当前位置: 仪器信息网 > 行业主题 > >

荧光反应

仪器信息网荧光反应专题为您整合荧光反应相关的最新文章,在荧光反应专题,您不仅可以免费浏览荧光反应的资讯, 同时您还可以浏览荧光反应的相关资料、解决方案,参与社区荧光反应话题讨论。

荧光反应相关的资讯

  • 厉害了,康宁在光反应动力学的又一大突破!!!
    摘要近日康宁AFR欧洲技术团队,基于紫外-可见光下(E)-偶氮苯的光异构化,开发了一种高效、低成本的多波长化学光量测量方法。由量子产率估算和1H NMR核磁共振分析表明,对于从紫外光到可见光范围的各种波长,结果都非常准确。研究者还通过对光化学反应器中光子通量密度的测定,核算N2-苯腙在405nm波长下的量子产率,对该方法进行了验证。小贴士量子产率:每吸收一个量子所产生的反应物的分子数,通常是对于特定的波长而言,即量子产率=(生成产物的分子数)/(吸收的量子数)。量子产率是进行光化学学动力学研究的重要参数。光子通量密度:表示单位时间单位面积上在特定波长范围内入射的光量子数。背景相对于批次间歇反应釜,连续流光化学反应器具有持液体积小、透光均匀、反应安全且重现性好等优点。随着单色度高、寿命长且能耗低的LED光源的发展,市场上涌现出了新一代高效的连续流光化学反应器,产能通量包括从实验室级(克/小时)到工业生产级(吨/天)。在上述背景下,为了量化通过光反应器的光子通量密度,帮助理解光化学反应机理,并能精确地描述光反应器在生产率变化时如何随时间变化和操作,迫切需要开发低成本和多功能的光量测量方法。然而,现有方法大多数都是基于昂贵的光量光度计和繁琐的程序,且极少有测定连续流微通道光化学反应器中接收光子通量密度的光量测量方法被报道。研究过程:一、理论模型与结果化学家们曾研究了大量一级光化学反应物质,这些物质在光的诱导下转化为另一种物质的速率可以被精确测量,并与入射的绝对光子通量密度相关联。在这类光化学反应体系中,光子被反应物R和产物P以不同的摩尔消光系数吸收,吸光度随时间而变化。作者在前人的研究基础上,建立了理论模型。并考虑到康宁Lab光化学反应微通道的几何形状,呈现了两个垂直于光源的平行壁,由于光路在通道的每个点上都是恒定的,到光源的距离也是固定的和恒定的。利用康宁连续流光学反应器来研究化学光量测量方法所面对的主要问题,是要对康宁微通道反应器的玻璃模块的玻璃层和换热层的光透射进行修正。图1.康宁LAB光化学反应器剖面图2017年,作者的团队报道了一种简单的方法,在溶剂中使用偶氮苯作为一种方便的光度计。该方法的主要优点在于偶氮苯的成本低和使用核磁共振作为一种定量光谱技术来简化动力学测量。图2. 偶氮苯的光异构化研究者展示了应用此方法在具有四个不同波长(365、385、405和475nm)的康宁® Lab光化学反应器进行光量测量,并给出了数据和拟合结果(以405 nm为例):图3.康宁Lab光化学反应器中405 nm下的化学光量测量结果特定波长下(405nm),反应路径内的光子通量密度与光强之间的拟合公式如下:【编者语】康宁反应器不只是应用于工艺开发或者工业化生产,也适用于化学研究领域。不管是动力学理论研究,新的测量方法研究,还是新化合物的发明与发现,康宁反应器都有可能是您的得力助手。二、方法应用与验证:为了证明这种方法在连续流光化学反应动力学研究中的适用性,作者按照本文方法重新计算了isatin N2-phenylhydrazone的光量子产率(已知最近的文献中其光化学量子产率(ΦZ ≈ 1 × 10–3))。图3. 康宁实验室光化学反应器。前面铝箔覆盖包裹避免自然光照图4. isatin N2-phenylhydrazone 405nm异构化的光动力学研究 考虑到康宁Lab光化学反应器的通道极细(0.4mm),为了保证足够的量进行1H NMR分析,浓度增加到2×10−3mol.L−1。在上述浓度条件下,吸收约为99% (ε z=12270L.mol−1.cm−1),光子几乎全部吸收,可以通过核磁共振波谱进行非常精确的测量。由于康宁® Lab光化学反应器中良好的传热性能,温度可以保持在20°C,因此可以忽略热异构化的影响。由于Z-构型的氢键,E和Z异构体的浓度可以轻易的通过1H NMR进行定量。利用长停留时间确定了光静止状态。(Z)-异构体的甲醇溶液在405nm的不同停留时间照射,光功率为100%。 图5.isatin N2-phenylhydrazone的光异构化反应EPSS(0.20)被用作一个参数来绘制图ln (EPSS−E) 与时间的关系,它与相关系数表现出线性关系并具有良好的平方相关系数(R2=1.00) 。该图的斜率(0.070s−1)对应于公式:通过公式换算可以很容易的计算出量子产率ΦZ(1.1 × 10–3),这一数据与文献数值非常接近。结果与讨论康宁欧洲技术团队开发的此光量测量方法为应用连续流光化学反应器进行光反应动力学研究提供了参考。鉴于此方法安全、简单易操作,它的应用可以扩展到更大规模的连续流光反应器(如康宁G1和G3光化学反应器)中作为例行分析测试手段。参考文献:Photochemical & Photobiological Sciences. 8 January 2022
  • 登上《自然》封面!新型单分子化学反应成像显微镜在浙大问世
    化学创造着千变万化的物质世界,在这其中每一个单分子起到基本的作用。传统化学和生物学研究大量分子参与的反应和变化。著名物理学家埃尔温薛定谔曾评论过:“我们从来没有用一个单电子、单原子或单分子做过实验。我们假设我们可以在思想实验中实现,但是这会导致非常可笑的后果。”观察、操纵和测量最为微观的单分子化学反应是科学家面临的一个长久科学挑战。针对这一挑战,浙江大学化学系冯建东研究员致力于发展跨学科的单分子测量方法和仪器,实现多维度的溶液体系单分子物理和化学过程观测、新现象研究和应用建立。近期,其团队发明了一种直接可以对溶液中单分子化学反应进行成像的显微镜技术,并实现了超高时空分辨成像。该技术在化学成像和生物成像领域具有重要的应用价值,允许看到更清晰的微观结构和细胞图像。北京时间8月11日,这项研究成果作为封面论文刊登在国际顶级期刊《自然》。论文第一作者为浙江大学化学系博士生董金润和博士后卢禹先;论文通讯作者为浙江大学化学系冯建东研究员。 浙大团队的研究对象是电致化学发光反应。电致化学发光是利用电极表面发生的一系列化学反应实现发光的形式。相比于传统的荧光成像技术,由于不需要光激发,电致化学发光几乎没有背景,是目前对于灵敏度有着很高要求的体外免疫诊断领域的重要手段,其在成像分析等方向也具有一定价值。目前,电致化学发光存在两个重要的科学问题,其一是微弱乃至单分子水平电致化学发光信号的测量和成像,这对于单分子检测非常重要。其二是在电致化学发光成像领域实现突破光学衍射极限的超高时空分辨率成像,即超分辨电致化学发光成像,这一点对化学和生物成像具有重要意义。3年来,冯建东团队致力于这两大难题的研究,通过联用自制的具有皮安水平电流检出能力的电化学测量系统以及宽场超分辨光学显微镜,搭建了一套高效的电致化学发光控制、测量和成像系统。首次实现了单分子电致化学发光信号的宽场空间成像;并在此基础上成功突破了光学衍射极限,第一次实现了电致化学发光的超分辨成像。这项单分子电致化学发光显微镜技术不需要光激发即可实现单分子超分辨成像,有望影响化学测量和生物成像领域的应用。 在时空隔离中达到单分子反应测量极限教科书上的化学反应都是以单分子形式进行概念描述,但传统实验中得到却是大量分子的平均结果。单分子实验是从本质出发解决许多基础科学问题的重要途径之一,是研究方法的质变。这也是化学测量学面临的一个极限挑战。电致化学发光过程中,为什么难以开展单分子信号的捕捉呢?这主要是因为单分子反应控制难、追踪难、检测难。冯建东介绍:“单分子化学反应伴随的光、电、磁信号变化非常微弱,而且化学反应过程和位置具有随机性,很难控制和追踪。” 图1:单分子电致化学发光信号的时空隔离和随机性。为此,浙大科研人员搭建了灵敏的探测系统,将电压施加、电流测量、光学成像同步起来,通过时空孤立“捕捉”到了单分子反应后产生的发光信号。“具体从空间上通过不断稀释,控制溶液中的分子浓度实现单分子空间隔离。时间上,通过快速照片采集,最高在1秒内拍摄1300张,消除邻近分子间的相互干扰。”博士生董金润介绍到。利用这套光电控制和测量平台,浙大科研团队首次实现了单分子电致化学发光反应的直接宽场成像。“由于不需要光源激发,这一成像的特点在于背景几近于零,这种原位成像将为化学和生物成像领域提供新的视野。” 在单分子空间定位中突破光学极限显微镜是物质科学和生命科学研究的重要研究工具,传统光学显微镜在数百纳米以上的尺度工作,而高分辨电镜和扫描探针显微镜则可以揭示原子尺度。“在这个标尺中,能够用于原位、动态和溶液体系观测几个纳米到上百纳米这一尺度范围的技术仍然非常有限。”冯建东提到,主要原因在于光学成像分辨力不足,受到光学衍射极限限制。为此,冯建东团队接着着手从时空孤立的单分子信号实现电致化学发光的超分辨成像。 受到荧光超分辨显微镜(2014年诺贝尔化学奖)的启发,浙大研究者利用通过空间分子反应定位的光学重构方法进行成像。这就好比当人们夜晚抬头看星星时,可以通过星星的“闪烁”将离得很近的两颗星星区分开一样。“化学反应的随机性,通过空间上的发光位置定位,再把每一帧孤立分子反应位置信息叠加起来,构建出化学反应位点的‘星座’。 ” 图2:单分子电致化学发光显微镜在微纳结构成像上的论证。 冯建东说,为了验证这一成像方法的可行性以及定位算法的准确性,团队通过微纳加工的方法在电极表面制造了一个条纹图案作为已知成像模板,并对之进行对比成像。单分子电致化学发光成像后的结果与该结构的电镜成像结果结构上高度吻合,证明了成像方法的可行性。单分子电致化学发光成像将传统上数百纳米的电致化学发光显微成像空间分辨率提升到了前所未有的24纳米。 图3:单分子电致化学发光显微镜固定(死)细胞成像。 研究团队进而将该技术应用于生物细胞显微成像,不需要标记细胞结构本身意味着电致化学发光成像对细胞可能是潜在友好的,因为传统使用的标记可能会影响细胞状态。团队进一步以细胞的基质黏附为对象,对其进行单分子电致化学发光成像,观察其随时间的动态变化。成像结果与荧光超分辨成像可以进行关联成像对比,定量上表现出可以同荧光超分辨显微镜相媲美的空间分辨率,同时该技术避免了激光和细胞标记的使用。 图4:单分子电致化学发光显微镜活细胞成像。 未来,这项显微技术将作为一项研究工具为化学反应位点可视化、单分子测量、化学和生物成像等领域提供新的可能,具备广泛的应用前景。在同一期上,《自然》期刊专门邀请了领域专家对这一突破性技术的前景进行了亮点评述和报道。 该研究受到了国家自然科学基金委(项目号:21974123)、浙江省自然科学基金委(项目号:LR20B050002)、中央高校基本科研业务费校长专项(项目号:2019XZZX003-01)和浙江大学百人计划的经费支持。
  • 我国科研人员开发出新型高灵敏钙信号荧光蛋白探针
    近日,北京师范大学认知神经科学与学习国家重点实验室教授章晓辉团队、北师大生命科学学院教授王友军团队与中国科学技大学教授唐爱辉团队合作开发构建了一类新型的检测钙信号的荧光蛋白探针“尼莫”(NEMO),该探针具有更强和更精准的定量测定性能。近日,该成果在线发表于期刊《自然-方法》。生命体的许多活动都离不开钙离子(Ca2+)信号分子。细胞内钙离子浓度时空变化被称之为钙信号,它控制或调节各种细胞生命活动。开发灵敏和精准的钙信号检测探针工具对探究生命活动相关的信号机制和规律至关重要。在相关领域内被广泛应用的钙探针主要包括有机小分子类探针和遗传编码的(荧光)蛋白探针(GECIs)。目前最被广泛应用的单荧光GECI工具为GCaMPs系列,它由钙感知和荧光反应两大模块组装构建而成。其中,钙感知模块包含钙结合蛋白(如钙调蛋白CaM)及其靶肽(如M13/RS20),产生荧光变化的模块为环化重排的绿色荧光蛋白cpGFP。科学家们发现,通过改变CaM、M13与GFP三个元件之间的连接方式,连接短肽及互作界面中的关键氨基酸等方式,可改善GECIs的表现。因此,在2001年最初构建的GCaMP1版本上多次迭代改造后,至2023年最新发展的GCaMP8系列具备了显著改善的灵敏度和反应速度,但它们的反应幅度,即对钙信号大小的分辨率和线性动态范围始终有待提高。对此,合作团队采用了全新策略构建的新型高灵敏钙离子探针。从增强GECI对钙离子浓度变化的的荧光反应大小出发,合作团队采用亮度更高的新型荧光蛋白mNeoGreen(mNG)来替换广泛使用的cpGFP,结合多种设计及优化策略组合,构建了含几十个候选复合分子的GECI库,并通过系统的钙离子成像筛选和体外鉴定后,最终获得到了一组名为NEMO的新型GECI探针。与现有的GCaMP系列探针相比,NEMO探针的灵敏度及钙响应幅度有了显著提升,在领域中首次实现GECI探针对细胞内钙信号的反应幅度超过100倍;同时具有更好的抗光淬灭能力与pH稳定性,并能实现对钙离子水平的绝对定量检测。合作团队进一步在对非兴奋性细胞系、分离培养的大鼠神经元、小鼠脑内神经元在体双光子激光成像和深部脑区光纤记录等测试中发现,相比于最新或最广泛使用的GCaMP8s或GCaMP6s,NEMO系列对胞内钙信号的反应速度相当,但更灵敏并具更高的信噪比,且反应幅度提高达约10倍之多。
  • 荧光显微镜应用皮肤真菌荧光检验病理
