当前位置: 仪器信息网 > 行业主题 > >

荧光成像

仪器信息网荧光成像专题为您整合荧光成像相关的最新文章,在荧光成像专题,您不仅可以免费浏览荧光成像的资讯, 同时您还可以浏览荧光成像的相关资料、解决方案,参与社区荧光成像话题讨论。

荧光成像相关的资讯

  • 日立发布荧光分布成像系统新品
    一、荧光分布成像系统(EEM View)简介 作为荧光分光光度计的配件系统,这是全球首创将相机与荧光分光光度计的完美结合,融合了智能算法的先进技术。能够同时获取样品图像和光谱信息。 新型荧光分布成像系统可安装到日立F-7000/71000荧光分光光度计的样品仓内。入射光经过积分球漫反射后均匀照射到样品,利用荧光光度计标配的荧光检测器可以获得样品荧光光谱,积分球下方的CMOS相机可获得样品图像,并利用独特的AI光谱图像处理算法,可以同时得到反射和荧光成分图像。 二、 荧光分布成像系统特点: 1. 可以全面测定样品的光谱数据(反射光、荧光特性)在不同光源条件下(白光和单色光)拍摄样品图像,(区域:Φ20mm、空间分辨率:0.1 mm左右、波长范围:360-700nm),同时利用先进的光谱算法,分别显示荧光图像和反射图像, 根据图像可获得不同区域的光谱信息(荧光光谱、反射光谱)荧光分布成像系统软件分析(EEM View Analysis)界面(样品:LED电路板)2. 样品安装简单,适用于各种样品测试样品只需摆放到积分球上,安装十分简单!丰富的样品支架支持精确测量的校正工具荧光分布成像系统是一种全新的技术,将它配置到荧光分光光度计中,改变了常规荧光光度计只能获得样品表面区域平均化信息的现状,可以查看样品图像任意区域的光谱信息,十分适合涂料、材料、油墨、LED、化工等领域。创新点:创新点主要有两个方面:硬件方面:全球首创将将荧光分光度计与CMOS相机结合在一起,能够同时观察样品光谱和图像的技术。软件方面:运用了智能光谱算法,可以获取样品任意区域的光谱信息。常规的荧光分光光度计测得的是样品表面信息平均化的信号,得到的是一条荧光光谱,这个新的系统能够对样品表面进行分区,从而获得不同区域的光谱信号,使得光谱信息细致化了。 荧光分布成像系统
  • 日立发布荧光分布成像系统新品
    1. 荧光分布成像系统(EEM View)简介作为荧光分光光度计的配件系统,这是全球首创将相机与荧光分光光度计的完美结合,融合了智能算法的先进技术。能够同时获取样品图像和光谱信息。 新型荧光分布成像系统可安装到F-7100荧光分光光度计的样品仓内。入射 光经过积分球的漫反射后均匀照射到样品,利用F-7100标配的荧光检测器可以获得样品荧光光谱,结合积分球下方的CMOS相机可获得样品图像,并利用独特的AI光谱图像处理算法,可以同时得到反射和荧光图像。 2. 荧光分布成像系统特点:? 测定样品的光谱数据(反射光、荧光特性)? 在不同光源条件下(白光和单色光)拍摄图像 (区域:Φ20mm、空间分辨率:0.1 mm左右、波长范围:360-700nm)? 利用自主研发的分析系统1),分开显示荧光图像和反射图像? 根据图像可获得不同区域的光谱信息(荧光光谱、反射光谱)1) 国立信息学研究所 佐藤IMARI 教授?郑银强副教授共同研究成果荧光分布成像系统软件分析(EEM View Analysis)界面(样品:LED电路板)样品安装简单,适用于各种样品测试样品只需摆放到积分球上,安装十分简单!丰富的样品支架支持精确测量的校正工具总结以上为荧光分布成像系统的特点和功能结束,这是一种全新的技术,将它配置到荧光分光光度计中,改变了常规荧光光度计只能获得样品表面区域平均化信息的现状,可以查看样品图像任意区域的光谱信息,十分适合涂料、材料、油墨、LED、化工等领域。创新点:创新点主要有两个方面:硬件方面:全球首创将将荧光分光度计与CMOS相机结合在一起,能够同时观察样品光谱和图像的技术。软件方面:运用了智能光谱算法,可以获取样品任意区域的光谱信息。常规的荧光分光光度计测得的是样品表面信息平均化的信号,得到的是一条荧光光谱,这个新的系统能够对样品表面进行分区,从而获得不同区域的光谱信号,使得光谱信息细致化了。 荧光分布成像系统
  • 无创荧光显微技术能为大脑深度成像
    来自瑞士苏黎世大学和苏黎世理工大学的研究人员开发出一种称为漫反射光学定位成像(DOLI)的新技术,利用它可以高分辨率、无创观察活体小鼠大脑深部的微血管。该技术具有卓越的分辨率,可看到深层组织,为观察大脑功能提供了强大的光学工具,在研究神经活动、微循环、神经血管耦合和神经退化方面具有广阔的应用前景。相关研究发表在近日的美国光学学会期刊《光学》上。  这种技术利用了1000—1700纳米之间的第二近红外(NIR-Ⅱ)光谱,这一范围光谱的散射较少,可使显微荧光成像的深度达到光扩散深度极限的4倍。  在各种疾病的动物模型中,荧光显微镜经常被用来对大脑的分子和细胞细节进行成像。但此前,由于皮肤和颅骨的强烈光散射影响,荧光显微镜仅限于小体积和高度侵入性的操作。此次研究首次表明,3D荧光显微镜可帮助科学家以非侵入性方式,高分辨率地观察成年小鼠大脑。该显微镜有效覆盖了大约1厘米的视野。  研究人员首先在模仿人体平均大脑组织特性的组织合成模型中测试了这项技术,证明他们可以在光学不透明的组织中获得最深达4毫米的显微分辨率图像。然后,他们在活小鼠身上测试了这项技术。他们给活小鼠静脉注射了荧光微滴,追踪这些流动的荧光微滴可以重建小鼠大脑深部微血管的高分辨率图。观察发现,借助DOLI技术可以完全无创地观察到脑微血管以及血流的速度和方向。  研究人员表示,这种方法消除了背景光散射,并可在头皮和头骨完好无损的情况下进行。他们还观察到相机记录的斑点大小与微滴在大脑中的深度有很大的关系,这使大脑深度分辨成像成为可能。  “在生物医学成像领域,实现深部活体组织的高分辨率光学观测是一个长期的目标。”研究小组组长丹尼尔拉赞斯基说。  现在,研究人员正在努力优化DOLI技术,以提高其分辨率。他们还在开发改进的荧光剂,这些荧光剂更小、荧光强度更高,且在体内更稳定,这将大大提高该技术在清晰度和成像深度方面的性能。
  • 发布FOBI整体荧光成像系统,小动物活体成像系统新品
    FOBI整体荧光成像系统可以对动植物体发出的荧光信号进行采集成像。FOBI内置四种不同的荧光通道(蓝、绿、红、红外),应用于各种荧光蛋白和染料的标记分析。能快速实时得到直观、高品质的图像和视频。1、应用范围广:肿瘤、免疫、药物开发等生命科学领域各个都可应用;荧光成像信号强,曝光时间短,无须事先转染荧光素酶基因,在活体成像研究中比生物发光成像应用更广。2、实时:曝光时间短,成像快,可实时进行动物手术操作。3、真彩色:使用彩色CCD图像传感器,能获得全方位真彩色图像,对比度更高,图像更清晰。4、操作简单,功能实用:信号背景一键消除,软件界面简洁无复杂操作过程;可录制视频用于回顾分析和教学;仪器可改装用于较大动物。5、数据准确:采用LED散漫光光源,光均匀性好,信号采集误差小;软件去除荧光背景保证数据准确。6、小巧方便:仪器整体结构紧凑,体积小,重量轻,占用空间小,可自由选择实验场地,省去转移动物的麻烦。7、价钱便宜,维修成本低:采用实用的仪器部件和功能,节省成本,可自行选择仪器配置。8、用户多,有大量文献支持 :已有100多篇SCI文章发表,包括Cell等高分期刊。创新点:(1)相比其它产品的伪彩处理,FOBI是真正意义上的真彩色图; (2)仪器整体结构紧凑,性能稳定,体积小,重量轻,占用空间小; (3)软件自带的一键扣除荧光背景信号和荧光定量分析功能,可在成像过程中实时分析图像的相对荧光强度和荧光区域的面积; (4)专为荧光成像应用设计; (5)无论成像质量和文章发表数目均在专做荧光成像的同类产品中处于领先水平。 FOBI整体荧光成像系统,小动物活体成像系统
  • 金属离子荧光成像研究前景广阔
    p   2015年7月20-24日,“第十七届国际生物无机化学会议”在北京国家会议中心盛大召开。本次会议由中国化学会和国家自然科学基金委员会主办,北京航空航天大学承办,会议以“生物无机化学:交叉和合作”为主题,设立5个分会场和若干卫星会,5个分会场又分别包含二到四个主题。会议规模大,参会人员来自世界不同国家的高等院校、化学或生物及相关领域的科研院所,具有很强的代表性和前瞻性。而面对无机生物化学领域如此众多的前沿研究方向,笔者更关注的是与疾病相关的金属离子的荧光成像技术。 /p p   实际上,金属离子对于机体的很多生命活动都是十分重要和必要的,细胞内金属离子动态平衡一旦失调就可能导致许多疾病,比如神经退行性疾病、癌症和糖尿病等。已经有研究发现,在神经退行性疾病患者的脑组织中有过渡金属离子的过多累积,比如铜、锌和铁离子。因此,如何获取这些金属离子在组织、细胞,甚至是细胞器中的分布和含量信息,对于理解某些疾病以及新的诊断方法的开发就显得尤为重要。 /p p   而荧光成像可通过一种非接触和无损伤的方式,为我们提供一种检测细胞内金属离子的独特方法,这种方法有很高的空间和时间准确性。在细胞生物学领域内,该方法在进一步理解金属离子的生理和病理功能方面具有广阔的应用前景。具体到荧光成像中的一个重要元素——荧光探针而言,它应具备以下几个功能:对于目标金属离子的高选择性、对金属离子浓度原位定量分析的宽的动态范围,以及描述金属离子在细胞内分布的细胞器靶向能力。 /p p   当前对于荧光探针的研究也主要集中在如何提高探针的灵敏度和选择性,扩展可检测金属离子的范围,发展新的检测机理等方面。以上这些趋势从本次会议的相关报告中也可略见端倪。 /p p   加利福尼亚大学伯克利分校的Christopher J. Chang博士当前正在开发一种新的分子成像方法,以用于研究调控大脑活动背后的化学原因。他的报告向听众展示了过渡金属和活性氧、硫、碳等作为新的化学信号来源方面的研究发现,以及它们对于神经回路的影响。此外,据笔者会下了解,该课题组还开发出一种新型铜离子探针—CF3,这种探针在敏感性和亲水性方面均有提高,可以分别用于单光子和双光子成像。据悉,他们已经将这种新探针用于共聚焦或双光子成像扫描,以检测大鼠海马组织和视网膜组织中的铜离子。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" Christopher J,ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/1202c167-b7b7-4f20-8265-42b2ea2e80c7.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong Christopher J. Chang /strong /p p   光活性分子的光解对于追踪细胞功能的复杂性和其动力学过程很有帮助,但目前大多数光解系统依赖于高强度紫外线或可见光来激发光活化过程。但是,短波长的光照射不可避免地会导致细胞损伤,并且组织穿透性较低,这些都限制了短波长光源在体内和体外生物系统研究中的应用。南洋理工大学的邢本刚博士为我们带来了一种解决上述问题的方法,该研究小组将多功能的生物活性官能团与镧系掺杂的纳米粒子结合形成颗粒共轭物。在近红外光(NIR)照射下,经由这些颗粒共轭物转化得到的锐利短发射光波能够有效地活化成像探针或相关载荷分子,因此产生明显的原位成像信号,或是得到针对体外和体内处理活化的有效功能。这种新平台有利于生物医学应用中前药活化的靶向控制,更重要的是可以在疾病早期治疗干预中做到实时成像。& nbsp /p p style=" text-align: center " img width=" 450" height=" 300" title=" 邢本刚ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/0191be12-4399-410f-bb94-3c52178f6398.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong 邢本刚 /strong /p p   当前,不稳定Zn sup 2+ /sup 和硫化氢已被作为可产生光致信号的无机家族新成员。南京大学何卫江博士在报告中介绍了采用不同的策略来开发比例计量型荧光探针,以用于Zn sup 2+ /sup 和硫化氢的定量成像。