当前位置: 仪器信息网 > 行业主题 > >

医学理论

仪器信息网医学理论专题为您整合医学理论相关的最新文章,在医学理论专题,您不仅可以免费浏览医学理论的资讯, 同时您还可以浏览医学理论的相关资料、解决方案,参与社区医学理论话题讨论。

医学理论相关的资讯

  • 赛黙飞世尔科技亮相第六届全国文件学理论与实践研讨会
    为推动文件检验专业技术与时俱进、持续发展,由中国刑事警察学院、中国刑事科学技术协会主办,上海市公安局协办的第六届全国文件学理论与实践研讨会在美丽的国际大都会上海胜利召开了。来自全国公安、检察、司法、安全、法院、海关、部队、院校等从事文检方面的专业工作者约200人出席了本次会议。 作为此次会议的最大赞助商,赛黙飞世尔科技 &ndash - 服务科学,世界领先 -- 出席了此次会议,并且在大会上做了题为&ldquo 新型DXR激光共焦显微拉曼光谱仪在文检方面的应用&rdquo 的大会报告。新一代智能自动化DXR激光共焦显微拉曼光谱仪具有以下突出特点:1)小于1微米的空间分辨率与真正共焦深度分析等优异性能,完全能够应对文检拉曼光谱分析与研究最苛刻要求的挑战; 2)DXR显微拉曼光谱仪的自动智能设计可以让操作者专注于结果,而无需花费时间学习仪器调节与程序操作; 3)独特激光能量调节器技术,实现样品激光功率连续缜密可调,避免激光对墨迹样品点灼烧,同时也保证拉曼信号高激发效率; 4)高品质显微镜原装白光照明,带明暗场,视场清晰、照明均匀。鉴定人员可轻松发现并确认微米级墨迹样品区域; 5)可纳入标准实验室操作程序的专利自动准直和校标术,确保仪器日日如新的性能以及光谱准确的重复性结果。采用无移动部件的紧凑设计,确保高稳定性且维护简易。真正无需繁杂的专业维护与人工调节光路。 通过参加此次会议,客户对我们的产品性能、应用有了全面细致的了解,对我们的显微拉曼光谱仪有了很深刻的印象。我们也更好地了解了文检客户的需求,以便更好地为广大文检客户提供优质、到位的服务。 赛默飞世尔张衍亮博士做大会报告 与会代表与张衍亮博士热烈讨论 关于赛默飞世尔科技 赛默飞世尔科技(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年度营收达到100多亿美元,拥有员工35,000多人服务客户。这些客户包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构以及环境与工业过程控制装备制造商等。公司借助 Thermo Scientific 和 Fisher Scientific 这两大品牌,帮助客户解决从常规测试到复杂的研发项目中所面临的各种分析方面的挑战。Thermo Scientific向客户提供了一整套完整的高端分析仪器、实验室设备、软件、服务、耗材和试剂,以实现实验室工作流程综合解决方案。Fisher Scientific 为卫生保健、科学研究,安全和教育领域的客户提供完整的实验室装备、化学药品、供应品和服务的组合。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科研的飞速发展不断地改进工艺技术,并提升客户价值,帮助股东提高收益,还为员工创造良好的发展空间。欲了解更多信息,请浏览公司网站: www.thermofisher.com 或中文网站www.thermo.com.cn ;www.fishersci.com.cn 。
  • 2016年全国电子显微学学术年会之“显微学理论、技术与仪器发展”分会场
    仪器信息网、中国电子显微镜学会、中国电镜网联合报导:2016年全国电子显微学学术年会于10月13-15日在天津东丽湖恒大酒店隆重召开。本次会议共设有八个分会场,分别是:显微学理论、技术与仪器发展分会场;能源、环境、信息等功能材料的微结构表征分会场;机构材料及缺陷、界面、表面,相变与扩散分会场;扫描谱学分会场(STM/AFM);扫描电子显微学(EBSD)分会场;原位电子显微学表征分会场;生命科学研究分会场;生物电镜技术分会场等。本网编辑将有选择性地对部分分会场的部分报告进行报道。 在10月13日下午的显微学理论、技术与仪器发展分会场,共安排有8个报告,报告者及报告内容分别是: 北京工业大学隋曼龄教授利用电子辐照技术激发VO2纳米线中的金属相和绝缘相之间的转变,研究中发现,通过电子辐照过程,绝缘相转变为金属相的转变温度可以低至室温,而这一现象与在辐照过程中氧空位的形成(通过EELS技术观察获得)有关。 北京工业大学 隋曼龄教授 中科院物理所葛炳辉研究员对高分辨率透射电子显微镜成像中“图像的信息是如何随着厚度变化而变化”从理论上进行了研究,即通过将赝弱相位物体近似理论和TCC理论相结合,研究高分辨像像衬随样品厚度的变化规律。在考虑低阶像差的条件下推导出高分辨像线性部分和非线性部分的解析表达式,从而定量给出两个部分随样品厚度变化的规律。发现当样品比较薄时,非线性部分可忽略,但当样品变厚时,非线性部分对成像的贡献变得越来越明显。中科院物理所 葛炳辉研究员 FEI公司的Erwan Sourty博士用流利的中文进行了报告。他向与会者着重介绍了两项FEI公司在STEM方面的新技术进展。单色器技术的出现为相关研究人员带来了极大的好处,譬如可以使得显微图像的对比度得到显著改善。但它的使用对于操作人员来讲则要求较高。FEI开发的OptiMONO——单色器调谐技术使得用户在使用配有单色器的电子显微镜时更加方便。Sourty博士重点介绍的另一项技术称之为iDPC(Integrated Differential Phase Contrast)技术,该技术的具体细节可参考今年发表在“Ultramicroscopy”杂志上的文章“Phasecontrast STEM for thin samples: Integrated differential phase contrast”。据了解,该技术的突出特点之一是能够使轻元素(C,O,N...)和重元素(Sr,Ti,Ga...)同时成像在一张图中,而一张标准的(HA)ADF-STEM图像只能显示较重的元素。FEI公司 Erwan Sourty博士 中南大学李凯副教授的报告题目是“结合传统电子显微术及先进表征技术对Al-Mg-Si-Cu合金进行微结构定量”。李凯在报告中指出,精准的结构鉴定对合金设计非常重要。HAADF-STEM、3DAP及HR-EDX等先进表征技术日益发挥出它们的优势,在研究纳米析出相单胞中的原子占位、添加元素空间分布、精准成分测定方面提供了巨大帮助。尽管如此,传统电子显微术仍然具有其不可替代的优势,且值得继续开发。通过传统电子显微术及先进表征技术的结合,优势互补,以实现材料微结构的定量表征,可有力地推动材料基因工程的进步。中南大学 李凯副教授 日本北陆先端科学技术大学的Yoshifumi Oshima教授在其报告中提到了一个称之为“操作透射电镜(operand TEM)”的技术。Oshima教授将这项技术应用于锂离子纳米电池的开发以及研究电池在操作使用过程中其阴电极(LiMn2O4)的结构变化。通过使用operand TEM进行观察,该课题组发现纳米线阴极改善了电池的性能。日本北陆先端科学技术大学 Yoshifumi Oshima教授 DELMIC B.V.公司(苏州德尔微仪器有限公司为其国内独家代理)的van Oosten Slingeland Daan博士则在报告中介绍了该公司的两个主要技术——集成相关显微镜(SECOM)和高性能阴极荧光检测技术(SPARC)。据了解,SECOM可以集成目前市场上的所有主流品牌的扫描电镜。而SPARC技术具有独特的角分辨能力,其在诸如纳米光子学等领域有着广阔的应用前景。DELMIC B.V.公司 van Oosten Slingeland Daan博士 浙江大学余倩教授利用原位电镜技术对低温下高熵合金的变形机理进行了研究。高熵合金在低温下,其强度、塑性等物理性质均会得到改善,其原因可能来自于位错运动、孪晶变形以及位错和孪晶之间的相互作用。 浙江大学 余倩教授 北京科技大学易晓鸥讲师利用离子辐照和原位透射电镜技术对钨(基)材料中的离位损伤,包括损伤的起源,损伤组织的演变规律,损伤缺陷、组织的热回复等进行了系统的研究。在研究过程中,研究者发现显微缺陷研究手段与多尺度建模相结合,可对材料性质进行可靠的预测。北京科技大学 易晓鸥讲师
  • 显微学理论、技术与仪器发展分会场日程安排-2018年全国电子显微学学术年会
    p & nbsp & nbsp & nbsp 2018年全国电子显微学学术年会将于10月23-27日(28日离会)在成都市禧悦酒店召开。显微学理论、技术与仪器发展分会场日程安排如下: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/cb647da7-bb07-493f-956d-5c7f5b412222.jpg" style=" " title=" 01.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/64ab0ee0-7e2e-496a-b65f-d02dbd37bd40.jpg" style=" " title=" 04.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/66d16d8a-a357-4f30-aaa1-6a58e445ab06.jpg" style=" " title=" 03.jpg" / /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/19987681-518f-47e5-9264-06528e2f2e76.jpg" style=" " title=" 02.jpg" / /p p br/ /p br/ p br/ /p
  • 日新月异,万象更新——电子显微学理论、技术与仪器分会场侧记
    p    strong 仪器信息网、中国电子显微镜学会联合报导: /strong 2017年10月18日, a href=" http://www.instrument.com.cn/zt/microscope" target=" _self" title=" " style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " strong 2017年全国电子显微学学术年会 /strong /span /a 在成都星宸皇家金煦酒店隆重召开。学术年会为期三天,吸引了近900人来自大专院校、科研院所、企业等单位的代表出席。学术年会旨在帮助大家了解电子显微学及相关仪器技术的前沿发展,促进基础研究与应用研究最新进展的交流。 /p p style=" text-align: center" a href=" http://www.instrument.com.cn/zt/microscope" target=" _self" title=" " img src=" http://img1.17img.cn/17img/images/201710/insimg/6675bdb1-23a9-409c-8a23-bf18040b7773.jpg" title=" 0.jpg" / /a /p p   继大会报告后,八个分会场同时上演。工欲善其事必先利其器,电子显微学的学科发展离不开先进的电子显微表征仪器设备及技术,八个分会场中就设置了四个此相关的分会场,分别是:1.显微学理论、技术与仪器发展 2.原位电子显微学表征 5.扫描探针显微学分会场(STM/AFM等) 6.扫描电子显微学(EBSD)。四个分会场中除了 a href=" http://www.instrument.com.cn/news/20171021/231583.shtml" target=" _self" title=" " style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " strong “原位电子显微学表征分会场”的异常火爆 /strong /span /a 外,其他三个分会场的报告也是精彩纷呈,以下选取若干报告,与大家分享部分电子显微学相关的先进仪器设备和最新技术。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/b19311c5-de90-4bec-9c3d-f540652f6dc7.jpg" title=" 01.png" / /p p style=" text-align: center "    strong 第1、5、6分会场掠影 /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/4af5bd3f-ff23-430d-955f-1c1414aa9097.jpg" title=" 4_副本.jpg" / /p p style=" text-align: center " strong 报告人:周武 教授 (中国科学院大学) /strong /p p style=" text-align: center " strong   报告题目:低电压单色仪球差校正 STEM:机遇与挑战 /strong /p p   球差校正透射电镜随着纳米材料的兴起而进入普通研究者的视野。