当前位置: 仪器信息网 > 行业主题 > >

仪器原理

仪器信息网仪器原理专题为您整合仪器原理相关的最新文章,在仪器原理专题,您不仅可以免费浏览仪器原理的资讯, 同时您还可以浏览仪器原理的相关资料、解决方案,参与社区仪器原理话题讨论。

仪器原理相关的资讯

  • 阿蛋学仪器 | 色谱分离的原理 So Easy !
    广州绿百草推出全新连载短篇小说【阿蛋学仪器】, 不定期的跟大家讲述关于学渣阿蛋在工作后不得不学习仪器知识的苦逼经历。夸张的剧情下都是以现实为原型,记得准时关注哦!夏天的风正暖暖吹过,穿过头发穿过耳朵.........话说在那天气晴朗万里无云的某个周末,正在抠着大脚丫吃着冰西瓜思考人生意义的胖##突然接到领导的一个任务。“喂。小胖呀~ 上头下了个任务,要拍一个化学知识视频,我看你一向最受学生欢迎,就随便摆弄一下吧。课题已经帮你选好了,色谱分析原理。”“额,不不不,虽然为了科学教育的发展我上刀山下火海都在所不辞,但是......”“别啰嗦,就这么定了。告诉你啊,给我做的好好的,不然你今年的考评....88”嘟嘟嘟。。。胖##现在已经无法继续好好玩耍了,学生喜欢他都是因为他风流一趟玉树临风知识渊博心地善良从不让人挂科呀~真是。。。冷冷清清凄凄惨惨戚戚呀~内心再抗拒,生活还是要继续的。胖##叫来了以前跟他一起打LOL的阿蛋,浑浑噩噩迷迷糊糊想了三天三夜的剧本,终于开拍了。( 导演和其它演员的召唤,这里就不详细说啦哈! )导演:色谱分析原理So Easy 剧组 Action!!!场景预设 ——色谱柱:为一间双门房子,一门可进,一门可出。分析的样品:胖##,高大威猛略胖。阿蛋,形象气质佳小明星(剧情需求,大家多多包涵,少吐些。)Part 1 —— 反相柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:众美女都喜欢帅哥,不断有人拉阿蛋的手并要求合影签名。胖##由于高大威猛,也有部分小萝莉喜欢,但是还是比阿蛋少,走的自然比阿蛋快。结果胖##和阿蛋的距离越来越远,出门的时候,已经分离的很好了。分离度3.0,柱效15万/m。反相柱分离注意事项:1)不可用于分离帅得离谱的人(非极性太强的物质),会造成美女互相踩伤践踏拥挤的现象,造成柱堵塞,柱压升高;心脏不好的美女会由于过于激动而休克,甚至兴奋而死,造成柱子过早老化,降低柱效。另外,还会造成吸附现象,出峰时间太久甚至不出峰。2)不可用于分离过于猥琐丑陋可怕的人(极性太强的物质),会导致美女流失,造成柱效下降,出峰时间太快,影响分离效果。不过这时有个色谱柱再生方法可以回复柱效,就说“牛掰了”的鞋正挥泪大甩卖,美女将迅速赶回,恢复柱效!Part 2 —— 正相柱分析原理屋子里有一大群男子,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:阿蛋由于太帅招人嫉妒率先被赶出来。胖##被同胞惺惺相惜,留下来吃饭唱K看电影,最后才依依不舍的含泪送别。分离度2.8,柱效13万/m。正相柱分离注意事项:并不适用于分离Gay男(无保留物质)。Part 3 —— 体积排阻色谱柱分析原理屋子里面变成了溶洞效果,溶洞里的洞有大有小,非常好玩。胖##和阿蛋从一个门进入,穿过溶洞,从另一个门出来。结果:本以为阿蛋个头小灵活,会早点爬出来,谁知是体积庞大的胖##先出来啦。因为两人一钻溶洞,便仿佛回到了童年,逮着洞就想钻。阿蛋个子小,钻来钻去玩得不亦乐乎。而胖##在意思到自己已非3岁的小胖胖后,害怕被小洞卡住而崴了,只好作罢,沿大路走了出来,扼腕叹息“时光蹉跎,青春少年已不复!”Part 4 —— 离子对色谱柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。胖##痛苦回忆:美女都喜欢帅哥,不断有人拉住阿蛋吟诗作对自拍萌萌哒,拉胖##的仅有几个发育不全的小萝莉。结果胖##和阿蛋渐行渐远。。。胖##对策:往事不堪回首,所以第二天再过这间屋子的时候,带上了他的必杀技——萌萌哒小鲜肉胖小子。结果:胖##抱着胖小子和阿蛋一起穿过屋子,美女们发现居然还有个小鲜肉,纷纷过来捏捏小脸蛋。“美女,敢吃青椒吗?” 胖小子搭配美女的功夫一点也不含糊呢。胖##色眯眯的看着围着的众美女,美其名曰为胖小子报仇,把美女的脸蛋一一捏了个编。直到胖小子微怒言 “爸比,我饿了!” ,才恋恋不舍的抱起小胖,发话 “最后再捏一遍!......” 阿蛋在门口,秒倒!Part 4 拍摄花絮 ——1)观众问:美女为什么喜欢小鲜肉抛弃阿蛋呢? 回复:现在流行小鲜肉。另外,女人总是有母爱的,这是与生俱来的本能,所以此处美女年龄要大些。呵呵。2)拍完这段以后,导演“卡”了N次。因为胖小子被捏后没有表现出天真烂漫可爱的样子,反而哭了N次,最终拍得胖小子又累又饿又痛才终被导演放行。3)Case结束时,镜头正面是胖##得意而归的表情,远端发现众美女一脸哀怨的正在揉脸,忿忿曰“死胖子,手够狠啊!̷�!”By the way, 这次拍摄的视频非常受欢迎,胖##终于又能在领导的眼皮底下好好思考人生了!想知道阿蛋后续又有怎样的遭遇?记得持续关注广州绿百草微信公众号~我们会不定期推出续集哦~关注广州绿百草微信公众号,获取更多资讯!
  • 仪器百科|拍打式均质器工作原理与应用分析
    拍打式均质器是一种广泛应用于生物医学和食品科学领域的实验设备,其主要功能是通过物理手段将样本与溶剂混合均匀,以便于后续分析和检测。本文将详细介绍拍打式均质器的工作原理及其应用领域。更多拍打式均质器产品详情→https://www.instrument.com.cn/show/C560253.html工作原理拍打式均质器的工作原理是将原始样本与液体或溶剂一起放入专用的均质袋中,然后通过仪器内部的锤击板反复敲击均质袋。具体过程如下:样本准备:将需要处理的样本(例如脑、肾、肝、脾等组织)切成约10×10毫米的小块,以便于均质处理。样本放置:将切好的样本与一定量的液体或溶剂一起放入均质袋中,确保密封良好。锤击处理:启动均质器后,内部的锤击板会反复对均质袋进行敲击。这个过程中,锤击板会产生一定的压力,并引起样本和溶剂的振荡。加速混合:在锤击和振荡的作用下,样本与溶剂快速混合,使得微生物或其他成分在溶液中均匀分布,达到理想的均质效果。通过这种物理手段,拍打式均质器可以有效避免样本污染,同时确保样本中的微生物或化学成分在溶液中均匀分布,为后续的分析和检测提供了可靠的基础。应用领域拍打式均质器在多个领域具有重要应用,尤其在生物医学和食品科学中表现尤为突出。生物医学研究:拍打式均质器广泛用于处理脑、肾、肝、脾等组织样本。通过均质器的处理,可以获得均一的样本悬液,便于后续的显微镜观察、培养、基因检测等实验操作。食品科学:在食品安全检测中,拍打式均质器常用于处理食品样本,如肉类、蔬菜、水果等。通过均质处理,可以有效释放样本中的微生物、病毒或其他有害物质,便于后续的微生物检测和安全评价。分子生物学:在分子生物学研究中,拍打式均质器用于样本制备,如DNA、RNA和蛋白质的提取。通过均质处理,可以确保样本的均匀性和完整性,为分子生物学实验提供高质量的样本。总之,拍打式均质器作为一种高效、可靠的样本处理设备,为生物医学、食品科学和环境监测等领域的研究提供了强有力的支持。其独特的工作原理和广泛的应用范围,使其成为实验室中不可缺少的重要工具。
  • 色度测定仪工作原理及仪器维护
    工作原理仪器使用 220V、100W,色温为 2750±50K 的内磨砂乳壳灯泡为标准光源。光源光经由乳白色玻璃片和日光滤色 33 玻璃片滤色后,所得到的标准光的光谱特性类似于自然光。标准光经由平面反射镜,棱镜组成二条平行光束,其大小形状完全相同,分别均匀地照射在标准色盘的颜色玻璃片上和比色管的试样上。标准色盘上有 26个 Ø14光孔,其中 25顺序装有(1~25)色号的标准颜色玻璃片,第 26孔为空白,色盘安装在仪器右侧由手轮转动。试验时用于选择正确的标准颜色。比色管为内径 Ø32毫米,高(120~130)mm的无色平底玻璃管。比色管由仪器顶部的小盖位置放入。观察目镜由凹镜和分隔栅组成,在目镜中可同时看到二个半圆色,其左边的为试样颜色。其右边的为标准色颜色,光学目镜具有光线调节和调焦能力,使用方便。仪器的维护1,光学目镜系统,已经调焦和光线调节正确,使用时不宜多动,如需调整需专业人士调整,或返修厂家。2,标准颜色玻璃片每隔半年,须用 SH/T0168规定的标定比色液作校验一次如发现色片颜色与相当色号的比色液颜色相差达一个色号时,应更换新的色盘或送请制造厂重新标定。3,请勿随意拆卸目镜。4,目镜表面附着脏物,影响观察,客户只能做简单处理,将目镜从仪器上取下,倒放在干净的平台上,用洁净的洗耳球,轻吹目镜表面,如问题未解决,必须返厂处理,或请专业人员进行清理。相关仪器ENDBT-0168石油产品色度测定仪符合SH/T0168-92标准,可与GB6540的16个色号相对应,适用于测定润滑油及其他石油产品的颜色。测定时将欲测定的石油产品试样注入比色管内,然后与标准色片相比较就可以确定其色度色号。仪器特点1、仪器由标准色盘、观察光学镜头、光源、比色管组成2、采用磨砂乳壳灯泡为发光源3、光源经滤色后能分别均匀照射在标准色盘的颜色玻璃片和比色管4、光学目镜具有光线调节和调焦能力,使用方便技术参数比色管内径:Φ32mm 高:120~130mm环境温度:5℃~40℃相对湿度:≤85%电源电压:交流220V±10% 50Hz±10%功率消耗:
  • 【仪器百科】光合作用测定仪工作原理与参数指标
    工作原理植物光合作用测定仪是一款用于检测植物叶片光合作用的实验仪器,适用于人工气候室、温室、大棚、大田等环境。该测定仪通过多项参数的测量,分析植物在不同环境条件下的光合作用情况。其工作原理主要包括以下几个方面:CO2分析:采用非扩散式红外CO2分析技术,测定空气中的CO2浓度,通过监测植物周围CO2浓度变化,计算出植物的光合作用速率。温湿度测量:利用高精度传感器,测量环境温度、环境湿度、叶室温度、叶室湿度及叶面温度,提供植物生理状态及环境条件的全面信息。光合有效辐射(PAR):通过光传感器测定植物接收到的光合有效辐射强度,了解光照对植物光合作用的影响。气体交换测量:通过测量气孔导度、蒸腾速率及胞间CO2浓度,评估植物叶片的气体交换效率和水分利用情况。通过上述测量数据,光合作用测定仪可以计算出植物的光合速率(Pn)、水分利用率(WUE)、呼吸速率(Rd)及蒸腾比(TR)等重要生理参数,为植物生长生理、光合生理及胁迫生理研究提供可靠的数据支持。了解更多光合作用测定仪产品详情→https://www.instrument.com.cn/show/C561710.html参数指标1、空气CO2浓度测量技术:非扩散式红外CO2分析测量范围:0-3000 μmol/mol (ppm)分辨率:0.0005 ppm误差:≤ 3% FS2、环境温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃3、环境湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH4、叶室温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃5、叶室湿度测量范围:0-100% RH分辨率:0.001% RH误差:≤ ±1% RH6、叶面温度测量范围:0-50℃分辨率:0.001℃误差:≤ ±0.2℃7、大气压力测量范围:30-110 kPa分辨率:0.01 kPa误差:≤ ±0.06 kPa8、光合有效辐射(PAR)测量范围:0-3000 μmol/(m² s)分辨率:0.001 μmol/(m² s)误差:≤ ±5 μmol/(m² s)9、光合速率(Pn)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)10、气孔导度(Gs)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)11、蒸腾速率(Tr)单位:mmol H₂ O/(m² s)分辨率:0.001 mmol H₂ O/(m² s)12、胞间CO2浓度(Ci)单位:μmol/mol分辨率:0.001 μmol/mol13、水分利用率(WUE)单位:μmol CO2/mol H₂ O分辨率:0.001 μmol CO2/mol H₂ O14、呼吸速率(Rd)单位:μmol/(m² s)分辨率:0.001 μmol/(m² s)15、蒸腾比(TR)单位:μmol H₂ O/mmol CO2分辨率:0.001 μmol H₂ O/mmol CO2植物光合作用测定仪的高精度和多参数测量能力,使其成为农业科研、教学、园艺、草业、林业等领域中不可或缺的重要工具。农业科研植物光合作用测定仪在农业科研中用于评估作物光合作用效率,筛选高效能品种,优化栽培技术,并研究环境变化对作物生长的影响,从而提升农业生产力。教学在教学中,该仪器为植物生理学和生态学课程提供实验平台,帮助学生理解植物光合作用原理,培养科研能力和实验技能,通过多参数测量了解植物在不同环境下的生理响应。园艺园艺领域利用该仪器监测花卉和观赏植物的光合作用,调节温室环境,优化生长状态。它还能帮助选育具观赏价值和抗逆性的品种,并评估病虫害防治效果。草业在草业中,该仪器用于评估牧草生长状况和生产力,研究不同品种的适应性和生产潜力。还可用于草地改良和生态修复,指导草地管理和保护措施。林业林业领域通过测定仪监测树木光合作用,评估森林健康状况和碳吸收能力。它提供树木生理响应数据,帮助制定森林管理策略,并研究树木对环境胁迫的适应机制,指导林木品种选育和改良。植物光合作用测定仪在以上各领域中提供重要技术支持,促进了科研进步和产业发展。
  • 各种仪器分析的基本原理及谱图表示方法
    紫外吸收光谱UV   分析原理:吸收紫外光能量,引起分子中电子能级的跃迁   谱图的表示方法:相对吸收光能量随吸收光波长的变化   提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息   荧光光谱法FS   分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光   谱图的表示方法:发射的荧光能量随光波长的变化   提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息   红外吸收光谱法IR   分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁   谱图的表示方法:相对透射光能量随透射光频率变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   拉曼光谱法Ram   分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射   谱图的表示方法:散射光能量随拉曼位移的变化   提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率   核磁共振波谱法NMR   分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁   谱图的表示方法:吸收光能量随化学位移的变化   提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息   电子顺磁共振波谱法ESR   分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁   谱图的表示方法:吸收光能量或微分能量随磁场强度变化   提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息   质谱分析法MS   分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离   谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化   提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息   气相色谱法GC   分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:峰的保留值与组分热力学参数有关,是定性依据 峰面积与组分含量有关   反气相色谱法IGC   分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力   谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线   提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数   裂解气相色谱法PGC   分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型   凝胶色谱法GPC   分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出   谱图的表示方法:柱后流出物浓度随保留值的变化   提供的信息:高聚物的平均分子量及其分布   热重法TG   分析原理:在控温环境中,样品重量随温度或时间变化   谱图的表示方法:样品的重量分数随温度或时间的变化曲线   提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区   热差分析DTA   分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化   谱图的表示方法:温差随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   TG-DTA图   示差扫描量热分析DSC   分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化   谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线   提供的信息:提供聚合物热转变温度及各种热效应的信息   静态热―力分析TMA   分析原理:样品在恒力作用下产生的形变随温度或时间变化   谱图的表示方法:样品形变值随温度或时间变化曲线   提供的信息:热转变温度和力学状态   动态热―力分析DMA   分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化   谱图的表示方法:模量或tg&delta 随温度变化曲线   提供的信息:热转变温度模量和tg&delta   透射电子显微术TEM   分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象   谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象   提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等   扫描电子显微术SEM   分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象   谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等   提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等   原子吸收AAS   原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。   (Inductivecouplinghighfrequencyplasma)电感耦合高频等离子体ICP   原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。   X-raydiffraction,x射线衍射即XRD   X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。   满足衍射条件,可应用布拉格公式:2dsin&theta =&lambda   应用已知波长的X射线来测量&theta 角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量&theta 角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。   高效毛细管电泳(highperformancecapillaryelectrophoresis,HPCE)   CZE的基本原理   HPLC选用的毛细管一般内径约为50&mu m(20~200&mu m),外径为375&mu m,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象 电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。   MECC的基本原理   MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。   扫描隧道显微镜(STM)   扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。这种现象即是隧道效应。   原子力显微镜(AtomicForceMicroscopy,简称AFM)   原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。   俄歇电子能谱学(Augerelectronspectroscopy),简称AES   俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。因此,俄歇电子能谱适用于轻元素的分析。
  • 《污水处理在线监测仪器原理与应用(第二版)》最新出版
    近年来,我国的城市污水处理设施建设发展迅速,大中型污水处理厂已有3000余座,中小城镇的污水处理厂建设方兴未艾。这些污水处理厂的运行将获得巨大的环境效益,同时也将产生巨大的能耗和物耗。从实现国家节能减排和可持续发展的目标出发,发展污水处理的节能降耗技术具有重大的意义。污水处理厂达标运行和节能降耗技术的发展,必然会推动控制技术和在线监测仪器的广泛应用。 《污水处理在线监测仪器原理与应用(第二版)》介绍了污水处理中常用的在线监测仪器及其基本原理,内容包括测量仪表的基本知识、污水处理的常用监测指标、污水处理在线监测仪器、数据采集与通信、仪器仪表的日常维护与管理和在线监测仪器的应用及实例。在此基础上,根据国内外最新发展,增加了溶解氧的荧光检测技术、COD的光谱检测技术、基于人工嗅觉原理的氨氮检测技术、生物毒性检测和管网的液位检测等新技术,先进实用,是国内少有的详细介绍污水处理在线分析监测仪器的专业著作。 《污水处理在线监测仪器原理与应用(第二版)》作者清华大学环境学院施汉昌教授长期以来从事污水处理系统的优化运行和仪器化、污水生物处理反应动力学和生物传感器的研究,积累了大量研究成果和丰富的经验。本书正是施教授长期以来从事废水生物处理和传感器技术研究的研究成果和经验的总结,具有实用性、可操作性和指导性。 《污水处理在线监测仪器原理与应用(第二版)》于2013年11月出版,书号:9787122182852。点击查看购买链接
  • 博纳艾杰尔科技样品前处理仪器原理及操作培训班开讲啦!