    荧光显微镜应用皮肤真菌荧光检验病理真菌荧光染色技术检测原理是荧光染料与真菌细胞壁中几丁质等多糖成分反应,在真菌荧光染色液和荧光显微镜的配合使用下,借助试剂的荧光反应和荧光显微镜的特殊激发波段,可清晰准确的在荧光显微镜视野中将真菌显现出来。此种检测方法操作简单,检测时间短,反应灵敏,图像清楚,辨识度高,误差较小。能够协助临床医生诊断真菌感染性疾病,帮助更好地确定治疗方案。皮肤真菌荧光1皮肤真菌荧光2在荧光显微镜MHF100以及显微摄像系统观察下可以清楚的观察到真菌形态,在特定激发光下产生荧光。明慧荧光显微镜MHF100采用UCIS无限远校正光学系统,单个附件可搭配四组滤色片,满足不同领域的荧光检测。连接显微镜进行数码成像观察,进行图像采集、保存、处理、分析、共享等功能。识别度和对比度较高,同样适用于眼科、耳鼻喉科、妇产科等真菌病的检测。荧光显微镜MHF100荧光显微镜MHF100相关参数:光学系统 UCIS无限远色差独立校正光学系统物镜转盘 固定四孔,向内旋转目镜10X 视场数(FN)2010X 视场数(FN)22(可选)16X 视场数(FN)13(可选)物镜 平场消色差4X NA 0.13 W.D. 12.31mm10X NA 0.30 W.D. 6.75mm40X NA 0.70 W.D. 0.76mm100X NA 1.25 W.D. 0.12mmLED落射荧光照明系统(B/G/U单、双、三色可选) LED冷光源,亮度连续可调,可配置三种激发块。(单色,双色,三色,可选)激发块 激发光波段U 330-385nmB 450-490nmG 510-550nm)显微镜摄像头USB2.0 MHD500USB3.0 MHC600、MHD600、MHD800、MHD1600、MHD2000、MHS500、MHS900荧光显微镜应用皮肤真菌荧光检验病理能适用于各临床科室的各种类标本,能检测出临床常见的各种真菌菌属。广州明慧在显微镜领域给医院提供更贴心、更丰富、更智能的产品,提供显微技术解决方案,为皮肤病的诊治提供了更多的信息,帮助医生能够更全面、更精准地判断病情,为患者带来更好的医疗体验和治疗效果。产品清单:荧光显微镜MHF100 显微镜摄像头MHD1200
  • 观察分子反应像数星星 新型化学显微镜拥有超高分辨率
    教科书上的化学反应均以单分子形式进行概念描述,但实验中得到的却是大量分子的平均结果。一瓶380毫升的水,约含有10的25次方个水分子,投入金属钠会产生激烈的反应。不妨试想,宏观可见的化学现象,具体到单个分子是怎样的表现?  单分子实验是从本质出发解决许多基础科学问题的重要途径之一。近年来,虽已有单分子荧光显微镜技术,冷冻单分子电镜技术等诺贝尔奖级别的成果问世,观察、操纵和测量最为微观的单分子化学反应仍是科学家面对的长期挑战。  8月11日,浙江大学化学系冯建东研究员团队在国际顶级期刊《自然》发表封面文章。浙大团队以电致化学发光反应为研究对象,发明了一种可以直接对溶液中单分子化学反应进行成像的显微镜技术,并实现了超高时空分辨成像。该技术可实现更清晰的微观结构和细胞图像,在化学成像和生物成像领域具有重要应用价值。  捕获分子发光信号 1秒内连拍上千张图片  电致化学发光,是指具有发光活性的物质在电极表面通过化学反应实现发光的形式,可令分子产生光信号,在体外免疫诊断、成像分析等领域已有应用。  “在溶液体系还难以开展单分子化学反应的直接光学捕捉。”冯建东介绍,单分子化学反应伴随的光、电、磁信号变化非常微弱,而且化学反应过程和位置具有随机性,很难控制和追踪。  如何实现微弱乃至单分子水平电致化学发光信号的测量和成像?如何在电致化学发光成像领域实现突破光学衍射极限的超高时空分辨率成像,即超分辨电致化学发光成像?3年来,冯建东团队致力于这两大难题的研究,通过联用自制的具有皮安水平电流检出能力的电化学测量系统以及宽场超分辨光学显微镜,搭建了一套高效的电致化学发光控制、测量和成像系统。  “团队通过搭建灵敏的探测系统,将电压施加、电流测量、光学成像同步起来,通过时空孤立捕获到了单分子反应后产生的发光信号。” 论文第一作者、浙大化学系博士生董金润介绍。  从空间上,研究团队通过不断稀释,控制溶液中的分子浓度实现单分子空间隔离。时间上,通过快速照片采集,最快在1秒内拍摄1300张,消除邻近分子间的相互干扰。  利用这套光电控制和测量平台,团队首次实现单分子电致化学发光信号的空间成像,其成像特点在于无需借助外界光源,可在暗室操作。  多重曝光合成叠加 实现纳米级超高分辨率  现如今,传统光学显微镜在数百纳米以上的尺度工作,而高分辨电镜和扫描探针显微镜则可以揭示原子尺度。“但能够用于原位、动态和溶液体系观测几个纳米到上百纳米这一尺度范围的技术非常有限。”冯建东提到,主要在于受到光的衍射极限限制,光学成像分辨力不足,即相邻很近的两个点难以分辨。  为此,冯建东团队在获取单分子信号图像基础上,着手研究电致化学发光的超分辨成像。受到超分辨荧光显微镜技术的启发,研究团队利用通过空间分子反应定位的光学重构方法进行成像。  “好比人们夜晚抬头看星星,可以通过星星的‘闪烁’将离得很近的两颗星星区分开一样。”冯建东介绍,技术原理即通过空间上的发光位置定位,再把每一帧孤立分子反应位置信息叠加起来,就能构建出化学反应位点的“星座”。  为验证这一成像方法的可行性以及定位算法的准确性,研究团队通过精密加工的方法,在电极表面制造了一个条纹图案作为已知成像模板,并进行对比成像,条纹间隔为几百个纳米。  记者看到,该微纳结构的单分子电致化学发光成像与电镜成像结果高度吻合。而且,单分子电致化学发光成像将传统上数百纳米的电致化学发光显微成像空间分辨率提升到了前所未有的24纳米。  研究团队进而将该成像技术应用于生物细胞显微成像,以细胞的基质黏附为对象,对其进行单分子电致化学发光成像,观察其随时间的动态变化,成像结果与荧光超分辨成像可关联对比,其分辨率也可与荧光超分辨成像相媲美。  “相比于荧光成像技术,电致化学发光成像不需要对细胞结构做标记,意味着不易影响细胞状态,对细胞可能是潜在友好的。”冯建东表示,未来,这项显微镜技术将作为一项研究工具,在单分子水平揭示更多化学奥秘,也有助于揭示更为清晰的生物结构和看清生命基本单位细胞如何工作。
  • 流式荧光技术检测与化学发光技术检测那些事儿
    大家好,我是流式荧光崔工,一个旨在链接与流式荧光相关的朋友,一起赚钱、一起学习、一起工作、一起生活的靓仔。——流式荧光崔工前段时间,有很多新关注崔工公众号的朋友问崔工一个问题,什么是流式荧光检测技术?它的原理是什么?传统的化学发光检测技术又有什么?问崔工这个问题的朋友应该是刚进入到这个行业,还不是很了解这个行业。今天就跟大家聊聊,供大家参考。— 1 —什么是流式荧光检测技术?从百度百科了解到,流式荧光,又称悬浮阵列、液相芯片等,是近20多年逐渐发展起来的多指标联合诊断技术。该技术以荧光编码微球为核心,集流式原理、激光分析、高速数字信号处理等多种技术于一体,多指标并行分析,最多可一管同时准确定量检测2-500种不同的生物分子。具有高通量、高灵敏度、并行检测等特点。可用于免疫分析、核酸研究、酶学分析、受体、配体识别分析等多方面、多领域的研究。流式荧光检测技术的原理是什么?将荧光标记后的单细胞(或颗粒)悬液进入吸样管,进而随鞘液进入流动室。进入流动室之前的管道变细,迫使鞘液从四周、样本在中心进入流动室,在外加压力的作用下由下向上(或由上向下)直线流动。鞘液充满流动室将样品裹挟,当二者通过流动室喷嘴流出时,压力迫使鞘液包裹的液滴包含单一细胞或颗粒垂直通过检测区。在检测区与液滴垂直的位置设置激光,在与激光垂直的位置设置探测器(透镜等),液流、激光、探测器互相垂直并聚焦于一点实现流体动力聚焦。荧光标记的细胞或颗粒在激光激发下发出散射光和荧光的发射波,散射光和发射光被检测器获取,再经一系列滤光片、光栅处理去除干扰并将光信号经光电转换和放大后输入计算机,并由软件分析处理。而细胞分选则是对荧光标记的目的分子分别加载正或负电荷,当其在随液滴滴落的过程中受到外加高压电场的作用发生偏转而落入接收容器,从而获得目的细胞群。流式荧光检测技术有什么技术特点?1、高通量:将许多种不同荧光编码的微球放在同一反应体系内,一次可同时检测2-500种生理病理指标,这与传统方法的逐个检测相比是质的飞跃。2、高敏感性:流式荧光技术最高的检测下限可达0.01 pg/ml,常规的酶联免疫吸附试验(ELISA)仅为μg级,比后者检测的灵敏度提高10—100倍。3、线性范围宽:检测的线性范围比常规的ELISA方法高10倍以上,可达3-5个数量级。检测浓度范围为pg-μg级。4、反应快速:因流式荧光技术的杂交或免疫反应在悬浮的液相中进行,反应所需的时间短(从2 h缩短到20—40 min),杂交后常不用清洗,即可直接读数,所以检测效率高于固相杂交。5、重复性好:杂交发生在准均相液体环境中,其结果稳定,重复性非常好。检测时,抽取其中的100颗微球读数,最终的数据取其均值或中位值,这样可将误差减到最小。6、利于探针和被检测物的充分反应:由于液相环境更有利于保持蛋白质的天然构象,所以也更有利于探针和被检测物的反应。7、操作简便:流式荧光技术平台的整个反应过程只涉及加样和孵育,最后上机读数,操作步骤少,简单易用。— 2 —什么是化学发光检测技术?这里既然是跟流式荧光检测相比较的,那这里的化学发光检测技术指的是化学发光免疫分析技术。化学发光免疫分析:是将发光分析和免疫反应相结合而建立起来的一种新的检测微量抗原或抗体的新型标记免疫分析技术。化学发光检测技术的类型及原理化学发光检测技术的类型分为直接化学发光免疫分析,化学发光酶免疫分析和电化学发光免疫分析。直接化学发光免疫分析用吖啶酯直接标记抗体(抗原),与待测标本中相应的抗 原(抗体)发生免疫反应后,形成固相包被抗体-待测抗原吖啶酯标记抗体复合物,这时只需加入氧化剂(H2O2)和 NaOH使成碱性环境,吖啶酯在不需要催化剂的情况下分解、 发光 。由集光器和光电倍增管接收、记录单位时间内所产生 的光子能,这部分光的积分与待测抗原的量成正比,可从标准曲线上计算出待测抗原的含量。化学发光酶免疫分析酶免疫分析(chemiluminescence enzyme immunoassay,CLEIA)是用参与催化某一化学发光反应的酶 如辣根过氧化物酶(HRP)或碱性磷酸酶(ALP)来标记抗原或抗体,在与待测标本中相应的抗原(抗体)发生免疫反应后,形成 固相包被抗体-待测抗原-酶标记抗体复合物;经洗涤后,加入底物(发光剂),酶催化和分解底物发光,由光量子阅读系统接收,光电倍增管将光信号转变为电信号并加以放大,再把它们传送至计算机数据处理系统,计算出测定物的浓度。电化学发光免疫分析电化学发光免疫分析 (electrochemiluminescence immunoassay, ECLIA)是以电化学发光剂三联吡啶钌标记抗体(抗原),以三丙胺(TPA)为电子供体,在电场中因电子转移而发生特异性化学发光反应,它包括电化学和化学发光两个过程。化学发光免疫分析技术的优势是什么?1、灵敏度高:灵敏度高是化学发光免疫分析关键的优越性。化学发光免疫分析能够检出放射性免疫分析和酶联免疫分析等方法无法检出的物质,对疾病的早期诊断具有十分重要的意义。2、宽的线性动力学范围:发光强度在4-6个量级之间,与测定物质浓度间呈线性关系。这与显色酶联免疫分析吸光度(OD 值)2.0 的范围相比,优势明显。虽然同位素放射免疫也有较宽的线性动力学范围,但是放射性限制其应用。3、光信号持续时间长:化学发光免疫分析的光信号持续时间可达数小时甚至一天,简化了实验操作及测量。4、分析方法简便快速:绝大多数分析测定仅需加入一种试剂(或符合制剂)的一步模式。5、结果稳定、误差小:样本本身发光,不需要额外光源,避免了外来因素的干扰(光源稳定性、光散射、光波选择器),分析结果稳定可靠。6、安全性好及使用期长:到目前为止还未发现化学发光免疫分析试剂的危害性;另外这些试剂稳定,保存期可达一年之久。以上是对什么是流式荧光技术检测与化学发光技术检测基本原理做了一个说明,供大家参考。【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn微信:JaysonXY(备注来意:投稿)(本文编辑:刘立东 点击查看KOL主页)
  • 免疫荧光显微成像详解(上)——免疫荧光原理、步骤