超高的分辨率配合诸多的分析组件使ACTEM成为深入研究纳米世界不可或缺的利器。球差校正电镜技术的发展使得低电压扫描透射电子显微镜(STEM)能够在原子分辨率及单原子分析灵敏度上对材料进行成像及能谱分析,为在原子尺度研究二维材料的缺陷物理提供了新的分析手段。报告中,周武介绍了近几年,其团队利用低电压球差校正扫描透射电子显微学方法在二维半导体材料研究中所做的一些工作,包括利用STEM图像来定量测量二维半导体内化学掺杂浓度及掺杂原子的空间分布 利用电子束在二维半导体材料内可控制备新型纳米结构等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/397dd780-9367-4394-b6aa-3fe182a91046.jpg" title=" 5_副本.jpg" / /p p style=" text-align: center "    strong 报告人:许维 教授(同济大学) /strong /p p style=" text-align: center " strong   报告题目:利用表面化学方法原子级精准准备新颖碳纳米结构 /strong /p p   碳纳米材料作为一种处于纳米量级的新一代材料,由于具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,使之成为当前世界科学研究的热点。许维认为表面化学方法是碳纳米材料面临的机遇及挑战,原子级精准制备至关重要。接着介绍了利用超高真空扫描探针显微镜(UHV-AFM)等技术进行的一些列研究,包括制备含有sp1键型新颖碳纳米结构、不同杂化态碳-氢/碳-卤活化偶联反应、制备类石墨炔结构等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/fc086d75-5660-40c1-82ac-5f8a703ad5c8.jpg" title=" 6_副本.jpg" / /p p style=" text-align: center "    strong 报告人:李爽(中国科学院金属研究所) /strong /p p style=" text-align: center " strong   报告题目:铁电畴组态的球差校正电镜研究 /strong /p p   报告中,李爽介绍了其课题组关于铁电畴组态球差校正电镜的研究情况。进展包括:发现了大拉应变调控下BFO中存在周期性大规模四组态涡旋畴结构 研究了氧化物电极对PTO中周期性闭合畴结构的影响,发现闭合畴在对称电极夹持的PTO中能稳定存在 解析了拉应变调控下PTO中的复杂畴组态等。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201710/insimg/00b74fe1-fa67-4ffd-b9c4-9d08bfc3e8aa.jpg" title=" 7_副本.jpg" / /p p style=" text-align: center "    strong 报告人:吴桂林 教授(重庆大学材料科学与工程学院) /strong /p p style=" text-align: center " strong   报告题目:金属再结晶的原位 EBSD 研究 /strong /p p   报告中,吴桂林通过最新的原位EBSD表征技术,研究了退火成核的机理研究。利用EBSD 定量表征形变和再结晶金属的微观组织结构,发现了与未变形原颗粒相关的取向核,得出成核与晶体边界具有内在联系等结论。最后表示,成核机理研究尚不明了,仍需进一步研究。 /p
  • 著名理论化学家江元生院士逝世
    中国科学院院士、我国著名理论化学家、第六届全国政协委员、南京大学博士生导师江元生教授,因病于2014年1月10日18点36分在南京逝世,享年83岁。   江元生于1931年8月出生于江西宜春,1948年8月进入中山大学学习,1953年7月本科毕业于武汉大学 1956年7月研究生毕业于吉林大学并留校任教,1991年12月当选中国科学院院士。1992年1月调任南京大学, 任教授、博士生导师,创建了南京大学理论与计算化学研究所,为南京大学理论与计算化学学科的发展作出了杰出贡献。   江元生长期从事理论化学的教学与科研,注重基础理论联系实际,研究领域涉及高分子理论、配位场理论计算方案、分子轨道图形理论及应用和共轭分子的半经验量子化学计算方法等。他提出和发展了多项新理论与新方法,取得了卓越的研究成果,曾获1982年和1987年国家自然科学一等奖、2005年何梁何利基金科技进步奖等重要奖项。   江元生在国内外学术界享有盛誉,当选为英国皇家化学会会士、国际数学化学研究院院士,担任国内外多种学术刊物的编委,曾任中国科学院化学部常委会委员等职务。他所著的《结构化学》获得1999年教育部科技进步一等奖,分别以中、英文在大陆和台湾出版,已成为国内广泛使用的教材和参考书,为我国培养了众多理论化学方向的专业人才。
  • 分析仪器研发、生产、使用中的几个关键理论问题
    李昌厚 (中国科学院上海营养与健康研究所 上海 200233)摘要本文论述了面广量大的光吸收类分析仪器研发、生产、使用中必须注重的几个关键理论,以及理论与实践结合的问题。讨论了透过率误差、吸光度误差和吸光度理论值或真值的关系、杂散光与吸光度相对误差A/A和吸光度真值A之间的关系、光度噪声N与吸光度相对误差ΔA/A和吸光度真值A的关系、光谱带宽(SBW)与分析检测误差的关系等等,同时提出了解决这些问题的方法和建议。0、前言由于分析仪器是“四两拨千斤”的产业,它在各国的国计民生中已经显示出五大作用:①科学研究的“先行官”;②工业生产的“倍增器”;③军事上的“战斗力”;④人类活动中的“物化法官”;⑤民生领域的“安全保证”等。所以可以说,分析仪器在“农、轻、重、海、陆、空、吃、穿、用”各行各业已经无所不在,无所不有。同时基于分析仪器在科技、经济、国防和社会发展中所处的重要战略地位等等,加速分析仪器产业的发展、生产已成为全世界各国关注的重点之一。作者认为,全球分析仪器事业正处在日新月异、突飞猛进的变化时期。但是,全球的分析仪器行业还普遍存在一些理论问题,以及理论与实践相结合的问题。这些问题具体体现在没有解决好对仪器学理论的认识和理解、没有解决好在研发、制造、使用者中,真正重视仪器学理论和理论与实践相结合的问题上。本文为了保证研发者、生产者使用者能研发出优质分析仪器、使用者能真正用好分析仪器,作者将根据仪器学理论、分析化学理论和作者长期从事分析仪器研发、应用研究的实践经验、教训,从研发者、生产者和使用者的角度,从分析仪器的优质制造的更高要求的角度,以及分析仪器面临的紧迫使命等方面出发,寻找分析仪器行业优质制造中的问题,找差距、找瓶颈、找解决问题的办法,以保证我国分析仪器的优质制造,促使我国分析仪器更高速发展,尽快提高分析仪器的水平。作者写本文目的是抛砖引玉,希望引起分析仪器领域研发仪器、制造仪器、使用仪器的广大科技工作者们的高度重视,并且积极参与讨论这些问题。希望大家共同为提高全球分析仪器,特别是提高我国分析仪器研发、制造、使用水平而努力奋斗。作者认为,分析仪器要振兴、要发展,就必须要注重并处理好本文提出的仪器学理论问题,必须处理好、解决好理论与实践结合的问题。本文可供分析仪器(特别是紫外吸收类分析仪器)的研发者、制造者、使用者和有关领导们参考。1、透过率误差、吸光度误差和吸光度理论值或真值的关系[1]-[15]分析仪器的基础理论非常重要。分析仪器属于光、机、电、计算机和应用五为一体的、技术密集的高科技产品,涉及到的基础理论很多,如果不搞清楚其中的关键理论问题,大家闭着眼睛抓麻雀,或者是知其然不知其所以然,是不可能研发、生产出优质分析仪器的,使用者也不可能用好各类分析仪器、不可能得到准确可靠的分析检测数据。例如:紫外可见分光光度计(UVS)中的透过率误差△T与吸光度误差△A的关系,△T和△A与吸光度测量值Am、吸光度理论值A0的关系[1],杂散光(S.L.)与吸光度相对误差△A/A0的关系[2]、[3]、[4]、[11],光谱带宽(SBW)、噪声(N)与△A/A0的关系[3]等等。这些仪器学理论问题如果搞不清楚,既研发不出优质仪器,也用不好分析仪器。目前,国际上许多UVS的研发者、生产者,在仪器的使用说明书中,一般都给出吸光度范围、吸光度误差和透过率范围、透过率误差等等,但是,都未搞清它们之间的关系,有些是随便写的。许多厂商,只要是自己认为是所谓高档UVS,就千篇一律的写为:透过率从0-100%T时(甚至更高),透过率误差(△T)都为0.3%T,这是不对的、绝对做不到的。而吸光度误差都写为: 0.002Abs(0-0.5Abs)和0.004Abs(0.5-1.0Abs)。这里的△T和△A0是矛盾的,,绝大多数UVS生产厂商的产品都是如此,此现象很严普遍。对这个问题的研究工作,作者已经发表不少文章[1]、 [2]、[3]、 [4]、[15],请读者自己查阅。透过率误差与吸光度误差和吸光度真值的关系,目前国际上很少有人系统的、认真的研究过。在这方面存在许多糊涂概念。作者对此作了深入研究,现在,我们来讨论透过率准确度、透过率误差与吸光度准确度和吸光度误差的关系,以及他们和吸光度真值A的关系。作者从比耳定律的原始表达公式入手,认真研究了这些关系。比耳定律指出:①A=-logT,故T=10-A;② C=(-1/ab)logT, 故,T=10-abc;①和②中:A为吸光度真值,T为透过率真值,a为摩尔吸光系数,b为光程,C为被测试样的浓度。由此可见,A、T、C之间有着密切的关系。由于A或T的测量误差,可引起对被测试样浓度C的测量误差。若设T的误差为ΔT,则可求出不同ΔT的情况下,相对吸光度误差ΔA/A (ΔA为吸光度真值A与测量值Am之差)与A的关系,或求出不同A下ΔA/A与ΔT的关系。作者研究了ΔA/A与ΔT和A的关系,导出了ΔA/A与ΔT和A的关系之间的理论计算公式如下,它具有普遍的指导意义。设:T-Tm=ΔT (1-1)A-Am=ΔA (1-2)(1-1)式、(1-2)中:Tm为透射比的测量值;Am为吸光度的测量值;由(1-1)式得:Tm=T-ΔT (1-3)根据比耳定律:A=-logT,可得: T=10-A (1-4)(1-4)式代入(1-3)式,得Tm=T-ΔT=10-A-ΔT (1-5);由(1-2)式得:Am=A-ΔA(1-6)根据比耳定律:Am=-log Tm (1-7)(1-5)式代入(1-7)式,则: Am=-log Tm=-log(10-A-ΔT) (1-8)(1-8)式代入(1-6)式,则:A-ΔA=-log(10-A-ΔT);所以,ΔA=log(10-A-ΔT)+ A (1-9)(1-9)式为吸光度误差ΔA与吸光度真值A和透射比绝对误差ΔT关系的理论计算公式。由此可见:①ΔA与A和ΔT的数学关系式比较复杂;②当ΔT一定时,ΔA可通过不同的A求得;。③当A一定时,ΔA可通过不同的ΔT求得;由(1-9)式可得到表1-1~7(因为篇幅冗长,此不赘述;请具体参阅:李昌厚著,《仪器学理论与实践》,北京:科学出版社,P176,2008),由表1-1~7可得下图、表。这些图、表是作者长期研究的经验总结,是一项从理论到实践的、非常重要的仪器学科研成果。在光学类分析仪器的设计、制造、使用和维修工作中很有参考价值,它可以适用于(或覆盖)全世界所有的紫外可见分光光度计。透过率误差ΔT与吸光度误差ΔA和吸光度真值A的关系2、杂散光与吸光度相对误差A/A和吸光度真值A之间的关系[1]-[14]、[6]、[9]、[14] 、[15]作者对杂散光(S)进行了理论推导,得到了S与吸光度相对误差ΔA/A和吸光度真值A之间的关系为:ΔA=log(Tm/T)=log[(T+S)/T(1+S)] (令Tm=(T+S)/(1+S)和S/T=10A S则ΔA=log [(T+S) /T(1+S)]=log [(1+10AS)/(1+S)]; 作者根据该计算公式,算出了14种常见的杂散光下,吸光度相对误差A/A和吸光度真值A之间的关系[1](如文献[1]中的表5-8所示;因为篇幅所限、表格太长,此处不能列出此表,请读者自己查阅)。作者根据表5-8,绘制了以下12条曲线。表5-8和这12条曲线非常重要、非常实用,是作者的一项重要科研成果。表5-8和曲线对紫外可见分光光度计的设计、制造、使用、维修者非常有用,它可以适用、覆盖全世界所有的紫外可见分光光度计。杂散光S与与吸光度相对误差A/A和吸光度真值A之间的关系杂散光对紫外可见分光光度计分析测试误差的影响可分成两种形式,第一种形式是杂散光的波长与测试波长相同。它是由于测试波长因为某些原因而偏离正常光路,在不通过试样的情况下,直接照射到光电转换器上。引起这种杂散光的原因,大多数是由于光学元件、机械零件的反射和漫射所引起。这种杂散光可以通过一个对测试波长不透明的样品来检查。当发现放在比色皿中的不透明样品的透射比不为零时,说明仪器中有这种杂散光存在。但必须注意,当仪器存在零点误差时,有可能造成混淆。如果在不透明的样品上涂上白色,则可增加样品本身反射和散射的效果,可以提高测量灵敏度。杂散光的第二种形式是指测试波长以外的、偏离正常光路而到达光电转换器的光线。它通常是由光学系统的某些缺陷所引起的,如光学元件的表面被擦伤、仪器的光学系统设计不好、机械零部件加工不良,使光路位置错移等等。通常情况下,我们所讲的杂散光,是指包括上述两种杂散光在内的杂散光。