    2016年9月21——23日,博纳艾杰尔科技样品前处理原理及操作培训班正式开讲啦!本次培训为期三天,课程包含样品前处理仪器讲解和上机操作两部分,涉及仪器原理,操作技巧,方法建立,故障排除等内容。为了保证效果,培训以小班形式进行,每期人数不超过10人。来自各地的多名客户参加了本次培训班。授课期间由博纳艾杰尔科技的应用工程师及仪器产品经理分别为大家讲解了样品前处理原理、方法开发及前处理仪器的相关介绍并现场实际操作练习了“果蔬中农残检测方法(spe、quechers方法)”“动物源性食品中兽残检测”。23日,第一期的样品前处理仪器原理及操作培训班已正式结束,课程的设置及讲师们的讲解获得了客户们的一致好评!27-29日,第二期培训班即将与您见面,欢迎您的到来!博纳艾杰尔客户培训中心讲师在为培训人员实地介绍操作
  • 科众精密仪器-光学接触角测量仪原理
    科众精密-光学接触角测量仪原理 接触角是液体在液固气三态 交接处平衡时所形成的角度,液滴的形状由的表面张力所决定,θ 是固体被液 体湿润的量化指标,但它同时也能用于表面 处理和表面洁净的质量管控,表面张力 液体中的分子受到各个方向 相等的吸引力,但在液体表面的分子受到液体分子的拉力会大于气体分子的拉力,所以 液体就会向内收缩,这种自发性的收缩称之为表面张力 γ。对于清洗性,湿润度,乳化作用和其它表面相关性质而言,γ 是一个相当敏感的指标 悬垂液滴量测法悬垂液滴测量能提供 一个非常简便的方法来量测液体的表面张力 (气液接口) 和两个液体之间的接口张力 (液液接口) ,在悬垂液滴量测法中,表面张力和界面张力值的计算是经由分析悬吊在滴管顶端 的液滴的形状而来,接触角分析可依据液滴的影像做 杨氏议程计算 表面张力和接口张力。这项技巧非常的准确,而且在不同的温度和压力下也可以量测。 前进角与后退角使用在固体基板上的固着液滴可以得到静态的接触角。另外有一种量测方式称之为动态接触角,如果液固气三态接触的边界是处于移动状态,所形成的角度称之为前进角与后退角,这个角度的求取是由液滴形状的来决定。另外,固体样品的表面张力无法被直接量测,要求取这个值,只要两种以上的已知液体, 就可求得固体表面的临界表。以下是通过接触角测量仪测量单位济南大学材料学院设备序号5设备名称接触角测定仪 数量1调研产品(品牌型号)科众KZS-20共性参数1. 接触角测量范围:0~180°,接触角测量分辨率:±0.01°,测量精度±0.1°。2. 表界面张力测量范围和精度:0.01~2000mN/m,分辨率:±0.01mN/m。3. 光学系统:变焦镜头(放大倍率≧4.5倍),前置长焦透镜,通光量可调节。4. 高清晰度高速CCD,拍摄速度可达1220张图像/S,像素最高可达2048 x 1088。5. 光源:软件可调连续光强且无滞后作用的光源。6. 注射体积、速度可以软件进行控制;注射单元精度≤0.1uL;注射液体既可通过软件,亦可通过手动按钮控制液体注射。7. 注射单元调节:注射单元可进行X-、Y-、Z-轴准确调节;8. 整个注射单元支架可以旋转90°调整。9. 滚动角测量:自动倾斜台(整机倾斜),可调节倾斜角度范围≥90°,可测量滚动角。10. 接触角拟合方法:宽高法、椭圆法、切线法、L-Y法11. 动态接触角计算:全自动的动态接触角测量,软件控制注射体积、速率、时间,自动计算前进角和后退角。12. 表面自由能计算:9种可选模型计算固体表面自由能及其分量,分析粘附功曲线、润湿曲线。13. 具有环境控温功能,进行变温测试(0-110 oC), 分辨率0.1K。14. 品牌计算机: i7 4790 /8GB内存/1TB(7200转)硬盘/2G独立显卡/19英寸液晶显示器/DVD刻录光驱。15. 必备易耗品(供应商根据投标产品功能提供)16. 另配附件,要求:进口微量注射器3个,备用不锈钢针6根,一次性针头100根、适合仪器功率的稳压电源(190-250V)1台、配置钢木结构实验台( C型钢架、钢厚≥1.5mm,长2m、宽0.75m,板材采用三聚氰胺板,铝合金拉手,铰链采用国际五金标准,抽屉三阶式静音滑轨、抽屉负重≥25KG,含专用线盒,可安装5孔或6孔插座,优质地脚)。17. 售后服务:自安装调试验收完毕后之日起24个月内免费保修;每年提供至少一次的免费巡检。
  • 一看就懂|动图解析16种仪器原理
    p span style=" color: rgb(31, 73, 125) " strong 紫外分光光谱UV /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/8ab5194e-71c2-423f-ab65-03058376187d.jpg" title=" 紫外分光光谱UV.jpeg" width=" 400" height=" 290" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 290px " / /strong /span /p p strong i 分析原理 /i /strong :吸收紫外光能量,引起分子中电子能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :相对吸收光能量随吸收光波长的变化 /p p i strong 提供的信息 /strong /i :吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 /p p style=" text-indent: 2em " 物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光吸收光谱主要用于测定共轭分子、组分及平衡常数。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6122f151-9d54-41a3-88a5-4158748f0d34.gif" title=" 光线传输.gif" / br/ /p p style=" text-align: center " strong 光线传输 /strong /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201808/noimg/19887b2b-4de7-4f43-99dc-a382338d1c5b.gif" title=" 光衍射.gif" / /strong /p p style=" text-align:center" strong 光衍射 /strong br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/f1caf7ed-a3a7-4782-871b-82cd279346a8.gif" title=" 探测.gif" / br/ /p p style=" text-align: center " strong 探测 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/1d7d1318-2fe2-4704-aea6-68c76f901233.gif" title=" 数据输出.gif" / br/ /p p style=" text-align: center " strong 数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 红外吸收光谱法IR /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/3a428e28-d9fb-4db8-b78c-58b5480e87c9.jpg" title=" 红外吸收光谱法IR.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 /p p i strong 谱图的表示方法 /strong /i :相对透射光能量随透射光频率变化 /p p strong i 提供的信息 /i /strong :峰的位置、强度和形状,提供功能团或化学键的特征振动频率 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/41b34bed-9a1a-4103-a3c9-c8412dc51e95.gif" title=" 红外光谱测试.gif" / br/ /p p style=" text-align: center " strong 红外光谱测试 /strong /p p style=" text-indent: 2em " 红外光谱的特征吸收峰对应分子基团,因此可以根据红外光谱推断出分子结构式。 /p p style=" text-indent: 2em " 以下是甲醇红外光谱分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7de57c9c-db88-40eb-8591-f797776f12eb.gif" title=" 甲醇红外光谱结构分析过程1.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c0f4e29c-7ae9-42af-b345-b205ba9a893c.gif" title=" 甲醇红外光谱结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a0aa4a60-27be-4d46-b2b5-7afd0dca48d2.gif" title=" 甲醇红外光谱结构分析过程3.gif" / /p p style=" text-align:center" strong 甲醇红外光谱结构分析过程 /strong br/ /p p span style=" color: rgb(31, 73, 125) " strong 核磁共振波谱法NMR /strong /span br/ /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/829af79c-f4b3-40eb-9382-b9eff42334f3.jpg" title=" 核磁共振波谱法NMR.jpeg" width=" 400" height=" 240" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 240px " / /strong /span /p p i strong 分析原理 /strong /i :在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :吸收光能量随化学位移的变化 /p p i strong 提供的信息 /strong /i :峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/39b89c4b-6f7e-4031-aa61-93b6851de8bc.gif" title=" NMR结构.gif" / br/ /p p style=" text-align: center " strong NMR结构 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/093bf492-16db-446c-bd23-3a1fe1f1f21e.gif" title=" 进样.gif" / br/ /p p style=" text-align: center " strong 进样 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/00d0be2f-c318-44ef-925d-159a4fe3fd7b.gif" title=" 样品在磁场中.gif" / br/ /p p style=" text-align: center " strong 样品在磁场中 /strong /p p style=" text-indent: 2em " 当外加射频场的频率与原子核自旋进动的频率相同时,射频场的能量才能被有效地吸收,因此对于给定的原子核,在给定的外加磁场中,只能吸收特定频率射频场提供的能量,由此形成核磁共振信号。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/b9110f69-6d30-4b94-8ef2-662f88b9449b.gif" style=" float:none " title=" 核磁共振及数据输出1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ed6564f9-3205-46c9-823a-00a4a2b6c0bc.gif" style=" float:none " title=" 核磁共振及数据输出2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/054ba93d-f4ce-496b-8506-1ba91c2c0d95.gif" style=" float: none width: 400px height: 225px " title=" 核磁共振及数据输出3.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 核磁共振及数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 质谱分析法MS /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/5f727f1c-80fa-4828-b40d-7dd0003c50a1.jpg" title=" 质谱分析法MS.jpeg" width=" 400" height=" 282" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 282px " / /strong /span /p p strong i 分析原理 /i /strong :分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e的变化 /p p i strong 提供的信息 /strong /i :分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 /p p i strong FT-ICR质谱仪工作过程: /strong /i /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/0a83da1d-ffb7-45d7-a570-abc02e9e4187.gif" title=" 离子产生.gif" / br/ /p p style=" text-align: center " strong 离子产生 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a8e8b100-15db-4df8-87f9-91152f0656b1.gif" title=" 离子收集.gif" / br/ /p p style=" text-align: center " strong 离子收集 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8b773803-09e5-4bd3-b849-23005f6bd132.gif" title=" 离子传输.gif" / br/ /p p style=" text-align: center " strong 离子传输 /strong /p p style=" text-indent: 2em " FT-ICR质谱的分析器是一个具有均匀(超导)磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关,因此可以分离不同质荷比的离子,并得到质荷比相关的图谱。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/087524ac-bea1-4fd4-86bf-3ba50903ac29.gif" style=" float:none " title=" 离子回旋运动1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/a74c74d2-3aee-41b9-9490-0034951aef52.gif" style=" float:none " title=" 离子回旋运动2.gif" / /p p style=" text-align:center" strong 离子回旋运动 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80d0b75-1461-443b-96ba-878eb10101f6.gif" title=" 傅立叶变换.gif" / br/ /p p style=" text-align: center " strong 傅立叶变换 /strong /p p span style=" color: rgb(31, 73, 125) " strong 气相色谱法GC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/bcfdfd69-ffb0-443d-98e7-c514fbb1ad6d.jpg" title=" 气相色谱法GC.jpeg" width=" 400" height=" 364" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 364px " / /strong /span /p p i strong 分析原理 /strong /i :样品中各组分在流动相和固定相之间,由于分配系数不同而分离 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :峰的保留值与组分热力学参数有关,是定性依据 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/52946bcb-d9e8-4667-b58f-a5371a812992.gif" title=" 气相色谱仪检测流程.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 气相色谱仪检测流程 /strong /p p style=" text-indent: 2em " 气相色谱仪,主要由三大部分构成:载气、色谱柱、检测器。每一模块具体工作流程如下。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/aba9a284-7690-4ead-9eae-c331f7742e53.gif" title=" 注射器.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 注射器 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/891e4835-0aca-4ea3-84fd-2fea84ba46c0.gif" title=" 色谱柱.