这种比例计量成像显示出了对于Zn sup 2+ /sup 和硫化氢的诱人的选择性,从而可提供关于上述两种物质的更准确信息,对满足不同研究和促进它们在生物无机化学的发展方面具有十分重要的意义。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" 何卫江ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/07cd7f1d-6be9-4081-b776-ea100ad5de54.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong 何卫江 /strong /p p   印度塔塔基础研究所化学科学系的Ankona Datta博士的报告主要围绕Mn sup 2+ /sup 荧光探针。由于Mn sup 2+ /sup 与已知配体的亲和力比较低,并且Mn sup 2+ /sup 可以顺磁淬灭荧光染料,所以设计选择性Mn sup 2+ /sup 荧光探针依然是一个挑战。该研究小组将五氮大杂环配体(该五氮大杂环配体包含含氧的“手臂”)与一个BODIPY类荧光标签结合,这样一来,荧光染料初始时被淬灭,而一旦与Mn sup 2+ /sup 键合,则可以得到相当不错的荧光信号强度的增强。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" Ankona Datta,ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/c7520441-cf5b-4faf-8079-d67e77ed22e8.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong Ankona Datta /strong /p p   北京大学的张俊龙博士课题组研究兴趣集中在开发发光金属—Salen(螯合席夫碱)配合物,来用作荧光成像试剂。他们的探针选择锌作为金属发光配合物的中心金属,用于活细胞内质网的单分子成像。同时,该课题组也深入细致地研究了金属种类和细胞摄取以及亚细胞分布之间的关系。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" 张俊龙ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/9c1a7337-a597-47af-a204-04dea4215cd6.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong 张俊龙 /strong /p p   为了避免采用时间选通成像技术而导致的自体荧光,来自韩国梨花女子大学Youngmin You博士的研究小组开发了基于环金属铱(Ⅲ)配合物的磷光探针。譬如,他们将金属-螯合-二(2-吡啶甲基)氨基类受体引入到Ir(Ⅲ))复合物来制备Zn(Ⅱ)探针。此外,该研究小组还开发出针对具有氧化还原活性的Cu(Ⅱ)离子和& nbsp Cr(Ⅲ)离子的比例计量型磷光探针,以及可用于氧的光敏化过程和细胞器荧光染色的多功能磷光标签。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" youngmin you, ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/9ca3ec55-6b18-4544-94fe-10d3b7a45593.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong Youngmin You /strong /p p   为了考察不稳定铜离子池在一个生物环境中的性质,佐治亚理工学院Christoph J. Fahrni博士的研究小组开发了一套Cu(Ⅰ)选择性荧光探针和亲和标物。通过对配体结构和荧光标签性质系统的优化(关键步骤),得到了一个具有180倍荧光对比度的Cu(Ⅰ)选择性荧光探针,相应地,其检出限可低至亚ppt范围。 /p p style=" text-align: center " img width=" 450" height=" 300" title=" Christoph J ps.jpg" style=" width: 450px height: 300px " src=" http://img1.17img.cn/17img/images/201507/insimg/0b255435-b52f-4462-81f5-e6a9e7bffb4a.jpg" border=" 0" hspace=" 0" / /p p style=" text-align: center " strong Christoph J. Fahrni /strong /p p  & nbsp & nbsp strong & nbsp 编者按 /strong strong : /strong /p p   可以预见,金属离子探针未来的发展趋势是更多学科将参与进来,同时也需要生物医学应用的驱动,这就要求化学家和生物学家之间能够更加密切的合作。虽然存在挑战,但是为了能完全理解金属离子的功能,获得一个完整生物体内金属离子动态平衡的成像是很有意义的,也是很有趣的。目前,对于精准的细胞器定位,标准的荧光显微镜可达到的空间分辨率仍然是比较低的。然而,近期的超分辨率荧光显微技术的发展,为荧光探针创造了前所未有的新的发展可能。可以预计,在未来数年内,金属离子荧光探针的研究将得到更加快速的发展。 /p p style=" text-align: right " & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 编辑:史秀明 /p
  • 测试服务限时免费开启----拉曼光谱成像/光电流成像/荧光寿命成像
    测试服务限时免费开启----拉曼光谱成像/光电流成像/荧光寿命成像产品简介Nanobase XperRam C 紧凑型共聚焦拉曼光谱仪采用高于竞争对手30%效率的透射式光栅和高效率的自研CCD,可实现超高灵敏度。不同于传统的拉曼光谱设备采用平台移动的方式,它选择的独特的振镜扫描技术,保持位移平台不动,通过振镜调节激光聚焦的位置完成扫描成像,不仅速度快、扫描面积大,且精度也高。产品配置显微镜反射LED照明,右手控制的机械x-y载物台,物镜10×/20×/40×/50×/100×(选配),进口正置型显微镜扫描模块扫描模式:振镜扫描,分辨率: 焦长35mm光谱范围蕞大8150cm-1光谱分辨率低至3个波数检测器TE制冷CCD,1932×1452pixels,4.54um width 光栅 光栅刻线光谱范围分辨率2400lpmm70~2340cm-13cm-11800lpmm70~3400cm-14.4cm-11200lpmm70~5000cm-16.4cm-1600lpmm70~8150cm-19.8cm-1 其他选配项ND功率控制衰减片光电流源表、探针台实现光电流mapping偏振控制 目前我们针对XperRam系列光谱仪推出以下限时免费测试项目限时时间:2022.6.1-2022.12.31申请条件:微信朋友圈转发公众号文章,获取10个赞,并截图发给联系人即可享受测试项目测试内容测试条件激发波长探测器水平 拉曼测试 拉曼光谱、二维拉曼成像成像范围:200um×200um(40×物镜下),空间分辨率:激发波长:532nm/785nm,光谱分辨率:0.12nm 2000 × 256 pixels, 15 μm 像素宽度 (iVAC316, Andor) PL测试 PL光谱、PL二维成像激发波长:405nm/532nmTCSPC测试瞬态荧光寿命曲线、二维荧光寿命成像激发波长:405nm系统响应度:<200ps测量范围12.5ns-32us 光电流测试 I-V曲线、I-t曲线、二维光电流成像激发波长:405nm,532nm,785nm Semishare高精度探针台 Keithley2400源表蕞大电压源/量程:200v测量分辨率:1pA/100nV 设备优势1、拉曼光谱分析不同浓度的环境干扰物,体现了低浓度样本中仪器检测的高灵敏度。2、拉曼成像分析二维材料MoS2的分布3、拉曼测量硅片:透射式体光栅VPH和少量光学元件可以实现高通量和高S/N信噪比 典型应用介绍拉曼光谱在宝石鉴定中的应用 在1200cm-1~3600cm-1区间,没有明显的峰值出现,说明其中没有环氧树脂或有机染料等基团,是chun天然宝石。 1123cm-1、1611cm-1是环氧树脂中苯环特有的峰,因此属于被环氧树脂或其他胶填充裂纹的改善翡翠。拉曼光谱在二维材料中的应用 G峰和G、峰强度之比常被用来作为石墨烯层数 的判断依据,G峰强度随层数增加逐渐变大;G、 峰的半峰宽随层数增加逐渐变大,且往高波数蓝移。拉曼光谱在植物研究中的应用 不同浓度的胡萝卜素的拉曼成像图中红色和绿色区域分别代表高浓度和低 浓度的羰基。在Control样品中,绿色区域连续 分布在粉末中,表明淀粉在微胶囊内部和外部 的分散相对均匀。在掺入海藻糖后,在微胶囊 的外部周围检测到含有高浓度和低浓度羰基的混合区域。该结果证实了海藻糖和淀粉由于其 亲水性而在微胶囊中具有良好的相容性。拉曼光谱在光波导中的应用 光波导主要通过对折射率的调控来实现,折射率分布影响导波性能。 光刻过程材料吸收能量发生热膨胀,导致应力变化、晶格破坏和化学键键 长变长,从而使拉曼位移发生变化。拉曼光谱在催化中的应用——原位升温拉曼 Ag/CeO2在不同温度和气 氛中的原位拉曼光谱。 目前我司的光电测试系统已在国内外各个高校均有服务,欢迎各位老师同学前去调研。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 免疫荧光显微成像详解(上)——免疫荧光原理、步骤
    前言免疫荧光技术是在免疫学、生物化学和显微镜技术的基础上建立起来的一项技术,它是将不影响抗原抗体活性的荧光色素标记在抗体(或抗原)上,与其相应的抗原(或抗体)结合后,在荧光显微镜下呈现一种特异性荧光反应。利用荧光显微镜可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质和定位,以及利用定量技术(比如流式细胞仪)测定含量。直接法将标记的特异性荧光抗体,直接加在抗原标本上,经一定的温度和时间的染色,用水洗去未参加反应的多余荧光抗体,室温下干燥后封片、镜检。间接法如检查未知抗原,先用已知未标记的特异抗体(第一抗体)与抗原标本进行反应,用水洗去未反应的抗体,再用标记的抗抗体(第二抗体)与抗原标本反应,使之形成抗体—抗原—抗体复合物,再用水洗去未反应的标记抗体,干燥、封片后镜检。如果检查未知抗体,则表明抗原标本是已知的,待检血清为第一抗体,其它步骤的抗原检查相同。标记的抗抗体是抗球蛋白抗体,同于血清球蛋白有种的特异性,如免疫抗鸡血清球蛋白只对鸡的球蛋白发生反应,因此,制备标记抗体适用于任何抗原的诊断。一、实验步骤免疫荧光实验的主要步骤包括 样片制备、固定及通透(或称为透化)、封闭、抗体孵育、封片及荧光检测等。1、 样品准备对于单层生长细胞,在传代培养时,将细胞接种到预先放置有处理过(70%乙醇中浸泡)的盖玻片的培养皿中,待细胞接近长成单层后取出盖玻片即可,操作过程要小心,防止细胞脱片。对于悬浮生长细胞,有两种方式,一种是取对数生长细胞,制备细胞片或直接制备细胞涂片,把细胞片浸入封闭液中固定,封闭后滴加一抗和二抗孵育;另一种是先在悬浮液中进行固定和染色,离心洗脱后,用移液管移至盒式玻片进行后续抗体孵育。对于冰冻切片制备,建议用新鲜组织,否则组织细胞内部结构破坏,易使抗原弥散。组织一定要冷冻适度,切片时选用干净锋利的刀片,防止裂片和脱片。对于石蜡切片的制备,要先进行脱蜡和抗原修复的处理。2、固定做好切片并风干后立即用合适的固定液(固定液包括有机溶剂和交联剂,其选择取决于抗原的性质及所用抗体的特性)进行固定,尤其要较长时间保存的白片,一定要及时固定和适当保存。固定时间则取决于固定组织切片的大小和类型,对大多数组织,18-24h即可,而细胞的固定时间较短。3、通透针对胞内抗原,使用0.5% Triton X-100或丙酮等通透剂进行通透,这一步的目的是使抗体进入胞内。 4、封闭为防止内源性非特异性蛋白抗原的结合,需要在一抗孵育前先用封闭液(一般包括与二抗同一来源的血清、BSA或者羊血清)封闭,减弱背景着色。