假设Is为杂散光的总和,It为光电转换器检测到的总能量,它包括测试波长的能量I和杂散光的能量Is,即It=I+Is。在实际分析测试工作中,我们需要知道的是杂散光能量Is相对于总能量It的比值。我们常称之为杂散光的量S=Is/It。由于:I » Is,因此,可以近似的认为It=I,所以,可以认为S=Is/I 。S=Is/I表示:当测试波长的能量降低时,杂散光比例就会相应增加。对紫外可见分光光度计的边缘波长来说,光源的强度、光电转换器的灵敏度和单色器的透过率都是比较低的,这时杂散光的影响就会更加明显。所以,在紫外可见分光光度计中,应该首先检查200~220nm处的杂散光。我们知道,杂散光对参考光束和样品光束的影响是相同的。因此,根据比耳定律,可得到:A=-log(It+Is)/(I+Is);因Is=SI,所以A=-log(It+ SI)/(I+ SI)=-log(It+ SI)/[I(1+ S)]=-log[(It/I)+S] /(1+S)= -log(T+S) /(1+S)=-log(T+S) + log(1+S)。当T=10%,S=0%时,A=-log0.1=1当T=10%,S=1%时,A=-log(0.1+0.01)+ log1.01=0.9629由此可见,当样品的透射比为10%时(即吸光度为1时),1%的杂散光,可使其吸光度从1.000降到0.9629。同理:透射比为10%时,0.1%的杂散光,将使吸光度从1.000降到0.963。一般使用者在紫外可见分光光度计的分析工作中,试样的吸光度都在1Abs以下,如果仪器的杂散光为0.05%时,对1Abs的试样测试时,测试误差仅为0.0019左右(见前述图、表)。因此,杂散光为0.05%时,就基本上能满足绝大部分分析工作的要求。如果紫外可见分光光度计的杂散光为0.01%时,杂散光对分析测试的结果就基本上没有影响了。目前,国际上许多高档紫外可见分光光度计的杂散光都在0.01%以下。虽说杂散光0.01%时,杂散光对分析测试的结果就基本上没有影响了。但是,为了证明制造厂的加工水平,国外最高级的紫外可见分光光度计的杂散光达到8×10-7(0.00008%),普析的国产最高级的紫外可见分光光度计的杂散光,达到了4×10-7(0.00004%),处国际领先水平。杂散光对分析测试结果的误差影响是随着吸光度值增大而增大的。因此,吸光度值越大,对误差的影响也越大。如果吸光度A=3(即T=0.001),则杂散光为1%时,分析测试的结果将由A=3变成A=1.963(A=-log(0.001+0.01)+ log1.01=1.9568+0.0043=1.963)。由此可见,吸光度A=3时,1%的杂散光可使分析测试的结果将由A=3降到2以下。作者的理论研究和长期使用紫外可见分光光度计的实践表明:当紫外可见分光光度计的杂散光为0.05%时,杂散光对分析测试误差的影响就很小了。这时,对吸光度为1.00A的试样进行分析测试,其结果为0.998A,相对误差为A /A=0.002/1 =0.002(即0.2%)。所以,作者认为,从理论和实践结合的角度看,紫外可见分光光度计的杂散光为0.05%时,就基本能满足常规分析测试和质检工作的要求。3、噪声N与吸光度相对误差ΔA/A和吸光度真值A的关系[1]、[4]、 [5]、[6]、[7]、[16]、[17]从理论与实践的结合上讲,光度噪声对分析测试误差的影响很大,必须重视之。在光度分析中,特别在紫外、可见光度分析中,可以说光度噪声是影响比耳定律偏离的最主要因素之一,它是紫外仪器最主要分析误差的来源。若已知光度噪声为N,则可根据A.J.Owen提出的计算公式:噪声误差(%)=N100/A,计算出不同噪声N的情况下,吸光度的相对误差A/A(A为吸光度绝对误差,A为吸光度真值)与A的关系,或求出不同A的情况下,A/A与N的关系。例如:若紫外可见分光光度计的噪声N=±0.002A,吸光度真值为0.5A,则:根据A.J.Owen提出的计算公式,噪声误差(%)(即由噪声引起的相对误差AN/A)=0.002×100/0.5=0.2/0.5=0.4(%)。,即由噪声引起的相对误差AN/A为0.4%。目前国内外的紫外可见分光光度计制造者和使用者们,很多都不注重仪器的光度噪声。他们并不了解光度噪声对使用者的分析测试结果有多大的影响。、,很少有人从理论上或从理论与实践结合的角度,对此进行认真的研究。有的厂商甚至在样本上不给出光度噪声这个重要指标,有些厂商(技术人员)在测试光度噪声时只测3分钟或15分钟,最多的只测30分钟。这些都是不对的,都是很值得注意的重要问题。作者认真研究了光度噪声N与吸光度的相对误差A/A和吸光度真值A的理论关系,从理论上计算了N与A/A和A的关系。作者研究的结果如文献[1]的表5-10~15所示,因为篇幅所限、表格太长,此处不能列出此表,请读者自己查阅。作者还根据文献[1]的表5-10~表5-15,绘制了12条误差曲线,如下图所示。这是作者多年研究的科研成果,它可以覆盖目前世界上任何不同类型的紫外可见分光光度计,该成果对设计、制造、使用和维修者具有重要的实用参考价值。噪声 N与吸光度相对误差ΔA/A和吸光度真值A的理论关系4、光谱带宽(SBW)与吸光度误差(分析检测误差)的关系1)SBW的定义:光谱仪器的单色器出射狭缝谱面上的光谱数,就叫SBW。若以谱线轮毂法(一种测试方法)表示,则51%峰高处的谱线宽度,就是SBW。具体描述,可见下图所示。光谱带宽(SBW)是非常重要的技术指标,它直接影响分析测试数据的准确度。作者[1]和Owen [5]对SBW做了比较深入的研究,因篇幅所限,请读者自己查阅,此不赘述。 2)光谱带宽对吸收光谱测量误差关系的理论推导:光学类的分析仪器中,光谱带宽非常重要。不同的样品要求用不同的光谱带宽测试,对同一样品,不同的光谱带宽有不同的分析误差。每一个样品,都有自己的最佳光谱带宽,只有在最最佳光谱带宽下才能得到最佳的分析数据。 从理论上讲,比耳定律只适用于单色光,但在实际的吸收光谱仪器中,绝对不可能从光谱仪器的单色器上得到真正的单色光,只能得到波长范围很窄的光谱带。因此,进入被测样品的光束仍然是在一定波段范围内的复合光。由于物质对不同波长的光具有不同的吸光度,因此,在实际工作中即使用很高级的吸收光谱分光光度计、采用很小的光谱带宽,仍然会产生比耳定律的偏离(即产生吸光度测量误差)。作者根据仪器学理论,对光谱仪器的SBW从理论上作了详细研究[1]。作者研究表明:假设SBW为
  • 半导体所在非互易光学介质几何理论方面取得进展
    光在复杂介质中的传播是光学和相对论的经典课题。在爱因斯坦提出广义相对论不久,W. Gordon,I. E. Tamm和G. V. Skrotskii等将费马原理推广到弯曲时空。1960年,J. Plebanski指出弯曲时空度规的空间分量和时空混合分量分别等价于非均匀各向异性光学介质的折射率(介电常数与磁导率)和反对称非互易磁电耦合参数。上述结果已被广泛应用于引力场量子效应的实验室模拟。2006年,J. Pendry和U. Leonhart提出的变换光学反过来用坐标变换设计非均匀材料以实现光线控制,在电磁隐身衣、新型波导和天线等器件方面具有重要应用。然而,相对论电动力学和变换光学无法处理手性和非互易光学材料,也无法提供类似于坐标变换的几何方案来控制光的偏振。近日,中国科学院院士、中国科学院半导体研究所研究员常凯领导的合作团队针对以上问题提出广义变换光学理论,将光学介质从普通Cauchy连续统推广到具有内部自由度的广义连续统。在该理论中每一个几何点除具有坐标自由度外,还具有由局域标架代表的内部自由度,描述点粒子的旋转、拉伸和扭转,可以用来处理具有复杂本构关系的线性光学介质。研究团队发现具有局域旋转自由度的连续统可以描述实验室静止的非互易光学介质。非互易光学介质主要包括磁光介质(金属或稀薄等离子体、磁性绝缘体、稀磁或铁磁半导体)、磁电耦合介质(多铁材料、拓扑绝缘体及Weyl半金属)和时变介质。磁光介质介电常数与磁导率的反对称虚部和磁电耦合介质的磁电耦合参数带来电磁场不同分量之间的交叉耦合,产生非互易的偏振旋转,被广泛应用于隔离器和环形器等非互易电磁器件。基于广义变换光学理论,研究团队引入描述非互易光学介质的时变黎曼几何理论和基于标架旋转的等价黎曼-嘉当几何理论,利用时空挠率张量描述磁光和磁电耦合参数,统一解释了包含磁光、磁电耦合介质和具有局域旋转自由度的时变介质在内的一般线性非互易电磁介质。该工作一方面引入时空挠率的微观构造,将相对论协变电动力学推广到非黎曼时空;另一方面表明通过标架变换可以实现光偏振态的调控。将标架变换与坐标变换相结合,原则上可以同时实现对电磁场的光线和偏振态的调控,为未来新型光学和电磁器件设计提供了理论基础。该研究成果近日发表于《物理评论快报》(Phys. Rev. Lett. 130, 203801 (2023))。论文通讯作者为常凯和香港科技大学教授冯建雄。本工作得到国家自然科学基金委、科技部国家重点研发计划资助项目、香港大学教育资助委员会、中国科学院和半导体研究所人才项目的支持。
  • 香山科学会议呼吁加快太赫兹技术生物医学研究
    很多患者在医院检查病情时,需要做X光、CT、核磁共振等一系列检查。太赫兹(THz)波,一个尚未充分开发的电磁波段,或许将会改变这种状况。   4月8日&mdash 9日,在以&ldquo 太赫兹波在生物医学应用中的科学问题与前沿技术&rdquo 为主题的第488 次香山科学会议上,与会专家指出,由于太赫兹波具有反应物质结构与性质的指纹特性,并且光子能量低,远远小于X射线能量,不会对生物大分子、生物细胞和组织产生有害电离,特别适合于对生物组织进行活体检查。因此,相较于现有医学成像技术,太赫兹波光谱成像技术具有更独特、更适用的物理特征。   太赫兹波是频率在0.1&mdash 10THz的电磁波,处于宏观电子学向微观光子学过渡的波段。国际上,太赫兹生物医学研究随着欧盟2000年设立的国际联合项目&ldquo THz-Bridge&rdquo 正式启动。美国政府将太赫兹技术评为&ldquo 改变未来世界的十大技术&rdquo 之一,日本将其列为&ldquo 国家支柱十大重点战略目标&rdquo 之首,并将生物医学应用列为主要方向之一,欧洲也连续10年将生物医学应用作为首要研究方向。   本次会议的执行主席之一姚建铨院士介绍说,围绕太赫兹技术生物医学应用研究,国际上已经开展了很多大型国际合作项目。目前,国内外在太赫兹技术生物大分子、细胞、组织、器官等生物监测及生物效应研究方面,已取得部分代表性成果。   本次会议的执行主席之一杜祥琬院士指出,在所有物理技术中,电磁波技术对医学的促进作用尤其突出。从1901年X线获得第一届诺贝尔物理学奖开始,已有5项与生物医学相关的诺贝尔奖授予了X光谱技术领域。&ldquo 这次会议就是研讨太赫兹技术和生物医学前沿的交叉,推动这个领域的深入研究与合作。&rdquo   针对太赫兹技术在生物医学方面的应用,吉林大学教授崔洪亮介绍,生物大分子相互作用是重大生命现象与病变产生的关键动因,而太赫兹光子能量覆盖了生物大分子空间构象的能级范围。该频段包含了其他电磁波段无法探测到的直接代表生物大分子功能的空间构象等重要信息。因此,可以发展一种利用太赫兹探测和干预生物大分子相互作用过程的新理论和新技术,为当前重大疾病诊断、有效干预提供先进的技术手段。   太赫兹技术最终应用到生物医学领域,还需要落实到具体的医疗设备上,在产业化上形成一定规模。   &ldquo 我国检验医学现有的核心技术和临床设备主要都被国外垄断,国产品牌市场占有率极低。&rdquo 第三军医大学西南医院府伟灵教授对此忧心忡忡。他指出:&ldquo 目前,太赫兹波侦检分子与细胞的检测理论和关键技术是我国第一个与全球同步开展的研究,将从新的视角为检验医学领域提供分子和细胞侦检的革命性科学手段,有望阐明和提供全新的检验医学理论与技术体系,形成太赫兹波&mdash 检验医学优势新学科和产业基础。&rdquo   中国工程物理研究院流体物理研究所李泽仁研究员也表示,目前通过国家对太赫兹源、探测器及成像系统等关键技术与仪器设备的大力支持,我国已基本具备开展太赫兹生物医学研究的基础。   &ldquo 可以说,太赫兹技术在生物医学微观领域,将为揭示生物大分子之间、细胞之间的相互作用物质规律,呈现这些作用和活动的物性特征,最终解释各种生命现象提供革命性科学方法 在生物医学宏观层面,将为疾病的诊断、治疗、评估、监测和预警及后续药物设计、研发、生产和评价带来革命性改变。&rdquo 对太赫兹技术的未来,天津大学教授姚建铨院士充满信心。   然而,国内太赫兹波生物医学研究刚刚起步,缺乏学科间深入有效的交叉融合,缺乏全国性的学术战略发展规划,还不具备国际竞争力。在相关科研支持方面,目前我国只有6项与太赫兹波生物医学相关的国家自然科学基金项目。   &ldquo 国内目前有多个团队正在开展太赫兹波生物医学研究,但还缺乏交叉融合、联合攻关、体系研究的平台、团队和技术支撑,实现实质性突破任重道远。&rdquo 会议执行主席之一、中国工程物理研究院刘仓理研究员呼吁,这不仅需要研究人员奋起直追,也需要在国家层面上给予规划、支持和协调。
  • 振动圆二色光谱(VCD)理论与仪器操作实务专场讲座培训班
