当前位置: 仪器信息网 > 行业主题 > >

遗传筛查

仪器信息网遗传筛查专题为您整合遗传筛查相关的最新文章,在遗传筛查专题,您不仅可以免费浏览遗传筛查的资讯, 同时您还可以浏览遗传筛查的相关资料、解决方案,参与社区遗传筛查话题讨论。

遗传筛查相关的论坛

  • 战略合作丨思昆生物携手万德基因,开拓生殖遗传创新研究

    [img]https://img1.17img.cn/17img/images/202401/uepic/792e603a-e39c-482d-adfd-3b125a6919db.jpg[/img][font=宋体][size=18px] 2024年1月30日,郑州思昆生物工程有限公司(以下简称“思昆生物”)与广州万德基因医学科技有限公司(以下简称“万德基因”)在广州签署战略合作协议。双方基于思昆生物系列基因测序仪平台开展紧密合作,拓展在生殖与遗传检测领域的应用开发与临床转化,调动各自优势资源,联合推动基因测序产品的市场推广应用。[/size][/font][font=宋体][size=18px]思昆生物总经理蔡克亚与万德基因总经理张楠分别代表双方进行签约,思昆生物技术专家团队与万德基因研发骨干团队出席本次签约仪式。[/size][/font][font=宋体][size=18px]在交流过程中,思昆生物蔡克亚总经理介绍了企业发展情况。他提到,思昆生物专注于测序上游技术研究和产品开发,现已推出全自研的系列基因测序仪及测序试剂,在病原微生物、肿瘤筛查、生殖遗传等多个领域展示出了高性能、灵活、稳定的应用。此次与万德基因合作,将携手开拓在生殖遗传领域的测序研究,进一步提升思昆测序产品的应用性能。未来思昆生物将推出更多测序相关产品,为客户提供更多高性能、自动化的测序平台选择,助力国内精准医学检测。[/size][/font][font=宋体][size=18px]万德基因张楠总经理表达了与思昆生物战略合作的美好期望。她表示万德基因致力于二代测序技术应用领域研究多年,经过多方位全面深入考察,最终选择和思昆生物合作,是基于思昆生物全自研测序系统展现出的应用测试上的高性能优势。希望本次与思昆生物的合作,可以为生殖遗传领域测序应用产品提供更多的助力。[/size][/font][font=宋体][size=18px]Sikun 系列基因测序仪是思昆生物潜心研发推出的具有快速、准确、灵活、稳定等特点的新一代高通量测序仪。最快可在3.5小时内完成一次测序,目前拥有Sikun 2000、Sikun 1000、Sikun 500三款系列产品,搭配多种通量模式可供用户灵活选择。思昆生物与万德基因此次基于思昆基因测序平台开展的全面战略合作,将推动双方在测序领域业务的互利共赢及持续发展,同时为精准医学发展贡献重要力量。[/size][/font][font=宋体][size=18px]关于思昆生物[/size][/font][font=宋体][size=18px]郑州思昆生物工程有限公司位于郑州经济技术开发区,公司以服务人类健康为宗旨,积极推动精准检测技术的应用,秉持“追求卓越,坚韧不拔”的创新理念,专注于基因测序领域技术研究和产品开发,现已在基因测序仪、基因检测试剂等领域全面布局,并在病原微生物、肿瘤筛查、生殖遗传等多个领域开展工作,可为科研机构、企事业单位、社会卫生组织、医疗机构等提供精准检测系列化解决方案。[/size][/font][font=宋体][size=18px]关于[/size][/font][font=宋体][size=18px]万德基因[/size][/font][font=宋体][size=18px]广州万德基因医学科技有限公司是一家专门从事生命科学前沿研究的产学研企业,专注于二代基因测序技术研究开发,自主研发了新型无创产前检测、无创肿瘤检测等国际领先产品,主要应用于产前筛查、新生儿筛查、肿瘤筛查、肿瘤个体化用药指导、基因健康体检等方面。[/size][/font][来源:郑州安图生物工程股份有限公司][align=right][/align]