封闭开始后,要注意样品的保湿,避免样品干燥,否则极易产生较高的背景。5、一抗孵育一抗孵育温度一般分为:4℃、室温、37℃,其中4℃效果更佳;孵育时间与温度、抗体浓度有关,一般37℃孵育1-2h,4℃过夜(从冰箱拿出后37℃复温45min)。具体条件还要根据样品、稀释液等条件进行摸索尝试。6、荧光二抗孵育荧光二抗孵育一般在室温或37℃孵育30min-1h,该过程必须在避光环境下进行,防止荧光淬灭。荧光素标记的二抗随着保存时间的延长,可能会有大量的游离荧光素残留,需要注意配制时采用小包装并进行适当的离心。7、复染一般采用DAPI进行复染,目的是形成细胞轮廓,从而更好地对目标蛋白进行定位。8、封片为了长期保存,我们需要对样本进行封片,用吸水纸吸干爬片上的液体,一般用缓冲甘油等或专门的抗荧光淬灭的封片液。9、 荧光观察有条件的话最好立即用荧光显微镜观察拍照,若不能及时拍照,也要做好封片和封固,保持避光和湿度。荧光显微镜的成像能力对最终的结果也会造成很大的影响,好的荧光显微镜能够最大限度地收集荧光信号,并呈现高分辨率的图片,使细节更清楚,更易得到一张效果极佳的结果图。注意:切片清洗:为了防止一抗、二抗等试剂残留而引起非特异性染色,所以适当地加强清洗(延长时间和增多次数)尤为重要,一般在一抗孵育前的清洗是3min*3次,而一抗孵育后的清洗均为5次*5min。(1)单独冲洗,防止交叉反应造成污染;(2)温柔冲洗,防止切片的脱落。可使用浸洗方式;(3)冲洗的时间要足够,才能彻底洗去结合的物质;(4)PBS的PH和离子强度的使用和要求(建议PH在7.4-7.6,浓度是0.01M;中性及弱碱性条件有利于免疫复合物的形成,而酸性条件则有利于分解;低离子强度有利于免疫复合物的形成,而高离子强度则有利于分解)。根据上述步骤完成免疫荧光实验后,就需要进行荧光显微成像,得到我们想要的结果。选择一款操作简单、成像清晰、效果卓越的荧光显微镜进行观察拍照,才能轻松得到更为理想的结果图,达到事半功倍的效果。Echo Revolve正倒置一体荧光显微镜Echo Revolve正倒置一体荧光显微镜作为一款电动化、智能化的显微镜,具有以下优势:☑ 正倒置一体快速切换:切片、细胞观察随心切换,无惧任何耗材;☑ DHR数字降噪功能:极大地降低了背景噪音和荧光干扰,提高图像锐度,加深细节,得到分辨率更高的图片;☑ 强大的Z-Stacking功能:通过高精度电动化Z轴层扫来扩大景深,解决厚样本观察问题,提高图像分辨率;☑ 500MP单色相机:能够采集更多荧光信号,助力低荧光强度样本观察;☑ 多通道荧光自动拍摄叠加功能:可自动进行多通道成像的叠加,个性化选择查看/保存各通道的组合图像。
  • 荧光分布成像系统(EEM View)观察荧光体树脂片
    目前,照明灯和液晶显示屏的背光源均采用白色LED灯。因此,为了进一步提升产品性能,Mini LED背光源和Micro LED显示屏的研发正在紧锣密鼓的进行中。荧光分布成像系统(EEM View)是能够同时获取样品图像和光谱信息的新附件。入射光通过照射积分球内壁,获得均匀光源,进而观察样品。利用F-7100标配的荧光检测器可以获得荧光光谱,结合积分球下方的CMOS相机装置拍摄图像,并利用AI光谱处理算法,可以同时得到反射和荧光图像。相信未来EEM View会在LED零配件内的荧光体光学特性评价中得到广泛的应用。1. 荧光体树脂片(50 mm×50 mm)的荧光特性此次实验测定了在面发光LED中使用的荧光体树脂片。对样品照射360~640nm的单色光,得到了样品特有的荧光特性。EEM View模式下,可同时获得不同光源条件的样品图像。通常,白色LED灯发光原理是采用蓝光LED发光二极管在455nm附近激发荧光体,产生580~650nm的黄色荧光,从而与LED发出的蓝光混合形成白光(图1)。由图2、图3可以看出,此次测定的样品荧光体树脂片,在455nm附近被蓝光LED灯激发,发出相当于625nm的黄色荧光。图1 白色LED发光原理 图2 三维荧光光谱图3 激发光谱和发射光谱2. 荧光体树脂片的分布均匀性确认 荧光成分图像 荧光成分图像 (分布不均匀区域) (分布均匀区域) 图4 树脂片的图像和光谱图4为树脂片的荧光成分图像,左边是荧光体分布不均匀区域的荧光图像和光谱,右边是荧光体分布均匀的荧光图像和光谱,从荧光图像中可以看出荧光体的分布情况。此外,通过不同位置计算出的荧光光谱,可以发现树脂片不同位置的荧光强度存在差异。对于荧光体分布不均匀的树脂片(左图),它的中心位置亮度偏高。而且从荧光光谱中可以看到,3个位置的荧光光谱峰值荧光强度最 大偏差15%。荧光分布成像系统是全球首创的新技术,它将有助于获得研发和应用领域的多方面信息表征,密切关注日立高新技术公司官网,更多应用持续更新中。
  • “细致入微”的荧光成像,荧光与相机的结合——光谱新品大观
    p style=" text-indent: 2em text-align: justify " strong 仪器信息网讯 /strong 为了更全面的展现BCEIA上展出的光谱新产品、新技术,仪器信息网特别开设BCEIA之光谱新品大观系列视频,为大家分享各家厂商光谱新产品及新技术相关信息! /p p style=" text-indent: 2em text-align: justify " 会展期间,日立高新技术公司带来了其全新的荧光分布成像系统,仪器信息网特别来到了日立高新的展位,其产品专员曹亚南为我们详细介绍荧光分布成像系统的技术特点,以及未来可发展的应用领域。 /p p style=" text-indent: 2em text-align: justify " 详细视频如下: /p script src=" https://p.bokecc.com/player?vid=BF315C01A626CA1A9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=490& playerid=5B1BAFA93D12E3DE& playertype=2" type=" text/javascript" /script
  • 设备更新选型指南丨超快荧光三维成像技术推荐
    市面绝大多数共聚焦显微镜采用点扫描式激光共聚焦技术,成像速度较慢,难以满足活细胞动态观测、大视野快速扫描等成像需求。长光辰英的S3000转盘共聚焦显微镜采用三条纹转盘共聚焦成像技术,配合电动Z轴快速扫描,将成像速度提高至少二十倍。同时采用LED面光源激发光线更均匀,光毒性、光漂白性大大降低,适合连续观测。作为超快荧光三维成像的革新者,长光辰英的成像产品为活细胞,细胞生物学、微生物学、发育生物学、神经生物学及植物学等领域研究提供快速三维荧光成像的有力工具。推荐产品 S3000超快三维荧光成像系统S3000 超快三维荧光成像系统 (qq.com) PRECI SCS-F荧光单细胞分选仪PRECI SCS 微生物单细胞分选仪 (qq.com) RAColony菌落原位多表型检测与挑取工作站RAcolony 菌落原位多表型检测与挑取工作站 (qq.com) SC-catcher单细胞光镊操纵与分选系统SC-catcher单细胞光镊操纵与分选系统 (qq.com)应用案例Daphnia活体内纳米塑料颗粒排出过程的动态成像Daphnia吃到肠道内的纳米塑料颗粒会产生红色荧光,用共聚焦模式进行拍摄随着Daphnia肠道蠕动,纳米塑料颗粒排出的全部过程。此动图由10min的实际时间缩时到12s。传统点扫描激光共聚焦显微镜很难对动态过程实现拍摄,S3000转盘共聚焦成像系统可以很好地捕捉活体样本的动态变化。斑马鱼活体全鱼3D荧光成像神经细胞转入GFP基因的3d日龄斑马鱼,在镜下进行长达2h的活体动态荧光扫描,整张图由8个视野,每个视野17层进行逐层扫描成像,可以在2分钟内进行斑马鱼活体全鱼的荧光扫描,实现了激光点扫描共聚焦无法达到的速度,更好的保持斑马鱼的活性,提供长时间拍摄的条件。肺组织切片的超大视野快速成像对小鼠肺叶组织切片进行共聚焦切片扫描,在其中橙色标明的气管ROI区域进行更大放大倍数的细节扫描。对常规荧光切片扫描仪难以捕捉及判断的信号进行高清成像。肠道微生物高分辨成像利用能够代谢标记肽聚糖的D型氨基酸荧光探针(FDAA)作为工具,通过使用红绿两种FDAA探针对小鼠进行序贯在体标记,随后,对肠道微生物进行取样,并使用S3000转盘共聚焦显微镜观察双色荧光在细菌上的分布,进而推测其增殖分裂模式。【文章链接:《mLife》丨基于共聚焦荧光成像的单细胞分选测序技术揭示肠道菌群中细菌的分裂模式及种属分类 (qq.com)】【拓展阅读:想知道共聚焦显微镜下的昆虫什么样子吗?(qq.com)】【拓展阅读:HOOKE S3000转盘共聚焦显微镜下的微观世界掠影 第二篇--植物系列 (qq.com)】【拓展阅读:共聚焦显微镜下掠影 第三篇《动物组织系列》 (qq.com)如果您对我们的产品和服务感兴趣,请随时联系我们
  • 肿瘤现形记:高分辨荧光显微成像仪发力
    p   癌症被谓为众病之王,如何预防恶性肿瘤的转移和扩散,一直是临床医学界难题。 /p p   有没有一种技术手段,能够对生物活体进行观察和追踪,让医生从整体上了解疾病发展的进程,及时调整药物和基因治疗方案,从而改变或阻止疾病发展? /p p   答案是肯定的。 /p p   由宁波永新光学股份有限公司牵头,联合浙江大学、上海理工大学、复旦大学附属中山医院、南京医科大学等共同进行研究和开发的“高分辨荧光显微成像仪”正在为解决这一难题而不懈努力,也正因此,该项目获得了科技部重大科学仪器设备开发重点专项立项。 /p p   “‘高分辨荧光显微成像仪’是以永新公司现有的一代高端倒置荧光显微成像系统主体为基础,开发出一个具有光切片成像、荧光标记与共定位、三维空间还原及动态成像、单分子荧光探测、荧光漂白后恢复等的复杂多功能高端荧光显微成像系统。”公司技术总监、项目负责人毛磊对科技日报记者说。 /p p   虽然电子显微镜、原子力显微镜等技术已经实现获得更高的分辨率,但由于不能对活体实时成像,样品制备复杂等原因,光学显微镜仍然是当前生物医学、生命科学以及医学研究等方面的主要观测设备。 /p p   “相比较传统的显微成像技术,这种高分辨荧光成像技术不仅可以实现对活体组织微观结构、各种肿瘤细胞的显微成像,还为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供了强大的技术支撑,是一项在生命科学领域有着不可替代优势的技术。”毛磊说。 /p p   此外,这种技术还可以在活体动物体内进行显微成像,通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,让研究人员直接快速地检测各种癌症模型中肿瘤的生长、转移以及对药物的反应,比传统方法更适合于肿瘤体内生长的定量分析。 /p p   值得一提的是,为了提高光学显微的成像效果,以便从复杂的细胞组织中提取出自己想要的细节,研发团队还采用了荧光标记的方法,在细胞中加入特殊的荧光标记物,这些标记物在特定的光照下,有的发红光,有的发绿光,而且每种荧光标记物都具有一定的选择性,只与细胞中既有的特定分子结合,然后发出荧光。 /p p   “荧光成像大大提高了光学显微成像的对比度,还帮助研发人员分辨细胞中的不同结构。预期项目结题后,3—5年内将可实现累计销售1亿多元,10年内可实现年销售3—5亿元,利税超亿元。该项成果将推动我国高端显微镜的‘跨代式’发展。”毛磊说。 /p p   相关统计显示,2016年全球该类产品市场共有30多亿美元,中国市场大约在16亿元人民币(约占世界市场8%),年增长率超过30% 而在世界高端显微镜市场,我国显微镜制造企业占比小于1%,具有很大的市场空间。 /p p   “永新已经与三家应用单位共同在遗传/发育生物学、细胞生物学等荧光免疫方面进行了应用开发,其中NIB900、NE900系列研究级显微镜已实现批量生产,并在国内外高校及科研院所销售超过200台。下一阶段,我们将围绕切片成像模块、单分子探测模块及全内反射模块以及核心部件如高倍率、大数值孔径平场复消色差物镜,荧光滤光片,微分干涉组件等进行深度研发,最终实现预期目标。”毛磊表示。 /p
  • 肿瘤现形记:高分辨荧光显微成像仪发力