    前言免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术,它是将不影响抗原抗体活性的荧光色素标记在抗体(或抗原)上,与其相应的抗原(或抗体)结合后,在荧光显微镜下呈现一种特异性荧光反应。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。直接法将标记的特异性荧光抗体,直接加在抗原标本上,经一定的温度和时间的染色,用水洗去未参加反应的多余荧光抗体,室温下干燥后封片、镜检。间接法如检查未知抗原,先用已知未标记的特异抗体(第一抗体)与抗原标本进行反应,用水洗去未反应的抗体,再用标记的抗抗体(第二抗体)与抗原标本反应,使之形成抗体—抗原—抗体复合物,再用水洗去未反应的标记抗体,干燥、封片后镜检。如果检查未知抗体,则表明抗原标本是已知的,待检血清为第一抗体,其它步骤的抗原检查相同。标记的抗抗体是抗球蛋白抗体,同于血清球蛋白有种的特异性,如免疫抗鸡血清球蛋白只对鸡的球蛋白发生反应,因此,制备标记抗体适用于任何抗原的诊断。一、实验步骤免疫荧光实验的主要步骤包括 样片制备、固定及通透(或称为透化)、封闭、抗体孵育、封片及荧光检测等。1、 样品准备对于单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过(70%乙醇中浸泡)的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片即可,操作过程要小心,防止细胞脱片。对于悬浮生长细胞,有两种方式,一种是取对数生长细胞,制备细胞片或直接制备细胞涂片,把细胞片浸入封闭液中固定,封闭后滴加一抗和二抗孵育;另一种是先在悬浮液中进行固定和染色,离心洗脱后,用移液管移至盒式玻片进行后续抗体孵育。对于冰冻切片制备,建议用新鲜组织,否则组织细胞内部结构破坏,易使抗原弥散。组织一定要冷冻适度,切片时选用干净锋利的刀片,防止裂片和脱片。对于石蜡切片的制备,要先进行脱蜡和抗原修复的处理。2、固定做好切片并风干后立即用合适的固定液(固定液包括有机溶剂和交联剂,其选择取决于抗原的性质及所用抗体的特性)进行固定,尤其要较长时间保存的白片,一定要及时固定和适当保存。固定时间则取决于固定组织切片的大小和类型,对大多数组织,18-24h即可,而细胞的固定时间较短。3、通透针对胞内抗原,使用0.5% Triton X-100或丙酮等通透剂进行通透,这一步的目的是使抗体进入胞内。 4、封闭为防止内源性非特异性蛋白抗原的结合,需要在一抗孵育前先用封闭液(一般包括与二抗同一来源的血清、BSA或者羊血清)封闭,减弱背景着色。封闭开始后,要注意样品的保湿,避免样品干燥,否则极易产生较高的背景。5、一抗孵育一抗孵育温度一般分为:4℃、室温、37℃,其中4℃效果更佳;孵育时间与温度、抗体浓度有关,一般37℃孵育1-2h,4℃过夜(从冰箱拿出后37℃复温45min)。具体条件还要根据样品、稀释液等条件进行摸索尝试。6、荧光二抗孵育荧光二抗孵育一般在室温或37℃孵育30min-1h,该过程必须在避光环境下进行,防止荧光淬灭。荧光素标记的二抗随着保存时间的延长,可能会有大量的游离荧光素残留,需要注意配制时采用小包装并进行适当的离心。7、复染一般采用DAPI进行复染,目的是形成细胞轮廓,从而更好地对目标蛋白进行定位。8、封片为了长期保存,我们需要对样本进行封片,用吸水纸吸干爬片上的液体,一般用缓冲甘油等或专门的抗荧光淬灭的封片液。9、 荧光观察有条件的话最好立即用荧光显微镜观察拍照,若不能及时拍照,也要做好封片和封固,保持避光和湿度。荧光显微镜的成像能力对最终的结果也会造成很大的影响,好的荧光显微镜能够最大限度地收集荧光信号,并呈现高分辨率的图片,使细节更清楚,更易得到一张效果极佳的结果图。注意:切片清洗:为了防止一抗、二抗等试剂残留而引起非特异性染色,所以适当地加强清洗(延长时间和增多次数)尤为重要,一般在一抗孵育前的清洗是3min*3次,而一抗孵育后的清洗均为5次*5min。(1)单独冲洗,防止交叉反应造成污染;(2)温柔冲洗,防止切片的脱落。可使用浸洗方式;(3)冲洗的时间要足够,才能彻底洗去结合的物质;(4)PBS的PH和离子强度的使用和要求(建议PH在7.4-7.6,浓度是0.01M;中性及弱碱性条件有利于免疫复合物的形成,而酸性条件则有利于分解;低离子强度有利于免疫复合物的形成,而高离子强度则有利于分解)。根据上述步骤完成免疫荧光实验后,就需要进行荧光显微成像,得到我们想要的结果。选择一款操作简单、成像清晰、效果卓越的荧光显微镜进行观察拍照,才能轻松得到更为理想的结果图,达到事半功倍的效果。Echo Revolve正倒置一体荧光显微镜Echo Revolve正倒置一体荧光显微镜作为一款电动化、智能化的显微镜,具有以下优势:☑ 正倒置一体快速切换:切片、细胞观察随心切换,无惧任何耗材;☑ DHR数字降噪功能:极大地降低了背景噪音和荧光干扰,提高图像锐度,加深细节,得到分辨率更高的图片;☑ 强大的Z-Stacking功能:通过高精度电动化Z轴层扫来扩大景深,解决厚样本观察问题,提高图像分辨率;☑ 500MP单色相机:能够采集更多荧光信号,助力低荧光强度样本观察;☑ 多通道荧光自动拍摄叠加功能:可自动进行多通道成像的叠加,个性化选择查看/保存各通道的组合图像。
  • 免疫荧光实验方法中需要注意的环节
    免疫荧光方法中的重要环节1、冰冻切片制备:建议用新鲜组织,否则组织细胞内部结构破坏,易使抗原弥散。选用干净锋利的刀片、组织一定要冷冻适度等,防止裂片和脱片严重。2、组织切片固定:切好片风干后立即用冰丙酮等固定液进行固定5-10min,尤其要较长时间保存的白片,一定要及时固定和适当保存。3、血清封闭:为防止内源性非特异性蛋白抗原的结合,需要在一抗孵育前先用血清(与二抗来源一致)封闭,减弱背景着色。血清封闭的时间是可以调整的,一般10-30min。4、一抗孵育条件:在免疫组化反应中最重要,包括孵育时间和抗体浓度。一抗孵育温度有几种:4度、室温、37度,其中4度效果蕞佳;孵育时间:这与温度、抗体浓度有关,一般37度1-2h,而4度过夜和从冰箱拿出后37度复温45min。具体条件还要摸索。5、二抗孵育条件:二抗一般室温或37度30min-1h,具体时间需要摸索,而浓度一般有工作液,若是浓缩液还要摸索浓度,切记要避光反应。但在免疫荧光中我们一般先把二抗浓度和孵育时间先定下,然后去摸索一抗浓度和孵育时间。最后,荧光素标记的二抗随着保存时间的延长,可能后有大量的游离荧光素残留,需要注意配制时小包装和并进行适当的离心。6、复染:目的是形成细胞轮廓,从而更好地对目标蛋白进行定位。一般常用DAPI复染。7、封片:为了长期保存,我们一般用缓冲甘油等封片,此外还有专门的抗荧光萃灭封片液。避免产生气泡,方法是直接在载玻片组织上滴一滴封片液,然后一手拿住盖片某一拐角,而另一手拿对面的那个拐角,接近封片液近端的拐角先降低,直至接触到液体时为止;当发现液体接触面在不断弥散时,则可以缓慢降低另一拐角,这样一般不会产生气泡。8、切片清洗:为了防止一抗、二抗等试剂残留而引起非特异性染色,所以适当地加强清洗(延长时间和增多次数)尤为重要,我一般在一抗孵育前的清洗是3min*3次,而一抗孵育后的清洗均为5次*5min。注意:(1)单独冲洗,防止交叉反应造成污染。(2)温柔冲洗,防止切片的脱落。我喜欢用浸洗方式;(3)冲洗的时间要足够,才能彻底洗去结合的物质。(4)PBS的PH和离子强度的使用和要求。这方面我有惨痛教训,当时我买的抗体稀释液偏酸,结果背景一片黄(未见特异性染色),建议PH在7.4-7.6浓度是0.01M。(中性及弱硷性条件(PH7-8)有利于免疫复合物的形成,而酸性条件则有利于分解;低离子强度有利于免疫复合物的形成,而高离子强度则有利于分解)9、拍照:有条件的话最好立即拍照,若不能及时拍照,也要封好片和用指甲油封固,保持避光和湿度。使用荧光显微镜注意严格按照荧光显微镜出厂说明书要求进行操作,不要随意改变程序;应在暗室中进行检查;防止紫外线对眼睛的损害,在调整光源时应戴上防护眼镜;检查时间每次以1~2h为宜,超过90min,超高压汞灯发光强度逐渐下降,荧光减弱;标本受紫外线照射3~5min后,荧光也明显减弱或褪色;激发光长时间的照射,会发生荧光的衰减和淬灭现象;所以最多不得超过2~3h;荧光显微镜光源寿命有限,标本应集中检查,以节省时间,保护光源。天热时,应加电扇散热降温,新换灯泡应从开始就记录使用时间。灯熄灭后欲再启用时,须待灯光充分冷却后才能点燃。一天中应避免数次点燃光源。关闭汞灯至少在开启15-30分钟后;标本染色后立即观察,因时间久了荧光会逐渐减弱。若将标本放在聚乙烯塑料袋中4℃保存,可延缓荧光减弱时间,防止封裱剂蒸发;使用的玻片等载体,都必须厚度均匀,无明显的自发荧光,如果使用油镜,还必须保证镜油为无荧光镜油;电源最好装稳压器,否则电压不稳不仅会降低汞灯的寿命,也会影响镜检的效果。
  • 《Nature Methods》|新型高灵敏钙信号荧光蛋白探针被成功研发
    近日,北京师范大学认知神经科学与学习国家重点实验室教授章晓辉团队、北师大生命科学学院教授王友军团队与中国科学技大学教授唐爱辉团队合作开发构建了一类新型的检测钙信号的荧光蛋白探针NEMO,具有高灵敏度和反应能力,对钙信号的动态分辨范围有了很大提升。荧光探针在分子生物学研究和开发中越来越受到重视。许多科学家正在医学、制药和绿色生物技术等领域都有应用,荧光探针在很多情况下被描述为荧光化学传感器,荧光探针是具有吸收特定波长的光并发射不同波长的光的小分子,通常是更长的波长(称为荧光的过程),用于研究生物样品。 这些分子可以附着在目标分子上,作为荧光显微镜分析的标记,也称为荧光团。细胞中的一些蛋白质或小分子是天然荧光的,这称为内在荧光或自发荧光,比如绿色荧光蛋白 (GFP)。 蛋白质、核酸、脂质或小分子可以用外在荧光团(一种荧光染料)标记,它可以是小分子、蛋白质或量子点。遗传编码钙离子指示剂(genetically encoded calcium indicators,GECIs),是一种新型的钙离子指示剂,它可以实现在体实验中对钙离子的长时程检测和实时动态检测,并且还可以借助细胞器的特异性定位信号表征某些特定的亚细胞结构的钙离子变化情况。目前常用的荧光蛋白指示剂有Cameleons、TN-XXL、GCaMP、Pericams和Camgaroo等。GCaMP系列蛋白(Single-fluorophore)特别是GCaMP6系列蛋白是最主要的钙离子指示剂。与GCaMP6s相比,NEMOs能够检测到体内SBR峰高2倍、中位SBR峰高4倍的神经元的单动作电位,从而优于大多数现有的最先进的GECIs(蛋白探针)。科学家们发现,通过改变CaM、M13与GFP三个元件之间的连接方式FF0C,连接短肽及互作界面中的关键氨基酸等方式,可改善GECIs的表现。合作团队采用了全新策略构建的新型高灵敏钙离子探针。从增强GECI对钙离子浓度变化的的荧光反应大小出发,合作团队采用亮度更高的新型荧光蛋白mNeoGreen(mNG)来替换广泛使用的cpGFP,结合多种设计及优化策略组合,构建了含几十个候选复合分子的GECI库,并通过系统的钙离子成像筛选和体外鉴定后,最终获得到了一组名为NEMO的新型GECI探针。在领域中首次实现GECI探针对细胞内钙信号的反应幅度超过100倍;同时具有更好的抗光淬灭能力与pH稳定性,并能实现对钙离子水平的绝对定量检测。科学家们用与gcamp6兼容的成像装置检查了在电场刺激下离解大鼠神经元中NEMO传感器的反应(Figure 3)。我们观察到,所有NEMO传感器都能够检测到由单个动作电位(AP)引发的Ca2+信号(Figure 3a),其峰值SBR大约是gcamp6或gcamp6的两倍。NEMOf足以区分频率高达5 Hz的神经元反应(图3b)。总的来说,NEMO传感器可以作为监测哺乳动物细胞、组织或体内以及植物中Ca2+动态的首选工具。
  • 法大教授自检蘑菇现荧光 准备起诉工商局
    出现荧光的口蘑(上)和蟹棒菇(下)样品照片   针对“蘑菇漂白”事件,中国政法大学公共决策研究中心主任何兵教授20日透露,他和学生已自己动手检测了蘑菇中的荧光物质,参与检测的学生表示,在22组受检蘑菇中,有3组在紫外分析仪下出现明显的荧光物质斑点。何兵表示,已经让学生草拟好诉状,准备起诉北京市工商局。   18日,何兵发表博文《中国政法大学学生:发现市场蘑菇存在问题》,文章描述,法大学生从市场上购买蘑菇送检北京农学院、食品安全监控中心均碰壁。“我们找到了农业部颁布的关于如何检测荧光粉的国家标准……国家不检测,我们自己动手!”这项检测在17日进行,参与检测的是何兵的两名学生。检测过程持续了两小时。何兵将有荧光反应的蘑菇照片传到博客上,一张是蟹棒菇,另一张是口蘑,蟹棒菇的菌杆和口蘑表面有明显的蓝紫色荧光。   何兵在博客中说,检测结果给他的最大感受是:北京市两千多万市民的食品安全,根本没有保障。他表示,已经让学生草拟好诉状,准备状告北京市工商局。另外,何兵还建议,不能仅仅靠工商局自己检测,须设立制度,动员社会和广大群众参与,“政府应当在批发市场和零售市场设立检测机构,免费让消费者送检,就像工商在市场设立公平秤一样。”   ■何兵检测试验   检测仪器:参加检测的法学院研一学生庆启辰说,按照农业部发布的《食用菌中荧光物质的检测》标准,他从某仪器经销公司购买了一台紫外分析仪,约1000余元。检测中他和另一名学生戴着塑料手套防止污染样品。   检测地点:法学院某办公室。   检测样本:本月8日,何兵的13名研究生在海淀、东城、西城、朝阳、丰台、昌平的17个超市和市场随机购买新鲜食用菌,包括平菇、口蘑、金针菇等七种常见品,每个菇种称取一两斤。蘑菇样品采集完全随机,来源以露天菜市场为主,规模都不大,最大的采集点是一家大超市。这些蘑菇在本月10日曾送到北京市食品安全监控中心要求检测,遭婉拒后,被冻在冰柜里封存至今。   庆启辰说,实验前先剔除冻坏的部分蘑菇,然后洗净。冰柜里共22袋蘑菇,每袋取一点,放在紫外分析仪下照射。   检测过程:按照检测标准的4个要求步骤,将蘑菇放入清洁的培养皿,置于紫外分析仪下——固定数码相机,关闭闪光灯,调焦——避光条件下,调整紫外灯,观察是否有可见蓝紫色荧光,拍照——不对原始照片做任何处理。   检测结果:庆启辰说,22袋蘑菇中,共有3袋蘑菇在接受照射时出现荧光,另一张照片荧光不太明显,就没有放在网上。   ■观点   仅靠紫外线难定“漂白”   科学松鼠会、科普专栏作家瘦驼称,“蘑菇体内存在的木质素就是一种荧光物质,蘑菇本身所含的木质素,在紫外线的照射下也会产生蓝绿色的荧光。从生物学角度来看,蘑菇的培养液中含有的秸秆或木屑也属于可以被紫外线激发出荧光的物质。平时大家买蘑菇的时候,会看到有一些白色或棕色的颗粒,这些物质中都有可能激发出荧光。因此,仅用紫外线照射蘑菇,然后看它是否会发出荧光,是不足以判断蘑菇是否被工业荧光增白剂污染的。不同种类的蘑菇中含有的木质素多少不同。”   对于政法大学教授何兵的检测方式,瘦驼表示“没有看到实验过程”故不便评价。“虽然我不知道农业部关于食用菌中荧光检测的具体标准,但依我的经验来看,仅用紫外分析仪照射,就能用照相机拍出含有如此明显荧光的图片确实不太正常,正常情况下荧光不会那么强烈。”   瘦驼认为,紫外分析仪只能间接检测蘑菇中是否含有能激发荧光的物质,但无法准确判断蘑菇是否被荧光增白剂污染。“如果蘑菇受到荧光增白剂的污染,用紫外分析仪确实是可以检测出荧光的。但是,检测的蘑菇中激发荧光的物质是否确实为荧光增白剂还不好说,不同荧光物质也有可能激发出同样程度的荧光,仅从照相机拍摄的图片就能判断出激发荧光的物质也不准确。这一切都有待更精确的检测,如采用检测农药残留的气相色谱、液相色谱等方式可以精确到分子检测,那才是确定激发荧光物质的直接手段。”   ■链接   荧光增白剂“保鲜”蘑菇   由于蘑菇富含包括木质素在内的多酚类物质,同时蘑菇内部又存在多酚氧化酶,因此这些多酚类物质很容易在多酚氧化酶的催化下被氧化,产生一种褐色的物质,让那些原本雪白的鲜蘑卖相不佳。在食品工业中对付蘑菇酶促褐变的常见方法是用亚硫酸盐或者半胱氨酸溶液浸泡,而这些方法都不能长时间让鲜蘑保持白嫩。用荧光增白剂的确可以让蘑菇保持鲜亮的时间更长,数年来,有关这两者之间发生关系的报道屡见于媒体。