  • 新生儿遗传疾病筛查串联质谱法中污染物的另类解决方案探究

    新生儿遗传疾病筛查串联质谱法中污染物的另类解决方案探究

    随着串联质谱的不断普及,越来越多的行业领域开始运用的串联质谱作为检测手段,在临床上运用串联质谱检测的项目也不少,例如维生素D,胆汁酸,新生儿遗传疾病筛查等等。新生儿遗传疾病筛查是利用串联质谱技术检测新生儿足根血干血斑中12种氨基酸和31种酰基肉碱的含量,而在该方法中,加上相应的12个氨基酸的内标和13个酰基肉碱内标,一共有68对离子对,一旦在样本处理过程或者在仪器里残留着跟我们的目标化合物离子对相近的污染物的话,那必然会对分析结果产生影响,此文章主要是研究如何在未能找到污染源的情况下把干扰离子的影响降到最低。[size=18px][b]1 案例一[/b][/size]在本案例中,怀疑某厂家质控品有两个干扰物,离子对分别是255.3/85和375.4/85,这两个干扰物正好跟新生儿遗传疾病筛查指标里面的C5 IS和C14 IS 离子对一样,所以会对C5和C14的结果产生影响。本次研究主要分两部分实验,实验一完全按照新生儿遗传疾病筛查串联质谱法的正常实验流程,唯一改变的是在质谱条件上,使用不同的cone voltage,研究不同的cone voltage 对C5和C14的最终结果有何不同。实验二,在实验一的基础上加入色谱柱(新生儿遗传疾病筛查串联质谱法是不使用色谱柱的),研究在255.3/85和375.4/85两个通道上是否有干扰物分离出。1.1 实验一1.1.1主要仪器美国Waters公司的UPLC I-class XevoTQD串联质谱系统。1.1.2主要试剂美国Perkinelmer公司NeoBase试剂盒;2020年美国CDC QC质控;2020年国家卫生健康委临床检验中心第一次全国室间质量评价质控;台湾CIR质控;甲醇:色谱纯,Merck产品;屈臣氏纯净水。1.1.3样本处理按照美国PerkinElmer公司NeoBase试剂盒的方法处理样本以及另外三方的质控,处理完成后上机待测。1.1.4色谱条件色谱柱:无;流动相A:采用PerkinElmer公司NeoBase试剂盒配套的流动相;流动相B:无;梯度程序为:0~0.15min(0.16mL/min),0.16~1.10min(0.015mL/min),1.11~1.30min(0.70mL/min),1.31~1.60min(0.16mL/min);进样量20微升。1.1.5质谱条件电喷雾电离(ESI),正离子模式,Capillary 3.5kV,Source Temp 120℃,Desolvation Temp 350℃,Desolvation gas 600L/hr,Cone gas 50L/hr,68对离子对,采用MRM模式扫描。1.1.6结果与分析本次实验一共处理了8个样本,分别是3个正常新生儿样本,2个浓度NeoBase试剂盒质控以及台湾CIR质控,2020年美国CDC QC质控,2020年国家卫生健康委临床检验中心第一次全国室间质量评价质控各一个。 [size=13px]表[/size][size=13px]1[/size][size=13px] [/size][size=13px]不同[/size][size=13px]c[/size][size=13px]one voltage [/size][size=13px]C5[/size][size=13px]的结果分析[/size][table][tr][td][align=center][font='dengxian'][size=13px][color=#000000] [/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]Cone Voltage(V)[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]16[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]21[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]26[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]31[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]36[/color][/size][/font][/align][/td][/tr][tr][td=1,8][align=center][font='dengxian'][size=13px][color=#000000]C5 (μmol/L)[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]厂家A质控[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]5.28[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]4.8[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]3.54[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.62[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.5[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]厂家B质控[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.29[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.23[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.25[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.21[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.21[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]厂家C质控[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.41[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.29[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.26[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.34[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.22[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]试剂盒质控1[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.25[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.19[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.16[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.12[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.05[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]试剂盒质控2[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]3.48[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]3.39[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]3.15[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]3.22[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]3.26[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]样本1[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.14[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.12[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.1[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.07[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.08[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]样本2[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.07[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.07[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.09[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.08[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.08[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]样本3[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.08[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.06[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.05[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.06[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.07[/color][/size][/font][/align][/td][/tr][/table] [size=13px] 表[/size][size=13px]2[/size][size=13px] [/size][size=13px]不同[/size][size=13px]c[/size][size=13px]one voltage [/size][size=13px]C14[/size][size=13px]的结果分析[/size] [table][tr][td][align=center][font='dengxian'][size=13px][color=#000000] [/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]Collision Energy(V)[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]25[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]30[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]35[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]40[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]45[/color][/size][/font][/align][/td][/tr][tr][td=1,8][align=center][font='dengxian'][size=13px][color=#000000]C14[/color][/size][/font][font='dengxian'][size=13px][color=#000000] [/color][/size][/font][font='dengxian'][size=13px][color=#000000](μmol/L)[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]厂家A质控[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]3[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]4.1[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]5.48[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]6.12[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]6.8[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]厂家B质控[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.39[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.39[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.4[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.38[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]1.36[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]厂家C质控[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.53[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.49[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.48[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.49[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.49[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]试剂盒质控1[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.18[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.05[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.17[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.19[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]2.17[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]试剂盒质控2[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]5.75[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]5.96[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]6.09[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]5.96[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]6.35[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]样本1[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.13[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.13[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.15[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.15[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.16[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]样本2[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.32[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.31[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.32[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.3[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.31[/color][/size][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][size=13px][color=#000000]样本3[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.05[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.06[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.05[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.06[/color][/size][/font][/align][/td][td][align=center][font='dengxian'][size=13px][color=#000000]0.05[/color][/size][/font][/align][/td][/tr][/table]由表1和表2结果可见,只有厂家A质控的结果是随着cone voltage的改变而改变,正常的情况cone voltage改变是不会影响结果浓度的,怀疑厂家A质控内存在污染物干扰离子,下面进行实验二。1.2 实验二1.2.1主要仪器跟实验一相同。1.2.2主要试剂跟实验一相同。1.2.3样本处理跟实验一相同。1.2.4色谱条件色谱柱:Waters ACQUITY UPLC C18 色谱柱(2.1mm X 50mm,1.8[font='dengxian'][size=14px][color=#000000]μm[/color][/size][/font][font='dengxian'][size=14px][color=#000000])[/color][/size][/font];流动相A:去离子水;流动相B:甲醇;梯度程序为:0~1min(90%A),1~4min(90%~10%A),4~7(10%A),7~8min(10%~90%A);柱温35℃;流速0.3mL/min;进样量20微升。1.2.5质谱条件 跟实验一相同1.2.6结果与分析 在通道255.3/85中,厂家A质控在2.30min和5.75-5.90min处各有一个色谱峰,其他的样本都只有在2.30min处有一个色谱峰;在通道375.3/85中,厂家A质控在0.55min和5.23min处各有一个色谱峰,而其他的样本都只有在5.23min处有一个色谱峰,这说明厂家A质控在通道255.3/85和375.3/85处有干扰物。 下面我们再验证不同的cone voltage对厂家A质控上C5 IS,C14 IS目标物和干扰物有何影响。 [size=13px] 图[/size][size=13px]1[/size][size=13px] [/size][size=13px]不同[/size][size=13px]cone[/size][size=13px] voltage[/size][size=13px]下[/size][size=13px]C5[/size][size=13px] [/size][size=13px]IS[/size][size=13px]和干扰物的色谱峰[/size][img]https://ng1.17img.cn/bbsfiles/images/2021/05/202105100950474458_6982_2249304_3.png[/img] [size=13px] 图[/size][size=13px]2[/size][size=13px] [/size][size=13px]不同[/size][size=13px]cone[/size][size=13px] voltage[/size][size=13px]下[/size][size=13px]C14[/size][size=13px] [/size][size=13px]IS[/size][size=13px]和干扰物的色谱峰[/size][img]https://ng1.17img.cn/bbsfiles/images/2021/05/202105100950477281_5049_2249304_3.png[/img]由图1和图2可以看出,采用不同的cone voltage,C5 IS C14 IS目标物和干扰物响应值变化的百分比都不同。如表3,在cone voltage取21时,这时候干扰物的响应值是最低的,干扰物/C5 IS 是3.92%,当cone voltage取36时,干扰物/C5IS 却升到了87.56%。在新生儿遗传代谢病筛查串联质谱法中是不使用色谱柱的,一旦出现相同离子的干扰物,必然会对该物质造成影响,所以遇到这种干扰物,我们是否可以取一个合理的cone voltage值,在目标物响应值不能过低的前提下,降低干扰物的的响应值从而降低对目标物的影响呢。 [size=13px] 表[/size][size=13px]3[/size][size=13px] [/size][size=13px]不同[/size][size=13px]Cone[/size][size=13px] voltage[/size][size=13px]下[/size][size=13px]C5[/size][size=13px] [/size][size=13px]IS[/size][size=13px] [/size][size=13px]和干扰物的响应值变化[/size][table][tr][td][align=center][font='dengxian'][color=#000000]Cone voltage[/color][/font][/align][align=center][font='dengxian'][color=#000000](V)[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]C5 IS intensity [/color][/font][/align][align=center][font='dengxian'][color=#000000](CPS)[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]干扰物intensity (CPS)[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]干扰物[/color][/font][font='dengxian'][color=#000000] /[/color][/font][font='dengxian'][color=#000000]C5[/color][/font][font='dengxian'][color=#000000] [/color][/font][font='dengxian'][color=#000000]IS[/color][/font][font='dengxian'][color=#000000] (%)[/color][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][color=#000000]21[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]18065[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]708[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]3.92 [/color][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][color=#000000]26[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]18023[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]2710[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]15.04 [/color][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][color=#000000]31[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]26794[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]7962[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]29.72 [/color][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][color=#000000]36[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]31984[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]28004[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]87.56 [/color][/font][/align][/td][/tr][/table][size=13px][/size][size=13px]表[/size][size=13px]4[/size][size=13px] [/size][size=13px]不同[/size][size=13px]Cone[/size][size=13px] voltage[/size][size=13px]下[/size][size=13px]C[/size][size=13px]14[/size][size=13px] [/size][size=13px]IS[/size][size=13px] [/size][size=13px]和干扰物的响应值变化[/size][table][tr][td][align=center][font='dengxian'][color=#000000]Cone voltage[/color][/font][font='dengxian'][color=#000000] [/color][/font][font='dengxian'][color=#000000](V)[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]C14 IS intensity (CPS)[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]干扰物intensity (CPS)[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]干扰物/C[/color][/font][font='dengxian'][color=#000000]14 IS [/color][/font][font='dengxian'][color=#000000](%)[/color][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][color=#000000]35[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]93038[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]11325[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]12.17 [/color][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][color=#000000]40[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]86381[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]8146[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]9.43 [/color][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][color=#000000]45[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]80184[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]6059[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]7.56 [/color][/font][/align][/td][/tr][tr][td][align=center][font='dengxian'][color=#000000]50[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]75787[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]4446[/color][/font][/align][/td][td][align=center][font='dengxian'][color=#000000]5.87 [/color][/font][/align][/td][/tr][/table][b][size=18px]2 案例二[/size][/b]案例一的干扰物是存在于样本里,而案例二的干扰物则是残留于仪器中,案例二的情况是离子通道135.1/89本底升高,而该干扰物一直残留在仪器当中无法清除,该干扰物正好跟LEU IS离子对一样,所以该通道本底升高必然会对LEU结果产生影响。本案例主要是研究优化cone voltage 和collision engergy来降低干扰物对目标物的影响。2.1 主要仪器美国ABsciex公司的API3200MD串联质谱系统。2.2 主要试剂高浓度美国Perkinelmer公司NeoBase试剂盒内标溶液(母液稀释50倍);甲醇:色谱纯,Merck产品;屈臣氏纯净水[size=13px]([/size][size=13px]注:该内标溶液和甲醇均在别的仪器上验证过没有[/size][size=13px]135.1/89[/size][size=13px]的干扰物存在[/size][size=13px])[/size]2.3 质谱条件电喷雾离子源(ESI);正离子模式扫描;电喷雾电压5500V;离子源温度350℃;GAS1 30;GAS2 35。采用针泵连续进样,采集方式采用MRM模式,母离子135.1,子离子89.0,用ABsciex Analyst Software自带的ramping功能对DP voltage(相当于waters的cone voltage)和collision energy进行调试,每个项目ramping三次取平均值,研究不同的DP 和CE 对该干扰物和LEU IS的影响。2.4 结果与分析首先进样溶剂是纯甲醇,由于该干扰物一直残留在仪器当中,故用针泵进甲醇相当于采集到就是该干扰物,对DP和CE分别进行Ramping 优化。把针泵里的甲醇换成高浓度的内标溶液,同样进行DP和CE Ramping 优化。得到的结果如图3,图4. [size=13px]图[/size][size=13px]3[/size][size=13px] [/size][size=13px]LEU[/size][size=13px] [/size][size=13px]IS[/size][size=13px]和干扰物[/size][size=13px] DP[/size][size=13px] [/size][size=13px]Ramping[/size][size=13px]对比[/size][img=,556,291]https://ng1.17img.cn/bbsfiles/images/2021/05/202105100959044741_5446_2249304_3.png!w556x291.jpg[/img] [size=13px]图[/size][size=13px]4[/size][size=13px] [/size][size=13px]LEU[/size][size=13px] [/size][size=13px]IS[/size][size=13px] [/size][size=13px]和干扰物[/size][size=13px] CE[/size][size=13px] [/size][size=13px]Ramping[/size][size=13px]对比[/size][size=13px][img=,554,267]https://ng1.17img.cn/bbsfiles/images/2021/05/202105100959521510_5884_2249304_3.png!w554x267.jpg[/img][/size]由图3可见,一般情况下,LEU IS DP电压的取值一般都是取响应值最高点,也就是40V,但是干扰物在这点也会有不低的响应值,干扰物在这样的电压下必然会对目标物造成影响,但是如果DP取50V或者55V,LEU IS的响应值虽然有所下降,但是干扰物的响应值下降的幅度会更大。同理如图4,当CE电压从14更改成22时,干扰物的响应值下降了接近10倍,而LEU IS 的响应值只下降了两倍,大大降低了干扰物对目标物的影响。原创者:Jam

  • 武汉大学分子遗传学 第二、三章

    第二章 遗传物质的基础——DNA的结构与性质2.1 核酸是遗传物质遗传物质这种特殊的分子必须具备以下基本特点:1.稳定地含有关于有机体细胞结构,功能,发育和繁殖的各种信息2.能精确地复制,这样后代细胞才能具有和亲代细胞相同的信息3.能够变异,通过突变和重组生物才能发生改变,适应和进化`遗传物质的发现1928年英国F Griffith 的肺炎球菌转化实验导致了遗传物质的发现。十年后O Avery 的体外转化实验弄清了这种转化因子的化学本质是DNA,而不是蛋白质或其他的大分子。1952年Hershey-Chase 的实验使遗传物质的结论得到了进一步的证实,而于1969年获得了诺贝尔医学生理学奖。`RNA也是遗传物质:如烟草花叶病毒的遗传物质是RNA。2.2 DNA携带两类不同的遗传信息DNA几乎是所有生物的遗传信息的携带者,除开少数RNA 病毒之外。`DNA携带着两类不同的遗传信息:一类是负责蛋白质的氨基酸组成的信息,以三联体密码子进行编码另一类遗传信息是关于基因选择性表达的信息2.3 DNA和RNA的化学组成及双螺旋模型1.DNA和RNA的化学组成核酸包括DNA和 RNA。经水解成单核苷酸(nucleotides),单核苷酸由磷酸基团(phosphate group)和核苷(nucleotide)组成,核苷含有戊糖(pentose)和碱基(base)。DNA中戊糖是D-脱氧核糖,碱基是ATGC;而RNA中戊糖是D-核糖。碱基是AUGC。`2.DNA双螺旋模型的诞生美国J D Watson在芝加哥大学读本科时对鸟类赶兴趣,到了高年级时,他想了解基因是什么。1949年他带着这种想法进入了剑桥大学卡文迪实验室医学研究组,与物理出生的青年学者F Crick 合作,决定研究DNA的分子结构。Crick 在1946年读了薛定谔(E Schrodinger)的名著(生命是什么)后,舍弃物理学转向生命科学领域。刚到剑桥大学时Watson由于自己的化学与物理学基础较差而担心听不懂R Fr