    第25届国际手性研讨会(ISCD-25)将于7月7日-10日在中科院上海有机所如期举行,华洋科仪与美国BioTools公司联手将为研讨会奉献一场振动圆二色光谱理论与仪器操作实务专场讲座培训班,届时世界顶级光谱专家与量子化学理论专家将亲临现场进行授课,与您面对面进行互动交流。   时间:2013年7月6日   地点:中科院上海有机化学研究所   专家授课内容   &bull 振动圆二色光谱仪原理与功能概述,ChiralIR-2X&trade 振动圆二色光谱仪实际上机操作   &bull 最佳的测试样品制备方法   &bull 仪器的参数设定与优化   &bull 固体与液体样品的测试数据采集与处理   &bull 利用ComputeVOA&trade 与Gaussian软件,进行VCD/ROA光谱的理论计算   &bull 超越视觉比对,自动完成比对工作的CompareVOA&trade 软件   &bull 故障排除,如何获取正确的谱图   授课嘉宾简介   &bull Laurence A. Nafie 教授(美国)   《Journal of Raman Spectroscopy》杂志主编,美国雪城大学教授,博士生导师   国际分子光谱领域著名的科学家,手性振动光谱的研究先驱和奠基人之一,担任多种国际学术刊物的编委。发表论文近300篇,发明专利数项,多此获得国际科学界大奖。   &bull Rina K. Dukor博士(美国)   美国BioTools公司,执行董事长,芝加哥Illinois大学物理化学博士   研究领域:生物分子的振动圆二色性,发表了50多篇综述性论文和数本综述性书籍,拥有四个发明专利, 荣获各种奖励,现担任多个理事职务。   &bull Jim Cheeseman 博士(美国)   美国高斯公司,首席研究员科学家,加拿大 McMaster 大学量子化学博士   研究领域:磁学性质,包括核磁共振屏蔽张量和VCD谱   &bull 朱华结教授 (河北大学)   河北大学药物化学与分子诊断教育部重点实验室副主任,教授,博士生导师   从事天然药物化学分子的发现、结构鉴定与改造,手性药物分子合成与手性催化剂的设计与合成研究。   详细日程及报告内容安排   8:30 - 9:00 签到   9:00 - 10:00 振动圆二色(VCD)光谱介绍   授课人: Laurence A. Nafie教授   10:00 - 10:45 测试获取振动圆二色光谱操作实务   授课人:Rina K. Dukor博士   授课人: 朱华结教授   10:45 - 11:15 茶歇   11:15 - 12:15 &ldquo 高斯软件中的手性光学特性概述与如何计算光谱   报告人: Jim Cheeseman 博士   12:30 - 1:30 午餐   1:30 - 4:30 分组交替进行仪器上机操作与电脑实际理论计算光谱操作   报名注册方式   欲注册的参会人员请发送如下报名表至 jenny@dhsi.com.cn参与报名   联系人: 华洋科仪 齐爱华女士   电话:13504090879 报 名 表姓名 单位名称 地址 职务 电话 E-mail
  • 国基委连续公布5个生物医学相关重大研究计划项目指南
    p   近日,国家自然科学基金委员会官网于同一天(2017年7月10日)公布了5个生物医学相关重大研究计划项目指南。总资助金额约9370万元。具体如下: /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201707/insimg/0f8ab66c-0cf9-4c8f-8635-2a24d5612446.jpg" title=" 1.jpg" / /p p   以下为公布的5个生物医学“重大研究计划”2017年度项目指南详情: /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 器官衰老与器官退行性变化的机制重大研究计划2017年度项目指南 /strong /span /p p    strong 一、科学目标 /strong /p p   本重大研究计划旨在明确组织器官衰老及退行性变化的共性机制和器官特异性改变。聚焦于重要人体组织器官(如脑、心血管、肾脏以及血液系统等)衰老及其向退行性变化演变的早期过程,明确器官衰老和器官退行性变化相关的分子、细胞和功能变化特征,阐述器官衰老及向退行性变化演变的调控机制,加强对衰老相关疾病发生发展的认识,开展一系列与衰老及器官退行性变化相关的新型技术研究,并进一步建立衰老相关疾病的应对策略。 /p p    strong 二、核心科学问题 /strong /p p   (一)器官衰老及向退行性变化演变的分子、细胞及功能变化过程和规律 /p p   (二)器官衰老向退行性变化演变在老年疾病发生发展中的作用和调控机制 /p p   (三)器官衰老及向退行性变化演变过程中的早期生物标记物及相关检测技术。 /p p   strong  三、2017年度重点资助研究方向 /strong /p p   根据本重大研究计划总体布局,2017年度拟重点资助如下研究方向,鼓励研究者采用多学科交叉的研究手段,注重与生命科学、信息科学、化学等领域的合作,针对器官衰老与器官退行性变化研究,提出新思路、新原理,建立新方法与新技术。 /p p   (一)建立组织器官衰老和退行性变化研究相关的新技术与新方法。 /p p   聚焦器官衰老和退行性变化的前沿科学问题,鼓励学科交叉,发展新技术与新方法。包括利用不同模式生物建立新的衰老研究模型、衰老和退行性变化标记物检测技术、细胞重编程技术、靶向基因编辑与示踪技术、表观遗传修饰的可视化检测技术、单细胞技术、质谱检测技术、分子影像技术、纳米药物技术等。 /p p   (二)重要人体组织器官衰老和退行性变化过程中的遗传、表观遗传及分子网络机制。 /p p   针对衰老的不同阶段(尤其是器官衰老向退行性变化演变的早期阶段)展开遗传因素、表观遗传因素、环境因素等作用机制的研究。发现并鉴定新的组织器官衰老相关基因、非编码RNA以及蛋白质等关键分子。研究衰老不同阶段的核酸修饰、组蛋白修饰、端粒相关蛋白修饰、染色质稳定性以及非编码RNA等对器官衰老及器官退行性变化的影响。 /p p   (三)重要人体组织器官衰老和退行性变化的细胞内外环境稳态。 /p p   研究细胞内环境稳态、代谢关键信号通路、细胞内化学小分子、脂类、激素及各种免疫炎症因子引起细胞衰老的机制。通过分子生物学、分子影像、电生理及生化检测等技术研究线粒体、溶酶体等亚细胞器在衰老及器官退行性病变中作用的分子基础与分子调控机理。 /p p   (四)器官衰老及其向退行性变化演变的生物标记物及器官特异性衰老和变性评价指标体系。 /p p   寻找能在个体、器官、细胞和分子水平反映器官衰老及向退行性变化演变的分子标记物,建立个体、器官和细胞特异性衰老和变性评价指标体系,建立研究器官衰老过程生物调控网络与关键节点的数据库和大数据计算分析平台,为早期识别器官和个体衰老与退行性变化预警提供标准和评价依据。 /p p    strong 四、2017年度资助计划 /strong /p p   本重大研究计划2017年度计划安排直接费用3500万元。拟资助培育项目22-30项,直接费用的资助强度为60-80万元/项,资助期限为3年,申请书中研究期限应填写“2018年1月1日-2020年12月31日” 拟资助重点支持项目6-9项,直接费用的资助强度为200-250万元/项,资助期限为4年,申请书中研究期限应填写“2018年1月1日-2021年12月31日”。 /p p    strong 五、申报要求及注意事项 /strong /p p   (一)申请条件。 /p p   本重大研究计划项目申请人应当具备以下条件: /p p   1.具有承担基础研究课题的经历 /p p   2.具有高级专业技术职务(职称)。 /p p   在站博士后研究人员、正在攻读研究生学位以及无工作单位或者所在单位不是依托单位的人员不得作为申请人进行申请。 /p p   (二)限项规定。 /p p   1. 具有高级专业技术职务(职称)的人员,申请(包括申请人和主要参与者)和正在承担(包括负责人和主要参与者)以下类型项目总数合计限为3项:面上项目、重点项目、重大项目、重大研究计划项目(不包括集成项目和战略研究项目)、联合基金项目、青年科学基金项目、地区科学基金项目、优秀青年科学基金项目、国家杰出青年科学基金项目、重点国际(地区)合作研究项目、直接费用大于200万元/项的组织间国际(地区)合作研究项目(仅限作为申请人申请和作为负责人承担,作为参与者不限)、国家重大科研仪器研制项目(含承担科学仪器基础研究专款项目和国家重大科研仪器设备研制专项项目)、优秀国家重点实验室研究项目,以及资助期限超过1年的应急管理项目。 /p p   优秀青年科学基金项目和国家杰出青年科学基金项目申请时不限项 正式接收申请到国家自然科学基金委员会作出资助与否决定之前,以及获资助后,计入限项。 /p p   2.申请人(不含参与者)同年只能申请1项重大研究计划项目。上一年度获得重大研究计划项目资助的项目负责人(不包括集成项目和战略研究项目),本年度不得作为申请人申请重大研究计划项目。 /p p   (三)申请注意事项。 /p p   1.申请书报送日期为2017年8月21日-25日16时。 /p p   2.本重大研究计划项目申请书采用在线方式撰写。对申请人具体要求如下: /p p   (1)申请人在填报申请书前,应当认真阅读本项目指南和《2017年度国家自然科学基金项目指南》中申请须知和限项申请规定的相关内容,不符合项目指南和相关要求的申请项目不予受理。 /p p   (2)本重大研究计划旨在紧密围绕核心科学问题,将对多学科相关研究进行战略性的方向引导和优势整合,成为一个项目集群。申请人应根据本重大研究计划拟解决的具体科学问题和项目指南公布的拟资助研究方向,自行拟定项目名称、科学目标、研究内容、技术路线和相应的研究经费等。 /p p   (3)申请人登录科学基金网络信息系统https://isisn.nsfc.gov.cn/(没有系统账号的申请人请向依托单位基金管理联系人申请开户),按照撰写提纲及相关要求撰写申请书。 /p p   (4)申请书中的资助类别选择“重大研究计划”,亚类说明选择“培育项目”或“重点支持项目”,附注说明选择“器官衰老与器官退行性变化的机制”,根据申请的具体研究内容选择相应的申请代码。 strong 以上选择不准确或未选择的项目申请将不予受理。 /strong /p p    strong 培育项目和重点支持项目的合作研究单位不得超过2个。 /strong /p p   (5)申请人应当按照重大研究计划申请书的撰写提纲撰写申请书,应突出有限目标和重点突破,明确对实现本重大研究计划总体目标和解决核心科学问题的贡献。 /p p   如果申请人已经承担与本重大研究计划相关的其他科技计划项目,应当在申请书正文的“研究基础与工作条件”部分论述申请项目与其他相关项目的区别与联系。 /p p   由于医学科学研究对象的特殊性,请申请人注意在项目申请及执行过程中严格遵守相关医学伦理和患者知情同意等问题的有关规定和要求,包括在申请书中提供所在单位或上级主管单位伦理委员会的纸质证明(电子版申请书应附扫描件)。 /p p   (6)申请人应当认真阅读《2017年度国家自然科学基金项目指南》中预算编报须知的内容,严格按照《国家自然科学基金资助项目资金管理办法》、《关于国家自然科学基金资助项目资金管理有关问题的补充通知》(财科教〔2016〕19号)以及《国家自然科学基金项目资金预算表编制说明》的要求,认真如实编报《国家自然科学基金项目资金预算表》。 /p p   (7)申请人完成申请书撰写后,在线提交电子申请书及附件材料,下载打印最终PDF版本申请书,并保证纸质申请书与电子版内容一致。 /p p   (8)申请人应及时向依托单位提交签字后的纸质申请书原件以及其他特别说明要求提交的纸质材料原件等附件。 /p p   3.依托单位应对本单位申请人所提交申请材料的真实性、完整性和合规性进行审核 对申请人申报预算的目标相关性、政策相符性和经济合理性进行审核,并在规定时间内将申请材料报送国家自然科学基金委员会。具体要求如下: /p p   (1)应在规定的项目申请截止日期(2017年8月25日16时)前提交本单位电子版申请书及附件材料,并统一报送经单位签字盖章后的纸质申请书原件(一式一份)及要求报送的纸质附件材料。 /p p   (2)提交电子版申请书时,应通过信息系统逐项确认。 /p p   (3)报送纸质申请材料时,还应包括本单位公函和申请项目清单,材料不完整不予接收。 /p p   (4)可将纸质申请材料直接送达或邮寄至国家自然科学基金委员会项目材料接收工作组。采用邮寄方式的,请在项目申请截止时间前(以发信邮戳日期为准)以快递方式邮寄,以免延误申请,并在信封左下角注明“重大研究计划项目申请材料”。 /p p   4.申请书由国家自然科学基金委员会项目材料接收工作组负责接收,材料接收工作组联系方式如下: /p p   通讯地址:北京市海淀区双清路83号国家自然科学基金委员会项目材料接收工作组(行政楼101房间) /p p   邮政编码:100085 /p p   联系电话:010-62328591 /p p   5.本重大研究计划咨询方式: /p p   国家自然科学基金委员会医学科学部三处 /p p   联系电话:010-62327198 /p p   (四)其他注意事项。 /p p   1.