当前位置: 仪器信息网 > 行业主题 > >

遗传耳聋

仪器信息网遗传耳聋专题为您整合遗传耳聋相关的最新文章,在遗传耳聋专题,您不仅可以免费浏览遗传耳聋的资讯, 同时您还可以浏览遗传耳聋的相关资料、解决方案,参与社区遗传耳聋话题讨论。

遗传耳聋相关的资讯

  • 十五项遗传性耳聋相关基因检测试剂盒获得医疗器械注册证
    日前,博奥生物集团有限公司研制的十五项遗传性耳聋相关基因检测试剂盒(微阵列芯片法)通过国家食品药品监督管理总局的审核,获得医疗器械注册证。   图为十五项遗传性耳聋相关基因检测试剂盒(微阵列芯片法)注册证。   该产品是博奥生物集团有限公司继九项遗传性耳聋基因检测试剂盒(微阵列芯片法)获批之后推出的又一重磅产品,标志着博奥生物在耳聋基因检测领域取得了又一个里程碑。该试剂盒采用博奥生物自主开发的新一代技术平台,借助磁珠将多重等位基因特异性PCR与通用芯片技术相结合,检测从血液或血斑样品中提取的人基因组DNA中与遗传性耳聋相关的15个突变位点。与九项遗传性耳聋基因检测试剂盒(微阵列芯片法)相比,十五项遗传性耳聋相关基因检测试剂盒(微阵列芯片法)的检测位点在SLC26A4基因上新增了6个常见致病位点,可更加有效地满足大前庭水管综合征临床辅助诊断及筛查需求 该试剂盒具有更高的检测灵敏度,达到3ng/uL,具有更大的临床应用范围,可更加广泛地应用于分子流行病学调查、新生儿筛查等领域。
  • 全国首个核酸质谱耳聋基因检测试剂盒获批!
    2023年1月5日,广州市达瑞生物技术股份有限公司“二十项遗传性耳聋基因突变检测试剂盒(飞行时间质谱法)”正式获批国家药品监督管理局(NMPA)第三类医疗器械认证,是国内首个基于飞行时间质谱技术进行耳聋基因检测的获证试剂盒。临床意义在我国,耳聋在新生儿中的发病率为1‰~3.47‰,遗传因素致聋比例达50%~60%,虽然耳聋相关基因众多,但是中国人群中有明确的常见耳聋基因及其热点致病变异,在中国人群中,耳聋基因致病变异携带率至少达15%[1],其中携带的耳聋基因变异中约70%来自于GJB2、SLC26A4、线粒体DNA 12SrRNA及GJB3这4个热点基因[2]。进行遗传性耳聋基因检测的目的:(1)确诊先天性遗传性耳聋患者,结合听力检测结果,实现早期干预;(2)早期发现迟发性遗传性耳聋的患者,给予有效防治措施,可以延缓听力下降;(3)明确药物性聋易感基因变异携带者,通过指导用药,避免耳聋的发生;(4)早期发现听力正常的耳聋基因变异携带者,为其本人及家庭成员的婚育提供准确的遗传咨询;(5)通过早期预防和干预,减少社会和家庭经济投入[1]。产品优势覆盖全面单个反应孔检测4个基因20个位点,覆盖中国人群的大部分热点位点。操作简单成套检测试剂盒搭配DR MassARRAY自动化的操作系统和强大的数据分析软件,极大缩短了手动操作时间。准确率高DR MassARRAY平台分型结果与金标准sanger测序法结果一致率达99.99%。通量灵活DR MassARRAY系统配备的96孔芯片可以分批使用,单次可以上机检测1或2张芯片,检测样本通量灵活。性价比高使用常规PCR试剂,无需荧光探针,将多重靶标检测集中到尽可能少的反应中,高效节约了时间、试剂、人工成本。DR MassARRAY 飞行时间质谱检测系统DR MassARRAY是国内研发、生产,专为医院和临床检测中心设计的一款中等通量的基因测序系统,完美地整合了PCR技术的高灵敏度、芯片技术的高通量、质谱技术的高精确度和智能分析的强大功能,是全国首家获批的可直接用于核酸检测的质谱检测系统。参考文献1. 遗传性耳聋基因筛查规范[J].中华医学杂志,2021.2. 遗传性耳聋基因变异筛查技术专家共识[J].中华医学遗传学杂志,2019.广州市达瑞生物技术股份有限公司广州市达瑞生物技术股份有限公司(股票代码:832705)是集体外诊断产品、医学检测、创新孵化为一体的生物医药高新技术企业。公司始终专注于优生优育和精准医学产品的研发及应用,坚持引进吸收与自主创新相结合,打造世界一流的诊断技术平台,为人类健康服务。
  • 先天性耳聋筛查提至出生前 沪成立聋病分子实验室
    上海医生正在推动先天性耳聋筛查从出生后走向出生前,甚至是孕前。上海交大耳科学研究所聋病分子生物学实验室目前主要筛查的基因为“非综合征性常染色体隐性耳聋类型1”(简称DFNB1耳聋)和“大前庭水管综合征耳聋”(简称EVA耳聋)。目前,单例基因筛查的费用超过1000元,研究人员期望通过优化筛查诊断的方法,最终实现更为廉价、更为便捷。   上海医生正在推动先天性耳聋筛查从出生后走向出生前,甚至是孕前。在昨天成立的新华医院、上海交大耳科学研究所聋病分子生物学实验室里,临床医生和研究人员已启动针对高危人群的先天性耳聋筛查项目。   33岁的晓萍(化名)在1年半之前生育了一个宝宝,不幸的是,宝宝患有先天性耳聋。在经历了痛苦的煎熬后,晓萍和丈夫希望能再生一个完全健康的孩子,但他们却没有把握。   再次怀孕后,晓萍找到了新华医院耳鼻喉―头颈外科主任吴皓教授,吴皓向她介绍了刚刚启动的高危人群筛查诊断项目。通过羊膜穿刺,科研人员取到了胎儿的基因样本,在一系列实验室检测后发现,晓萍腹中的宝宝患有先天性耳聋的概率非常高。尽管非常失望,但晓萍和丈夫仍然选择中止妊娠。   先天性耳聋在我国众多先天性残疾中所占比例最高,据2006年12月公布的第二次全国残疾人抽样调查结果,我国现有单纯聋病患者2004万,每1000个新生儿中就有1―3名先天性耳聋患儿,每年约有2-6万新生儿出生时患不同程度耳聋。   随着近十几年来聋病分子生物学的迅猛发展,目前人们对先天性聋病的遗传致病基因和分子发病机制已有了比较详细的认识,有50多个耳聋基因已经被发现出来,另有50多个耳聋基因的基因组位点已经找到。从这些已知耳聋基因的功能研究成果中,相当一部分先天性耳聋的致病机理已经脉络初现,使人们看到了从基因这一根本层面上对这些先天性聋病进行诊断、预防和治疗的希望。   令研究人员庆幸的是,先天性耳聋人群中发生突变的基因尚属比较集中,70―80%的比例集中在3个基因上。如果能够及早诊断出这些基因突变,将有望提前筛查出先天性耳聋的患儿,实现了从根本上减少先天性聋儿的出生、提高人口素质的目标。   上海交大耳科学研究所聋病分子生物学实验室目前主要筛查的基因为“非综合征性常染色体隐性耳聋类型1”(简称DFNB1耳聋)和“大前庭水管综合征耳聋”(简称EVA耳聋)。研究员杨涛表示,这两类基因诊断技术在国际上的运用已经有5―6年,相对比较成熟。   吴皓说,由于这一筛查项目尚处于初期启动阶段,目前的范围主要集中在高危人群。高危人群指的是,此前已经育有一名先天性耳聋患儿的家庭,以及夫妻双方均是聋哑人或者家族有耳聋史的人群。“根据遗传学的概率,夫妻双方如果在同一基因位点出现突变,子代患有先天性耳聋的风险最高。”   据了解,目前先天性耳聋的人群发病率为1―3‰,上海每年有300―400例先天性耳聋患儿出生。每一个患儿仅治疗康复直接费用就高达50万元。“上海实施的新生儿筛查项目只能做到早发现、早治疗,提高康复效果,但却无法更早地发现端倪。”晓萍尽管非常疼爱自己的宝宝,但她仍然充满着遗憾。   不过,这一项目仍属于初期阶段,研究人员表示,每一例筛查诊断必须经过严格的伦理学筛查,在保证夫妇充分的知情权后,在自愿的原则下开展。“无论是婚前的筛查,还是产前的诊断,都存在一定的假阳性率和假阴性率,基因筛查的开展必须格外谨慎。”吴皓表示。   此外,研究人员同时还在进行基因筛查方法的优化研究,以期在更广泛的人群里推广。目前,单例基因筛查的费用超过1000元,研究人员期望通过优化筛查诊断的方法,最终实现更为廉价、更为便捷。
  • 威海市开展遗传性致聋基因免费检测
    p   为预防和减少遗传性耳聋的发生,威海市开展遗传性致聋基因检测项目,对符合条件者进行遗传性致聋基因免费检测。检测对象于每年1-10月份的每月第一周前往指定 span style=" color: rgb(255, 0, 0) " span id=" _baidu_bookmark_start_4" style=" line-height: 0px display: none " ? /span span id=" _baidu_bookmark_start_6" style=" line-height: 0px display: none " ? /span span id=" _baidu_bookmark_start_6" style=" line-height: 0px display: none " /span /span a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 医院 /span /a span id=" _baidu_bookmark_end_7" style=" line-height: 0px display: none " ? /span span id=" _baidu_bookmark_end_5" style=" line-height: 0px display: none " ? /span 进行集中检测。 /p p   据了解,具有威海市户口,且符合以下任意一项条件者均可享受一次免费检测:持有《中华人民共和国残疾人证》(第二代),法定结婚年龄至50周岁以下有生育愿望的听障患者及其合法配偶;听力正常,已生育听障子女,准备再次生育者;父母任一方具有威海市户籍,且在威海市助产机构内分娩,听力筛查未通过,生后3个月经威海市听力诊断中心检查仍未通过的。 /p p   对符合条件的检测对象,每人可享受一次遗传性致聋基因免费检测,并提供分析报告、遗传咨询和婚育指导等服务。检测项目所需经费由市财政局根据当年实际检测人数进行拨付。检测机构将对当年的检测对象生育情况、后代听力情况进行跟踪随访,对有进一步咨询、诊断等需求的受检者,可持检测报告单,免费提供就诊、咨询。 /p p   市残联工作人员介绍,目前,威海市持证听障患者共5119人,全市每年新增听障患者近百名,严重影响其家庭生活质量。开展遗传性致聋基因检测项目,能及早明确耳聋病因,指导病人采取 a title=" " style=" color: rgb(255, 0, 0) text-decoration: underline " href=" http://www.instrument.com.cn/application/SampleFilter-S01-T000-1-1-1.html" target=" _self" span style=" color: rgb(255, 0, 0) " 治疗 /span /a 或干预措施,有效降低或避免迟发性耳聋的发生;及早发现药物性耳聋的高危人群,进行有针对性用药指导,以避免药物性耳聋的发生;对听障患者或有听障患者亲属的家庭,以及已生育听障患儿的听力正常夫妇进行生育或再生育指导,降低聋儿出生几率。 /p
  • 青岛基因检测平台将建成 能揪出30多种遗传病
    人体基因被称为世上最神秘的东西,在众多疾病背后很多都是基因在“捣乱”。12月13日 ,记者探访岛城基因神秘基地——市妇儿中心遗传科,了解了一些基因背后的故事:每个人体内都有隐藏的致病基因,有的基因传男不传女 、有的基因让人“防不胜防”,明明父母都很正常 ,到了孩子身上却发生了突变等 。作为山东半岛唯一一家基因检测中心,市妇儿中心从今年2月份率先开设耳聋患者检测点,今年年底将建成全市基因检测平台,可以揪出30多种先天性遗传病基因,提前预防或提供治疗方案。   有的基因在“潜伏”   病例:新生宝宝13天离世只因父母体内藏有“隐性致病基因”   记者从市妇儿中心了解了几个有关基因背后的故事。新新(化名)出生那天,全家人都守在病房外焦急而充满期望地等待,终于盼到孩子抱出来了 ,大家却越看越觉得奇怪:孩子反应有点慢,四肢张力也不够,而且医生检查发现,新新的肌张力竟然不断在下降。   全家人慌了 ,孩子的这些异常表现也引起了新生儿科冯主任的注意,经验丰富的他看完后脑子里瞬间出现了一个病症:“难道是脊肌萎缩症?”   脊肌萎缩症,起病于婴儿期,儿童期或青少年期,其特征是由脊髓前角细胞与脑干内运动核进行性变性引起的骨骼肌萎缩。新新的血液样本被紧急送入医院遗传科主任俞冬熠手中,通过基因检测结果确认就是这种遗传病。   父母都很正常,好好的孩子怎么会得这种基因遗传病呢?之后孩子的父母也接受检测发现,原来他们体内同时带着这种“隐性致病基因”,两个隐性致病基因结合在一起,成为造成孩子疾病的有害基因。   脊肌萎缩症最恐怖的地方在于,它会让全身越来越软,器官越来越衰竭,只能眼睁睁地看着体内突变基因将身体一点点侵蚀。从出生到去世,新新只坚持了 13天。   俞主任说,这个孩子的父母如果再想生宝宝的话,还有1/4的几率会遗传到这种基因,所以下一个孩子还得提前做好检查。   有的基因“重男轻女”   病例:从脚软到头,他只能慢慢等待死亡   人体体内有3万多个基因,这些基因们各有各的性格,比如有的基因“重男轻女”思想很严重,喜欢传男不传女,不过,这个基因可不是什么好基因。   前段时间,俞主任见到了患者小兵(化名),虽然已经6岁,但小兵还是不会走路,只能由爸爸背着来到医院。不是小兵不努力,只因为他得了一种“怪病”。小兵的父亲向医生描述:小时候孩子好好的,学走路学得也快,去年的一天,自己爬楼梯,走着走着忽然摔倒了,扶起来再走又摔倒了,孩子当时说脚没劲。小兵父亲当时也没多想,以为休息一下就好了,没想到孩子这病却越来越厉害了 。“刚开始是脚没劲,后来到了小腿 、后来又到大腿,到现在几乎已经走不了了,说实在用不上劲。”   “进行性肌营养不良的特点就是这样,先从下肢开始无力,再慢慢上移,最终整个人只能坐在轮椅上了。”俞主任解释,进行性肌营养不良也是一种基因遗传病,主要是由于 X染色体基因突变所致,也就是说,小兵的妈妈肯定是这种基因的携带者,她将基因传到了儿子身上 。   “这种基因有个特点是传男不传女,男孩患病几率为50% ,女孩染色体有病变但大多不患病。但这种基因也让人很无奈,没有好的治疗手段,一般患者在20岁左右就会因呼吸衰竭死亡。”俞主任解释。   有的基因很“脆弱”   病例:喜欢被爸爸高高抛起,听力却越来越差   孩子们都爱被爸爸高高地抛起,再被有力地接住,因为爸爸的力量大,被他用手高高抛起后感觉特别开心。但3岁的西西(化名)命运却跟别的孩子不一样,他也喜欢被爸爸高高抛起,但自己的听力却越来越差。父母跟他说什么,他得反应好半天,因为他实在听不清,到医院检查才知道,孩子这是聋了 。俞主任从孩子体内查出有“一巴掌致聋”基因。   “这种基因的特点是很脆弱,说话声音太大或者受到什么撞击,都有可能让它出现,造成耳聋。”俞主任详细介绍说:“‘一巴掌致聋基因’临床表现为大前庭水管综合征,一旦患者头部受到撞击,或感冒、发烧,都将诱发耳聋,具体地说,在幼儿时期被大人高高抛起或被打一巴掌、受到大分贝声音刺激,这类人都可能耳聋。”   有的基因让人“防不胜防”   病例:父母基因都正常,到了孩子身上却突变了   基因,可不是你想掌控就能掌控的,有时候它也会发发脾气,明明很正常却非要变得不正常,这种“变态”基因出现在了 12岁的男孩小海(化名)身上 。   小海今年12岁,非常聪明、学习也很好,但他却是个侏儒症孩子,四肢就是不发育,和几岁的小朋友一样。小海的妈妈想再生一个孩子,去医院做基因检测,结果显示一切正常。   “当时查出父母完全正常,只是因为在精子、卵子结合或者受精卵形成过程中,位点上发生了突变,小海就变成这样了 。”俞主任说,但若小海将来要生宝宝,他身上的显性致病基因就会有1/2的几率传给下一代,所以到时小海一定得做好筛查才行。   数字   体内基因你了解多少   基因:基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,是具有遗传效应的DNA分子片段。基因通过复制把遗传信息传递给下一代,使后代出现与前一代相似的性状。可能很多人觉得一出生就患有的病才是遗传病,其实不然。有些基因造成的遗传病会随着人体增长 、年龄增大慢慢呈现出来。   3万:人体内共有3万个基因,通过复制 、表达、修复,完成生命繁衍、细胞分裂和蛋白质合成等重要生理过程,基因是生命的密码,记录和传递着遗传信息。   8个:目前,人类已经发现的单基因遗传病有3000多种,每个正常人身上都隐藏着八九个有害基因,如果在特定情况下,这种有害基因会出现给人体带来疾病,所以说“人无完人”这个词是有道理的。   1/50:脊肌萎缩症(也称软瘫),因染色体基因发生突变而导致。其实它的人体携带率很高,达到了1/50。   7%:为什么现在先天性耳聋发病率这么高,其实最重要的是先天性耳聋的基因携带率太高了,达到7%,也就是说100个人中就有7个人身上携带着这种基因。如果带有这种隐性致病基因的两个人结合在一起,就给了致病基因结合的机会,就有可能生出耳聋宝宝。   调查 现能诊断6种遗传病但检查的人不多   市妇儿中心遗传科从2007年开展基因检测项目,目前能诊断出6种基因遗传病。但采访中记者了解到,大家对基因检测的意识依然不够强,专门开展的耳聋基因检测去的人也不是很多。   被检测聋儿中6成有致病基因   耳聋是残疾病种中发病率最高的一种,岛城的耳聋宝宝人数居高不下,但现在通过专门的耳聋基因检测芯片,既能确诊患者又能筛查出携带者,确实能有效阻止更多耳聋宝宝的出生。为此从今年2月份开始,市妇儿中心遗传科专门开设了耳聋患者检测点,开展耳聋患者基因检测项目。既可以对聋人进行基因检测,确诊是属于哪种致病基因,并提出治疗指导意见,也可以在耳聋父母怀孕前对他们体内基因进行筛查,通过筛查从而避免很多耳聋宝宝的出生。   记者从市妇儿中心了解到,目前来做耳聋基因检测的不多,到目前为止仅有100多例,其中一半是10岁以下的耳聋患儿。不过即便在这50名耳聋患儿中,也有六成患儿被查出体内带有耳聋致病基因。“虽然做检测的人数不多,但这个比例已经让人非常吃惊了。如果更多人能来做检测,这个数据还会更多。”俞主任介绍。   据了解,目前发现导致耳聋的基因有三种:先天性耳聋基因、“一针致聋”基因和“一巴掌致聋”基因,只要能提前筛查或者及时检测就能避免耳聋宝宝的出生或者避免疾病出现。   今年,北京市曾对当地20839名听力残疾人做基因筛查,结果显示,近15%聋人因先天基因致聋,其中60%的耳聋由父母遗传导致,70%至80%可通过检测发现致聋基因突变。针对这种情况,目前北京、江苏省将于明年正式开展新生儿耳聋基因筛查,这项筛查将更大力度对所掌握监控地区耳聋发病情况,提前发现、提前预防,降低耳聋发病率。提到青岛市目前的耳聋情况,专家也都期盼着,什么时候也能开展这样的大型筛查,从源头切断基因遗传。   大多数人没有基因检测意识   除了耳聋基因外,脊肌萎缩症、智力低下、软骨发育不全、男子少精弱精还有进行性肌营养不良,这是目前市妇儿中心遗传科能诊断的6种遗传疾病。但从2007年正式开展基因检测项目到现在,真正来做诊断的人却不多。   “多数情况是,前一个出生的孩子查出有遗传疾病,为了放心,再要二胎时他们就会来做筛查、检测。这时候的基因检测相当于一个‘保卫者’,为生一个健康宝宝保驾护航。”俞主任说,有的人在检测中发现孩子没有再出现这样的基因问题就彻底放心了,有的确实提前发现后采取了果断措施,避免了先天性遗传病宝宝的出生。   但仍有很多人对基因检测的意识还是不到位。俞主任无奈地告诉记者:“做基因检测的人少,一来是因为大家的基因检测意识还不够,只做症状诊断,而没有采取基因诊断。另外有些医护人员也不知道青岛也能做基因诊断,有的患者专门跑到北京、上海等别的地方做。”   对于耳聋基因的检测和预防,这方面岛城技术已经相当成熟,如果在每个阶段,市民能提高自己的保健意识,就能避免更多耳聋宝宝的出生。如果市民家中有聋人,这几方面一定要做好了,最好去做个检查。   耳聋父母怀孕前。不管双方都是耳聋人还是其中一方是,在准备要宝宝前,先去做个基因检测,看看体内是否“潜伏”着致病基因。   妊娠期查基因。在妊娠期,对胎儿进行聋病易感基因筛查,推测胎儿听力是否正常,减少聋儿的出生概率。   给孩子做听力基因筛查。有些孩子开始是正常的,但体内可能会隐藏着“一针致聋”或者“一巴掌致聋”基因,通过检测如果真的存在这种基因,就可以避开危险因素。   基因检测平台能测出30多种基因遗传病   “多数疾病诊断目前只能停留在临床表现阶段,其实很多疑难杂症真正的原因出现在基因上。”俞主任说,今年年底前医院将进一步引进基因分析仪等设备,调试完毕后初步建成全市规模化基因检测平台。届时能被诊断出的疾病将增加到30多种,血友病、脆骨症、视网膜母细胞瘤、苯丙酮尿症等疑难杂症都逃不过。   同时,不仅能将遗传疾病诊断出来,还能筛查出致病基因的携带者并提前预防。另外,目前基因检测尚未全面开展,检测的价格也比较高,俞主任说:“下一步对价格这方面看看能否有所调整,让更多有需要的人都能有这种意识,提前来做基因检测。”   值得一提的是,建成这个规模化的全市基因检测平台后,不仅能为有遗传病患者的家庭提供便利,正常人也能去做基因筛查。“比如说可以通过筛查看看体内是不是有导致高血压、糖尿病的基因,如果有就得提前注意,防止疾病发生。”俞主任说。   不过,因为每个人体内都含有隐性致病基因,如果查到双方都带有高携带率隐性基因,那就得提前做检测,避免那1/4的几率发生,从而避免生出遗传病宝宝,也可以避免两个带有相同致病基因的人在一起。   揭秘 “三部曲”揪出致病基因   人体中有 3万多个基因,怎样从众多基因中快速找出那个致病基因?遗传科主管技师李朔简单介绍,其实揪出这些致病基因有三部曲,两天时间就够了。   “先从血液中提取出基因组,这时里面藏了3万多个基因,根据前期检查找到怀疑致病的基因条。但这部分的基因量太少了,想要做分析研究根本不够。我们可以对这一部分基因进行复制,从两边慢慢扩增到发病点。这样,有了足够的基因就能对他们进行分析了。分析基因主要看它们的序列,对照着正常的基因序列,看看它们的排序是多了还是少了、是短了还是长了,之后确定这种情况是属于自身基因突变还是属于遗传来的致病基因。如果是遗传的因素,那就得对他们的父母进行筛查,确保下一个宝宝会正常。”   据了解,揪出致病基因的时间一般为两天,有的可能会三天左右。从时间上看,还是很快的。   相关链接 有些基因其实很有意思   随着人类对基因的研究越来越多,有人发现了一些有意思的基因。   特殊基因决定睡眠时间:爱睡懒觉的人要有好借口了,因为睡懒觉可能和遗传有关。据媒体报道,欧洲一项研究发现,体内有一种名为“ABCC9”基因的人每天需要比没有这种基因的人多睡半小时。总计有1万多人参加了这项研究,研究人员比对他们的睡眠时间以及血液样本的DNA分析报告后发现,人对于睡眠的需求差异很大。   基因决定你的压力大小:研究人员基林费尔南德斯教授发现,携带压力基因的人,他们大脑中负责调解情感的“原始”区域变得异常活跃。来自欧洲神经系统科学团体年会上的消息称,大约一半的人携带“压力基因”,那意味着很多人害怕出乱子,容易感受到压力。
  • 后疫情时代,超多重数字PCR在遗传生殖领域杀出应用之路!