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 色谱柱 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/18227132-52c1-42ed-ae3c-94f85089e5f4.gif" title=" 检测器.gif" width=" 400" height=" 212" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 212px " / br/ /p p style=" text-align: center " strong 检测器 /strong /p p span style=" color: rgb(31, 73, 125) " strong 凝胶色谱法GPC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/ca20b06f-cd93-4c40-8a0e-1f0e6ed7f901.jpg" title=" 凝胶色谱法GPC.jpeg" width=" 400" height=" 298" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 298px " / /strong /span /p p i strong 分析原理 /strong /i :样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :高聚物的平均分子量及其分布 /p p style=" text-indent: 2em " 根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/85650fe3-b9fe-4f2c-ad1b-e5075277a14f.gif" title=" 只依据尺寸大小分离,大组分最先被洗提出.gif" width=" 400" height=" 294" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 294px " / br/ /p p style=" text-align: center " strong 只依据尺寸大小分离,大组分最先被洗提出 /strong /p p style=" text-indent: 2em " 色谱固定相是多孔性凝胶,只有直径小于孔径的组分可以进入凝胶孔道。大组分不能进入凝胶孔洞而被排阻,只能沿着凝胶粒子之间的空隙通过,因而最大的组分最先被洗提出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/9e3e1054-2d80-425c-a62c-fde6ced73425.gif" title=" 直径小于孔径的组分进入凝胶孔道.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 直径小于孔径的组分进入凝胶孔道 /strong /p p style=" text-indent: 2em " 小组分可进入大部分凝胶孔洞,在色谱柱中滞留时间长,会更慢被洗提出来。溶剂分子因体积最小,可进入所有凝胶孔洞,因而是最后从色谱柱中洗提出。这也是与其他色谱法最大的不同。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/da816fe1-73f4-4370-9c85-fcfed078d003.gif" title=" 依据尺寸差异,样品组分分离.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 依据尺寸差异,样品组分分离 /strong /p p style=" text-indent: 2em " 体积排阻色谱法适用于对未知样品的探索分离。凝胶过滤色谱适于分析水溶液中的多肽、蛋白质、生物酶等生物分子 凝胶渗透色谱主要用于高聚物(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯)的分子量测定。 /p p span style=" color: rgb(31, 73, 125) " strong 热重法TG /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/960f1dd8-e4b6-4197-a18a-7d5d02c82bdd.jpg" title=" 热重法TG.jpeg" width=" 400" height=" 268" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 268px " / /strong /span /p p i strong 分析原理 /strong /i :在控温环境中,样品重量随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品的重量分数随温度或时间的变化曲线 /p p strong i 提供的信息 /i /strong :曲线陡降处为样品失重区,平台区为样品的热稳定区 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/71b6267a-dbf2-47d6-9dd9-9e2d2a35324c.gif" title=" 自动进样过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 222px " / br/ /p p style=" text-align: center " strong 自动进样过程 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/d1ec9825-832d-45e4-bf8c-6662d7f679d5.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ecb6680e-fae6-48b5-b59c-9564519e7bd3.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程2.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 热重分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 静态热-力分析TMA /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/92906ff1-0140-4758-9e8e-3b93244ec676.jpg" title=" 静态热-力分析TMA.png" width=" 400" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 400px " / /p p i strong 分析原理 /strong /i :样品在恒力作用下产生的形变随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品形变值随温度或时间变化曲线 /p p i strong 提供的信息 /strong /i :热转变温度和力学状态 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/494f42b0-b3a5-423a-a0a1-9af99eed9741.gif" title=" TMA进样及分析1.gif" style=" float: none width: 400px height: 223px " width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b7eab865-5ed6-40fd-9885-cfc0d745c7df.gif" title=" TMA进样及分析2.gif" width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 223px " / /p p style=" text-align: center " strong TMA进样及分析 /strong /p p strong span style=" color: rgb(31, 73, 125) " 透射电子显微技术TEM /span /strong /p p style=" text-align:center" strong span style=" color: rgb(31, 73, 125) " img src=" https://img1.17img.cn/17img/images/201808/insimg/6c591633-0cea-4a5b-a3de-1bfd16ab115e.jpg" title=" 透射电子显微技术TEM.jpeg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /span /strong /p p i strong 分析原理 /strong /i :高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象 /p p i strong 谱图的表示方法 /strong /i :质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象 /p p i strong 提供的信息 /strong /i :晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2d2309eb-5d53-41c3-bcb2-233898451561.gif" title=" TEM工作图.gif" / br/ /p p style=" text-align: center " strong TEM工作图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e19a3fc4-7276-4112-b30f-613ee8c5c7e4.gif" title=" TEM成像过程.gif" / br/ /p p style=" text-align: center " strong TEM成像过程 /strong /p p style=" text-indent: 2em " STEM成像不同于平行电子束的TEM,它是利用聚集的电子束在样品上扫描来完成的,与SEM不同之处在于探测器置于试样下方,探测器接收透射电子束流或弹性散射电子束流,经放大后在荧光屏上显示出明场像和暗场像。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/80f20816-e715-41f2-944b-beecca86c56a.gif" title=" STEM分析图.gif" / br/ /p p style=" text-align: center " strong STEM分析图 /strong /p p style=" text-indent: 2em " 入射电子束照射试样表面发生弹性散射,一部分电子所损失能量值是样品中某个元素的特征值,由此获得能量损失谱(EELS),利用EELS可以对薄试样微区元素组成、化学键及电子结构等进行分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80b145d-fa22-40cd-81a7-f7ee7853c59e.gif" title=" EELS原理图.gif" / br/ /p p style=" text-align: center " strong EELS原理图 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描电子显微技术SEM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/316f661e-bd8c-4b0b-a4db-ba28474d90e6.jpg" title=" 扫描电子显微技术SEM.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /p p i strong 分析原理 /strong /i :用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象 /p p i strong 谱图的表示方法 /strong /i :背散射象、二次电子象、吸收电流象、元素的线分布和面分布等 /p p i strong 提供的信息 /strong /i :断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8fb69ade-2a8f-496e-9047-613b586c0e1b.gif" title=" SEM工作图.gif" / br/ /p p style=" text-align: center " strong SEM工作图 /strong /p p style=" text-indent: 2em " 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子从样品表面逸出成为真空中的自由电子,此即二次电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7e005a36-0a5a-4ac5-934f-3ab8ead944a7.gif" title=" 电子发射图.gif" / br/ /p p style=" text-align: center " strong 电子发射图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6580019e-86ae-4b52-af2f-06b6b1b0d8d8.gif" title=" 二次电子探测图.gif" / br/ /p p style=" text-align: center " strong 二次电子探测图 /strong /p p style=" text-indent: 2em " 二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌,分辨率可达5~10nm。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/25ee0fc5-785e-476b-9c47-d46588228e0e.jpg" title=" 二次电子扫描成像.jpeg" / br/ /p p style=" text-align: center " strong 二次电子扫描成像 /strong /p p style=" text-indent: 2em " 入射电子达到离核很近的地方被反射,没有能量损失 既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/3b7d3d61-ea3d-4a72-b8bd-55b72ceda02d.gif" title=" 背散射电子探测图.gif" / br/ /p p style=" text-align: center " strong 背散射电子探测图 /strong /p p style=" text-indent: 2em " 用背反射信号进行形貌分析时,其分辨率远比二次电子低。可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/1174f921-e05b-4aa4-890b-8cfcfd91ad8a.gif" title=" EBSD成像过程.gif" / br/ /p p style=" text-align: center " strong EBSD成像过程 /strong /p p span style=" color: rgb(31, 73, 125) " 原子力显微镜AFM /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/76d50cd6-1fa1-4604-8775-5a7cd72b196c.jpg" title=" 原子力显微镜AFM.jpeg" width=" 400" height=" 176" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 176px " / /p p i strong 分析原理 /strong /i :将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动。从而可以获得样品表面形貌的信息 /p p i strong 谱图的表示方法 /strong /i :微悬臂对应于扫描各点的位置变化 /p p i strong 提供的信息 /strong /i :样品表面形貌的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/eb4b5347-dda5-4b05-883b-dc575ec1768d.gif" title=" AFM原理:针尖与表面原子相互作用.gif" / br/ /p p style=" text-align: center " strong AFM原理:针尖与表面原子相互作用 /strong /p p style=" text-indent: 2em " AFM的扫描模式有接触模式和非接触模式,接触式利用原子之间的排斥力的变化而产生样品表面轮廓 非接触式利用原子之间的吸引力的变化而产生样品表面轮廓。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/19f93f8d-cbeb-4fba-b377-a9008c6fe007.gif" title=" 接触模式.gif" / br/ /p p style=" text-align: center " strong 接触模式 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描隧道显微镜STM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/ba6fb6b6-ba14-4416-965f-89ab322f5136.jpg" title=" 扫描隧道显微镜STM.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /p p i strong 分析原理 /strong /i :隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。 /p p i strong 谱图的表示方法 /strong /i :探针随样品表面形貌变化而引起隧道电流的波动 /p p i strong 提供的信息 /strong /i :软件处理后可输出三维的样品表面形貌图 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/837324a2-f24b-4a6a-9f9a-9376b04fc45d.gif" title=" 探针.gif" / br/ /p p style=" text-align: center " strong 探针 /strong /p p style=" text-indent: 2em " 隧道电流对针尖与样品表面之间的距离极为敏感,距离减小0.1nm,隧道电流就会增加一个数量级。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/4e8408e5-3819-4a73-96e2-916e83952bf7.gif" title=" 隧道电流.gif" / br/ /p p style=" text-align: center " strong 隧道电流 /strong /p p style=" text-indent: 2em " 针尖在样品表面扫描时,即使表面只有原子尺度的起伏,也将通过隧道电流显示出来,再利用计算机的测量软件和数据处理软件将得到的信息处理成为三维图像在屏幕上显示出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/41ef7e62-822f-438d-a86d-9afd2f02035b.gif" title=" 三维图像1.gif" style=" float: none " / br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/2c900b56-41dd-4ffa-bf83-d69c1a7063b1.gif" style=" float:none " title=" 三维图像2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/7377f5c3-8b63-4539-bb71-123c11a9996b.gif" style=" float:none " title=" 三维图像3.gif" / /p p span style=" color: rgb(31, 73, 125) " strong 原子吸收光谱AAS /strong /span br/ /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/19784e88-861e-4974-b85a-c852cfd9be0c.jpg" title=" 原子吸收光谱AAS.