  • Science最新专题:表观遗传学

    “表观遗传”使获得性遗传再次引起科学家的兴奋,短短数年,它已成为生命科学界最热门领域之一。以DNA为载体的中心法则仍是传递遗传信息的主要方式;而表观遗传可作为它重要的有益补充,而非你死我活的针锋相对。孩子维特式的多愁善感,可能缠绕他今后的一生;瘾君子吸毒之后生出的婴儿,长大后也有步父母后尘的可能;甚至不经意的一些习惯,都会影响后代……这听起来有些可怕。不过,经典遗传学家斩钉截铁的“不”字会给你些许安慰。传统知识告诉我们,后天的行为方式不会在短时间内遗传,需要漫长世代的自我选择;而所谓的“获得性遗传”,更是一度被当做反例“批判”。进化论泰斗达尔文曾经希望他的物种演化理论能让即使十岁的孩子也看得懂,然而大自然不会给人类这样的机会。人类发现,自身获得的知识越多,越不得不感叹生命的精妙和复杂。花相似 人不同7岁的奥利维亚和伊莎贝拉来自英国,她们是一对同卵双胞胎,拥有近乎完全一致的遗传信息。不过,两个女孩的命运却迥然相异。2005年6月,1岁的奥利维亚忽然高烧不退。血液化验的结果让大家大吃一惊:奥利维亚患上了急性白血病。因为是同卵双胞胎,医生连忙对伊莎贝拉也进行了检查,结果让人松了一口气:一切正常。在医生们的帮助下,小奥利维亚最终恢复健康,但医学专家们却遇到了一个困惑多年的难题:既然是同卵双胞胎,为何奥利维亚不断生病,而伊莎贝拉却非常健康呢?随着研究越来越深入,困扰医生的答案也将渐渐浮出水面。这些经典遗传学无法解释的现象,表观遗传学有望部分揭示。2009年,西班牙和美国的科学家在全基因组水平分析了一对同卵双胞胎的基因组:他们一方正常,一方患有红斑狼疮。研究人员发现,虽为同卵双胞胎,但双方个体对遗传信息的“表观修饰”存在大量差异――DNA甲基化水平不同。事实上,很多例子证明了“表观修饰”的存在。同样是2009年,来自拉什大学医学中心和塔夫茨大学医学院的科学家对一些小鼠的遗传基因进行人为突变,使其智力出现缺陷。当这些小鼠被置于丰富环境中进行刺激、并频繁与各物体接触两周后,它们原有的记忆力缺陷得到了恢复。数月后,小鼠们受孕。虽然它们的后代也出现了和母亲同样的基因缺陷,但没有接触复杂丰富的环境并受刺激的新生小鼠丝毫没有记忆力缺陷的迹象。在这篇发表在《神经科学》的文章中,拉里・费格博士谈到,发生在小鼠身上、把对环境的感应遗传下去的现象,在理论上被称为“表观遗传学”。“表观遗传学是指在基因组序列不变的情况下,可以决定基因表达与否、并可稳定遗传下去的调控密码。” 清华大学医学院表观遗传学与癌症研究所教授孙方霖曾如此介绍。也就是说,人类不仅有作为遗传物质的基因组信息,还有一套管理、调控、修饰基因组的密码指令系统。不同的个体,指令系统也不同。另外,这套密码指令还能在特定环境下发生改变。更神奇的是,改变后的指令很可能会遗传下去。然而,这套系统是如何发生改变并遗传,在相当长一段时间内并不为人知。

  • 科学家观察到酶“编辑”DNA过程 有助纠正遗传疾病

    科学家观察到酶是如何“编辑”DNA的 有望用以纠正人类遗传疾病 科技日报讯 (记者陈丹)一个国际研究小组在了解酶如何“编辑”基因方面取得了重要进展:观察到了一类被称为CRISPR的酶绑定并改变DNA(脱氧核糖核酸)结构的过程。这项发表于5月27日(北京时间)美国《国家科学院学报》上的研究成果有望为纠正人类的遗传疾病铺平道路。 CRISPR意即“成簇的规律间隔的短回文重复”,在上世纪80年代才首次为人们所认知。到目前为止,已发现40%已测序细菌和90%已测序古细菌的基因组存在这种重复序列,而且细菌已开发出一套可以探测和切断外来DNA的免疫策略。其机理大致如此:CRISPR序列与很多病毒、噬菌体或者质粒的DNA序列同源,受到攻击的细菌会以相匹配的DNA为目标进行自然防御。它们所采用的手段,就是利用一种名为Cas9的内切酶,裂解外来DNA。 基因工程师们意识到,如果将细菌的CRISPR-Cas9系统插入其它生物体细胞,它们也能够对目标DNA进行切割。就在去年,这一革命性的基因编辑技术收获了一系列成果:多个研究团队已经成功对人体、小鼠、斑马鱼、大米、小麦等细胞中的基因进行删除、添加、激活或抑制等操作,从而证明该技术的广泛适用性。 不过,人类基因组有30亿个碱基对,要准确锁定某个目标DNA,工作量大致相当于从一套23卷的《百科全书》中找出一个拼错的单词。因此,研究人员为Cas9这把“基因剪刀”找了一个与目标基因匹配的RNA(核糖核酸)作为“导航仪”。在这个靶向过程中,Cas9拉开DNA链,并插入RNA,使之形成了一个被称为R环的特定序列结构。 在最新研究中,英国布里斯托尔大学和立陶宛生物技术研究所的科学家使用经过特别改装的显微镜对R环模型进行了检测。显微镜下的单个DNA分子被磁场拉伸着,通过改变DNA受到的扭力,他们能够直接观测由单个CRISPR酶介导R环形成的过程。这使得这个过程中以前不为人知的一些步骤毕现无疑,也让研究人员能够探讨DNA碱基对序列对R环形成的影响。 布里斯托尔大学生物化学系教授马克·斯兹克泽尔昆说:“我们进行的单分子实验加深了有关DNA序列对R环形成的影响的认识。这将有助于未来合理地重新设计CRISPR酶,以提高其精确度,将脱靶效应(即在不需要的地方引起基因变异)降至最低。这对我们最终利用这些工具来纠正患者的遗传疾病至关重要。” 总编辑圈点: 不知基因谁裁出,免疫系统似剪刀。Cas9蛋白酶,本来是原始生命用来防御生物入侵的防御性武器,但却被人类变成进攻利器。它在人类手中犹如火箭弹,威力巨大,使用方便。但它精确度有限,容易误切人类不希望影响的基因段。科学家们此次通过改造显微镜,看清了Cas9破拆单个DNA的全过程。这样,人们就能将火箭弹改造成导弹,指哪儿打哪儿。曾经让患者绝望的遗传病,未来或许一针下去就解决了。来源:中国科技网-科技日报 作者:陈丹 2014年05月28日

  • 【原创大赛】质谱技术应用于中国遗传代谢性疾病现状及防控对策

    [align=center]质谱技术应用于中国遗传代谢性疾病现状及防控对策[/align]出生缺陷已成为我国重大公共卫生问题,防控形势严峻。1、出生缺陷不仅导致胎儿的结构异常,还导致出生后的功能异常,包括先天畸形、先天性代谢病、染色体异常、先天性宫内感染所致的异常,以及先天发育残疾如盲、登、智力障碍等;2、出生缺陷总发生率为5.5%,由于我国出生人口多,导致出生缺陷总数远远高于其他国家;3、随着人口政策的调整,高龄、高危孕产妇带来了更大的挑战。而其防控对策受到仪器方法的限制,无法准确的对体内内源性物质定性定量。出生缺陷的特点有:1、疾痛种类繁多且复杂,达上万种;2、病因复系,可由遗传因素,环境因素或两因相互作用所致;3、有些出生缺陷根据临床将征即可诊断,但有些缺陷需要的诊断手段要复杂些,需要特殊检测手段和方法;4、有的出生缺陷可于出生时表现,有些出生缺陷则在生后一段时间才显示出来;5、疾病负担重,保障体系尚待进一步的提高。出生缺陷防控可分为三个级别,一级预防最佳时机为婚前和孕前,目的是预防出生缺陷的发生,措施有法律法规,孕前增补小剂量叶酸,婚前医学检查,孕前健康检查,孕前筛查,健康教育,营养干预,出生缺陷咨询,遗传咨询等。二级预防最佳时机为孕期,目的是避免致死,严重致残缺陷儿出生。措施为产前超声筛查与诊断,PCD,产前Dowm综合征血清学筛查/NIPT,产前诊断技术(CVS, AC, FISH, BOB, CMA, CGH等)。三级预防最佳时机为新生儿时期,目的为先天性疾病早筛查及早诊断并及时有效治疗,措施有新生儿疾病筛查及诊断(包括听力筛查) ,出生缺陷的疾病治疗。出生缺陷防控标志性事件:1994年《母婴保健法》颁布;1996年出生缺陷检测机构达460家;2002年颁布《新生儿筛查技术规范》;2003年颁布《产前诊断管理办法》;2019年健康中国行动2030年计划。2018年中国出生缺陷精准防控的进展:2018年8月国家卫生能康委颁布《关于印发全国出生缺陷综合防治方案的通知》(国卫办妇幼发2018) 19号,总目的:构建覆盖城乡居民,涵盖婚前、孕前、孕期、新生儿和儿童各阶段的出生缺陷防治体系,为群众提供公平司及、优质高效的出生缺陷综合防治服务,预防和减少出生缺陷,提高出生人口素质和儿童健康水平。具体目标(到2022年)出生缺陷防治知识知晓率达到80%,婚前医学检查率达到65%,孕前优生健康检查率达到0%产前筛查率达到70%。新生儿遗传代谢性疾病缩查率达到90%,新生儿听力筛查率达到0%,确诊病LI治疗率均达到80%先天性心脏病、唐氏综合征、耳聋、神经管缺陷、地中海贫血等严重出生缺陷得到有效控制。2018年中国出生缺陷精准防控的进展金国出生缺陷防治人才培训项目:2018年正式启动, 2020年到2万人, 2019年扩展到3500人。首批启动12个省(山东、山西、辽宁、浙红、河南、湖南、湖北、福建、四川、贵州、甘肃、广西)。2019年扩展到24个省,国家投入2600 万+3780万,培训2400-3500人,集中培训一周,临床进修七周,线上学习四周。而质谱串联液相色谱技术应用于遗传代谢性疾病的筛查率逐年增加,各省均加大投入对我国遗传代谢性疾病的防控。新生儿遗传性疾病遇到空前的挑战与机遇:1、新生儿筛查的病转扩大,市场的规范;2、在关挂确在服务的同时,还需更加关挂诊断、治疗的后续服务;3、新生儿遗传代谢性疾病筛查、诊断与治疗的人才培养;4、新生儿筛查技术规范化的修订与出台;5、咨询与技术发展同步提高;6、基因筛查与诊断受到关注。

  • API3200新生儿遗传病检测 问询

    本来公司有套API3200正准备出售,客户是对外检测新生儿遗传病的,后了解到这块检测的设备 需要有国家的医疗器械许可证,而API3200MD才可满足这块,有哪位经历过这块,API3200和API3200MD 硬件块有什么区别吗 ,查了很多检测文献,仪器使用 都是API3200的 。有懂的 请赐教

  • 遗传算法进行波长选择的困惑

    想用遗传算法进行光谱的波长选择,遗传算法的原理算是搞得差不多了,又看了一些相关的论文,有以下问题望大家指教:1、遗传算法的实现一般是通过Matlab工具箱实现还是自己编程实现,见有的文章说用Vc自己编写的;有没有建模软件自带遗传算法的,我用的TQ Analyst软件是不带的。2、求最优解的过程应该是自动实现的过程,而最优解的确定又是通过模型有关参数决定的,这应该要求针对每个解(即选择的不同波长组合)都要建立一次模型,以便得到模型的相关参数。若不是建模软件自带遗传算法,而是借助matlab或自己编程实现,那么由不同波长组合得到不同参数的整个自动实现过程如何完成的?不知道自己这样理解有没有错误,接触近红外分析时间不长,有错误的地方望大家批评指正,先谢谢了!