    p   癌症被谓为众病之王,如何预防恶性肿瘤的转移和扩散,一直是临床医学界难题。 /p p   有没有一种技术手段,能够对生物活体进行观察和追踪,让医生从整体上了解疾病发展的进程,及时调整药物和基因治疗方案,从而改变或阻止疾病发展? /p p   答案是肯定的。 /p p   由宁波永新光学股份有限公司牵头,联合浙江大学、上海理工大学、复旦大学附属中山医院、南京医科大学等共同进行研究和开发的“高分辨荧光显微成像仪”正在为解决这一难题而不懈努力,也正因此,该项目获得了科技部重大科学仪器设备开发重点专项立项。 /p p   “‘高分辨荧光显微成像仪’是以永新公司现有的一代高端倒置荧光显微成像系统主体为基础,开发出一个具有光切片成像、荧光标记与共定位、三维空间还原及动态成像、单分子荧光探测、荧光漂白后恢复等的复杂多功能高端荧光显微成像系统。”公司技术总监、项目负责人毛磊对记者说。 /p p   虽然电子显微镜、原子力显微镜等技术已经实现获得更高的分辨率,但由于不能对活体实时成像,样品制备复杂等原因,光学显微镜仍然是当前生物医学、生命科学以及医学研究等方面的主要观测设备。 /p p   “相比较传统的显微成像技术,这种高分辨荧光成像技术不仅可以实现对活体组织微观结构、各种肿瘤细胞的显微成像,还为细胞组学、基因组学、蛋白组学、肿瘤学等研究提供了强大的技术支撑,是一项在生命科学领域有着不可替代优势的技术。”毛磊说。 /p p   此外,这种技术还可以在活体动物体内进行显微成像,通过对同一组实验对象在不同时间点进行记录,跟踪同一观察目标(标记细胞及基因)的移动及变化,让研究人员直接快速地检测各种癌症模型中肿瘤的生长、转移以及对药物的反应,比传统方法更适合于肿瘤体内生长的定量分析。 /p p   值得一提的是,为了提高光学显微的成像效果,以便从复杂的细胞组织中提取出自己想要的细节,研发团队还采用了荧光标记的方法,在细胞中加入特殊的荧光标记物,这些标记物在特定的光照下,有的发红光,有的发绿光,而且每种荧光标记物都具有一定的选择性,只与细胞中既有的特定分子结合,然后发出荧光。 /p p   “荧光成像大大提高了光学显微成像的对比度,还帮助研发人员分辨细胞中的不同结构。预期项目结题后,3—5年内将可实现累计销售1亿多元,10年内可实现年销售3—5亿元,利税超亿元。该项成果将推动我国高端显微镜的‘跨代式’发展。”毛磊说。 /p p   相关统计显示,2016年全球该类产品市场共有30多亿美元,中国市场大约在16亿元人民币(约占世界市场8%),年增长率超过30% 而在世界高端显微镜市场,我国显微镜制造企业占比小于1%,具有很大的市场空间。 /p p   “永新已经与三家应用单位共同在遗传/发育生物学、细胞生物学等荧光免疫方面进行了应用开发,其中NIB900、NE900系列研究级显微镜已实现批量生产,并在国内外高校及科研院所销售超过200台。下一阶段,我们将围绕切片成像模块、单分子探测模块及全内反射模块以及核心部件如高倍率、大数值孔径平场复消色差物镜,荧光滤光片,微分干涉组件等进行深度研发,最终实现预期目标。”毛磊表示。 /p
  • 深圳先进院拓展近红外荧光成像光谱范围
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 近日,中国科学院深圳先进技术研究院蔡林涛团队发现一类分子染料在NIR-1a和NIR-1b区域中都具有不同的荧光发射峰,并通过植物绿萝叶脉和动物脑胶质瘤模型证明NIR-Ib区域近红外荧光成像的可行性和优越性。相关研究成果以Near-infrared fluorescence imaging in the largely unexplored window of 900–1,000 nm为题,发表在Theranostics上。 /p p style=" line-height: 1.5em "   近红外荧光成像的波长主要集中在700-900 nm波段(NIR-1a)和1,000-1,700 nm波段(NIR-II),其波段中自发荧光低、散射率小和生物组织吸收弱。近年来,尽管近红外荧光成像发展迅速,但科学家很少关注900-1000 nm(NIR-1b)区域的近红外荧光成像,一方面是因为NIR-Ib区域存在水吸收峰,科学家认为它会影响这个波段的近红外荧光成像质量,另一方面是因为目前几乎没有在NIR-1b区域荧光发射峰的分子探针。 /p p style=" line-height: 1.5em "   在该研究中,科研人员通过植物绿萝的叶脉成像和动物的脑胶质瘤成像实验评价NIR-1b区域近红外荧光成像的性能,结果表明,与NIR-Ia区域近红外荧光成像相比,NIR-1b区域近红外荧光成像能够产生更清晰的叶脉和脑胶质瘤图像。此外,研究人员设计了植物叶片和动物肌肉组织的模拟实验,利用线性光谱分离方法分析,发现在NIR-1b区域中自发荧光、散射率和生物组织对光吸收均减少,说明NIR-1b区域近红外荧光成像具有一定的优越性。这些发现拓宽了近红外荧光成像的光谱范围,对生物医学研究具有重要意义。 /p p style=" line-height: 1.5em "   研究工作得到了国家自然科学基金、广东省自然科学基金研究团队、广东省纳米医药重点实验室和深圳市科创委基础研究等的资助。深圳先进院研究员蔡林涛和龚萍为论文的共同通讯作者,课题组成员邓冠军为论文的第一作者。 /p p style=" text-align: center line-height: 1.5em " img src=" http://img1.17img.cn/17img/images/201808/insimg/2a98611d-132f-4e61-bde9-06c89b45ae9a.jpg" title=" W020180802392944094930.png" / /p p style=" line-height: 1.5em text-align: center " 七甲川菁染料分子探针在NIR-1a和NIR-1b区域中具有不同的荧光发射峰,及其在植物绿萝叶脉成像的应用 /p p br/ /p
  • 日立新品!荧光分布成像系统---测定万圣节贴纸
    日立新品!荧光分布成像系统---测定万圣节贴纸刚刚过去的BCEIA大会,日立发布了全球独创的荧光分布成像系统(EEM View),今天就用它来测定万圣节必不可少的南瓜贴纸。EEM View是日立全球首创在荧光分光光度计中加入CMOS相机的系统,能够同时获得样品的图像和光谱信息,突出亮点是可以获得样品图像任意区域的光谱性能。南瓜贴纸光谱信息鉴赏各式各样的南瓜贴纸中含有大量荧光粉,众所周知,这种贴纸暴露在黑暗中会发出荧光。图1所示便是这次鉴赏南瓜头贴纸的荧光分布成像系统,从图中可以清晰看到新附件的结构,CMOS相机位于积分球下方,样品安放在积分球上方,入射光经过积分球漫反射获得均匀光源,激发样品产生荧光。更多详细信息请点击:https://www.instrument.com.cn/netshow/sh102446/s913511.htm总结一般的荧光分光光度计测得的是样品区域表面平均化后的信息,只能获得一条荧光光谱,而日立荧光分布成像系统能够同时获取样品不同位置的光谱信息,有利于探究样品表面的光学性能分布。日立高新技术以‘让世界充满活力’为宗旨,致力于新技术的融合与开发,这次推出的新品荧光分布成像系统将对油墨、材料、化工、涂料以及LED等领域带来新的启发,新的探索方法。
  • 我国科学家实现实时超灵敏荧光成像
    生物体的正常运作依赖于一系列时空协调的细胞和亚细胞活动。观察和记录这些现象被认为是了解它们的第一步。荧光成像的最新进展使我们能够以高分子特异性和高时空分辨率解析生命活动机制,从纳米尺度的细胞器相互作用,到胚胎发育过程中的细胞足迹,再到与特定行为同步的全脑神经活动。荧光成像的一个基本挑战是光子探测不可避免的随机性导致的光子散粒噪声,这是由光的量子本质决定的,光子噪声是前沿科学观测中绕不开的障碍。   近期,清华大学脑与认知科学研究院、自动化系、清华-IDG/麦戈文脑科学研究院团队在《Nature Biotechnology》杂志发表了题为“Real-time denoising enables high-sensitivity fluorescence time-lapse imaging beyond the shot-noise limit”的研究论文,实现了实时超灵敏荧光成像。在这项工作中,为了实现超出散粒噪声限制的高灵敏度荧光成像,提出了DeepCAD-RT:一种用于实时噪声抑制的自监督深度学习方法。   该方法可以与显微镜采集系统结合以实现实时去噪。这个方法基于深度自监督学习,原始的低信噪比数据可以直接用于训练卷积网络,这使得它在功能成像中特别有优势,因为样品正在经历快速的动态变化,而捕捉真实数据是很难或不可能的。研究者展示了多种实验,包括对小鼠、斑马鱼和苍蝇的钙成像,细胞迁移观察和新型基因编码ATP传感器的成像,涵盖2D单平面成像和3D体积成像。定性和定量评估表明,该方法可以显著增强荧光延时成像数据,并允许对超出散粒噪声限制的生物活动进行高灵敏度成像。   作为一种在多种模式动物、多种生命过程上均表现出强大性能的去噪技术,DeepCAD-RT有望应用到更多的成像场景中,并推进多种成像技术的发展。
  • 【日立直播课第三期】荧光新技术-荧光分布成像系统介绍
    课程简介:日立经典款荧光分光光度计于2019年10月推出全新附件:荧光分布成像系统(EEM VIEW)。它拥有行业首创的技术,同时分析荧光光谱和反射光谱,将样品的光谱信息可视化,同时获得更加细致的光谱信息。亮点:1. 在不同光源(白光和单色光)下拍摄样品图像2. 获得样品的反射光谱和荧光光谱3. 利用独特的光谱处理算法,获得样品的荧光图像和反射图像4. 获得样品图像任意区域的光谱信息课程效果:获悉样品分析新技术,拓展企业或高校研发人员的应用思维。直播时间:3月10日 15:00-16:00培训费用:免费听课方式:日立微学院(提交此表单后扫码进群)
  • 活体成像中荧光色素标记细胞的方法举例
    活体光学成像(Optical in vivo Imaging)主要采用生物发光(bioluminescence)技术与荧光(fluorescence)技术。生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,今天,生物发光标记物可以标记到任何一种基因上,使对基因功能的全面细致研究成为现实。而荧光技术则采用荧光报告基团(GFP、RFP, Cyt及dyes等)进行标记,利用荧光蛋白在外源光源或是内源发光照射下被激发产生的荧光作为检测信号。研究人员能够利用一套非常灵敏的光学检测仪器直接监控活体生物体内的细胞活动和基因行为。 该技术可被广泛应用于标记细胞或基因的示踪及检测;基因治疗在活体动物体内直接的观察和检测;基因组、蛋白组学、药学及生物技术在活体动物内的研究;药物及化学合成药物的药物代谢及毒理学监测;食品菌落生长成像;皮肤医学中皮肤疾病的体内成像;法医鉴定;微孔板成像,例如:免疫分析、报告基因、基因探针和嗜菌作用分析等;荧光团的体内成像,例如:Alzheimer疾病研究中结合嗪的β-淀粉沉淀物分析;转基因植物中通过报告基因对生理周期节奏的研究;凝胶成像分析等等。 但在研究过程中,研究者们必须事先用基因技术进行荧光素酶基因标记,或者某种荧光报告基团标记。目前活体光学成像系统的知名制造商,如Berthold、GE、Xenogen、Photometrics、Carestream Health等,不仅为客户提供先进的仪器,也提供具体实验所需的整套解决方案,包括试剂、实验手册、特殊用途的质粒、细胞株、转基因动物、细胞处理和动物处理设施等配套技术支持。出色的多任务处理能力,人性化的整体设计,便捷精确的操作系统,使实验室影像分析领域进入了一个全新的时代。 下面以研究干细胞活体移植后的存活率为例,简介一两种内源性荧光色素标记的实验方法,供专业人士参考。 用荧光色素DiD标记 间充质干细胞 1. 先用胰蛋白酶消化待标记材料,使之成为一定密度的悬浮液; 2. 从细胞培养箱中取出间充质干细胞,吸取含原有培养基的细胞悬浮液进行标记; 3. 用10 ml Mg/Ca-free PBS (不含钙镁离子的磷酸缓冲液)清洗细胞,吸去PBS, 钙镁离子会影响胰蛋白酶的活性,必须小心; 4. 加入预热的0.05% 胰蛋白酶液,加液量以T75型瓶为例,每瓶加5ml, 确保瓶的表面被完全覆盖; 5. 在细胞培养箱中37° C 孵育约 5 分钟; 6. 