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /strong /span /p p i strong 分析原理 /strong /i :通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fc84144b-efad-4d04-b8fb-92c01ddc9e8d.gif" title=" 待测试样原子化.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / br/ /p p style=" text-align: center " strong 待测试样原子化 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fddb2170-90e4-42f0-9ff6-d1a6077e2166.gif" title=" 原子吸收及鉴定1.gif" style=" float: none width: 400px height: 222px " width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2085a1cb-a886-4ae9-9d86-97d2363b9a01.gif" title=" 原子吸收及鉴定2.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / /p p style=" text-align: center " strong 原子吸收及鉴定 /strong /p p span style=" color: rgb(31, 73, 125) " strong 电感耦合高频等离子体ICP /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/a52ce051-b73b-42d7-8fe4-1feb42aac661.jpg" title=" 电感耦合高频等离子体ICP.jpeg" width=" 400" height=" 255" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 255px " / /strong /span /p p i strong 分析原理 /strong /i :利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/62eea5d0-6859-42fb-aee0-6730cd8a93d5.gif" title=" Icp设备构造.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong Icp设备构造 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c6e9d70f-a9a4-4264-9c86-442f2cb16c6d.gif" title=" 形成激发态的原子和离子.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 形成激发态的原子和离子 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6b4acc93-c1b2-4ea1-83fb-9f064d099859.gif" title=" 检测器检测.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 检测器检测 /strong /p p span style=" color: rgb(31, 73, 125) " strong X射线衍射XRD /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/1e9c1411-08c6-4086-a740-1e5bd2a9ffa0.jpg" title=" X射线衍射XRD.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 /p p style=" text-indent: 2em " 满足衍射条件,可应用布拉格公式:2dsinθ=λ /p p style=" text-indent: 2em " 应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/27e70349-3e34-40a6-a2be-ccd119dd64e6.jpg" title=" XRD结构.jpeg" width=" 400" height=" 421" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 421px " / /p p style=" text-indent: 2em " 以下是使用XRD确定未知晶体结构分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e41c6c4c-3041-4b54-8a0b-ecd0bff7610e.gif" title=" XRD确定未知晶体结构分析过程1.gif" style=" float: none " / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/090f2986-904e-4c2a-8cbd-c6926226bd6a.gif" title=" XRD确定未知晶体结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b1a01d84-aad0-4587-8052-6b07d62015f8.gif" title=" XRD确定未知晶体结构分析过程3.gif" / /p p style=" text-align: center " strong XRD确定未知晶体结构分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 纳米颗粒追踪表征 /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/62fda81f-80f4-4f24-9075-3c03b6953aa0.jpg" title=" 纳米颗粒追踪表征.jpeg" width=" 400" height=" 261" border=" 0" hspace=" 0" vspace=" 0" style=" text-align: center width: 400px height: 261px " / /p p i strong 分析原理 /strong /i :纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/420ce466-3a17-4f4f-8ffd-7e3b1fcb1f90.gif" title=" 不同粒径颗粒的散射光成像在CCD.gif" width=" 400" height=" 168" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 168px " / br/ /p p style=" text-align: center " strong 不同粒径颗粒的散射光成像在CCD /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6dac7839-6888-49da-93ff-d7d6653c643c.gif" title=" 实际样品测试效果.gif" width=" 400" height=" 301" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 301px " / br/ /p p style=" text-align: center " strong 实际样品测试效果 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/d0a95acd-0b1a-4d2b-848a-5185852adec2.jpg" title=" 不同技术的数据对比.jpeg" width=" 400" height=" 377" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 377px " / br/ /p p style=" text-align: center " strong 不同技术的数据对比 /strong /p
  • 万字讲懂离子色谱仪原理、结构、分类、应用、常见品牌等 | 仪器博物馆
    离子色谱仪是高效液相色谱的一种,作为测定阴离子、阳离子及部分极性有机物种类和含量的一种液相色谱方法,已被广泛应用在环境监测、食品分析、自然水工业、农业、地质等多个领域。今天小谱就其发展史、检测原理、结构等和大家进行探讨,一文把离子色谱仪讲通透。(如果读完文章您觉得还有哪些想听的知识点没有讲到,亦或是觉得文章中有哪些观点您不太认同,欢迎您积极留言。)01离子色谱的“前世今生”1975年,Dow Chemical(陶氏化学)的H.Small等人发表的第一篇离子色谱方面的论文在美国分析化学上;在分离用的离子交换柱后端加入不同极性的离子交换树脂填料,该树脂填料呈氢型或氢氧根型。如阴离子交换柱后端加入氢型的阳离子,交换树脂填料阳离子交换柱后端加入氢氧根型的阴离子,交换树脂填料当由分离柱流出的携带待测离子的洗脱液在检测前发生两个简单而重要的化学反应,一个是将淋洗液转变成低电导组分以降低来自淋洗液的背景电导,另一个是将样品离子转变成其相应的酸或碱以增加其电导。这种在分离柱和检测器之间降低背景电导值而提高检测灵敏度的装置后来组成独立组件称为抑制柱(或抑制器),通过这种方式使电导检测的应用范围扩大了;在H-Small等人提议下称这种液相色谱为离子色谱。离子色谱一经诞生就立即商品化;1975年,第一家离子色谱公司诞生——戴安公司(Dow Ion Exchange),由H-Small和T-S.Stevens研发;1979年,美国阿华州大学的J.S.Fritz等人建立了单柱型离子色谱,许多其它公司生产了离子色谱;1983年,中国核工业第五研究所刘开禄研究员刘开禄带领团队在青岛崂山电子实验仪器所研制成我国第一台离子色谱仪的原理样机ZIC-1,并实现产业化。性能基本与国外同类仪器(美国Dionex-14型)相接近,填补了国内空白;第六届“科学仪器行业研发特别贡献奖”获奖者 刘开禄ZIC-1型离子色谱仪第一台离子色谱仪成功商品化后,高效阳离子分离柱、五电极式电导检测器、阴离子分离柱、连续自再生式高效离子交换装置等一系列创造性的研究工作不断取得成功,极大的推动了中国离子色谱仪的发展。1985年6月,赵云麒、刘开禄研制ZIC-2型离子色谱仪,包含双模式理论和适用于阳离子分析的“五级电导检测”电路。1987年12月22日 ,ZIC-2型离子色谱仪通过了专家鉴定并投产,核心技术目前仍应用在中国的核潜艇水质监测。1995年,ZIC-3型离子色谱仪由张烈生、荆建增设计完成并获得国家科技成果完成者证书。左:ZIC-2型离子色谱仪、中:ZIC-2A型离子色谱仪、右:ZIC-3型离子色谱仪目前,随着技术的发展,电化学等技术在离子色谱仪中得到了更广泛的应用,比如新型抑制器技术、淋洗液发生器以及新型的电化学检测器-电荷检测器等均已商品化。而目前离子色谱技术发展也主要集中在色谱固定相、脉冲安培检测器以及抑制器等方面。不过,我国离子色谱的研发虽然取得了一定的成绩,但仍需更进一步的发展。02离子色谱的原理和结构离子色谱的原理基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。工作过程: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器, 抑制型离子色谱则在电导检测器之前增加一个抑制系统。即用另一个高压输液泵将再生液输送到抑制器, 在抑制器中, 流动相的背景电导被降低, 然后将流出物导入电导检测池, 检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵, 因此仪器的结构相对要简单得多, 价格也要便宜很多。离子色谱的结构离子色谱仪一般由流动相输送系统、进样系统、分离系统、抑制或衍生系统、检测系统及数据处理系统六大部分组成。1、流动相输送系统离子色谱的输液系统包括贮液罐、高压输液泵、梯度淋洗装置等,与高效液相色谱的输液系统基本一致。1.1贮液罐溶剂贮存主要用来供给足够数量并符合要求的流动相,对于溶剂贮存器的要求是:(1)必须有足够的容积,以保证重复分析时有足够的供液;(2)脱气方便;(3)能承受一定的压力;(4)所选用的材质对所使用的溶剂一律惰性。出于离子的流动相一般是酸、碱、盐或络合物的水溶液,因此贮液系统一般是以玻璃或聚四氟乙烯为材料,容积一般以0.5~4L为宜,溶剂使用前必须脱气。因为色谱柱是带压力操作的,在流路中易释放气泡,造成检测器噪声增大,使基线不稳,仪器不能正常工作,这在流动相含有有机溶剂时更为突出。脱气方法有多种,在离子色谱中应用比较多的有如下方法:(1)低压脱气法:通过水泵、真空泵抽真空,可同时加温或向溶剂吹氮,此法特别适用纯水溶剂配制的淋洗液。(2)吹氧气或氮气脱气法:氧气或氮气经减压通入淋洗液,在一定压力下可将淋洗液的空气排出。(3)超声波脱气法:将冲洗剂置于超声波清洗槽中,以水为介质超声脱气。一般超声30min左看,可以达到脱气日的。新型的离子色谱仪,在高压泵上带有在线脱气装置,可白动对琳洗液进行在线自动脱气。1.2高压输液泵高压输液泵是离子色谱仪的重要部件,它将流动相输入到分离系统,使样品在柱系统中完成分离过程。离子色谱用的高压泵应具备下述性能:(1)流量稳定:通常要求流量精度应为±1%左右,以保证保留时间的重复和定性定量分析的精度。(2)有一定输出压力,离子色谱一般在20MPa状态下工作,比高效液相色谱略低。(3)耐酸、碱和缓冲液腐蚀,与高效液相色谱不同,离子色谱所有淋洗液含有酸或碱。泵应采用全塑Peek材料制作。(4)压力波动小,更换溶剂方便,死体积小,易于清洗和更换溶剂。(5)流量在一定范围任选,并能达到一定精度要求。(6)部分输液泵具有梯度淋洗功能。目前离子色谱应用较多的是往复柱塞泵,只有低压离子色谱采用蠕动泵,但蠕动泵所能承受的压力太小,实际操作过程中会出现问题。由于往复柱塞泵的柱塞往复运动频率较高,所以对密封环的耐磨性及单向阀的刚性和精度要求都很高。密封环一般采用聚四氟乙烯添加剂材料制造,单向阀的球、阀座及柱塞则用人造宝石材料。1.3梯度淋洗装置梯度淋洗和气相色谱中的程序升温相似,给色谱分离带来很大的方便,但离子色谱电导检测器是一种总体性质的检测器,因此梯度淋洗一般只在含氢氧根离子的淋洗液中采用抑制电导检测时才能实现。采用梯度淋洗技术可以提高分离度、缩短分析时间、降低检测限,它对于复杂混合物,特别是保留强度差异很大的混合物的分离,是极为重要的手段。另外,新型抑制器通过脱气使淋洗液中CO2去除,碳酸盐的淋洗液背景电导很低,使灵敏度大大增加,也可以实现碳酸盐的梯度淋洗。离子色谱梯度淋洗可分为低压梯度和高压梯度两种,现分别介绍如下:(1)低压梯度低压梯度是采用比例调节阀,在常压下预先按一定的程序将溶剂混合后,再用泵输入色谱柱系统,也称为泵前混合。(2)高压梯度它是由两台高压输液泵、梯度程序控制器、混合器等部件所组成。两台泵分别将两种淋洗液输入混合器,经充分混合后,进入色谱分离系统。它又称为泵后高压混合形式。梯度淋洗的溶剂混合器必须具备容积小、无死区、清洗方便、混合效率高等性能,能获得重复的、滞后时间短的梯度淋洗效果。2、进样系统离子色谱的进样主要分为3种类型:即气动、手动和自动进样方式。(1)手动进样阀手动进样采用六通阀,其工作原理与HPLC相同,但其进样量比HPLC要大,一般为50μL。其定量管接在阀外,一般用于进样体积较大时的情况。样品首先以低压状态充满定量管,当阀沿顺时针方向旋至另一位置时,即将贮存于定量管中固定体积的样品送入分离系统。(2)气动进样阀气动阀采用一定氮气或氮气气压作动力,通过两路四通加载定量管后,进行取样和进样,它有效地减少了手动进样因动作不同所带来的误差。(3)自动进样自动进样器是在色谱工作站控制下,自动进行取样、进样、清洗等一系列操作,操作者只须将样品按顺序装入贮样机中。自动进样可以达到很宽的样品进样量范围的目的。3、分离系统分离系统是离子色谱的核心和基础。离子色谱柱是离子色谱仪的“心脏”,要求它具有柱效高、选择性好、分析速度快等特点。离子色谱柱填料的粒度一般在5~25μm之间,比高效液相色谱的柱填料略大,因此其压力比高效液相色谱的要小,一般为单分散,而且呈球状。3.1高分子聚合物填料离子色谱中使用得最广泛的填料是聚苯乙烯——二乙烯苯共聚物。其中阳离子交换柱一般采用磺酸或羧酸功能基,阴离子交换柱填料则采用季胺功能基或叔胺功能基。离子排斥柱填料主要为全磺化的聚苯乙烯 二乙烯苯共聚物,这类离子交换树脂可在pH0~14范围内使用。如果采用高交联度的材料来改进,还可兼容有机溶剂,以抗有机污染。一般来说,离子交换型色谱柱的交换容量均很低。3.2硅胶型离子色谱填料该填料采用多孔二氧化硅柱填料制得,是用于阴离子交换色谱法的典型薄壳型填料。它是用含季胺功能基的甲基丙烯十醇酯涂渍在二氧化硅微球上制备的。阳离子交换树脂是用低相对分子质量的磺化氟碳聚合物涂渍在二氧化硅微粒上制备的。这类填料的pH值使用范围为4~8,一般用于单柱型离子色谱柱中。3.3色谱柱结构一般分析柱内径为4mm,长度为100~250mm,柱子两头采用紧固螺丝。高档仪器特别是阳离子色谱柱一般采用聚四氟乙烯材料,以防止金属对测定的干扰。随着离子色谱的发展,细内径柱受到人们的重视,2mm柱不仅可以使溶剂消耗量减少,而且对于同样的进样量,灵敏度可以提高4倍。4、离于色谱的抑制系统对于抑制型(双柱型)离子色谱系统,抑制系统是极其重要的一个部分,也是离子色谱有别于高效液相色谱的最重要特点。抑制器的发展经历了多个发展时期,而目前商品化的离子色谱仪亦分别采用不同的抑制手段及相关研究成果。4.1树脂填充抑制柱该抑制系统采用高交换容量的阳离子树脂填充柱(阴离子抑制),通过硫酸,将树脂转化为氢型。它抑制容量不高,需要定期再生,而且死体积比较大,对弱酸根离子由于离子排斥的作用,往往无法准确定量。目前这类抑制器目前已经基本不用。4.2纤维抑制器这种抑制系统采用阳离子交换的中空纤维作为抑制器,外通硫酸作为再生液,可连续对淋洗液进行再生,这种抑制器的死体积比较大,抑制容量也不高。4.3微膜抑制器这种抑制系统采用阳离子交换平板薄膜,中间通过淋洗液,而外两侧通硫酸再生液。这种抑制器的交换容量比较高,死体积很小,可进行梯度淋洗。4.4电解抑制器这种抑制系统采用阳离子交换平板薄膜,通过电解产生的H+,对淋洗液进行再生。早期的这类抑制器是由我国厦门大学田昭武发明,并投入了生产,但它需要定期加入硫酸来补充H+。美国Dionex公司对这类抑制器进行了改进,使之成为自再生,只要用淋洗液自循环或去离子水电解就可能实现再生,抑制容量可以通过改变电流的大小加以控制,而且死体积很小。5、检测系统5.1电导检测器电导检测是离子色谱检测方式中最常用的一种。它是基于极限摩尔电导率应用的检测器,主要用于检测无机阴阳离子、有机酸和有机胺等。由于电导池中的等效电容的影响,施加到电导池上的电压和电流之间的关系是非线性的,这给测量电导值带来很大困难。另外,流动相中本底电导值很高,从较大的背景值中准确测量待测组分的信号,也是电导检测中的重要问题。目前采用较多的方法有:(1)双极脉冲检测器:在流路上设置两个电极,通过施加脉冲电压,在合适的时间读取电流,进行放大和显示。容易受到电极极化和双电层的影响。