  • 武汉大学分子遗传学笔记(不断更新中)

    第一章 绪论1.1 分子遗传学的含义1.不能把分子遗传学单纯地理解成中心法则的演绎 *分子遗传学≠中心法则传统:分子遗传学=中心法则实际:分子遗传学≠中心法则,他首先是遗传学,其坚实的理论基础仍然是摩尔根的《基因论》中心法则只是对基因,性状及突变在核酸分子水平上的解释。从中心法则到性状的形成仍然是一个复杂的甚至未知的遗传,变异与发育的生物学过程。分子遗传学不仅盯住DNA/RNA,蛋白质,更要研究活细胞内与遗传便宜有关的一切分子事件。 分子遗传学≠核酸+蛋白质分子遗传学研究的对象是分子水平上的生物学过程-遗传与变异的过程。它研究的是动态的生物学过程,而不是脱离生物体,在试管里孤立地研究生物大分子的结构与功能。1992年,Nature 的主编J.Maddox 曾著文 Is molecular biology yet a science?指出:"现在有那么一些叫分子生物学家的人, 他们的文章无视全部的动物,植物,也很少言及他们的生理学。实验的大部分资料来自所谓的\'凝胶\'---""分子生物学在很大程度上变成定性的科学。---如果事情只是简单的说明某个基因版本与某种遗传病相关,那么,分离这种片段(如电泳),然后测序足以。"但是"以往的巨大成就表明,生命过程是由严格控制下进行的一些有序事件组成"他说:"在人们长期为细胞生物学现象寻找定性的解释中,他们将会相信细胞只不过是一个充满了分子开关的袋子,他们作为分子传动器或开或关而出现在预定的事件序列中。要真正在分子水平上了解遗传变异的本质,仅仅研究核酸或蛋白质的生物化学是不够的。分子遗传学所研究的应该是细胞中动态的遗传变异过程,以及与其相关的分子事件。所以不止是中心法则,核酸,蛋白质。 2.分子遗传学不是核酸及其产物(蛋白质)的生物化学分子遗传学是分子生物学的一个分支, 或理解为狭义的分子生物学。他依照物理,化学的原理来解释遗传现象,并在分子水平上研究遗传机制及遗传物质对代谢过程的调控。因此,分子遗传学是在生命信息大分子的结构,功能及相互关系的基础上研究遗传与变异的科学。 3.传统的遗传学"主要研究遗传单元在各世代的分布情况",分子遗传学则着重研究遗传信息大分子在生命系统中的储存,复制,表达及调控过程。研究范畴如下: DNA RNA Protein 现象信息源 信息模板 工作分子 生长、分化、发育、代谢 1.2 分子遗传学的产生1.物理学的渗透1945年奥地利物理学家量子力学的创始人之一薛定谔(ERWIN SCHRMODINGER)的《生命是什么》一书出版。倡导用物理学的思想和方法探讨生命的秘密。引入热力学第二定律,熵概念等。他认为有机体在不断地增加他的熵并趋向最大值的熵的危险状态,那就是死亡。要摆脱死亡而正常生长发育,就要从环境中吸取负熵,负熵是一个积极的东西。有机体就是依赖负熵为生的。他认为生命系统中可能还包含迄今未知的"其他的物理学定律"极大地鼓励着很多物理学家转入生物学来研究基因的本性。整个40年代,新的物理学定律并未发现,但信息论,量子论,氢键等概念把生物学推向分子水平。 2.微生物学向遗传学的靠拢1926年摩尔根的《基因论》已经问世,但20世纪30年代,微生物学家采用拉马克的遗传观念,因为他们对微生物的遗传可塑性有很深刻的印象。如在含有致死药物的培养基上,可以很

  • 【转帖】《自然—遗传学》:中美科学家揭示玉米杂交机制

    《自然—遗传学》:中美科学家揭示玉米杂交机制 作者:刘传书 来源:科技日报由中国农业大学玉米中心、华大基因研究院、美国爱荷华大学、明尼苏达大学等单位合作的研究成果“基因丢失与获得的多态变化揭示玉米中的杂交优势的机制”近日在国际著名杂志《自然—遗传学》上发表。该研究报道了中国重要玉米骨干亲本的全基因组的单核苷酸多态性、插入/缺失多态性以及基因获得和缺失变异图谱,为玉米的遗传学研究和分子育种提供了宝贵资源。该研究对6个中国重要玉米杂交组合骨干亲本进行全基因组重测序,发现了100多万个单核苷酸多态性位点(SNPs)和3万多个插入缺失多态性位点(IDPs),建立了高密度分子标记基因图谱;同时研究还发现了101个低序列多态性区段,在这些区段中含有大量在选择过程中与玉米性状改良有关的候选基因。此外,通过将玉米自交系Mo17及其他自交系的基因序列与玉米自交系B73的基因序列比对,研究人员对玉米自交系中基因丢失与获得的多态性进行了研究,发现在不同的自交系中存在不用数量的基因丢失与获得性变异;利用SAOPdenovo软件对在其他自交系中存在而在B73中缺失的序列进行组装,研究人员发现了很多目前公布的B73参考基因组序列中丢失的基因。这些发现不仅为高产杂交玉米育种骨干亲本的培育提高了重要的多态性标记,同时也补充了玉米基因数据集,为进一步挖掘玉米基因组和遗传资源提供了大量数据。玉米具有非常显著的杂交优势,利用该优势是提高产量的主要手段之一。研究人员选择了中国历史上和目前广泛流行的高产杂交组合骨干亲本,并根据多态性追踪了这些骨干亲本育成过程中基因组的变化方式。该研究还发现这些骨干亲本组合基因组的组合可弥补另一方功能元件的缺失,此种基因丢失与获得的多态变化和其他无义突变的互补作用可能与杂种优势有关。

  • 【转帖】植物遗传资源保护与利用的市场化机制和国际制度

    提 要 随着植物物种资源的不断减少和因生物技术迅猛发展对植物遗传资源需求的不断增加,植物遗传资源正逐步由公共物品转变为稀缺物品。坚持《生物多样性公约》所确立的遗传资源效益公平分享原则,完善现有国际多边体系,促进以“遗传编码功能”价值概念和遗传资源保护效应“内部化”与“补偿”方案为基础的植物遗传资源市场化保护与利用机制的形成,建立“植物遗传资源交易所”和“生物多样性合作社”,将有助于提高世界各国尤其是发展中国家保护植物遗传资源的积极性,实现全球植物遗传资源的可持续利用。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=102839]植物遗传资源保护与利用的市场化机制和国际制度[/url]

  • 【资料】进行基因遗传因子生物技术和医学生物研究的仪器

    进行基因遗传因子生物技术和医学生物研究的仪器俄罗斯科学院西伯利亚分院细胞遗传研究所特性:已经研究完成和正在制造用于进行分子遗传、医学物理和生物技术的工作:用于死骨基因的、在丙稀酰胺的和凝胶拟琼的电离子透入法的、真空迁移断列体和其它箱、室(请阅仪器的清单表)。目前正和瑞士Guest Elchrom Scientific公司有关电离子透入法设备的制造进行合作。这些仪器在工作中使用方便和简单,它们不低于类似Bio-Rad(美国)和LKB(瑞典)国外公司制造生产的模拟装置。设备是由可得到的材料(基本上是由有机玻璃)制造的并在价格上便宜50%。目前大部分仪器已准备成系列生产。已与科学委员会有关人的基因”签订了供应仪器设备的协议书。俄罗斯科学院和俄罗斯医学科学院大学已向我们订了货,同样瑞士Guest Elchrom Scientific公司也已向我们订了货。仪器明细表:1.用于在琼质凝胶中、10/20个样品的电离子投入法的小屋;2.用于在淀粉中的电离子投入法的小屋;3.用于在丙稀酰胺中的电离子投入法的小屋;4.电迁移室;5.逻辑运算室;6.48~96间隔的窗口室;7.真空迁移室;8.电动洗提器;9.装50 ml试管的离心杯;10.装10、25和50 ml的梯度器;11.用于10~15~22样品的聚四氟乙烯清除梳刀;12.用于清洗滤清器的漏斗;14.装吸移管的旋转式支架;13.磁混合器用的整套磁铁;15.在无菌操作室工作室用的滴液管支架把手;16.电极把手—“第三个手”;17.逻辑运算用的П型玻璃;18.夹玻璃用的紧定器;19.带冷却的在淀粉凝胶中(很小的)用于电离子透入法的小屋;20.用于SEA2000电离子透入法的小屋;21.用于玻璃滴液管的消毒器;22.切淀粉用的小桌;23.灌凝胶用的带有水准的小桌;24.用于染色、冲洗和察看УФ琼质凝胶的小槽。实际实施的情况:样品(24件样品的名称已列出明晰表)正在进行鉴定并在莫斯科、圣• 彼得堡、伊尔库茨克、符拉迪沃斯托科(海渗威)、克拉斯诺亚尔斯克、新西伯里亚、乌克兰、哈萨克斯坦医学和医学生物专业大学研究所中使用。专利的保护:没有。合作意向:提供产品;寻找投资者。单位名称:俄罗斯科学院西伯利亚分院细胞遗传研究所;单位地址:630090俄罗斯新西伯利亚州新西伯利亚市拉夫琳捷夫大街10号;单位电话:007 (3832) 33-35-26;单位传真:007 (3832) 33-12-78;单位电子信箱:E-mail: icg-adm@bionet.nsc.ru 单位网站:http://www.bionet.nsc.ru/。