然后在显微镜下确认细胞已经完全分散,如果有细胞贴壁情况,轻拍若干次或延长孵育时间直至酶解消化完全成功; 7. 加入等量含 10% FCS的培养基中和胰蛋白酶; 8. 用移液器反复吸取几次确保细胞均匀分散; 9. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 10. 400 RCF离心5 分钟; 11. 小心移去上清液,不要扰动细胞; 12. 将细胞重新悬浮于DMEM 并进行计数; 13. 需要待标记细胞在无血清DMEM溶液中的密度应为1x106 /ml ; 14. 每ml细胞悬浮液加入5 ?L DiD 染色液; 15. 用移液器将染色液与细胞悬浮液混合均匀; 16. 在6孔低附着性细胞板上37 °C 孵育20分钟; 17. 孵育完全后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中; 18. 400 RCF离心5 分钟; 19. 小心移去染色液,不要扰动细胞; 20. 用PBS清洗细胞,用移液器反复吸取几次确保细胞均匀分散; 21. 重复洗三次; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可以进行活细胞成像了! 用荧光色素ICG标记 人胚胎干细胞 1. 必须先准备好吲哚菁绿溶液(血容量、心输出量、肝功能测定剂)作为对照品 ,然后使之与转染试剂鱼精蛋白(抗凝血作用)混合; 2. 测出1ml吲哚菁绿溶液的活力,然后在100 ?L DMSO中溶解ICG; 3. 向混合物中加入 400 ?L Dulbecco的改良Eagles 培养基 (DMEM + 10% 胎牛血清), 震荡均匀,吲哚菁绿溶液终浓度为2mg/ml; 4. 加入转染试剂鱼精蛋白,鱼精蛋白作为对照品的载体,使之能够有效进入细胞; 5. 在300 ?L ICG 和 300 ?L 无血清Dulbecco改良 Eagles 培养基中混入 5 ?L 硫酸鱼精蛋白溶液, 使之终浓度为 10mg/ml,; 6. 震荡5分钟使之形成复合物,标记溶液制备完毕; 7. 从 hESC 10mm Petri 培养皿中移去原有培养基; 8. 加入5ml预热的 DMEM; 9. 加入制备好的鱼精蛋白/ICG 溶液, 37 °C下孵育1h; 10. 孵育完全后移去染色液; 11. 用5 ml PBS漂洗培养皿以清除染色液; 12. 移去 PBS 再加入 5ml 0.25 % 胰蛋白酶液,37 °C下孵育5分钟使之酶解,适当震摇培养皿效果会更好; 13. 用移液器反复吸取几次确保细胞均匀分散; 14. 加入等量含 10% KSR的培养基中和胰蛋白酶; 15. 然后移取细胞悬浮液至15ml 已灭菌的有盖聚丙烯离心管中,400 RCF离心5 分钟; 16. 在全培养基中悬浮细胞; 17. 如果还有细胞团块,可以移去原有培养基用10ml预热的全ESC培养基重新悬浮细胞,重复酶解再离心; 18. 在这一点上,鼠源饲喂细胞需从hESCs中分离; 19. 然后将细胞悬浮液移至涂布琼脂的10 cm 培养皿中; 20. 37 °C 孵育 45 分钟,注意不要晃动培养皿,如此鼠源饲喂细胞会贴壁而干细胞保持悬浮; 21. 从Petri 培养皿中移出已标记的单细胞人胚胎干细胞悬浮液; 22. 细胞重新计数并用台盼蓝染色法检测细胞活性; 23. 可进行活细胞成像了!
  • 近红外荧光成像导航手术研究领域取得新进展
    p style=" text-align: justify " & nbsp & nbsp 近日,复旦大学化学系张凡教授课题组与复旦大学附属妇产科医院徐丛剑教授团队合作,利用近红外探针实现近红外二区荧光成像导航卵巢癌实体瘤和转移灶的精准切除,此方法有望在临床上用于腹腔恶性转移肿瘤的精准手术导航。7月24日,相关研究论文以《活体内自组装的近红外二区纳米探针用作增强卵巢癌转移灶的手术导航》(“NIR-II Nanoprobes in-vivo Assembly to Improve Image-guided Surgery for Metastatic Ovarian Cancer”)为题在线发表于《自然· 通讯》(Nature Communications, 2018, 9, 2898)。复旦大学化学系博士生王培园为论文第一作者。 /p p style=" text-align: justify " & nbsp & nbsp 手术切除通常是恶性肿瘤最常见和最有效的治疗方法之一。然而外科医生触诊和目视检查并不足以确保区分恶性和正常的组织类型,因此可能导致不完全切除或健康组织不必要切除。相比于术前影像学检查及手术中视觉检查及触诊,活体荧光成像技术由于其即时性、高分辨率、高特异性等检测优势,为精准手术导航技术领域提供了较好的应用前景。传统的可见光区(400 - 750 nm)和近红外一区(NIR-I, 750 - 900 nm)荧光,由于其组织穿透深度较浅和严重的自体荧光干扰,极大地限制了荧光成像技术在腹腔以及淋巴结转移病灶在手术导航中的应用。此外,手术切除过程中需要荧光探针具有长效的肿瘤内滞留时间和光稳定性。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/b8e54b7f-2dec-4f1c-a053-3576dfab39d8.jpg" title=" 20180725复旦.jpg" / & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: left " 图1. 表面分别修饰配对DNA(L1/L2)和修饰靶向蛋白的近红外探针。对于这两种配对DNA修饰的探针采用两针注入法,通过肝脏、肾脏的快速代谢,体内正常组织的荧光信号可以降到最低;肿瘤内的探针自组装可以对肿瘤实现长达6小时的稳定标记,确保精准的手术导航。 /p p style=" text-align: justify " & nbsp & nbsp 针对上述两个问题,张凡课题组与徐丛剑团队合作,利用近红外二区荧光探针(NIR-II, 1000 - 1700 nm)的深组织穿透和低自体荧光优势,结合化学自组装设计实现了探针在肿瘤内的长期稳定标记,极大地提高了光学成像的信噪比。初步实现了卵巢癌腹膜转移以及淋巴结转移肿瘤在荧光成像指导下精准切除(图1),为该技术的临床转化应用提供了可能。 /p p & nbsp & nbsp 该工作得到了复旦大学化学系、聚合物工程国家重点实验室、复旦大学先进材料实验室、复旦大学附属妇产科医院、复旦大学上海医学院妇产科学系、国家重点研发项目、国家杰出青年学者科学基金、上海市科委重点基础研究项目、上海科学技术规划委员会的大力支持。 /p p br/ /p
  • 蓝菲光学的成套医疗成像测试设备改善了基于闪烁晶体的荧光成像
    日前,英国豪迈旗下美国蓝菲光学(labsphere.com.cn)为某医疗设备制造商定制了一整套医疗成像测试设备,得到用户的盛赞。这是继在医疗内窥镜、激光医疗之后蓝菲光学又一次在医疗成像设备领域的成功探索。 测试对象一:闪烁晶体当前,高端医学影像技术,计算机断层扫描(CT)、X摄片和计算机断层显像(PET)等已广泛应用于生物医疗产业,这些医疗设备的光学成像都有一个共同特点即都是利用闪烁晶体成像。${Figure 1}荧光成像示例闪烁晶体是指在高能射线(如X射线,γ射线)或者其他放射性粒子激发下会发出荧光脉冲(闪烁光)的物质。广泛用于天体物理、高能物理、石油测井、医学成像、安检设备和国防安全等领域。随着应用的更高要求,对闪烁晶体的综合性能要求越来越高,进一步设计、发现、开发和生长具有高密度、优良光学均匀性、高光产额、快衰减、高稳定性、低成本等综合性能优良的闪烁晶体是闪烁材料研究的重点,同时如何准确地测量闪烁晶体的性能也是研究的重点之一。通常,在评价闪烁晶体的性能时需要测试其透光率、激发发射谱、光输出、发光强度及发光不均匀性等。蓝菲光学作为拥有近40年的光谱分析测试经验,是业内为数不多的可以提供绝对光谱辐射通量溯源的企业,也是除美国NIST外少数拥有可以在1%不确定度范围内测试30-3000流明的4π/2π标准卤钨灯实验室的单位。蓝菲光学的光谱分析测试系统可以测试紫外-可见-近红外波段的光谱及辐射通量以及待测物的反射和透射率,公司拥有全球知名的漫反射材料具有较好的漫反射特性和朗伯特性,可以保证所有测试数据溯源到NIST。搭配蓝菲光学高端光谱仪CDS 3020/3030可以瞬时捕捉光谱数据,轻松实现快速、准确测量,帮助晶体研发人员准确、高效地判断闪烁晶体的光学性能。${Figure 2} illumia plus 光谱测试设备 测试对象二:成像传感器校准我们知道高能射线发出的光人们是看不见的,当它照射到闪烁晶体上会发出荧光(可见光波段),利用传感器去捕捉发出的荧光从而成像,这样医生就可以透视生物体的情况。因此传感器的成像质量对医生观测生物体情况来说也至关重要。蓝菲光学为成像设备的测试和校准提供了数以千计的均匀光源系统,所有均匀光源系统采用蓝菲光学的高漫反射涂层,可达近似100%的漫反射,出光口的均匀性均可达99%,提供可溯源至NIST的辐射度、亮度、照度及出口均匀度校准报告。针对闪烁晶体发出荧光特性,蓝菲光学定制了与闪烁晶体同波段的单色均匀光源用以校准传感器。${Figure 3} CMOS检测同国外相比,国内闪烁晶体方面的生长和性能研究结合得还不够紧密,高性能的闪烁晶体的研制方面还十分薄弱。蓝菲光学拥有近40年的光谱分析检测技术以及超过15年的临床诊断分析仪OEM制造经验,拥有专利技术的漫反射材料为医疗领域提供了多种OEM解决方案,可以为国内闪烁晶体以及医学成像技术的发展提供准确的性能检测。利用蓝菲光学的在光学检测和校准方面的先进技术可以帮助改善光源以及成像质量,促进国内闪烁晶体及光医学成像研究的进步。
  • 新荧光成像技术可清晰呈现血管脉动
    据物理学家组织网近日报道,美国斯坦福大学的科学家开发出一种荧光成像技术,能够使活体动物血管脉动以前所未有的清晰度呈现。与传统的影像技术相比,其增加的清晰度类似于擦拭掉眼镜前的迷雾一般。该研究结果发表在最新一期的《自然医学》杂志在线版上。   该技术被称为近红外-Ⅱ成像,或NIR-Ⅱ。研究人员首先将水溶性碳纳米管注射到活体的血液中,然后用激光照射要观察的对象,如小白鼠。激光的波长在近红外范围内,约为0.8微米,可导致专门设计的碳纳米管发出1微米至1.4微米的波长更长的荧光,用于检测确定血管的结构。   碳纳米管发出的荧光波长要比传统成像技术更长,这是实现令人惊叹的微小血管清晰图像的关键。由于更长波长光散射较少,因此形成了更清晰的血管图像。此外,这种技术使图像呈现更精致的细节,允许研究人员能够获得一个快速的图像采集速度,近乎实时地测量血流量。   同时获得血流信息和看到清晰血管对于动脉疾病动物模型的研究将特别有用,如血流是如何受到动脉阻塞和收缩诱发的影响,还有其他事项如中风和心脏病发作的影响。   研究人员说:“对于医学研究而言,这是一个非常好的观察小动物特征的工具。其将有助于我们更好地理解一些血管疾病,以及其对于治疗的反应和如何可以设计出更好的治疗。”   由于NIR-Ⅱ至多只能穿透身体1厘米,所以它不会取代其他成像技术,而是X射线、CT、MRI和激光多普勒技术的补充。不过,它却是一个用于研究动物模型的强大方法。   研究人员说,下一步将使这项技术在人体内更容易接受应用,并探索可替代的荧光分子。他们希望找到小于碳纳米管又能够发出同样波长光的物质,以便使其可以很容易地从体内排出,消除任何毒性的担忧。
  • 东北大学160.00万元采购植物荧光成像