    近年来,在国家大力倡导国产替代化的浪潮中,国内数字PCR行业一直保持着稳定快速的增长,在肿瘤伴随诊断、肿瘤早筛、肿瘤基础研究、病原体检测、NIPT、食品安全和环境检测、药物基因组学等领域表现了极大的临床应用潜力和优势。根据高禾投资研究中心预测,2020年至2024年中国数字PCR行业市场规模仍将保持较高增长速度,市场规模将从2020年的21.33亿元,增长至2024年的70.11亿元,年复合增长率高达34.65%。中国数字PCR市场规模(来源:高禾投资研究中心)数字PCR作为PCR领域最具前景的细分市场,被誉为“黄金赛道”。2023年,数字PCR行业投资市场欣欣向荣,国内众多IVD公司相继布局数字PCR赛道。国产化数字PCR行业规模效益呈现爆发式增长,逐渐具有国际竞争的实力,各大医疗机构对国产产品的认可程度进一步加深,数字PCR国产替代正当时。凝聚合力,双向赋能。2023年2月22日,上海宝山,奥丞生物与小海龟科技签订战略合作协议。双方将进一步巩固合作基础,发挥互补优势,在遗传生殖健康等更多领域开展务实合作。本次合作双方基于各自的核心竞争力,在数字PCR和二代测序技术为核心等领域开展全方位、多层次的战略合作,共同打造国产化数字PCR2.0新格局。小海龟科技创始人吴东平先生、奥丞生物总经理周义正先生、华中科技大学同济医学院妇产科周虎博士、郑州第一大学附属医院遗传与产前诊断中心孔祥东主任、小海龟科技CTO徐刚伟博士、奥丞生物CTO靳苗苗博士等,一同出席了本次签约仪式。在签署仪式之前,来自华中科技大学同济医学院妇产科的周虎博士首先向来宾介绍了《数字PCR妇科肿瘤研究进展及应用》。周虎博士详细展示了数字PCR在妇科肿瘤领域的实际应用案例,充分说明其具有极大的应用前景,呼吁同行们一同努力,探索加快推进数字PCR在临床中的应用。数字PCR技术不仅在妇科肿瘤方面有着重要的应用价值,同时在NIPT和SMA等遗传病检测中也不可或缺。随后,来自郑州大学第一附属医院遗传与产前诊断中心的孔祥东主任向大家分享《数字PCR在NIPT和SMA检测中的应用》。其中,孔主任认为数字PCR技术在NIPT和SMA检测中具有独特优势,是基础研究和临床诊断的重要技术手段,而国产化已成为数字PCR发展趋势。01降低母婴死亡率、出生缺陷发生率奥丞生物为妇幼健康保驾护航奥丞生物CTO靳苗苗博士向来宾作公司及产品介绍,奥丞生物拥有微流控、免疫荧光、化学发光、数字PCR、仪器、人工智能等技术平台,是国内率先推出孕妇AI+子痫前期筛查与防控产品解决方案的企业,拥有三大检测系统助力临床筛查体系建设。靳苗苗博士还介绍了奥丞生物基于数字PCR平台的产品布局,在妇幼健康产品线,创新推出推脊髓性肌萎缩症(SMA)、重症联合免疫缺陷病(SCID)、遗传性耳聋、杜氏肌营养不良(DMD)基因检测等系列试剂盒,为临床提供多种检测组合方案。不论是子痫前期,还是脊髓性肌萎缩症(SMA)、重症联合免疫缺陷病(SCID)等疾病,早期诊断和合理治疗,都能及时地将病魔扼杀于摇篮,极大地改善患者生命质量。奥丞生物始终专注于妇幼健康领域,致力于降低孕产妇及婴儿死亡率,降低出生缺陷发生率,保障母婴安全。02数字PCR 2.0,新一代分子检测技术全面赋能新一代分子诊断产品开发!小海龟科技CTO徐刚伟博士向来宾们介绍了小海龟科技推出的数字PCR技术平台,可适用于包括医疗检测领域在内的多种应用场景,对于肿瘤可以实现早期筛查、早期诊断、用药指导以及监测肿瘤的复发,尤其在优生优育领域可以实现更多遗传性疾病的诊断和检测,对于临床应用具有极大的潜力和价值。2022年11月,小海龟科技发布了全新的BioDigital炎全自动一体机PCR平台,突破了原有产品需要手动加样或者手动微滴制备等相关的技术模式,真正实现了全自动运作。另外,该产品通过创新技术微流控芯片,让数字PCR单反应耗材价格进入个位数,实现了新的进步,让客户能以更低的价格使用;同时能够大大降低企业的开发难度。此外,还可实现超多重检测,达到几十甚至上百种的检测体系。徐刚伟博士讲道:“数字 PCR 2.0,作为新一代分子检测技术,希望可以全面赋能新一代分子诊断产品开发,为合作伙伴提供更多的技术支撑。”最后,在现场嘉宾的共同见证下,小海龟科技创始人吴东平先生、奥丞生物总经理周义正先生共同签署了战略合作协议。期待奥丞生物、小海龟科技通过此次战略合作,实现双方的资源共享、优势互补与业务创新,从而为医疗界提供更优质、更全面的服务,并推动双方业务实现跨越式的发展,引领国产化数字化PCR的行业变革。关于小海龟科技上海小海龟科技有限公司是一家立足于基因检测上游仪器、芯片耗材与创新试剂技术开发的高新技术企业,获批国家发改委基因检测技术应用示范中心及国家首张数字PCR计量评价证书,先后承担多项上海市生物医药领域科技支撑专项及科技部“科技助力经济2020”专项,推出多款数字PCR系统并取得医疗器械注册证书,并开发完成多款检测试剂盒,包括肿瘤伴随诊断、肿瘤早筛、优生优育、病原体检测等,实现了从仪器、芯片耗材、超多重试剂盒技术及超高特异性分子诊断酶等全链条的技术创新。宝山区明星企业,成功研发出了诊断试剂PCR核心芯片,是目前国内唯一一家真正实现自有产线生产柔性微流控生物芯片的公司。关于奥丞生物奥丞生物是一家专注于从疾病早期发现、诊断、预防到监测的高科技生物企业,建成了微流控、免疫荧光、化学发光、分子诊断、人工智能、抗体原料、仪器研发七大技术平台,并依托其构建了丰富的产品线。公司聚焦妇幼健康,减少出生缺陷,加强慢性病和肿瘤防控,实现精准治疗感染,全面助力精准医学,以国际标准建立起研发、生产、市场、销售和客户服务体系。妇幼健康领域:2021年启动《中国孕产妇子痫前期风险预测研究项目(ChiPERM)》,推进了中国子痫前期筛查与管理标准建立及三级防控体系建设。通过分析大量医疗数据,建立模型,大幅提升检测质量,产品应用超1000家医院。出生缺陷领域:以数字PCR和二代测序技术为核心,创新推出推脊髓性肌萎缩症(SMA)、重症联合免疫缺陷病(SCID)、遗传性耳聋、杜氏肌营养不良(DMD)基因检测等系列试剂盒,为临床提供多种检测组合方案。奥丞生物曾荣获国家妇幼健康科技贡献单位、浙江省高成长科技型企业、宁波最具投资价值企业,获批博士后工科站、微流控工程中心、ISO13485、NMPA注册证48项,CE12项、申请获得专利105项等资质;并已形成“覆盖全国、开拓全球”的营销网络布局。
  • 赛默飞推出三项针对遗传研究的创新技术
    新型酶实现扩增子测序最高NGS准确度,Hi-Q化学过程提高Ion PGM系统中的SNP和Indel检测性能2015年1月13日,中国上海 —— 近日,科学服务领域的世界领导者赛默飞(以下简称:赛默飞)Thermo Fisher Scientific推出了三项针对遗传研究的创新技术为遗传研究提供助力:用于加强Ion PGM系统中单核苷酸多态性 (SNP) 和插入缺失 (Indel) 检测性能的新型酶,用于基因遗传性耳聋研究的引物组,以及对其靶向捕获引物设计热门网站AmpliSeq Designer的升级。这些新产品在美国人类遗传学协会 (ASHG) 2014年度会议中首次亮相,会议于10月18日至22日在圣地亚哥会议中心举行。为进一步表现该新型酶的性能,赛默飞于会议期间还举办了主题为“从研究到临床——Ion Torrent测序为遗传研究中的下一代测序带来新突破”的教育研讨会,彰显使用新型酶(包含在Ion PGM Hi-Q测序试剂盒中)获取的初步研究成果以及该产品的巨大潜力。使用新型酶(包含在Ion PGM Hi-Q测序试剂盒中)获取的初步研究成果表现出该产品的巨大潜力,这些成果将在今天的赛默飞世尔午餐教育研讨会中揭晓,主题为“从研究到临床——Ion Torrent测序为遗传研究中的下一代测序带来新突破”。在内部测试期间,我们赛默飞使用Hi-Q测序试剂盒在Ion PGM系统上进行了10次完整测序,并将性能表现和对手其他系统的进行了对比。两个平台均运行AcroMetrix肿瘤热点质控品,该质控品使用特征明确的基因组背景并结合了多种合成COSMIC变体。这些测试表明,Hi-Q测序试剂盒在Ion PGM平台的化学过程比市场上其他的主流平台表现出更高的SNP准确度。不仅如此,该研究还显示,Ion PGM系统与Hi-Q试剂盒搭配使用能够:将扩增子测序中的Indel误差降低43%(较之前使用的Ion PGM测序酶);使特定已知变体检出率达到94.1%,测试中其他平台为高于竞争平台的91.3%;使反映碱基正确识别能力的阳性预测值 (PPV) 达到99.8%,测试中其他平台相比竞争产品的98%更加准确。“我们的新型Hi-Q酶能读取更清晰的二级结构,从而提供更强的信号和更高的准确度,”负责赛默飞世尔生命科学解决方案业务生物信息产品的高级主管Mike Lelivelt说,“通过使用包含500个以上已知癌症变异大量真值的受控样品,我们得以真实地比较针对靶向癌症测序的平台准确度。” 赛默飞世尔还推出了Ion AmpliSeq听觉丧失研究引物组,它使研究人员可以靶向研究与这种以极端的遗传异质性闻名的疾病相关的63个基因。根据实际研究需要,用户可以在每块Ion 318芯片上运行6到8个样品。 另外,Ion AmpliSeq Designer靶向捕获引物设计网站经过扩展可支长达375碱基对的定制扩增子设计。Ion AmpliSeq 375碱基长度设计是对高质量DNA进行遗传病相关种系突变测序的理想选择。为了满足不同测序应用的需要,仍会供应上至175及275碱基对的定制扩增子设计。Ion PGM系统、Ion PGM Hi-Q测序试剂盒与Ion AmpliSeq引物组仅用于研究目的,不用于诊断程序。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、 Fisher Scientific和Unity? Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com。 赛默飞世尔科技中国赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京、广州和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn。
  • Nature长文惹争议:在中国PGD根除遗传病繁荣是必然?
    p   上周,《自然》杂志驻上海记者、亚太通讯员David Cyranoski的一篇报道“China’s embrace of embryo selection raises thorny questions”在行业内引起广泛的转发和传播 同样的,这篇报道也引起了海外社交媒体的激烈评论。 /p p   David Cyranoski专访了北医三院乔杰院长、上海交通大学的遗传学家兼中国遗传学会遗传咨询分会主席贺林院士、北京解放军总医院聋病专家兼“中国聋病基因组计划”发起者王秋菊教授等业内专家,最后得出的结论是:中国生殖医学中心正在大力促进胚胎植入前遗传学诊断(PGD)的普及,目的是根除某些疾病的产生。 /p p    span style=" color: rgb(84, 141, 212) " strong PGD在中国繁荣发展的景象 /strong /span /p p   Nature指出:在中国,患有遗传病容易受到歧视等不公正待遇,家家渴望生育健康宝宝的意愿使得PGD几乎没有受到来自宗教和伦理方面的阻力 随着“全面二孩政策”的放开,可以做PGD的高龄产妇日益增多 卫计委批准可以进行PGD的医院已经从2004年的4家上升到40家,这一数据将继续增加 获得相关资质的医院拥有设备精良、有影响力的临床研究团队正在加大力度改进技术、提高意识和降低成本。 /p p   据Nature报道,乔杰教授所在的医院在2016年进行了约100次胚胎中个体致病基因的筛查,并在另外的670例中进行了染色体数目异常的筛查,这一数据比2014年全英国进行的筛查数量还要高(英国全年仅578例) 中国第一例“无癌宝宝”的诞生地中信湘雅的PGD接诊量在两年内增长了277%,从2014年的876例增长到2016年的2,429例,其中700例是单基因遗传病的检测 北京解放军总医院聋病专家王秋菊教授发起的“中国聋病基因组计划”项目计划从全国150家医院获取多达200,000个样本来鉴定相关突变 上海交通大学的遗传学家贺林院士发起了一项宏大的工程,旨在将约6,000种已知遗传疾病的所有致病基因的全部突变都找到并集中到一个数据库中,且这些信息将被添加到PGD的筛选清单中…… /p p   面对中国PGD产业的繁荣发展,近日英国的罕见病研究机构Rare Disease Report 官网就对Nature的这一报道提出了点评。James Radke以“Can Preimplantation Genetic Diagnosis (PGD) Eradicate Genetic Diseases?”为题撰写了评论,并就中西方在PGD见解上做出了点评。 /p p    span style=" color: rgb(84, 141, 212) " strong 1、PGD在英国发展了20余年,竟然被中国“后来居上” /strong /span /p p   Nature指出:胚胎植入前遗传学诊断已经使成千上万对夫妇获益,其推广在全球范围内总体上很缓慢,而在中国,这一技术开始了爆发式发展。仅乔杰教授的门诊现在每年完成的胚胎植入前遗传学诊断数量已经超过了全英国的总和。 /p p   Rare Disease Report 认为:PGD的首次出现是20年前的英国,一对拥有X连锁隐形遗传疾病的父母选择女性胚胎植入以避免后代患病(注:这种病传男不传女)。在那个时代,这种技术较全球其他国家的先进性不言而喻,很可惜现在被中国“后来居上”了。 /p p    span style=" color: rgb(84, 141, 212) " strong 2、PGD在其他国家遭冷遇,不仅仅是伦理问题 /strong /span /p p   Nature指出:中国具备发展胚胎植入前遗传学诊断的一系列条件:拥有遗传疾病会被认为很丢脸,残疾人获得的相关扶持极少,同时胚胎植入前遗传学诊断几乎没有受到来自宗教和伦理方面的阻力。中国团队帮助许多夫妇避免了将一系列可能的疾病遗传给下一代,如短肋骨多指综合征、骨质疏松症、亨廷顿氏舞蹈症、多囊性肾病和耳聋等。在中国进行胚胎植入前遗传学诊断的费用相比之下已经很便宜,约为美国的三分之一。检测费用较低使其更容易被国家保险所覆盖。 /p p   Rare Disease Report 认为:消除遗传病是一个漫长的过程,这对医疗保健系统的影响深远。以PGD为例,避免后代囊性纤维化的PGD成本高达5万7千美元,不过这相比于囊性纤维化患者一生的治疗费用230万美元如“九牛一毛”。但某些疾病患病人数的减少会使得政府削减对相关研究和治疗的资助,使得生者更加痛苦。此外,使用PGD筛查遗传病是很昂贵的,没有政府的支持,许多诊断治疗非常昂贵,而保险的范围非常少,大部分保险公司都拒绝为PGD买单。一句话,更多的是“经济实力”的问题。 /p p    strong span style=" color: rgb(84, 141, 212) " 3、NIPT在中国广受欢迎,西方人不会因为唐氏综合征而终止妊娠 /span /strong /p p   Nature指出:中国人似乎倾向于认为自己更有责任尽可能生一个最健康的孩子而不是去保护一个胚胎 。中国人利用遗传技术来确保生出健康孩子的渴求,从唐氏综合征和其他染色体疾病妊娠检测的急剧增长中可见一斑(2013年深圳华大基因研发出唐氏综合征检测试剂盒以来,其销售量已达两百万个,而其中一半都是在去年售出的)。 /p p   针对这一现象,Rare Disease Report也赞成了Nature描述PGD在西方国家的销售量却并不高的说法。原因包括天主教会反对对胚胎进行操控,包括移除细胞进行检测以及破坏胚胎。在西方,总有人会认为科学家在扮演上帝,从而谴责这件事情的大力推广。 /p p    strong span style=" color: rgb(84, 141, 212) " 4、观念不同:中国人利用PGD“优生优育”,被西方误认为“人种改良” /span /strong /p p   Nature指出:在西方,PGD仍会激起关于创造出“精英基因”的恐惧,批评者还指出PGD可能导致人们滑向“人种改良学”的深渊,而这个词不禁会使人想到德国纳粹的种族清洗政策。 /p p   实际上,PGD在中国的发展是旨在促进“优生优育”,即生出更健康的宝宝,如同在孕期不吸烟产生相似的结果。 /p p    strong span style=" color: rgb(84, 141, 212) " 5、相似之处:都担心PGD被滥用 /span /strong /p p   英国人类生育与胚胎学管理局同样对胚胎植入前遗传学诊断有严格的规定,将其使用限制于400种情况。但在美国,医院有相当大的自由度。例如性别选择,美国生殖医学会承认其是有争议的,但伦理委员会却更多地将是否可行的决定权留给了个体医院。 /p p   同样,中国政府和很多西方国家政府一样担忧PGD会被用于体征选择,例如身高或智力。获得PGD资质的机构,仅被允许利用PGD避免严重疾病或者辅助不孕症治疗,不允许使用PGD进行性别选择。 /p p   结语:带着争议继续造福社会 /p p   总之,无论西方怎么质疑,根据领先PGD提供商的评估显示,中国在这项技术上的应用已经超过了美国,在过去一段时间了增长速度提高了五倍。对于许多生育专家来说,中国的PGD最吸引人的地方是其发展速度和组织化,每年增长60-70%,未来几年将会按人均水平继续增加。 /p p   正如乔杰教授接受Nature采访时所言,即使存在伦理争议,但如果可通过PGD终止一些遗传性疾病,这显然是对社会有益处的。 /p
  • 安捷伦科技公司隆重推出OneSeq产品以简化细胞遗传学研究
    安捷伦科技公司隆重推出OneSeq产品以简化细胞遗传学研究该分析方法使科学家能够在一次反应中确定突变和拷贝数变化 2015 年 2 月 25 日,北京 — 安捷伦科技公司(纽约证交所:A)今日推出了业内首款用于新一代测序的一体化靶向序列捕获产品OneSeq。OneSeq具有独特设计,适用于体质性疾病研究,可在一次反应中检测和分析拷贝数变化、杂合性缺失和突变。 安捷伦在本周于佛罗里达州马科岛召开的基因组生物学技术进展年会(AGBT)上展示了这款新产品。 在安捷伦行业领先的SureSelect靶向序列捕获平台的支持下,新的OneSeq体质性研究试剂盒将帮助细胞遗传学研究实验室节省在收集和分析复杂多遗传因子数据过程中所花费的时间。 安捷伦高级市场总监 Alessandro Borsatti说道,“OneSeq让研究人员能够同时研究疾病相关的靶标和拷贝数变化,这款一体化 NGS 分析方法是靶向序列捕获先驱者的又一行业力作,与单分子技术相比,它能提供更多的信息,帮助科学家简化工作流程。” Borsatti指出,研究人员可将OneSeq和安捷伦免费SureCall软件轻松组合,以整合拷贝数变化、单核苷酸多态性、插入和缺失以及杂合性缺失的数据分析。 “这种组合为遗传疾病相关的多个 DNA 变化研究提供了最为经济有效和精简的方法,”Borsatti说道。“与此相比,全基因组测序及其相关的数据分析更加繁琐和昂贵。” 此外,安捷伦在线设计应用SureDesign使得研究人员能通过将任意目标基因试剂盒添加到 CNV 骨架来自定义OneSeq,从而满足自身需求。关于安捷伦科技公司 安捷伦科技公司(纽约证交所:A)是生命科学、诊断和应用化学市场领域的全球领导者,是致力打造美好世界的顶级实验室合作伙伴。安捷伦与全球 100 多个国家的客户进行合作,提供仪器、软件、服务和消耗品,产品可覆盖到整个实验室工作流程。在 2014 财年,安捷伦的净收入为 40 亿美元。全球员工数约为 12000 人。如需了解安捷伦科技公司的详细信息,请访问www.agilent.com。 编者注:更多有关安捷伦科技公司的技术、企业社会责任和行政新闻,请访问安捷伦新闻网站:www.agilent.com.cn/go/news。
  • 程京院士:清华正研发一代和二代测序仪器