(2)四极电导检测器:在流路上设置四个电极,在电路设计中维持两测量电极间电压恒定,不受负载电阻、电极间电阻和双电层电容变化的影响,具有电子抑制功能(阳离子检测支持直接电导检测模式)。(3)五极电导检测器:在四极电导检测模式中加一个接地屏蔽电极,极大提高了测量稳定性,在高背景电导下仍能获得极低的噪声,具有电子抑制功能(阳离子检测支持直接电导检测模式)。5.2安培检测器安培检测器是基于测量电解电流大小为基础的检测器,主要用于检测具有氧化还原特性的物质。安培检测主要包括恒电位(直流安培)、脉冲安培以及积分安培三种方式。(1)直流安培检测模式:该方法是将一个恒定的直流电位连续地施加于检测池的电极上,当被测物被氧化时,电子从待测物转移至电极,得到电流信号。在此过程中,电极本身为惰性,不参与氧化反应。该方法具有较高的灵敏度,可以测定pmol级的无机和有机离子,主要用于抗坏血酸、溴、碘、氰、酚、硫化物、亚硫酸盐、儿茶酚胺、芳香族硝基化合物、芳香胺、尿酸和对二苯酚等物质的检测。(2)脉冲安培检测模式:脉冲安培检测器出现在20世纪80年代初,是美国Dionex公司为满足糖的测定而研制的。糖类化合物的pKa值为12~14,在强碱性介质中以阴离子形式存在,可以用阴离子交换色谱分离。因为糖的分离是在碱性条件下完成的,检测方法必须与此相匹配,用金电极的脉冲安培检测法适合于这个条件。金电极的表面可为糖的电化学氧化反应提供一个反应环境。用脉冲安培检测法可检测pmol~fmol级的糖,而且不需要衍生反应和复杂的样品纯化过程。该检测器主要用于醇类、醛类、糖类、胺类(一二三元胺,包括氨基酸)、有机硫、硫醇、硫醚和硫脲等物质的检测,不可检测硫的氧化物。(3)积分脉冲安培检测模式:积分脉冲安培检测法为脉冲安培检测的升级模式,于1989年由Welch等人首先提出,并运用此技术,用金电极实现了对氨基酸的检测。与脉冲安培检测法相似,积分脉冲安培检测法中加到工作电极上的也是一种自动重复的电位对时间的脉冲电位波形,不同之处是:脉冲安培检测法是对每次脉冲前的单电位下产生的电流积分;而积分脉冲安培检测法是对每次脉冲前循环方波或三角波电位下产生的电流积分,即是对电极被氧化形成氧化物和氧化物还原为其初始状态的一个循环电位扫描过程中产生的电流积分。由积分整个高-低采样电位下的电流所得到的信号仅仅是被分析物产生的信号。在没有待测物(可氧化物)存在时,静电荷为零。积分脉冲安培检测法的优点在于通过施加方波或三角波电位消除了氧化物形成和还原过程中产生的电流。正、反脉冲方向的积分有效地扣除了电极氧化产生的背景效应,使得那些可受金属氧化物催化氧化的分子产生较强的检测信号和获得稳定的检测基线成为现实。此外,离子色谱还可以采用紫外、可见光、荧光等高效液相色谱常用的检测器,其原理与常规的高效液相色谱检测相似。6、数据处理系统离子色谱一般柱效不高,与气相色谱和高效液相色谱相比一般情况下离子色谱分离度不高,它对数据采集的速度要求不高,因此能够用于其他类型的数据处理系统,同样也可用于离子色谱中。而且在常规离子分析中,色谱峰的峰形比较理想,可以采用峰高定量分析法进行分析。主要数据处理系统为:6.1记录仪记录仪要求满刻度行程时间≤1s,输入阻抗高,屏蔽好,纸速稳定。采用双笔式记录仪,可以同时测量样品中高浓度和痕量浓度组分,也可进行双检测器分析。6.2自动积分仪它是一种通过A/D转换,采用固定程序,分析色谱信息,打印色谱图的仪器。采用自动积分仪大大减少了记录仪中色谱手工处理的繁琐手续。6.3数据工作站通过A/D转换,将数据采集于电脑,然后通过对采集的数据分析,得到相关的色谱信息。随着个人电脑的普及,数据工作站将得到广泛的应用。03离子色谱的分类通常情况下,离子色谱可以分为三种类型:离子交换色谱、离子排斥色谱、离子对色谱。离子交换色谱:离子交换色谱以离子间间作用力不同为原理,主要用于有机和无机阴、阳离子的分离。离子排斥色谱:离子排斥色谱基于Donnan排队斥作用,是利用溶质和固定相之间的非离子性相互作用进行分离的。它主要用于机弱酸和有机酸的分离,也可以用于醇类、醛类、氨基酸和糖类的分离。离子对色谱:离子对色谱的分离机理是吸附、分离的选择性主要由流动相决定。该方法主要用于表面活性阴离子和阳离子以及金属络合物的分离。根据应用场景可分为:实验室、便携式、在线离子色谱。便携式离子色谱:适用的主要场景比如户外检测、或者在移动检测车上使用等等。在线离子色谱:适用的主要场景,比如大气环境的连续监测、或者工厂流水线中的连续监测等等。实验室离子色谱:相对来讲,就是最常规的离子色谱类型了,用户采购量也是相对最大。04离子色谱的应用离子色谱作为20世纪70年代发展起来的一项新的分析技术,由于具有快速、灵敏、选择性好等特点,尤其在阴离子检测方面有着其它方法所的优势,因此被广泛地应用于化工、医药、环保、卫生防疫、半导体制造等行业,并在某些领域被列为标准测定方法。涉及离子色谱的国内标准分析方法行业标准部分国际标准05离子色谱使用的注意事项1、淋洗液淋洗液作为系统的流动相,其品质对分析结果有重要影响。流动相的脱气是离子色谱分析过程中的一个重要环节。输液泵的扰动或色谱柱前后的压力变化以及抑制过程都可能导致流动相中溶解的气体析出,形成小气泡。这些小气泡会产生很多尖锐的噪声峰,较大的气泡还可能引起输液泵流速的变化,因此对流动相要进行脱气处理。2、分离柱分离柱柱体材料为PEEK(聚醚醚酮)。分离相由聚乙烯醇颗粒组成,粒径为9μm,表面有离子交换官能团。这种结构可保证高度的稳定性,并对可穿过内置过滤板的极细颗粒具有很高的容耐性,适用于水分析的日常测试任务。为保护分离柱不受外来物质侵害(这些物质会对分离效率产生影响),对淋洗液、也对样品作微孔过滤(0.45μm过滤器),并通过吸液过滤头吸取淋洗液。分离柱堵塞会导致系统压力上升,分离能力变差会导致保留时间波动、样品重复测量平行性差。分离柱接入系统时,需要先冲洗10分钟以上再接检测器,冲洗时出口向上,便于将气泡赶出。 分离柱的保存:短时间不用,可直接将柱子两端盖上塞子,放在盒中保存。阴离子柱长时间不使用(1个月以上),应保存到10mmol/LNa2CO3中。3、高压泵sp 岛埃仑YC3000离子色谱仪青岛埃仑YC7000型离子色谱仪 等▲ 青岛埃仑YC3000离子色谱仪B. 岛津
  • 美国麦克仪器公司技术交流与合作系列活动之天津大学研究生《仪器分析测试原理与应用》课程
    日前,美国麦克仪器公司与天津大学化工学院联合授课活动于天津大学举行。通过此次课程,同学们学习了很多有关粉体材料表征的知识,感到受益匪浅,课程得到了老师同学们的广泛认可。钟华博士已连续多年应邀为天津大学化工学院研究生讲授《仪器分析测试原理与应用》等实用课程,受到广大同学的热烈欢迎,并于今年再次为新入学研究生授课。此外,钟华博士也曾于清华大学、北京大学、中国科学院等全国知名高校和科研院所举办技术讲座和学术课程,并在众多学术会议上做大会报告,受到了听众的广泛认可。值得一提的是,我公司长期致力于以各种形式开展和客户的技术交流与合作,例如为众多高校和科研院所的学生授课,与客户联合举办技术研讨会和行业用户会,共同申请研究基金、合作研究等活动。我们将通过各种渠道,增加与客户面对面交流的机会,并旨在解决您遇到的技术问题。如果您对我公司的技术交流与合作系列活动感兴趣,欢迎拨打电话联系我们:021-51085884,我们将尽快与您取得联系,并期待更广泛和深入的合作。
  • 科匠传承:从基础原理到仪器研制的国际性突破
    p style=" text-indent: 2em " 中科院长春应化所功能化界面设计及分析化学应用基础研究团队依托电分析化学国家重点实验室,由汪尔康院士和董绍俊院士担任学术顾问,逯乐慧研究员作为学术带头人,研究群体中2人为中国科学院院士,1人为发展中国家科学院院士、1人为国家千人计划,3人为国家杰出青年基金获得者,1人入选青年千人计划。研究群体主持承担了一批国家重点研发计划、973计划、863计划、国家自然科学基金重大、重点项目,在分子识别、功能化界面调控、化学生物分析应用及高灵敏电化学生物传感器构建等方面取得重大突破。 /p p   老中青团队的传承 /p p   化学与生物分析是中国科学院长春应用化学研究所电分析化学国家重点实验室的主要研究方向。自上世纪50年代开始,汪尔康院士、董绍俊院士开始化学与生物分析研究,并建立了我国最早的极谱实验室,1980年实验室率先开始“化学修饰电极”研究并扩展至全国,1989年经中国科学院批准建立电分析化学开放实验室。1997年杨秀荣加入研究团队开展分子识别与相互作用的研究工作,并于2013年当选为中国科学院院士,2001年开放实验室经国家科技部批准建立国内第一个分析化学方面的国家重点实验室。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/35684cfd-ba59-4bfe-86c0-5aa45a8a8228.jpg" title=" 1.png" / /p p /p p   随着研究工作的深入,实验室十分重视学科布局、人才培养和引进方面的发展。逯乐慧介绍说,“我们的团队就是我们的核心竞争力,团队的研究群体体现了学科交叉的特点,融合了具有不同学科背景和基础的优秀人才,优势互补,开展多层次系统性研究,有利于取得原始创新性成果。”记者了解到,研究团队人员年龄在55岁以上的3人,46-55岁的3人,45岁以下的2人,形成了一支老中青结合、专业结构合理的高水平研究团队。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/fca86543-09d6-49ff-ba9b-51111f5ad8af.jpg" title=" 2.png" / /p p /p p   以振兴中华为理想 甘于奉献 /p p   团队无论是在学术还是在项目上的坚持,也深受汪尔康院士和董绍俊院士的影响,生活中汪尔康院士和董绍俊院士是夫妻,了解老两口的人都知道:办公室—图书馆—家,三点一线;五加二、白加黑,没有休息日。数十年来,这样的耕耘周而复始,团队的成员在这样的科研环境下,也深受感染,经常周末都泡在实验室搞研究,汪尔康院士曾说,做科研就像打仗一样,稍有放松,就可能被别人超过。“我们对吃穿没任何讲究,为了节省时间,都习惯把菜盛在一个盘子里。”妻子董绍俊说。逯乐慧说,“汪先生和董先生一直以来都专职带我们实验室,没有其它的兼职,同时他们对自己的严格要求也深深地影响着后面的年轻人。”汪尔康曾有机会离开长春,北京、上海等地的多家高校邀请他任职,却被他婉拒。对此,汪尔康说:“是党培养了我,是吉林和应化所这片沃土造就了我。这里是我的第二故乡,不论在哪里工作,振兴中华是我最高的理想和追求。” /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/4042c9e1-e405-43a0-a35e-c5b66c377c6a.jpg" style=" float:none " title=" 3.png" / /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201805/insimg/336c2bec-9dde-4a91-a159-91908adf8ea8.jpg" style=" float:none " title=" 4.png" / /p p /p p /p p   BOD (生化耗氧量)监测仪突破国际难题 /p p   据了解,团队在基础研究方面的系列创新性成果大大推动了某些电分析化学仪器及装置的产业化进程,已研制新型电化学分析仪器10余种,部分已商品化并取得经济效益。其中与吉林光大分析技术有限公司合作研发的BOD (生化耗氧量)监测仪突破了国际上有关BOD快速-原位-在线监测的难题,为我国环境保护与管理提供了重要的技术支撑。 /p p   据悉,该BOD监测系统已经在太湖流域沙渚水质自动监测站、无锡梁塘河湿地公园、无锡尚贤河湿地公园、常州江边污水处理厂、无锡芦村污水处理厂、北京玉渊潭水质自动监测站、天津七里海国家湿地公园等8个自动监测站进行应用示范,涵盖了实时的系统工作状态,仪表工作状态,仪表监测数据等信息。仪表监测数据还可以图表、曲线等形式呈现,在手机客户端可实现数据的远程监控。吉林光大分析技术有限公司近五年相关仪器的销售额超过1亿元。研究团队前期培养的研究生近5年已有18人入选国家青年千人计划,取得的相关研究成果获得国家自然科学二等奖3项,吉林省科技进步一等奖7项。 /p p   “由于最初团队是做化学的,所以最困难的部分是从基础原理到仪器研制的过程上,在汪先生的带领下,实验室很早就开始做仪器研制,实验室也特别注重这方面人才的培养,专门建立了仪器研制的团队,有效地弥补了实验室和企业之间的代沟。”逯乐慧说。 /p p   承担国家重大重点、973、863等项目 /p p   据了解,团队多年来团结协作,持续发展,曾共同承担一批国家重大重点、973、863等项目,团队成员在“功能化电极界面的研究—从化学修饰到自组装”“电化学发光及其毛细管电泳联用的分析方法研究”及“生物分子识别的分析化学基础研究”的系列创新性基础研究成果分别获得2007年、2009年、2015年国家自然科学二等奖,在“扫描探针显微技术在电化学和生命科学中的基础研究”(2003年)、“功能化电极界面的研究—从化学修饰到自组装的基础研究”(2004年)、“电化学发光、毛细管电泳电化学发光及电化学检测的研究”(2005 年)、“水质自动监测系统关键技术及集成化研究”(2006年)、“模拟生物膜和生物传感器的电化学研究”(2007年)、“生物分子识别与相互作用的分析化学基础研究”(2012年)及“石墨烯材料的制备及其应用研究”(2015 年)的系列创新性研究成果分别获得吉林省科技进步一等奖。 /p
  • TA仪器2018年度巨献——流变学原理与前沿应用大师课程
    本次为期两天的流变大师课程旨在为化学家,石油工程师,生物医学研究者,药剂师以及材料工程师介绍流变基础理论知识,操作原理及在实际问题中的应用。课程将涵盖流变现象里的分子及微观结构基础包括聚合物,悬浮体,表面活性剂及生物高聚物网络。我们很荣幸地邀请到了大师中的大师-世界流变学权威、界面流变创始人gerald g. fuller院士、全球权威期刊polymer engineering and science编委、以及美国工程院院士christopher macosko教授亲自来到中国开授此次大师课程。同时,两位杰出的青年流变学家也将参与大师课程的部分授课内容。在此次大师课程中,两位世界级顶尖流变学家将从梳理基于聚合物、胶体、自组装表面活性剂、生物大分子凝胶等流变现象入手,使得参加课程者通过学习典型实际案例掌握流变学基本原理、定量表征技术、实验数据提炼和分析方法。 大师课程授课时间与地点:时间: 2018年4月9日-10日地点:上海市新园华美达广场酒店b楼3层兴园厅(上海市漕宝路509号b楼3层) 日程安排2018年4月9日(周一) 8:00学员登记8:30流变学介绍:主要现象,材料性能christopher macosko 院士9:30线性黏弹性amy shen 教授茶歇11:00线性黏弹性微观结构基础gerald g fuller 院士午餐13:00线性黏弹性课堂实践乔秀颖 博士13:30般粘性流体christopher macosko 院士14:30剪切流变仪christopher macosko 院士课间休息16:00剪切变稀,剪切增稠的微观结构基础gerald g fuller 院士17:00休会 2018年4月10日(周二)8:30非线性黏弹性christopher macosko 院士9:30拉伸流变仪gerald g fuller 院士茶歇11:00非线性现象的微观结构基础gerald g fuller 院士午餐及教员答疑13:00应力,絮凝悬浮体christopher macosko 院士14:00界面流变学gerald g fuller 院士课间休息15:30凝胶及实例分析christopher macosko 院士gerald g fuller 院士16:30微流变测量amy shen 教授17:30课程结束 授课专家(排名不分先后) gerald fuller, 斯坦福大学化学工程系fletcher jones教授。研究集中于光学流变学,拉伸流变学及界面流变学三方面。研究旨在应用于广泛的软物质材料如聚合物溶液和熔体,液晶,悬浮体及表面活性剂等。最近的应用与生物材料有关。fuller教授曾获得流变学会宾汉奖章,并且是国家工程学院的院士。christopher w. macosko, 明尼苏达大学化学工程与材料科学系教授,国家工程学院院士。组织教学并著有广为使用的流变学教材。曾协助一些商用流变仪及大量测试方法的开发。他的团队目前致力于聚合物共混物,聚合物纳米复合材料及反应体系的流变学研究。曾获aiche及spe的奖项及流变学会宾汉奖章。 amy shen,日本冲绳科学技术研究所微流体/生物流体/纳流体部门教授,2014 年就职于日本之前曾于华盛顿大学担任机械工程系教员。shen教授的研究主要聚焦于复杂流体的微流体,粘弹性及小尺度惯性弹性的不稳定性,这些研究在纳米技术及生物技术方面得到应用。amy shen最近还被流变学学会选为学术委员。2003年荣获ralph e. powe junior faculty enhancement award奖项,2007年获得国家自然科学基金奖,2013获得富布莱特学者奖。 乔秀颖, 上海交通大学材料科学与工程学院副研究员,中国科学院长春应用化学研究所博士,曾于斯坦福大学,美国阿克伦大学,德国马克斯普朗克胶体与界面研究所进行博士后及国际合作研究项目。目前的研究方向包括智能及功能性高分子复合材料及纳米复合材料,聚合物融体流变学,悬浮体及表面活性剂。曾获得洪堡经验研究学者成员奖,并发表了70多篇文章及10多篇授权专利。 大师课程参加对象及相关费用1. 免费开放给拥有ta流变仪的高校及研究院所学生,研究生及以上学历(每个实验室2人免费名额)2. 企业界听众,酌收800元/2天华美达酒店自助午餐及茶歇费用。3. 课程人数:由于课程内容需要,仅限100名参会者。席位有限, 先到先得!
  • 解析恒奥德仪器便携式交流电子脱扣器校验装置引言概述原理工作流程
    解析恒奥德仪器便携式交流电子脱扣器校验装置引言概述原理工作流程 引言概述:电子脱扣器是一种广泛应用于电子设备中的关键元件,其工作原理是通过控制电流流过特定的电路,实现对电子器件的脱扣操作。本文将详细介绍电子脱扣器的工作原理,包括其基本原理、工作流程、应用场景、优势以及未来发展方向。一、基本原理1.1 电磁感应原理:电子脱扣器利用电磁感应原理,通过电流流过线图产生的磁场,引起磁铁的吸引或排斥,从而实现脱扣操作。1.2 磁铁工作原理:电子脱扣器中的础能够产生足够的磁场强度,以实现可靠日永磁材料,具有较强的磁性1.3电路控制原理:电子脱扣器中的电|电流的大小和方向,调节磁场的强弱和方向,从而实现对磁铁的控制脱扣操作。 二、工作流程:2.1 输入信号检测:电子脱扣器首先要检测输入信号,通常是通过传感器或开关来实现,一旦检测到输入信号,即可触发脱扣操作。2.2 电路控制:一旦输入信号被检测到,电子脱扣器会根据事先设定的参数,通过控制电路来调节电流的大小和方向,以实现对磁铁的控制。2.3 脱扣操作:当电子脱扣器控制电路调世刚合适的状态后,磁铁会受到电磁力的作用,实现脱扣操作,将电子器件从离出来。 3.1 电子产品制造:电子脱扣器广泛应用于电子产品的制造过程中,用于将电子器件从 PCB板上脱离,以便进行后续的加工和组装。3.2 电子设备维修:在电子设备维修过程中,电子脱扣器可以帮助技术人员快速、安全地分离电子器件,减少损坏的风险。3.3 生产自动化:随着生产自动化水平的提商,电子脱扣器被广泛应用于自动化生产线上,提高生产效率和质量。 优4.1 高效快速:电子脱扣器能够在短时间内完成脱扣操作,提高生产效率。4.2 精准可靠:电子脱扣器能够精确控制电流和磁场,确保脱扣深作的准确性和可靠性。4.3 安全环保:电子脱扣器在脱扣过程中不会产生大量的热量和噪音,对环境和操作人员都比敦安全。五、未来发展方向:5.1 智能化:未来的电子脱扣器将更加智能化,能够根据不同的工作环境和需求进行自动调节和优化。5.2 多功能化:电子脱扣器将会融合更多的功能,例如温度检测、电流监测等提供更全面的服务。g5.3 节能环保:未来的电子脱扣器将更加一源的节约和环境的保护,采用更高效的电路和材料。
  • 仪器论坛线上活动第三期:原子吸收之塞曼吸收原理、参数设置(火热讨论中!)