  • 【哀悼+怀念】遗传学家谈家桢院士今晨逝世 享年100岁

    遗传学家谈家桢院士今晨逝世 享年100岁2008-11-01 11:23:21 来源: 新华网 网友评论 17 条 点击查看  核心提示:著名遗传学家、中国现代遗传科学的奠基人之一谈家桢先生因病于2008年11月1日7时18分在上海华东医院逝世,享年100岁。 谈家桢院士新华网11月1日报道 著名遗传学家、中国现代遗传科学的奠基人之一谈家桢先生因病于2008年11月1日7时18分在上海华东医院逝世,享年100岁。新华社记者肖春飞报道【新民网报道】新民网11月1日从复旦大学获悉,中国现代遗传科学的奠基人之一,杰出的科学家、教育家,著名的爱国***和社会活动家,原民盟中央名誉主席、中国科学院院士、原复旦大学副校长谈家桢先生,因病于2008年11月1日7时18分在上海华东医院逝世,享年100岁。得知谈家桢逝世消息后,上海市和有关方面领导先后赶赴华东医院与谈家桢先生告别,并向其家属表示亲切慰问。(新民网 戴颖敏) --------------------------------------------------------------------------------谈家桢,国际遗传学家,我国现代遗传学奠基人之一,杰出的科学家和教育家。浙江宁波人。1909年9月15日出生于浙江省宁波县的慈溪。1930年获东吴大学理学士,1932年获燕京大学理硕士。1934年在T.多布然斯基教授指导下从事果蝇进化遗传学研究,利用当时研究果蝇唾腺染色体的最新方法,分析了果蝇近缘种之间的染色体差异和染色体的遗传图,促进了"现代综合进化论"的形成。在美国工作期间,先后单独或与美,德等国科学家合作发表论文10余篇。1946年,在亚洲异色瓢虫(Harmonia axyridis)中发现色斑嵌镶显性遗传现象,受到国际遗传学界的重视。1936年获美国加州理工学院哲学博士。回国后(1937年),应竺可桢校长之邀任浙江大学生物系教授、理学院院长。 1952年院系调整后任复旦大学生物系教授兼系主任,建立了全国第一个遗传学专业,历任生物系主任、遗传研究所主任、副校长、生命科学学院院长等职。 1978年以来,先后发起和担任中国遗传学会副会长、会长和名誉会长,遗传学报主编,中国环境诱变剂学会理事长和中国生物工程学会会长。1983年任复旦大学顾问,当选为第五、六届全国政协常委,中国民主同盟副主席。1980年当选为中国科学院生物学部委员、院士。谈家桢从事教育工作几十年,培养了大批科学人才。他还广泛参加各种社会活动,身兼多种职务。主要有中国遗传学会理事长,第十五届国际遗传学会(1980)副会长。上海市自然博物馆馆长,上海市人民代表大会常务委员会副主任,全国政协第六届常务委员会委员,中国民主同盟第五届中央委员会副主席,上海市民盟八届主任委员。1985年获“求是科学基金会”杰出科学家奖。1993年9月28日,由国家自然科学基金委员会生命科学部组织的以谈家桢教授为组长的专家组,在沪论证并通过了强伯勤教授、陈竺研究员申请的《中华民族基因组中若干位点基因结构的研究》重大项目之后,宣布中国人类基因组研究正式启动。2000年获“上海市首届教育功臣”称号。 谈家桢为我国遗传学的发展作出了重要贡献,特别在果蝇种群间的遗传结构的演变和异色瓢虫色斑遗传变异研究领域有开拓性成就,为奠定现代进化综合理论提供重要论据。谈家桢从事遗传学教学和研究已七十年,先后教过普通生物学、脊椎动物比较解剖学、胚胎学、遗传学、细胞学、实验进化学、细胞遗传学、达尔文主义、辐射遗传学、原生动物学等课程。他先后发表了百余篇研究论文和学术论述方面文章,主要汇集在“谈家桢论文选”(1987年,科学出版社)和“谈家桢文选”(1992年,浙江科技出版社)中。他的研究工作主要涉及有关瓢虫、果蝇、猕猴、人体、植物等的细胞遗传、群体遗传、辐射遗传、毒理遗传、分子遗传以及遗传工程等。特别在果蝇种群间的演变和异色瓢虫色斑遗传变异研究领域有开创性的成就,为奠定现代综合进化理论提供重要论据。在浙江大学任教期间他发现了瓢虫色斑遗传的镶嵌显性现象。引起国际遗传学界的巨大反响,认为是对经典遗传学发展的一大贡献。谈家桢先生坚持科学真理,把毕生精力贡献给了遗传学事业。他为遗传学研究培养了大批优秀人才;建立了中国第一个遗传学专业,创建了第一个遗传学研究所,组建了第一个生命科学院。(本文来源:新华网 )

  • 武汉大学分子遗传学 第六章

    第六章 突变 6.1 概述 一、定义突变是一种遗传状态,可以通过复制而遗传的DNA结构的任何永久改变,都叫突变mutation 。所有突变都是DNA结构中碱基所发生的改变。携带突变的生物个体或群体或株系,叫突变体mutant。突变位点发生在基因内,该基因称为突变基因mutant gene;而没有发生突变的基因称为野生型基因wild type gene。如arg+ 为Arg合成的野生型基因,而突变的基因型写成 arg-, 即精氨酸合成缺陷型,其表型为 Arg-表现型。野生型和突变体的表现型和基因型的表示方法见表5-1。P161所有基因表型名称均用3个小写的斜体字母或小写字母在底下画线,而有关的具体基因则在3 个小写字母后用大写的斜体字母表示,如lacZ, lacZ。所有的表现型名称均用3个正写的字母表示(其中第一个字母大写),如Lac+ , Lac-。还有一些其他的特殊意义的突变表示方法,如抗性,敏感性,温度敏感性,无意义等突变。-r, -s, Ts, 有兴趣的自己看。引起突变的物理化学因素称突变剂mutagen。由于突变剂的作用而产生突变的过程或作用称为突变生成作用mutagenesis。简称突变分类:自发突变生成spontaneous mutagenesis——自发突变spontaneous mutation——自然突变体spontaneous mutant. 诱发突变生成,3. 简称诱变induced mutation——诱发突变induced mutaion——诱发突变体induced mutant.`二 突变分类从DNA碱基序列改变多少来分:单点突变和多点突变从对阅读框架的影响来看:由于插入缺失一个或两个碱基会引起移码框架突变从对遗传信息的改变来说:点突变可引起同一突变,错意突变,无义突变或无声突变(含中性突变和同8. 一突变)从突变表型对外界环境的敏感性来区分,可分非条件型突变和条件型突变,如温度敏感突变为条件型突变。从突变的效应背离或返回到野生型这两种方向来分:正向突变和回复突变突变位点也可能存在于负责基因调控的DNA序列中:启动子上升突变和启动子下降突变。产生表达方式的操作子突变或调节基因的突变叫做组成型突变constitutive mutation.

  • 分子遗传学常用词汇

    腺嘌呤Adenine (A):一种碱基,和胸腺嘧啶T结合成碱基对。 等位基因(Alleles):同一个基因座位上的多种表现形式。一般控制同一个性状,比如眼睛的颜色等。 氨基酸(Amino Acid):共有20种氨基酸组成了生物体中所有的蛋白质。蛋白质的氨基酸序列和由遗传MM决定。 扩增(Amplification):对某种特定DNA片段拷贝数目增加的方法,有体内扩增和体外扩增两种。(参见克隆和PCR技术) 克隆矩阵(Arrayed Library):一些重要的重组体的克隆(以噬菌粒,YAC或者其他作载体),这些重组体放在试管中,排成一个二维矩阵。这种克隆矩阵有很多应用,比如筛选特定的基因和片段,以及物理图谱绘制等。从每种克隆得到的遗传连锁信息和物理图谱信息都输入到关系数据库中。 生技网自显影技术(Autoradiography):使用X光片来显示使用放射性元素标记的DNA片段的位置,常用在使用凝胶将DNA片段按照片段大小分离之后,显示各个DNA片段的位置。 常染色体(Autosome):和性别决定无关的染色体。人是双倍体动物,每个体细胞中都含有46条染色体,其中22对是常染色体,一对是性染色体(XX或者XY)。 噬菌体(Bacteriophage):参见phage 碱基对(Base Pair,bp):两个碱基(A和T,或者C和G)之间靠氢键结合在一起,形成一个碱基对。DNA的两条链就是靠碱基对之间的氢键连接在一起,形成双螺旋结构。 碱基序列(Base sequence):DNA分子中碱基的排列顺序。 碱基序列分析(Base Sequence Analysis):分析出DNA分子中碱基序列的方法(这种方法有时能够全自动化) cDNA:参见互补DNA 厘摩(cM):一种度量重组概率的单位。在生殖细胞形成的减数分裂过程中,常常会发生同源染色体之间的交*现象,如果两个标记之间发生交*的概率为1%,那么它们之间的距离就定义为1cM。对人类来说,1cM大致相当于1Mbp。 着丝点(Centromere):在细胞的有丝分裂过程中,从细胞的两端发出纺锤丝,连接在染色体的着丝点上,将染色体拉向细胞的两级。 染色体(Chromosome):细胞核中能够自我复制的部分,包含承载遗传信息的DNA分子。原核生物中只有一个呈环状的染色体;而真核生物中一般包含多个染色体,每条染色体都由DNA和蛋白质构成。 克隆库(Clone Bank):参见基因组文库(genomic library)。 克隆 (名词,Clones):从同一个亲代细胞形成的一组细胞。 克隆(动词,Cloning):形成大量子细胞的无性繁殖过程,这些子细胞和亲代细胞完全相同,这个过程称为克隆。 克隆载体(Cloning Vector):通常采用从病毒、质粒或高等生物细胞中获取的DNA作为克隆载体,在载体上插入合适大小的外源DNA片段,并注意不能破坏载体的自我复制性质。将重组后的载体引入到宿主细胞中,并在宿主细胞中大量繁殖。常见的载体有质粒,噬菌粒,酵母人工染色体。 互补DNA(cDNA):以信使RNA为模板合成的DNA,常常采用互补DNA的一条链作为绘制物理图谱时的探针。 互补序列(Complementary sequence):以一条核苷酸链为模板,根据碱基互补规则形成的互补链,称为该模板的互补序列。

  • 【转帖】红霉素工业用菌种遗传改造获突破

    中科院上海有机化学研究所刘文领衔的课题组立足于国内生物产业的现实需求,结合该所在化学合成方面的优势,致力于化学的理念促进现代生物技术的合理运用。他们与华东理工大学教授张嗣良等合作,在国家“863”项目“红霉素发酵工业用菌种改造和过程优化控制技术”中取得了重要突破,获得了一批具有自主知识产权、质量和产量得以明显提升的新型红霉素生产重组菌株。目前该成果已在湖北东阳光生化制药有限公司成功地进行了放大和试生产,其潜在经济、社会效益显著。在人类与致病微生物的斗争历史上,以抗生素为代表的微生物药物起到了至关重要的作用。红霉素是一类广泛使用、用于治疗革兰氏阳性菌感染的广谱大环内酯类抗生素。其临床应用领域的扩大和以阿奇霉素、罗红霉素、克拉霉素等为代表的新型半合成红霉素的出现,快速拉动了红霉素原料药的生产需求。过去几年,国际抗生素的市场规模大约在350亿~380亿美元之间,2012年有望达到450亿美元。据西方经济学家预测,2010年红霉素系列产品的全球市场总规模达70亿美元以上,市场前景乐观。抗生素发酵生产本身是高耗能产业,存在环境污染等问题,发达国家近年来正逐步把抗生素原料药的生产转移到中国等发展中国家。目前,我国是世界上红霉素生产和出口的第一大国,年产量超过7000吨。刘文介绍,由于许多抗生素具有十分复杂的化学结构,采用化学方法大量合成往往需要繁杂的工艺途径和苛刻的反应条件,在制药工业上的实际应用价值相当有限。采用微生物发酵是获取药用抗生素原料的主要途径,而我国作为世界上原料抗生素的主要生产大国,发酵单位偏低、产品质量偏低、缺乏自主知识产权的新型抗生素药物等一系列原因却严重制约了这一产业的发展。自红霉素作为一种广谱抗生素药物进入临床以来,以提高其产生菌种发酵单位为目的的遗传育种工作一直未曾停止。由于对微生物次级代谢产物生物合成的机制了解不多,常规诱变选育的方法存在周期长、效率低和随机性大的缺点,近年来在红霉素高产菌株的筛选方面收效不大。随着分子生物学技术的发展,国际上在红霉素产生菌种的基因工程改造方面进行了诸多尝试;然而,这些研究主要集中在与红霉素产生相关的底物供应或限制因素的改进方面,并未就红霉素生物合成的次生代谢途径做特异性的遗传修饰,因此,在解决红霉素生产中经常面临的有效组分偏低等问题时,缺乏有效的针对性。作为中科院“百人计划”、国家杰出青年基金获得者,自2007年以来,刘文带领课题组以包括红霉素、阿维菌素、林可霉素、泰乐菌素和螺旋霉素等大宗抗生素产品为对象,就我国抗生素原料药产业普遍存在的问题进行了分析,提出了以组分优化为切入点、采用遗传操作来控制体内合成的化学反应,从而改善产品质量和产量的研究思路。基于红霉素各组分结构的差异和相互转化的化学本质,他们运用组合生物合成技术的方法和原理对红霉素工业用高产菌株进行了针对性的遗传改良。通过发酵过程中后修饰酶的表达比例调整,他们将无效副产物组分B和C几乎完全转化为有效组分红霉素A,从而在提高了产品质量(基本消除主要的副产物)的同时,有效地提高了产品的产量达25%左右。部分研究成果发表在国际著名学术刊物《应用和环境微生物》上,引起国内外同行的关注。有关重组菌株在华东理工大学的协助下完成了中试,已在湖北宜都东阳光生化制药有限公司进行了放大和试生产,具备了工业化生产的价值。据厂方估计,相关生产技术若能得以推广使用,每年所产生的经济效益将达10亿元以上。这一重要成果还获得了上海市科技进步奖一等奖,并申请国家专利4项。有关专家认为,其在红霉素发酵工业方面的应用,将明显改善产品质量、简化下游纯化工艺;同时,缓解企业在环境污染方面所面临的压力。“抗生素在微生物体内的合成其本质是化学问题,化学过程和机制的解析可以使生物学技术的运用找到合适的目标并发挥更大作用。”刘文表示,“以上是我们构建的第一代红霉素生产重组菌株,主要侧重于品质(组分优化)的提升。目前我们侧重于产量提高的第二代重组菌株已完成中试,结合前两代优势、综合提高质量和产量的第三代重组菌株完成了小试,初步数据表明效果明显。”作为上海有机所开展红霉素菌种遗传改造工作的最初建议者,中国科学院院士戴立信高度关注面向国家重大需求的科学研究。“以汪猷先生为代表的有机所老一辈科学家早在上世纪50年代就开展了抗生素的研究工作,并在实际生产中得到应用,解决了当时有和无的问题。我国现在已经成为红霉素第一生产大国,对于技术创新的需求尤为迫切。”他思路非常清晰,“我听了刘文教授关于生物合成的学术报告后,又了解了一些红霉素生产企业的现状和需求,感觉在生物技术中融入化学的理念,应该有可能解决一些生产中的瓶颈问题并产生不错的效果。”“这是有机所在知识创新过程中,在面向国家需求、立足原始创新方面所做的一件有重要意义的研究工作,充分体现了学科交叉的优势。”中科院上海有机所所长丁奎岭表示,“我们以化学的思想促进生物技术的应用,以提高大宗医药抗生素产品的产量和质量为研究目标,所要解决的关键问题在抗生素生产中具有普遍意义。红霉素工业用生产菌种的遗传改造取得的系列创新技术在生产中成功实施,预示着这样的理念在其他抗生素发酵生产中将有着普遍的推广意义,有利于促进我国传统抗生素生产行业整体技术水平的提升。”