    日前,在清华大学《清华大学医疗健康大数据前沿论坛》大会上,中国工程院院士、清华大学教授程京以《转化:从疾病诊治到健康维护》为题,进行大会报告。   基因测序的应用   报告的开始,程院士就向大家解释了什么是生物芯片。生物芯片就是能对小分子、生物大分子、细胞、组织等进行高通量、快速并行处理和分析的微检测器件,包括微流控芯片和微阵列芯片两大类。生物应用领域非常广泛,包括疾病预测、疾病预防、个性化治疗、药物开发、食品安全、环境检测、农业育种等。现在,我国现在已能独立自主研发微阵列芯片全线配套仪器。他详细介绍了基因表达谱芯片应用与乳腺癌分子分型,通过对60例乳腺癌患者的基因芯片筛选,就可以大数将乳腺癌患者分为三阴性、腔面A和腔面B型。   目前,在清华大学正进行一代和二代测序仪器的研发。现在,二代测序仪在测序领域占绝对的主导地位,而为什么还要做一代测序仪?因为一代测序仪应用肿瘤方面研究仍是经典之选,但是缺点还需要手工操作比较多,新仪器研发希望能实现全自动化。程院士表示这些仪器今年将全部投放市场。目前,中美新一代基因测序仪,其技术核心无一例外都是基于微流控芯片技术。   博奥生物建立了中国最全的用于做生物技术、疾病相关的研究与服务平台,可以获得从DNA,RNA,蛋白质层面获得大量数据。要将各层次纵横交叉、融会贯通就需要大数据研究人员,既懂生物又懂医学,很好地进行拉网式分析。   最近几年,程院士走访了宁夏、新疆等地,令他吃惊的是,原本以为是比较落后的地区,早已推广医疗大数据的临床研究。华西医科大学口腔医院、南京医科口腔医院、广东省妇幼保健医院、宁夏医科总医院以及博奥生物针对我国唇腭裂疾病进行基因研究,该研究近日被《Nature Communications》接受。这是首次在国际期刊发布中国唇腭裂基因研究。该研究有助于在生育时期预测胎儿患病风险,以便及时进行干预。   转化医学该如何进行   程院士向大家解释了何为转化医学,即将科研成果转化为临床应用应该符合&ldquo 大学研究--工业--政府--临床&rdquo 这样的过程。基因数据的获得不应该只是停留在文章的发表,转化到临床应用非常重要。国外的转化模式,不适合中国。在临床方面提供样品提出问题以及相关信息提供给学术机构进行科研研究,还需要工业的参与做成产品才能完成申报。政府介入进行监管,比如获得药监局批准,药监局制定物价,社保局纳入报销等等,全部完成后才能进行临床应用。   接下来程院士为大家举例三个临床转化在不同领域的案例:   案例1.重度耳聋防治   最新数据统计,我国残疾人数达8500万,其中听力障碍人士占24%,但仅有1&permil 的患者得到救治,如果全部救治得花8万亿人民币,相当于去年全国医疗费用总和的两倍,因此要走防治的路线,定制聋人基因检测芯片。   首先在大学中开展研究:中国耳聋人群遗传因素致聋比例为55%,针对先天性耳聋、药物致聋、大前庭水管综合征的4个基因(GJ82、GJ83、12S rRNA和PDS)中的9个突变位点覆盖我国80%的遗传学耳聋。清华大学的科研人员研发了包含这9个位点的检测芯片。   接着进行工业制作:通过博奥进行芯片优化,制做成品,进行申报,于2009年获得医疗器械证书将能。产品化的芯片能快速、低成本地进行基因检测。   受到政府重视:北京市对两万多聋人免费进行检测,20岁以下的患者中,超40%的人致病原因都是基因突变。北京市在全国率先为新生儿免费筛查耳聋基因。成都地区,目前已经确定父母双方凡一方具有成都市户口的出生新生儿,纳入政府免费耳聋基因筛查,并形成常态化,大于每年10约人的检测量。截至去年,全国完成80万例新生儿筛查,预期今年过百万。   最后就是将产品应用到临床:通过分析2012年北京市新生儿耳聋基因筛查所得到的数据发现,耳聋基因筛查可用较少成本和投入,获得较好效果。对2012年20万新生儿耳聋基因筛查进行的成本效果和成本效益分析显示,筛查投入约1亿元,可避免损失1971.27个健康寿命年,可多挽救19928.34个劳动年,可为社会减少经济损失9.4亿元。如不筛查,挽救一个劳动年需付出5.45万元,而筛查只需支付0.48万元。从成本效益角度分析,筛查效益成本比率为7.27:1,即投入1元,可获得7.27元的效益。说明耳聋基因筛查具有较高的成本效益   案例2.按需定制芯片   清华大学就根据医院的要求开发分枝杆菌菌种鉴定基因芯片,能同时快速检测17种分枝杆菌,分离株或者痰样本均可检测。2009年获欧盟CE认证,2010年获国家医疗器械证。   博奥生物还与国内多个顶级三甲医院和科研机构合作,开展肺癌、结直肠癌、食管癌、肝癌、胃癌、前列腺癌、乳腺癌、宫颈癌、肾癌、膀胱癌在内的10个肿瘤血浆miRNA标志物的开发工作。本检测项目通过检测健康体检人群和高危人群血浆miRNA谱表达,预测肿瘤风险,该检测具有非侵入性、可动态监控的优点。该项目作为公益性行业科研专项《个体化医学检测的规范化、标准化研究及推广应用》子课题,正在建立个体化医学检测miRNA检测技术LDT指南,并在试点单位试行和修订完善。   案例3.中医西释防未病   在全国有1.1亿糖尿病人,患病人数快速攀升,其实内因(基因)的影响占只20~30%,而外因(环境)的影响占70~80%,外因通过内因起作用,环境与遗传因素互相作用。程院士提出&ldquo 内因可检测,外因可改变!&rdquo   北京中医药大学的王琦教授将人划分为9种体质:平和体质、气郁体质、湿热体质、特禀体质(过敏体质)、阴虚体质、气虚体质、阳虚体质、痰湿体质、血瘀体质,根据统计显示后五种体质的人群易患糖尿病。于是,程院士提出利用血液检测将人群分类中医根据个人体质提出不同调理方案,再针对每种体质人群制作调理饮品。如此一来以中医为主导,结合现代科学检测手段,充分发挥中医在体质分类、未病预测和亚健康调理方面的独特作用,帮助提高生活质量、大幅降低重大疾病诊治的开销。   报告的最后程院士总结到,大数据的管理应以个人为中心,针对每个人的自身状况,定制最优的治疗方案,推荐适合的生活方式。为了有效及时进行健康管理,家庭穿戴式设备是不可少的,数据的管理、存储、分析以及相关的云计算也是少不了的,还有就是与大型医院的互动,建立有效联系也是不可或缺的。
  • 四川省“国家基因检测技术应用示范中心”落户成都医学城
    p style=" TEXT-ALIGN: center"    img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/8dda6cfa-0819-45b9-a9aa-a795958f2c6d.jpg" / /p p style=" TEXT-ALIGN: center" strong 四川省“国家基因检测技术应用示范中心”启动仪式现场  /strong /p p & nbsp & nbsp & nbsp 8月3日,从金银检四川省“国家基因检测技术应用示范中心”启动仪式暨《基因检测精准医疗》学术会议上获悉,四川省“国家基因检测技术应用示范中心”建设项目正式落户成都温江。本次活动,由四川省发展和改革委员会、四川省卫生和计划生育委员会、四川省医学会与温江区政府联合主办,成都市温江区科技局、成都博奥独立医学实验室、成都医学城精准医学孵化园共同承办。 /p p style=" TEXT-ALIGN: center" img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/c5f27a80-6964-48e2-b613-9c419231f773.jpg" / /p p style=" TEXT-ALIGN: center" strong 四川省“国家基因检测技术应用示范中心”项目正式启动 /strong /p p   据了解,近两年来国家高度重视基因产业,2015年,国家发改委将建设“基因检测技术应用示范中心”纳入新兴产业重大工程重点扶持项目。四川省基因检测技术应用示范中心综合中心由成都博奥医学实验室建设,着重于出生缺陷及遗传病筛查,同时负责协调总体配合。遗传性耳聋和唐氏综合征基因筛查目前在临床上应用最成熟,也是国家发改委文件中提到的基因检测技术应用示范中心需重点建设的两个基础项目,生物芯片北京国家工程研究中心暨博奥生物集团拥有这两个项目的全套具有自主知识产权的获证仪器试剂和相关资质。 /p p   目前,示范中心已纳入四川全省重大项目重点推进,总体进度顺利,部分业务已开始运行。成都依托博奥已开展系列先行先试,在全国率先通过政府采购,对听力高危人群实施了耳聋基因筛查,降低了耳聋残疾发生率。截至2016年7月29日,全国由政府采购进行的新生儿耳聋基因芯片检测总数已达156万人,其中四川省成都市检测总数已达34万,筛查出新生儿耳聋基因突变携带率高达3.6%,药物性耳聋突变880人,突变率2.5‰,可避免近万人因不当用药致聋 /p p style=" TEXT-ALIGN: center" img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201608/insimg/44de71b3-2ea4-4432-8097-d0718e5122c1.jpg" / /p p style=" TEXT-ALIGN: center" strong 博奥检验总裁、张治位博士就精准医疗产业现状及未来发展作主题演讲 /strong /p p   在当天学术会上,华西医院主任医师、教授、临床肿瘤医学博士罗锋,阐述了生长因子受体(EGFR)的酪氨酸激酶抑制剂(TKI)对癌症治疗的疗效机制及研究状况,并进一部说明精准医疗-EGFR基因突变对TKi疗效的影响。四川省肿瘤医院主任医师、教授、放化疗综合病区主任李涛,分析了分子诊断在个体化靶向治疗与个体化化疗中的应用。成都市妇女儿童中心医院产前诊断科主任医师、医学博士吕康模,分析了新生儿出生缺陷及遗传病的发生机制以及相关疾病的详细内容。成都市第三人民医院主任医师唐艳,以精准医学为背景,诠释了分子病理的概念展示了其在精准医学时代的可靠应用。 /p p   本次学术会,以临床应用为导向,重点探讨基因检测在肿瘤的个体化治疗以及产前诊断中的临床应用。为显著减少无效和过度医疗、遏制医疗费用无效支出快速增长以及有效减少新生儿出生缺陷提供科技支撑,推动了基因检测技术在肿瘤及产期诊断临床应用中的发展。基因检测技术的临床应用将极大的提升重大疾病的预警、预防与精准诊疗能力,满足出生缺陷防控、个体化医疗等方面的需求,促进新型健康技术普及惠民。 /p
  • 东南科仪参加全国动物遗传育种学术讨论会
    近日,东南科仪参加了在陕西杨凌召开的第十五次全国动物遗传育种学术讨论会(2009年10月10~14日)。 本次会议是我国动物遗传育种、细胞与分子生物学等领域的一次学术盛会,汇集了来自中国农业大学、中山大学、浙江大学、上海交通大学、华中农业大学、华南农业大学、南京农业大学等数百所大专院校、科研单位及生产单位的国内外动物遗传育种领域和细胞与分子生物学领域从事科研、教学和生产的专家、学者和技术人员800多人,展示目前国内外本领域最前沿的研究进展和成果。 同时,东南科仪被组委会选择为参展单位。在会上,我们展出了IKA振荡摇床、ALP高压灭菌锅、KRUESS折光仪等基础仪器和专业仪器。参加此次会议的科研工作者纷纷对展示的仪器进行了解,询问,讨论气氛良好! 东南科仪又一次在讨论会上取得良好的效果! 大会会场 大会主席台 站台静态 广州:天河北路华庭路4号富力天河商务大厦1506-07(510610) 电话:020-83510088(十线) 83510550 83510358 传真:020-83510388 北京:海淀区交大东路60号舒至嘉园3座 (100044) 电话:010-62268660 62260833 62238029 传真:010-62238297 上海:延安西路1590号增泽世贸大厦10楼E室(200052) 电话:021-52586771/72/73 传真:021-52586778 杭州:杭州市文二西路1号元茂大厦613室(310012) 电话:0571-28183717,28183719 传真:0571-28183720 成都:高升桥路2号瑞金广场2-10F(610041) 电话:028-68597087/88 13981772689/13281837316 传真:028-68597089 西安:陕西省西安市朱雀大街132#阳阳国际B座21106室 (710061) 电话:029-62221598 13609200891 传真:029-62221599 香港:九龙荃湾柴湾角街77-81号致利工业大厦C座16/F 16/f., Block C, Glee Industrial Building, 77-81 Chai Kok Street, Tsuen Wan, N.T.H.K 电话:852-25650348 传真:852-24169253 mail:dongnan@sinoinstrument.com http://www.sinoinstrument.com www.sinoinstrument.cn
  • 第二届Illumina生殖与遗传系列(郑州站)暨“碰撞 · 融合 · 发展高通量测序临床应用热点高峰论坛”隆重召开
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/030e069c-036c-468c-ab5f-60920ca9932c.jpg" title=" 1.jpg" style=" width: 600px height: 334px " width=" 600" vspace=" 0" hspace=" 0" height=" 334" border=" 0" / /p p   在这桂花飘香的八月,生殖遗传学术热潮再度掀起。2017年8月9日,由郑州大学第一附属医院、安诺优达和Illumina公司联合举办的 “第二届Illumina生殖与遗传系列(郑州站)暨碰撞& nbsp · & nbsp 融合& nbsp · & nbsp 发展 高通量测序临床应用热点高峰论坛”,在郑州大学附第一附属医院隆重召开。论坛以“规范NIPT 临床使用,加强遗传咨询,探索高通量技术在临床应用发展”为主旨,邀请了郑州大学第一附属医院遗传与产前诊断中心孔祥东教授、刘宁博士、美国高级遗传咨询师Sucheta Bhatt博士、安诺优达孙阳博士、Illumina大中华区生殖与遗传市场经理谭珂博士,共同探讨遗传学传统检测技术和高通量检测技术的碰撞,体系的融合,高通量测序技术未来的发展之路,分享NIPT临床实践、遗传咨询、NGS实验室搭建等热点议题,现场座无虚席,井然有序共同享受这场学术盛宴。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/37bac0d4-c835-463a-8055-b59d2d8eeba3.jpg" style=" " title=" 2.jpg" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/e7236016-f406-4696-87ed-4b53833d55b6.jpg" style=" " title=" 3.jpg" / /p p style=" text-align: center " strong 会场参会者学习热情高涨 /strong br/ /p p   同时,中国妇产科网作为合作媒体,对这次会议进行了全程同步直播,线上线下互动热烈。 /p p span style=" color: rgb(0, 176, 240) " strong 1.NIPT临床应用热点解析与案例分享 —& nbsp 孔祥东 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/5d01d001-6d6d-4ce6-b775-974b941ef894.jpg" title=" 4.jpg" / /p p   孔祥东教授首先分析了我国NIPT的技术规范,强调了NIPT必须建立以产前诊断机构为核心,产前筛查机构为采血点,以具备能力的医学检验所和其他医疗机构为技术支撑的技术服务网络。结合自己科室所开展NIPT的临床经验,他认为,高龄、唐筛高危、双胎及多胎妊娠、辅助生殖的孕妇,可以进行NIPT检测,但需要对受检者进行充分的遗传咨询。而针对于NT≤3.5mm的孕妇,如NIPT结果正常,建议中孕期羊水核型分析联合CMA检测,当NT≥3.5mm的孕妇建议直接产前诊断。最后孔教授指出NIPT有望替代唐氏血清学筛查,作为简约而不简单的NIPT技术需要在临床规范化使用。 br/ /p p strong span style=" color: rgb(0, 176, 240) " 2.Genetic Counseling: A Bridge to Understanding Genetic Information /span /strong /p p strong span style=" color: rgb(0, 176, 240) " ——& nbsp Sucheta Bhatt博士 /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/c4d38fdd-c468-48d2-931b-ac52a8ea4497.jpg" title=" 5.jpg" / /p p   Sucheta博士介绍了遗传咨询的内容,分享了美国遗传咨询师的工作职责,由浅入深的介绍了如何进行遗传咨询,其过程包括病史采集、绘制家系图、风险评估及教育,鉴定并讨论合适的检测选项,评估总结以及随访计划。随后Sucheta从NIPT角度示范了咨询要点,NIPT局限性以及“正常”、“异常”结果的考量,并分享了典型病例,引起了与会者们的热度关注与探讨。 /p p span style=" color: rgb(0, 176, 240) " strong 3.NIPT临床实验室搭建 —— 孙阳 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/27c36ec7-dda0-4b7c-8082-1b4eb191e158.jpg" title=" 6.jpg" / /p p   安诺优达临床应用专家孙阳博士,向在场人员展示了安诺优达的高通量测序实验室的整体解决方案。他谈到,院端测序平台搭建的实质,是将企业成熟的技术平台、实验方法、项目经验整体迁移至院端,其涉及到两个核心关键点:技术转移和质量控制,即对院端进行完整的技术输出,并在此基础上,保障检测流程各个环节的顺利运转,质控合格。安诺优达拥有成熟IVD产品:获得CFDA认证的NextSeq 550AR基因测序仪及其配套试剂 (国械注准20173300330;20173300331),为院端NIPT项目的开展提供了基本保障。 /p p strong span style=" color: rgb(0, 176, 240) " 4.复发性流产的遗传学病因分析和遗传咨询 —— 刘宁 /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/72e2434f-2503-43a1-a5a6-1f4930f40d5d.jpg" title=" 7.jpg" / /p p   刘宁博士在其演讲中谈到,超过60%的早期复发性自然流产是由胚胎染色体异常所导致,对于复发性流产可以采用的检测技术包括了核型分析,荧光原位杂交、基因芯片以及新一代测序。刘博士分享了本院419例流产物CMA结果发现非整倍体异常36.75%,微缺失微重复异常19.72%,并运用典型流产案例阐述了遗传咨询以及选择合适检测方案的重要性。 /p p span style=" color: rgb(0, 176, 240) " strong 5.从孕前到产后:精准遗传学检测 —— 谭珂 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/9bf8262c-af2c-4cb1-a762-29b74d0e97de.jpg" title=" 8.jpg" / /p p   谭珂博士从出生缺陷三级防控的角度入手,探讨了从孕前到产后所能应用的精准遗传学检测技术及临床应用。一级防控包括了携带者筛查和植入前遗传学筛查(PGS),针对携带者筛查,AMCG、ACOG等国外指南强调了基于高通量检测技术的扩展性携带者的重要性和应用范围,目前国内较为普遍的筛查方案为发病率较高的单病种检测,而国外共识更关注育龄人群,高发疾病常规检测,高通量测序应用更为成熟。PGS可从遗传学角度找出最具潜力植入的胚胎,改善辅助生殖临床结局。 /p p   作为二级防控,NIPT已是临床高度关注的新型产前筛查方案,除此以外,基因芯片以及NGS技术可以提高产前诊断检出率。在新生儿筛查领域,谭博士对基于NGS的高效新筛模式寄予了期望。最后呼吁行业同仁们更多关注新技术能给实践带来的临床价值,共同努力解码基因组改善人类健康! /p p br/ /p p strong 关于Illumina /strong /p p Illumina公司通过解码基因组而改善人类健康。我们注重创新,这使我们成为DNA测序和芯片技术的全球领导者,并为科研、临床和应用市场的客户提供服务。我们的产品应用分布在生命科学、肿瘤学、生殖与遗传、农业及其他新兴市场领域。如欲了解更多信息,请访问Illumina中国官网。 /p
  • 卫生部副部长刘谦考察医学遗传学国家重点实验室
