Sullivan合作,展开了一项新一代测序技术NGS使用情况的用户调查活动。   调查结果显示,目前大部分新一代测序技术研究工作主要集中在基础研究和疾病相关的研究方面。这一调查受访者中约有40%的研究人员参与了新一代测序研究,不过下半年的人数可能还会增加4%,还有一半受访者表示在未来的两年内,将计划进行着方面的研究。   目前新一代测序技术流程中最大的瓶颈是分析和注释数据所花费的时间太长,大约有 32%的受访者都将这些工作外包给生物信息学同事,或者第三方公司。   那么影响购买者购买仪器的因素有哪些呢?   调查显示,数据的准确性和操作成本,这两者是购买测序设备的最重要采购标准。但是如果两种仪器的数据精确度相同,那么操作成本、应用的广泛性,读长和通量就成为了第二重要的参考因素。      平均花费的时间:   NGS 工作流程的最大瓶颈是分析和注释数据所花费的时间太长。有四分之一的研究人员表示NGS数据分析需要至少一周时间,还有32%的受访者将这一工作外包给其他生物信息学组同事或第三方公司。   影响购买者选择的因素:   数据的准确性和操作成本,这两者是购买测序设备的最重要采购标准。但是如果两种仪器的数据精确度相同,那么操作成本、应用的广泛性,读长和通量就成为了第二重要的参考因素。      NGS软件分析预算:   每年NGS 数据注释软件的预算是外包费用的两倍多,目前NGS 软件整体平均预算约为8,500 美元,不过这一数据还表明,内部和外包所花费的费用存在巨大差异,前者的费用约为13,000-14,000美元,后者的费用为4500-6300 美元)。
  • 【技术知识】分析影响微量氧分析仪测定结果的4个因素
    微量氧分析仪主要半导体元件用热敏元件和所述金属电阻丝的类型。敏感半导体元件小,热惯性小,大的电阻温度系数,高的灵敏度,一个小的时间滞后。在铂线圈作为传感元件,则内电阻,围绕作为补偿元件的非反应性气体的交界处材料的金属氧化物烧结珠等于铂相同体积的发热线圈。构成该臂作为一个桥式电路,即,一个测量电路这两个部件。金属氧化物半导体气体传感元件吸附法测定的,并发生变化的电导率的速率即,散热元件的状态也改变。在铂线圈的可变电阻的温度变化,则存在在电桥输出电压,从而能够检测气体浓度的不平衡。微量氧分析仪的应用非常广泛,除了通常用于分析氢,氨,二氧化碳,二氧化硫含量和低浓度的可燃气体,也可作为色谱检测分析器,用于分析的其他组件。当我们用微量氧分析仪测量氧含量时数值飘移不定,出现分析结果数据不准确。其主要原因是氧气分析仪使用不当造成,以下仅谈几点影响测定的因素:1.氧气测定仪上的过滤器要洁净。每使用过一段时间就要清洗过滤器或者更换过滤器来确保测得数值不飘移,只有这样才能保证氧气测定仪不被影响,所得数据正确。2.氧气测定仪的环境破坏。在使用氧气测定仪时,环境的好坏也会对传感器进行一定的干扰,适当的清理灰尘和清除污渍,这样对传感器的寿命也会增长使用。3.管道材质的选择。管道材质及表面的湿度也将影响样气中氧含量的变化。一般不宜用塑料管,橡胶管等作为连接管路。通常选用不锈钢管和四氟管。4.氧气测定仪的泄漏。氧气测定仪在初次启用前必须严格检漏。氧分析仪只有在严密不漏的条件下才能获得正确的数据结果。任何连接点,焊点,阀门等处的不严密,将会导致空气中的氧反渗进进管道及氧分析仪内部,从而得出含氧量偏高的结果。  相关仪器C1020微量氧分析仪采用了高性能的电化学式气体传感器和微处理机技术,具有数字显示、通迅记录等功能。适用于对氮气、氩气、一氧化碳、氢气等还原性气体中的微量氧气浓度连续监测。
  • 浙大女教授当选世界分子影像学会主席