  • 【转帖】基因组所有关高原低氧适应遗传研究论文在PNAS发表

    [size=3]近日,中国科学院北京基因组研究所曾长青研究组,通过与英国、爱尔兰和美国的研究人员研究合作,发现了藏族人群能够适应高海拔地区低氧环境,并且免于罹患高原疾病的一个重要遗传机制——EPAS1基因的多态性。其相关研究成果已于6月7日在美国《国家科学院院刊》(PNAS)网络版发表。该项目的策划人之一,文章的通讯作者——中国科学院北京基因组研究所曾长青研究员(代表中国参加国际HapMap计划的主要负责人)表示,HapMap绘制的人群多态性图谱是目前研究人类遗传多态性的最主要数据,占其样品总量六分之一的汉族样品数据是研究中华民族遗传多态性的基础。此次新发现的藏族人群特有的EPAS1基因多态,不但是不同人群高原适应机制遗传研究领域的重要进展,同时也为科研人员进一步研发低海拔人群对于高原低氧敏感性的检测手段提供了基础。 [/size]

  • 【转帖】遗传学家李振声摘得2006年度国家最高科技奖

    遗传学家、小麦育种专家李振声27日被授予中国2006年度国家最高科技奖。胡锦涛向李振声颁奖。 李振声是中国科学院院士、第三世界科学院院士。1931年2月生,1951年毕业于山东农学院农学系。1951-1956年在中国科学院遗传选种实验馆任研究实习人员,1956-1965年在中国科学院西北农业生物研究所任助理研究员、研究室副主任,1965-1987年在西北植物研究所任助理研究员、研究员、研究室主任、副所长、所长,1983-1987年兼任中国科学院西安分院与陕西省科学院院长,1987-1992年任中国科学院副院长兼遗传研究所所长,1992-1997年任遗传所植物细胞与染色体工程国家重点实验室主任,现任该实验室学术委员会主任。 李振声长期从事小麦与偃麦草远缘杂交与染色体工程育种研究,育成小偃麦八倍体、异附加系、异代换系、易位系和小偃4、5、6号等系列小麦良种。利用偃麦草蓝色胚乳基因作为遗传标记性状,首次创制了蓝色单体小麦系统、自花结实缺体小麦系统,建立了选育小麦异代换系的新方法--缺体回交育种法,为小麦染色体工程育种奠定了基础。近十年开展了小麦高效利用土壤氮、磷营养元素研究,完成了种质资源筛选、生理机制、遗传规律和育种研究,开辟了作物营养遗传育种研究的新途径。在国内外学术刊物上发表论文60余篇,出版专著3本。 李振声曾获全国科学大会奖,陕西省科技成果一、二等奖,国家科技发明一等奖(1985),陈嘉庚农业科技奖(1989),何粱何利农业科技奖(1995)。

  • Cell:“人造精子”基因可加工遗传

    细胞副主编 的评论是, 什么时候能应用于实践?中国科学家在细胞杂志发表重要论文Cell:“人造精子”基因可加工遗传Generation of Genetically Modified Mice by Oocyte Injection of Androgenetic Haploid Embryonic Stem CellsHaploid cells are amenable for genetic analysis. Recent success in the derivation of mouse haploid embryonic stem cells (haESCs) via parthenogenesis has enabled genetic screening in mammalian cells. However, successful generation of live animals from these haESCs, which is needed to extend the genetic analysis to the organism level, has not been achieved. Here, we report the derivation of haESCs from androgenetic blastocysts. These cells, designated as AG-haESCs, partially maintain paternal imprints, express classical ESC pluripotency markers, and contribute to various tissues, including the germline, upon injection into diploid blastocysts. Strikingly, live mice can be obtained upon injection of AG-haESCs into MII oocytes, and these mice bear haESC-carried genetic traits and develop into fertile adults. Furthermore, gene targeting via homologous recombination is feasible in the AG-haESCs. Our results demonstrate that AG-haESCs can be used as a genetically tractable fertilization agent for the production of live animals via injection into oocytes.单倍体细胞,如酵母,是遗传学研究的重要工具。自然状态下存在的单倍体细胞只有结构和功能均已特化的配子,包括卵子和精子。然而卵子和精子不能在体外进行培养,因此也不能对其进行基因操作。如果能够在体外建立哺乳动物的单倍体细胞系,那将极大地促进哺乳动物遗传学及相关生命科学的研究。4月27日,国际著名学术期刊Cell发表了中科院上海生科院生化与细胞所李劲松研究组和徐国良研究组的一项合作研究,他们建立了来自孤雄囊胚的单倍体胚胎干细胞系,证明这些细胞保持了一定水平的雄性印记,进一步验证这些细胞能够代替精子在注入卵母细胞后产生健康的小鼠。为了获得单倍体的孤雄囊胚,研究人员采用了核移植的技术,即将卵母细胞的核通过显微操作的方法去掉,然后注入一个精子形成携带来自父本基因组的单倍体重构胚胎。这些胚胎在体外能够发育到囊胚,从这些囊胚中分离建立了单倍体胚胎干细胞系。单倍体胚胎干细胞系具有典型的小鼠胚胎干细胞特征,能够在注入两倍体囊胚中后形成嵌合体小鼠。因为精子在形成过程中会产生雄性印记状态,这种印记状态是受精后胚胎发育的重要保证,而且在整个发育过程中一直维持,因此,研究人员分析了单倍体胚胎干细胞系的雄性印记水平,发现这些细胞保持了一定的雄性印记。接下来,为了验证这些细胞是否能像精子一样具有“受精”能力,研究人员将单倍体胚胎干细胞系注入卵母细胞中,发现部分“受精”的胚胎能够发育成健康的小鼠。最后,研究人员成功地利用单倍体胚胎干细胞系进行了基因打靶的尝试。单倍体胚胎干细胞系的建立为获取遗传操作的动物模型提供了一种新的手段,也为细胞重编程研究提供了一种新的系统。杨辉、施霖宇、王邦安为本文的共同第一作者,参与该研究的合作单位和人员包括中科院上海生命科学信息中心李党生研究员、南京大学高翔教授、第四军医大学聂勇战教授,工作得到了国家科技部、国家基金委、中国科学院以及上海市科委经费的支持。(生化与细胞所)

  • 【转帖】研究发现:适当节食有助于修复遗传基因创伤

    近日,日本滨松医科大学与三菱化学生命科学研究所的研究人员利用动物试验证实,通过适当节食的方法可以增加修复体内受创遗传基因的蛋白质的数量,而遗传基因受创被认为是有可能导致衰老和癌症的重要原因。这一成果不但有助于探索防止衰老的秘密,也为减肥有利于身体健康找到了新的论据。日本《每日新闻》报道了这一消息。   在以往的动物试验中,人们已经了解到适当的控制投喂食物的量可以延长动物的寿命。此次日本研究人员从一种可以修复遗传基因创伤的蛋白质“WRN”入手,调查其与食物摄取量之间的关系。结果显示,在使用兔子作为对象的试验中,与在1个月内得到充分饵料的一组6只兔子相比,另一组6只被减去30%卡路里摄取量的兔子的WRN数量要多出3倍。   此外,节食的兔子体内一种与长寿有关的蛋白质“SIRT1”也增加了3倍。研究人员进而用人的细胞进行实验,发现当加入可以抑制SIRT1活动的药剂时,细胞中WRN的数量就会减少。这证实适当限制卡路里的摄入可以使SIRT1增加,而SIRT1可以抑制WRN的流失。研究人员认为,这次发现使人们掌握了可以很容易地修复遗传基因创伤的原理,为人类找到抵抗衰老,延年益寿之路指明了方向。