    11月3日下午,卫生部副部长刘谦一行考察了位于长沙的中南大学湘雅医学院中国医学遗传学国家重点实验室,听取了实验室建设和研究成果汇报,并寄语在实验室辛勤工作的科研人员。   他说,作为国家重点实验室的科研人员要有雄心,要为民族兴盛、国家建设发展和推动医学进步作出应有的贡献 要有无私奉献的精神 要注重知识的实际转化和应用,提高疾病防控能力 要学会在协同工作中提高效率,处理好在竞争中学习、在学习中竞争的关系。   据了解,由人类与医学遗传学家夏家辉院士创建的医学遗传学国家重点实验室,1991年正式向国内外开放,研究方向为开展医学遗传学的应用研究及其基础研究。实验室采用现代细胞遗传学、分子细胞遗传学、分子遗传学、细胞生物学和生物信息学技术相结合的手段,研究某些致畸、致愚、致癌疾病的遗传基础及发病机制,达到诊断、预防和治疗某些发病率高的遗传病及某些肿瘤的目的。   2006年以来,该实验室在人类遗传病的家系收集、人类重要遗传病的致病/易感基因定位与克隆、自主克隆的重要遗传致病基因或相关基因的功能研究、基因治疗新载体及临床应用研究方面取得了一系列研究成果和突出进展,成果先后获国家自然科学奖二等奖、国家科学技术进步二等奖、卫生部科技进步一等奖等。
  • 复旦王慧君:基因测序为新生儿遗传病检测提供便利
    &ldquo 我国开展儿童遗传病的研究正是最好的时候,由于基因测序技术蓬勃发展,为新生儿遗传病的检测提供了简便有效的手段&rdquo 。日前,来自复旦大学附属儿科医院儿童发育与疾病转化医学研究中心、上海市出生缺陷防治重点实验室的王慧君副研究员在接受采访时告诉记者。   为儿童遗传病提供有效手段   1990年,住在美国加州的阿丽克西斯和她的双胞胎弟弟诺亚因患多巴反应性肌张力失常遗传病,经常突然出现咳嗽和呼吸困难的症状。但当时医生无法确定病因。孩子的父亲后来成为美国LifeTechnologies公司的首席信息官,因此了解到了基因检测技术。于是,他们与LifeTechnologies公司客户Baylor医学院取得联系,为自己的一双儿女进行基因检测,结果发现,他们体内的一个叫SPR的基因出现了突变。SPR基因编码了一种酶,而这种酶被认为与多巴反应性肌张力失常有关。王慧君说,这是利用基因检测为儿童遗传病查找病因、对症下药的最经典的案例了。SPR编码的酶可以促进两种神经递质的合成,医生针对发生缺陷的酶用药,阿丽克西斯的咳嗽和呼吸症状消失了,如今他们也像正常的孩子一样能运动了。   王慧君说,&ldquo 基因技术改变了人们的医疗观念,基因测序市场呼之欲出,在儿童遗传病的诊断治疗上,作用更加积极有效。&rdquo   近些年,国内新生儿死亡率持续下降,而出生缺陷问题却日益凸显。先心病、神经发育障碍、遗传性代谢病、重要脏器结构畸形等严重影响婴幼儿的生存和生活质量,是导致儿童死亡和病残的主要原因。   数据显示,出生后即可出现的、已知病因的遗传病高达3500种。一方面,一些遗传病的表型(如智力发育障碍)是在发育中逐渐显现的,另一方面,遗传性疾病具有较高的异质性,这些因素增加了对遗传性疾病进行诊断的难度。   &ldquo 目前,迅速发展起来的高通量二代测序技术,可以对全基因组进行序列分析,对于已有明确治疗方法的遗传病,可以尽早诊断并指导临床进行早期治疗,有效降低伤残率和死亡率 对于尚无治疗方法的遗传性疾病和可能出现的并发症进行规范化治疗,改善预后&rdquo 。王慧君进一步强调指出,对新生儿期某类常见、特定的表型进行相关目的基因测序分析,而全基因组、特别是外显子基因组测序技术可为临床上指向性不明确的遗传性疾病的诊断提供有效手段。   建立遗传病检测数据分析平台   王慧君很早就开始关注儿童遗传病的分子机制研究,进行儿童遗传性疾病的分子基因诊断,并采用模式生物对新突变进行功能学研究。她在973项目中,承担着&ldquo 先天性心脏病形成、发展和干预的基础&rdquo 研究课题,并先后到美国哈佛大学儿童医院分子基因诊断实验室和美国Baylor医院分子和人类遗传学系进行了短期访问。她说自己有两大收获。一是未来主导分子诊断发展的方向就是高通量、低成本,快速出结果,并指导临床治疗 二是要尽快建立一个分子诊断平台,为临床医生提供服务。   据介绍,Baylor医学院拥有全球最大的遗传诊断实验室,有大批分工合作的专业人才组成的团队。王慧君描述说,这个诊断实验室就像一个开放的平台或者相当于一个工厂,其理念是首先让医院各科室的医生都了解基因检测对于诊断的效用,由医生们提出需求并对检测内容&ldquo 下单&rdquo ,再由实验室建立相应的检测技术。&ldquo 在美国,这些实验室是由CLIA/CAP认证的。目前该实验室一个月可以完成200多例全外显子组的临床病例检测,样本来自世界各地。&rdquo 王慧君说。   中国需要遗传咨询认证人才   目前,王慧君所在的复旦大学附属儿科医院建立了儿童发育与疾病转化医学研究中心(简称&ldquo 中心&rdquo ),在以下三大方面进行着基因检测诊断的布局。首先,医院购置了最好的设备,以IonTorrent建立的高通量测序平台,用于科研和临床分析使用 其次,复旦大学儿童医院将&ldquo 中心&rdquo 的基因数据与波士顿儿童医院实验平台的数据进行对比,以确保诊断的准确性。&ldquo 由于人种不同,遗传病的突变基因存在很大差异,我们也希望尽早建立国内独有的儿童遗传病基因数据库&rdquo 王慧君说。其三,对医院26个科室的医生进行基因测序技术的知识普及和培训,让大家了解基因检测能够为诊断带来更加快速和准确的信息,帮助临床进行疑难病例的诊断。   值得一提的是,高通量测序取得的DNA数据的变化实在太多,也非常复杂,对于结果需要反复和多角度的判断,尤其是面向临床医生和患者家属的解释,需要专业人员的沟通解释,王慧君说,美国有专门的遗传咨询师职业。他们是由那些具有医学背景和基因检测知识的人才,通过遗传咨询师执业认证后取得进行这类咨询的资质。这些专业咨询师对基因检测报告进行全面解读,他们面对的人群是医生和患者,&ldquo 这一职业刚刚兴起,准入门槛并不高,但真正进入的人却很少。&rdquo 王慧君解释到。执业遗传咨询师要具备广泛的社会知识,要了解病患心理,懂得语言表达,并以最恰当的方式将疾病的信息传递出去。   &ldquo 现在我们缺少的是能够了解基因技术,又对临床有着深刻认识,同时,也善于以通俗易懂的语言向病患家属做疾病知识介绍的遗传咨询师&rdquo 。王慧君认为,基因检测技术日趋成熟,未来在应用上不断普及将涉及更多的社会伦理问题,因此,建立健全法律法规至关重要。遗传咨询师是这个市场出现不可缺少的环节。她希望,中国能够早日建立起遗传咨询师执业规范,培养更多的人才,使得基因检测技术能够获得更加广泛的应用,造福人民。
  • 遗传分析技术验证出遗骨正是理查三世
    2014年12月2日| GenomeWeb记者报道 纽约(GenomeWeb)——近日,由莱斯特大学研究人员领导的一支国际合作研究团队通过使用家谱数据和遗传分析,验证出在英国停车场下发现的一具遗骨确实属于理查三世国王,从而成功解决一项搁置超过500年的法医案例。 “掌握任何已知历史人物的遗传数据都足以让人兴奋,更何况是一位英国国王。”对本项研究提供了部分资助的威康信托基金会文化与社会部门负责人Simon Chaplin说道,“这一信息的发现丰富了现有的理查三世的研究资料,并进一步提示我们,研究人类遗体能帮助我们了解历史。我们期待,在将来我们能够了解更多关于理查三世的故事。” 理查三世于1483年即位,并在两年后的博斯沃思战役中去世,是最后一位在战争中死去的英国国王。历史记录表明,理查三世的遗体被运送至莱斯特,并埋葬在名为Grey Friars的中世纪教堂中。但是,1538年该修道院被解散,其中的大部分建筑也在随后的年代里逐渐拆除。 尽管有传闻称理查三世的遗体被挖出并丢入莱斯特的Soar河中,但大多数历史学家仍相信他仍安稳地躺在修道院曾经矗立的位置。不过他的墓地的精确位置仍不知晓。 2012年,在Grey Friars教堂原址处发掘出了一具遗骨,其考古学断代及放射性碳测定年代的结果均显示该遗骨可能属于理查。对该遗骨进行的进一步分析表明它属于一位30至34岁的男性,并有着严重的脊柱侧弯及多处战争伤处——所有这些均与这位国王的已知信息相一致。 为了一劳永逸地证实该遗骨(在发掘出时被命名为1号遗骨)确实属于理查三世,莱斯特大学的研究团队对这位国王的现有亲属及亲属的遗体进行了DNA分析,对包括线粒体全基因组(属于母系遗传)和Y染色体标记(属于父系遗传)在内的多个关键遗传标志进行了研究。 科学家们首先使用芯片DNA杂交方法对1号遗骨的Y染色体SNP位点进行了研究,之后,研究人员使用靶向PCR扩增方法,将特定扩增产物在Ion Torrent PGM平台上进行测序以作进一步分型,并使用Promega PowerPlex Y23系统分析获得了一个STR单倍型。 当将实验发现与对已知的5位理查三世的父系亲属的分析进行对比时,研究人员并未发现遗传相关性。不过鉴于假父系的可能性,在理查三世与其后代间的所有世代中据估计有高达16%的假父系可能,研究人员认为这一结果并不能作为决定性因素。 研究人员注意到,假母系的可能性显然要比假父系可能性低很多。随后,研究团队对1号遗骨的线粒体DNA(mtDNA)进行了检测,并分别与理查三世的母系19和21代的两位个体的样本进行了比对。 他们首先对两位亲属的mtDNA对照区域使用Sanger测序法对双链进行了平行双重测序,并发现在同一个体或个体间的平行双样间不存在序列差异。 依研究团队在Nature Communications中所述,1号遗骨的DNA分别交由两个专门从事古代DNA分析的不同实验室进行独立提取,随后对其mtDNA对照区域上的三个高度可变区进行测序。他们还提到,他们另外还对PCR克隆产物进行了Sanger测序,除了两处可认为是古代DNA中常见的DNA损伤模式外,并未观察到序列差异。 在1号遗骨与理查的后代间,研究人员发现了一处完美匹配,且研究人员发现其在研究的遗传时间周期内在所有母系亲属中均保持一致。 为了测定完整mtDNA的相似性,研究人员随后对这三份样品均进行了线粒体全基因组测序。对于现代样品,通过两轮平行双重长链PCR对其完整线粒体基因组进行了扩增,随后使用Ion Torrent PGM进行了测序。 同时,研究人员使用了芯片DNA杂交捕获方法对1号遗骨的mtDNA序列进行了全基因组测序,从16组提取制得了24个测序文库,其中探针是根据两位现代亲属的mtDNA序列而设计的。 研究表明,在1号遗骨与一位理查的亲属之间存在完美的全基因组序列匹配,与另一位亲属也只有1个碱基的差异,因而可认为在所研究的时间周期内母系亲属个体间这些序列保持一致。而与含26127份欧洲全mtDNA对照区域序列的数据库与1832份英伦诸岛样品的数据库进行的比较表明,这种mtDNA的完美匹配不太可能是由于偶然因素造成的。 最后,研究团队还对1号遗骨进行了瞳孔颜色及发色的DNA分型,结果表明有96%的可能性为蓝色瞳孔,77%的可能性为金发,这与理查三世留存的早期肖像相一致。 “我们的文章囊括了对发掘自莱斯特Grey Friars原址的1号遗骨所做的所有遗传及宗谱分析鉴定,并首次将所有证据线索综合起来从而得到了这具遗骸的鉴定结果。”Nature Communications研究工作的首席作者Turi King说道,“即使在我们最保守的分析中,仍然有着压倒性的证据表明这确实是理查三世国王的遗骸,从而解决了这一超过500年的寻人案例。” “这些证据结合起来共同证实了遗骸属于理查三世。”资深作者Kevin Schurer提到,“母系后代的三角测量尤为重要。考虑到非亲生的发生率,Y染色体谱系中断并不令人非常惊讶,不过这会产生一系列关于继承权的有趣的推测问题。” 正如文章作者所指出的,在理查三世登基前几年发生的一起或数起假父系事件可能引发对理查三世死后人们对大不列颠王室合法性的怀疑。
  • 科学家开发出一种新方法能快速纠正遗传性的基因突变 从而有望治疗多种人类遗传性疾病
    人类诱导多能干细胞(hiPSCs)允许对遗传性疾病进行体外研究,并且拥有个体化干细胞治疗的潜力,基因编辑技术(能够精确修饰特异性目标位点)代表了不同hiPSC应用的宝贵工具,这在单基因疾病中特别有用,其能帮助分析未知突变的功能,或创造遗传纠正且来自患者机体的hipsCs。近日,一篇发表在国际杂志Stem Cell Reports上题为“Simultaneous high-efficiency base editing and reprogramming of patient fibroblasts”的研究报告中,来自赫尔辛基大学等机构的科学家们通过研究开发了一种新方法,其能精确且快速地纠正培养的患者机体细胞中的遗传改变。这种新方法能从患不同遗传性疾病患者2-3毫米的皮肤活检组织中产生遗传性纠正的自体多能干细胞,而纠正后的干细胞对于研究非常有必要,其对于开发治疗有关疾病的新型疗法也非常重要。这种新方法基于此前研究人员在干细胞和基因编辑领域的突破性研究(包括获得诺贝尔奖的技术),第一项技术就是诱导多能干细胞的开发,即来自分化细胞的ipsCs,其于2012年获得了诺尔贝生理学或医学奖。而另一项技术则是CRISPR-Cas9基因魔剪的创新,其于2020年也获得了诺贝尔奖。研究者所开发的新方法结合了这些技术来纠正引发遗传性疾病的基因突变,同时还能创造出功能齐全的新型干细胞。研究人员的长期目标就是产生具有治疗特性的自体细胞,使用来自患者机体纠正的细胞就能帮助避免来自供体的器官和组织移植所产生的免疫挑战。目前有超过6000种已知的遗传性疾病,其都是由不同的基因突变所致,其中一些疾病目前是利用来自健康供体所捐赠的细胞或器官移植来进行治疗(如果合适供体有的话)。所纠正的干细胞。图片来源:Sami Jalil研究者Kirmo Wartiovaara教授表示,我们所开发的新系统在纠正DNA错误方面要比老方法更快且更加精准,同时也减少了不必要变化的风险。在完美的状况下,如今研究人员已经达到了100%的功效,尽管研究人员需要记住的一点是,对培养的细胞进行修正距离已经证实的治疗应用还非常遥远,这或许就是一个非常积极的开始。综上,本文研究结果表明,研究者所开发的新方法能够产生几十个基因编辑的hipsC单克隆细胞系,其具有前所有为的效率和稳定性,同时还能大大减少细胞培养所花费的时间,并能降低其在体外发生改变的风险。原始出处:Sami Jalil,Timo Keskinen,Rocío Maldonado, et al.Simultaneous high-efficiency base editing and reprogramming of patient fibroblasts, Stem Cell Reports (2021). DOI:10.1016/j.stemcr.2021.10.017
  • 第二届Illumina生殖与遗传系列(上海站) 暨“高通量时代的产前及儿童遗传学检测及咨询”圆满落幕
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/48b312a7-ca0e-4a6f-8e23-01dfa60db6ed.jpg" title=" 1.jpg" / /p p   天朗气清,金风送爽的八月,第二届Illumina生殖与遗传系列高峰论坛终点站于13日在上海拉开帷幕,与郑州站和西安站不同的是,本站主题将高通量芯片及测序技术的应用从产前检测延伸到了儿童遗传学检测及咨询领域。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/ac293152-ba14-4335-b3dd-c90fc79b813b.jpg" title=" 2.jpg" / /p p style=" text-align: center " ▲& nbsp 上海场会议现场 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/a2589c8d-c3ec-4008-9981-527ee23d4f81.jpg" title=" 3.jpg" / /p p style=" text-align: center " ▲& nbsp 欢迎辞& nbsp & nbsp Tom Berkovits 先生 Illumina亚太区市场发展部副主管 br/ /p p strong span style=" color: rgb(31, 73, 125) " span style=" font-size: 18px " 01 /span /span /strong span style=" color: rgb(31, 73, 125) " span style=" font-size: 18px " /span strong 高通量测序技术在儿童遗传病应用—— 瓶颈、挑战和突破 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/296b5673-b3cf-4af9-b3e5-5aa61a0345e3.jpg" title=" 4.jpg" / /p p style=" text-align: center " ▲& nbsp 讲者:余永国& nbsp 博士 /p p   余博士风趣详实地通过病例分享肯定了新一代测序技术的优势 —— 辅助临床明确遗传学病因、精准医疗,推动着临床诊断进入新模式。但高通量分子诊断技术在临床应用中也面临一些瓶颈和挑战,如:针对复杂的临床患者如何选择不同的分子诊断方案,如何规范实验室报告、缺乏大数据分享、基因芯片和下一代测序技术的选择等,针对以上困难,余博士认为,首先作为临床医务工作者,需要加强临床遗传基本功,规范遗传咨询流程,普及遗传学科普知识;医疗机构需要壮大遗传咨询师及遗传咨询医师的队伍;联合多学会建立规范的学组共识;最后余博士倡导医院、检测机构共同努力搭建可视化共享的出生缺陷及重大遗传性疾病的遗传数据库,进行新技术的大样本探索。 /p p span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " 02 /span 医学外显子组测序在遗传病患儿诊断中的应用介绍& nbsp /strong /span br/ /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/1bcb91ab-2ebc-4549-9d05-768e5ddf784e.jpg" title=" 5.jpg" / /p p style=" text-align: center " ▲& nbsp 讲者:赵薇薇& nbsp 教授 /p p   遗传因素是疾病发生的重要原因之一,据OMIM数据库统计,符合孟德尔遗传方式的疾病有8477种,其中表型有描述,基因明确的有5051种,如何针对发病率低,病种繁多,累计发病率高的遗传病进行检测,赵教授认为外显子测序能提供更精准的诊断。(医学外显子组技术是针对每个怀疑有遗传病的个体同时检测约5000个致病基因)从2009年至今金域分子遗传共收集患者及家系样本6万例,采用Illumina公司的TruSight One临床外显子 — Panel检测,突变检出率为37%。最后赵教授通过病例解析强调了高通量测序过程中质量控制、生物信息学分析中的过滤参数以及ACMG五分类法在变异注释时的重要性。 /p p span style=" color: rgb(31, 73, 125) font-size: 18px " strong 03 /strong /span span style=" color: rgb(31, 73, 125) " strong Genetic counseling: Tool to Convey Complex Information /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/77eb1cdb-b1d8-4e8d-b5cd-d55ff7e54375.jpg" title=" 6.jpg" / /p p style=" text-align: center " ▲& nbsp 讲者:Sucheta Bhatt& nbsp 博士 /p p   Sucheta博士在这一站分享了更多有关儿童遗传疾病咨询的经验,她首先强调进行遗传咨询时首先获得病史及家族史的重要性,指导根据疾病的临床特征分析病因,如何提供遗传风险评估的专业意见,如何与临床医师紧密合作,以及如何在充分知情同意后帮助患者选择下一步诊断技术。随后Sucheta博士引入一个疑似Noonan综合征儿科病例,从问诊,搜集病史,到评估各项检测,再到与患者家人的咨询建议,把遗传咨询的流程及要点清晰地呈现给听众们。 /p p span style=" color: rgb(31, 73, 125) font-size: 18px " strong 04 /strong /span span style=" color: rgb(31, 73, 125) " strong 高通量分子检测技术在出生缺陷三级防控中的应用 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/9a168f3a-2870-47b9-aea8-e80396b2fff4.jpg" title=" 7.jpg" / /p p style=" text-align: center " ▲& nbsp 讲者:熊丽& nbsp 博士 Illumina大中华区临床应用专家 /p p   出生缺陷是一个严重的公共卫生和社会问题备受关注,传统技术精度及通量受限,Illumina基因芯片和新一代测序为代表的高通量检测技术展现出实力。熊丽博士由出生缺陷三级防控入手,分别介绍各类分子诊断技术的应用范围: br/ /p p   一级预防:携带者筛查通过靶向测序技术得以实施;胚胎植入前遗传学筛查(PGS)采用低覆盖度全基因组测序优选二倍体胚胎。 /p p   二级预防:核型定位技术(Karyomapping)能够成为通用单基因病胚胎植入前遗传学检测解决方案;NIPT是新一代测序技术在临床广泛应用的典范,阳性预测值可高于90%;基因芯片技术作为核型分析的补充在染色体病的产前检测中广泛应用。 /p p   三级预防:目前国际多个研究项目正采用新一代测序技术进行新生儿筛查研究,而临床全外显子检测,全外显子或全基因组测序大大提高了检测力,也在逐步改变目前的遗传疾病低效诊疗模式。 /p p span style=" color: rgb(31, 73, 125) font-size: 18px " strong 05 /strong /span span style=" color: rgb(31, 73, 125) " strong 案例讨论 /strong /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/54d054ce-945a-40b8-a8b2-bf866014a8d4.jpg" title=" 8.jpg" / /p p style=" text-align: center " ▲& nbsp Sucheta Bhatt 等 /p p   上海站的压轴环节,是由Sucheta博士带来的遗传咨询典型案例讨论,30分钟时间内,两个曲折精彩的病例,现场新华医院余博士、上海国妇婴徐晨明博士等均参与分享了见解及咨询经验。两个案例一个先天性多发畸形,通过全基因组测序找到了致病基因,指导后续的检测及再发风险;另一个为重度发育迟缓,经家系外显子测序后仅找到临床意义不明(VOUS)的变异,在场同仁们探讨这类变异的咨询重点,随访需求以及数据库积累更新的重要性。余博士在点评时特别强调了中西方文化差异以及在中国临床遗传咨询需重视的沟通技巧,面对类似案例的咨询思路,操作流程建议,收获全场掌声不断。 br/ /p p strong 后记: /strong 郑州,西安,上海,三场足迹让我们深深体会到了临床用户们对新一代测序的认可与需求: /p p strong 8月9日& nbsp & nbsp 郑州 /strong br/ /p p   Illumina与安诺优达公司、郑大一附院联合举办的郑州站论坛,以“碰撞& nbsp · & nbsp 融合& nbsp · 发展”为主题引入了高通量测序技术的遗传学热点应用。 br/ strong 8月12日& nbsp & nbsp 西安 /strong br/ /p p   Illumina与贝瑞和康公司联合举办的西安站引起了各个产前诊断中心同仁门的热切交流,将高通量测序技术带入了深入应用及临床转化的话题。 br/ strong 8月13日& nbsp & nbsp 上海 /strong br/ /p p   Illumina生殖与遗传高峰论坛的上海站主场,把学术与交流的主题从产前筛查、产前诊断、延伸到儿童遗传学检测,在众多专家们的学识碰撞及实战经验交流之间,赋予了高通量测序在遗传学领域应用更加明媚的前景。& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp br/ /p p   不论是最为成熟的无创产前检测(NIPT),还是新兴引起广泛关注的植入前遗传学筛查(PGS),或是在遗传病检测实践中初步展露头角的产前CNV测序及遗传疾病外显子测序,医疗同行们对Illumina技术的愈加关注,通过各中心经验的分享,增添了对新技术的应用信心和期望。为此,Illumina从未停止过创新脚步,致力于通过科技的革新帮助更多用户改善检测流程,寻找遗传学答案,解开基因组学奥秘。 /p p span style=" color: rgb(255, 192, 0) " strong 关于Illumina /strong /span br/ Illumina公司通过解码基因组而改善人类健康。我们注重创新,这使我们成为DNA测序和芯片技术的全球领导者,并为科研、临床和应用市场的客户提供服务。我们的产品应用分布在生命科学、肿瘤学、生殖与遗传、农业及其他新兴市场领域。如欲了解更多信息,请访问Illumina中国官网。 /p
  • 从木乃伊到古遗传学,PCR技术弄潮儿万特帕博获2022年诺贝尔生理学或医学奖|盘点近10年得主
    仪器信息网讯 10月3日电 据诺贝尔奖官网消息,北京时间10月3日下午,2022年诺贝尔生理学或医学奖率先揭晓,科学家Svante Pääbo获奖,以表彰他“在已灭绝的古人类基因组和人类进化方面的发现”。图源:诺贝尔奖官网关于遗传学家斯万特帕博(Svante Pääbo)斯万特帕博1955年出生于瑞典的斯德哥尔摩,他的母亲是从爱沙尼亚流亡到瑞典的化学家凯琳帕博(Karin Pääbo),父亲为1982年的诺贝尔生理学或医学奖得主、瑞典生物化学家苏恩伯格斯特龙(Sune Bergström)。从木乃伊到古遗传学(paleogenetics),PCR技术弄潮儿在科学家试图还原人类演化历史的过程中,进化遗传学家斯万特帕博(Svante Pääbo)不仅绘制出人类的近亲尼安德特人的基因组图谱,还为古人类的研究贡献了宝贵的方法和技术,比如古DNA超净实验室。利用分子生物学的方法研究古人类和其他古生物,这使得古人类学研究增加了一个全新而重要的视角,甚至在一定程度上开创了一个新的领域——古遗传学(paleogenetics)。在很小的时候,帕博就表现出对考古研究的兴趣,他的房间堆满了史前瑞典人制作的陶器碎片。十三年岁那年,帕博和母亲一起到埃及度假,第一次接触到木乃伊,萌生了研究木乃伊的想法。1985年4月18日,帕博的论文“对古代埃及木乃伊DNA的分子克隆”(Molecular cloning of Ancient Egyptian mummy DNA)登上《自然》封面,引发学界轰动,很多主流科学媒体都给予了报道。1987年,帕博开始跟随威尔森在加州大学伯克利分校做博士后做研究。当时,扩增特定DNA片段的聚合酶连锁反应(Polymerase chain reaction,PCR)技术刚刚兴起。在PCR技术的帮助下,帕博从威尔森实验室剩余的斑驴样品中提取出DNA并进行分析,测序的结果显示与1985年发表的结果相似。这意味着,古DNA的测序不仅可以更高效地进行,而且实验的结果能够被重复验证。点击查看PCR仪器仪器优选,与诺贝尔获奖者一起做PCR技术弄潮儿诺贝尔生理学或医学奖于1901年首次颁发。截至2021年,累计颁发了112次。以下为近10年诺贝尔生理学或医学奖得主及其成就:盘点回顾近年获奖者2021年美国科学家戴维• 朱利叶斯和阿德姆• 帕塔普蒂安因在发现温度与触碰“感受器”方面所做出的贡献,获诺贝尔生理或医学奖。2020年美国科学家哈维• 阿尔特、查尔斯• 赖斯以及英国科学家迈克尔• 霍顿,因在发现丙型肝炎病毒方面所做出的贡献,分享诺贝尔生理或医学奖。2019年美国科学家威廉• 凯林、格雷格• 塞门扎以及英国科学家彼得• 拉特克利夫,因在“发现细胞如何感知和适应氧气供应”方面所做出的贡献获奖。2018年美国科学家詹姆斯• 艾利森和日本科学家本庶佑因“发现负性免疫调节治疗癌症的疗法”方面的贡献,荣获诺贝尔生理或医学奖。2017年美国科学家杰弗里• 霍尔、迈克尔• 罗斯巴什和迈克尔• 扬因解释了许多动植物和人类是如何让生物节律适应随地球自转而来的昼夜变换的,获得诺贝尔生理或医学奖。2016年日本分子细胞生物学家大隅良典因发现细胞自噬的机制,荣获2016年诺贝尔生理学或医学奖。2015年中国科学家屠呦呦因为“中药和中西药结合研究提出了青蒿素和双氢青蒿素的疗法”获得诺贝尔生理或医学奖;同时,爱尔兰科学家威廉• 坎贝尔和日本科学家大村智因“发现对一种由蛔虫寄生病引发的感染采取了新的疗法”同获该奖。2014年英国科学家约翰• 奥基夫和挪威两位科学家爱德华• 莫索尔和梅• 布莱特• 莫索尔因“发现构成大脑定位系统的细胞”获得诺贝尔生理或医学奖。2013年美国科学家詹姆斯• E• 罗斯曼和兰迪-W。谢克曼,以及德国科学家托马斯-C。苏德霍夫因“在细胞内运输系统领域的新发现,三人发现了细胞囊泡交通的运行与调节机制”获得诺贝尔生理或医学奖。2012年英国科学家约翰• 格登爵士和日本科学家山中伸弥因“发现成熟细胞可被重写成多功能细胞”获得诺贝尔生理或医学奖。
  • 中国著名遗传学专家张思仲因病逝世 享年82岁
    p   11月27日,从四川大学华西医院获悉,我国著名医学遗传学家、川大华西医院医学遗传中心博士生导师张思仲教授因病医治无效,不幸于2017年11月26日17时在成都逝世,享年82岁。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201711/insimg/e9cd529d-7d30-4212-964b-c7c8f418996f.jpg" title=" untitled2.png" width=" 267" height=" 243" style=" width: 267px height: 243px " / /p p   张思仲教授1935年4月30日生于四川江津,1952年以优异成绩考入北京大学医学院,1954年公派到前苏联列宁格勒第一医学院留学。1960年学成归国,在原子能研究所从事医学辐射防护研究工作。1974年调入原华西医科大学肿瘤研究所工作。1978至1980年,由国家教育部派遣到瑞典卡罗琳医学院诺贝尔医学所访问学习。回国后,在国内率先成立由卫生部首次批准的医学遗传研究室,组织创办《遗传与疾病》杂志(现名《中华医学遗传学杂志》),担任该杂志主编20余年。1988年,牵头成立四川省医学会医学遗传学专委会,连任5届主任委员,为四川省医学遗传学发展和产前诊断工作作出了巨大贡献。 /p p   张思仲教授长期致力于我国医学遗传学教育事业,桃李芬芳。直到75岁高龄,仍兢兢业业地在一线为临床医学专业的本科生和研究生传道授业。30多年来,他培养了博士、硕士研究生100余人,其中不乏国内外医学遗传领域的栋梁之才。张思仲教授一生简朴,遵从先生遗愿,丧事一切从简。张思仲教授遗体告别会定于2017年11月28日7时30分在华西医院太平间举行。 /p p strong   A 求学篇 /strong /p p strong    span style=" color: rgb(0, 176, 240) " 少年聪慧考试总是拿第一 /span /strong /p p   张思仲1935年出生于江津市一个书香门第之家,父亲张采芹是著名的国画家,与张大千、张善孖并称“蜀中三张”。张家兄弟四人,张思仲排行老二,四兄弟皆品学兼优。父亲非常重视孩子的教育,每到假期都要请来国文、英文等老师给孩子们补课。 /p p   1946年,张思仲以当地第一名的成绩考入成都石室中学,张思仲少年聪慧,学习刻苦,他的各科成绩一直名列前茅。中学毕业前一年,正值抗美援朝时期,因羡慕同学们报考了“军干校”出来可以当解放军,而自己因年龄不够,还戴了眼镜未被录取,于是中学毕业后他选择了医科,幻想着有朝一日上朝鲜战场救死扶伤。 /p p   1952年,张思仲以优异成绩考入北京大学医学院。这一届高考,整个西南只有他一人被该校录取。一年后,他又以优异成绩通过公派留学考试,在经过一年的俄语学习,他于1954年到苏联列宁格勒第一医学院,开始了自己6年的海外求学生涯。 /p p   当时新中国成立不久,医疗技术水平远远落后于西方国家,能够到社会主义阵营中最高的医学殿堂之一学习,张思仲自然珍惜这个机会。上课前他先预习,上课时认真听讲,课后常与同学们讨论,做实验也非常认真,还参加过生物化学学生科研小组,跟着老师一起学做科研,并写过论文作过报告。二年级时他还选修了第二外语德语。他的学期考试各科成绩册上都是优。 /p p   功夫不负有心人,六年后,张思仲毕业时获得了苏联全优文凭医师证书,向祖国和人民交了一份优秀答卷。 /p p    strong span style=" color: rgb(0, 176, 240) " 远离喧哗研究医学遗传学 /span /strong /p p   1960年,似乎并不是留苏生回国的好时机,此时中苏关系破裂,苏联专家已拆走,留苏学生回国后一律先上“反修学习班”,然后参加集体劳动。几个月学习之后,张思仲被分配到位于西安的一所中专学校当校医,几经周折,张思仲又被重新分配到了核工业部在北京的原子能研究所从事医学辐射防护研究工作。 /p p   1964年,从北京原子能所专门分出了一个华北工业卫生研究所从事医学辐射防护研究,并迁到太原。张思仲调到太原后,在该所一工作就是十年。开始他们还做一些科研,不久业务人员即下放搞“四清”,继而十年动乱,文革开始。张思仲因一贯热爱学习,埋头科研,也被贴了两张大字报,成了研究所里的“修正主义黑苗子”。其后,全所研究人员又集体下放到核工业部大湖北钟祥县的万人干校,劳动加搞运动。 /p p   对于一个知识分子,业务工作就是生活的主要内容和支撑。晚上,张思仲透过牛棚仰望星空,思考着生命的意义和未来,以及怎样利用时间。他没有做逍遥派,动乱时期医生经常不上班都无人管,既然不能在研究所做科研,于是他就利用业余时间到医院里代替长期回外地探亲的病理科医生做病理活检和诊断。 /p p   1974年,张思仲终于调回成都与家人团聚,并在华西医大工作。他在肿瘤研究所开始了此后四十年始终如一的研究——医学遗传学研究。当时我国遗传学教学研究,主要还是集中在生物学领域、人类和医学应用遗传研究在国内还算是新兴学科,尤其科研与临床相结合的工作还开展不久,他可算是这方面研究的先行者。 /p p    span style=" color: rgb(0, 176, 240) " strong 决意回国带回最先进知识技术 /strong /span /p p   1978年,教育部选派5名访问学者,向国外科研院校学习世界最新的医药技术,华西医大有一个名额,在候选人中,张思仲以出色成绩入选。 /p p   1979年,张思仲来到瑞典卡罗林医学院的诺贝尔医学细胞遗传研究所,开始了为期两年的访问学者生涯。这里是瑞典细胞化学家卡斯珀松工作的地方,正是这位科学家在上世纪60年代末,发现了细胞遗传学一个里程碑式的染色体显带技术。张思仲到瑞典学习就是想把世界上各种最先进的细胞遗传学理论和技术学到手。 /p p   诺贝尔医学研究所在世界上久负盛名,当时研究室的电脑终端就与美国国会图书馆的资料库相联结,获得最新的医学资料很容易。在瑞典两年科研与学习期间,频繁的学术交流和实验合作中,张思仲让自己的医学遗传学知识和科研跟上了日新月异的更新步伐。其间他共完成了5篇论文,并多次到瑞典、丹麦、英国等的其他科研机构参观学习,并多次出席各种国际学术会议,与欧美一流的学者广泛交流。在隆德大学他见到了世界上首先证实人类染色体为46条的列万教授,在列万教授的实验室他们像是多年不见的老朋友,整整谈了两个上午,临别时,列万教授还把自己的所有新著作赠送给张思仲。 /p p   两年过去了,当张思仲要从瑞典回国时,瑞典方面再三挽留,希望他能留下来继续工作,但张思仲早已决意回国。 /p p strong   B 研究篇 /strong /p p strong    span style=" color: rgb(0, 176, 240) " “破冰”之举建立医学遗传学研究室 /span /strong /p p   上世纪80年代初,医学遗传学知识和技术日新月异。而在我国,医学遗传学教学科研大多附属于医学院校一年级生物学教研室,课程不多,开展研究和临床服务的更少。回国后的张思仲决心以自己的努力,缩短该学科医、教、研与欧美先进国家的差距。这在我国西南地区,都算是“破冰”之举。 /p p   在校领导的大力支持下,新的医学遗传研究室在华西医大建立了。研究室草创之初条件非常简陋,缺乏资金和像样的仪器设备,只有三间粉刷过的空屋子,也不像现在可以去申请课题经费。整个国家都处在百废待兴的阶段,可用于基础科学研究的经费很少,于是只好因陋就简,或化缘,或借用。好在校院领导大力支持,华西医大又与国外教会颇有渊源,张思仲也是广结良缘,最后,加拿大国际交流援助局赠与了大量仪器和试剂,包括一批二手仪器设备以及一箱科研文献,实验室工作才得以开展。 /p p   在这种艰苦条件下,实验室成立不久就在国内外相关杂志发表多篇论文。张思仲关于鼻咽癌染色体的细胞遗传研究论文,更引起了不少外国同行的关注。世界肿瘤细胞遗传权威美国的塞文教授写信来盛赞张的工作,并要求与之密切合作。 /p p   上世纪80年代,张思仲的论文收到苏联、美国、德国、阿根廷、秘鲁等同行学者共数以百计的论文索取函件,并有多家杂志来信邀稿。他们的论文集《人类染色体高分辨显带及其在医学中的运用》是中国科学院基金早期资助课题,并获得了国家级科技进步二等奖。 /p p   难能可贵的是,张思仲的研究始终与应用相结合,他们的研究室是当时国内唯一归属于临床医学院的遗传学研究室。因研究与临床紧密结合,他的研究能更为直接地为遗传病患者服务。 /p p    span style=" color: rgb(0, 176, 240) " strong 见证奇迹参与人类基因组计划 /strong /span /p p   上世纪九十年代初,以破译人类遗传信息为最终目的人类基因组计划开始实施,这是由美国为首的西方大国共同发起的一项规模宏大,跨国跨学科的科学探索工程。 /p p   在这项影响全人类的宏大计划前,中国的科学家当然也不能落后,中国自己的人类基因组计划在国家自然科学基金委员会的支持下于1994正式启动。 /p p   2004年4月,中国完成了人第3号染色体上3000万个碱基对的工作草图。中国加入人类基因组计划成为生命科学领域里国际间大规模研究合作的起始点,也标志着中国的生物科学研究开始跻身国际前沿行列。 /p p   1992年美国启动了人类基因组计划,当时张思仲正在美国短期访问。在美国的中国留学生和学者,尤其是相关专业者得知后,意识到它的重要意义,曾集体讨论后,张思仲写了一封书信向国内专门报告此事,并由与华西关系密切同时也是华西客座教授的刘先生将该信交给了张,要他转交给我国最知名的遗传学家谈家桢先生,回国后张立即完成了这一任务。其后,张又参加了我国自然科学基金会召开的香山会议,专门讨论启动我国的人类基因组计划问题。 /p p   此前,他们已对成人多囊肾病、冠心病伴动脉粥样硬化、高血压和糖尿病、以及肿瘤特别是鼻咽癌等的相关基因进行过卓有成效的研究。 /p p    span style=" color: rgb(0, 176, 240) " strong 攻“遗传病”破解男性不育之谜 /strong /span /p p   医学遗传学的目的应当是为病人服务,为临床服务。从上世纪九十年代起,张思仲曾把研究方向聚焦到男性不育方面。 /p p   世界上约有10%-15%的夫妇是不育的,其中约有一半为男方原因所致。原发生精障碍是男性不育的一个重要原因,因而对无精症和寡精症相关基因研究,包括基因的克隆、突变分析和功能鉴定应是疾病基因组学和发育遗传学研究的重要课题。 /p p   因此,张思仲他们采用了多种分子遗传学、蛋白组学技术,通过小鼠等动物实验,并结合临床对大量生精障碍患者进行了研究,先后分离和克隆了11个有自主知识产权的与人类精子发生相关的新基因,并阐明了部分基因的致病机理。 /p p   三十余年,医学遗传理论和技术突飞猛进,发现许多疾病均与遗传有关,张思仲所在研究室在每个发展阶段都紧跟时代。考虑到国家全局的需要,他与三弟张思凝共同主持完成了我国规模宏大的四川省遗传病流行病学综合调查研究,为弄清人群的患病情况提供了大量资料。 /p p   张思仲领导的实验室,还开展了对多种常见遗传病如成人多囊肾病、进行性肌营养不良和强直性肌营养不良等的研究,发现了许多有临床诊断价值的致病基因异常及其群体多态性,并开展了相应的临床诊断与咨询服务。他和所在实验室的研究人员先后承担参与了包括国家自然科学基金、“863”计划项目、国家科技攻关计划在内的课题20余项。他们发表了论文二百余篇,其中在国外专业刊发表50余篇,并多次获得国家科技进步奖及部省级奖。 /p
  • 基因测序纳入医保 二胎优生有望普及