    html, body { -webkit-user-select: text } * { padding: 0 margin: 0 } .web-box { width: 100% text-align: center } .wenshang { margin: 0 auto width: 80% text-align: center padding: 20px 10px 0 10px } .wenshang h2 { display: block color: #900 text-align: center padding-bottom: 10px border-bottom: 1px dashed #ccc font-size: 16px } .site a { text-decoration: none } .content-box { text-align: left margin: 0 auto width: 80% margin-top: 25px text-indent: 2em font-size: 14px line-height: 25px } .biaoge { margin: 0 auto /* width: 643px */ width: 100% margin-top: 25px } .table_content { border-top: 1px solid #e0e0e0 border-left: 1px solid #e0e0e0 font-family: Arial /* width: 643px */ width: 100% margin-top: 10px margin-left: 15px } .table_content tr td { line-height: 29px } .table_content .bg { background-color: #f6f6f6 } .table_content tr td { border-right: 1px solid #e0e0e0 border-bottom: 1px solid #e0e0e0 } .table-left { text-align: left padding-left: 20px } 详细信息 东北大学生命医学实验平台—近红外二区小动物活体荧光成像系统(贴息贷款)竞争性磋商(二次) 辽宁省-沈阳市-和平区 状态:公告 更新时间: 2022-11-27 东北大学生命医学实验平台—近红外二区小动物活体荧光成像系统(贴息贷款)竞争性磋商(二次) 项目概况 生命医学实验平台—近红外二区小动物活体荧光成像系统(贴息贷款) 采购项目的潜在供应商应在辽宁汇诚工程管理咨询有限公司106室(沈阳市铁西区云峰南街20-1号)获取采购文件,并于2022年12月07日 09点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:TXD22519 项目名称:生命医学实验平台—近红外二区小动物活体荧光成像系统(贴息贷款) 采购方式:竞争性磋商 预算金额:160.0000000 万元(人民币) 采购需求: 近红外二区小动物活体荧光成像系统由成像部分、激光器部分和暗室及控制系统组成,具体参数要求详见采购文件。 合同履行期限:合同签订后180天内 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)本项目为专门面向中小企业采购的货物类项目。(2)中小企业是指《政府采购促进中小企业发展管理办法》(财库[2020]46号)中规定的中小企业单位,本项目为货物采购,要求货物由中小企业制造,即货物由中小企业生产且使用该中小企业商号或者注册商标。(3)本项目采购标的所属行业为《工业和信息化部、国家统计局、国家发展和改革委员会、财政部关于印发中小企业划型标准规定的通知》(工信部联企业[2011]300号)规定的“工业”。(4)根据《关于促进残疾人就业政府采购政策的通知》财库〔2017〕141号、财政部《司法部关于政府采购支持监狱企业发展有关问题的通知》财库〔2014〕68号的规定,残疾人福利性单位、监狱企业视同小型和微型企业。 3.本项目的特定资格要求:无 三、获取采购文件 时间:2022年11月26日 至 2022年12月02日,每天上午8:30至11:00,下午13:00至16:30。(北京时间,法定节假日除外) 地点:辽宁汇诚工程管理咨询有限公司106室(沈阳市铁西区云峰南街20-1号) 方式:供应商在上述期间内,将下列信息发送至huicheng_zb@163.com:供应商单位名称、包号、联系人、电话、所投项目名称、开具发票信息,并附采购文件费用电汇截图(收款单位:辽宁汇诚工程管理咨询有限公司;开户银行:中信银行沈阳沈新路支行;账号:8112 9010 1250 0706 511;汇款摘要:TXD22519,无需提交其他材料。文件售后不退。售价:¥500.0 元(人民币) 四、响应文件提交 截止时间:2022年12月07日 09点30分(北京时间) 地点:辽宁汇诚工程管理咨询有限公司会议室 五、开启 时间:2022年12月07日 09点30分(北京时间) 地点:辽宁汇诚工程管理咨询有限公司会议室 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.需落实的政府采购政策内容:中小微企业、监狱企业、残疾人福利性单位、支持脱贫攻坚等相关政策。 2.质疑与投诉 供应商认为自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,一次性向采购代理机构或采购人提出质疑。 1、接收质疑函方式:书面纸质质疑函 2、质疑函内容、格式:应符合《政府采购质疑和投诉办法》相关规定和财政部制定的《政府采购质疑函范本》格式,详见中国政府采购网。 质疑供应商对采购人、采购代理机构的答复不满意,或者采购人、采购代理机构未在规定时间内作出答复的,可以在答复期满后15个工作日内向本级财政部门提起投诉。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:东北大学 地址:沈阳市和平区文化路三巷11号 联系方式:凌老师024-83689155 2.采购代理机构信息 名 称:辽宁汇诚工程管理咨询有限公司 地 址:沈阳市铁西区云峰南街20-1号 联系方式:郑巍、张彬、韦芳024-25158333转8130、8131 3.项目联系方式 项目联系人:郑巍、张彬、韦芳 电 话: 024-25158333转8130、8131 × 扫码打开掌上仪信通App 查看联系方式 $('.clickModel').click(function () { $('.modelDiv').show() }) $('.closeModel').click(function () { $('.modelDiv').hide() }) 基本信息 关键内容:植物荧光成像 开标时间:null 预算金额:160.00万元 采购单位:东北大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:辽宁汇诚工程管理咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 东北大学生命医学实验平台—近红外二区小动物活体荧光成像系统(贴息贷款)竞争性磋商(二次) 辽宁省-沈阳市-和平区 状态:公告 更新时间: 2022-11-27 东北大学生命医学实验平台—近红外二区小动物活体荧光成像系统(贴息贷款)竞争性磋商(二次) 项目概况 生命医学实验平台—近红外二区小动物活体荧光成像系统(贴息贷款) 采购项目的潜在供应商应在辽宁汇诚工程管理咨询有限公司106室(沈阳市铁西区云峰南街20-1号)获取采购文件,并于2022年12月07日 09点30分(北京时间)前提交响应文件。 一、项目基本情况 项目编号:TXD22519 项目名称:生命医学实验平台—近红外二区小动物活体荧光成像系统(贴息贷款) 采购方式:竞争性磋商 预算金额:160.0000000 万元(人民币) 采购需求: 近红外二区小动物活体荧光成像系统由成像部分、激光器部分和暗室及控制系统组成,具体参数要求详见采购文件。 合同履行期限:合同签订后180天内 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: (1)本项目为专门面向中小企业采购的货物类项目。(2)中小企业是指《政府采购促进中小企业发展管理办法》(财库[2020]46号)中规定的中小企业单位,本项目为货物采购,要求货物由中小企业制造,即货物由中小企业生产且使用该中小企业商号或者注册商标。(3)本项目采购标的所属行业为《工业和信息化部、国家统计局、国家发展和改革委员会、财政部关于印发中小企业划型标准规定的通知》(工信部联企业[2011]300号)规定的“工业”。(4)根据《关于促进残疾人就业政府采购政策的通知》财库〔2017〕141号、财政部《司法部关于政府采购支持监狱企业发展有关问题的通知》财库〔2014〕68号的规定,残疾人福利性单位、监狱企业视同小型和微型企业。 3.本项目的特定资格要求:无 三、获取采购文件 时间:2022年11月26日 至 2022年12月02日,每天上午8:30至11:00,下午13:00至16:30。(北京时间,法定节假日除外) 地点:辽宁汇诚工程管理咨询有限公司106室(沈阳市铁西区云峰南街20-1号) 方式:供应商在上述期间内,将下列信息发送至huicheng_zb@163.com:供应商单位名称、包号、联系人、电话、所投项目名称、开具发票信息,并附采购文件费用电汇截图(收款单位:辽宁汇诚工程管理咨询有限公司;开户银行:中信银行沈阳沈新路支行;账号:8112 9010 1250 0706 511;汇款摘要:TXD22519,无需提交其他材料。文件售后不退。 售价:¥500.0 元(人民币) 四、响应文件提交 截止时间:2022年12月07日 09点30分(北京时间) 地点:辽宁汇诚工程管理咨询有限公司会议室 五、开启 时间:2022年12月07日 09点30分(北京时间) 地点:辽宁汇诚工程管理咨询有限公司会议室 六、公告期限 自本公告发布之日起3个工作日。 七、其他补充事宜 1.需落实的政府采购政策内容:中小微企业、监狱企业、残疾人福利性单位、支持脱贫攻坚等相关政策。 2.质疑与投诉 供应商认为自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起七个工作日内,一次性向采购代理机构或采购人提出质疑。 1、接收质疑函方式:书面纸质质疑函 2、质疑函内容、格式:应符合《政府采购质疑和投诉办法》相关规定和财政部制定的《政府采购质疑函范本》格式,详见中国政府采购网。 质疑供应商对采购人、采购代理机构的答复不满意,或者采购人、采购代理机构未在规定时间内作出答复的,可以在答复期满后15个工作日内向本级财政部门提起投诉。 八、凡对本次采购提出询问,请按以下方式联系。 1.采购人信息 名 称:东北大学 地址:沈阳市和平区文化路三巷11号 联系方式:凌老师024-83689155 2.采购代理机构信息 名 称:辽宁汇诚工程管理咨询有限公司 地 址:沈阳市铁西区云峰南街20-1号 联系方式:郑巍、张彬、韦芳024-25158333转8130、8131 3.项目联系方式 项目联系人:郑巍、张彬、韦芳 电 话: 024-25158333转8130、8131
  • 205万!中山大学生态学院荧光显微镜和荧光细胞成像仪采购项目
    项目编号:中大招(货)[2022]035号项目名称:中山大学生态学院荧光显微镜和荧光细胞成像仪采购项目预算金额:205.0000000 万元(人民币)采购需求:1、招标采购项目内容及数量:包组1采购倒置荧光显微镜2台、正置荧光显微镜2台、宏观变倍荧光显微镜1台;包组2采购荧光细胞成像仪2台。(本项目允许产自中华人民共和国关境外的进口货物投标,本项目不属于专门面向中小企业采购项目,本项目所属行业属于工业。具体内容及要求详见公告附件招标文件)。 2、项目(包组)预算及经费来源: 项目总预算为2,050,000.00元人民币,包组1预算为 1870000.00 元人民币(倒置荧光显微镜的预算为720,000.00元人民币,单项预算价格(最高限价)为360,000元人民币;正置荧光显微镜的预算为700,000.00元人民币,单项预算价格(最高限价)为350,000元人民币;宏观变倍荧光显微镜的预算为450,000.00元人民币,单项预算价格(最高限价)为450,000元人民币);包组2预算为 180000.00 元人民币,单项预算价格(最高限价)为90,000元人民币。经费来源为财政性资金。合同履行期限:交货时间:合同签订后100个日历天以内。交货地点:深圳校区理学园707。本项目( 不接受 )联合体投标。
  • 干货|​近红外二区荧光宽场显微活体成像技术和应用