为实现重大研究计划总体科学目标和多学科集成,获得资助的项目负责人应当承诺遵守相关数据和资料管理与共享的规定,项目执行过程中应关注与本重大研究计划其他项目之间的相互支撑关系。 /p p   2.为加强项目的学术交流,促进项目群的形成和多学科交叉与集成,本重大研究计划将每年举办一次资助项目的年度学术交流会,并将不定期地组织相关领域的学术研讨会。获资助项目负责人有义务参加本重大研究计划指导专家组和管理工作组所组织的上述学术交流活动。 /p p    span style=" font-family: 微软雅黑, " microsoft=" " strong 注:因“申报要求及注意事项”该部分内容高度重复,因此后面4个“重大研究计划”该部分内容将省略。 /strong /span /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 血管稳态与重构的调控机制重大研究计划2017年度项目指南 /span /strong /p p   本重大研究计划旨在通过对血管稳态与重构的机制中涉及的代谢、氧化应激、炎症、生物活性物质、遗传和表观遗传调控等问题的研究,深入探讨血管稳态维持及血管重构的分子机制,揭示血管重构的本质,产生新的用于重大血管疾病的早期诊断、干预策略和防治模式。 /p p    strong 一、科学目标 /strong /p p   本重大研究计划以解决重大血管疾病共性的前沿科学问题为导向,以血管稳态与重构的调控机制研究为中心,利用分子生物学、分子影像学、组学和生物力学、化学与材料学等学科交叉及系统生物学的方法和策略,阐明血管结构与功能稳态和疾病过程中重构调控的关键信号通路和网络模式,以期揭示以血管功能与结构病理改变为基础的重大疾病的发病机制,寻找早期诊断和疾病转归的分子标志及干预靶点。 /p p    strong 二、核心科学问题 /strong /p p   血管稳态与重构的动态调控网络和关键节点。 /p p    strong 三、2017年度重点资助研究方向 /strong /p p   本重大研究计划从2013年开始,已资助21个重点支持项目、95个培育项目及4个集成项目。根据立项资助和在研项目实施的情况,2017年将进一步体现“凝聚方向和重点突破”,旨在已有资助成果的基础上取得更多原创性的突破。 /p p   2017年度在资助方向中继续鼓励以多学科交叉手段深入探讨机制 鼓励项目申请人进行优势互补的集成协作申报 鼓励利用系统生物学理论和方法构建血管稳态与重构的动态调控网络和关键节点 鼓励利用临床标本与数据资源开展研究。申请书中应突出在前期研究中已取得的突破性进展、且明确体现学科交叉和转化研究的特色。 /p p   (一)主要资助方向。 /p p   1.血管稳态维持的调控网络和关键节点及其功能 /p p   2.利用临床资源或新技术新方法,研究血管损伤/修复相关疾病的机制和防治策略 /p p   3.基于生物力学、纳米技术、生物可降解材料及干/祖细胞定向分化、组织打印、分子影像等技术的血管重建及修复。 /p p   (二)集成的资助方向。 /p p   根据本重大研究计划总体布局的需求,在原有资助项目的基础上,2017年度拟在如下两个领域进行集成。集成项目的申请要以在已有重要成果的基础上取得突破性进展为目标,项目组主要成员须包括两位或以上承担过本重大研究计划项目的负责人,组建优势互补的科研团队,以实现研究方向上的重要突破。 /p p   1.巨噬细胞在血管损伤、修复过程中的作用及机制 /p p   2.危重血管疾病的发生、发展及转归的机制和干预措施。 /p p    strong 四、2017年度资助计划 /strong /p p   本重大研究计划2017年拟资助培育项目约10项,直接费用平均资助强度约70万元/项,资助期限为3年,申请书中研究期限应填写“2018年1月1日-2020年12月31日” 2017年拟资助集成项目3项左右,直接费用总计约1000万元,资助期限为3年,申请书中研究期限应填写“2018年1月1日-2020年12月31日”。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 组织器官区域免疫特性与疾病重大研究计划2017年度项目指南 /span /strong /p p   中枢和外周免疫器官(如骨髓、胸腺、淋巴结、脾脏等)的免疫学特性,与人体重要疾病高发组织器官(如肝脏、肠道、肺等)的免疫学特性存在较大区别。这些组织器官由于具有独特的结构、生理功能和组织微环境,含有独特的细胞亚群和功能分子,从而形成了独特的区域免疫特性,而且组织器官的区域免疫特性与所在区域的众多疾病的发生发展紧密相关。由于对疾病高发组织器官的区域免疫特性研究较少,影响了免疫学理论与疾病防治的整体发展。为了深入阐释疾病的免疫病理机制,推进转化医学研究,迫切需要对组织器官的区域免疫特性进行基础性、前沿性和系统性的先导研究,以揭示区域免疫特性与重大疾病的内在联系,寻找新的免疫治疗靶点。 /p p   本重大研究计划的战略目标是将免疫学的重大基础研究(区域免疫特性)与国家的重大需求(重大疾病)结合起来。以“组织器官的区域免疫特性与疾病”研究为核心,通过与免疫器官比较,重点研究重要疾病高发组织器官(如肝脏、肠道、肺等)的区域免疫特性,阐述这些组织器官中特有免疫细胞亚群的基本性状,揭示区域免疫特性的基本属性,发现形成组织器官区域免疫特性的细胞调控网络和分子调控网络,深入研究与自身免疫病、炎症、感染、肿瘤、过敏、肥胖等相关的疾病的病理生理机制。 /p p    strong 一、科学目标 /strong /p p   通过与免疫器官比对,阐释重要疾病高发组织器官(如肝脏、肠道、肺等)的区域免疫特性,并对相关疾病提出新解释和探索新的免疫干预策略。 /p p    strong 二、核心科学问题 /strong /p p   了解重要疾病高发组织器官(如肝脏、肠道、肺等)的区域免疫基本属性、组织器官区域免疫特性的网络调控机制以及组织器官区域免疫特性在疾病发生发展中的作用机制。 /p p    strong 三、2016年度申请及资助概况 /strong /p p   2016年度申请及受理项目概况: 2016年度共收到重点支持项目44项,受理40项 收到培育项目139项,受理134项。来自62个高校和中国科学院研究所等单位的研究人员参加申报。 /p p   2016年度申请项目的特点: 申请书的研究内容基本围绕指南描述的关键科学问题所涉及的研究方向,申请项目所涉及的组织器官主要集中在肝脏、肠道、肺脏等重要疾病高发组织器官,此外还包括肾、皮肤、血液、心血管、中枢神经、脂肪、骨、关节、子宫等多个脏器和组织,呈现出涉及面广但重点突出的特点。研究人员主要来自消化、呼吸、皮肤、生殖、风湿免疫、神经生物学、医学遗传学、生物信息学、医学影像学、医学光电子学等多个学科背景。 /p p   2016年度资助项目的特点:2016资助重点支持项目8项,培育项目20项。其中,消化系统重点支持项目2项,培育项目7项 呼吸系统资助重点支持项目2项,培育项目4项 泌尿系统资助重点支持项目1项,培育项目2项 皮肤系统资助重点支持项目1项,培育项目1项 神经系统资助重点支持项目1项 资助交叉学科研究重点支持项目1项 资助血液、内分泌系统等组织器官的培育项目4项。其中部分研究有望在国际上取得领先地位,如对肠道区域免疫特性的研究等 部分研究着眼于脏器间的相互作用和对话,如肠道与肝脏区域免疫特性的相互影响等 部分研究运用新技术与新方法开展组织器官区域免疫特性研究,如研究生理力学微环境对肝血窦免疫应答的调控机制等 此外,部分研究能够运用新技术新方法开展不同组织器官间区域免疫特性的比较研究等。 /p p   2016年度申请项目存在的不足:个别项目仅对免疫细胞或免疫分子的调控机制进行研究,未能体现组织器官区域免疫特性这一关键科学问题 部分项目仍然采用传统的分子免疫学研究思路进行单个功能分子的研究,尚未充分利用系统生物学手段进行调控网络研究,利用免疫学大数据开展研究不足 部分项目缺乏深入的机制探讨,创新性不强 运用新技术和新方法研究组织器官区域免疫特性的项目总体较少。 /p p    strong 四、2017年度重点资助研究方向 /strong /p p   2017年度本重大研究计划拟重点资助的研究方向:将特别支持基础与临床联合申报的研究 支持运用系统生物学理论和方法研究组织器官区域免疫特性 支持利用新技术和特色平台开展组织器官区域免疫特性的研究,尤其是同步动态研究两种或多种不同组织器官区域免疫特性的成像新技术的研究 继续支持肝脏、肠道、肺脏等疾病多发器官或淋巴组织系统的区域免疫学研究的同时,适度加强我国特发疾病的器官区域免疫学研究。 /p p    strong 五、2017年度资助计划 /strong /p p   2017年度计划安排直接费用2000万元,拟资助重点支持项目3-5项,直接费用平均资助强度约200万元/项,资助期限为4年,申请书中研究期限应填写“2018年1月1日-2021年12月31日” 拟资助培育项目12-18项,直接费用平均资助强度约60万元/项,资助期限为3年,申请书中研究期限应填写“2018年1月1日-2020年12月31日”。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 情感和记忆的神经环路基础重大研究计划2017年度项目指南 /strong /span /p p    strong 一、科学目标 /strong /p p   本重大研究计划以情感和记忆的神经环路为主要研究内容,充分发挥医学科学、生命科学和信息科学等学科的特点以及学科交叉的优势,引入连接组、功能组等系统化的研究理念,结合临床情感和记忆障碍疾病特点,对情感和记忆(尤其是情感相关的记忆)的神经环路的结构和功能进行定量化描述。 /p p    strong 二、核心科学问题 /strong /p p   本重大研究计划的核心科学问题: /p p   (一)情感和记忆的结构环路与功能环路间的相互关系 /p p   (二)情感和记忆神经环路相互作用的关键节点和调控机制 /p p   (三)遗传和表观遗传因素以及应激等环境因素对神经环路可塑性的作用及其调控机制。 /p p    strong 三、2017年度重点资助研究方向 /strong /p p   2017年度项目指南主要在前期重点支持项目和培育项目研究成果的基础上开展情感和记忆的集成研究。同时,少量受理与本重大研究计划“情感和记忆的神经环路基础”研究方向密切相关的部分 “培育项目”的申请。集成项目主要以非人灵长类和/或人脑为研究对象,多学科多手段联合、研发并集成具有自主知识产权的新技术新方法,构建新平台和新系统,提出新理论新知识,在特定神经环路在情感和记忆中的结构、功能和机制方面取得原创性的突破。重点集中在情感和记忆障碍的非人灵长类动物模型建立,利用单细胞测序等技术对人脑情感和记忆障碍的神经环路进行细胞多样性研究,以及神经环路显微成像新技术研究。 /p p   重点资助领域和研究方向如下: /p p   (一)在非人灵长类中建立情感和记忆障碍的动物模型并开展神经环路研究(集成项目)。 /p p   在非人灵长类中运用多种基因操作方法建立情感与记忆障碍如老年痴呆症、抑郁症和孤独症等的神经精神疾病模型,并利用新建立的模型开展神经环路的研究工作,包括电生理记录、在体钙成像、无线电记录、无线光纤成像等新方法。 /p p   (二)利用人脑组织标本研究情感与记忆神经环路的细胞多样性和异质性基础(集成项目)。 /p p   针对人脑情感与记忆神经环路的核心脑区,深入研究这些脑区细胞亚型组分和构成基础。鼓励联合应用单细胞转录组测序技术分析,单细胞基因组测序技术,单细胞Hi-C测序技术,单细胞全基因组甲基化测序技术等多个单细胞组学技术,并结合多通电生理分析,系统研究人脑情感与记忆相关脑区神经环路细胞亚型分类、功能特征及分子细胞机制。 /p p   (三)情感与记忆的神经环路显微成像新技术(集成项目)。 /p p   发展和优化基于脑组织透明等方法、适用于多种模式动物(如非人灵长类、小鼠、大鼠等)与标记策略的微米分辨率高通量荧光显微成像新技术,以及相应的样品制备流程和数据处理方法,以高效绘制细胞类型特异的、基于即早基因表达和嗜神经病毒示踪等策略的全脑神经活动图谱和环路联结图谱。 /p p   (四)培育项目 /p p   联合应用光遗传学、电生理、基于工具病毒的神经环路示踪技术、全脑尺度神经环路重建技术、分子遗传学技术、在体钙成像等多项技术,在分子-突触-细胞-环路等多个水平上,以情感和记忆的神经环路为主要研究内容,结合临床情感和记忆障碍疾病特点,对情感和记忆(尤其是情感相关的记忆)的神经环路结构、功能特征及分子细胞机制进行研究。 /p p    strong 四、项目遴选的基本原则 /strong /p p   (一)强调以科学问题为导引,紧密围绕本重大研究计划的核心科学问题 /p p   (二)体现多学科多模态交叉 /p p   (三)创造新模型,开发新技术,建设新平台 /p p   (四)基础较好、条件较为成熟,有取得突破性进展的潜力。 /p p    strong 五、2017年度资助计划 /strong /p p   2017年度是本重大研究计划实施的第7年,计划安排直接费用1600万元,每个集成方向拟资助集成项目1-2项,直接费用平均资助强度300-400万 培育项目拟资助3-8项,直接费用平均资助强度50万,资助期限均为2年,申请书中研究期限应填写“2018年1月1日-2019年12月31日”。 /p p style=" text-align: center " strong span style=" color: rgb(255, 0, 0) " 非可控性炎症恶性转化的调控网络及其分子机制重大研究计划2017年度项目指南 /span /strong /p p   本重大研究计划以非可控性炎症的恶性转化过程为研究对象,发挥医学科学、生命科学和信息科学等多学科交叉的优势,引入系统生物学整体性、信息化的研究策略和转化医学研究理念,着重研究“非可控性炎症恶性转化”的网络调控及其分子机制,揭示炎症向肿瘤转化的本质,催生新的可用于临床的疾病早期诊断、预测、干预策略和防治模式。 /p p   本重大研究计划从2010年开始资助,2013年开始进入项目的集成和整合阶段。 /p p    strong 一、科学目标 /strong /p p   本重大研究计划面向我国人口健康重大需求,瞄准当今国际医药领域发展最新动态,遵循“方向明确,重点突破,基础扎实,学科融合”的原则,充分发挥医学科学、生命科学和信息科学等学科的特点以及学科交叉的优势,引入系统生物学倡导的整合性、信息化的研究策略,发展贴近临床病理特征与疾病进程的新技术、新方法 针对炎症可控性与非可控性调控网络转化这一动态事件,重点关注宿主、微环境与恶性转化之间的互动影响,揭示非可控性炎症恶性转化的分子机制与调控规律,为非可控性炎症向肿瘤转化过程中的关键节点作为肿瘤的预测、诊断、治疗及药物靶标奠定基础,催生全新的、临床实用的肿瘤等复杂疾病防治模式与干预策略,为转化医学研究奠定基础,同时,努力推动学科交叉和集成研究,建成各具特色、优势互补的高水平研究平台,形成一支具有国际竞争力的人才队伍,造福人类健康事业。 /p p    strong 二、核心科学问题 /strong /p p   (一)非可控性炎症恶性转化的分子机制 /p p   (二)非可控性炎症调控网络关键节点的发现及其功能诠释 /p p   (三)非可控性炎症恶性转化的动态网络调控规律。 /p p   strong  三、2017年度重点资助研究方向 /strong /p p   由于本重大研究计划执行时间的原因,为整合本重大研究计划前期研究的成果,2017年度将集中资助围绕非可控性炎症恶性转化的分子机制、非可控性炎症调控网络关键节点的发现及其功能诠释、非可控性炎症恶性转化的动态网络调控规律三个研究方向在前期研究中已取得突破性进展、且明确体现学科交叉和调控网络分子机制的特色、在较短时间内能取得相应成果的项目。 /p p    strong 四、2017年度资助计划 /strong /p p   根据本重大研究计划总体布局的需求,在原有资助项目的基础上,2017年度计划安排直接费用570万元。拟资助5项左右的集成项目,直接费用资助强度不超过150万元 同时资助个别有特色的培育项目,直接费用资助强度不超过80万元。资助期限均为1年,申请书中研究期限应填写“2018年1月1日-2018年12月31日”。 /p
  • 医学检验,岛津助力同行
    随着科学技术的发展,现代医学理论与医学技术不断进步,人们对健康状况与疾病诊疗的关注程度逐日提高。医学检验作为临床医学中的一门新兴学科,为人类疾病的诊断、治疗监测、预后判断提供大量新型技术与实验室监测指标。一、医学检验发展状况近些年,医学检验发展日新月异,世界各国各地区医院的临床检验在很多检测项目上都已实现,所能测定的项目种类日渐丰富,为临床提供了大量有意义的检测结果。尤其是近30年,独立医学检验公司蓬勃兴起,实现了医学检验领域的专业化分工,保证检验结果更具有准确性与权威性。目前,美国医学检验行业发展已经相当成熟,可提供医学检测的实验室主要有独立医学实验室、医院内部实验室与诊所附设实验室三类。美国疾病控制与预防中心估计美国实验室一年大约实施98亿次检测,行业规模约750亿美元,而以Quest和LabCorp为代表的独立医学检验公司呈寡头垄断竞争格局,占据35 %以上的市场份额,其余大约60 %在医院的附属检验室、高校实验室和其他实验室完成。而在欧洲、日本等成熟市场,独立医学实验室也已是成熟产业。据研究统计,目前欧洲、日本独立医学实验室的市场份额占医学检验市场的份额分别为50%和67%。在我国,医学检验市场收入主要来源于公立医院检验科、病理科。受行业发展较晚和医疗制度等的影响,我国独立医学检验机构起步较晚,第三方医学检验行业只占据医学检验行业不到3%的市场份额。随着社会经济和检验技术的不断发展,检验服务需求不断上升,检验项目日益增多,医院作为医学检验业务的唯一实现主体已无法满足检验及诊断业务发展的实际需求,从而,我国独立医学检验公司起步并逐年蓬勃发展,相继成立110家医学独立实验室。目前第三方医学检测服务市场呈全国连锁化经营的综合性诊断服务模式,市场份额与行业年增长率逐年不断提升,且利润水平较好。基于国家政策以及医疗改革的进展,预计2018-2020年第三方医学检验市场规模将保持35%-40%的快速增长,潜在市场空间巨大,医学检验将迎来行业发展黄金时期。图1 独立医学检验机构来源于医疗体系专业化分工(资料来源:医学检验行业发展历程)二、医学检验项目与临床质谱的应用目前美国独立医学实验室检测项目超过4000项,其中包括临床病理、解剖病理与细胞学、药物滥用检测以及基因检测等。我国三级甲等医院一般可提供300-500种检验项目,大型独立医学实验室可提供检测服务共有2000余项。按照临床应用频率与应用范围,可将现有检验项目划分常规检验与高端检验。常规检验应用较广,大型三甲医院与基层医疗机构均可完成。随着医疗需求的提升,偏重于个性化设计与精准诊断的高端检验,使用需求逐日上升。医学检验技术从传统的生化检验、免疫学检验、微生物检验等常规手段,提升为分子检验、基因检验等精准性高、个体化强的检测方法,在灵敏度与特异性上大幅提高,为临床诊断提供更为及时、准确的判断依据。图2 国内外各类型检测机构检验数量对比图(资料来源:公开资料)质谱由于其具有独特的高特异性、高灵敏度、单次分析的快速性、检测信息的丰富性以及对复杂生物基质分析的高耐受性等特点,在精准医疗、临床医学检验中发挥着越来越大的作用。目前,在美国等发达国家,质谱技术已广泛应用于医学检验,基于该技术开展的临床检测项目已有数百项。我国质谱检测的应用虽处发展阶段,但检测项目也已有70多项,涵盖了罕见和高难度分析,包括微生物鉴定、生化检验(内分泌激素检测、药物浓度监测、新生儿遗传代谢病筛查、营养元素检测等)和分子生物诊断(蛋白质组学、核苷酸多态性、代谢组学),应用范围从生化检验、微生物鉴定,到代谢组学、脂质组学、蛋白组学,再到参考测量程序的建立和标准品赋值,乃至术中应用及床旁检测。质谱技术高特异性的特点可有效避免结构类似物对检测结果的影响,为临床提供更准确的结果,提高患者的依从性。其高灵敏度的特点可在很大程度上弥补医学检测中、低浓度化合物检测困难和测不准的难题,为疾病的预测和诊疗分型提供准确结果。随着分析技术的变革与精准医疗的需求,临床研究与诊断工作将逐步倚重于液相色谱质谱、气相色谱质谱、电感耦合等离子体质谱、基质辅助激光解吸电离飞行时间质谱等高端检测技术,而质谱技术也会在医学检验领域中成为非常有效的分析工具,具有广泛而重要的应用前景。图3 医学检验技术发展趋势(资料来源:公开资料)三、岛津推出医学检验行业全面解决方案岛津公司作为全球著名的分析仪器综合生产厂商,进入中国已经30多年,始终秉承创业宗旨“以科学技术向社会做贡献”,不断钻研领先时代、满足社会需求的科学技术。为科学积极地推进临床质谱技术的应用,岛津公司在医学检测应用领域中开发出多种质谱检测方法。1遗传代谢病筛查使用独特的Shimadzu NBS系统,建立应用衍生化或非衍生化样本处理的液质联用技术对新生儿足跟血干血斑中的氨基酸及肉碱浓度的检测方法。采用气质联用技术开发有机酸遗传代谢病分析方法和辅助诊断软件,可对40种有机酸代谢病进行分析。多种检测手段对新生儿遗传代谢病筛查提供更为精准、快捷的技术手段。图4 11种氨基酸、31种肉碱及其19种同位素内标的MRM色谱图2诊断标志物分析针对医学检验中热门的诊断标志物分析,岛津开发了采用LC-MS/MS方法测定血浆中总同型半胱氨酸的含量、血清中甲基丙二酸、血液中糖化血红蛋白及血清中1,5-脱水葡萄糖醇的含量等应用,并对有关项目中所用替代基质测定方法进行验证,所建方法均操作简捷、特异性好、灵敏度高、分析速度快,适用大规模临床检测的需要。图5 替代基质中甲基丙二酸(20 nM)及其内标物(100 nM)的MRM色谱图图6 甲基丙二酸检测中替代基质标曲和血清标曲的比较3激素检测通过替代基质配制标曲,使用LC-MS/MS建立血清中25-羟基维生素D2/D3、类固醇类、儿茶酚胺类物质的定量检测方法,灵敏度高、特异性高、准确度高,并结合临床检验有关指导原则,完成方法学全验证,解决传统检测方法基质干扰大、检测限高等问题。图7 结合SLE(固相支撑液液萃取)前处理方法所得11种类固醇激素(1.0 ng/mL, 替代基质)的MRM色谱图4维生素与氨基酸检测岛津充分利用质谱高选择性与高灵敏度的特点,解决常规方法灵敏度不足、样品量大、分析时间长等问题,开发维生素K1、维生素A、维生素E以及氨基酸的检测方法,快速、简单、高效地完成多种维生素与氨基酸的定量分析。图8 20种氨基酸标准品分析色谱图(1.0 nmol/mL)5治疗药物监测治疗药物监测对治疗效果、用药安全性评价与指导临床用药剂量等方面具有重要作用。文集对使用岛津LC-MS/MS仪器检测血浆/血清中替比夫定、八种抗精神病药等项目的含量方法进行介绍,所建方法具有分析速度快、灵敏度高、重现性好的特点,适合用于含量的快速检测与人体药代动力学研究,为临床个性化给药方案的确定提供有力保障。更多关于治疗药物监测领域的应用开发,请关注岛津专刊《治疗药物检测(TDM)解决方案》。图9 人血清中八种精神病类药物典型色谱图(1.0 ng/mL)6基因检测针对医学检测基因检测领域,岛津推出普通PCR和全自动微芯片电泳仪MultiNA联用高效的检测方法。应用此方法,可对微生物进行鉴定、实现宫颈癌人乳头瘤病毒(HPV)生物标志物的检测、结合Smear Analysis软件完成对二代测序文库样品的质控分析并同时得到文库的尺寸分布及浓度。图10 10种样品中食物中毒相关的目标基因区域MCE-202 MultiNA检测结果7元素分析在检测人体内元素含量方面,原子光谱可以发挥重要作用。岛津使用原子吸收光谱仪、电感耦合等离子体质谱仪在元素检测方面开发多种检测方法,为检测多种元素含量提供更为灵敏、高效的技术手段。 图11 ICPMS-2030所得Cu的谱峰轮廓图图12 ICPMS-2030所得Fe的谱峰轮廓图8功能医学作为临床医学检验的补充,岛津同样关注功能医学的发展。岛津利用GCMS-QP2010 Ultra,建立一种分析血液中脂肪酸的方法。该方法简单方便,能够有效地测定血清中脂肪酸的含量,为功能医学评估人体营养状况提供有力的支持。图13. GCMS-QP2010 Ultra检测血清中5种脂肪酸甲酯及内标的TIC图9精准医疗在精准医疗方面,岛津推出多种先进技术手段,用于疾病精准诊断治疗。利用高分辨质谱仪MALDI-TOF测定血浆中β-淀粉样蛋白生物标记物,实现对阿尔兹海默疾病的诊断。利用三重四极杆气质联用仪的代谢组学分析技术,发现多种生物标记物,开发出了可在大肠癌早期阶段及时诊断的最新筛查方法。结合精准治疗的血药浓度监测要求,岛津具有针对抗体药物浓度检测的nSMOL酶解技术,并结合三重四极杆液质谱联用仪开发对单克隆抗体药物的定量分析方法,可供有关人员参考。图14 基于nSMOL酶解技术对利妥昔单抗的LC/MS生物分析及方法验证SCI文章标题岛津公司推出的《医学检验应用文集(第三版)》详细介绍岛津LC-MS/MS、GC-MS、ICP-MS、Microchip electro-phoresis等分析仪器在各个检验项目中的应用,适用于以上九大类临床检测项目的应用,为广大医学检验行业从业人员提供全面解决方案,以期促进质谱等相关先进技术在医学检验中更大的发展与应用。 撰稿人:李思明关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 国家自然科学基金委八大学部2024年重点项目资助领域公布