    基因检测技术是生命科学和生物技术发展的重大革命。为加快基因检测技术普及惠民,推动重大创新成果产业化,近段时间,湖南省和贵州省相继发布了关于支持基因测序技术应用的政策。  贵州省:《支持基因检测技术应用政策措施(试行)》  日前,贵州省公开发布《支持基因检测技术应用政策措施(试行)》支持政策。政策主要支持以下九个方面:组建网络化基因测序机构体系、支持拓展业务空间、探索纳入医保报销范围、支持基因测序技术研发及产业化、支持人才队伍建设、加大融资支持、落实财税扶持政策、落实政府采购政策、加强组织协调。此次政策提出高龄单独两孩孕产妇出生缺陷基因筛查享受全免费政策。  完善基因检测收费标准体系:高龄单独两孩孕产妇出生缺陷基因筛查享受全免费政策。  为了推动基因测序普及,贵州政策探索多元化付费机制,总结黔西南州兴义市无创产前基因检测、新生儿耳聋基因检测、妇女宫颈癌(HPV)筛查试点经验,探索建立财政补贴、医保报销和个人自付共同承担的基因检测付费机制,适时向全省推广。加快推动治疗药物基因检测、罕见病基因检测按规定纳入医保支付范围。高龄单独两孩孕产妇唐氏综合征等出生缺陷基因筛查享受全免费政策。  支持拓展业务空间:运用基因检测技术开展精准医疗和个体化用药  政策提出支持基层医疗卫生机构将医学检验服务整体外包给具备资质的基因检测机构。鼓励有条件的地区,以政府采购方式推广新生儿遗传性耳聋、唐氏综合征等遗传性疾病基因筛查 采取政府采购和患者自付相结合的方式,开展针对地中海贫血的遗传筛查和产前诊断、高龄产妇无创DNA检测以及肿瘤、心脑血管疾病和感染性疾病等重大疾病的基因检测。依托贵州医科大学肿瘤医院建立精准医学中心,运用基因检测技术开展精准医疗和个体化用药,提高治疗有效性和安全性。  湖南省:《湖南省促进基因检测技术应用若干政策(试行)》  2015年8月28日,湖南省人民政府印发了关于《湖南省促进基因检测技术应用若干政策(试行)》的通知,为加快海南省基因检测技术的发展和普及,提出了12项政策,包括以政府采购的方式开展和推广遗传病基因检测、开展基因检测试点、大力推广个性化医疗、将部分基因检测费用纳入医保等。  根据此政策,湖南将选择一批试点地区开展基因检测技术应用专项行动,针对曾生育智力障碍患儿或夫妇之一系智力障碍患者的对象,且现无存活子女的计划生育特殊家庭,由省政府专项基金和指定有资质的医疗机构共同出资,免费开展“先证者诊断”及产前诊断服务,降低出生缺陷儿的出生概率。  基因测序纳入医保,二胎优生有望普及  二胎政策与基因测序千丝万缕的关联  近日,全面放开二孩的消息一时间炸开了锅,上了各大媒体的头条。关于二胎政策对基因测序领域的影响评估报道也越来越多。生育政策的调整,对于基因行业的从业者来说,特别是国内无创产前基因检测相关项目的企业,这既是一个机遇也是一个挑战。  根据广证恒生研报中的数据,二胎政策将使二代基因测序在优生优育领域的市场规模至少扩增到1.1-1.2倍,约为30亿元;无创产前检测(NIPT)作为二代基因测序应用最成熟的领域,二胎政策使或将使其市场将扩大至约200亿元;胚胎植入前遗传学诊断(PGD),即第三代试管婴儿,其市场扩容所需的三大催化因素是二代基因测序技术、政策放开和市场需求,因此,在具备了各方面条件后PGD市场将有望扩增至100亿元左右。  无创产前检测(NIPT)与二胎优生  进入新世纪,我国人口发展呈现出重大转折性变化。人口总量增长势头明显减弱,劳动年龄人口开始减少,老龄化程度不断加深,家庭养老抚幼功能弱化,少生优生成为社会生育观念的主流。此次二孩政策全面放开,优生依旧会是社会生育观念的主流。如何优生,这里孕妇的产前检测就扮演重要的角色。  无创产前检测(NIPT)在2011年底引入美国和西欧,并迅速商业化应用到中东,南美,南亚、东南亚,以及非洲。无创产前检测在我国正式进入轨道之前也遭遇了不少坎坷。2014年2月国家卫计委紧急叫停了国内无创产前基因检测等项目,然而2014年12月国家卫计委又谨慎的放开了包括遗传病诊断、产前筛查与诊断、植入前胚胎遗传学诊断等项目的试点应用单位,从此正式拉开了二代基因测序用于医学临床相关项目的序幕。  随着研究的深入,无创检测的条件和范围有望不断扩大,延伸至包括微缺失/重复综合征和常见的孟德尔遗传病等。检测染色体非整倍体的商业化进程正在提速,市场规模稳步增加。早期的染色体和其他遗传性异常检测为更好的孕期护理创造了条件,同时可以更为合理的调动有限的医疗资源服务于有遗传异常的新生儿的健康管理成为可能。  近年来,随着环境污染及生育年龄的延后,高龄孕妇越来越多,二胎政策放开后,高龄产妇的数量将会增加。研究显示,高危及高龄孕妇怀有染色体非整倍体与其他染色体疾病的风险显著升高。NIPT临床数据显示,高龄孕妇中三大染色体非整倍体阳性率约1.36%,高风险孕妇中三大染色体非整倍体阳性率约0.94%。无创产前检测的出现,使高龄及高危产妇的的产前诊断进一步优化。  基因测序纳入医保,优生渔翁得利  无创产前检测(NIPT)作为二代基因测序应用最成熟的领域,倘若基因测序纳入医保完全落实,那么二胎优生将渔翁得利。如今在国内,局部省份相继出台政策,贵州发布高龄单独两孩孕产妇唐氏综合征等出生缺陷基因筛查享受全免费政策。湖南省就计划生育特殊家庭免费开展“先证者诊断”及产前诊断服务,降低出生缺陷儿的出生概率。  此次贵州政府特别指出关于新生儿筛查以及高龄产妇产前检测的收费问题。为了完善基因检测收费标准体系,贵州省政府探索建立财政补贴、医保报销和个人自付共同承担的基因检测付费机制,鼓励有条件的地区,以政府采购方式推广新生儿遗传性耳聋、唐氏综合征等遗传性疾病基因筛查 采取政府采购和患者自付相结合的方式,开展针对地中海贫血的遗传筛查和产前诊断、高龄产妇无创DNA检测以及肿瘤、心脑血管疾病和感染性疾病等重大疾病的基因检测。此政策对于当地二胎优生无疑又是一重大利好消息!  备注:本文部分内容参考贵州省人民政府官网、湖南省人民政府官网、生物医学互助平台、健康点。
  • 2021年诺奖热门:光遗传学背后的科学家们
    光可被细菌、藻类等低等生命和人类等高等动物通过视紫红质系统而感知。20世纪70年代后,几种细菌和藻类通道视紫红质的发现为光控系统的诞生奠定了基础。光遗传学最初由米森伯克于2002年首次实现并于2005年由迪塞罗斯(也译作代塞尔罗斯)和博伊登进一步完善,其应用极大地增强了对大脑功能的理解。 光遗传学可使科学家借助光来精确开闭特异神经元从而达到操纵神经元活性和动物行为的目的。光遗传学技术已被证明是在细胞和系统层面研究健康和病理大脑活性的一个非常强大且有用的工具。文章系统介绍了光遗传学诞生的历史背景、重大事件、发展过程、应用领域及重要价值等。 光对生命具有举足轻重的地位,“万物生长靠太阳”。对大部分植物而言,它们借助光合作用合成营养物质并释放出氧气,而动物则依靠这些营养物质和氧来维持生存。此外,光还可以指导细菌和植物的向光性,控制植物生长和开花时间。 对于人类和其他动物而言,借助光来观察和感知这个 “光明” 世界。该过程由 “眼睛” 完成,称为视觉。大部分视觉健康的人都可通过眼睛清晰地观察到这个世界,看到周围的花花草草和五光十色的世界。那么,我们是如何观察到这些事物的呢?文艺复兴后,人们对光的本质进行探索,从而对光的成像机制有了新认识,自然对视觉形成机制也产生浓厚兴趣。 视紫红质 视觉研究可追溯到18世纪。荷兰科学家列文虎克(Antonie Philips van Leeuwenhoek)借助显微镜观察眼视网膜结构,鉴定出视网膜色素上皮细胞(retinal pigment epithelium,RPE)、视杆细胞和视锥细胞等,并推测这些细胞与视觉形成相关。1851年,德国解剖学和生理学家缪勒(Heinrich Müller,1820—1864)首次报道视网膜视杆细胞显红色这一现象 [1]。遗憾的是,缪勒错误地认为红色由血液造成。尽管如此,缪勒仍被看作视觉生理研究的先驱。缪勒在视觉生物学领域作出诸多贡献,如首次描述视网膜神经胶质细胞,这类细胞也因此获名“缪勒细胞”。 博尔(Franz Boll,1849—1879)是一位德国生理学家,对视觉形成具有浓厚兴趣。1876年11月,博尔也观察到红色视杆细胞,并认定红色源于其含有一类特殊物质,纠正了缪勒早期的错误。博尔还发现视杆细胞的红色受光影响,光照可导致红色褪去,而在暗处又重新恢复,进一步说明红色物质与视觉形成相关。遗憾的是,博尔的早逝(年仅30岁)使研究没有进一步开展。 1877年1月,博尔的同胞、另一位德国著名生理学家屈内(Wilhelm Friedrich Kühne,1837—1900)进一步纠正博尔的不足,认定视网膜感光物质应为紫红色,并创造 “视紫红质(rhodopsin)” 一词。屈内还取得另一项重大发现,即胆酸可使视杆细胞内的视紫红质释放到溶液里,并基于这一原理首次从牛视网膜完成视紫红质的纯化 [2],屈内也因此成为视觉生理领域的奠基人之一(图1)。虽然已确定视紫红质参与视觉形成,但具体分子机制仍不清晰,直到20世纪30年代才有突破。图1 视紫红质的发现 视黄醛循环 1931 年, 美国眼科专家尤德金(Arthur Yudkin,1892—1957)开始对视网膜成分进行分析,发现其含有一种维生素A样物质。其实,人们很早就知道维生素A缺乏可影响视觉形成,最常见的一种疾病叫夜盲症,但对维生素A如何参与视觉却知之甚少。 1932 年, 美国生理学家瓦尔德(George Wald, 1906—1997)来到德国瓦伯格(Otto Heinrich Warburg,1931年诺贝尔生理学或医学奖获得者)实验室开始全面研究视紫红质。瓦尔德首先借助光谱分析法证明青蛙、绵羊、牛等完整视网膜中存在维生素A,接着使用氯仿提纯视紫红质,化学显色反应表明所含物质与维生素A非常相似。 为进一步证实结论,瓦尔德加入瑞士著名科学家卡雷尔(Paul Karrer,1937年诺贝尔化学奖获得者)的实验室,而卡雷尔分离并确定了维生素A的结构。经过3个月研究,瓦尔德最终确定视紫红质中确实含有维生素A,从而表明视紫红质包含两部分:视蛋白(opsin)和维生素A [3]。随后,瓦尔德又加入德国海德堡迈耶霍夫(Otto Fritz Meyerhof,1922年诺贝尔生理学或医学奖获得者)实验室继续开展视觉形成研究。 一次偶然事件为研究带来重大契机!当时正逢假期,许多实验室人员都去度假,恰在此时运抵300只青蛙。实验室助理原本想丢弃,而瓦尔德则主动要求留下来用作实验材料。瓦尔德从青蛙视网膜提取到足够量的视紫红质,进一步分析后惊奇地发现所含的维生素A与卡雷尔所得维生素A尽管大部分性质相似,但仍有些许差异,因此将这种物质重新命名为视网膜色素(retinene)。瓦尔德还发现视网膜色素与维生素A之间可发生转变,并通过后来详细的结构分析确定了两者间的差异,因此视网膜色素更名为视黄醛,而维生素A则称为视黄醇 [4]。 20世纪50年代,瓦尔德和同事经过近20年探索,最终解析出视觉形成的 “视黄醛循环” 机制:静息状态下,视杆细胞内视蛋白与11-顺视黄醛结合形成视紫红质;光线照射可使11-顺视黄醛发生异构化转变为全反式视黄醛,从而与视蛋白分离,这个过程激活视蛋白,启动下游信号转导最终到达大脑视觉中心;全反式视黄醛可被运输到视网膜色素上皮细胞内经过几步化学反应重新生成11-顺视黄醛;11-顺视黄醛回到视杆细胞再次与视蛋白结合形成视紫红质,从而完成一次视觉感知过程(图2)。瓦尔德的发现很好地诠释了视黄醛参与视觉形成的机制,因此他分享了1967年诺贝尔生理学或医学奖。图2 瓦尔德与视黄醛循环 后续研究还揭示了视蛋白作用机制。视蛋白是一种G-蛋白偶联受体(G protein coupled receptor,GPCR)。光通过改变视黄醛结构而激活视蛋白后,可进一步使异三聚体G蛋白激活,从而使磷酸二脂酶活化,催化cGMP水解为5’-GMP而减少cGMP含量;细胞内受cGMP调控的离子通道关闭,导致细胞膜电位出现变化,最终传导至视觉中心而实现光的感知。 从这个过程可以看出,哺乳动物视紫红质的作用机制较为复杂,作为机体视觉感知过程尚可接受,如果将它们应用到其他系统则困难重重,因此有必要寻找更简单的感光系统 [5]。 细菌感光 最初认为只有高等动物才存在视觉系统,但这一观念在20世纪60年代发生改变。1967年,德裔美国生理学家斯托克尼乌斯(Walther Stoeckenius,1921—2013)成为加州大学旧金山分校的教授,重点研究生物膜(如红细胞膜和线粒体膜)结构 [5]。由于生物膜材料获取比较困难,具有电子显微镜背景的斯托克尼乌斯决定用生物化学方法研究盐生盐杆菌(Halobacterium halobium)细胞膜组成。随后两位新同事的到来壮大了实验室的力量。 厄斯特黑尔特(Dieter Oesterhelt,也译作奥斯特黑尔特)是一位训练有素的德国化学家,跟随吕南(Feodor Lynen,1964年诺贝尔生理学或医学奖获得者)获得博士学位,由于学术休假的缘故来到美国;布劳罗克(Allen Blaurock)是一位刚毕业的英国生物物理学家,原来在国王学院威尔金斯(Maurice Wilkin,1962年诺贝尔生理学或医学奖获得者)实验室从事X射线衍射研究 [6]。 厄斯特黑尔特和布劳罗克借助X射线衍射技术观测细菌细胞膜紫色组分时,意外观察到一种清晰的衍射图像,说明其含有一种高度有序的生物分子。厄斯特黑尔特还观察到紫色物质在添加有机溶剂后颜色变黄。此时,布劳罗克回忆起在国王学院研究青蛙视网膜过程中也观察到类似的颜色变化,这一提示促使厄斯特黑尔特大胆假设该物质可能也是视紫红质。为证实这一假说,首先需解答的问题是其含不含视黄醛。 从细菌中寻找视黄醛这一近乎疯狂的想法促使厄斯特黑尔特立即启动验证工作。借鉴青蛙视紫红质的研究方法,厄斯特黑尔特发现细菌的紫色物质具有类似的物理和化学性质,并且还含有视黄醛。基于这些特性,厄斯特黑尔特和斯托克尼乌斯于1971年确定这是一种新型视紫红质,根据来源将其命名为细菌视紫红质(bacteriorhodopsin,BR)(图3)[7]。图3 细菌视紫红质 斯托克尼乌斯经过进一步研究后发现,细菌视紫红质是一种光依赖的离子通道。更大的突破在1975年,英国剑桥大学分子生物学实验室的亨德森(Richard Henderson,2017年诺贝尔化学奖获得者)解析了细菌视紫红质的三维结构,从而对视紫红质的作用有了更深入的认识。 1972年,重组DNA技术的发明为生命科学带来一场革命,同时也积极推动了细菌视紫红质研究的发展。研究人员将细菌视紫红质转入宿主细胞,结果发现光照可引起氢离子外流,从而证明其为一种光控的氢离子通道。1977年,研究人员在细菌中又发现另一种视紫红质——卤视紫红质(halorhodopsin),后续证明其介导氯离子细胞内流 [8]。 一系列的研究表明,即使简单如细菌这样的单细胞生物也存在 “视觉系统”,标志着一个新领域——低等生物视紫红质的诞生,从而促使科学家去寻找其他视紫红质。 藻类趋光 班贝格(Ernst Bamberg)是一位德国生物物理学家,从20世纪70年代开始研究细菌视紫红质的生物学功能,并利用体外实验证实BR是一种光激活氢离子通道。随着基因工程技术的发展和完善,生命科学的研究模式发生根本性改变,膜蛋白研究不再需要繁琐困难的提取过程,只需将外源基因在特定宿主细胞表达即可。 90年代,已加入德国法兰克福马普研究所的班贝格与从美国回来不久的德国电生理学家纳格尔(Georg Nagel)决定合作,共同研究细菌视紫红质在完整细胞中的生物功能。1995年,他们合作将细菌视紫红质基因成功转入非洲爪蟾卵母细胞,进一步精确证实光激活质子泵的电压依赖性 [9]。2001年,他们进一步在非洲爪蟾卵母细胞中证实卤视紫红质是一种氯离子通道(图4)。班贝格与纳格尔的合作一方面建立了视紫红质功能研究平台,另一方面也初显光遗传学雏形,即将外源视紫红质在靶细胞表达。图4 藻类视紫红质 19世纪,绿藻(Chlamydomonas)等藻类就被发现具有向光性和受光调控的特性,但对这些现象背后的原因知之甚少。直到20世纪80年代,大量事实表明藻类也长 “眼睛”,即细胞膜存在感光物质,称为 “光受体”。 80年代初,德国生物物理学家赫格曼(Peter Hegemann)在博士就读期间就决定研究光受体。赫格曼和学生以莱茵衣藻(Chlamydomonas reinhardtii)为材料,借助电生理实验表明光的确可诱导藻类细胞产生电流 [10]。赫格曼决定采用生物化学方法将光受体蛋白纯化后研究其性质。遗憾的是,十余年辛苦努力最终以失败告终。根本原因在于光受体是一种膜蛋白,含量低、稳定性差且异质性高,这些都是蛋白质纯化的大忌。赫格曼不得不转换研究思路来解决这个难题。 2001年,绿藻基因组测序的完成为问题的解决带来转机。赫格曼通过全面搜索和比对绿藻基因组数据库,从中发现两个候选基因与细菌视紫红质具有较高同源性。 为加快研究进程,赫格曼决定寻求合作。他在获悉纳格尔的研究工作后,积极沟通并与其达成合作协议。赫格曼小组负责克隆两种绿藻视紫红质候选基因,并将其送给纳格尔开展功能研究;纳格尔则将基因转入人肾胚细胞HEK293并实现正确表达。功能研究表明,它们的活性均受光调控,并且介导阳离子如钠离子、钙离子等的摄入(图4),因此将其分别命名为通道视紫红质(channelrhodpsin,ChR)1和2 [11-12]。与ChR1相比,ChR2光激活时间更短,且离子通透性更强,因此更适合于研究。更为重要的是,赫格曼还推测这些通道视紫红质不仅可在普通细胞表达,而且也可在神经元中表达并影响电生理活性。这一论断直接催生了光遗传学。 至此,研究人员已经鉴定出三类光控视紫红质,分别是细菌视紫红质(介导氢离子输出)、通道视紫红质(介导阳离子输入)和卤视紫红质(介导氯离子输入)。它们在神经功能研究方面具有何种应用价值呢?这要从神经兴奋说起。 神经兴奋 大脑是神经系统的中枢,是机体最复杂和最神秘的器官。知觉、运动、兴奋、情感、语言、学习和记忆等过程基本都在大脑特异区域完成。大脑由上百亿神经元(亦称神经细胞)构成,这些神经元之间通过特定方式实现彼此间交流,以达到协调控制机体各种行为的目的。神经元活性受电信号影响。 正常情况下,神经元细胞膜内外两侧阴阳离子分布不均匀(这种现象称为极性):膜内钾离子浓度远高于膜外,膜外钠离子浓度又远高于膜内,最终形成一个外正内负的状态。未受刺激时(静息状态),规定膜外电位为0,则哺乳动物神经元膜内电位为负值,约-70mV,称为静息电位;外界刺激可导致离子通道打开,由于离子移动而引起膜两侧离子浓度发生变化,电位差也随之改变。如果-70mV向0方向改变,则称去极化(电位为0意味着内外无离子浓度差距,极化消失);相反,-70mV向更大负值变化则称超极化(意味着离子分布不均匀加剧)。 一般而言,去极化伴随神经元激活,而超极化则意味着神经元抑制,因此通过改变神经元细胞膜内外离子分布可实现精准控制神经元活性的目的。 1979年,美国索尔克研究所著名科学家、DNA双螺旋提出者之一克里克(Francis Crick,1962年诺贝尔生理学或医学奖获得者)在《科学美国人》发表一篇文章 [13],对脑科学未来的发展进行展望。古典神经生物学家通常采用电极刺激大脑特定区域神经元的方式来影响行为,克里克认为这种方法破坏性大且精确性不高,比如无法准确区分不同的神经元,这些因素导致所得结果准确性差。 为此,克里克提出应开发一种精确控制神经元活性的方法,允许研究根据需要只对特定神经元打开或关闭,同时不影响非相关神经元。具有分子生物学背景的克里克进一步指出可以对神经元细胞进行遗传改造,从而使它们可对外界信号(如光刺激)产生精准性应答。这一理念建立了光遗传学的思想雏形。 尽管光控细胞行为的理念已经提出,但真正实现则需要有可行的工具。2002年,这一想法终于首次变为现实。 神经光控 米森伯克(Gero Andreas Miesenböck)是一位奥地利神经科学家,跟随鲁斯曼(James Edward Rothman,2013年诺贝尔生理学或医学奖获得者)开展博士后研究。他主要借助荧光系统来检测神经元内囊泡运输,因而对光产生浓厚兴趣。 1999年,米森伯克建立自己的实验室,开始独立的科研生涯,目光锁定神经生物学。米森伯克对整个神经生物学领域一知半解,可以说有点 “门外汉” 的味道,但是恰恰这个因素反而使他在光遗传学方面首先完成突破,因为他不会受主流观点所羁绊。生命科学研究的基本策略在于首先控制某种因素(干预),然后依据结果确定因果关系,如敲除特定基因后动物出现某种表型异常(如个子变矮),据此可认为该基因参与了某个过程(如肢体发育)。 然而,由于神经系统自身的复杂性,长期以来神经生物学家主要依赖形态观察,而缺乏更多有效的干预手段。米森伯克想改变这一现状,他完全从一个生物学家的视点来看待这个问题,因此想为神经元安装一套感光系统(遗传学操作),然后借助光照(光学)来达到控制神经元的目的 [14]。为尽快实现这一目标,米森伯克邀请鲁斯曼的另一位学生、自己的师弟泽梅尔曼(Boris Valery Zemelman)加入团队,启动光控神经元活性的研究计划(图5)。
  • “诺奖风向标”拉斯克奖揭晓,光遗传学会不会获诺奖?