  • 天津港东开发国内第一台高速荧光分光光度计
    热烈庆祝天津港东开发国内第一台高速荧光分光光度计!F-380荧光分光光度计波长扫描速度可达30000nm/min(500nm/s) 磷光分析可测量短达1ms的磷光寿命,并可以应用于各种样品类型。   F-380荧光分光光度计性价比好,关键部件等采用进口器件。   F-380型荧光分光光度计是我公司新开发的高端荧光光谱仪,产品结构新颖、价格适中、功能完善,完全适合科研、医疗、化工、生化、环保以及临床检测、食品检验等领域。     F-380型荧光分光光度计 关于(新)F-380型荧光分光光度计   产品型号:F-380   产品简介:F-380型荧光分光光度计是我公司新开发的高端荧光光谱仪,产品结构新颖、价格适中、功能完善,完全适合科研、医疗、化工、生化、环保以及临床检测、食品检验等领域。   仪器的用途   F-380型荧光分光光度计是我公司新开发的高端荧光光谱仪,产品结构新颖、价格适中、功能完善,完全适合科研、医疗、化工、生化、环保以及临床检测、食品检验等领域。   仪器的规格与性能指标   1 基本参数   波长范围:200-750 nm和零级光(200-900 nm,选用特殊光电倍增管R928F)   色散元件:采用凹面衍射光栅(闪耀波长:激发300nm/发射400 nm)   带宽:EX:1.0,2.5,5.0,10.0nm   EM:1.0,2.5,5.0,10.0,20.0 nm   接收器:R3788光电倍增管   光源:150W氙灯   波长扫描速度:15 nm/min,60 nm/min,240 nm/min,1200 nm/min,2400 nm/min,12000 nm/min,30000nm/min(500nm/s)   工作温度:10-30℃   工作湿度:≤70%   体积:680W×540D×320Hmm   重量:48kg   2 主要技术指标   分辨率1.0 nm   波长准确度:±2.0 nm   灵敏度:150:1水拉曼峰(P-P)   3 主要特点   (1)F-380具有性能稳定,使用方便等特点。尖端光谱仪制造技术,使其拥有更杰出的性能。光学设计,也提升了灵敏度等技术指标,也使仪器紧凑,占用更小实验台面积。   (2)内置的切光器功能可将样品在激发光束下的暴露时间缩短至扫描时间的8%。样品暴露时间的缩短,可保护容易发生光反应的样品,提高延续性实验的分析精度。磷光分析可测量短达1ms的磷光寿命,并可以应用于各种样品类型。   (3)除荧光和磷光外,标准配置中还包括了发光测定功能。系统光能量通过能力强,信噪比高,因而可对化学发光和生物发光进行有效测定。   (4)自动预扫描能帮助您找到最优的荧光分析条件,可以快速探知未知样品的光谱信息,同时完全避免将其他散射光谱峰错误设定为荧光激发或荧光发射峰。   (5)基于Microsoft Windows的控制及分析软件,简洁易用,使您轻松进行参数设置、数据采集和数据处理,同时提供更多三维谱图计算功能,以及提供方便的数据输出和用户可自由设计地报告格式。   (6)采用USB2.0接口,数据传输速度快,连接方便。   (7)高强度的150瓦氙灯,为200-900nm波长范围内的测定提供充足的光能。   (8)独特的水平狭缝设计同时应用于激发和发射光束,有效提高了灵敏度。同时在标准的10mm比色皿,只要0.6ml样品就可进行正常测定。   (9)系统有更丰富的定量分析功能。重复标样测定功能提供了最精确的工作曲线,统计校验进一步保证了分析精度。   (10)为了最大程度地保证稳定性,F-380拥有激发光束配比监测系统,可监测不同波长下光源强度的微小变化。   (11)多样有用的附件,从固体样品支架到自动偏振附件,F-380都可以配备,协助您解决最困难的应用分析问题。   (12)三维光谱图在1分钟内即可完成,提供最丰富的光谱信息,等高线图和鸟瞰图给您多个观察的角度。使三维谱图的定性分析功能发挥极致。   4 仪器的原理   F-380型荧光分光光度计具有双单色器,可以记录物质的激发光谱和荧光光谱,采用计算机完成仪器的系统控制和数据采集。其工作原理图如下:    图4-1 工作流程图   由光源发出的光,通过激发单色器后变成单色光,而后照在荧光池中的被测样品上,由此激发出的荧光被发射单色器收集后,经单色器色散成单色光而照射在光电倍增管上转换成相应的电信号,经放大器放大反馈入A/D转换单元,将模拟电信号转换成相应的数字量。并通过显示器或打印机显示记录下被测样品的谱图。这就是荧光分光光度计的基本工作原理。      详情请登入:http://www.tjgd.com/Client/Product.aspx?prodcutId=170
  • BLT小课堂 | 萤火虫萤光素酶在ATP检测中的应用
    前言:生物发光是一种在生物体内由酶将化学能转化为光能的现象,在自然界中有超过30种生物发光体系,而我们所熟知的萤火虫的发光体系就是其中研究最早,应用也最广泛的一种。萤火虫的发光现象是由其体内的萤光素酶(luciferase)的催化下三磷酸腺苷(adenosine triphosphate,ATP)与发光底物萤光素(lucierin)发生反应产生光。ATP被认为是一种在所有生物体生存和繁殖的细胞合成中必不可少的普遍能量来源,形象的说,它是一种通用的能量“货币”。ATP可以通过水解产生AMP和一个磷酸基团,同时释放出能量,供给细胞活动。ATP结构图发光反应的方程式:研究历史:1885年萤光素及萤光素酶第①次被Dubois提取出来;1952年Strehler和Totter首次使用萤光素酶粗制品测定ATP;1961年White等人工合成了萤光素;1985年Dewet, JR等首次克隆了P. Pyralis萤光素酶基因并在大肠杆菌中表达,从中得到具有活性的萤光素酶,从而开启了萤光素酶作为报告基因的历程。ATP的含量直接反应了细胞或微生物的含量,通过监测ATP含量的改变,可以评价多种药物、生物制剂或生物活性物质引起的细胞杀伤、细胞抑制和细胞增殖作用;另外ATP也常作为微生物污染的一个指标,检测ATP含量能直接反映出其受污染程度。测定生物体中ATP的水平及其动态变化便成为监测生物体必不可少的手段。接下来,小编将向大家具体介绍一下他在近年来的应用领域。应用领域01食品安全人类的身体健康、生命安全长期受到微生物污染的威胁,营养琼脂平板计数法是国际上针对微生物检测的现有标准方法,然而该方法要求在 37 ℃下持续培养 48 h,过于繁琐的操作无法实现快速检测。现下,国内也加大了对核酸法、电阻抗测量、免疫学方法、微菌落技术等各类微生物快速检测技术展开了研究、应用。ATP生物发光法因快速、简便且具有较高灵敏度的缘故,可用于实时监控微生物污染,与食品行业需求相符合,故而有关该技术的研究与应用十分广泛。其检测步骤通常为:①首先根据ATP发光检测试剂盒的使用说明将标准ATP按梯度稀释,与酶、底物、缓冲液按比例混合,使用发光检测设备(比如博鹭腾发光检测系列)测量对应的发光值,绘制标准曲线。②提取样品细胞中的ATP,稀释,之后按比例与酶、底物、缓冲液混合,使用发光检测设备测定发光值,代入标准曲线,即可知道样品中ATP浓度。(ATP浓度与细胞浓度关系的测定:取对数生长期的细胞,离心浓缩后用苔盼蓝染色,计活细胞数,之后在 96孔培养板上等比稀释,测定其发光值,发光值代入标准曲线获得ATP浓度,经过计算即可获得ATP浓度与细胞浓度关系。)应用案例:酒类制作过程中微生物浓度检测食品生产线卫生学检测环境保护部门水体微生物检测卫生监管部门微生物数量检测对应文献:[1]吴慧清.ATP生物发光法饮用水中细菌总数快速测定方法研究[J].中国卫生检验杂志,2009,19(9):1975-1978.[2]刘阳,牟金明.ATP生物发光法快速测定物体表面的菌落总数[J].安徽农业科学,2016,44(1):125-128.[3]易琳.微生物检测中 ATP 生物发光法的应用研究现状[J].生物化工,2019,5(1):124-126.[4]高红阁.ATP 生物荧光法在卫生监督工作中的应用进展[J].疾病监测与控制杂志,2013,7(9):548-550.[5]伍季.ATP生物发光法快速检测啤酒中的菌落总数[J].河南科学,2006,24(1):63-65.[6]李春艳,霍贵成.ATP生物发光法快速测定生乳中微生物总数的研究[J].食品工业科技,2008,29(7):233-238.[7]魏树源.三磷酸腺苷生物发光快速微生物检测法在疫苗中间品无菌试验中的应用[J].中国生物制品学杂志,2010,23(10):1120-1124.[8]丛苑,李平兰.ATP 发光法快速检测玉米中的霉菌[J].中国食品学报,2014,14(8):233-238.02药物敏感实验化疗是恶性肿瘤主要治疗手段之一,其地位已越来越重要。但因为不同类型的肿瘤以及不同个体的同类肿瘤存在异质性,以致惯用的经验式化疗效果尚不理想。临床上迫切需要有切实可靠的检测方法,在化疗实施前筛选出有效药物,进行个体化治疗,以提高疗效而减少毒副作用。ATP生物发光法是近年来发展起来的一种高度敏感的药物敏感试验。文献表明 ,将ATP生物发光法应用于临床个体肿瘤药物敏感性的预测,与临床有较好的相关性。基本思路为:①将癌细胞与药物体外混合培养一段时间。②与食品安全检测类似:绘制发光标准曲线→测定与药物混合培养细胞的发光值→代入标准曲线,最 后计算出药物对肿瘤的杀伤强度。应用案例:化疗药物筛选结核药物筛选细胞活性测定
  • 挑战阿贝极限,点亮微观世界
    借助于光学显微镜,人类可以看到神奇的微观世界。但是由于阿贝极限的存在,限制了光学显微镜的分辨率。 阿贝极限 19世纪末,德国物理学家恩斯特阿贝指出,光学显微镜分辨率的极限,大约是可见光波长的一半。可见光中波长最短的蓝紫光波长在400nm左右。因此,如果两点之间的距离小于200nm,我们将无法分辨出这是两个点,这就是通常所说的“阿贝极限”。阿贝极限使我们无法更加深入地了解微观世界。 超分辨率显微镜 超分辨率荧光显微技术借助于一种特殊的荧光分子,从原理上打破了光学远场衍射极限对光学系统极限分辨率的限制,实现纳米级别的分辨率,点亮更加微观的世界。这种有意思的荧光分子被称为光开关荧光化合物。常见的超分辨技术有受激发射损耗显微技术(STED),光激活定位显微技术(PALM)、光学重构显微技术(STORM)、可逆荧光转移技术(RESOLFT)等。超分辨率显微镜对于所使用的光开关荧光化合物的光反应量子产率(PQY)有严格的要求。 光开关荧光化合物PQY的表征 Masahiro Irie教授团队报道了一种二芳基乙烯化合物在紫外光和可见光照射下发生的可逆闭环和裂环反应的过程。该研究使用355nm的紫外光打开此化合物的荧光使其处于“ON”状态,使用488nm的可见光可以关闭化合物的荧光,使其处于“OFF”状态。作者使用岛津的QYM-01*光反应评价系统对开环和裂环过程的光反应量子产率(φoc和φco)进行了测试。QYM-01可以自动测试光反应中吸收的光子数,所得光子数经过NIST功率计校准,可确保准确度,以进一步用于PQY的计算。 超分辨率显微镜要求光开关荧光化合物的裂环量子产率在10-2-10-3之间,作者把其中一种裂环量子产率φco为2X10-3的化合物应用在超分辨率显微镜RESOLFT上,并得到了相比于传统的共聚焦显微镜(CONFOCAL)分辨率高得多的图片。 参考文章:《Photoswitchable Turn-on Mode Fluorescent Diarylethenes Strategies for Controlling the Switching Response》(Bull. Chem. Soc. Jpn. 2018, 91, 237–250) *QYM-01是岛津全新发布的Lightway PQY-01光反应评价系统的前序机型。
  • 文献速递 | 肿瘤药物反应检测平台以ECHO荧光显微镜为成像辅助研究