    田梅近日,世界分子影像学会(WMIS)宣布,浙江大学教授田梅当选世界分子影像学会主席,任期从2021年下半年开始。这是我国科学家首次担任世界分子影像学会主席职务。世界分子影像学会是国际分子影像领域唯一的全球性学术组织,也是全球五大洲分子影像学会的总会,每年主办分子影像领域规模最大、水平最高、影响力最广泛的学术会议——世界分子影像大会,并出版分子影像领域重要学术期刊《分子影像与生物学》。分子影像是一门新兴多学科交叉融合的学科,是对人体或活着的生命体内细胞和分子水平的生物化学变化过程进行无创、定性、定量、定位、并可时空动态反复精准测量的影像可视化技术。分子影像可以将精准医学可视化,极大提高我们对人体进行从微观到介观,再到宏观和整体的认识,极大推动精准医学发展。分子影像涉及的专业领域包括分子生物学、生物医学影像、临床医学、药物化学、生物化学、药学、信息技术、光电子技术、影像物理学等多学科综合交叉,这也是国际著名大学和科研院所近二十年来争相发展的重要标志性学科。浙江大学教师个人主页显示,田梅,影像医学与核医学专业教授,硕士生导师、博士生导师。教育部“长江学者”特聘教授、国家杰出青年科学基金获得者、科技部“重点领域创新团队”负责人。现任浙江大学医学中心副主任、浙江省医学分子影像重点实验室主任,浙江省科学技术协会副主席。研究方向为影像医学与核医学。
  • 质谱成像:沃特世全谱图分子影像系统介绍
    p strong    span style=" color: rgb(84, 141, 212) " 全谱图分子影像 /span /strong    /p p   全谱图分子影像系统将多种分析技术整合至同一仪器平台并进行了优化,能够更好地了解细胞功能和生理机能,或监测整个组织或器官中的药物化合物分布情况。它可以结合多种成像技术获得全面分析结果。& nbsp /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/222f22ae-9fa8-40b9-a478-bfe553697df5.jpg" / /p p style=" text-align: center " strong 小脑中三种脂质离子的特定分布叠加图像 /strong /p p   沃特世全谱图分子影像系统通过将MALDI& #8482 、DESI、离子淌度质谱技术和信息学工作流程整合入单个系统,可以带来其它任何单一影像技术都无法企及的详细分子信息。全谱图分子影像系统可用于: /p p   发现、识别并测定目标分子的空间分布; /p p   有效研究各种大分子和小分子; /p p   无需标记探针即可进行成像研究; /p p   可从单个样品获取尽可能多的信息; /p p style=" text-align: left "   获得关键化合物的最终分子分布。& nbsp /p p   全谱图分子影像功能能够帮助用户更加深入地了解癌症潜在机制,并能够通过测定细胞和组织中的分子转运发现心血管疾病以及神经退行性疾病。在其它研究中,全谱图分子影像系统可根据分子组成对不同的组织类型进行鉴定,也可以区分病变和正常组织。& nbsp & nbsp /p p strong    span style=" color: rgb(84, 141, 212) " 全谱图分子影像技术 /span /strong /p p   全谱图分子影像系统可用于Xevo G2-XS或SYNAPT G2-Si质谱平台。如有需要,上述全谱图分子影像系统完全可作为标准ESI-TOF仪器用于除分子成像之外的其它应用。 /p p   全谱图分子影像系统与质谱技术结合后非常适用于分析特定类型的分子(多肽、脂质、小分子代谢物和糖类等等),这两项技术相互补充,可为质谱成像提供最全面的信息。& nbsp /p p    strong 全谱图分子影像系统可采用的技术包括: /strong /p p    strong 基质辅助激光解吸电离(MALDI)成像 /strong /p p   MALDI成像技术利用激光直接电离法分析化学基质包被样品中的分子。MALDI成像技术是公认的质谱成像应用标准技术。 /p p   利用MALDI质谱成像技术直接生成组织截面的图谱是一种直接从生物学基质研究其大、小分子空间分布的强大工具。质谱数据图像的描述作为二维图像,允许从视觉上确定其分子的空间分布。不像昂贵耗时的传统空间图谱方法,如放射自显影术、闪烁计数器,它不需要放射标签。 /p p   MALDI SYNAPT& #8482 HDMS& #8482 系统成像设备,为小分子、药物及其代谢产物提供了最佳的特异性和灵敏度。MALDI Q-Tof Premier& #8482 质谱仪,利用一个能够进行快速数据采集的200赫兹固态激光器,可以方便地提取质量、强度和位置等信息。