    大家好,今天给大家分享一篇近红外二区荧光宽场显微活体成像技术和应用的文章,本文的通讯作者是浙江大学的钱骏教授。传统的荧光成像技术是基于可见光波段(400~760 nm)和近红外一区波段(760~900 nm)实现的,但是由于受生物组织散射和自发荧光的影响,这些波段的光对厚样本、活体样本成像时,成像深度和空间分辨率受到了很大的影响。而近红外二区波段(1000~1700 nm, NIR-II)的光受生物组织散射和自发荧光的影响大大降低,因而用这个波段的光成像时,成像的深度和信噪比都显著提高。近年来,NIR-II荧光宽场显微术在高时间分辨率、高空间分辨率、高信背比和大深度组织穿透方面获得突破性发展,这些得益于荧光探针和成像仪器设备的开发和改进。作者在本文中通过介绍NIR-II荧光宽场显微活体成像的机制特点、演进历史、系统进展以及在不同生物模型上的最新应用,展现其临床试验的巨大潜力,使NIR-II荧光宽场显微成像术在基础研究和临床应用上得到更进一步的普及。1、NIR-II荧光活体生物成像近年来,研究者们展开了一系列的NIR-II荧光成像研究,实现了对活体生物样本的深层和功能性成像,尤其伴随着探测器性能的提升和荧光新探针的开发,NIR-II的活体荧光成像迅速成为热点。尽管NIR-II荧光成像应用日趋广泛,但其成像窗口的定义却并不统一。长期以来,NIR-II在学术界被定义为1000~1700 nm。然而,工业领域认可的典型短波红外波段为900~1700nm。浙江大学钱骏教授团队模拟了NIR区域(至2340 nm)中的光子传播,确认了活体成像中适度利用水对散射光子的吸收能提高信背比,并将NIR-II窗口扩展为900~1 880 nm,定义了2080~2340 nm为近红外三区。其中,1400~1500 nm和1700~1880nm分别被定义为NIR-IIx和NIR-IIc区域。图1:定义并扩展NIR-II窗口为900-1880nm2、NIR-II荧光宽场显微成像系统活体成像研究中,NIR-II的宏观成像不仅可以实现主动脉和微小血管循环检测,也可以实现各类器官的成像,如心、肝、脾、肺、肾、肝、肠、胆道等。但是,组织的微结构观察和检测需要更大倍率的成像系统,以提高生物组织的空间分辨率和对比度,实现生物微结构的清晰成像。钱骏教授团队与宁波舜宇仪器(SOPTOP)公司合作,开发出新型NIR-II荧光正置显微成像系统,将短波红外探测器与传统的荧光显微成像系统结合,可实现宽场激发、面阵探测,具备成像深度大、时间分辨高、空间分辨好、操作简便等优势,可实现深层组织的高倍探测,已满足商用要求。此系统先后被相关科研院所购置,已在宫颈癌靶向化疗、小鼠脑血管研究等领域得到应用和报导。图2:舜宇仪器 NIR II-MS 近红外二区活体显微影像系统3、NIR-II荧光宽场显微成像的应用基于NIR-II荧光成像的大深度、高分辨率等优势,诸多生物医学应用得以开发。其中,活体大深度显微成像不仅能够对脉管系统、组织器官清晰破译,而且能够获取生物体内生命活动细微过程的动态信息,具有对生理和行为动态观察的巨大潜力。NIR-II荧光宽场显微系统提供高时间分辨率和高空间分辨率,可实现脑血管实时解析成像,以及血流速度和心跳周期的测量。作者团队针对血流测速开展工作,静脉注射IR820(0.5 mg/mL, 200 μL)后,使用NIR-II荧光宽场显微系统监测小鼠脑血管结构和实时血液流动,实时获取150 μm深度处的毛细血管血流速度为725 μm/s。同时,研究人员使用NIR-II荧光宽场显微系统记录开颅小鼠头骨下方0 ~800 μm深度下脑血管图像,并在800 μm的深度下区分出直径仅6.1 μm(半高全宽)的毛细血管。图3:小鼠活体脑血管成像血管造影方法可提供血管状态的有用信息,用于监测疾病过程。NIR-II荧光宽场显微成像技术能以高时空分辨率实现深层组织血管可视化。作者及唐本忠院士课题组开发了一种近红外聚集诱导发射(Aggregation-Induced Emission ,AIE)纳米颗粒,借助NIR-II荧光宽场显微成像系统,对小鼠大脑中的光致血栓形成缺血(Photo-Thrombotic Ischemia, PTI)和血脑屏障(Blood–Brain Barrier,BBB)损伤过程实现了精确监测。图4:NIR-II荧光宽场显微成像系统用于血流动力学研究和小鼠脑血栓性缺血的实时跟踪肿瘤和炎症性病变的检测和诊断仍是临床的巨大挑战,而NIR-II荧光宽场显微系统亦可用于肿瘤的精准检测。唐本忠院士、钱骏教授等将AIE纳米颗粒TQ-BPN注射进入具有旧肿瘤(4周)和新肿瘤(2周)的小鼠体内,使用NIR-II荧光宽场显微系统来识别不同生长阶段的肿瘤。NIR-II荧光宽场显微系统凭借穿透深度大和成像实时的优点,能够清晰地原位显示肿瘤部位的EPR效应,这将有利于早期肿瘤检测和转移研究。图5:使用NIR-II荧光成像在肿瘤部位原位显示高渗透长滞留(EPR)效应除普通小鼠、大鼠外,大型灵长类动物(如狨猴)的NIR-II荧光成像技术的探索更有利于临床转化,对于这些动物神经活动和脑血流调节的研究,有利于揭开人类大脑疾病的神秘面纱。钱骏教授、高利霞教授及唐本忠院士等首次在非人类灵长类动物中进行了穿薄颅骨大深度脑血管显微成像。图6:高空间分辨率的狨猴穿颅脑血管显微系统NIR-II荧光宽场显微系统拥有高时间分辨率以监测动态生物过程,提供高空间分辨率以观察微小生物结构、精准定位药物分布,还具备大成像深度。同时,该系统对比其他显微成像系统(如共聚焦显微术、光片显微术)易于上手使用并且成本适中,便于在活体研究和临床实践中推广。通过相关研究团队的努力,实现了从小鼠、大鼠、狨猴到猕猴,从脑血管、肿瘤血管到炎症组织及离体细胞、组织切片等的NIR-II荧光宽场显微成像,证明了NIR-II荧光宽场显微成像技术的巨大潜力。综上所述,NIR-II荧光宽场显微成像技术不断在更大的成像深度、更优的信背比、更高的空间分辨率、更快的成像速度上得到创新、改进和突破。NIR-II荧光宽场显微成像系统有望在各种生物和材料研究实验室推广,甚至在医学机构和医院临床获得普及和应用。以上便是今天为大家分享的近红外二区荧光宽场显微活体成像技术与应用,其中所采用的实验设备均为宁波舜宇仪器的NIR II-MS活体显微影像系统。作为全球首款近红外二区活体正置显微成像系统,可以实现对近红外二区荧光探针的光学表征以及活体生物样品、厚生物组织等的大深度、高时空分辨成像,选择25X红外水镜时,活体成像深度≥1.4mm,空间分辨率≤2μm。其操作简便的系统,具备在医学研究、临床诊断和手术治疗领域作为活体成像的基础工具的潜力。本文为SOPTOP舜宇显微系统供稿。如有技术干货、科研成果、仪器使用心得、生命科学领域热点事件观点,欢迎广大相关行业朋友投稿。投稿邮箱:lizk@instrument.com.cn
  • 勤翔推出冷却CCD荧光及化学发光成像系统
    ClinxChemiScope系列荧光及化学发光成像系统是一款同时适用于荧光成像分析及化学发光成像分析的仪器。系统选用高分辨率数字冷却CCD相机结合高通透镜头系统,使其能够捕获到信号极其微弱的荧光及化学发光样品图像,并且能够最大程度的降低噪音,减少背景,提供出色的图像清晰度。激发光源及滤光片可根据用户的不同需求进行定制,扩大了荧光/化学发光成像的应用范围,是目前用于生命科学领域中功能性最强、性价比最高的研究工具之一。 随着生物科研的日益广泛和深入,客户对荧光及化学发光分析的检测仪器的需求愈来愈多,要求也越来越高。针对目前国内高端化学发光成像系统基本依赖进口的现状,我们自主研发生产了高性价比的ChemiScope系列荧光及化学发光成像系统,无疑为我们中国的生物科研人员提供了更好的选择。
  • 岛津与SPI签订近红外荧光成像应用共同开发协议
    近日,岛津制作所(社长:中本晃、京都市中京区)与SPI( Summit Pharmaceuticals International)公司(社长:寺胁良树、东京都中央区)签订了以开发岛津手提式小动物用近红外荧光成像系统(正在开发中,使用1000 nm以上波长)新应用为目的的共同开发协议。 手提式小动物用近红外荧光成像系统(原型机) 本系统是由岛津制作所与东京理科大学(校长:藤嶋昭、东京都新宿区)在从2012年4月1日至2013年3月31日期间的共同研究中成功开发的、小动物用in vivo(生体内)荧光成像装置原型机,可使用比过去近红外荧光成像所用的700~900nm波长带更长的1000 nm以上近红外区域,可降低生物组织所造成的光散射及光吸收的影响,以前所未有的高解像度实现了高精细成像。并且,具备可单人移动的紧凑外形尺寸与重量,可以满足研究人员将其携带到动物管理区域等中实施快速测定的需求。 SPI公司是in vivo发光?荧光成像装置进口销售的大型公司,是引导日本in vivo成像市场的行业先驱者,特别在小动物用成像装置的商品销售以及应用支持方面广获好评。 【共同开发的目的与今后的动向】 为发挥分析计测仪器的性能满足各种的研究需求,分析方法与应用的开发必不可少。岛津与SPI将快速推进共同开发,力求建立本系统的全新应用,以满足生命科学研究市场的需求。 岛津制作所将依据本共同开发的成果,实施原型机的商品化,争取在2014年投入市场。 备注:※所谓荧光成像是将荧光标记化的探针聚焦在生物体内的目标分子或細胞?脏器中,在体外从空间?时间角度监测生物质发现、细胞?脏器功能、探针动态的技术。已成为在解明肿瘤转移机理、再生医疗等利用实验动物的生命科学研究中必不可少的技术。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 深圳先进院研制出近红外二区荧光寿命成像系统
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院深圳先进技术研究院医工所生物医学光学与分子影像研究室研究员郑炜团队,与南京大学教授吴培亨、张蜡宝团队合作,研制出近红外二区荧光寿命共聚焦成像系统,在近红外二区波段实现三维多色荧光寿命成像,相关研究成果以Intravital confocal fluorescence lifetime imaging microscopy in second near-infrared window为题,发表在Optics Letters上。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 荧光寿命成像可以在体现荧光物质形貌信息之外,还能够灵敏地反应荧光基团生化特性以及周围微环境的变化情况。科研人员(余佳与张荣丽,论文第一作者)利用高性能超导纳米线单光子探测器(superconducting nanowire single-photon detector,SNSPD)将荧光寿命成像与共聚焦成像技术结合起来,实现活体三维荧光寿命成像,时间分辨率可达109 ps,空间分辨率可以区分生物组织的亚细胞结构。该系统为进一步实现活体三维功能成像奠定基础,有潜力应用于肿瘤识别,病变诊断等领域。 /span /p p style=" text-align: justify text-indent: 2em " 研究工作得到了科技部重点研发计划、国自然重大科研仪器研制项目和国自然重大研究计划等的支持。 /p p style=" text-align: justify text-indent: 2em " a href=" https://www.osapublishing.org/ol/abstract.cfm?uri=ol-45-12-3305" target=" _self" style=" color: rgb(0, 176, 240) text-decoration: underline " strong span style=" color: rgb(0, 176, 240) " 论文链接& nbsp /span /strong /a /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/pic/e5f1df2a-da39-4368-a17c-925b39d93258.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 近红外二区荧光寿命成像区分不同染料染色的细胞。(a)-(b)荧光强度图;(c)-(d)荧光寿命标记图。 /strong /p
  • 兼具核磁共振和荧光成像功能的健康信号粒子