  • 用于治疗癌症的“自然杀伤”细胞的表观遗传学开关

    自然杀伤细胞是免疫系统中的即时杀手,能够即时杀灭外来侵入物和癌细胞。尽管科学家就如何利用这些细胞的潜在能力所开展研究已经有三十多年,但对这些自然杀伤细胞是如何从非免疫细胞转化而来的这个问题几乎没有取得任何进展。目前,研究者发现了一种酶,能够利用一种外遗传途径(一种能够修改细胞中DNA的读取方式,而不改变其基因蓝图)来促进自然杀伤细胞的生长及其功能的形成。自然杀伤细胞可能有助于癌症的免疫治疗。这些免疫系统卫士时刻都在履行其警戒的职责,因此,人们认为它们能够消除那些偶遇的且经常躲过化疗的肿瘤细胞。目前,正在进行的二十几项旨在提高自然杀伤细胞应对癌症的能力的临床试验正在进行中。然而,正在开发的这类药物当中,没有一种采用外遗传途径。根据今天发表在美国国家科学院院刊的一份研究报告,这种情况也许是个错误。来自洛杉矶的南加州大学-诺里斯综合癌症中心的一个由陈思毅(Si-Yi Chen)带领的团队的研究表明,酶MYSM1(代表 Myb-like, SWIRM 和 MPN 结构域蛋白 1)控制了自然杀伤细胞通过表观遗传变异达到成熟的最后步骤。他们认为,这种酶水平的提高将有助于通过增加成熟自然杀伤细胞的数量来与癌细胞作斗争。来自北得克萨斯大学健康科学中心的癌症免疫学家普鲁诺罗尔·马修(Porunelloor Mathew)说:“这对我们理解自然杀伤细胞的发育非常重要”。他本人并未参加这项研究。一种使肿瘤细胞自毁的新型癌症治疗方法一种新型化疗药物将其目标指向癌细胞的组织结构,可导致所有类型的恶性肿瘤自我毁灭。澳大利亚新南威尔士大学的研究人员开发了一种万灵抗癌新药。这种药名为TR100,该药的原理是摧毁构成癌细胞结构的蛋白质而不会对健康细胞造成任何损害。研究人员在实验室中对老鼠进行了试验,研究结果发表在本月的“癌症研究”期刊上。就像一栋建筑物,细胞要保持其形状就必须有一定的支撑结构。两种分别称为肌动蛋白和肌球蛋白的蛋白质为癌细胞提供结构支持;它们就像一些较长的结实且互锁的线缆。健康的人体肌肉细胞,包括构成心脏的细胞也利用肌动蛋白和肌球蛋白。由于这个原因,多数研究人员已经放弃了将肌动蛋白和肌球蛋白作为化疗的目标,针对这些蛋白质的药物的开发在过去的25年中几乎停滞不前。然而,国际肌球蛋白专家Dr. 彼得﹒冈宁(Peter Gunning)始终在不断推进这项研究,而目前,他的研究已取得一些成果。他和其他研究人员已经能够分离两种特定类型的肌球蛋白,称为原肌球蛋白。只有癌细胞需要利用这些蛋白,而健康的肌肉细胞并不需要它们。他与本论文的首席作者贾斯汀·史丹(Justine Stehn)共同开发了TR100这种药物。程序性细胞死亡:致使肿瘤发生内爆“我们已经对癌细胞的内部构架或结构的核心组件进行了跟踪,”一位来自新南威尔士大学医疗科学系,肿瘤学研究室的研究人员史丹(Stehn),在一次健康热线的专访中说道,“当细胞察觉到其构架出现重大错误时,它将会出现程序性细胞死亡的情况。”程序性细胞死亡是一种遗传性定时炸弹,潜伏在每个人体细胞中。如果细胞被损坏、被感染或运转失常,人体能够对它发出自毁信号。“它就像我们看到的大楼坍塌那样”,史丹(Stehn)说,“如果一个大楼的结构和支架被移除,它就会自己坍塌。”程序性死亡导致细胞自身分裂成为小块的碎片,这些碎片能够被其它细胞所吸收、回收并重新利用。

  • 后基因组时代研究热点 ——genome-wide association study在遗传病研究中的应用

    随着人类基因组图谱的完成,对基因组的分析已经成为新的研究热点。通过对人类基因组序列的分析得到人群中与有遗传倾向或受遗传与环境因素共同影响疾病的相关基因更成为了基因组分析研究中的热点。这种对genetic risk factors的分析对临床医学和流行病学都有很大启发,促进了疾病诊断、治疗和预防等各方面的改善。在基因组分析的方法中,目前最有效的是genome-wide association study,该方法与以前的linkage analysis相比有更大的power,与candidate-gene studies相比coverage更全面,不局限于已知的可能与疾病相关的染色体区域。本文对association study的思想、方法等做简单介绍。Genome-wide association study是建立在对SNP(single nucleotide polymorphism)的确定和assay的基础上的。要真正理解Genome-wide association study我们就要首先明确SNP的相关知识。任何两个人的基因组序列都是99.9%一致的,但那其余0.1%的不同却可能对个人对某些疾病的易感性有很大影响。在基因组中每一个loci都可能有不同的alleles,基因组中最常发生的polymorphism就是single nucleotide polymorphism,即SNP, 这些SNP在基因组中的密度大约是每300bp一个。研究中通常只选取minor allele frequency(MAF)在5%以上的SNP位点进行比较,以确保统计学意义。通过对遗传mechanism的研究发现,相隔在50kb以内的SNP在由亲代传给子代的过程中更容易发生linkage disequilibrium(LD),即有physical proximity的SNPs更倾向于以block的形式遗传,所以在实际应用中每一个block中只要选择一个与其它SNPs关联度最大的SNP位点作为tag SNP,就可以通过比较和assay各tag SNP的异同,确定一个基因组的haplotype类型。在基因组研究中将个体样本的SNP按在染色体上的排列顺序单独列出,得到的序列就称为是该样本genotype的haplotype组成。国际上的HapMap Project通过选取各代表性人种的大量个体,已经得到了由多于3.1 million SNPs标记的annotated,high-resolution map。此后的具体实验中只要将case组的haplotype与已得到的map进行matching,就可以知道可能与疾病易感性相关的SNP位点,进而得到相关的染色体区域。有了关于SNP的知识,我们就可以理解,Genome-wide association study是一种通过high-density array 进行genotyping从而确定polymorphism,并和统计学方法相结合,进而得出与疾病相关可能性很大的genetic risk factors的方法。Genome-wide association study 所确定的可能与遗传易感性相关的SNPs通过进一步的与control group中相对应的SNPs的比较而得到确认。(有时还要进行在第二个cohort中的fast-trackassay。)Genetic risk factors主要分两种类型,一是DNA序列的碱基改变,另一个是DNA序列的copy number改变。通常的association study只能确定那些和moderate risk有关的DNA序列(流行病学上对环境影响因素也只能确定那些与moderate risk有关的序列)。对碱基改变的测定在Robert Sladek 等人确定II型糖尿病(T2DM)相关loci的研究中有很充分的说明。这项研究是该种方法的标准研究,它以article的形式刊登在Nature上。它分为两个阶段,第一阶段是对有1,363个个体的法国case-control cohort的392,935个作为marker的SNPs进行genotpyping检验,第二阶段是针对第一阶段结果中与T2DM相关最显著的59个SNPs的rapid conformation。在genome-wide association study中样本的选取是很重要的,比如Sladek的这项研究中在第一阶段的样本中考虑到了要增加样本中risk alleles的含量,要尽量保证提供样本个体的表型一致,同时还要尽量排除其它系统误差对统计结果的影响。在研究中Sladek等人应用了在SNP assay中广泛使用的两个平台:Illumina Infinium Human 1 BeadArrays和Human Hap300 BeadArrays来筛查从Phase I HapMap得到的tag SNPs。该研究确定了四个有导致患common diabetes mellitus风险的variants的loci,其中一个恰好是已知与diabetes mellitus相关的TCF7L2基因,这也证明了该实验的准确度,从而也证明了genome-wide association study在elucidation of genetic traits中的可行性。DNA序列copy number的改变的检测在Lupski的feature文章中做了介绍。传统上的分子医学模型是以sickle cell disease为模型的单基因改变从而使合成的蛋白发生变异所导致的遗传疾病。但是随着人类基因组reference sequence的完成和能测定基因组改变的技术的发展,人们发现事实上基因组中由于deletion和duplication所造成的碱基对的改变是SNP所致碱基对改变的两到三倍,而且即便是在亲缘关系很近的个人之间也有很多这种由deletion和duplication所造成的基因组结构的不同。Lupski认为,这种genomic segments的deletion和duplication与sporadic disease的发生是有关的(可能是单一亲代的基因组发生rearrangement就导致疾病发生,也可能是父母双方的变异都不足以起到影响自身功能的程度,单两者在子代中的结合导致了疾病的发生)。Redon等人的研究确认了1,400个发生copy-number variation的区域,这些区域涵盖了14.5%被认为与遗传疾病相关联的基因,相关数据可以在OMIM(http://www.ncbi.nlm.nih.gov/omim)的数据库中找到。可能导致很多复杂的mental-retardation疾病的Submicroscopical genomic deletions and duplications在临床上需要用genomic array的DNA chips确定。一旦确定某疾病是与gene dosage的异常有关,那么临床治疗和药物研发的中心都要从修正不正常蛋白的功能转向修正它们的不正常含量。鉴于variation in genomic rearrangement的普遍性,今后的association study和linkage analysis都应考虑copy number对疾病易感性的影响。最后,也许一些常见的行为表型(phenotype in behaviors)也可能是受这种个体间DNA序列copy number的不同影响的,这需要进一步的研究。在genome-wide association analysis应用中的关键知识是DNA chips的原理和应用以及统计分析。用DNA chips做SNP assay,简单说来是首先在chip上做好可能的SNPs的各种探针,然后取样本做PCR,得到的扩增样本与chip上的探针杂交,最后根据得到的荧光的位置判定样本的基因组成。随着相关技术的发展,现在的SNP chips已经可以在一个样本上检查超过500,000个SNPs。正是通过这样的方法,常见病的inherited genetic underpinnings正被一点点发现。今年的NEJM上有多篇相关报道,包括了前列腺癌、乳腺癌、糖尿病以及冠状动脉疾病。但是伴随着数据量变得前所未有的大,随之而来的从海量数据中得出统计学上有意义的关系的难度也迅速增大,因为随着数据量的扩大,在每一次assay中得到的假阳性结果数量也变大很多。面对这种情况,传统的统计方法是采用Bonferroni approach。(比如对于500,000个样本,将一般的p值0.05除以500,000,得到我们采用的cutoff p值0.0000001,这个值也被称为是genome-wide significance。)但实际中由于SNP chips的价格昂贵,所以大部分的实验检测得到的样本是很有限的;或者由于虽然基因型确实与疾病易感性相关,但是这种关联程度很低;或者由于实验中会采取分步进行assay的方法,这时即便是有很强关联程度的基因型在第一阶段都很难达到0.0000001这以标准,这些情况都会导致Bonfirroni approach的不合适。鉴于以上原因,在genome-wide association study中更让人信服的不是p值的stringency有多高,而是由一组样本得到的association在多大程度上可以在其它同样大规模的重复实验中得到证实。针对同一疾病进行的a