    岁月荏苒,转瞬之间,又至盛夏季节。 论坛的线上活动不因时间的流逝而停滞,我们陆续推出第一期与第二期后,第三期的线上活动——“塞曼吸收之原理、参数设置”也如期来临,本期我们邀请了论坛专家anping老师主讲。 anping老师从1976年起在地质部门从事分析仪器维修工作,工作年限已经达到32年之久,他经验丰富,知识渊博,涉及到光谱领域的各个方面;其主要擅长原子吸收、紫外可见分光光度计、荧光分光光度计、液相色谱、氨基酸分析仪等的维修工作。 anping老师首先举例分析Z-2000的光学系统,再详细阐述了塞曼方式扣除背景的简单原理和特点;anping老师在此次的线上活动的讲座中重点从灯电流的设置方法、狭缝的设定原则、时间常数的选择等仪器条件和参数设置的注意事项。图文并貌,让人一目了然。 如果您对塞曼吸收这个方面感兴趣,或者您正在从事或研究这个方面的,欢迎您参与讨论。anping老师和论坛的其他专业人士将与您一起交流心得、切磋观点、分享经验。(参与讨论连接地址:http://www.instrument.com.cn/bbs/shtml/20080612/1306411/) 相关活动连接: 第一期线上活动:http://www.instrument.com.cn/bbs/shtml/20080407/1214319/(气路系统  主讲:水中月) 第二期线上活动:http://www.instrument.com.cn/bbs/shtml/20080513/1260791/(华山论剑之能谱篇主讲人:德国工兵) 第三期线上活动:http://www.instrument.com.cn/bbs/shtml/20080612/1306411/(原子吸收之塞曼吸收原理、参数设置 主讲:anping) 后记:第四期的线上活动anping老师将针对塞曼吸收的常见故障进行分析。
  • 新品推荐:化学发光原理与计算机技术相结合仪器---A2070N化学发光定氮仪
    石油产品检测仪器有着30多年的发展历史。伴随着石油和石化工业的发展,石油产品检测仪器走过了从无行业标准到统一标准 从手动到自动的发展历程。石油产品检测仪形成了很多门类:闪点检测仪、倾点检测仪、凝点检测仪、石油分析仪、水分测定仪、光谱分析仪等等。氮测定仪更是石油产品检测中比较小众的存在。A2070N氮测定仪 (化学发光定氮仪)A2070N 氮测定仪是根据化学发光原理与计算机技术相结合研发的新一代精密分析仪器。适用于测定石脑油,馏分油,发动机燃料和其他石油产品。应用于测定石脑油,馏分油,发动机燃料和其他石油产品。适用标准:SH/T 0657、ASTM D46291、系统采用化学发光法测定总氮含量。2、提高了抗杂质干扰的能力,避免了电量法对滴定池的繁琐操作和因此带来的不稳定因素,使得仪器的灵敏度大为提高。3、系统关键部位采用**器件,使得整机性能有了可靠的保证。4、软件直观易学,标准曲线和结果自动保存,永远不会丢失数据。样品种类 液体、固体和气体测定方法 化学发光法样品进样量 固体样品:1-20mg 液体样品:5-20μL 气体样品:1-5mL测量范围 0.1-5000mg/L测量精度 化学发光定氮仪 进样量(μL) RSD(%) 0.1 20 25 5 10 10 50 10 5 100 10 3 5000 10 3控温范围 室温~1300℃控温精度 ±1℃气源要求 高纯氩气:纯度99.995%以上 高纯氧气:纯度99.99%以上工作电源 AC220V±10% 50Hz功 率 1500 W外形尺寸 主机:305(W)×460(D)×440(H)mm 温控:550(W)×460(D)×440(H)mm重  量 主机:20kg 温控:40kg
  • 长春应化所老中青三代传承:从基础原理到仪器研制突破国际难题
    p   中科院长春应化所功能化界面设计及分析化学应用基础研究团队依托电分析化学国家重点实验室,由汪尔康院士和董绍俊院士担任学术顾问,逯乐慧研究员作为学术带头人,研究群体中2人为中国科学院院士,1人为发展中国家科学院院士、1人为国家千人计划,3人为国家杰出青年基金获得者,1人入选青年千人计划。研究群体主持承担了一批国家重点研发计划、973计划、863计划、国家自然科学基金重大、重点项目,在分子识别、功能化界面调控、化学生物分析应用及高灵敏电化学生物传感器构建等方面取得重大突破。 /p p    strong 老中青团队的传承 /strong /p p   化学与生物分析是中国科学院长春应用化学研究所电分析化学国家重点实验室的主要研究方向。自上世纪50年代开始,汪尔康院士、董绍俊院士开始化学与生物分析研究,并建立了我国最早的极谱实验室,1980年实验室率先开始“化学修饰电极”研究并扩展至全国,1989年经中国科学院批准建立电分析化学开放实验室。1997年杨秀荣加入研究团队开展分子识别与相互作用的研究工作,并于2013年当选为中国科学院院士,2001年开放实验室经国家科技部批准建立国内第一个分析化学方面的国家重点实验室。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/7769127c-19cb-468a-876c-033bca1a5af4.jpg" title=" 1.png" / /p p   随着研究工作的深入,实验室十分重视学科布局、人才培养和引进方面的发展。逯乐慧介绍说,“我们的团队就是我们的核心竞争力,团队的研究群体体现了学科交叉的特点,融合了具有不同学科背景和基础的优秀人才,优势互补,开展多层次系统性研究,有利于取得原始创新性成果。”记者了解到,研究团队人员年龄在55岁以上的3人,46-55岁的3人,45岁以下的2人,形成了一支老中青结合、专业结构合理的高水平研究团队。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/af02823c-5e5d-4eee-be63-e8b45b2a1180.jpg" title=" 2.png" width=" 500" height=" 413" border=" 0" hspace=" 0" vspace=" 0" style=" width: 500px height: 413px " / /p p    strong 以振兴中华为理想 甘于奉献 /strong /p p   团队无论是在学术还是在项目上的坚持,也深受汪尔康院士和董绍俊院士的影响,生活中汪尔康院士和董绍俊院士是夫妻,了解老两口的人都知道:办公室—图书馆—家,三点一线 五加二、白加黑,没有休息日。数十年来,这样的耕耘周而复始,团队的成员在这样的科研环境下,也深受感染,经常周末都泡在实验室搞研究,汪尔康院士曾说,做科研就像打仗一样,稍有放松,就可能被别人超过。“我们对吃穿没任何讲究,为了节省时间,都习惯把菜盛在一个盘子里。”妻子董绍俊说。逯乐慧说,“汪先生和董先生一直以来都专职带我们实验室,没有其它的兼职,同时他们对自己的严格要求也深深地影响着后面的年轻人。”汪尔康曾有机会离开长春,北京、上海等地的多家高校邀请他任职,却被他婉拒。对此,汪尔康说:“是党培养了我,是吉林和应化所这片沃土造就了我。这里是我的第二故乡,不论在哪里工作,振兴中华是我最高的理想和追求。” /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/594f36eb-49a3-47f7-8dac-ac2c1d81f3a3.jpg" style=" width: 500px height: 333px " title=" 3.png" width=" 500" height=" 333" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/a7cddd29-668b-45b1-8cc6-f4bfa27e5677.jpg" style=" width: 500px height: 329px " title=" 4.png" width=" 500" height=" 329" border=" 0" hspace=" 0" vspace=" 0" / /p p    strong BOD (生化耗氧量)监测仪突破国际难题 /strong /p p   据了解,团队在基础研究方面的系列创新性成果大大推动了某些电分析化学仪器及装置的产业化进程,已研制新型电化学分析仪器10余种,部分已商品化并取得经济效益。其中与吉林光大分析技术有限公司合作研发的BOD (生化耗氧量)监测仪突破了国际上有关BOD快速-原位-在线监测的难题,为我国环境保护与管理提供了重要的技术支撑。 /p p   据悉,该BOD监测系统已经在太湖流域沙渚水质自动监测站、无锡梁塘河湿地公园、无锡尚贤河湿地公园、常州江边污水处理厂、无锡芦村污水处理厂、北京玉渊潭水质自动监测站、天津七里海国家湿地公园等8个自动监测站进行应用示范,涵盖了实时的系统工作状态,仪表工作状态,仪表监测数据等信息。仪表监测数据还可以图表、曲线等形式呈现,在手机客户端可实现数据的远程监控。吉林光大分析技术有限公司近五年相关仪器的销售额超过1亿元。研究团队前期培养的研究生近5年已有18人入选国家青年千人计划,取得的相关研究成果获得国家自然科学二等奖3项,吉林省科技进步一等奖7项。 /p p   “由于最初团队是做化学的,所以最困难的部分是从基础原理到仪器研制的过程上,在汪先生的带领下,实验室很早就开始做仪器研制,实验室也特别注重这方面人才的培养,专门建立了仪器研制的团队,有效地弥补了实验室和企业之间的代沟。”逯乐慧说。 /p p    strong 承担国家重大重点、973、863等项目 /strong /p p   据了解,团队多年来团结协作,持续发展,曾共同承担一批国家重大重点、973、863等项目,团队成员在“功能化电极界面的研究—从化学修饰到自组装”“电化学发光及其毛细管电泳联用的分析方法研究”及“生物分子识别的分析化学基础研究”的系列创新性基础研究成果分别获得2007年、2009年、2015年国家自然科学二等奖,在“扫描探针显微技术在电化学和生命科学中的基础研究”(2003年)、“功能化电极界面的研究—从化学修饰到自组装的基础研究”(2004年)、“电化学发光、毛细管电泳电化学发光及电化学检测的研究”(2005 年)、“水质自动监测系统关键技术及集成化研究”(2006年)、“模拟生物膜和生物传感器的电化学研究”(2007年)、“生物分子识别与相互作用的分析化学基础研究”(2012年)及“石墨烯材料的制备及其应用研究”(2015 年)的系列创新性研究成果分别获得吉林省科技进步一等奖。 /p p br/ /p
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 采用中和法原理的柴油汽油煤油酸度测定仪
    柴油汽油煤油酸度测定仪适用标准:GB/T264-83 GB/T7599-87 GB258-77, 用于检测变压器油,汽轮机油及抗燃油等样品的酸值分析测量。酸值是中和1克油品中的酸性物质所需要的氢氧化钾毫克数,用mgKOH/g油表示,它是油品质量中应严格控制的指标之一。该仪器通过机械、光学以及电子等技术的综合运用,采用微处理器,能够自动实现多样品切换、滴定、判断滴定终点、打印测量结果等功能,该系统稳定可靠,自动化程度高。可广泛运用于电力、化工、环保等领域。仪器特点1.液晶大屏幕、中文菜单、无标识按键;2.自动换杯、自动检测、打印检测结果;3.该仪器可对六个油样进行检测;4.采用中和法原理,用微机控制在常温下自动完成加液、滴定、搅拌、判断滴定终点,液晶屏幕显示测定结果并可打印输出,全部过程约需4分钟;5.用试剂瓶盛装萃取液和中和液,试剂在使用过程不与空气接触,避免了溶剂挥发和空气中CO2的影响。技术参数工作电源:AC220V±10% ,50Hz耗电功率: ﹤100W测定范围: 0.0001~0.9999mgKOH/g 分辨率: ≥0.0001 mgKOH/g测量准确度:酸值<0.1时 ±0.02 mgKOH/g酸值≥0.1时 ±0.05 mgKOH/g重复性: 0.004 mgKOH/g环境温度:10℃~40℃相对湿度:<85%
  • 电位滴定仪的原理
    电位滴定仪(Potentiometric Titrator)是一种常用的滴定仪器,其原理基于电位测量的方法。它通过测量反应溶液中电位的变化来确定滴定过程中滴定剂的添加量,从而确定待测溶液中所含物质的浓度。以下是电位滴定仪的原理:1.电位测量: 电位滴定仪通过电极对反应溶液的电位进行测量。通常使用的电极包括指示电极(如玻璃电极)和参比电极(如银/银氯化钾电极)。指示电极感应到溶液中所含物质的变化,而参比电极提供一个稳定的参考电位。2.滴定过程: 在滴定过程中,待测溶液(被滴定物)与滴定剂(滴定液)发生化学反应,导致溶液中所含物质浓度的变化。滴定过程中滴定剂逐渐添加到待测溶液中,直至达到滴定终点。3.终点检测: 滴定终点通常是指滴定反应完全完成时的状态。在电位滴定中,终点的检测基于电位的变化。在滴定过程中,当滴定剂与待测溶液中的物质完全反应时,反应溶液的电位会发生明显的变化。这个变化被用来指示滴定终点。4.记录数据: 电位滴定仪会记录滴定过程中电位的变化,并将数据转换为体积-电位曲线或体积-导电度曲线。通过分析曲线,可以确定滴定终点的位置,从而计算出被滴定物的浓度。5.自动化控制: 现代电位滴定仪通常配备了自动化控制系统,可以自动控制滴定剂的添加速率,并在检测到电位变化时停止滴定,从而提高滴定的准确性和可重复性。综上所述,电位滴定仪利用电位测量的原理来确定滴定过程中滴定剂的添加量,并通过分析电位的变化来检测滴定终点,从而实现对待测溶液中所含物质浓度的测量。