    北京时间9月25日零点,2021年拉斯克奖(The Lasker Awards)公布了三大奖项获奖名单。其中,基础医学研究奖由Dieter Oesterhelt、Peter Hegemann 和Karl Deisseroth获得,以表彰他们对光遗传学的贡献;来自BioNTech的Katalin Karikó和宾夕法尼亚大学的Drew Weissman获得临床医学研究奖,以表彰他们发现基于mRNA修饰的新治疗技术;医学科学特别成就奖则颁给了诺贝尔奖得主David Baltimore。 光遗传学被认为是一项注定要得诺奖的技术(相关文章: 光遗传学:一项注定要得诺贝尔奖的技术)。 实际上,对于光遗传学技术作出贡献的科学家不止这三人,还有他们的合作者和其他科学家。 科学的发展常常伴随着科学家竞争,这是科学的常态。每一项科学成果的背后,故事主角们都有不同的悲喜。但无论结局如何,每一位探索在知识边缘的科学家都值得我们深深的敬意。 撰文|王承志 梁希同 林岑 责编|夏志坚 陈晓雪 北京时间2021年9月25日零点,有 “诺奖风向标” 之称的拉斯克奖(the Lasker Awards)公布,三位在光遗传学领域作出重要贡献的科学家获得阿尔伯特拉斯克基础医学研究奖。 获奖理由: 发现了可以激活或沉默单个脑细胞的光敏微生物蛋白,并将其用于开发光遗传学——神经科学领域的一项革命性技术。 根据拉斯克奖官网介绍,三位获奖人的具体贡献分别是: 迪特尔奥斯特黑尔特(Dieter Oesterhelt),发现了一种古细菌蛋白质,它可以在光照条件下将质子泵出细胞; 彼得黑格曼(Peter Hegemann),在单细胞藻类中发现了相关的通道蛋白; 卡尔代塞尔罗思(Karl Deisseroth),利用这些分子创建了光触发系统,这些系统可以在活的、自由移动的动物身上使用,以理解在迷宫一般的脑回路中特定类别乃至一类神经元的作用。 大脑是人最复杂的器官,人的感觉、记忆、思考、运动等诸多生理活动,以及各种神经系统疾病都与神经元的功能息息相关。多年以来,理解各种神经元的具体功能一直是神经生物学的中心研究领域。 特异性地控制神经元活动对神经生物学家具有无法抵挡的吸引力。如果能特异性地激活一类神经元,那么就可以通过观察激活后的生理现象来推测其功能。同理,如果能特异性地抑制一类神经元,则可以推测这类神经元对哪些生理活动是必须的。 神经生物学家们尝试过各种方法来达到这个目标。比如,用微电极来刺激神经元,或者使用化学物质来模拟或者拮抗神经递质。但这些方法都有难以克服的缺陷:微电极控制的精度不够,比如不能特异性地控制一类神经元;化学物质控制神经元的速度难以控制,很难在毫秒级别进行操作。 紫色的膜与光传感器 1969 年,29岁的青年化学家迪特尔奥斯特黑尔特(Dieter Oesterhelt,1940年-)从德国慕尼黑大学学术休假,来到了美国加州大学旧金山分校电子显微镜专家沃尔瑟斯托克尼乌斯(Walther Stoeckenius,1921年7月3日-2013年8月12日)的实验室。 当时,斯托克尼乌斯正在研究一种可以在高盐环境中生存的古细菌的细胞膜,这种微生物现在被称作盐生盐杆菌(Halobacterium salinurum)。在这次合作中,奥斯特黑尔特证实盐生盐杆菌的细胞膜中紫色的组分含有视黄醛。随后,他和斯托克尼乌斯确定了古细菌中的一种蛋白质,并将其命名为细菌视紫红质(bacteriorhodopsin)。1971 年,他们提出细菌视紫红质起到了光传感器或光感受器的作用。迪特尔奥斯特黑尔特 | 图源:biochem.mpg 回到德国后,奥斯特黑尔特和斯托克尼乌斯继续合作这一研究。奥斯特黑尔特发现,细菌视紫红质可以将质子泵出细胞。这个神奇蛋白质,像是一个微型光能发电机,能吸收光子的能量,用这些能量把质子泵到细胞的外面,从而进一步转化为细菌所需的能量。 后来,科学家们发现了另外一种含视黄醛的光激活泵——卤化视紫红质(halorhodpsin),可以将氯离子输送到细胞中。这两种物质的发现和对其生物物理、结构和遗传学的研究,为光遗传学的发展提供了基础性的见解。 来自微生物的光敏蛋白 20世纪80年代,彼得黑格曼在位于慕尼黑的马克思普朗克生物化学研究所攻读博士学位。他的导师正是发现细菌视紫红质的迪特尔奥斯特黑尔特。 黑格曼的博士论文,研究的是来自另一种细菌的视紫红质——卤化视紫红质(halorhodopsin)。 卤化视紫红质存在于一种耐盐古细菌中,其利用光能将其生活的高盐度环境中的氯离子排出体外。黑格曼首先通过生物化学技术分离提纯了这一蛋白。彼得黑格曼 | 图源:project-stardust.eu 此时,刚刚在法兰克福的马克思普朗克生物物理研究所建立自己实验室的恩斯特班贝格(Ernst Bamberg)参与了进来,他通过构建体外系统来研究黑格曼所提纯出的halorhodopsin的电化学特性。 1984年获得博士学位后,黑格曼来到美国雪城大学的肯福斯特(Kenneth Foster)的实验室从事博士后研究。 福斯特研究的是另一种对光敏感的微生物:单细胞绿藻。这些单细胞的藻类具有趋光性,能够挥舞鞭毛向着有光的方向游去(它们需要光进行光合作用)。福斯特认为,单细胞绿藻也可能使用某种视紫红质作为它们的眼睛,从而得知光亮的方向,并且能驱动鞭毛游往有光的地方。莱茵衣藻 Chlamydomonas reinhardtii 1986年,黑格曼回到普朗克生物化学研究所建立起自己的实验室,开始潜心研究莱茵衣藻(Chlamydomonas reinhardtii,一种微小的绿藻)趋光性行为。 1991年,黑格曼发现,莱茵衣藻的光受体也是一种视紫红质,但它的工作方式与之前发现的各种视紫红质都不一样。衣藻视紫红质的光照之后会引起钙离子流入细胞中,从而引起的电流能够激发鞭毛的运动,他称之为光电流(photocurrent)。恩斯特班贝格(Ernst Bamberg) 人眼中的视紫红质感光之后也会产生光电流,通过神经传递到大脑之后就形成了视觉。人眼中视紫红质引起光电流需要经过细胞内一系列蛋白的信号传导,而黑格曼发现衣藻视紫红质产生光电流的速度比人眼中的视紫红质快得多。据此他大胆地推测:衣藻视紫红质本身可能就是一个可以作为电流开关的离子通道。 然而,此后的十年里,黑格曼使尽各种办法,也无法像当初分离提纯一样分离卤化视紫红质提纯出衣藻视紫红质,来验证他的猜想。 随着分子生物的发展,2001年,黑格曼和其他科学家通过测序衣藻的基因组发现了两个新的光受体基因。 为了证明它们究竟是不是苦苦追寻十余年的衣藻视紫红质,黑格曼找到了当初和合作研究卤化视紫红质电化学特性的班贝格。 此时的班贝格已经是普朗克生物物理研究所的所长。此前的1995年,班贝格就和普朗克生物物理研究所的科学家格奥尔格纳格尔(Georg Nagel)将细菌视紫红质表达在动物细胞中,使得动物细胞在受到光照时产生光电流。奥尔格纳格尔(Georg Nagel) 2003年,从黑格曼那里得到光受体基因后,班贝格和纳格尔用同样的方法成功地在动物细胞中表达了衣藻视紫红质蛋白,从而发现只要有这个蛋白单独存在,就能产生光电流,使阳离子流入细胞中,造成细胞去去极化。他们的结果终于证明黑格曼的假说:衣藻视紫红质是一个能被光所打开的阳离子通道。 从前人们知道,特定的化学分子,或者电压的变化,或者机械力的变化可以开关特定的离子通道,而能被光直接控制的离子通道还是第一次被发现,于是他们把衣藻视紫红质命名为视紫红质通道蛋白(Channelrhodopsins,ChR1)。这个词由离子通道(Channel)和视紫红质(Rhodopsin)组合而成。 他们还在爪蟾的卵细胞中表达了这种蛋白,发现光照可以引起细胞的静息电位发生变化。这项开创性的工作发表在了2002年6月的 Science 上。 2003年,纳格尔和黑格曼又发现了一个新的通道蛋白——ChR2。这一次,他们不但做了更深入的机制研究,而且把ChR2首次在人的细胞(HEK)中表达。作者在文章结论中写道:“ChR2能够成为控制细胞内钙离子浓度或者细胞膜极化水平的有用工具,特别是在哺乳动物细胞中”。 ChR1和ChR2的发现,让一些神经生物学家眼前一亮——这或许就是使用光来控制神经元的理想介质。而光遗传学的大门从这里也正式开启了。 光遗传学的诞生 视紫红质通道蛋白的发现,不仅仅解释的衣藻的趋光性行为,纳格尔和班贝格的实验还证明了这个来自衣藻的光敏感通道能独自驱使动物细胞产生光电流。因此,借助这个光敏感通道,就可以通过光来遥控动物细胞,特别是神经细胞的电活动。 用光来改变神经细胞的电活动是神经科学家长久以来的梦想,光刺激有着比传统药物刺激和电刺激更高的时间和空间的精确性,并且对组织的伤害更小。 20世纪90年代,科学家开始使用光控释放神经递质来激活细胞,但这种方法的时间和空间的精确性仍然不够。 2002年,奥地利神经科学家格罗米森伯克 (Gero Miesenböck)开始在光控中引入遗传学,尝试将果蝇眼中的视紫红质表达在哺乳动物细胞中,或者将哺乳动物的离子通道表达的果蝇的神经细胞中。使用遗传学的优势在于,可以专门针对研究者想到测试的神经细胞进行遥控,但米森伯克缺乏一种强有力的工具可以让光精确地改变神经活动。格罗米森伯克 (Gero Miesenböck) | 图源:cncb.ox.ac.uk 2003年在衣藻中发现的视紫红质通道蛋白正好提供了这样一个强有力的工具。 2000年,爱德华博伊登(Edward S. Boyden,1979-)来到斯坦福大学,在钱永佑(Richard Tsien,钱永健的哥哥)和詹妮弗雷蒙德(Jennifer Raymond)教授的指导下,研究小脑神经回路。 在钱永佑的实验室,博伊登遇到了钱永佑之前的博士生卡尔代塞尔罗思(Karl Deisseroth,1971-)。代塞尔罗思之前在斯坦福大学学习神经生物学,并在斯坦福医院当过精神科住院医师。 有着工程背景的博伊登和医学背景的代塞尔罗思经常在一起讨论当时神经生理学的研究技术。多次的思想碰撞让两位年轻人意识到,当时的技术还有很大局限,神经生物学家需要更好的工具来控制大脑中特异的神经元,他们决定开发这样的工具。Edward S. Boyden | 图源:mcgovern.mit.edu 他们最初设想可以使用磁场来控制神经元,在神经元中表达机械拉力敏感的离子通道,然后把微小的磁珠特异性连接到这种通道蛋白上,这样就可能通过外部磁场来控制神经元的电活动。但是,无论是找到合适的机械敏感离子通道基因还是把磁珠连接到通道蛋白上,技术难度都非常大。 后来,博伊登在阅读一篇1999年发表的论文中得到了灵感。这篇论文报道了在嗜盐碱单胞菌中发现的卤化视紫红质(halorhodopsin),能够在大脑的氯离子浓度下工作。这种视紫红质可以在受光照时激活离子通道。 博伊登意识到使用光来控制离子通道比磁场更容易实现。他写邮件给这篇论文的作者,索要了这个蛋白的基因。但后来由于博伊登忙于博士学位论文,这件事情被晾在了一边。 2003年秋天,代塞尔罗思即将独立成为PI,组建自己的实验室。他写邮件给博伊登,希望博伊登博士毕业后可以去他的实验室做博后,一起开展之前讨论的使用磁场控制神经元的项目。卡尔代塞尔罗思 | 图源:www.hhmi.org 从2003年10月到2004年2月,代塞尔罗思和博伊登为即将开始的磁控神经元项目阅读了大量的文献。恰在此时,纳格尔、黑格曼和班贝格及同事们在 PNAS 期刊上发表了前文提到的ChR2的论文。 博伊登阅读这篇论文时立刻意识到,ChR2拥有他们设想过的一切特性:在一个蛋白中把输入信号(光)和输出(去极化神经细胞)偶联起来。事实上,同时意识到这一ChR2这一特性可以用于光控神经细胞的,远不止博伊登一人。 博伊登写信给代塞尔罗思,希望能联系纳格尔索要ChR2的克隆。代塞尔罗思于2004年3月联系了纳格尔。那时,纳格尔已对ChR2做了一些改良,他把这些改良后的克隆寄送给了代塞尔罗思和博伊登。 博伊登当时还在钱永佑的实验室做博士课题。但从2004年7月开始,博伊登几乎把博士课题放在了一边,专心做起了ChR2在神经元中表达的项目。 2004年8月4日的凌晨1点,博伊登在钱永佑的实验室里用蓝光照射表达了ChR2的神经元,成功观察到了去极化和动作电位。早上,他发邮件给代塞尔罗思告诉了他的发现。代塞尔罗思回信:“太棒了!!!!!” 五个感叹号显示了他当时的兴奋心情。 2005年初,张锋(就是后来最早在哺乳动物细胞中使用CRISPR做基因编辑的那位,现麻省理工学院教授)来到代塞尔罗思实验室开始了研究生生涯。他改进了博伊登的表达体系,使用慢病毒在神经元中表达ChR2,大大增加了该系统的稳定性。 2005年4月19日,博伊登和代塞尔罗思把他们的发现投稿给 Science 杂志,遭拒稿,理由是没有具体的科学发现。5月5日,他们投稿到 Nature 杂志,Nature 建议把稿件转投给 Nature Neuroscience 杂志。经过一轮修改,Nature Neuroscience 接受了这篇文章。 光遗传学的其他研究者 自从黑格曼等在2003年发表了光敏通道蛋白ChR1和ChR2,很多科学家都意识到这类光控通道蛋白有极大的应用潜力。一场无形的竞争也在悄然展开。
  • 金领职业“遗传咨询师”受追捧,第三届遗传咨询师培训班盛大开幕
    p   随着基因组检测技术的迅猛发展,人们对疾病的认知提升到一个新的高度。对遗传物质的正确解读可为疾病的防治提供重要的信息,由此产生了一门新的学科——遗传咨询,新兴的金领职业“遗传咨询师”正在受到妇幼医生、儿科医生、生命科学院毕业生、分子诊断实验室、医院及第三方检验科室工作人员等群体的追捧。 /p p   基于遗传咨询巨大的临床需求,中国遗传学会遗传咨询分会第三届遗传咨询师培训班(初级班)于11月5日在美丽的广西南宁市(邕城)盛大开幕。这是中国遗传学会遗传咨询分会继上海和济南成功开班后,再次联合广西妇幼保健院和广西出生缺陷预防控制研究所,在南方地区继续扩大遗传咨询师队伍。 /p p   开幕式由广西妇幼保健院院长郑陈光主持。中国遗传学会遗传咨询分会主任委员贺林院士、委员陈少科、傅松滨、龚瑶琴、沈亦平、顾问马端、赵彦艳,秘书王磊、梁波出席了开幕式。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 281px" title=" 1.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/2cb9f120-22fc-441c-bce6-e04e40708aca.jpg" width=" 450" height=" 281" / /p p style=" TEXT-ALIGN: center"    strong 贺林院士致辞 /strong /p p   贺林院士首先在开幕致辞中对中国遗传学会遗传咨询分会第三届遗传咨询师培训班(初级班)成功开班表示祝贺,对广西妇幼保健院和广西出生缺陷预防控制研究所的支持表示感谢,对来自全国各地的培训学员表示欢迎,并向热忱投身于遗传咨询工作的同仁们表示敬意。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 281px" title=" 2.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/d1a91ca3-f9fd-4f6d-846a-a2c89a139c79.jpg" width=" 450" height=" 281" / /p p style=" TEXT-ALIGN: center"    strong 广西妇幼保健院院长郑陈光主持开幕式 /strong /p p   接着郑院长代表广西妇幼保健院向百忙之中抽空参与教学的专家、教授们表示感谢,向远道来到邕城(南宁市)参加培训的学员表示欢迎,并介绍了广西妇幼保健院遗传代谢中心实验室的相关情况,广西妇幼保健院遗传科目前主要从事产前筛查、产前诊断技术服务以及新生儿遗传代谢病筛查、诊治工作,接收来自全区各地医疗机构递送的标本进行检测,是广西首批获得新生儿疾病筛查中心许可、产前诊断技术机构许可的机构。 /p p   随后大会举行揭牌仪式,中国遗传学会遗传咨询分会授权广西妇幼保健为遗传咨询师培训机构,这是继山东大学辅助生殖医院之后授权的又一遗传咨询师培训机构。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 281px" title=" 3.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/418934c2-9e7b-4d52-aa40-70622868d345.jpg" width=" 450" height=" 281" / /p p style=" TEXT-ALIGN: center"    strong 揭牌仪式:贺林院士(左)和郑陈光院长(右) /strong /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 281px" title=" 4.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/362314af-782b-42cb-af73-39b553054904.jpg" width=" 450" height=" 281" / /p p style=" TEXT-ALIGN: center"    strong 参加揭牌仪式后培训班成员的合影留念 /strong /p p   此次培训班面向具有临床资质的临床医生 医学院或生命科学院本科毕业生 分子诊断实验室,医院及第三方检验科室初级职称者 从事相关专业的科研教学、临床检验、遗传诊断,遗传咨询工作经历2年以上者。课程分为遗传咨询基础理论、遗传咨询临床应用、遗传咨询检测技术和遗传咨询政策法规四个部分,历时7天,邀请到了多位国内一流的遗传及临床专家授课,包括贺林、傅松滨、高媛、龚瑶琴、顾学范、管敏鑫、贺光、黄尚志、李金明、李亦学、廖世秀、卢大儒、马端、秦胜营、沈亦平、孙树汉、唐北沙、王红艳、王慧君、邢清和、徐湘民、杨正林、尹爱华、袁慧军、赵彦艳等(按音序排列)在内的院士、长江学者、杰青、973首席及各领域临床遗传学专家。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 281px" title=" 5.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/5d9550a2-7f6f-4cbe-b599-928908f4ebee.jpg" width=" 450" height=" 281" / /p p style=" TEXT-ALIGN: center"    strong 贺林院士在做精彩报告 /strong /p p   揭牌仪式后,贺林院士以“遗传咨询的价值和意义 ”为题的做了精彩报告。 /p p   首先他介绍了中国遗传学会遗传咨询分会的组建和官网网址( a title=" " href=" http://www.cbgc.org.cn/" target=" _self" textvalue=" " http://www.cbgc.org.cn/ /a ),对比了中美遗传咨询师现状,总结了目前国内开展的遗传咨询课程,分析了中国遗传咨询走势与前景,强调现在形势急迫急需遗传咨询 /p p   随后,他分享了今年8月代表遗传咨询分会访问美国两大权威遗传咨询机构——美国遗传咨询师认证行会(ABGC)与美国遗传咨询认证委员会(ACGC)委员代表的经历,表示要向美国取经,合作共进,并同遗传咨询师培训机构建立了合作关系,因此此次培训班将会引进北美的教学资源,更大程度地同国际接轨。 /p p   最后,他再次阐述了他所倡导的新医学的概念,即“旧医学+(基因)组学+遗传咨询”。由于现有的医术水平很难看清疾病深层的问题,我国出生缺陷率居高不下,肿瘤、高血压、糖尿病等多种疾病发病率呈显著上升趋势。为了解决这一难题,世界启动了人类基因组计划,由此所带来了扑面而来的海量信息和数据。贺林院士呼吁业界同仁及全体学员把握新医学的机遇,利用遗传咨询这一强大的工具,将大数据与临床疾病特征有机结合,帮助人类更好地和病魔作斗争。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 450px HEIGHT: 281px" title=" 6.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/c9a304b9-4092-4ebd-8540-6fc185d0b996.jpg" width=" 450" height=" 281" / /p p style=" TEXT-ALIGN: center"    strong 沈亦平教授在做报告 /strong /p p   第二个授课的是沈亦平教授,他是美国哈佛大学医学院病理系助理教授、美国波士顿儿童医院遗传诊断实验室、Claritas Genomics公司研发部主任。沈教授多年来从事遗传病基因诊断研究和实践,致力于为遗传病患者提供最佳的分子诊断和遗传咨询服务。作为美国医学遗传学专家委员会委员(FACMG),他对美国遗传咨询的体系非常了解。他以美国遗传咨询模式及经验为主题,重点向学员讲解了遗传咨询的发展和定义、遗传咨询的操作内容,对象和原则,还有遗传咨询师的培养及需具备的素质,通过分析美国遗传咨询师的状况及资源,讨论如何开展中国的遗传咨询服务。 /p p   学员们通过本次培训,不仅可以获得最新的医学遗传学知识,掌握处理存在遗传病风险的患者及其家庭的医学策略,理解包括染色体疾病、单基因疾病、多基因疾病在内的分子机制,还能将理论知识应用于实践,更好地解决临床问题。 /p p    strong 附:第三届遗传咨询师培训班(初级班)培训日程 /strong /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 500px HEIGHT: 794px" title=" 7.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/0086d71b-fce2-4657-a10c-f6cd99aaa11b.jpg" width=" 500" height=" 794" / /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 500px HEIGHT: 794px" title=" 8.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/noimg/73abf21f-a3b5-4bf7-a285-49a11af7282c.jpg" width=" 500" height=" 794" / /p p    span style=" FONT-SIZE: 14px" 备注:日程仅供参考,具体以现场参加培训班安排日程为准。 /span /p