    2020年,我国新发癌症达457万,而因癌症死亡的人数超过300万,因此更有效、更合理的癌症治疗方案开发逐渐被人重视。在之前的癌症治疗中,对可用药物的反应检测,如肿瘤缩小,通常需要几周到几个月的时间,无法代表肿瘤的动态敏感性。新近开发的植入式微型装置(IMD),用于将微量化疗剂局部输送到活肿瘤的狭窄区域;随后可以取出组织并进行分析,以评估药物反应。这种方法有可能快速筛选多种药物,但需要手术切除组织,并且仅在切除组织时的单个时间点评估药物反应。本文研究者开发了一个新的检测平台——“肿瘤实验室”植入式微型设备(LIT-IMD)平台,可直接用于对活肿瘤内的细胞死亡药物反应进行成像,无需切除或处理。LIT-IMD是将微型成像探针、植入式微型设备、活细胞检测技术结合在一起,将其插入活肿瘤中,IMD将多个药物微剂量输送到空间离散的位置,同时,它局部释放微量的荧光细胞死亡检测剂(碘化丙锭PI,PI结合双链DNA,但只能进入已经破坏细胞膜的细胞;因此,它在失去膜完整性的晚期凋亡和坏死细胞中积累),扩散到暴露于药物的组织中,并在细胞死亡部位积累。集成的小型化荧光成像探针对每个区域成像,以评估药物诱导的细胞死亡。研发者使用LIT-IMD对鼠肿瘤模型8小时多种药物的反应进行评估,目前评估细胞死亡的金标准方法是荧光成像和荧光组织化学(IHC)分析,研究者将肿瘤成像与金标准荧光显微镜和组织病理学进行对比,使用Echo Revolve荧光显微镜进行标准成像,LIT-IMD成像结果明显与Echo Revolve荧光显微镜图片存在相关性。(b)将来自活肿瘤组织(第一列)中的M-2CFM成像的荧光信号与相应的Echo Revolve荧光显微镜(第二列)和免疫组织化学(IHC)(第三列)进行比较,在组织切片和处理后成像。在荧光和IHC图像上,方框表示与活体肿瘤中由M-2CFM探针成像的组织区域相对应的大约400 × 300 µm的感兴趣区域。在IHC图像上,“X”表示药物释放的位置;“V”表示活的肿瘤组织。经过训练的图像分类器能够从染色的IHC图像中定量确定非存活指数(非存活除以存活肿瘤),然后将其与实验荧光图像相关联。该平台是第一个完全集成的平台,可用于原位评估多种化疗反应。Echo Revolve荧光显微镜在该成像平台研制过程中通过良好的成像效果和参数帮助研发者确定平台拍摄效果和仪器性能,帮助其优化和完善平台。Revolve正倒置一体显微镜Revolve显微镜展现了其非凡的灵活性,可以轻松地实现正置和倒置显微镜转换,创新性地把正倒置显微镜合二为一,开启了显微镜Hybrid时代。☑ 视网膜屏显示技术:比拟目镜人眼观察效果。☑ 全视野观察: 更清晰,更方便。☑ 多通道荧光:多达4个EPI荧光通道,无须暗室,就可以轻松快速地完成多色荧光显微分析。☑ 自动化操作:通过iPad Pro点触操控相机及荧光通道之间的切换,实现了完全自动化操作。☑ App应用软件:基于IOS的Echo App是与Apple团队合作研发的专业显微镜软件。☑ 精湛的工艺尽显高端品质:实现非凡的性能。
  • 从细胞到光信号:ATP微生物检测仪的工作原理解析
    ATP微生物检测仪作为一种可靠的检测工具,以生物化学反应将微生物的存在转化为可测量的光信号为检测原理,不仅实现了对微生物数量的快速检测,也为各种应用领域提供了关键的卫生状况评估。了解更多ATP微生物检测仪产品详情→https://www.instrument.com.cn/show/C541815.htmlATP的基本概念三磷酸腺苷(ATP)是一种在所有活细胞中广泛存在的能量转移分子。它在细胞的能量代谢过程中起着核心作用,每个活细胞都包含恒定量的ATP。因此,ATP的存在可以作为生物活性的指标,反映样品中微生物的数量和活动状况。ATP的检测对于评估细菌、真菌以及其他微生物的存在和数量具有重要意义。检测过程的第一步:ATP的释放ATP微生物检测仪的工作始于样品中的ATP释放。检测过程中,首先使用ATP拭子从样品中提取ATP。ATP拭子含有特殊试剂,这些试剂能够裂解细胞膜,从而释放细胞内的ATP。这一过程是确保所有可测量的ATP都从细胞中释放出来的重要步骤,为后续的荧光检测提供了充足的ATP源。荧光反应的核心:荧光素酶—荧光素体系释放出的ATP与拭子中含有的荧光素酶和荧光素发生反应,形成荧光反应。荧光素酶是一种催化剂,它能够将ATP转化为荧光素,通过与荧光素的反应产生光信号。这一反应基于萤火虫发光的原理,其中荧光素酶催化荧光素与ATP结合,生成光信号。这一过程的核心是荧光素酶的催化作用,它使得ATP的存在能够通过发光现象被检测到。光信号的测量与结果分析产生的光信号通过荧光照度计进行测量。荧光照度计能够准确地捕捉到反应产生的光信号强度,并将其转化为数字信号。光信号的强度与样品中ATP的浓度成正比,因此,可以通过测量光信号强度来推断样品中微生物的数量。较强的光信号通常意味着较高的ATP含量,从而反映出样品中微生物的较多存在。应用与优势ATP微生物检测仪因其快速、准确的检测能力,被广泛应用于食品安全、医疗卫生、制药和环境监测等领域。其能够实时、可靠地评估样品中的卫生状况,确保环境和产品的质量。相较于传统微生物检测方法,ATP检测法提供了更为便捷和即时的结果,帮助我们迅速做出响应和决策。结论ATP微生物检测仪通过将细胞中的ATP转化为光信号,提供了一种可靠的微生物检测方法。其工作原理涵盖了从ATP的释放、荧光反应的核心到光信号测量,为微生物检测提供了科学、准确的解决方案。这一技术的应用更大地提升了卫生监测的效率,确保了各种行业的安全与质量。
  • 第21届全国分子光谱学学术会-Lightway点亮未来之路
    2020年10月31日,第21届全国分子光谱学学术会议暨 2020年光谱年会在成都召开,本次会议由中国光学学会和中国化学会主办,四川大学分析测试中心承办。大会秉承前20届分子光谱学学术会议之宗旨,全力展示我国在光谱及相关领域的最新研究进展及取得的成果,增进广大光谱科学工作者及支持光谱事业工作者间的交流与合作,以期形成自由研讨的学术氛围,让光谱相关或相近的思想撞击出火花,期待颠覆性创新创造力泉涌。会议首日已经吸引了500余位来自全国各地的代表注册参会。据悉,本次会议共收到论文摘约320篇。大会组委会特别邀请了知名院士、专家学者参会并做报告,共安排了6个大会报告,11个主旨报告,70个邀请报告,36个口头报告,20个青年论坛报告和70余个墙报展。岛津企业管理(中国)有限公司(下文简称岛津)覃冰老师、岛津王利华老师分别做主旨报告和墙报展示。另外,本次会议还将颁发第21届全国分子光谱学学术会议“优秀论文奖”和“优秀墙报奖”。 学者、专家做精彩的大会报告 开幕式由会议轮值主席、四川大学吕弋教授主持,中国光学学会光谱专业委员会主任谢孟峡教授、四川大学党委副书记郭勇教授、国家自然科学基金委化学学部化学测量学主任王春霞研究员等为大会致辞。 大会分会报告会场传真 拥有分子光谱的悠久制造史与雄厚的研发基础的岛津积极参与并倾情赞助了本次大会,携近年来在该领域的新研发成果精彩亮相本届大会,以口头报告、墙报展示、展台展示等多种方式和与会者进行了广泛深入的交流。在大会初日的大会报告环节,来自岛津分析计测事业部市场部覃冰老师为与会者带来了题为《点亮未来-岛津Lightway光反应评价系统在光化学中的应用》的大会报告。报告中介绍了岛津全新推出的Lightway PQY-01 光反应评价系统的研发背景,设计特点及在光催化剂、光开关荧光化合物、光致变色材料等新型材料研究中的应用。 岛津分析计测事业部市场部覃冰 光反应量子产率是评价光反应的重要指标,特别是对光催化剂性能的优化十分重要。Lightway PQY-01可自动测试光反应中的吸收光子数,并用于光反应量子产率的计算。激发光源使用了高能量、高稳定性、波长可选的LED光源,即插即用,更换十分方便。为了得到准确的光子个数,PDA检测器使用NIST校准的功率计进行校正。无需复杂的样品前处理过程及暗室操作,可快速追踪光化学反应的中间产物及最终产物,只需要大约10分钟即可完成吸收光子数的测试,与传统的化学光量计方法相比,大大缩短了测试时间。 岛津 分析计测事业部 分析中心 王利华 报告茶歇期间,会议还组织了优秀墙报评选,向参会人员展示了青年学者的研究进展。岛津分析计测事业部分析中心王利华老师带来了题目为《个人护理产品中塑料微珠的定性定量分析》的墙报展示。塑料微珠广泛用于洗面奶、按摩霜、去角质霜、牙膏、沐浴露等化妆品和个人护理品种。文章是用溶剂将塑料微珠从化妆品样品中分离,烘干后使用岛津高性能红外IRTracer-100配置衰减全反射附件ATR测试化妆品中塑料微珠的种类,差减重量法定量即可得到微珠的含量。 优秀墙报评选现场大会最后一天,岛津分析计测事业部市场部洪波部长,对优秀墙报奖进行了颁奖并致辞。岛津分析计测事业部市场部部长洪波 洪波部长首先回顾了岛津与历届全国分子光谱大会的友好合作,并表示希望可以继续参与到大会的各项活动中,一如既往地给各位老师提供先进可靠的仪器和完善的解决方案。在本次大会上,岛津推出了全新概念的PQY-01光反应评价系统,希望可以为研究光催化反应何人工光合成的老师们为微尽绵薄之力。
  • BLT小课堂|细菌发光原理及其在动物活体成像中的应用
    夏季的夜晚,走到山间草丛,可以看到一种昆虫提着一盏灯在飞行,这就是萤火虫在发光。萤火虫体内的荧光素酶催化底物荧光素,发生化学反应,产生光子。这也是大家比较熟悉的,在动物活体生物发光成像当中运用到的反应原理。通过利用该原理,配合上转基因技术及动物活体成像系统,我们可以非侵入性和纵向研究小动物的基因表达、蛋白质-蛋白质相互作用、肿瘤学机制和抗肿瘤药物药效及动力学和疾病机制等;相比于传统研究手段,这种方法通过在动物整体水平上进行研究,能提供更多有用的信息,同时大幅减少实验研究所需的动物数量和降低个体间的差异。萤火虫荧光素酶反应的示意图(a)、荧光素酶以报告基因的形式进入细胞核,并翻译成功能性酶。该酶将底物荧光素、氧(O2)和三磷酸腺苷(ATP)转化为氧荧光素、二氧化碳(CO2)和二磷酸腺苷(ADP),同时发光。(b)、萤火虫底物D-荧光素及其产物氧合荧光素的化学结构。 那么问题来了,自然界会发光的生物除了有萤火虫,还有鱼类、藻类、植物和细菌等,这些生物的发光原理是否也和萤火虫一样呢?这些发光原理能否运用到动物活体成像研究中呢?今天,小编就为大家介绍另外一种生物发光原理—细菌发光及其在动物活体成像中的应用。细菌荧光素酶对于细菌的生物发光现象,早在1875年就被发现了,研究人员Boyle首先揭示了细菌发光对氧气的依赖。而随着研究的深入,研究人员发现细菌发光涉及到的酶有荧光素酶、脂肪酸还原酶和黄素还原酶,以及底物还原性黄素单核苷酸和长链脂肪醛。在发光细菌中发现的一种操纵子,基因顺序为luxCDABEG,其中luxA和luxB基因分别编码细菌荧光素酶α和β亚基,luxC、luxD和luxE基因分别编码合成和回收荧光素酶醛底物的脂肪酸还原酶复合物的r、s和t多肽,luxG编码黄素还原酶。到目前为止所知的所有发光细菌,都是基于细菌荧光素酶介导的酶反应来产生光。这是一种大约80kDa的异二聚体蛋白,与长链烷烃单加氧酶具有同源性。该酶通过以下反应介导O2氧化还原的黄素单核苷酸(FMNH2)和长链脂肪族(脂肪)醛(RCHO),以产生蓝绿光。细菌荧光素酶介导的酶反应1细菌发光明场图2细菌发光发光图细菌发光反应过程在发光反应中,FMNH2与酶结合,然后与O2相互作用,形成黄素-4A-过氧化氢。这种复合物与醛结合形成一种高度稳定的中间体,其缓慢的衰变导致FMNH2和醛底物的氧化和发光,反应的量子产率估计为0.1-0.2个光子。该反应对FMNH2具有高度特异性,体内的醛底物可能是十四醛。FMNH2是由NADH:FMN氧化还原酶(黄素还原酶)提供,该酶从细胞代谢(如糖酵解和柠檬酸循环)中产生的NADH中提取还原剂,还原剂通过自由扩散从FMNH2向荧光素酶的转移。长链醛的合成是由脂肪酸还原酶复合物催化。与细菌荧光素酶一样,底物FMNH2和长链脂肪醛也是细菌发光反应的特异性底物;真核生物生物发光使用不同的化学物质和荧光素酶,它们在蛋白质或基因序列水平上与细菌荧光素酶不同。细菌中的荧光素酶反应过程细菌发光原理在动物活体成像中的应用目前,细菌发光原理在动物活体成像研究中的应用有:传染病研究、菌种抗药性测试及细菌介导的肿瘤治疗等。通过将luxCDABE操纵子稳定地整合到不同的细菌基因结构中,不需要任何其他外源底物(除了氧)来产生生物发光,再通过一套超灵敏的动物活体成像系统(AniView 100),为监测细菌物种感染负担、致病机理研究和肿瘤药物靶向治疗等提供了一种快速便捷的研究检测方法。AniView 100检测减毒鼠伤寒沙门氏菌体内靶向性肿瘤情况(箭头指向为肿瘤)应用说明如以细菌介导的肿瘤治疗为例,传统的癌症治疗方法是手术切除,治疗转移性癌症还需要与其他疗法(如放疗或化疗)相结合。这些疗法存在局限性,如放疗的疗效主要取决于组织氧水平,肿瘤内坏死区和缺氧区低氧浓度是治疗失败的常见原因;而化疗的疗效主要取决于药物的分布,肿瘤内坏死区和缺氧区的血管不规则会影响药物的输送,限制药物的疗效。与传统方法相比,使用细菌进行癌症治疗有以下优势:首先,细菌会在肿瘤中选择性积累,肿瘤中的细菌聚集量大约是正常器官的1000倍,肿瘤特有的坏死区和缺氧区一般不会在大多数器官中形成。其次,细菌的增殖能力使得它们可以进行持续治疗;最后,许多细菌的全基因组测序已经完成,能够通过基因组操作提高它们在人类使用中的安全性,并增强其杀瘤效果。目前,细菌介导的肿瘤治疗广泛应用于DNA或siRNA的传递、运送经工程改造的毒素或前药物和触发机体免疫反应,进而达到抑制或杀灭肿瘤细胞、起到抗击肿瘤的作用。应用案例 静脉注射3天后,表达lux的鼠伤寒沙门氏菌在各种肿瘤中积聚。CT26:小鼠结肠癌,4T1:小鼠乳腺癌,MC38:小鼠结直肠腺癌,TC-1:小鼠肺癌,Hep3B:人肝细胞癌,ARO:人甲状腺癌,ASPC1:人胰腺癌应用案例 携带受L-阿拉伯糖诱导启动子pBAD表达系统控制的细胞毒蛋白(溶细胞素A)、表达lux报告基因的减毒鼠伤寒沙门氏菌,用于肿瘤治疗。总结利用生物发光原理进行动物活体成像,目前主要有两种方式。一种是使用萤火虫荧光素酶,最适合在哺乳动物细胞中表达;另外一种是细菌荧光素酶,广泛应用于原核生物。细菌Lux操纵子由于编码生物发光所需的所有蛋白质,包括荧光素酶、底物和底物生成酶,不需要外源底物,成像更加的方便,不需要像萤火虫荧光素酶一样,考虑ATP的可用性、底物分子的渗透、药代动力学和生物分布等对成像的影响。但是,细菌荧光素酶的发射波长较短(490nm),组织吸收较大,这会影响成像数据的量化;而且,对于某些真核微生物(包括真菌和寄生虫)和真核细胞,仍然需要使用萤火虫荧光素酶标记,原因在于lux报告基因没有得到足够的优化,还不能在真核细胞中稳定表达。不过由于细菌荧光素酶和萤火虫荧光素酶的发射波长不同,从而可以进行多光谱成像,用于同时定量评估小动物的不同生物过程,进一步扩展生物发光原理在动物活体成像中的应用。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到100个luciferase标记细胞,对于动物活体细菌荧光素酶的生物发光信号,无论是在皮下或器官,均可以轻易检测到。快来关注我们,申请免费试用!