    1月11日,《2024年度国家自然科学基金项目指南》正式发布。其中,重点项目支持从事基础研究的科学技术人员针对已有较好基础的研究方向或学科生长点开展深入、系统的创新性研究,促进学科发展,推动若干重要领域或科学前沿取得突破。为更好地服务相关科技工作者,本文特对数学物理科学部、化学科学部、地球科学部、工程与材料科学部、信息科学部、生命科学部、管理科学部、医学科学部等八大学部2024年重点项目资助领域进行梳理。 数学物理科学部 2023年度数学物理科学部发布131个重点项目领域,共接收申请496项,资助91项,资助直接费用20930万元,直接费用平均资助强度为230.00万元/项,资助率为18.35%。2024年度数学物理科学部拟资助重点项目90项左右。数学学科的直接费用平均资助强度约260万元/项,力学、天文、物理I、物理Ⅱ学科的直接费用平均资助强度约320万元/项,资助期限均为5年,即2025年1月1日至2029年12月31日。2024年度数学物理科学部重点项目资助领域:1. 数理逻辑中的前沿问题(A01、A02)2. 数论中的关键问题(A01、A02、A04)3. 群与代数的结构及表示(A01、A02)4. 李理论与量子群(A01、A02)5. 代数几何中的核心问题(A01、A02)6. 整体微分几何(A01、A02)7. 几何分析及应用(A01~A03)8. 数学物理中的现代方法(A01~A03)9. 几何拓扑与代数拓扑及应用(A01、A02)10. 复分析与复动力系统(A02、A03)11. 多复变与复几何(A01、A02)12. 调和分析理论及应用(A02、A03)13. 非交换分析与非线性泛函分析(A02、A03)14. 算子理论与算子代数及应用(A01、A02)15. 概率论中的前沿问题(A02、A03、A06)16. 随机方程理论及应用(A02、A03、A06)17. 动力系统中的前沿问题(A02、A03)18. 微分方程定性理论(A02、A03)19. 非线性偏微分方程(A02、A03)20. 应用偏微分方程理论(A02、A03)21. 无穷维动力系统与可积系统(A01~A03)22. 复杂数据的统计分析(A04)23. 大数据统计学基础与方法(A04)24. 模型或数据驱动的优化理论与方法(A04)25. 大规模问题的优化建模与高效算法(A04)26. 组合数学理论及应用(A04)27. 图论中的核心问题、算法及应用(A04)28. 基础计算方法与理论分析(A05)29. 可计算建模与模拟(A05)30. 问题驱动的科学工程计算(A05)31. 工业软件中的数学模型、算法与应用(A04~A06)32. 现代控制理论中的数学方法(A06)33. 量子计算与量子信息处理的数学理论与算法(A01~A06)34. 新一代信息技术中的数学理论和算法(A04~A06)35. 不确定性数学理论与方法(A04~A06)36. 经济与金融中的关键数学问题(A04~A06)37.生物和医学中的数学理论与应用(A04~A06)38. 人工智能与数据科学的数学理论与算法(A01~A06)39. 现代密码学中的数学(A01、A06)40. 计算机数学的理论与方法(A04~A06)41. 复杂系统动力学建模、分析与控制(A07)42. 高维系统非线性动力学理论与实验(A07)43. 复杂结构与系统的振动特性及控制(A07)44. 动力学载荷辨识与设计(A07)45. 固体的变形与本构理论(A08)46. 材料与结构的强度、失效与破坏(A08)47. 多场环境下材料和结构的力学行为(A08)48. 软物质与柔性结构力学(A08)49. 结构优化理论与设计方法(A08)50. 材料/结构多功能一体化设计与制造(A08)51. 非定常复杂流动机理与控制(A09)52.飞行器空气动力学和气动热力学问题(A09)53. 高超声速及反应气体动力学(A09)54. 海洋航行器及海洋结构物的水动力学(A09)55. 复杂流体与多相/界面流动理论与方法(A09)56. 人类健康与医学中的生物力学问题(A10)57. 细胞与组织的力学生物学问题(A10)58. 仿生力学理论与方法(A10)59. 物理力学理论与方法(A08)60. 含能材料爆炸能量释放与损毁机理(A12)61. 动载作用下材料和结构的力学行为(A12)62. 复杂环境工况下的岩土力学问题(A13)63. 环境与灾害中的关键力学问题(A13)64. 实验力学新技术与新方法(A07~A13)65. 计算力学新方法和计算软件(A07~A13)66. 流固耦合力学(A07~A13)67. 极端条件下介质与结构的力学行为(A07~A13)68. 高端装备与先进制造中的关键力学问题(A07~A13)69. 能源与资源领域的关键力学问题(A07~A13)70. 航空航天中的关键力学问题(A11)71. 数据驱动的力学理论与方法(A07~A13)72. 宇宙起源及暗物质和暗能量的本质(A1401)73. 宇宙大尺度结构及星系的形成和演化(A1402、A1403)74. 超大质量黑洞与星系核区活动(A1404)75. 银河系及本星系群的形成、结构和演化(A1405)76. 恒星形成、结构和演化及星际介质(A1501、A1502)77. 恒星灾变爆发物理、致密天体的形成和演化(A1503)78. 太阳精细结构特征及日冕加热机制(A1601)79. 太阳磁场的产生、储能及释能的物理机制与预报(A1602)80. 行星系统的形成、探测和动力学(A1701、A1702、A1703)81. 时空参考系、轨道动力学及其应用(A1801~A1804)82. 光学/红外/紫外关键技术和方法(A1901)83. 射电/毫米波/亚毫米波关键技术和方法(A1902)84. 高能辐射和粒子探测关键技术和方法(A1903)85. 强关联体系与超导物理(A20、A24)86. 拓扑量子物态与物性(A20)87. 受限量子体系物理(A20、A24)88. 表面界面与薄膜物理(A20)89. 半导体材料与器件中的物理问题(A20)90. 磁电耦合与多场调控(A20)91. 固态磁性与器件物理(A20)92. 软物质与生命物质物理(A20)93. 计算凝聚态物理方法和软件(A20)94. 能量转换与存储中的物理问题(A20、A22)95. 极端条件下的新物态和新效应(A20)96. 凝聚态物质的光学探测与调控(A20、A22)97. 原子、分子、团簇结构及动力学(A21)98. 极端条件下的原子分子物理(A21)99. 冷原子分子的调控及量子信息(A21、A24)100. 基于原子分子的精密测量物理(A21、A24)101. 光量子信息物理基础与应用(A22、A24)102. 非线性光学及光谱物理(A22)103. 超快、超强光物理及应用(A22)104. 超高时空分辨光学测量(A22、A24)105. 微纳尺度下光与物质相互作用(A22)106. 光场调控物理及应用(A22)107. 复杂介质中的声传播、反演与调控(A23)108. 海洋中的声场与信息处理(A23)109. 多物理场耦合的声传感与声器件(A23)110. 开放量子系统的新效应与调控(A24)111. 数学物理前沿问题及量子物理基础理论(A25)112. 统计物理基础问题及其前沿交叉(A25)113. 引力和宇宙学前沿问题(A25)114. 希格斯物理与新物理(A26)115. 量子场论新方法、味物理和标准模型精确检验(A26)116. 强相互作用和强子物理(A26)117. 暗物质、粒子天体物理与核天体物理(A26、A27)118. 夸克胶子等离子体与核物质相结构(A27)119. 原子核的奇特结构与反应机制(A27)120. 重离子核物理与光核物理(A27)121. 加速器物理与技术(A28)122. 辐射产生和探测的原理与技术(A28)123. 粒子探测原理与技术(A28)124. 核电子学方法与技术(A28)125. 反应堆物理与中子技术(A28、A30)126. 惯性约束聚变与激光等离子体物理和技术(A29)127 .磁约束聚变等离子体物理和技术(A29)128. 低温等离子体物理、诊断和应用基础(A29)129. 辐射物理、辐照效应及辐射防护的关键问题(A30)130. 同步辐射及自由电子激光的先进技术和实验方法(A30)131. 新材料和能源领域的核技术应用基础(A30)132. 生物、医学、农业和环境领域的核技术应用基础(A30) 化学科学部 2023年度化学科学部资助67项重点项目,资助直接经费15410万元,直接费用平均资助强度为230.00万元/项,资助期限为5年。2024年度化学科学部在96个研究领域公布重点项目指南、受理申请,直接费用资助强度范围为250万~350万元/项,原则上每个领域资助不超过2项。为进一步提高重点项目的水平和质量,鼓励研究基础好、有一定规模的研究小组或团队参与竞争,鼓励强强合作申请交叉领域重点项目。2024年度化学科学部重点项目资助领域1. 无机合成新方法/新机制(B01)2. 有机合成新方法/新试剂/新机制(B01)3. 高分子合成新方法/新机制(B01)4.固体材料的精准合成与构效关系(B01)5. 天然产物与复杂药物分子合成新策略(B01)6. 超分子组装新基元、新策略和新体系(B01)7. 链结构可控的高分子合成(B01)8. 功能分子、结构与材料创制(B01)9. 极端条件或外场调控下的化学合成及机制(B01)10. 基于大数据和人工智能的合成(B01)11. 元素有机和配位化合物的合成、结构与性能(B01)12. 金属有机及小分子催化(B01)13. 合成化学中的活性中间体表征与反应性(B01)14. 绿色与可持续化学合成及工艺(B01)15. 生物合成与仿生合成(B01)16. 催化与表界面化学的理论与计算研究(B02)17. 催化与表界面化学原位动态表征(B02)18. 高性能催化剂的设计与构筑(B02)19. 多相催化反应过程研究(B02)20. 表界面化学反应的物理化学基础(B02)21. 胶体与界面组装及功能化(B02)22. 软物质体系的物理化学基础(B02)23. 电化学储能中的界面科学(B02)24. 电催化物质转化或能量转换(B02)25. 高端制造中的电化学基础(B02)26. 光催化反应与机制(B02)27. 电子结构理论与方法(B03)28. 复杂分子体系的化学动力学(B03)29. 多尺度体系的理论与模拟(B03)30. 光谱学新方法与应用(B03)31. 基于人工智能的化学反应机制(B03)32. 高分子聚集态结构与演化机制(B03)33. 非绝热动力学(B03)34. 非平衡态分子模拟(B03)35. 化学测量学新理论与新原理(B04)36. 生命健康分析新方法(B04)37.化学与生物成像分析(B04)38. 单分子单颗粒单细胞测量(B04)39. 活体化学测量(B04)40. 复杂体系分离分析与组学(B04)41. 微纳分析与器件(B04)42. 智能传感与测量(B04)43. 面向环境和能源的化学测量(B04)44. 公共安全预警与溯源(B04)45. 有机光电材料化学(B05)46. 功能导向的晶态材料化学(B05)47. 生物医用材料化学(B05)48. 低维半导体功能材料化学(B05)49. 无机固态功能材料化学(B05)50. 功能性膜材料化学(B05)51. 柔性电子材料化学(B05)52. 复合与杂化功能材料化学(B05)53. 可持续高分子材料化学(B05)54. 仿生与智能材料化学(B05)55. 新污染物分析新技术与新方法(B06)56. 污染物多介质界面行为及迁移转化(B06)57. 面向污染防治的环境催化基础研究(B06)58. 环境功能材料的设计与应用研究(B06)59. 水污染绿色控制原理(B06)60. 土壤生态系统固碳减排及其机理研究(B06)61. 固体废物处理处置及资源化(B06)62. 大气复合污染物的危害机制(B06)63. 新污染物环境暴露与毒理效应(B06)64. 微生物与环境污染物的互作机制及风险防控(B06)65. 代谢物及其修饰的时空监测与化学干预(B07)66. 蛋白动态结构的选择性调控与化学干预(B07)67. 化学生物学导向的新药(含农药)分子设计及靶标发现(B07)68. 生物体系功能核酸的化学标记、成像及调控机制(B07)69. 基于化学调控的基因编辑技术及应用(B07)70. 免疫与神经化学生物学(B07)71. 生物大分子相分离与组装的化学生物学(B07)72. 微生物能量代谢酶的化学机制与调控(B07)73. 细胞功能与细胞(间)通讯的化学构筑与调控(B07)74. 新颖结构的活性天然产物发现及其分子探针(B07)75. 关键基础化学品与高端专用化学品(B08)76. 芯片制造的化工基础(B08)77. 高能化合物的化工新过程与安全(B08)78. 化工基础数据与人工智能挖掘(B08)79. 化工过程界面现象、机制及调控(B08)80.化工分离新材料与过程强化(B08)81. 绿色低碳化工新过程(B08)82. 新药(含中药)创制与制剂的化工基础(B08)83. 光/电化学反应工程(B08)84. 生物质高效利用的化工基础(B08)85. 合成生物技术与绿色生物制造(B08)86. 新材料的化学工程基础(B08)87. 资源高效利用的化工基础(B08)88. 环境化工与废弃物循环利用(B08)89. 化工系统工程与化工安全(B08)90. 能源转化的工况原位分析(B09)91. 新型二次电池的化学基础(B09)92. 燃料电池高效传输机制和调控(B09)93. 超高功率和能量密度电化学能源器件(B09)94. 光电或光热能源器件的制备及高效稳定机制(B09)95. 基于张量网络态的理论化学新方法发展(B0X)96. 无机寡聚体的修饰策略与特种功能材料(B0X) 地球科学部 2023年度地球科学部接收重点项目申请633项,资助107项,资助直接费用24610万元,直接费用平均资助强度为230万元/项,资助期限为5年。2024年度拟资助重点项目110项,直接费用平均资助强度约为300万元/项,资助期限为5年。2024年度,地球科学部受理的重点项目领域共8个,领域名称分别为:(1)地球与行星科学研究的新技术和新方法;(2)地球和行星宜居性及演化;(3)地球深部过程与动力学;(4)海洋过程与极地环境;(5)地球系统过程与全球变化;(6)天气及气候系统与可持续发展;(7)人类活动与环境;(8)资源能源形成理论及供给潜力。