  • 作物遗传改良国家重点实验室云南开放合作基地挂牌
    由云南省农科院与华中农业大学合作共建的作物遗传改良国家重点实验室云南开放合作基地24日在省农科院粮作所正式挂牌成立,依托此平台,两地专家将在生物技术育种、粮经作物新品种选育、人才培养等方面开展合作。   为提升云南农业科技水平,去年5月,省农科院与华中农大签订院校合作协议,在水稻分子育种、油菜、花卉等方面进行合作研究,目前,各方面的项目合作已全面展开。作物遗传改良国家重点实验室云南开放合作基地正是双方在原有合作研究基础上的一次提升,根据协议,双方将共建一个可支撑作物遗传改良研究领域的应用基础和应用研究的试验技术平台,以形成资源共享、相互开放、协作共赢的科学研究和人才培养常态机制,合作开展高水平的科学研究。   由中国科学院院士张启发带领的作物遗传改良国家重点实验室团队,以国家重大科技专项“水稻重要农艺性状相关功能基因组学研究”为依托,开展水稻功能基因组研究,使中国的水稻功能基因组研究进入世界先进行列。我省是高原特殊生态区,不同的海拔造就了云南多样的作物种植,在杂种优势利用、品质育种、制种研究等方面有很大的发展空间和潜力。作物遗传改良国家重点实验室云南开放合作基地建立后,将立足于我省的生态和资源特点,利用现代分子生物学手段研究种质资源创建及遗传多样性,分离克隆重要基因,培育满足高原种植业需要的作物新品种。
  • 程京研究团队获2017年“黄家驷生物医学工程奖”技术发明类一等奖
    p   4月21日,2017年度“黄家驷生物医学工程奖”颁奖仪式在北京会议中心举行,由清华大学、解放军人民总医院和博奥生物集团联合申报的“遗传性耳聋基因诊断芯片系统”项目摘得技术发明类一等奖。项目主导人、中国工程院院士、清华大学医学院教授程京出席颁奖典礼,中国医学科学院院长曹雪涛院士为其颁发了获奖证书。 br/ /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201704/noimg/77561053-b6f1-4dde-a5aa-3891fb04f582.jpg" title=" 1.jpg" width=" 561" height=" 355" style=" width: 561px height: 355px " / /p p style=" text-align: center " 程京(右二)被授予获奖证书。 /p p   “遗传性耳聋基因诊断芯片系统的研制及其应用”是在国家863等重大项目支持下,由程京院士所领衔的清华大学、博奥生物集团和解放军总医院共同完成。遗传性耳聋为常见致残性疾病,我国听力残疾者2045万,占残疾人总数的24%,而每年新增的聋儿达3万人。研究证明,60%的重度耳聋源于遗传。如果通过对耳聋基因突变的识别,从而在遗传咨询、产前诊断和新生儿听力筛查等阶段对耳聋进行早期干预,就可以避免很多聋儿诞生的悲剧。 /p p   通过对耳聋遗传高危人群的分子病因学研究,研究团队确定了中国人群最重要的致聋基因及其突变频谱信息,并通过生物芯片设计技术层面和配套仪器的系列技术发明,最终设计出国际首创的遗传性耳聋基因芯片检测系统。 /p p   遗传性耳聋基因芯片检测系统能够检测先天性耳聋、药物性耳聋、大前庭导水管综合征相关的耳聋基因位点,具有准确性高、稳定性好、操作简便等特点,是至今获证最早、覆盖位点最多、筛查人群最大,且唯一实现干血斑等痕量样品检测大高灵敏度产品。此外,围绕芯片核心技术,博奥生物还研发了系列芯片配套仪器设备,实现了大规模样本的自动化平行处理。 /p p   2012年4月以来,采用这一技术,北京、成都、郑州、福州、太原、南通、东莞、济南、新疆等近二十个省市区将新生儿遗传性耳聋基因检测项目列入当地民生工程。5年来共有200多万新生儿接受检测,检出总突变率为4.4%,其中药物致聋基因携带者就有5000多人,直接避免了受检者和家庭成员约5万多人因使用药物不当而致聋,社会和经济效益显著。鉴于该项目所产生的重大社会意义,中国台湾、越南和美国等国家和地区均陆续引入该技术,为当地的耳聋防控提供了新的途径。 /p p   耳聋基因芯片系统作为政、产、学、研、用相结合的重大科技成果转化项目,体现了生物医学与工程的完美融合,成为原始创新转化为临床应用的典范,这也是该项目此次获得“黄家驷生物医学工程奖”的重要原因。 /p p   “黄家驷生物医学工程奖”由中国生物医学工程学会设立,是国内该领域的最高科技奖项。奖项以我国著名医学家黄家驷院士命名,旨在秉承其医工交叉的学术理念,奖励生物医学工程领域在基础研究、技术发明和科技进步方面贡献卓著的科技成果。 /p p br/ /p
  • 基因测序催生的“金领”职业 遗传咨询师
    随着基因组检测技术的迅猛发展,人们对疾病的认知提升到一个新的高度。对遗传物质的正确解读可为疾病的防治提供重要的信息,由此产生了一门新的学科——遗传咨询,新兴的金领职业“遗传咨询师”正在受到妇幼医生、儿科医生、生命科学院毕业生、分子诊断实验室、医院及第三方检验科室工作人员等群体的追捧。  《瞭望东方周刊》:解码遗传咨询师  不仅在医疗界受追捧,遗传咨询行业还受到了央级期刊的关注。日前,《瞭望东方周刊》以《解码遗传咨询师》为题详细解析了我国遗传咨询行业的发展现状。《瞭望东方周刊》以典型的孕前检测遗传咨询为例,强调了遗传咨询师的重要性。然而遗传咨询绝不仅限于孕前检测和产前诊断,遗传咨询技术应用极为广泛,遗传咨询所针对的人群也不尽相同。可以是婴幼儿群体和育龄成人,例如对于新生儿代谢缺陷疾病的生化遗传检查;也可以是成年群体,比如各种用药筛选的诊断,常见的如肿瘤用药 甚至可以是健康群体,比如针对某些常见隐形遗传疾病的筛查,以及其他领域的特殊群体,如亲子鉴定、法医学鉴定等。  遗传咨询师是产业发展的必然,也是人类健康所需  随着人类基因组计划的完成,基因行业的发展可谓是日新月异。随着基因二代测序技术的兴起与成熟,测序成本大幅减低,基因测序因此从单纯的科研走向了大规模临床应用,迎来了广阔的市场空间。2014年,基因测序设备领域龙头企业Illumina将人类全基因测序的价格降低至1000美金,今年我国一些企业也开始推出自主研发测序系统,目的是降低测序成本,构建良好的行业生态系统。  与如火如荼的行业生态相比,目前基因消费市场还处于冰海之中,基因测序临床化还存在很多疑点,主要表现在:不了解什么是基因测序?看不懂基因测序结果报告?读懂了检测报告也不知道接下来该怎么做?基因检测要真正惠及全人类,这些问题必须要解决。那么解决这些问题,需要一群专业人士的帮助,他们就是传说中的遗传咨询师。  遗传咨询师的角色  遗传咨询师作为揭秘基因密码的专业人士,是链接临床门诊和遗传诊断实验室的桥梁。遗传咨询师必须具有丰富的专业知识、长期工作积累的经验、优秀的沟通能力等。遗传咨询师的工作包括:根据用户的家族史、医疗史和检测目的,给出最适合客户的基因检测产品建议 综合检测报告和所有能获得的信息,评估疾病发生或复发的几率 进行疾病遗传、检测、管理、预防等知识的传授 帮助受试者做出正确的选择,理性面对致病风险,同时疏导检测结果对受试者可能产生的心理问题。  我国培训体系已建立:遗传咨询分会已举办四届遗传咨询师培训班  遗传咨询行业在美国已有很多年,但在中国才刚刚开始。基于基因测序技术的迅猛发展以及巨大的临床需求,2015年2月9日中国遗传学会成立了中国遗传学会遗传咨询分会(简称遗传咨询分会),由著名遗传学家贺林院士出任主任委员。今年8月,贺林院士带领团队与美国两大权威遗传咨询机构的代表——美国遗传咨询师认证行会(ABGC)代表委员、美国遗传咨询认证委员会(ACGC)代表委员在波士顿进行了正式的官方会谈,商讨建立了中美双方在遗传咨询领域的官方合作机制。这意味着我国将出现一批与国际标准接轨的经过专业培训的认证遗传咨询师。  自成立遗传咨询分会以来,我国举办了四届遗传咨询师培训班。2015年4月22日由中国遗传学会遗传咨询分会主办,复旦大学生命科学院承办的第一届遗传学会遗传咨询师培训班在上海正式开班。此次培训班面向医院的医生、从事临床诊断的实验室人员(出生缺陷和遗传病、遗传综合症、复杂疾病、儿科、产科、肿瘤等科室)、检验师、相关科研和教学工作者,共开设三门课程,分别是医学遗传学(基础篇),临床医学遗传咨询(各论篇)和遗传检测分析与诊断方法,共8天,72个学时。内容涉及遗传病、出生缺陷、复杂多基因病、个体化用药和基因组转化医学等各方面,并详细介绍基因组时代可用于基因检测和分子诊断的多种技术手段,特别是利用新一代测序仪和基因芯片进行全基因组SNP、CNV、基因表达和突变分析等,同时,进行分子诊断临床实践、报告解读以及遗传咨询等情景案例教学。  2015年7月14日,中国遗传学会遗传咨询分会在中国遗传学会遗传咨询分会主席贺林院士的牵头下,联合了国家辅助生殖与优生工程技术研究中心暨山东大学附属生殖医院于济南开办了第二届遗传学会遗传咨询师培训班。此次培训班在第一次成功开班的基础上,引进了美国和香港中文大学遗传咨询师培训课程和教学模式,实现与国外相关领域的全面接轨,以主题演讲、病例讨论、学术互动等形式,使学员们通过本次培训,可以获得最新的医学遗传知识,掌握处理存在遗传病风险的患者及其家庭的医学策略,理解包括单基因病、多基因病在内的分子机制,并能解释疾病的遗传机制,理解分子遗传方法的原理,建立发现致病基因的科学策略。  2015年11月5日中国遗传学会遗传咨询分会第三届遗传咨询师培训班(初级班)在美丽的广西南宁市(邕城)盛大开幕。此次培训班面向具有临床资质的临床医生 医学院或生命科学院本科毕业生 分子诊断实验室,医院及第三方检验科室初级职称者 从事相关专业的科研教学、临床检验、遗传诊断,遗传咨询工作经历2年以上者。  2015年11月7日由遗传咨询分会主办,中国医科大学附属盛京医院承办的第四届遗传学会遗传咨询师培训班在辽宁沈阳市盛大开幕。内容包括遗传咨询基础理论、遗传咨询临床应用、遗传咨询检测技术和遗传咨询政策法规四个部分。此次培训班将在之前成功开班的基础上,进一步完善培训课程和教学模式,在7天的集中培训后,还设立了3个月的远程培训。远程培训的课件邀请ABGC的授课老师设计,包含多种临床案例的遗传咨询,汇聚了北美遗传咨询师教学的精华案例,使国内的遗传咨询培训第一次和北美遗传培训同步。  记者了解到,遗传咨询分会目前正在筹备下一届遗传咨询师培训班的召开,这意味着我国遗传咨询师培训体系已全面拉开。  结语  高通量测序技术的发展,为遗传病和癌症的预防、诊断和治疗带来了福音。在这些高新技术进入临床实践应用的过程中,逐渐暴露出目前医疗体制和医疗环境的不足,规范指南的缺乏,相关机构和技术人员短缺等问题。其中,最主要的问题体现在临床一线遗传咨询师的短缺和相关知识,尤其是对检测报告的解读、遗传学诊断和临床处理策略方面相关知识的匮乏。因此,加速增加遗传咨询师的培训、认证、岗位设定等内容迫在眉睫。随着国家的高度重视和支持力度的迅速增加,遗传咨询正成为基因测序转向临床应用必不可少的一环。
  • 国际遗传和医学基因组学大会近日召开
    日前,安捷伦科技有限公司作为主要赞助商参与了于6月9日至11日在香港大学举行的国际遗传和医学基因组学大会。该次国际会议由美洲华人遗传学会和香港医学遗传学会在历年分别举办的国际学术会议的基础上首次联合举办。会议吸引了国内外从事遗传学和医学基因组学研究的知名学者参与。诺贝尔奖获得者Oliver Smithies, 中国知名基因组学专家贺林教授,杨焕明教授,美国人类遗传学协会主席Aravinda Chakravarti等作了精彩的报告。 作为大会的主要赞助商,安捷伦科技有限公司在会议期间展出了基于基因芯片技术的最新基因组研究产品。并邀请比利时知名医学遗传学家J. Vermeesch 教授作了专场讲座。Vermeesch教授详细介绍了利用安捷伦比较基因组芯片(aCGH) 进行新生儿和胚胎植入前遗传病诊断的最新研究结果,引起与会科学家的热烈讨论。在会议期间,来自美国Baylor Colleague of Medicine, Harvard University, University of Miami Miller School of Medicine等学术机构的学者也报告了运用安捷伦aCGH 芯片技术进行遗传病基础和临床研究的最新成果。充分显示安捷伦的基因芯片技术被广泛地应用于遗传病和医学基因组学研究的各个领域,其精密灵敏而又不失灵活开放的技术平台引起了与会学者的强烈反响。很多来自内地的科学家和临床研究学者也对未来引入该项技术进行研究工作表示出极大的兴趣。 安捷伦公司是基因芯片完整技术平台的供应商,其基因芯片技术覆盖表达谱,比较基因组杂交,启动子及甲基化, MicroRNA等多个应用领域。详情请访问www.opengenomics.com
  • 光遗传学开创者Nature发表突破性成果
    牛津大学的研究人员揭示出了是什么将我们大脑中的开关翻转,唤醒了我们。发表在《自然》(Nature)杂志上的研究发现,让我们更进一步了解了睡眠的秘密。 睡眠受到两个系统——生物钟和睡眠同态调节器(homeostat)的支配。尽管人们已充分认识地生物钟,对于睡眠同态调节器却知之甚少。 Gero Miesenb?ck教授解释说:“生物钟使得我们能够预期由于地球自传引起的我们环境中可预测的变化。同样地,确保了当它最小程度伤害我们时我们在睡觉,但却没有说出我们为什么首先需要睡觉这一秘密。” “这种解释可能来自对于第二控制器——睡眠同态调节器的认识。当我们醒着时这一同态调节器测量到了发生在我们大脑中的某一事物——我们并不知道这一事物是什么,当它到达上限时,我们就会睡着。这一系统在睡眠中被重新设定,当我们醒来时周期重新开始。” 研究小组在果蝇的大脑中研究了这一睡眠同态调节器——在大约45年前,这种动物还提供了有关生物钟计时的第一个突破性认识。每个果蝇有大约二十几个睡眠控制神经元,人们也在其他动物中发现了这些脑细胞并相信它们也存在于人体中。这些神经元传送了睡眠同态调节器的输出信息:如果这些神经元电活化,果蝇会睡着;当它们沉默时,果蝇醒着。 为了开关这些神经元,研究人员采用了Miesenb?ck发现的一项技术:光遗传学。2002年,在纽约的斯隆?凯特琳纪念癌症中心,Miesenb?ck成为了首个使用视蛋白来赋予脑细胞光敏感性的研究者,采用的是从果蝇视网膜上提取的视蛋白。Miesenb?ck被视为光遗传学的开创者之一。在当前的研究中,Miesenb?ck实验室利用光遗传学刺激生成了化学信使多巴胺。 在人体中,发挥神经兴奋剂作用的药物(诸如可卡因)可以提高大脑中的多巴胺水平,在果蝇中也可以看到这一效应。当多巴胺能系统被激活时,控制睡眠的神经元陷入沉默,果蝇醒来。如果研究小组阻止多巴胺传送,等待一会儿,控制睡眠的神经元会回到电活化状态,果蝇又睡去。 这一睡眠开关是一个“硬”开关,这意味着它要么被开启要么被关闭。Miesenb?ck说:“这是有道理的。要么睡着要么醒来,你不会想漂浮在朦胧状态。” 该研究的第一作者之一Diogo Pimentel博士说:“能够随意操纵睡眠,为我们提供了一个机会阐明它的运作机制。” 当睡眠控制神经元电活化时,研究人员发现和命名为Sandman的一个离子通道留在细胞内。离子通道控制了电脉冲,脑细胞则通过电脉冲来进行交流。当存在多巴胺时,它会使得Sandman移动到细胞外。Sandman随后有效地让这些神经元发生短路,关闭了它们,导致了觉醒。 第一作者Jeff Donlea博士说:“原理上,这是一个与你客厅墙上的恒温器相似的装置。但它测量的并非是温度,并在气温过冷时打开暖气,这一装置是在你的睡眠需要超过某个设定点时开启睡眠。” Miesenb?ck解释说:“一个价值数十亿美元的研究课题是,在这一系统中什么是温度的等同物?换句话说,这一睡眠同态调节器测量的是什么?如果我们知道答案,我们将朝着揭示睡眠的秘密迈出很大的一步。” 头一天晚上睡得越晚,起床的时候就越发艰难。那么,为什么熬夜会让人昏昏欲睡呢?Johns Hopkins大学的研究人员最近解决了这个问题,相关论文发表在2016年5月的Cell杂志上。如果我们硬要生物钟对着干,大脑就会产生一种难以遏制的睡眠冲动(sleep drive)。研究人员在果蝇中找到了负责调节睡眠冲动的神经元。果蝇越长时间不睡,这些神经元就越活跃。他们认为,这项研究可以帮助人们更好的理解和治疗睡眠障碍。 发表在2016年4月29日Science杂志上的一项新研究,揭示出了控制睡眠-觉醒周期的生物学机制。具体而言,它证实简单地改变脑脊液中的化学物质平衡就可以改变动物的意识状态。这项研究将焦点放在了脑脊液中的一些离子上,其发现这些改变不仅在刺激或抑制神经细胞活性中起关键作用,似乎在我们睡觉的时候也改变了细胞体积导致脑细胞缩小,这一过程帮助了清除废物。 果蝇的睡眠习惯与人类非常相似。它们大部分的睡眠是在夜间,某些药物和兴奋剂(如咖啡因)可能会影响它们的睡眠,而且,如果它们的睡眠比较糟糕,甚至可能会影响它们的记忆力。但是,果蝇能告诉我们关于“睡眠不足与代谢疾病(如糖尿病、肥胖)、血糖水平之间的联系”的什么信息吗?根据一项新的研究表明,果蝇的确可以告诉我们很多这方面的信息,这项研究首次发现,一个保守基因——translin,作为睡眠的一个调节因子,可响应代谢变化。这项研究的结果发表在2016年4月4日的《Current Biology》杂志。
  • 基因检测+药物预防,只盼早日给遗传性早发型阿尔兹海默症患者福音
    早发型阿尔兹海默症  阿尔兹海默症已经给Dean DeMoe家族几代人带去伤害——他的祖母、父亲、兄弟姐妹都在40至60岁间出现痴呆症状。DeMoe 本身也携带这种遗传性突变基因。在他53岁时,作为一名北达科州志愿者进行药物测试,以希望某一天能终结家族的苦难。类似于DeMoe 这种患有罕见遗传性阿尔兹海默症的家庭,能为破解阿尔兹海默症提供关键线索!  上周末,大家齐聚华盛顿参加会议,会议首次召集了许多来自遗传性早发型痴呆症家族的人——包括患者,携带者以及他们健康的爱人,进行面对面调研和交流。通过会议,他们从政府和制药公司主管了解到为什么找到治疗方法耗费多年的原因。研究人员建议他们,他们的孩子应该进行基因检测以提前预知自己的命运。  除了一个妹妹, Thompson DeMoe和其他四个兄弟姐妹都携带有异常的突变基因。DeMoe表示,这样的会议为同样经历着疾病困扰的家庭之间提供了交流的机会。他的妻子Deb告知大家DeMoe已经出现初期的记忆退化症状,也称为轻度认知障碍。但是DeMoe仍然在石油公司工作。  该类家族向科研机构提出疑问:  为什么致力于影响下游效应因子,而不是直接修复突变的基因?  为什么不让处于绝望的家庭更快地得到试验药物,类似于艾滋病患者那样?  加利福尼亚的Tal Cohen认为,是时候该减轻患者及其家庭的痛苦了。他的妻子Giedre,今年37岁,但是已经处于阿尔兹海默症的轻度转中度阶段。他希望研究人员正在通过创新性方法加快克服疾病的脚步。他说:“我们没有更多的时间等待。”  阿尔兹海默症多见于老年群体,9个65岁以上的老年人中就会出现1例患者。全球不高于1%病例属于常染色体显性遗传模式。这种模式由致病基因顶点突变所致。患病父母所生的孩子会有一半的几率遗传致病基因。且一旦携带,孩子通常会在与父母相同的年龄段发病。  为早日摆脱疾病,很多这类家庭成员都加入显性遗传阿尔兹海默病协会(DIAN)。  预测比治疗更重要  目前,工作人员认为最理想的医疗方式是能在致病基因携带者发病之前进行预防治疗,做到哪怕不能根治也至少能延缓疾病的时间和严重程度。  约翰霍普金斯大学的神经科学家Marilyn Albert的研究团队对350个实验对象从中年就开始跟踪研究,发现了一种组合测试方法用于预测五年内轻度认知障碍的走向。方法包括:脊髓穿刺(脑脊液检测),对阿尔兹海默患者的淀粉样蛋白和Tau蛋白检测 MRI扫描(神经影像学检测),检测脑皮质萎缩情况 神经心理学测试,检测患病严重程度。  阿姆斯特丹自由大学医学中心的科研人员在脊髓液中发现了一种蛋白,neurogranin,由坏死突触分泌的粘性淀粉样蛋白,能够阻滞大脑沟通。加拿大阿尔伯塔大学的科研工作者正在研发一种唾液测试,检测早期认知能力下降程度。  目前,DIAN研究的重中之重是掌握决定阿尔兹海默症的基因以及诱导发生罕见家族性病症的时间。其次是测试两种试验药物是否能通过阻止粘性淀粉样蛋白的累积推迟致病基因携带者的发病时间。这项研究不久将推广至其他药物的检测。负责DIAN药物研发的圣路易斯华盛顿大学的博士Randall Bateman说:“我们的目标是研发的药物获得批准,能够帮助每个人。”  Dean DeMoe和他的妻子、健康的妹妹以及他的两个孩子共同参加了此次研讨会。他希望研究人员已经知道这些药物确实有效用,但是事实却很遗憾。同时,他最大的两个孩子在二十岁的时候进行了健康跟踪研究测试,但是他们并没有选择被告知测试结果,除非他们年老或者预防药物上市。DeMoe表示,虽然研发的药物可能用不到他身上了,但希望它能够用于他的家人和其他所有人身上。  如果实现,意义重大!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制