  • 重庆研究院单晶二维材料GeSe大面积单原子层研究获新进展
    p   近日,中国科学院重庆绿色智能技术研究院量子信息技术中心团队在以GeSe为代表的IV sup A /sup VI sup B /sup 大面积单原子层材料制备和能带结构确定,及其器件测试分析研究中取得最新进展。 /p p   目前已有近百种二维材料被人们发现,包括第四主族单质、第三和第五主族构成的二元化合物、金属硫族化合物、复合氧化物等。这些发现不仅打破了长久以来二维晶体无法在自然界中稳定存在的说法,其自身的特性更是呈现出许多新奇的物理现象和电子性质,如半整数、分数和分形量子霍尔效应、高迁移率、能带结构转变等。IV sup A /sup VI sup B /sup 单晶二维材料MX(M=Ge,Sn;X=S,Se)因极高稳定性、环境友好性、丰富蕴藏量,以及从材料结构到性能上与黑磷烯的相似性而受到广泛关注。基于第一性原理方法对MX的能带结构的计算、对其从间接带隙到直接带隙的临界层厚,以及基于其C sub 2v /sub 对称结构的压电性能理论预测的研究已多有报道。但受其脆性影响,该类型材料难以直接采用物理撕裂法制备得到单原子层材料。采用化学合成方法,也难以获得较大面积的单原子层(大于1微米)。因此,对IV sup A /sup VI sup B /sup 单晶二维材料的研究迄今仍停留在理论预测阶段。 /p p   在MX中,GeSe理论上被认为是唯一具有直接带隙的材料,且该材料的光谱范围预测几乎覆盖了整个太阳光光谱,这使它在量子光学、光电探测、光伏、电学等领域有巨大的应用潜力。据此,重庆研究院量子信息技术中心团队研究发现,利用单晶硅表面二氧化硅的隔热效果和激光减薄方法,可以在一定激光功率密度下不断地减薄GeSe的层厚,直至单原子层。其减薄机理是激光在GeSe表层产生高热,由于GeSe材料本身的层状特性,难以将热量及时传导出去,导致层厚被不断减薄。当GeSe的层厚被减薄至单原子层时,整个SiO sub 2 /sub /Si可以被看作热沉而无法继续减薄。利用此方法,该团队首次实验制备出了100微米以上的GeSe单原子层材料,基于荧光谱、拉曼谱等方法对GeSe单原子层的原子和能带结构进行研究,并基于第一性原理方法理论印证了实验结果的可靠性。实验和理论计算表明,GeSe单原子层的荧光谱非常宽,从可见光波段到近红外波段发现了8个荧光峰,从间接带隙到直接带隙的转变发生在第三层。此外,该团队分别实验制备出了基于GeSe体材料和二维材料的晶体管,其I-V和光反应性能表明,二维材料的光敏度是相应体材料的3.3倍,同时二维材料器件的光反应度也远优于相应体材料器件。 /p p   相关研究成果发表在 em Advanced Functional Materials /em 上。该研究得到了重庆市基础前沿重大项目、中科院“西部之光”西部青年学者A类项目、国家自然科学基金面上项目的资助。?? /p p br/ /p
  • 全面解析光化学衍生及应用,记得收藏噢!
    WelView光化学衍生器是月旭科技推出的一款高效、便捷、耐用、方便的光化学衍生设备,在黄曲霉检测及磺胺类药物检测方面起了重要的作用。用了那么久的仪器,你知道它的原理吗?今天我们来解密光化学衍生的原理,一起来看看吧。光化学反应类别柱后化学衍生反应主要以荧光分析为主,也有以电化学检测的分析方法。光化学反应的主要类别如下:分子内能量转移、碰撞能量转移、淬灭、光致离子化、异构化、直接反应、分子间分解。光化学反应主要类别见下图:光化学反应类别图A general classifications of photochemical reactions光化学荧光反应原理自然界中大多数有机物分子因为含有N、O、S等杂原子,系间窜越(S1-T1或T1-S0)量子产率大。或者因为分子中原子不共平面而缺乏刚性,从而成为非荧光物质或天然弱荧光物质,难以直接用荧光检测器进行分析。荧光分析法因其灵敏度高、选择性好,比一般的紫外检测的灵敏度高出三个数量级,检测线可达10-6mg/L,甚至10-9mg/L。光化学荧光分析法的建立,大大拓宽荧光分析法的应用范围。它作为一种基于光化学衍生反应的荧光分析法,是利用物质在特殊的光化学反应体系中大量吸收光子,从而诱发一系列如上图所示的光化学反应。在恒定的实验条件下,光化学反应产物的荧光强度与待测反应物的浓度有定量关系,通过测定光化学反应产物的荧光强度可间接测定待测反应物的浓度,从而达到定性定量分析的目的。光化学衍生方法是基于待测物质在特殊的光化学反应体系吸收紫外光辐射从而引起物质的性质或者结构发生变化,形成荧光增强的现象,使得待测物的荧光性质发生改变来提高荧光分析的灵敏度的一种方法。光化学衍生器广泛应用于液相色谱检测分析,使用时置于色谱柱和检测器之间,进行柱后连续光化学衍生反应提高荧光、紫外、电化学检测和化学发光检测器的灵敏度和响应的选择性。光化学衍生器示意图光化学衍生的优点(1)安装简单,灵敏度高光化学衍生器使用时置于色谱柱和检测器之间,进行柱后连续光化学衍生反应。安装方便,无需专用工具。(2)实验操作简单,容易控制光子作为衍生剂的加入是通过紫外灯光源的开关决定的,和化学衍生相比,不需要准备和存储化学试剂,也不需要考虑试剂的降解、使用期限和处置等问题。(3)操作安全,降低成本有些化学试剂具有毒性,而光化学衍生只需要控制光源开关,不需要接触有毒试剂。且不需要额外添加泵、反应器、加热器等,这样也zui大限度地降低可能干扰测定的因素。光化学衍生器除应用于黄曲霉毒素检测外, 还可以应用于大量的巴比妥酸盐、氨基酸、多肽、维生素和磺胺类药物分析。应用举例✓绿茶中黄曲霉检测色谱柱:Ultimate® XB-C18 (4.6×150mm,5μm);流动相:甲醇:水=45:55;流速:1.0mL/min;柱温:30℃;进样量:20μL;检测波长:Ex=360nm,Em=420nm。参考文献:《光化学衍生技术在离子色谱中的应用》浙江大学
  • "高灵敏电化学发光检测方法"获国家专利
    近日,中科院长春应用化学研究所徐国宝等科研人员的一项发明专利“环境友好的高灵敏电化学发光检测方法”获得了国家知识产权局的授权(专利号:200510016848.4)。   联吡啶钌电化学发光标记分析是继放射分析、酶联分析、荧光分析和化学发光分析之后的新一代标记分析技术。它是基于高浓度的三丙胺与低浓度的联吡啶钌标记物发生电化学发光反应来进行生物分析,该技术由于具有灵敏度高、线性范围宽、抗干扰能力强、试剂稳定、重现性好等优点,被广泛应用于临床分析和科学研究。但联吡啶钌/三丙胺体系需要很高浓度的三丙胺才能实现高灵敏检测 且在不同工作电极上发光强度差别较大,铂电极上的发光强度仅约为金电极上的十分之一。因此十几年来人们一直在寻找替代三丙胺的新型共反应物,但一直没有找到发光效率高于三丙胺的共反应物。   该研究小组针对标记分析的特定条件,调研了一系列含有不同链长和基团如羟基、羧基和氨基等的共反应物的发光情况,找到一种高效的新型共反应物二丁基乙醇胺。在浓度为20 mM时,它在金电极和铂电极上的发光强度分别约是目前效率最好的三丙胺的十倍和一百倍。与一般采用外加增敏剂提高发光效率不同,二丁基乙醇胺是通过自身的羟乙基的催化来显著提高发光效率。由于羟乙基是一个吸电子基,因此该研究表明不是所有吸电子基团都是抑制电化学发光的,为寻找更加优良的试剂提供了新途径。二丁基乙醇胺具有优良的分析性能,在浓度只有三丙胺的五分之一时检测联吡啶钌比三丙胺的检测限好一个数量级。该研究对联吡啶钌电化学发光标记分析具有重要意义。
  • 水杨酸己酯安全性:从光安全性到人体研究
    光安全性评估是一个综合过程,涉及光化学特性、非临床研究数据以及对人体安全性的评估。这一评估的目的在于确定是否有必要采取风险最小化措施来预防人类的不良事件。光毒性(光刺激)是指光反应性化学物质引起的急性光诱导组织反应;光过敏是指由光化学反应后形成的光产物(如蛋白质加合物)引起的对化学物质的免疫介导反应。《ICH协调指南 药品的光安全性评价S10》根据人用药品技术要求国际协调理事会(ICH)发布的《ICH协调指南 药品的光安全性评价S10》(ICH HARMONISED TRIPARTITE GUIDELINE, PHOTOSAFETY EVALUATION OF PHARMACEUTICALS, S10),如果一个化合物需要阐明其光毒性,则应具备以下关键特征:① 吸收光为自然光线(波长范围为290-700 nm);② 吸收紫外/可见光后产生反应物质;③ 在光暴露组织(如皮肤、眼睛等)有足够的分布。如果不满足这些条件中的一个或多个,化合物通常不会产生直接的光毒性。《化妆品安全评估技术导则》皮肤光毒性试验评价化妆品原料和/或风险物质引起皮肤光毒性的可能性;皮肤光变态反应试验可评估重复接触化妆品原料和/或风险物质,并在紫外线照射下引起皮肤光变态反应的可能性。《化妆品新原料注册备案资料管理规定》申请注册或进行备案的化妆品新原料,原则上应当提供以下毒理学试验项目资料,可以根据申报注册或进行备案新原料的用途、理化特性、定量构效关系、毒理学资料、临床研究、人群流行病学调查以及类似化合物的毒性等情况,增加或减免相应的毒理学试验项目,其中包含:④ 皮肤光毒性试验(原料具有紫外线吸收特性需做该项试验);⑤ 皮肤光变态反应试验(除情形6外,原料具有紫外吸收特性时需提交该项试验资料)。◆ 光安全性评价流程 ◆图1 光安全性评价流程图表1 光安全性评价检测方法汇总《化妆品安全评估资料提交指南》指出,根据原料的化学结构特点,对原料进行充分分析或测试能够证明其不具有紫外线吸收特性的,可豁免对皮肤光毒性的评估。例如,在290nm-700nm波长范围内的摩尔消光系数(Molar Extinction Coefficient, MEC)小于1000L/mol/cm,则该物质的光反应性较低,不足以引起皮肤光毒性。◆ 以水杨酸己酯为例 ◆2024年7月29日,欧盟消费者安全科学委员会SCCS发布了《关于水杨酸己酯的科学意见附录SCCS/1658/23 - 0-3岁儿童接触》,开放征求意见截止日期至2024年9月23日。图片源自SCCS官网文件中根据紫外/可见(UV/Vis)光谱、体外数据和体内数据评估了光刺激/光致敏性终点。相关实验与结论如下:①紫外光谱分析(RIFM (Sears),2014)紫外/可见光谱(OECD TG 101)显示,水杨酸己酯在290-700 nm之间有显著的吸收峰,吸光度峰值在305 nm处,并在330 nm时返回基线。290 ~ 700 nm波长的摩尔吸收系数高于光刺激效应的关注基准(1000 Lmol-1cm-1)。② 体外3T3细胞(RIFM (Harbell),2002)在3T3中性红摄取(NRU)光刺激试验中测试了水杨酸己酯。通过比较有UVA照射和没有UVA照射的IC50值来计算光刺激因子。结果表明,水杨酸己酯不具有光刺激性。未观察到光刺激反应。③ 小鼠研究(RIFM (Urbach),1975)将未稀释的水杨酸己酯(20 ul)涂于无毛突变小鼠背部区域,暴露在长弧氙灯和荧光黑光灯下。分别在4、24、48、72和96小时评估反应。在照射阳性对照部位观察到光毒性反应。无反应辐照或未辐照的试验材料处理部位均观察到水杨酸己酯无光毒性。④ 小型猪研究(RIFM (Urbach),1975年)根据上述小鼠试验的相同程序,用未稀释的水杨酸己酯(20 ul)对两只小型猪进行试验,也未观察到光毒性。⑤豚鼠(RIFM (Learn),2003) 在两组远交白化无毛豚鼠中评价水杨酸己酯的光刺激作用。将0.3 ml水杨酸己酯按0%、5%、10%、50%和100%的比例溶于二乙基苯甲酸乙酯(DEP):乙基苯甲酸乙酯(EtOH)=3:1的溶液中进行试验。受试物给药和紫外线照射后立即、1/4小时,1/2/3天进行临床观察。水杨酸己酯不会引起光刺激引起的皮肤变化。⑥豚鼠(RIFM (Learn) 2003) 两组远交系白化无毛豚鼠暴露于水杨酸己酯(50%和100%)中未观察到光过敏。将0.3 ml用DEP:EtOHl=3:1配制的水杨酸己酯施用于颈部,动物颈部暴露于紫外线辐射约2.25小时。在给药和/或UVR暴露4小时后对这些位点进行评分。根据研究结果,水杨酸己酯不被认为是光过敏原。⑦人体研究(RIFM(Potrebka),2004)对56名受试者(41名女性和15名男性)进行光刺激潜能研究,水杨酸己酯(0.3%、3%和30%溶于DEP:ethanol=3:1的溶液中)施用于每个受试者的背部,然后用UVA和UVB照射,未辐照部位作为对照,评估受试物的刺激潜力。在UVA和UVB照射1、24、48和72小时后评估反应。未观察到任何反应。 根据现有的体外、体内和人体数据,最终可得出结论↓水杨酸己酯不具有光毒性或光致敏性。
  • 锐意进取 | Adamas-Life® CellTiter-Lite™发光法细胞活力检测试剂盒
    CellTiter-LiteTM发光法细胞活力检测试剂盒(CellTiter-LiteTMLuminescenceCellViabilityAssay),是一种通过化学发光法测定细胞内ATP含量从而检测活细胞数目的试剂盒。借助ATP依赖的萤光素酶催化的萤光素发光反应,通过测定化学发光来进行定量。由于ATP含量能很好地反映活细胞的数目,而ATP含量和发光强度成正比,这样就可以简单地通过化学发光强度来计算出细胞活力或细胞数目。本试剂盒检测ATP的原理图应用方向药物筛选:制药行业广泛采用细胞活力测定法来评价制剂对细胞的影响。细胞活性检测:主要用于筛选细胞对药物或化学制剂的反应。细胞增殖及毒性检测分析:细胞活力可以用来关联细胞的行为与数量。产品特点一、与传统方法MTT、CCK-8进行对比二、与市场上常用的P品牌化学发光细胞活性检测试剂盒进行对比1、发光信号稳定发光信号的稳定性可能会因为细胞种类、细胞培养液、外界温度等条件的不同而略有差异。1小时内,信号整体上下波动范围在可接受范围之内。发光信号稳定性测试2、产品试剂稳定性好在4℃保存14天对检测信号无显著影响。经过反复冻融5次,检测效果基本无影响,反复冻融10次,检测效果下降不超过10%。产品稳定性测试3、灵敏度高,线性范围广96孔板中,在2万个细胞范围内都有良好的线性关系。不同数量细胞的化学发光强度检测效果对比图相关产品CellTiter-LiteTM发光法细胞活力检测试剂盒操作简便、灵敏度高、即开即用、线性范围广,更有不同规格,任你选择!检测细胞活力值得拥有!