提取的数据可以输入适当的软件包,如用于图像生成和操控的BioMap(Novartis)。其技术优势为: /p p   卓越的空间分辨率; /p p   适用于分析多种分子类型; /p p   尤其擅长大分子成像。 /p p    strong 电喷雾解吸电离(DESI)成像 /strong /p p   DESI成像技术利用溶剂电离喷雾直接进行成像,此电离技术无需进行样品预处理。沃特世在传统DESI成像技术的基础上强化了其功能性,赋予该创新型成像方法以更好的可用性和性能。使用DESI成像技术的部分优势: /p p   最简单的样品制备过程; /p p   擅长脂质和小分子成像; /p p   可在同一个样品上进行多个成像实验。 /p p style=" text-align: center " img title=" DESI_MaldiWorkflow_White.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/d38df7b4-3558-4637-9e34-f18a3c1bd077.jpg" / /p p style=" text-align: center " strong DESI-MALDI流程图 /strong /p p   strong  离子淌度技术的质谱成像 /strong /p p   离子淌度可为成像研究增加另一个维度的分子分离,此技术能够根据分子大小和形状对其进行分离分析。离子淌度技术可用于消除干扰或分离目标分子用以通过更加严格的审查,利用更强的分子区分能力来提升成像系统分析性能。离子淌度可用于: /p p   消除图像中的干扰分子; /p p   区分结构极其相似的分子(例如脂质等); /p p   分离特定类型的目标分析物。 /p p style=" text-align: center " & nbsp img title=" 1Triwave_Figure10_lg_700.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/4aeda8b7-4c91-428b-a85a-5c896fac8c01.jpg" / /p p style=" text-align: center " strong 离子淌度分离技术 /strong /p p   与UPLC/MS不同,质谱成像在电离前不涉及任何形式的分离。由于观察的详细程度和可能的背景干扰,产生的数据通常非常复杂。SYNAPT HDMS实现了MALDI和DESI成像与离子淌度质谱的强大结合,离子可以按质谱成像实验中的化合物种类和电荷进行气相分离,提供单独的质谱不具备的选择性水平。该技术可以使得到的成像数据更清楚,可以更精确地看到背景存在下的分子分布。 /p p style=" text-align: center " img title=" 1DESI-Systems.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/955d4a17-0825-444a-acef-9c6f1de56666.jpg" / /p p style=" text-align: center " strong 全谱图分子影像系统所采用技术 /strong /p p    span style=" color: rgb(84, 141, 212) " strong 全谱图分子影像系统组件 /strong /span /p p    strong SYNAPT G2 Si质谱仪 /strong /p p   SYNAPT平台是一款功能强大且非常灵活的仪器,可配备各种选件(MALDI、DESI、离子淌度技术)进行成像研究。这款强大的系统可根据具体需要添加任意数量的配置,能够最好地满足几乎任何实验室对分析性能的要求。SYNAPT G2-Si在所有成像模式中均表现出众,是唯一能够将离子淌度功能与成像技术充分结合的系统。基于SYNAPT的全谱图分子影像系统非常适用于蛋白质组学、代谢组学、细胞生物学、生物化学乃至临床研究病理学和组织学应用,是质谱成像研究的终极解决方案。 /p p    strong Xevo G2-XS QTof质谱仪 /strong /p p   Xevo G2-XS QTof是一款高性能、高灵敏度分析平台,专为某些最具挑战性的成像研究而设计。全谱图影像系统借助Xevo G2-XS QTof出色的分析性能并结合DESI成像技术,能够对整个样品和组织中的小分子分布进行研究,尤其适用于脂质组学、代谢组学和药物分布研究。 /p p style=" text-align: center " img width=" 200" height=" 345" title=" _1rgp8465_ian2.jpg" style=" width: 200px height: 345px " src=" http://img1.17img.cn/17img/images/201708/insimg/055e40bb-04f6-471f-8746-0b498bd9c17c.jpg" border=" 0" vspace=" 0" hspace=" 0" / & nbsp /p p style=" text-align: center " strong Xevo G2-XS QTof质谱仪 /strong /p p    strong HDI成像软件 /strong /p p   这款功能强大且直观的软件包中含有针对复杂成像数据进行高效、快速数据分析时所需的全部数据分析和先进统计工具。HDI软件简单易用且专门为质谱成像而开发,可查询多维度数据,并能够轻松给出丰富详实的图像和统计数据,这些都使得质谱成像技术成为一项极具前景的分析技术。 /p p style=" text-align: center " img title=" 1WG_HDI_Software_schematic_950px.jpg" src=" http://img1.17img.cn/17img/images/201708/insimg/78843426-0455-43b6-af8d-930c34f8143a.jpg" / /p p style=" text-align: center " strong HDI成像软件 /strong /p p & nbsp /p
  • 腾讯进军AI医学影像领域,正式发布AI医学影像产品——腾讯觅影
    p style=" text-align: left " strong br/ /strong /p p   8月3日,腾讯公司正式发布了AI医学影像产品——腾讯觅影。 /p p   这是腾讯公司首个应用在医学领域的AI产品。腾讯觅影包含有6个人工智能系统,涉及疾病包含食管癌、肺癌、糖网病、宫颈癌和乳腺癌。其中,其早期食管癌智能筛查系统最为成熟,实验室准确率在90%,现已进入临床前实验阶段。据了解,此系统在深圳南山医院部署一个多月的时间内,每天为几十位患者进行筛查。 /p p style=" text-align: center " img width=" 600" height=" 374" title=" 1.jpg" style=" width: 600px height: 374px " src=" http://img1.17img.cn/17img/images/201708/insimg/973d7c0d-8736-4c7e-a003-78ac6575b34e.jpg" border=" 0" vspace=" 0" hspace=" 0" / /p p   另外,此次腾讯公司还发起成立了人工智能医学影像联合实验室,并启动全球首个应用AI医学影像的食管癌早筛项目的临床预试验。中山大学附属肿瘤医院(广东省食管癌研究所)、广东省第二人民医院、深圳市南山区人民医院成为首批加入联合实验室的合作医院。 /p p    strong 连接六大AI医疗应用场景 /strong /p p   腾讯觅影一共包含6个医疗AI系统,分别是: /p p   早期食管癌智能筛查系统 /p p   早期肺癌筛查系统 /p p   糖尿病性视网膜病变智能筛查系统 /p p   智能辅助诊疗系统 /p p   宫颈癌筛查智能辅助系统 /p p   乳腺癌淋巴清扫病理图像识别系统 /p p    span style=" color: rgb(255, 0, 0) " 1、早期食管癌智能筛查系统 /span /p p   食管癌是我国常见的恶性肿瘤。