  • 遗传学与神经生理学的完美结合开创全新领域

    Stefan Pulver博士在神经生理学和神经遗传学方面有多年的教学和研究经验。在美国Brandeis University获得博士学位后,他前往英国剑桥大学(Cambridge University)工作,并作为客座教师在美国康奈尔大学(Cornell University)任教。Stefan Pulver博士在各种科学杂志上发表了许多杰出的期刊论文。起初,Stefan并不喜欢遗传学,但是现在,他全身心地投入研究生教学,这是为什么呢?他说:"I was really a pretty terrible undergrad student. In particular, I deeply disliked genetics and didn't pay attention in genetics classes - something I regret now. I think a lot of students have a similar experience; something about the way we teach genetics just doesn’t resonate with a lot of young biologists.Part of the reason why I'm doing what I’m doing now is to reach out to people who were like me. I want to try and get young people - who would normally hate genetics - interested in the subject."生理学教学实验室的亮点Stefan Pulver博士和他的同事Nick Hornstein (Brandeis University), Bruce Land和Bruce Johnson (Cornell University)最近建立了一系列实验教学模块,向研究生介绍遗传学,同时教授细胞生理学和动物行为学。他们的工作已经发表在《Advances in Physiology Education》杂志:Optogenetics in the teaching laboratory: using channelrhodopsin-2 to study the neural basis of behavior and synaptic physiology in Drosophila。文中详细介绍了一种名为“光遗传学”的新技术:在果蝇大脑的特定神经元表现Channelrhodopsin-2 (ChR2) (蓝光敏感离子通道)的性状。在自由活动的ChR2表达果蝇体内,特定神经元和突触能通过蓝光照射被激活,这个技术已被广泛应用于遗传学生物载体(如果蝇、线虫、斑马鱼和小鼠等)。但是由于这个技术成本较高,因此尚未在研究生教学领域广泛应用。在文中,Stefan Pulver博士和他的合作者展示了一种廉价的方法将这种新技术引入教学实验室,从而鼓励研究生们将它运用到各自的生物学研究中去。Stefan Pulver博士说:“People have this idea that optogenetics is this high tech thing that requires fancy lasers, expensive equipment, and bunch of people with PhDs, but it’s really not that complicated, at least with fruit flies. All you need are the right flies, LEDs, some basic electronics, and a class of curious undergrads.”Screen captures taken from JoVE's video publication of Hornstein, Pulver and Griffith (2009)Images reproduced with express permission from JoVE他们的工作是过去几年研究生教学的巅峰。在过去三年中,Stefan Pulver博士和他的合作者在康奈尔大学神经生理学基础课(BioNB491,由Bruce Johnson教授)中进行相关实验,学生们采用蓝光激活果蝇幼虫的神经系统的不同部分,然后检测行为学的变化,并记录光诱发突触电位。全新的教学模块使教师能够采用可观测的互动方式深入介绍遗传学、细胞生理学和动物行为学之间的关系,突破了显微分子方法的局限。 同时,学生们也通过实验在ChR2研究中开辟了之前的研究者未能达到的全新领域。学生们在参与实践之后几乎全部给出了良好的反馈:· 100%的学生对神经生理学和行为学产生浓厚兴趣· 94%的学生希望进行神经科学的前沿研究· 超过75%的学生对遗传学的兴趣增强Bruce Johnson, Senior Teaching AssociateCornell University“Seeing students get excited in the lab was awesome, but I have to admit, seeing quantitated student response data that clearly showed how well the exercises worked was equally rewarding.”Stefan博士的灵感来源于 Hoy, Robert Wyttenbach和 Bruce Johnson ,他们在上世纪80-90年代改良了小龙虾神经肌肉接头实验,使之成为神经生理学教学的重要工具(The Crawdad Project)。Stefan博士和许多年轻科学家一样,通过小龙虾神经肌肉接头实验首次记录突触电位,进而对动物行为的神经基础研究(神经行为学)产生了浓厚兴趣,最终成为了他的职业。他希望他的论文能够像他的前辈们那样使基层学生对神经行为学产生浓厚的兴趣。Nick Hornstein, graduate studentMD/PhD Program - Columbia University指引研究生取得成功Stefan博士还通过各种方式为研究生们提供帮助。在发展“光遗传学”技术的项目中,他吸纳研究生Nick Hornstein成为成员之一。Nick在Journal of Visualized Experiments (JoVE)杂志上发表的论文为教学实验室的下一步发展提供了坚实的基础。Nick在其研究生第二年作为第一作者在JoVE杂志发表了相关论文,相关研究同时投稿《Neurophysiology》,他因此获得了2009年度的Barry M. Goldwater奖学金。Nick在Brandeis University获得硕士学位后,于2011年9月前往哥伦比亚大学(Columbia University)继续攻读神经生理学博士学位。Stefan Pulver博士将在2011年美国神经学年会(Washington, DC)上展示他的工作,如果您对他的工作感兴趣,可以与他当面交流。您也可以前往1316号展位参观ADInstruments的最新神经生理学相关产品。Publications:· 2011: Stefan R Pulver; Nicholas J Hornstein; Bruce L Land; Bruce R JohnsonOptogenetics in the teaching laboratory: using channelrhodopsin-2 to study the neural basis of behavior and synaptic physiology in Drosophila. Advances in physiology education 2011;35(1):82-91.· 2010: Nair A, Bate M, Pulver SRCharacterization of voltage-gated ionic currents in a peripheral sensory neuron in larval Drosophila. BMC Res Notes. 2010 Jun 2;3:154.· 2010: Berni, J., Muldal, A.M., Pulver, S.R.Using Neurogenetics and the Warmth-Gated Ion Channel TRPA1 to Study. The Neural Basis of Behavior in Drosophila J Undergrad Neuro Ed 2010. 9(1):A5-A14· 2010: Jean-Marc Goaillard; Adam L Taylor; Stefan R Pulver; Eve MarderSlow and p

  • 【第二届网络原创参赛】遗传小作坊里的大科学

    【第二届网络原创参赛】遗传小作坊里的大科学

    [color=#DC143C]我们的实验室隶属于遗传学科,在2001年被批准成立“分子细胞遗传与作物育种”校重点实验室。主要的研究内容是:1. 着丝粒蛋白与细胞增殖调控的研究:应用模式生物线虫,Hella细胞和其他细胞系,通过基因克隆、基因表达及其定位,着丝粒蛋白表达的调控及其与其他已知着丝粒蛋白的相互作用的研究,阐述新着丝粒蛋白在细胞中的定位,及其与细胞增殖状态和细胞分化的调控的作用。2. 植物特殊基因资源及抗逆分子遗传机理的研究:应用特殊基因资源植物好好芭、盐芥等,通过基因组学、蛋白质组学、比较转录组学等方法克隆植物抗逆基因新资源,进行功能鉴定。并通过抗逆资源基因与植物激素、信号转导途径的代谢组学的分子生物学研究,揭示抗逆响应的分子遗传机理。从而发掘新的资源基因,认识抗逆新途径,为作物抗逆遗传育种作出新贡献。[/color][B]带大家参观一下我们的实验室吧![/B]楼道里,还有放衣服及书包的柜子![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101508_175134_1856701_3.jpg[/img]平常做实验的屋子,呵呵,东西有些多啊![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101508_175135_1856701_3.jpg[/img]实验室的冰箱和摇床[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101508_175136_1856701_3.jpg[/img]细胞间外面[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101509_175137_1856701_3.jpg[/img]细胞培养箱[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101510_175138_1856701_3.jpg[/img]超净台,有人要做实验了[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101510_175139_1856701_3.jpg[/img]显微镜,包括倒置显微镜和荧光显微镜,这可是我们的宝贝啊![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101510_175140_1856701_3.jpg[/img]-80℃冰箱,实验室不可或缺的设备啊![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101511_175141_1856701_3.jpg[/img]烘箱,同样举足轻重![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101511_175142_1856701_3.jpg[/img]灭菌锅,别看是老式的,但是很好用的![img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101512_175143_1856701_3.jpg[/img]组培室1—主要是组培苗[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101512_175144_1856701_3.jpg[/img]组培室2 ---这是大家种的苗苗[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101512_175145_1856701_3.jpg[/img]这是做分子实验的超净台哦[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101513_175146_1856701_3.jpg[/img]做核酸电泳的台子[img]http://ng1.17img.cn/bbsfiles/images/2009/10/200910101513_175148_1856701_3.jpg[/img][color=#DC143C]说实话啊,我们的实验室不算很好,甚至可以说有些落后,但就是这个小的实验室也做出了不小的成就啊,近年来发表了不少SCI的核心期刊,其中细胞方向的两篇论文影响因子达到了5,而植物方向发表的论文也在3左右;另外,我们实验室近两年来均有国家和北京的自然基金支持,相信未来的发展会更好的。PS:呵呵,我们不贪心,只要做好分内的工作,完成基金任务就行了![/color]

  • 【转帖】中奥签署奥地利牛遗传物质输华合作协议

    中奥签署奥地利牛遗传物质输华合作协议 王勇施托格尔代表双方签字 1月20日下午6时,国家质检总局局长王勇和奥地利卫生部部长施托格尔在京共同签署了《中华人民共和国国家质量监督检验检疫总局与奥地利共和国联邦卫生部关于中国从奥地利输入牛遗传物质的检疫和卫生条件议定书》。 此次议定书的签署,进一步深化了双方在检验检疫领域的友好合作,将进一步推动中奥两国农产品贸易健康发展。

  • 中科院遗传与发育生物学研究所王国栋课题组招聘启事

    因工作需要,中国科学院遗传与发育生物学研究所基因组生物学中心王国栋研究员课题组现向海内外公开招聘研究人员1名(助研)。王国栋课题组的主要研究方向是综合基因组学,代谢组学(Mass-based)和传统的分子和生化技术去探索植物中未知代谢途径,克隆,功能鉴定重要代谢途径中的酶和酶学及调控机理,并应用于实际生产。课题组具体信息参见http://www.genetics.ac.cn/wangguodong。一、基本招聘条件  1. 具有高度的责任心和上进心,性格乐观开朗,有良好的人际沟通能力,富有团队协作精神;  2. 对本研究组工作感兴趣,可追踪本研究领域的发展前沿;  3. 非应届毕业生需要有北京市户口(博士后不受此限制)。   对于应聘者具体要求如下:  1. 具有分析化学及相关专业或生物学硕士研究生以上学历、学位,较强的英文阅读能力和中英文写作能力,在SCI杂志发表第一作者研究论文至少1篇;  2. 同时具有色谱——质谱联用等大型分析仪器操作经验和熟悉相关数据处理流程经历的申请者优先。二、岗位职责  1.独立完成研究组长交给的科研任务或承担相关课题;  2.培训研究生相关知识、技能,协助课题组长在相关课题中指导研究生及实验室管理;三、申请材料的投递  应聘者请将《科研岗位工作申请表》及本人简历、包括研究经历简介、未来事业规划,代表性论文及两位推荐人的姓名及电话等相关资料发至:gdwang@genetics.ac.cn(邮件主题请注明:工作岗位申请),本招聘长期有效,招到合适人选为止。四、审查  研究所对申请者进行资格审查,并在收到材料的一个月内通知初审合格者前来面试,资格审查未通过者,不再另行告知。五、待遇  试用期考察合格后根据其学历和专业经历拟聘为中国科学院遗传发育所固定工作人员,享有相关待遇,特别优秀者具体职称、待遇可协议。六、政策咨询:人力资源处 崔老师 64806520

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制