  • 超声波破碎仪的基本工作原理
    超声波破碎仪的基本工作原理超声波破碎仪是一种利用超声波振动产生的高频机械波动力,对样品进行破碎、分散、乳化等处理的实验仪器。其基本工作原理涉及超声波的产生和传播,以及超声波在液体中产生的声波效应。以下是超声波破碎仪的基本工作原理: 超声波的产生: 超声波破碎仪内部通常包含一个压电陶瓷晶体,该晶体可以通过电压的作用发生振动。当施加高频电压时,压电晶体会迅速振动,产生高频的超声波。超声波的传播: 通过振动的压电晶体,超声波会传播到连接样品的处理装置(通常是破碎杵、破碎管或破碎尖等)。这个处理装置的设计可以将超声波传递到液体中的样品。声波效应: 超声波在液体中产生高强度的声波效应,形成破碎区域。当超声波传播到液体中,它会产生交替的高压和低压区域,形成声波节点和反节点。在高压区域,液体分子受到挤压,形成微小的气泡;在低压区域,气泡迅速坍塌,产生局部高温和高压。这种声波效应称为“空化”效应。空化效应的作用: 空化效应导致液体中的气泡在瞬间形成和坍塌,产生局部高温和高压。这些瞬时的高能量作用于样品中的细胞、分子或颗粒,导致物质的破碎、分散或乳化。作用于样品: 超声波的高频振动和声波效应作用于样品,可以打破细胞膜、细胞壁或分散颗粒,使样品更均匀地分散在液体中。总体而言,超声波破碎仪利用超声波的机械波效应,通过声波在液体中产生的高压和低压区域的交替作用,实现对样品的破碎、分散和乳化等处理。这种方法在生物、化学和材料科学等领域中被广泛应用。
  • PM2.5的测试方法及PM2.5传感器的工作原理
    细颗粒物又称细粒、细颗粒、PM2.5。细颗粒物指环境空气中空气动力学当量直径小于等于2.5微米的颗粒物。它能较长时间悬浮于空气中,其在空气中含量浓度越高,就代表空气污染越严重。虽然PM2.5只是地球大气成分中含量很少的组分,但它对空气质量和能见度等有重要的影响。与较粗的大气颗粒物相比,PM2.5粒径小,面积大,活性强,易附带有毒、有害物质(例如,重金属、微生物等),且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大。目前测量PM2.5的方法主要有以下5种:一种:红外法和浊度法红外由于光线强度不够,只能用浊度法测量。所谓浊度法,就是一边发射光线,另一边接收,空气越浑浊光线损失掉的能量就越大,由此来判定目前的空气浊度。实际上这种方法是不能够准确测量PM2.5的,甚至光线的发射、接收部分一旦被静电吸附的粉尘覆盖,就会直接导致测量不准确。这种方法做出来的传感器只能定性测量(可以测出相对多少),不能定量测量(因为数值会飘)。更何况这种方法也区分不出颗粒物的粒径来,所以凡是用这种传感器的性能都相对要差一些。第二种:激光法和粒子计数法就是激光散射,而不是直接测量浊度,这一类的传感器共同的特点就是离不开风扇(或者用泵吸),因为这种方法空气如果不流动是测量不到空气中的悬浮颗粒物的,而且通过数学模型可以大致推算出经过传感器气体的粒子大小,空气流量等,经过复杂的数学算法,最终得到比较真实的PM2.5数值,这一类传感器是激光散射,对静电吸附的灰尘免疫,当然如果用灰尘把传感器堵死了,自然也不可能测到。第三种:Beta射线法Beta射线仪是利用Beta射线衰减的原理,环境空气由采样泵吸入采样管,经过滤膜后排出,颗粒物沉淀在滤膜上,当β射线通过沉积着颗粒物的滤膜时,Beta射线的能量衰减,通过对衰减量的测定便可计算出颗粒物的浓度。Beta射线法颗粒物监测仪由PM10采样头、PM2.5切割器、样品动态加热系统、采样泵和仪器主机组成。流量为1m3/h的环境空气样品经过PM10采样头和PM2.5切割器后成为符合技术要求的颗粒物样品气体。在样品动态加热系统中,样品气体的相对湿度被调整到35%以下,样品进入仪器主机后颗粒物被收集在可以自动更换的滤膜上。在仪器中滤膜的两侧分别设置了Beta射线源和Beta射线检测器。随着样品采集的进行,在滤膜上收集的颗粒物越来越多,颗粒物质量也随之增加,此时Beta射线检测器检测到的Beta射线强度会相应地减弱。由于Beta射线检测器的输出信号能直接反应颗粒物的质量变化,仪器通过分析Beta射线检测器的颗粒物质量数值,结合相同时段内采集的样品体积,最终得出采样时段的颗粒物浓度。配置有膜动态测量系统后,仪器能准确测量在这个过程中挥发掉的颗粒物,使最终报告数据得到有效补偿,接近于真实值。第四种:微量振荡天平法微量振荡天平法是在质量传感器内使用一个振荡空心锥形管,在其振荡端安装可更换的滤膜,振荡频率取决于锥形管特征和其质量。当采样气流通过滤膜,其中的颗粒物沉积在滤膜上,滤膜的质量变化导致振荡频率的变化,通过振荡频率变化计算出沉积在滤膜上颗粒物的质量,再根据流量、现场环境温度和气压计算出该时段颗粒物标志的质量浓度。微量振荡天平法颗粒物监测仪由PM10采样头、PM2.5切割器、滤膜动态测量系统、采样泵和仪器主机组成。流量为1m3/h,环境空气样品经过PM10采样头和PM2.5切割器后,成为符合技术要求的颗粒物样品气体。样品随后进入配置有滤膜动态测量系统(FDMS)的微量振荡天平法监测仪主机,在主机中测量样品质量的微量振荡天平传感器主要部件是一支一端固定,另一端装有滤膜的空心锥形管,样品气流通过滤膜,颗粒物被收集在滤膜上。在工作时空心锥形管是处于往复振荡的状态,它的振荡频率会随着滤膜上收集的颗粒物的质量变化发生变化,仪器通过准确测量频率的变化得到采集到的颗粒物质量,然后根据收集这些颗粒物时采集的样品体积计算得出样品的浓度。5、重量法我国目前对大气颗粒物的测定主要采用重量法。其原理是分别通过一定切割特征的采样器,以恒速抽取定量体积空气,使环境空气中的PM2.5和PM10被截留在已知质量的滤膜上,根据采样前后滤膜的质量差和采样体积,计算出PM2.5和PM10的浓度。必须注意的是,计量颗粒物的单位ug/m3中分母的体积应该是标准状况下(0℃、101.3kPa)的体积,对实测温度、压力下的体积均应换算成标准状况下的体积。由于红外法测量PM2.5的传感器性能较差,且Beta射线法、微量振荡天平法、重量法三种方法的原理应用比较困难且价格较高,所以市面上比较多的是采用激光散射原理来测量PM2.5浓度的PM2.5传感器。 建大仁科空气质量变送器RS-PM-*-2是一款工业级通用颗粒物浓度变送器,采用激光散射测量原理,通过独有的数据双频采集技术进行筛分,得出单位体积内等效粒径的颗粒物粒子个数,并以科学独特的算法计算出单位体积内等效粒径的颗粒物质量浓度,以485 接口通过 ModBus-RTU 协议进行数据输出。可用于室外气象站、扬尘监测、图书馆、档案馆、工业厂房等需要PM2.5或 PM10浓度监测的场所。
  • 快速水份测定仪基础知识一:定义与基本原理
    快速水份测定仪基础知识一,定义与基本原理1. 什么是快速水份测定仪? 快速水份测定仪利用热失重法测定样品的水份含量,由称量与加热装置(红外)组成。 它通常亦称作水份天平或水份测定仪。 2. 快速水份测定仪的工作方式?卤素快速水份测定仪按照热重原理(通常亦称作“热失重”(LOD)原理)运行。 快速水份测定仪由两个组件构成,即:天平装置与加热装置。 为了测量水份含量,首先记录样品的初始重量,然后在内置天平持续记录样品重量的同时,卤素灯对样品进行加热和烘干。 当样品不再失重时,仪器关闭并且计算水份含量。 总失重量用于计算水份含量。 3. 什么是“热失重”(LOD)原理?LOD表示热失重。 大多数标准方法属于热失重法。 热失重法是一种通过分析加热时样品的失重测定样品水份含量的方法。 将失重解释为样品的水份损失。 当所有水份从样品中排出时,样品的重量不再发生变化。 然后,通过将样品的初始重量同干重或样品最终重量进行比较,计算出样品的水份含量。 4. 如何加热样品? 样品吸收卤素快速水份测定仪的红外辐射,因此可快速升温。 另外,样品的温度取决于其吸收特点,因此一定不是显示温度。 这与烘箱不同,烘箱是通过对流方式对样品加热,并且需要很长时间才能烘干。 5. 卤素技术与红外技术之间的区别是什么? 卤素加热也是红外技术。 采用卤素辐射体进行干燥是红外干燥法的进一步发展。 加热元件由充满卤素气体的玻璃灯管组成, 由于卤素辐射体远轻于传统红外辐射体,因此可以快速获得最大热量输出,并实现卓越的可控性甚至是热分布。 6. 快速水份测定仪的适合对象?烘箱是测定水份含量的正规方法。 如今,许多客户使用快速水份测定仪,因为他们希望使用更快速的方法分析水份含量。 快速水份测定仪在许多行业中使用,例如:食品、化学、制药与塑料制造行业。 由于水份含量会对产品的质量和保质期产生影响,因此测定食品中的水份含量尤为重要。 7. 什么是水份? 水份指加热时蒸发(“热失重”)的所有物质。 除了水之外,分析的水份含量还包括脂肪、酒精与溶剂。 8. 水份与水是否一样?不一样,这两种概念经常被混淆。 水份指加热时蒸发的所有物质。 水专门指水分子(H20)。 为了测定水份含量,最好使用卡尔费休滴定仪。
  • 光照度传感器的工作原理是什么?使用时应注意什么呢?
    光照度传感器是一种常用的检测装置,在多个行业中都有一定的应用。在很多地方我们都会看到光控开关这种设备,比如大街上的路灯、各个自动化气象站以及农业大棚里面,但当我们看到这种有个小球的盒子的时候,虽然知道这是光照度传感器,但是对于它还是不太了解,今天我们来了解一下光照度传感器。光照度传感器的工作原理光照度传感器采用热点效应原理,最主要是使用了对弱光性有较高反应的探测部件,这些感应原件其实就像相机的感光矩阵一样,内部有绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层,热接点在感应面上,而冷结点则位于机体内,冷热接点产生温差电势。在线性范围内,输出信号与太阳辐射度成正比。透过滤光片的可见光照射到进口光敏二极管,光敏二极管根据可见光照度大小转换成电信号,然后电信号会进入传感器的处理器系统,从而输出需要得到的二进制信号。当然,光照度传感器还有很多种分类,有的分类甚至对上面介绍的结构进行了优化,尤其是为了减小温度的影响,光照度传感器还应用了温度补偿线路,这样很大程度上提高了光照度传感器的灵敏度和探测能力。光照度传感器的使用方法光照度传感器应安装在四周空旷,感应面以上没有任何障碍物的地方。将传感器调整好水平位置,然后将其牢牢固定,将传感器牢固地固定在安装架上,以减少断裂或在有风天发生间歇中断现象。壁挂型光照度传感器安装方式:首先在墙面钻孔,然后将膨胀塞放入孔中,将自攻螺丝旋进膨胀塞中。百叶盒型光照度传感器安装方式:百叶盒型光照度传感器一般应用在室外气象站中,可通过托片或折弯板直接安装在气象站横梁上。宽电压电源输入,10-30V均可。485信号接线时注意A/B条线不能接反,总线上多台设备间地址不能冲突。光照度传感器使用注意事项1.一定要先检查下包装是不是完好无损的,然后去核对变送器的型号和规格是不是跟所购买的的产品一样;如果有问题一定要尽快与卖家联系。2.使用光照度传感器的时候一定不能有外压力冲压光检测传感器,避免压力冲压下测量元件受损影响光照度传感器的使用或导致光照度传感器发生异常或压坏遮光膜产生漏水现象。一定要避免在高温高压环境下使用光照度传感器。3.用户在使用光照度传感器的时候禁止自己拆卸传感器,更加不能触碰传感器膜片,以免造成光照度传感器的损坏。4.使用光照度传感器之前一定要确认电源输出电压是不是正确;电源的正、负以及产品的正、负接线方式,保证被测范围在光照度传感器相应量程内并详细阅读产品说明书或咨询卖方。5.安装光照度传感器的时候,一定要保证受光面的清洁并置于被测面。6.严禁光照度传感器的壳体被刀或其他锋利的金属连接线及物体划伤,磕伤,砰伤,造成变送器进水损坏。
  • 微生物气溶胶浓缩器工作原理怎样使用
    青岛路博的马德我不敢说我们的产品一定如何但我敢说,我们的服务一定真诚只要您有需要,我们有能力,一定让您满足 我们的产品不仅仅您看到的这条,还有许多对于环保的器材,有关环保的仪器仪表您有需要,尽管联系公司名称:青岛路博环保科技有限公司地址:青岛市城阳区金岭工业园锦宏西路与微生物气溶胶浓缩器是基于虚拟冲击浓缩法原理 ,为解决低浓度微生物气溶胶采集问题而研制的一种具有微生物气溶胶前置浓缩功能、且与标准微生物采样器配套的新型仪器,旨在提供一种高效率生物浓缩器,为微生物污染的检测和研究提供支持。 本产品符合标准《GB/T 18204.5-2013 公共场所卫生检验方法 第5部分:集中空调通风系统》和卫生行业标准《WS 394-2012 公共场所集中空调通风系统卫生规范》要求,采集集中空调送风,检测其中的嗜肺军团菌。采集流量大,使需要的粒子短时间浓缩到采样器中,避免长时间采样带来的生物活性损失,提高采样器的现场实用性。 主要技术指标:l 总气路流(50~130)L/min可调,允许误差±5%;l 接生物采样器(采样瓶)后浓缩气路流量(5~15)L/min可调,允许误差±5%;l 总气路流量及浓缩气路流量重复性误差±2%l 输入气路负载能力(接分离器):≥2KPal 浓缩气路负载能力:≥50KPal 对于3um以上生物粒子的捕集效率大于80%,理论浓缩比1:10。l 定时功能:1秒-99小时59分59秒l 双路同时采集l 流量手动调节l 备可升降云台,可根据现场情况调节采样头高度3米(或4米选配) 青岛路博建业有限公司是一家集环保科研、设计、生产、维护、销售和系统集成为一体的综合性高科技企业。我们不仅有的销售团队,还有专业的技术团队和售后服务人员,为你的购买使用提供一站式服务。为什么选路博1.路博有自己的工厂,有专业的技术团队,保证产品质量。2.路博有的销售团队和售后服务,一年质保,终身维护,可以视频教授产品使用方法或现场指导。3.厂家直销,没有中间商赚差价,保护客户利益.