    据报道,麻省理工学院(MIT)化学家们最近开发出了一种神奇的纳米粒子。其神奇之处在于植入到活体动物体内后,该粒子不但可以核磁共振成像(MRI)还可以完成荧光成像。结合这两种成像技术科学家们可以轻易追踪体内的特异分子,监控肿瘤周围状况,更能直接观察到药物是否成功抵达靶细胞。 在自然通讯11月18号发表的文章中,研究者揭示了这种粒子的作用机理。以小白鼠体内的维生素C追踪为例,实验前将同时携带有MRI和荧光传感器的纳米粒子注入到小白鼠体内。在维C高的地方,荧光信号强烈而核磁共振信号较弱,反之则较强。 Johnson表示未来这种粒子的应用将更加广泛,性能也将更加多样化。不但可以一次检测多种分子还可以专门用来检测某种特定分子比如和疾病息息相关的厌氧分子浓度。借助成像探测器,人们就可以进一步剖析病发过程。 这种由Johnson和他的同事们一起发明的纳米粒子其组装过程就像搭积木。不同的是,此处积木是由携带有传感器的高分子链组成。一部分分子链上携带有硝基氧(MRI造影剂)而另一部分则会携带一种叫做Cy5.5的荧光分子。 当这两种分子链按比例混合时,就可以形成一种特殊的纳米结构,这种结构被他们称作毛刷状枝型高分子。在该研究中,硝基氧和Cy5.5的比例分别是99%和1%。 硝基氧中的一个氮原子通过一个孤对电子与氧原子结合,这种结合很不稳定,所以正常情况下硝基氧表现出很大的化学活性。而这种活性正好抑制了Cy5.5的荧光效应。但是当遇到某些像维生素C这种特殊分子,硝基氧就会捕获电子失活,此时Cy5.5的荧光效应就得以体现。 普通硝基氧的半衰期很短,但是最近Andrzej Rajca教授发现在硝基氧上连入两个巨体结构,其半衰期可以延长。另外,将Rajca发现的硝基氧与Johnson合成的毛刷状枝型高分子结构相结合,其半衰期又会大大延长到几个小时,这段时间足以获得有效的MRI图像。 研究者发现成像粒子在肝处聚积,缘于小白鼠体内的维C由肝脏制造,所以一旦硝基氧分子到达肝脏部位从维生素C中捕获电子失活后,MRI信号就会消失而荧光信号则会加强。除此之外,研究者还发现在大脑(维C循环的终点站)只有少量的荧光信号。相反在血液和肾脏处(维C含量低)MRI信号最强。 下阶段,这些研究者的工作将围绕如何扩大遇到靶分子时不同传感器的信号差异展开。而目前他们已经能够创造可携带三种不同药物的荧光分子,这项技术使得他们能够追踪纳米粒子是否到达了目标位。 Johnson 在论文中指出:如果解决了这些粒子到达靶细胞的问题,那么我们将可以获得肿瘤的生长信息。未来的某一天人们只需要直接注射这些粒子到病人体内,就可以直接观察病灶和健康组织。 Steven Bottle教授说:这项研究最成功的地方在于将两种有效的成像技术合二为一。这种多功能、多组合的显像模式必然会发展成为一种检测活体动物体内疾病系数的有效工具。
  • 新品上市:ChemiDoc Go荧光及化学发光成像系统
    点亮蛋白条带,赋能科学研究 — StarBright完美搭档全新ChemiDoc Go成像系统。全新 ChemiDoc Go 荧光及化学发光成像系统采用先进的互补金属氧化物半导体(CMOS)感光元件和高强度LED光源,并使用背照式传感器技术,在灵敏度和动态范围方面与传统CCD成像相比毫不逊色。您可以在ChemiDoc Go系统上实现传统的化学发光、比色检测等应用,也可使用StarBright Blue荧光二抗进行蛋白印迹的多重检测。在蛋白印迹实验中,您还可使用免染凝胶归一化总蛋白,实现更为精准可靠的蛋白内参定量。先进的CMOS传感器技术经过多年发展,CMOS传感器技术现已能满足生命科学成像的苛刻要求,与电荷耦合器件(CCD)检测相比,其具有更高的效率和更大的像素密度(超2000万像素)。另外,ChemiDoc Go成像系统的新型高灵敏度背照式CMOS传感器所需的冷却要求及功率也更低,从而增强了系统的可靠性。全LED光源ChemiDoc Go系统中新增了用于透照和落射照明的全LED光源。多个光源可为对应应用提供精确的激发或照明,全LED光源设计提升了系统性能,并具有超长使用寿命。兼容StarBright荧光标记抗体ChemiDoc Go系统现在支持使用StarBright Blue 520和700荧光二抗进行成像,实现多重荧光蛋白印迹检测。安全云存储ChemiDoc Go系统是首款与BR.io云平台连接的Bio-Rad成像系统,其可简化图像上传到云端安全文件夹中后的数据存储、共享和分析程序。三步触控实验流程使用Image Lab Touch软件,选择适合您应用的优化预设、选择“Acquire(获取)”、选择多种文件格式保存图像,即可完成实验操作。您可将图像保存到所在机构的网络、U盘或BR.io云账户,也可使用专用打印机打印图像。可使用Mac或PC版Image Lab软件随时随地分析数据。可使用PC安全版本Image Lab软件维护电子记录,以符合美国FDA 21 CFR Part 11的规定。申请试用:本产品仅用于科研,不可作临床诊断使用。Bio-Rad 是 Bio-Rad Laboratories, Inc. 在特定区域的商标。
  • 生物组织红外成像的全新手段——荧光引导光学光热红外显微光谱
    红外显微光谱法是非破坏性、结构敏感的检测方法,目前已在基于分子结构的单细胞领域的研究中发挥重大作用,诸如蛋白构象改变、氧化还原、脂质体的产生与降解等。但是受制于红外光谱仪本身的限制,对于生物组织样品来说制样非常困难,因此极大的限制了红外光谱在生物医学方面的应用。O-PTIR (Optical Photothermal Infrared) 光学光热红外光谱是一种快速简单的非接触式光学技术,通过检测由于本征红外吸收引发的样品表面快速的光热膨胀或收缩,克服了传统IR衍射的极限,空间分辨率可达500 nm。近期,美国PSC公司又推出了非接触亚微米分辨荧光红外拉曼同步测量系统mIRage-LS,将O-PTIR技术与荧光(FL)进一步有机结合,利用落射荧光快速定位 O-PTIR 测量的区域,提供了对样品荧光标记区域以及邻近未标记组织的化学结构的快速光谱分析。图 1. FL-OPTIR 显微镜基本原理和观测方法这项全新的技术对样品要求非常低,而红外光谱的空间分辨率可达亚微米级别,为红外光谱在生物医学方面的应用提供了全新的视角。比如在阿尔茨海默病 (AD) 研究方面,AD的关键病理特征是淀粉样蛋白折叠,这些 β-折叠结构具有特定的振动特征,对于红外光谱来说十分敏感,但是受制于传统红外光谱仪本身的限制,在生物组织样品上直接测量非常困难。而非接触式的FL-PTIR技术却能够很好适用于这些样品,并且已经有多个小组通过实验证明了FL-PTIR能够应用于具有特殊化学敏感性的活细胞成像研究。Craig Prater等人通过这项技术成功实现了荧光定位下的OPTIR红外观测,并且完成了对组织中单个病理结构内的 β-折叠结构进行结构分析、在脑组织的特定细胞和培养的原代神经元分析。首先,作者使用了12个月周龄的 APP/PS1 转基因小鼠的大脑切片,用淀粉样蛋白特异性发光共轭聚电解质探针mytracker R(Ebba Biotech,Solna,Sweden)进行标记,并用OPTIR进行观测β 折叠结构的分布。相比于传统红外很难定位的问题,FL-OPTIR通过宽场荧光能够快速定位淀粉样蛋白斑块。并直接在脑组织中评估其在单个斑块中的结构。通过 k 均值聚类方法对其进行分析,清楚地显示了在 1630 cm–1处具有高振幅和低振幅的两组光谱的存在,并且具有 1630 cm–1高振幅的光谱清楚地与荧光信号共定位。光谱分析表明 Amytracker 没有对酰胺 I 和 II 区域有明显的吸收,因此表明 Amytracker 可用于 OPTIR 测量的荧光引导。图 2. FL-OPTIR 对脑组织中的淀粉样斑块进行成像荧光和红外图谱和热图的展示。 在第二个实验中,作者提供了一个概念性方法验证实验,证明 FL-OPTIR 可用于研究组织中的特定细胞类型,而这对传统红外显微光谱法来说十分具有挑战性。为此作者对脑组织中与淀粉样斑块相关的小胶质细胞进行成像,以评估它们的光谱特征,从而了解小胶质细胞是否可以将 Aβ 原纤维转化为单体的问题。这个实验使用 Aβ 特异性抗体 82E1 标记的 16 μm 组织切片,并用抗体 Iba1 对小胶质细胞进行了免疫标记。通过FL-OPTIR可以定位淀粉样斑块附近的小神经胶质细胞并测量 OPTIR 光谱。通过测量,发现 82E1 阳性小胶质细胞表现出β-折叠含量升高,表明小胶质细胞与 Aβ 原纤维相关。图 3. 脑组织中淀粉样斑块周围小胶质细胞的成像。 在第三个实验中,作者研究了 FL-OPTIR 在培养的原代神经元中 Aβ结构成像的适用性。与组织研究类似,淀粉样蛋白的结构异质性使得研究神经毒性与 Aβ 结构之间的关系仍具有挑战性。因此,为了直接评估神经元中的淀粉样蛋白结构,作者使用FL-OPTIR技术基于荧光信号引导的光谱测量,发现远端比近端神经突部分(分支后)相关的 Aβ 包含更多的 Aβ-聚集体, 作者认为这些神经元隔室可能本质上更容易结合 Aβ或者能够主动运输到远端。图 4. 初级神经元中 Aβ (1–42) 的结构成像。 总结:新型成像方法FL-OPTIR 结合了荧光成像和红外光谱来描述生物组织内的结构变化。能够针对复杂系统中的特定细胞、细胞器和分子进行分析和检测,解决了生物标本中红外光谱定位困难的问题。能够直接在组织中定位和分析淀粉样蛋白和相关的小胶质细胞,这可以解决局部环境在 AD 进展中的作用,帮助识别与淀粉样斑块相关的小胶质细胞,并在亚细胞水平上直接研究小胶质细胞中的纤维结构。为复杂样品中的蛋白质和细胞进行红外光谱分析提供了新的测量方法,为红外在生物领域的应用提供更加便捷实验途径。 作为美国PSC公司在中国的独家代理,Quantum Design中国于2020年将非接触亚微米分辨红外拉曼同步测量系统—mIRage系统引入国内,助力中国科研工作者取得一个又一个重大突破: 国内经典案例分享:南京大学环境学院借助mIRage建立了一种新型的塑料表面亚微米尺度化学变化表征方法。该工作发表在知名期刊Nature Nanotechnology上。 中国农业大学借助mIRage成功实现对玉米粉中痕量微塑料的原位可视化表征。该工作发表在Science of the Total Environment上。为满足国内日益增长的生物红外表征需求,更好的为国内科研工作者提供专业技术支持和服务,Quantum Design中国北京样机实验室引进了荧光引导光学光热红外显微光谱,为您提供样品测试、样机体验等机会,期待与您的合作!
  • 广州华粤行化学发光和多色荧光成像技术巡回讲座预告
    UVItec Alliance系列化学发光和多色荧光成像系统全国巡回讲座 【上海站】--------【南昌站】-------【武汉站】-----【更多精彩活动敬请关注】 2011-4-12   2011-4-20   2011-5月   近年来,化学发光和多色荧光成像技术发展迅猛,为配合国内专家学者的应用需求,广州华粤行仪器有限公司特别携手来自英国剑桥的UVItec举办全国巡回讲座,介绍该领域最新进展。   Uvitec公司成立于1996年,专业致力于研发和生产化学发光、荧光和可见光成像系统,以及配套的成像和分析软件。在分子影像领域,十多年来一直处于全球领先地位,迄今为止,全球用户已超过6万。   如果您对“生物分子成像技术的最新进展”及其在Western Blotting等方面的应用感兴趣,我们诚挚地邀请您光临我们的研讨会现场。同时,您还有机会亲自操作最新的高灵敏度全自动化学发光、多色荧光和可见光成像系统。     【上海站】   时间:2011年4月12日   地点:上海交通大学医学院附属新华医院科教大楼(杨埔区江埔路1667号)   活动安排   14:00-15:00 技术讲座   演讲人: 英国UVItec公司高级应用专家Walter   演讲内容:生物分子成像技术的最新进展   (Latest Advances in Biomolecular Imaging)   15:00-15:10 Q&A   15:10-16:00 UVItec Alliance 4.7成像系统的现场demo   现场提问,有精美礼品赠送哦!欢迎感兴趣的老师、同学参加!!   举办方:广州华粤行仪器有限公司 生命科学部   联系电话:020-34821111(广州)或021-31262111(上海)   更多产品信息,请浏览http://www.instrument.com.cn/netshow/SH102009/C125337.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制