  • 干货分享:酶标仪在植物对逆境胁迫应答中应用
    干货分享:酶标仪在植物对逆境胁迫应答中应用植物生长在开放的自然环境下,不可避免的被迫遭受和应对各种各样恶劣的生存环境,如干旱、盐害、低温、高温和病虫害等,这些不良环境统称为植物逆境或植物胁迫。随着全球环境的日益恶化,各种逆境胁迫因子对植物正常生长和发育的影响日趋严重,也是造成粮食作物和其它经济作物产量和品质下降的主要原因,成为制约现代农业发展的重要因素。植物为了适应各种胁迫环境,经过漫长的进化过程,产生了一系列对抗环境变化的能力,即抗性。植物抗性是绝大多数植物响应环境胁迫的普遍方式,植物抗性可以帮助植物提高对逆境的适应能力,但它是有一定限度的,如果逆境变化过强超出了植物的耐受范围,逆境胁迫会导致植物直接进入衰老和死亡。因此,植物对逆境胁迫的反应一直是植物科学领域的研究前沿。图1:植物与病原互作中的免疫反应人们已经发展出很多检测手段来探索和揭示植物免疫机制和植物抗逆机制,包括高通量测序技术、显微成像技术、色谱-质谱联用技术等,其中酶标仪检测技术作为一种高通量微孔板检测技术,且操作简便的方法,在生物医学、药物研发、农业和微生物学等领域得到了广泛应用。MolecularDevice公司的酶标仪产品可为植物抗逆领域的科学研究提供可行和简便的实验方案。针对钙信号检测,ROS信号检测,定量检测及动态曲线检测,MD都有相对应的完善的解决方案。Flexstation3可以用来检测钙信号,标配5大检测功能并内置自动移液系统,Flex快速动态监测模式,时间间隔最低达到毫秒级,轻松追踪从诱发到衰减完整的钙信号。使用SoftMaxPro软件的PeakPro分析功能,可对钙瞬变和钙振荡的信号进行峰频率、峰宽度、峰数目、峰上升时间及衰减时间等多个峰值属性进行分析。针对ROS信号检测,我们推荐多功能检测酶标仪,如SpectaMaxi3x和SpectaMaxiD系列,这几款仪器都可以配置自动双注射器,既能进行比色法和荧光强度测定,又能进行快速发光反应检测。针对定量检测,SoftMaxPro软件内置21种曲线拟合方式,可用于多种酶活分析和荧光定量分析。针对动态曲线检测,SoftMaxPro软件预置多种动力学参数,可一键输出最大速率、斜率、最大/最小时间和曲线下面积等分析。
  • BLT小课堂 经典的双报告系统:海肾+萤火虫
    01什么是双荧光素酶报告系统?双荧光素酶报告系统通常是指萤火虫荧光素酶(Firefly Luciferase,F-Luc)和海肾荧光素酶(Renilla Luciferase,R-Luc)组合而成的双报告系统。其中,F-Luc是从萤火虫Photinus pyralis中分离出来的;R-Luc则是从海肾Renilla reniformis中分离出来的。萤火虫海肾这两种酶都能催化底物发光,但它们在进化上的起源不同。因此,他们具有不同的酶学结构和底物要求:F-Luc需要荧光素、氧气、ATP和镁离子同时存在才能发光;R-Luc仅需要腔肠素和氧气。此外,他们发光的颜色不同:F-Luc的光波长为550-580nm;R-Luc的光波长为470-490nm。正是由于这两种酶的底物和发光波长不同,互不干扰,所以在双报告系统中得到广泛应用。发光反应方程式02双荧光素酶报告系统有什么优势?单荧光素酶实验的结果往往会受到各种实验条件(比如,培养细胞的数目和活力的差别,细胞转染和裂解的效率等)的影响,而双荧光素酶实验中,通常以海肾荧光素酶为内参,对萤火虫荧光素酶的检测结果做均一化处理,使得最终的数据更为准确。03双荧光素酶报告系统的应用?一、miRNA与靶标基因相互作用1. 验证microRNA同mRNA靶向互作。将待测mRNA的3’UTR序列插入报告基因载体,再共转入该microRNA,如果荧光素酶活性下降,则提示为其靶序列。2. 验证microRNA同lncRNA靶向互作。将候选的lncRNA序列插入报告基因载体中的3’UTR区域,再共转入该microRNA,检测荧光素酶活性。二、启动子分析1. 启动子结构分析。将启动子区域序列进行分段截短或对特定位点进行突变,再分别连接到报告载体,荧光素酶活性变化可以指示启动子功能变化。2. 启动子SNP分析。一些基因的启动子区域存在单核苷酸多态性,可运用荧光素酶报告系统分析其相对活性。3. 验证特定转录因子同其调控序列的作用。将该序列(通常为启动子区域)插入报告基因载体,同时在实验细胞中过表达该转录因子,可分析转录因子过表达是否提高荧光素酶活性。三、信号通路分析将该信号通路的下游响应原件序列构建入报告基因载体,在不同上游信号条件下,荧光素酶活性代表了通路的下游响应。04常用的双荧光素酶载体是什么?载体的选择有两种策略:第一种方案是两种荧光素酶分别位于两个载体上,。海肾荧光素酶常用载体为pRL-TK。萤火虫荧光素酶载体会根据实验需求进行不同的选择,比如启动子荧光分析相关研究可以选用Pgl3-Basic载体,miRNA与靶标基因相互作用的相关研究可以选用pMIR-REPORT载体。pRL-TKPgl3-BasicpMIR-
  • 每个人都应该知道的关于维生素C的事
    每个人都应该知道的关于维生素C的事奥豪斯助力检测肉制品 维生素C含量测定 爱美的小仙女都知道, 你的饮食不仅仅与你的整体健康有关,更重要是你的饮食也会影响你的皮肤健康。除了摄入富含维生素和矿物质的食物之外,摄入新鲜水果和蔬菜能让你的身体获得抗氧化剂,帮助促进皮肤健康,保护皮肤免受阳光伤害。 因为新鲜水果和蔬菜中, 富含丰富的维生素C, 维生素c一直是维生素家族中的明星,具有美白和增强免疫力等作用。由于人体不能制造维生素c,而且维生素c在人体内只能停留4个小时,因此每天至少补充两次。同时由于一支香烟可破坏25mg的维生素c,长期吸烟的人更需要服用维生素c。除了新鲜水果和蔬菜中富含维生素C, 小仙女们知道吗,肉制品中, 也含有维生素C 呢。是不是对于热爱美食的你,是个很好的消息呢 ! 今天我们就来看一下, 奥豪斯助力检测肉制品 维生素C含量测定1 范围GB/T 9695的本部分规定了肉制品维生素C含量的测定方法。本部分适用于肉制品中维生素C含量的测定 2 原理试样中的维生素C用偏磷酸提取后,经2,6-二氯靛酚氧化成脱氢维生素C,与邻苯二胺反应,生成 具有紫蓝色荧光的喹噁啉衍生物。在激发波长350 nm、发射波长430 nm处测定其荧光强度,标准曲线法定量。脱氢维生素C与硼酸可形成复合物而不与邻苯二胺反应, 以此排除试样中荧光杂质产生的干扰。 3 仪器和设备实验室常规设备及下列仪器3.1 机械设备3.2 荧光分光光度计3.3 分析天平:可准确称重至 0.1mg 4. 分析步骤4.1 提取4.2 氧化4.3 荧光反应4.4 测定4.5 平行实验4.6 标准曲线的绘制 5. 本部分的检出限:2mg/kg 客户为什么选择奥豪斯分析天平?奥豪斯Adventurer® AX 分析天平,320x 0.1mg 大量程万分之一天平,适合任何样品。 其中对于测试肉类样品,AX 天平非常易于清洁。 天平体积小巧,有助于实验室节约操作台空间。对于繁复的实验室检测工作,非常的有帮助哦 !以下,小编就带您看一看AX 的官宣吧~~ 无懈可击!奥豪斯在称量性能、外观设计、天平应用功能中不断进取,研发了新款Adventurer AX系列电子天平。Adventurer AX系列搭载彩色触摸显示屏,符合GLP/GMP法规。前置U盘读取接口,整体空间节省的风罩设计,全面满足实验室所有称量需求。Adventurer AX系列是同等级别天平中,您的最佳选择。 产品特点快速稳定且准确的称量特性,确保了天平的理想称量结果三者结合,确保让您在实验室称量中用最短时间,获取精准的称量结果。彩色触摸显示屏和U盘数据保存功能,带来更现代化的称量体验 宽视角彩色触摸屏方便您对 天平的称量操作和应用设置。前置U盘读取接口方便保存历史称量数据,输出符合GLP/GMP的要求。风罩整体设计有效节约实验室桌面空间,改善和提高用户体验 两片式的顶部和两侧风罩门设 计,巧妙地节省了在侧门推开时后方所需的桌面空间。1mg天平拥有上开门,提供更宽敞的称量室,样品放入更为便捷;0.01g和0.1g天平有更大的称量盘。 如果您想了解更多天平系列或奥豪斯其他产品信息,或正在寻求更专业细致的选型指导,请速速拨打4008-217-188,或点击进入“阅读原文”,并留下相关信息,我们专业的工程师们会竭诚为您服务!参考文献: 《GBT9695.29-2008》
  • BLT小课堂|水母发光蛋白检测法在细胞钙离子含量测定中的应用
    Ca2+作为普遍的第二信使在细胞信号转导过程中起着非常重要的作用,是单个细胞生存和死亡的信号。它参与了神经传导、血液凝固、肌肉收缩、心脏收缩、大脑功能、酶功能以及内分泌腺的激素分泌等各种生理机能。而人们对Ca2+在信号转导中作用的认识,则很大程度上取决于Ca2+测定技术。目前常用的Ca2+检测方法主要有:Ca2+选择性微电极测定法、同位素示踪法、核磁共振法和水母发光蛋白检测法等。01Ca2+选择性微电极测定法:Ca2+选择性微电极一种电化学敏感器。利用内充液和组织或细胞之间产生电位差,理想情况下,该电位差是Ca2+对数的线性函数,遵循Nernst方程。优点:直接、敏感地测定组织或细胞内的Ca2+,不需使用指示剂,不影响结合钙和游离钙的平衡。缺点:反应速度慢而无法测定Ca2+的快速变化,而且穿刺损伤细胞可引起渗漏,且不适用于太小的细胞。02同位素示踪法:用放射性核素45Ca2+对Ca2+进行示踪,可测量出通过细胞膜转运到细胞内Ca2+增加的速度及浓度的大小,揭示Ca2+泵的作用,目前主要用于测定跨膜Ca2+的流动。优点:测量方法简单易行,比普通化学分析法的灵敏度高。确定放射性示踪剂在组织器官内的定量分布,可以达到细胞、亚细胞乃至分子水平。缺点:静态效果差,需要特定的同位素测定仪,并且要注意示踪剂的同位素效应和放射效应问题。03核磁共振法:是一种新的、非光学技术的Ca2+检测方法。由于正常生物体内氟含量很少,为了得到足够的响应,在检测时需要使用含氟指示剂。该指示剂经过化学修饰后进入细胞,进而被水解成游离状态,然后与Ca2+结合,根据获得的波谱图计算出Ca2+的浓度。优点:具有非破坏性和无损伤性,能够在接近生物样本生理状态下连续动态地进行检测,准确反应Ca2+浓度。缺点:需要核磁共振仪,成本较高。04荧光探针法:目前常用的Ca2+荧光探针有Fluo-3、Fluo-4、Fluo-8等。这类探针本身无法进入细胞,但它的亲脂性衍生物却可以透过细胞膜进入细胞。一旦进入细胞,这类亲脂性衍生物的亲脂性封闭基团在细胞非特异性酯酶的作用下被分裂除去,在细胞内便会形成一种带负电荷的荧光染料。与胞内Ca2+结合时,其荧光强度显著增加。优点:指示剂易导入细胞,空间分辨率高,反应速度快,而且可同时检测多重离子。缺点:需要有荧光显微镜或激光共聚焦显微镜,成本较高。05水母发光蛋白检测法:最近十几年来,水母发光蛋白(Aequorin)很受人们的关注。水母发光蛋白由189个氨基酸组成,具有3个Ca2+结合的EFhand结构,所以水母发光蛋白可作为检测Ca2+的新型探针。优点:Ca2+/水母蛋白复合物能检测~0.1μm到>100μm范围内的钙离子浓度,且复合物不会从细胞内泄露出来,可检测几小时至数十天内Ca2+浓度的变化。比荧光探针法的背景低,样本本身不会发生自荧光。腔肠素的性质腔肠素(Coelenterazine)作为海洋动物体内贮存光能的分子,它广泛存在于海洋生物体内,比如海肾、海蜇、水螅等。腔肠素是天然荧光素中最普遍的,它可作为很多荧光素酶的底物。目前研究得最透彻的以腔肠素为底物的荧光素酶来源于海肾(Renilla),即海肾荧光素酶(Renilla reniformis,简称Rluc)。腔肠素的工作原理腔肠荧光素是一个分子量约400 Da 的疏水基团,它可以自由穿越细胞膜。在一个以荧光素/荧光素酶为基础的系统中,腔肠素作为以水母发光蛋白为代表的海洋发光蛋白的辅助因子,与水母发光蛋白进行稳定的结合,引起脱辅基水母发光蛋白和腔肠荧光素之间的共价键破裂,腔肠荧光素(Coelenterazine)被氧化脱羧,形成腔肠酰胺(Coelenteramide),释放出CO2,同时发出波长为469nm的蓝色生物荧光,该荧光可用博鹭腾高灵敏度管式/板式发光检测仪进行测定。图1.腔肠素/水母发光蛋白检测Ca2+机制水母发光蛋白一旦和Ca2+反应即丧失发光功能,因此当一部分水母发光蛋白与Ca2+反应时,被消耗水母发光蛋白的发光强度能反映出Ca2+浓度变化,而且被消耗的水母发光蛋白的发光强度与Ca2+浓度之间存在线形关系。如同萤火虫荧光素酶,海肾荧光素酶的活性也不需要翻译后修饰,一旦翻译完成即可行使遗传报告基因的功能。但是与萤火虫荧光素酶又有差异,即腔肠素/荧光素酶系统不需要三磷酸腺苷(ATP),因此更利于生物荧光的研究。技术小结由于Ca2+在生命活动的各种生理生化反应、疾病的发生和发展中都扮演着极其重要的角色,而游离的Ca2+浓度变化又与细胞的功能、信号转导乃至细胞的凋亡有密不可分的联系,因此,研究如何检测细胞内游离Ca2+浓度显得尤为重要。Ca2+选择性微电极测定法不需要使用指示剂,但是穿刺过程会损伤细胞,进而引起渗漏。同位素示踪法简单,但是静态效果差,还需要注意同位素效应和放射效应问题。核磁共振法和荧光探针法都需要特定的仪器,成本较高。水母发光蛋白检测法不需要激发光源,因而消除了细胞自发荧光的干扰,背景荧光远低于使用钙离子指示剂的荧光。另外腔肠素具有疏水性,易于通过细胞膜,适于全细胞的研究。 腔肠素/水母发光蛋白的生物荧光反应对Ca2+浓度的变化非常敏感,但是这种发光相对较弱,因此需要使用高灵敏度的发光检测仪进行检测。