根据2016年《中华肿瘤杂志》发布的调查结果显示,2012年中国食管癌新发病例数为28.67万,发病率为21.17/10万,食管癌已经成为我国5大癌症之一。 /p p   众所周知,癌症的早诊早治有利于患者康复。中山大学医院管理处处长、广东省食管癌研究所所长傅剑华教授表示,早期的食管癌内镜治疗高效微创,手术后3-5天就可以出院,手术费用仅为后期食管癌治疗费用的三分之一,术后并发症也很少,远期的疗效更是优越,但是由于缺乏足够的认知和有效的早期筛查手段,目前我国早期食管癌检出率低于10%。 /p p   觅影的早期食管癌智能筛查系统,筛查一个内镜检查用时不到4秒,对早期食管癌的发现准确率高达90%。它也是全球首款食管癌智能筛查系统。 /p p   span style=" color: rgb(255, 0, 0) "  2、早期肺癌筛查系统 /span /p p   觅影的这套系统与一些创业公司不同之处在于,它通过对可疑结节精准定位,对患者进行全方位良恶性判别。而部分创业公司只能识别结节,却不能判断良恶性。 /p p   据优图实验室高级研究员孙星介绍,目前这套系统正在研发,训练数据集、测试数据集样本数量是数千人的规模,疑似结节数量为50多万个,同时算法模型也准备好了,结合腾讯云强大的运算能力,相信很快就可以出结果。 /p p    span style=" color: rgb(255, 0, 0) " 3、糖尿病性视网膜病变智能筛查系统 /span /p p   为训练这套系统,觅影团队对数十万糖网分期数据进行学习分析,打造糖网病筛查工具,用于糖网病早期筛查。 /p p   span style=" color: rgb(255, 0, 0) "  4、智能辅助诊疗系统 /span /p p   这个系统基于海量医疗大数据的分析与学习,服务于广大医生,旨在提高医生诊疗效率和基层医生诊疗准确性。它大致分为三个步骤:医学知识图谱构建→机器去学习诊断能力和经验→专家校验。虽然腾讯AI Lab的高级研究员并没有透露他们的研究进度和医学数据,但是腾讯不缺AI人才和计算力,数据足够以后,出结果是早晚的事。 /p p   span style=" color: rgb(255, 0, 0) "  5、宫颈癌筛查智能辅助系统 /span /p p   觅影系统对近万张内窥镜分型数据进行数据分析,打造宫颈癌检测智能筛查工具,用于宫颈位置类型检测,辅助医生快速辨别宫颈癌的宫颈位置,从而制定对应的治疗方案。目前,觅影并没有报告这个产品的研发进度。 /p p   span style=" color: rgb(255, 0, 0) "  6、乳腺癌淋巴清扫病理图像识别系统 /span /p p   觅影系统主要是应用在乳腺癌的筛查。TEG架构平台部高级工程师颜克洲透露,他们在研发的过程中遇到了一些困难,例如数据量和标注量不足,乳腺癌图像“同影异并,同病异影”等问题,不过目前已经想到了解决办法,项目正在顺利进行中。 /p p   以上我们所看到6款产品定位大多数是与疾病筛查相关的,虽然腾讯互联网+医疗的负责人常佳此次没有透露他们的在商业上的想法,但是如此清晰的产品功能定位也为后期商业模式探索确定了基调。 /p p    strong 腾讯速度:2个月完成模型训练 /strong /p p   在发布觅影系统的同时,中山医院的主治医师罗孔嘉透露早期食管癌智能筛查系统从开始训练到产品发布,其准确率达到90%,只用了短短两个月的时间。这样高速的背后除了中山医院医生的有力支持(中山医院参与此次研发的医生有19名),还凸显腾讯在AI人才、医疗数据方面的实力。 /p p   据e成科技发布的《BAT人工智能领域人才发展报告》指出,腾讯AI人才储备占公司总人数的比例为2.03%,腾讯2016年员工总数是17446人,如此推算,腾讯约有354名AI人才。这相当于清华大学智能技术与系统国家重点实验室硕博总人数的1.5倍。 /p p   在数据方面,用于研发早期食管癌智能筛查系统的数据来自于6家三甲医院的48740例患者的60万张图片,这些图片由合作医院的医生负责标注,然后进行模型训练。另外,为了让产品更加准确,他们还有测试组的数据,这些数据都是拥有病理检查的金标准数据,用来测试模型的准确性。 /p p   据深圳市南山区人民医院信息中心主任朱岁送介绍,食管癌智能筛查系统已经中山医院试用1个多月,每天为几十名用户进行筛查,他们很期待该产品在临床的数据结果。目前常佳对于腾讯的产品充满了信心。 /p p    strong 商业模式还在思考中 /strong /p p   谈及商业化,常佳表示:“商业化应用方面,腾讯不太着急,因为本身腾讯对医疗AI是准备长期投入,我们认为AI到现在还是处于一个早期或者是早中期的阶段,经过一段时间的额沉淀、全路程产品研发之后会有更多的空间,我们在目前阶段还不考虑商业化的事情,现在我们主要做两个产品,一个是做科研,另一个是跟我们的基金会一起做公益普查。” /p p   strong  阿里、腾讯进军医疗AI,创业公司需要担心吗? /strong /p p   在2017年3月29日的阿里云栖大会.深圳峰会上,ET医疗大脑正式上线。如今腾讯也带着6个产品系统进入医疗AI领域。巨头的进入会对医疗AI的创业者造成致命打击吗?我们是这样思索的: /p p   首先,中国医疗市场巨大,不是一、两家公司就可以吃得下的 /p p   其次,虽然腾讯、阿里在AI人才、计算力等方面有巨大的优势,但是创业公司的创始人不是国家级实验室毕业的硕士、博士,就是海外留学归来的专家,均是独当一面的AI人才。他们早于AT布局医疗1-2年,在产品上也相对成熟一些 /p p   再者,医疗AI重要的参与者——医院方并不会只买AT的账,目前医疗AI创业公司已经和很多大型三甲医院达成了合作,有了医院这个合作伙伴就有源源不断的医疗数据,另外很多创业公司的产品已经在临床试验阶段甚至是认证阶段,他们的系统自身也在不断搜集数据,因此在数据上创业公司并不十分担心 /p p   最后,在资金方面,创业公司虽没有AT财大气粗,但是近期AI的投资热潮使得大多数AI人工智能企业获得了融资,且规模不小。国内目前已有公开披露的医疗AI融资事件达到93起,其中有57起明确公布了融资金额。仅在国内,千万级和亿级的融资项目就占到了65%以上。因此,短期内医疗AI公司并不缺钱。 /p
  • 西安光机所研制成功光学相干断层影像仪
    日前,高速光学相干断层影像仪(OCT)由中科院西安光学精密机械研究所研制成功。   据研发人员介绍,该样机可高速、无损采集人眼视网膜活体断层影像,分辨率比现有眼科超声高10倍以上,并可快速重建出3D眼底结构图,为疾病更早期、更准确的诊断提供便利。借助该设备,医生只需简单操作,即可在1秒之内扫描出一幅人眼视网膜的三维断层影像。医生可在该影像数据基础上对病人的视盘、黄斑等参数进行数字化分析,使诊疗更加精准。   OCT是一种高分辨率的生物活体成像技术,其原理是对进入生物体后被不同密度的组织反射、干涉的光加以信号解调,进而成像。OCT检查无需任何外加显影剂,具有无辐射、无创、分辨率高、安全性高的特点,主要用于眼底黄斑区及视神经疾病的诊断,特别适用于老年性黄斑变性、青光眼、糖尿病视网膜病变、高度近视性眼底病变等疾病,拥有CT或超声无法替代的功能,俗称眼科CT。   OCT系统融合干涉光学、弱信号探测、色散补偿、图像处理等多种技术,是典型的交叉学科和系统工程。西安光机所科研团队通过改善各个环节的光学及硬件设计,在保证图像信噪比前提下,实现了每秒5万次的线扫描,超过国外同类高端眼科OCT的最快速度,在硬件上为实现快速3D扫描奠定了基础。
  • 天准科技第10000台影像测量仪下线