  • 负氧离子检测仪的工作原理与选择
    空气中负氧离子的含量是空气质量好坏的关键。在自然生态系统中,森林和湿地是产生空气负(氧)离子的重要场所。在空气净化、城市小气候等方面有调节作用,其浓度水平是城市空气质量评价的指标之一。自然界中空气正、负离子是在紫外线宇宙射线、放射性物质、雷电、风暴、瀑布、海浪冲击下产生,既是不断产生,又不断消失,保持某一动态平衡状态。由于负离子的特性,空所中的负离子产生与消失会保持一个平衡,因此判断环境下负离子浓度需要借助专门的空气离子检测仪进行准确测量。负氧离子是带负电荷的单个气体分子和轻离子团的总称,简言之就是带负电荷的氧离子。在自然生态系统中,森林和湿地是产生空气负氧离子的重要场所。其浓度水平是城市空气质量评价的指标之一,有着 “空气维生素”之称。工作原理:空气离子测量仪是测量大气中气体离子的专用仪器,它可以测量空气离子的浓度,分辨离子正负极性,并可依离子迁移率的不同来分辨被测离子的大小。一般采用电容式收集器收集空气离子所携带的电荷,并通过一个微电流计测量这些电荷所形成的电流。测量仪主要包括极化电源、离子收集器、微电流放大器和直流供电电源四部分。首要要了解自己选负离子检测用途,目前有进口的负离子检测仪,国产的负离子检测仪,仿冒的负离子检测仪等等。分为便携的负离子检测仪,在线的负离子检测仪,按原理分又分为平行电极负离子检测仪和圆通电容器负离子检测仪两种。空气负氧离子检测分为 “平极板法测空气负离子” 和”电容法测空气负离子“这两种原理,其中“平极板”原理是比较常用的一种方法,检测快速,经济实惠,用于个人、工厂、实验室等单位。电容法测空气负离子检测仪是一种高性能检测方法,具有防尘、防潮等特点,相对于平极板法测空气负离子更加,特别适合于森林、风景区的使用,是林业局,科研单位测量空气质量的常见仪器。按收集器的结构分,负离子检测仪可以划分为平行板式和Gerdien 冷凝器式/双重圆筒轴式两种类型。1.Ebert式/平行电板式离子检测仪平行电板式离子检测仪是目前低端空气离子检测仪比较常用的一种方法。A跟B是一组平行的且相互绝缘的电极,B极顶端边着一个环形双极电极,空气通过右下角的风扇吸入,空气中的负离击打A/B电极放电,电荷传导到E环形电极形成自放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上比较成熟,造价成本也比较低,但是易受外部环境影响,另外这种结构自身的弱点容易导致电解边缘效应,容易造成气流湍流,造成检测结果偏移较大。2.Gerdien冷凝器式/双重圆筒轴式双重圆筒轴式离子检测仪是目前中高端空气离子检测仪成熟的一种方法。整体结构由3个同心圆筒组成,外围筒身及内轴为电极,空气通过圆筒时,离子撞击筒身跟轴产生放电,放电信号被记录,从而可对空气中正、负离子数量及大小进行测量。这种检测仪技术上已非常成熟,但由于内部复杂的结构及控制,造价成本高昂,这种结构可以有效解决平行电板式结构固有的电解边缘效应,同时圆筒本身的结构及特殊的进气方式可以保持气流通过的平顺性,对离子数量及大小的检测精确性有极大提高。
  • 口服液瓶壁厚测厚仪的应用与原理
    口服液瓶壁厚测厚仪的应用与原理在制药包装行业中,口服液瓶作为药品的主要包装形式之一,其质量直接关系到药品的安全性和有效性。口服液瓶不仅需要具备良好的密封性能,以保持药品的稳定性,还需要有适当的壁厚,以确保在运输和使用过程中的耐用性和安全性。口服液瓶的应用口服液瓶广泛应用于液体药品的包装,包括但不限于口服溶液、糖浆、注射液等。这些瓶子的设计和制造必须符合严格的行业标准和法规要求,以保证药品在储存和使用过程中的质量和安全。壁厚测试的重要性壁厚是口服液瓶质量控制的关键参数之一。过薄的瓶壁可能导致瓶子在运输或使用过程中破裂,影响药品的完整性和安全性。而壁厚不均则可能影响药品的储存稳定性,甚至在极端情况下,可能导致药品泄漏或污染。口服液瓶壁厚测厚仪的作用为了确保口服液瓶的壁厚符合标准,需要使用专业的测厚仪器进行精确测量。口服液瓶壁厚测厚仪是一种专门用于测量口服液瓶壁厚的高精度设备,它能够快速、准确地检测出瓶子的壁厚,帮助制药企业及时发现和解决壁厚问题。容栅传感技术的应用口服液瓶壁厚测厚仪采用先进的容栅传感技术,这是一种机械接触式测量方法,通过测量表头与瓶壁之间的距离来确定壁厚。这种方法提高了测量的准确性和可靠性。测量原理口服液瓶壁厚测厚仪仪的工作原理基于容栅传感器的响应。当测量表头接触到瓶子时,传感器会采集相应的数据。这些数据随后被传输到系统中,通过计算得出瓶壁或瓶底的厚度值。这种测量方式不仅快速,而且可以提供高精度的测量结果。结论口服液瓶壁厚测厚仪是制药包装行业不可或缺的工具。它通过采用容栅传感技术,提供了一种高效、准确的测量方法,帮助企业确保口服液瓶的质量和安全性,从而保障药品的质量和患者用药的安全。本文简要介绍了口服液瓶在制药包装行业中的应用,以及壁厚测试的重要性和测厚仪的作用。通过使用这种高精度的仪器,制药企业可以更好地控制产品质量,确保药品的安全性和有效性。
  • 简述超声波风速风向传感器的原理特点和应用
    风既有大小,又有方向,因此风的预报包括风速和风向两项。风速,是指空气相对于地球某一固定地点的运动速率,常用单位是m/s。风速是没有等级的,风力才有等级,风速是风力等级划分的依据。一般来讲,风速越大,风力等级越高,风的破坏性越大。在气象上,一般将风力大小划分为十七个等级。 气象上把风吹来的方向确定为风的方向。风来自北方叫作北风,风来自南方叫作南风。当风向在某个方位摇摆不能肯定方位时,气象台站预报就会加以“偏”字,比如偏南风。利用风向可以在人们的生活、生产、建厂、农业、交通、军事等各种领域发挥积极作用。 测量风速时可以使用测风器,风压板扬起所过长短齿的数目,表示风力大小。测量风向时可以使用风向标,风向标对的风向箭头指在哪个方向即表示当时刮什么方向的风。 同时测量风速和风向可以使用超声波风速风向传感器。超声波风速风向传感器是一款基于超声波原理研发的风速风向测量仪器,利用超声波时差法来实现风速风向的测量。由于声音在空气中的传播速度会和风向上的气流速度叠加,如果超声波的传播方式和风向相同,那么它的速度会加快;反之则会变慢。所以在固定的检测条件下,超声波在空气中传播的速度可以和风速函数对应,通过计算即可得到精确的风速和风向。超声波风速风向传感器与传统的风速风向传感器相比,它不需要维护和现场校准, 360°全方位无角度限制,没有启动风速的限制,可以同时获得风速、风向的数据;无移动部件,磨损小,使用寿命长;采用随机误差识别技术,大风下也可以保证测量的低离散误差,使输出更平稳。 超声波风速风向传感器安装也比较简单方便。那超声波风速风向传感器可以应用在哪些方面呢? 超声波风速风向传感器可以应用在新型能源开发领域,一些重要的设备十分容易受到风速变化的影响;可以应用在工矿领域,为了确保煤矿安全生产的正常进行,相关部门也推出了针对矿井环境必须使用风速传感器这类设备的规定;可以应用在塔式起重机,当大风影响起重机工作时,它会发出报警;也可以应用于气象领域和煤矿等。
  • 高压漏电起痕试验机的测试原理是什么?
    高压漏电起痕试验机的测试原理是什么?实验原理:漏电起痕试验是在固体绝缘材料表面上,在规定尺寸(2mm×5mm) 的铂电极之间,-施加某一电压并定时(30s)定高度(35mm)滴下规定液滴体积的导电液体(0.1%NH 4CL),用以评价固体绝缘材料表面在电场和潮湿或污染介质联合作用下的耐漏电性能,测定其相比电痕化指数(CT1) 和耐电痕化指数(PT1) 。主要配件 序号型号产地1箱体(可选不锈钢箱体)宝钢A3钢板,喷塑2变压器浙江二变3调压器正泰4继电器及底座正泰5漏电保护器正泰6按钮正泰7计时器欧姆龙8短路电流智能表上海9温控器日本欧姆龙10导线上海启帆11计数器欧姆龙12无线控制器上海埃微自主研发13电磁阀亚德克在操作过程中要注意的事项:1、在操作过程中,人员应该注意个人防护,避免漏电受伤或被溶液沾染到口、眼部位造成伤害2、输入电源AC220±2%。3、排气管应通出窗外。4、在对样品进行时,请勿打开仓门,待试验完之后或当实验失效产生火烟时,先打开风扇排除烟雾后,再打开仓门进行作业。5、实验前须确认设备是否在计量有效期内,如超期则不能进行实验6、电源应用有地线的三极插座,保证接地可靠。主要技术指标:1) 空气环境:0~40°C;2) 相对湿度:≤80%;3) 无明显振动及腐蚀性气体的场所;4) 工作电压:AC220V±2% 50HZ±1%,1KVA;5) 试验电压:100~600V连续可调数显,电压表显示值误差:1.5%,显示值为:r.m.s;6) 延时电路:试验回路在(0.5±10%)A(r.m.s)或更大电流时延时(2±10%)S后动作;电极:a: 5㎜×2㎜矩形铂金电极和黄铜电极各一对;b: 电极尺寸要求:(5±0.1)㎜×(2±0.1)㎜×(≥12)㎜,其中一端凿尖角度为(30±2)°(即试验端呈30°±2°斜角),凿尖平面宽度为0.01㎜~0.1㎜;c: 电极间所成角度为60°±5°,间距为(4±0.1㎜);d: 对样品压力为:1.00N±0.05N;7) 滴液系统:a: (30±5)秒(开启滴液时间28S+开启滴液持续时间2S)自动计数、数显(可预置),50滴时间:(24.5±2)min b: 滴液针嘴到样品表面高度:35㎜±5㎜(附一个量规作测量参考) c: 滴液重量:20滴:0.380g~0.489g 50滴:0.997g~1.147g 8) 短路电流:两电极短路时的电流可调至(1±0.1)A,数显±1%,电流表显示值为有效值(r.m.s) 9) 仪器外形尺寸(宽*高*深)1100*1150*550㎜(0.5立方);700*385*1000㎜(0.1立方);10) 箱体由1.2厚的304不锈钢板制成,可订制0.75立方;11) 样品支撑平板:厚度≥4㎜的玻璃;12) 针嘴外径:A溶液:0.9㎜~1.2㎜B溶液: 0.9㎜~3.45㎜13) 滴液大小根据滴液系统而定;14) 风速:0.2M/S。产品特点:1、 本仪器支持5路试样同时进行试验,每路都有独立的控制系统进行控制2、 本仪器核心控制系统由西门子PLC控制,通过光电隔离方式进行采集电压和电流,有效解决抗干扰问题使数据采集保持稳定3、 本仪器显示部分是9寸触摸屏,操作方便,数据显示直观,能够实时显示每个试样的泄露电流4、 可以自由设定泄露电流数值,当实验中的电流超过设定电流值时,能够提示报警,并切断高压电源,并不影响其它试样继续做试验5、 滴液流量大小可根据实际需求自由设定6、 通过手动旋钮顺时针调到指定试验电压。7、 可以手动自由设定试验时间8、 本仪器具有排风和照明功能漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》是按GB4207、IEC60112等标准要求设计制造的专用检测仪器,适用于对电工电子产品、家用电器的固体绝缘材料及其产品模拟在潮湿条件下相比漏电起痕指数和耐漏电起痕指数的测定,具有简便、准确、可靠、实用等特点。满足标准:GB/T6553-2003 及 IEC60587:1984《评定在严酷环境条件下使用的电气绝缘材料耐电痕化和蚀损的试验方法》GB_T3048.7-2007电线电缆电性能试验方法_第07部分:耐电痕试验漏电起痕试验仪是IEC60112 : 2003 《固体绝缘材料耐电痕化指数和相比电痕化指数的测定方法》
  • 深究质谱仪器原理 探索质谱应用潜力
    p style=" text-align: justify text-indent: 2em line-height: 1.5em " strong span style=" text-indent: 2em " 仪器信息网讯 /span /strong span style=" text-indent: 2em " 2019年10月24日,BCEIA2019在京开幕的第二天。同期,由中国分析测试协会仪器评议办公室主办的分析测试仪器与评议活动顺利举办。作为本次评议活动的一部分,质谱仪器评议活动在24日下午召开,该活动旨在构建国内外仪器技术的交流平台,为质谱业内的仪器研发者、应用从业者以及仪器厂商跟踪国内外质谱仪器技术的发展与趋势以及市场需求服务,为国家科学仪器技术发展决策提供参考。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" text-indent: 2em " 本次活动由军事医学研究院生命组学研究所/蛋白质药物国家工程研究中心魏开华主持,质谱评议组中石化石油化工科学研究院苏焕华、中国农业大学李重九、国家生物医学分析中心医学工程室赵晓光,中国分析测试协会汪正范、国家生物医学分析中心杨松成出席本次会议。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " span style=" text-indent: 2em " /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/9027b3f6-6b4d-4070-bf21-ab3178e54014.jpg" title=" 现场.jpg" alt=" 现场.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 会议现场 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/a7350b68-796b-4fa7-8100-75f129a221a3.jpg" title=" 魏开华.jpg" alt=" 魏开华.jpg" / /p p style=" text-align: center " 军事医学研究院生命组学研究所/蛋白质药物国家工程研究中心 魏开华主持会议 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 本次评议活动安排了6位质谱仪器研发和应用的专家们分享了精彩的报告,并且强化了报告嘉宾与听众间的互动交流,促进业内学者及仪器厂商的思想碰撞与交流合作。而且报告内容上既涉及了质谱离子源、分析器的研发,也包含利用MALDI-TOF质谱技术进行临床检验分析的进展,还有近年颇有成果的国产质谱仪器厂商的研究进展分享。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/f819de45-4e86-41d7-a7f0-716760e4aabc.jpg" title=" 朱一心.jpg" alt=" 朱一心.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告人:浙江好创生物技术有限公司 朱一心 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《电喷雾离子源机理的补充及应用》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 报告主要对电喷雾离子源的机理提出补充。朱一心提出电喷雾离子化存在的三个问题:1.质子氢的来源,2.为什么只有电喷雾离子化才可产生多电荷分子离,3.为何会产生离子抑制现象?问题的抛出引发了现场专家听众与报告专家的热烈互动与讨论。 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201910/uepic/054d1f7b-123e-4fa5-8a06-77b5cf1751eb.jpg" title=" 互动2.jpg" alt=" 互动2.jpg" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 现场互动 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/c98370dc-710a-4582-b258-6344ac7d47d0.jpg" title=" 周晓光.jpg" alt=" 周晓光.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告人:融智生物科技(青岛)有限公司 周晓光 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《MALDI-TOF质谱宽谱定量与成像技术及其应用》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 报告主要介绍了青岛融智MALDI-TOF宽谱定量和质谱成像的相关应用进展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/031a8cdb-90ee-4d9e-9ece-7bd8ef51a69a.jpg" title=" 季玲.jpg" alt=" 季玲.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告人:北京大学深圳医院检验科 纪玲主任 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《MALDI-TOF质谱定量检测糖化血红蛋白的临床应用》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 报告对新一代宽谱定量飞行时间质谱系统QuanTOF(融智生物)测定糖化血红蛋白HbA1c的分析性能做了系统评价。研究结果显示,批内CV和总CV分别低于1.6%和2.4%,且线性度良好,相关系数为0.999。另外,纪玲也表示,质谱仪的高分辨能力可有效对同时患有异常血红蛋白病的个体进行准确诊断,且抗干扰能力优异,体现了质谱技术在临床检验领域的进一步发展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/90cbee38-576f-46c3-9339-9ea99ecd3d59.jpg" title=" 盖思齐.jpg" alt=" 盖思齐.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告人:北京市神经外科研究所/首都医科大学 盖思齐博士 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《中国人群生物年龄的生物标记物研究与应用》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 报告介绍了关于发现血浆IgG糖基化水平与“生物年龄”及“身份证年龄”之间的关联,探讨综合糖基化指标能否作为预测“生物年龄”的潜在生物标记物的研究。此研究阐明了多种IgGN-糖基化水平与年龄的相关模式,并建立了基于糖基化水平的年龄预测模型。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/92ba979a-a053-4f67-8dd5-564d2bf9e092.jpg" title=" 丁力.jpg" alt=" 丁力.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告人:岛津欧洲研究所 丁力博士 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《数字离子阱的发展与MALDI-DIT质谱仪》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 报告介绍了数字离子阱质谱的技术发展,对MALDI-DIT质谱技术的创新性进行了阐述。据介绍,MALDI-DIT技术已推出相关的商业化产品,如广州禾信推出了便携式VOC监测线形数字离子阱质谱仪,岛津公司也推出了MALDI-DIT技术的商业化产品MALDI数字离子阱质谱仪mini-1。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/65b17492-441d-47ad-8b3b-a72d49e4fb6a.jpg" title=" TOFWerk.jpg" alt=" TOFWerk.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告人:TOFWerk中国分公司总经理 朱亮博士 /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告题目《Vocus ELF PTR-TOF实时在线VOC监测最小最轻PTR-TOF质谱仪》 /p p style=" text-align: justify text-indent: 2em line-height: 1.5em " 报告分享结束后,质谱评议组组长魏开华总结了2019年质谱评议的测试结果。此次质谱评议组现场对2家厂商的仪器进行了评测,在肯定成绩的同时,专家们也提出,未来在准确度与分辨率方面国产质谱仪器的成长值得期待。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201910/uepic/fb9ba38f-ce3e-4ce9-a573-05e28f3aac1b.jpg" title=" 合影.jpg" alt=" 合影.jpg" / /p p style=" text-align: center text-indent: 2em line-height: 1.5em " 报告专家合影 /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制