  • 索尼发布全自动光谱细胞分析仪SA3800
    2015年6月17日,索尼公司(下称&ldquo 索尼&rdquo )今日发布SA3800全自动光谱细胞分析仪,一款配备了全新研发的3D驱动(X, Y, Z 轴)自动取样器的新型流式细胞分析仪。SA3800实现了完全自动化的便捷操作,其自动取样器将能实现高速的分析及处理功能。 ▲SA3800光谱细胞分析仪和全新研发的3D驱动自动取样器   流式细胞分析仪使用激光照射荧光试剂染色的细胞,并通过测量荧光和散射光分析细胞类型及特性。流式细胞分析仪广泛应用于免疫学、肿瘤学、再生医学以及药物开发等细胞学研究领域。尤其在药物开发和生物指标1开发等需要分析各类细胞的领域,非常需要快速、高效、精准地分析大量样本。   在传统的自动取样器中,孔板采取水平式移动,而试样探针2则是垂直移动来收集样本,这就导致样本需要来回移动较长的距离才能被采集到,这将有可能影响处理速度和样本残留率(样本间交叉感染的几率)。SA3800中的新款自动取样器使用了固定试样探针和可3轴(X,Y, Z 轴)移动的孔板,可以加速样本取样及分析过程。同时,该取样探针还自带自我清洁功能,可以进一步将样本残留率降低至0.1%或以下。这些独特性能将保证SA3800实现高速且稳定的样本收集,这在大量样本的分析工作中将是一个极受欢迎的产品特性。   此光学单元使用了索尼原有的探测荧光反应的光谱分析系统,该系统已用于此前发布的索尼SP6800Z系列3细胞分析仪,并在市场上取得了不错的成绩。该系统采用了高感应度的32通道光电倍增管(PMT),可检测并分辨出原先无法测量的细胞自体荧光因素4。它还能大大缩短荧光试剂修正的费时过程,确保结果的可靠性且减少人为因素。   今年6月26日,索尼将在英国格拉斯哥举办的第30届细胞学推进国际学会大会上中进行SA3800的展示。   1.一种物质,例如在血液中检测到的某种特殊蛋白质等,通过它的聚集显示出某种疾病的存在和发展   2.可萃取细胞样本的管子   3.请访问索尼网址获取SP6800Z系列产品相关信息   4.可由细胞自身反射的微弱荧光性 SA3800的主要功能   1.新开发的3D 自动取样器 SA3800的自动取样器使用3D驱动,快速和有效收集细胞样本。当和96孔孔板或384孔孔板结合使用时,可在保持较低样本残留的情况下,实现对大量样本的快速自动化分析。   3D自动取样器的主要性能 -   ●高速自动取样,在25分钟内完成96孔孔板的取样   ●低样本残留比例:0.1%以下   ●试样探针具备内置的自动清洗功能   ●可配合96孔孔板、384孔孔板及5毫升试管管架   ●通过摇晃对样本激活的功能;对样本进行冷却的功能   2.使用索尼自行开发的光谱分析技术实现高准确度的、可靠的分析   ①在不进行滤光的情况下,荧光波长将被索尼独家设计的棱镜所分解。在使用32通道的光电倍增管之后,可对荧光波形进行高度准确的分析。   ②索尼自行开发的分析算法。使用索尼开发的分析算法,根据波形将多种荧光物信号分解为不同的颜色信息。这些数据随后将依据密度等特征进行分析。这一分析算法可以分辨出具有非常相近波形的荧光物,以及位置非常接近的光波波峰,这在常规滤光技术下是很难实现的。 ▲传统细胞分析器的分析结果 ▲特殊细胞分析器的分析结果   ③自发荧光检测。因为个体样本拥有不同的自发荧光水平以及其它因素,对大量样本进行测量会因为不一致的荧光背景变得很复杂,这使通过数量去比较样本难以实现。索尼开发的光谱分析技术,通过将自发荧光识别为一种颜色,从而与其它信号区分开来,这就解决了上述问题并令分析更为可靠。   3.灵活的光学系统可以根据需求兼容四种激光。   除了常规的488nm以外,还有405nm、561nm、638nm。今后对SA3800加入更多激光也是有可能的。
  • 国产饮用水安全检测仪将亮相世博会
    中国食品质量报2010年1月4日消息,一种快速、灵敏、可靠的饮用水安全检测仪将亮相上海世博会。华东师大近日发布信息,该校朱文杰、徐亚同教授带领科研团队,完成了世博科技专项《快速检测饮用水中有害物质综合毒性的传感仪研制》课题。科研人员在待测水样中加入一种发光细菌——青海弧菌,如果水中含有害物质,这种细菌的发光强度会偏离正常范围,减弱或增强。只要用便携式仪器一测,半小时内就能知道饮用水是否安全。   什么是发光细菌?华东师大生命科学学院朱文杰教授从培养箱里取出发光细菌,在黑暗背景中,锥形实验瓶里的液体发出幽幽的绿色荧光。一旦外界条件不利于此类细菌的生理代谢,其发光反应将受到刺激或抑制,甚至猝灭。发光细菌的发光状况对外界条件的变化极为敏感,并可以通过发光强度的改变很快反映出来,所以可利用发光细菌来快速检测环境中的有毒、有害物质。   确定发光细菌能检测有毒物质,只是研究的第一步。为了找到适合用于饮用水监测的发光细菌,科研人员可谓“踏破铁鞋”。绝大多数发光细菌生存于海洋,仅少数发光细菌在淡水或陆地上生存。海洋发光细菌必须有一定浓度的钠离子存在才能生长和发光,而淡水发光细菌就没有这种限制。如果用海洋发光细菌检测水质,为满足其生理需要,必须在淡水样品中添加食盐,这样就会影响某些有毒物质的生物学毒性表现,使检测结果产生偏差。如果利用淡水发光细菌检测水质,就可以避免这样的偏差。为了寻找淡水发光细菌,华东师大的科研人员走遍了太湖、鄱阳湖、洞庭湖、巢湖等全国各大湖泊,终于在青海省的青海湖中找到了梦寐以求的淡水发光细菌——青海弧菌。   要普及发光细菌检测技术,一个关键因素就是运用简单的方法快速培养大量发光细菌。华东师大科研人员把青海弧菌由液态的保存方式转变为冻干粉的保存方式。检测人员拿到冻干粉后,可以将其保存在-10℃以下的冰箱中,使用前只要加入复苏液,几分钟之后冻干粉中的青海弧菌就自动恢复了活力,可立即用于检测毒性物质,十分方便。   科研人员介绍,利用淡水发光细菌进行毒性物质检测,在世界上尚属首次,并拥有自主知识产权。与传统检测方法相比,这种新型检测技术速度快、灵敏度高、成本低廉。在过去两年中,该课题组通过对市场上销售的瓶装饮用水,以及多种重金属、常见农药等污染物的检测研究,形成了检测饮用水的全套技术规范方法。该项技术还在上海苏州河治理、汶川大地震后灾区水质安全快速检测中得到应用和科学验证。
  • 测笔迹 鉴文件 分析仪器显神威
    错综复杂的刑事、民事案件中,面对真假难辨的签名、伪造得十分逼真的假印章 面对日渐复杂的高智商经济犯罪,警方如何才能从纷杂的账目中揪住狐狸尾巴?   日前,记者走进了为本市执法机关大量案件提供技术支持的天正司法鉴定中心,带读者近距离接触文件鉴定专家以及司法会计师,探秘笔迹、文件真伪鉴定以及警方追查花账的台前幕后……   案例一 9万变19万 鉴定师让借条“说话”   案情回放   李大明和李东是亲戚关系。半年前,李东因资金周转不开,向李大明借款,李东在李大明亲自用签字笔书写的“今暂向李大明借款9万元(大写附后)”的借条上签上了自己的名字。到了还款日期,李东拿着9万元还钱时,李大明却提出当时对方借了19万元,并出示当初签有李东姓名的借条。“借条”上确实写着“今暂向李大明借款19万元(大写附后)”的字样。李东当即提出异议,双方因此发生激烈争执。李大明一纸诉状将李东告到法院,要求法院判令对方返还借款19万元,庭上李东则坚称自己当时只借了9万元。   笔迹揭秘   关于借款具体数额,肯定有一方在说谎。至于说谎的人是谁,就必须让这份有争议的借条“说话”。接到法院的委托后,天正司法鉴定中心工程师小邵,立即对借条进行笔迹鉴定,以确认借条的阿拉伯数字“1”与汉字“拾”是否为后来添加。因为借条是本案关键证据,通常提取借条上字迹墨水成分进行比对的方法被放弃,因为它虽能鉴定但却会对证据造成破坏。参照法院要求对借条实行无损检验的要求,鉴定难度陡然提高了。   鉴定师小邵首先将借条放在高倍显微镜下,仔细观察借条上的字迹特征、笔画布局是否存在异常。   经过初步观察,她并没发现异常,初步结论是借条应为同一人书写。接着,她又借助“视频荧光仪”,先后利用红外和紫外荧光两种模式仔细观察,经过检测可疑字迹与其他字迹也没发现异常。至此,按照工作流程,他们就能得出“没有添加”的结论。   本着对委托人负责的精神,邵工程师再次通过“光谱仪”对可疑文字进行检测,以确定可疑文字与其他文字在笔画成分上是否存在异常。因为不同签字笔书写的文字在光谱仪下,会因为光谱不同出现不同的特征峰,经过这轮检测,小邵终于发现了借条上的破绽,得出了借条上阿拉伯数字“1”与汉字“拾”是不同签字笔书写,借条“存在添加”的结论。   专家提醒   书写欠条或者借条时,布局应尽量紧凑,不要留有空隙等多余空间,以避免原始文件材料遭篡改,引发不必要的纠纷。   案例二 老板携款潜逃 鉴定师验出伪造签证   案情回放   某区公安机关接到某公司员工举报称,到了发工资的日子,公司老板刘某却疑似携款潜逃。警方迅速介入侦查,很快便从公司发现了10份美国大使馆签发的中国公民因私赴美护照。经调查,10位市民均与刘某签订过协议,委托刘某以该公司的名义替他们办理签证,他们每人向刘某交纳15万元的服务费。这10份赴美签证的真伪成了为此案定性的关键证据。   于是,警方将这10份签证送到天正司法鉴定中心,要求鉴别其真伪。   揭秘文件鉴定   经邵工程师的初步检验,她发现与以往鉴定的假签证有很大不同。这次送检的美国“签证”印刷精美,图案有明显的立体感,颜色层次分明,底纹与人像上的波浪线均清晰、连贯。在文检仪紫外荧光模式下,图案有正常的荧光反应。与同版真签证比较,没有发现明显差异。然而,借助高倍立体显微镜,小邵终于发现了蛛丝马迹。在高倍立体显微镜下观察,真签证上方印有的彩色波浪线是采用缩微印刷技术,由凹凸的英文字母组成。然而,此次送检的这10份“签证”上面的彩色波浪线均为实体线条。此外,鉴定专家对送检签证的背胶进行成分检验后发现,其成分与同版签证存在很大差异。由此,专家认定这次送检的10份美国签证均系伪造。最终,警方将涉嫌诈骗的刘某抓获归案。   专家提醒   专家提醒市民,办理出国签证不要图省事儿,不要轻信他人,一定要委托正规的出国中介机构办理相关事宜,以免上当受骗,遭受不必要的经济损失。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制