    “这台影像仪第一版的每一行代码、每一张图纸我都参与了!”站在展厅内一个影像测量仪前,天准科技董事长徐一华动情地说,“18年过去了,今天第10000台下线,这个数字,我相信放在中国全行业,应该也是当之无愧的第一名,也可能是全球的第一名。”  10月21日,天准科技举办“万中有你感恩同行”——天准影像测量仪10000台下线仪式。记者跟随行业专家、公司客户等嘉宾走进上市公司,参观了天准科技的智造精密车间,与企业高管进行了深度交流,探秘天准科技的发展路径。  天准科技是苹果链视觉检测装备的全球最大供应商,光伏硅片检测也处于全球领先的位置。  万台下线新起点  第一眼看到徐一华,记者感觉他是某所大学的教授,或是某研究所的研究员。徐一华在北京理工大学获得博士学位,在加入微软亚洲研究院后,从事人工智能相关的科研工作。  “2005年,我从微软出来,创立了这家公司。当年我27岁。”徐一华告诉记者,“一开始,公司在北理工校园里,条件比较简陋,在一个两居室民宅里,60平方米大,一间房放了两张上下床,睡4个人;另一间房办公。2008年,终于成功地干不下去了。”  徐一华笑着说:“干到山穷水尽的时候,房子卖了,亲戚朋友的钱也借光了。当时,我跟员工讲,你们继续在这里上班,我去工作赚钱养你们。”  “幸运的是,2009年苏州招商引资,给了我们一些支持,我们就毫不犹豫地来到苏州。”  2019年,天准科技作为首批公司之一登陆科创板。上市以来,营收和净利润的年复合增长率分别达到了33%和13%。正如公司副董事长、董事会秘书及财务总监杨聪所说,上市不是终点,而是新的起点。  “第一万台设备的下线,是天准科技在机器视觉应用领域取得的重大成就。”中国机器视觉产业联盟理事长潘津在仪式上致辞时表示,“希望天准科技把此次第一万台影像仪的下线作为新的起点,进一步深耕机器视觉产业,并积极拓展新领域,开发新技术,推出新产品,为我国的机器视觉的发展继续贡献天准力量。”  新理念打开新市场  今年开始,天准科技把影像仪单独拎出来,重新组建了计量事业部,启动三坐标的研发。  “高端装备领域,特别是精密计量的相关领域,中国的自主可控必须要进一步前行。”徐一华坚定地说,“实现这个目标,天准应该是最有希望的。”  公司计量事业部总经理刘雪亮向嘉宾介绍称:“目前为止,天准全球技术支持的服务网点已经达到26家,可以做到2小时快速响应,24小时到达现场,国内很多地方8小时就可到达。”  快速响应成为天准科技的巨大优势。公司一家温州经销商告诉记者,对比来看,某些国外品牌的维修人员要大半年才能到达现场,而且费用昂贵。  杨聪表示:“覆盖这么多领域之后,完全依靠机器视觉去拓展的机会不算太多。所以,我们有一个新的发展思路——进一步扩展以生产制造为主,机器视觉为辅的设备,我们管它叫视觉制程装备。”例如,在PCB领域,天准科技的LDI激光直接成像设备,以激光实现图形转印,前端具备辅助的视觉功能。  “近几年,正是以这样一个思路,充分利用公司在精密光机电领域的技术积累,快速拓展、扩大了公司业务。”杨聪介绍。  天准科技3.0战略落地之后,计量事业部扩大了研发及运营团队的规模,从此前60多人增至目前的100多人。今年,公司又投入1000多万元,对研发车间进行了改造升级。  “车间中有800平方米隔振达到VC-D/VC-C级别,可支持超高精度仪器的研发及近百台仪器同时生产,年产能2000台以上。”刘雪亮说,公司正在研发攻克超高精度影像仪,以打破国际品牌的垄断。  布局引领新未来  “天准的底层视觉算法完全是自己开发的,不是买别人的商用软件,或者用开源的方式去做。”徐一华说,这就是天准科技不断创新的底气所在。  据披露,天准科技研发投入占营业收入的比例长年在15%以上,高的年份超过20%。  高投入研发取得了丰硕的成果。“比如,连续三年推出PCB新产品,2021年推出LDI产品,2022年推出了AOI缺陷检测设备,今年又推出了PCB激光钻孔机,这是整个研发的一个序列的产品。”杨聪说,明年还会推出PCB的第四款产品。另外,在光伏、智能驾驶等业务,技术积累也开始获得了回报。  截至2022年,天准科技形成了7个事业部齐头并进的布局。消费电子、光伏和汽车制造作为天准科技的基本盘,有望稳健增长。而在PCB领域,公司重点推进LDI设备、激光钻孔设备等高端产品产业化,有望进入放量期。同时,受益于自动驾驶渗透率快速提升,公司的域控制器或快速放量。  杨聪也表示:“公司有着丰富的产品布局,新布局的产品也逐步开始形成销售,我们对公司未来的增长充满信心。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制