1. 地球与行星科学研究的新技术和新方法本领域拟资助的主要研究方向:(1) 地球观测、月球与行星探测、行星际空间探测的新理论、新技术和新方法;(2) 服务于深空、深地、深时、深海和宜居地球与可持续发展战略的观测新方法、探测新技术和新装备;(3) 地球、行星及行星际空间物质成分与结构分析新技术和新方法;(4) 时空大数据的同化、融合、分析的方法与集成技术;(5) 地球观测系统和多源数据融合平台构建及关键技术;(6) 地球系统及多圈层耦合过程模拟和预测新方法。2. 地球和行星宜居性及演化本领域拟资助的主要研究方向:(1) 太阳与行星起源及演化;(2) 日地空间物理与空间天气;(3) 行星和行星际空间环境及变化;(4) 地球和行星磁场、大气演化及其对宜居性的影响;(5) 地球和行星关键地质过程与生命宜居性演变;(6) 地球和行星环境及生命演化;(7) 人类活动对地球宜居性的影响。3. 地球深部过程与动力学本领域拟资助的主要研究方向:(1) 全球及典型区域深部结构与运动学;(2) 地球与类地星体的对比与相互作用;(3) 早期地球演化、板块构造体制的起始及大陆的形成、生长与再造;(4) 大陆聚合与裂解过程及动力学;(5) 深部过程与物质循环及其资源环境效应;(6) 板块俯冲、地幔柱与多圈层相互作用;(7) 多尺度地球动力学实验与模拟;(8) 地震、火山、地热活动及其深部构造环境和动力学机制。4. 海洋过程与极地环境本领域拟资助的主要研究方向:(1) 海洋动力过程及其与生物地球化学、生态过程耦合作用观测、机理及模拟预测;(2) 极地环境变化与多圈层相互作用;(3) 深海流固耦合、物质能量循环及资源环境效应;(4) 高低纬海洋过程、海陆气相互作用及其对全球变化的驱动和响应;(5) 近海和海岸带多界面耦合过程与可持续发展;(6) 海洋生态系统和生物多样性形成与维持机制;(7) 高纬、高寒气候与生态环境变化的联动效应。5. 地球系统过程与全球变化本领域拟资助以下9个主要研究方向,每个主要研究方向拟资助2项左右:(1) 多圈层相互作用的地表过程及演化机理;(2) 生态环境脆弱区水一土一生物过程耦合机理及其对气候变化的响应;(3) 全球变化背景下典型区域(圈层)碳、氮、磷循环耦合机制与模拟预测;(4) 全球和区域尺度碳通量、碳汇与区域水资源变化的耦联关系;(5) 生态系统多尺度演变和生态系统服务的耦合机制及对全球变化的响应;(6) 全球变化背景下土地一粮食一人口一生态复杂系统的风险和安全机制;(7) 人一地系统关键过程近远程耦合机理与可持续发展;(8) 气候变化背景下重大自然灾害的孕灾机理和演变规律;(9) 地球系统模式的智能认知和地球系统过程的模拟、预测。6. 天气及气候系统与可持续发展本领域拟资助的主要研究方向:(1) 天气、气候和大气环境变化的机制、预测理论和技术;(2) 大气物理与大气化学过程及其相互影响机制;(3) 生物地球化学过程与天气气候;(4) 地球气候系统多圈层耦合及演化机制;(5) 大气模式、地球系统模式与人工智能模型研发;(6) 大气环境、天气和气候变化及其健康效应;(7) 极端天气和气候变化的影响、减缓与适应。7. 人类活动与环境本领域拟资助的主要研究方向:(1) 区域环境污染过程、健康效应与调控;(2) 土壤退化机理与修复;(3) 重大工程地质灾害的致灾机理与风险防控;(4) 人一地系统相互作用过程、耦合机理及其环境效应;(5) 多圈层多要素耦合机制与环境质量演变。8. 资源能源形成理论及供给潜力本领域拟资助的主要研究方向:(1) 圈层相互作用和重大地质事件的资源能源效应;(2) 固体矿产资源形成机制;(3) 化石能源富集机理;(4) 海底资源、能源成矿成藏机理与勘探开发技术;(5) 新能源形成分布规律;(6) 资源能源勘查理论与技术方法;(7) 成矿成藏定年与示踪新技术新方法。 工程与材料科学部 2023年工程与材料科学部共接收重点项目申请814项,资助103项,资助直接费用23690万元,直接费用平均资助强度为230万元/项。2024年,工程与材料科学部拟在以下14个领域中资助重点项目110项左右,直接费用平均资助强度约为300万元/项,资助期限为5年:(1)金属材料设计、制备加工及应用基础;(2)无机非金属材料设计、制备及应用基础;(3)有机高分子材料设计、制备及应用基础;(4)资源安全高效开采与绿色加工利用;(5)机械设计、制造及服役中的科学问题;(6)工程热物理与能源利用;(7)电气工程科学基础与关键技术;(8)绿色建筑与高性能土木工程;(9)水利科学与工程关键科学问题研究;(10)环境工程科学基础与关键技术;(11)水下航行器;(12)智慧交通与运载工程智能化;(13)新概念材料、材料共性与工程交叉;(14)工程与材料领域共性软件支撑平台。2024年度工程与材料科学部重点项目资助领域主要研究方向如下:1. 金属材料设计、制备加工及应用基础(E01)本领域拟资助的主要研究方向:1.1 钢铁与有色金属材料在设计、制备、加工、服役和应用中的关键问题;1.2 高温合金、金属间化合物与金属基复合材料;1.3 金属结构材料性能提升中的关键问题;1.4 低维与亚稳金属材料;1.5 金属功能材料性能调控新策略与多功能耦合;1.6 金属生物医用、智能与仿生材料;1.7 金属材料结构表征、表面与界面;1.8 面向国家重大需求的金属材料基础研究;1.9 金属材料新理论、新技术、新效应探索。2. 无机非金属材料设计、制备及应用基础(E02)本领域拟资助的主要研究方向:2.1 前沿及交叉无机非金属材料新理论、新技术、新体系、新效应探索;2.2 无机非金属材料组织结构与性能调控的热力学和动力学研究;2.3 极端环境无机非金属材料基础研究;2.4 面向“双碳”目标的无机非金属材料基础研究;2.5 面向生命健康的无机非金属材料基础研究;2.6 关键战略无机非金属材料应用基础研究;2.7 无机非金属材料与器件的多功能集成与智能化应用基础研究;2.8 高性能无机非金属材料设计理论、绿色低成本制备与回收以及工程化应用基础研究;29 集成电路用无机非金属材料应用基础研究。3. 有机高分子材料设计、制备及应用基础(E03)本领域拟资助的主要研究方向:3.1 高分子材料合成新方法与新原理;3.2 高分子材料聚集态结构与性能;3.3 高分子材料加工(含微纳加工和增材制造)新理论、新方法和新技术;3.4 高分子复合材料;3.5 生态与环境友好高分子材料;3.6 智能高分子材料;3.7 生物医用高分子材料;3.8 有机高分子光电材料与器件;3.9 面向国家重大需求的高分子材料。4. 资源安全高效开采与绿色加工利用(E04)本领域拟资助的主要研究方向:4.1 深地、深海、非常规油气高效绿色钻采工程基础科学问题;4.2 油气储运系统安全与可靠性关键科学问题;4.3 深部战略矿产资源安全、高效、智能协同开采理论与关键技术;4.4 矿山修复、固废生态处置与利用理论与关键技术;4.5 工业生产过程安全及公共安全精准预控理论与方法;4.6 战略性矿产资源绿色分离与过程强化;4.7 钢铁低碳冶金新工艺、新技术和绿色环保的基础问题;4.8 非常规复杂金属资源高效提取与循环利用新理论及新技术;4.9 金属(合金)超纯净冶炼与成型新技术原理;4.10 材料短流程、复合成形、智能化加工技术基础研究;4.11 冶金过程(物质流、能量流、信息流)大数据与元素行为。5. 机械设计、制造及服役中的科学问题(E05)本领域拟资助的主要研究方向:5.1 性能驱动的机构设计新理论、新方法;5.2 高性能驱动传动系统与高可靠基础件的设计与制造;5.3 机械系统与装备的动力学设计、性能评价与预测;5.4 面向极端环境的机械结构与机电装备可靠性设计;5.5 复杂机械表面/界面力学和摩擦学行为调控;5.6 智能设计理论与方法;5.7 机械仿生设计与生物制造;5.
  • 网络曝光:首批双一流建设拟定名单,靠谱吗?
    前不久,教育部宣布一批规范性文件失效,其中多项涉及到“985工程”、“211工程”,自此一石激起千层浪,业界纷纷猜测:“985”“211”工程或将成为历史。同时,教育部、发改委、财政部还宣称正研究制定世界一流大学和一流学科建设实施办法和配套政策,并拟于今年启动新一轮建设,双一流建设呼之欲来。  在一片纷纭之声中,近日网络上曝光了首批双一流建设的“拟定名单”。该名单是否靠谱,尚待验证。但可以肯定的是,此次双一流建设将为相关院校争取到更多科研经费,推动实验室建设及相应仪器设备的购置,因此名单一经曝光迅即刷爆了朋友圈。  以下为网曝拟定名单具体内容,供大家参考:教育部:首批世界一流大学和一流学科建设拟定名单  一、首批世界一流大学建设名单:  北京大学、清华大学、中国科学院大学、中国科学技术大学、复旦大学、上海交通大学、浙江大学、南京大学  二、首批世界一流学科建设拟定名单:  (一)华北地区:总数57所 大学 名称 A类学科 总计:52个 B类学科 总计:93个 C类学科 总计:170个 33北京总计:45个总计:63个总计:84个1北京协和医学院生物学、基础医学、临床医学、药学护理学口腔医学、公共卫生与预防医学2中国农业大学生物学、农业工程、食品科学与工程、作物学、农业资源与环境、植物保护、畜牧学、兽医学园艺学、草学、生态学农业经济管理3中国人民大学理论经济学、应用经济学、法学、工商管理统计学、哲学、政治学、社会学、马克思主义理论、中国语言文学、新闻传播学、公共管理学农林经济管理、档案学4北京师范大学数学、地理学、教育学、心理学、中国语言文学物理学、化学、环境科学与工程、生态学、戏剧与影视学生物学、统计学、哲学、理论经济学、马克思主义理论、艺术学理论、公共管理学5北京航天航空大学力学、仪器科学与技术、控制科学与工程、航空宇航科学与技术机械工程、材料科学与工程、计算机科学与技术、信息与通信工程、软件工程、管理科学与工程数学、物理学、动力工程及工程热物理、电子科学与技术、交通运输工程、生物医学工程6北京理工大学机械工程、兵器科学与技术力学、信息与通信工程、控制科学与工程、光学工程化学、材料科学与工程、仪器科学与技术、材料科学与工程、电子科学与技术、计算机科学与技术、软件工程、化学工程与技术、动力机械及工程、航空宇航科学与技术7北京科技大学材料科学与工程、冶金工程安全科学与工程、矿业工程科学技术史、机械工程、控制科学与工程、动力工程及工程热物理8北京化工大学化学工程与技术化学、材料科学与工程动力工程及工程热物理、控制科学与工程、环境工程9北京交通大学交通运输工程信息与通信工程、系统科学机械工程、光学工程、控制科学与工程、电气工程、计算机科学与技术、土木工程10北京邮电大学信息与通信工程电子科学与技术计算机科学与技术、软件工程11首都医科大学临床医学神经生物学、基础医学、口腔医学、药学12中国地质大学地质资源与地质工程地质学、海洋科学、地球物理学、测绘科学与技术、石油与天然气工程13中国石油大学石油与天然气工程地质资源与地质工程、化学工程与技术地质学14中国矿矿业大学矿业工程、安全科学与工程测绘科学与技术、地质资源与地质工程15北京工业大学材料科学与工程、土木工程机械工程、控制科学与技术、计算机科学与技术、环境科学与工程、软件工程、电子科学与技术、光学、生物医学工程16北京林业大学林学、风景园林学林业工程植物学、生态学、林业经济管理17北京中医药学中医学、中药学中西医结合18华北电力大学电气工程动力工程及工程热物理19中央财经大学应用经济学统计学、理论经济学、工商管理20中国政法大学法学政治学21对外经贸大学应用经济学、法学、工商管理22中国传媒大学新闻传播学、广播电视艺术学戏剧戏曲学、电影学音乐与舞蹈学、艺术学理论、设计学23首都师大数学、美术学、音乐学地理学、生物学、心理学24中央民大民族学、中国少数民族语言文学中国民族史25北京外国语大学外国语言文学、外交学26北京语言大学中国语言文学与国际教育27外交学院外交学国际政治与关系28中央美术学院美术学艺术学理论、设计学29中央音乐学院音乐学舞蹈学30中央戏剧学院戏剧戏曲学电影学、广播电视艺术学31北京电影学院电影学戏剧戏曲学、广播电视艺术学32中国音乐学院音乐与舞蹈学33北京体大体育学8天津总计:7个总计:22个总计:29个1南开大学数学、化学、生物学、理论经济学、应用经济学生物学、物理学、统计学、光学工程、环境科学与工程、农药学、工商管理计算机科学与技术、哲学、政治学、马克思主义理论、中国语言文学、世界史、公共管理2天津大学仪器科学与技术、化学工程与技术力学、机械工程、光学工程、材料科学与工程、动力工程及工程热物理、电气工程、控制科学与工程、计算机科学与技术、软件工程、建筑学、水利工程、城乡规划学、管理科学与工程化学、生物学、电子科学与技术、信息与通信工程、船舶与海洋工程、风景园林、环境科学与工程、生物医学工程、工商管理3天津医科基础医学、临床医学、口腔医学、药理学4天津科技大学轻工技术与工程食品科学与工程5天津工业大学纺织科学与工程、材料科学与工程6天津理工大学计算机科学与技术7天津师大心理学、政治学8天津中医药大学中药学、中医内科学、中医外科学7河北总计:0个总计:4个总计:28个1燕山大学机械工程、材料科学与工程仪器科学与技术、电气工程、电子科学与技术、控制科学与工程、计算机科学与技术、化学工程与技术2河北大学化学、动物学、光学工程3河北工业大学化学工程与技术、材料科学与工程、电气工程、机械工程、土木工程4河北医科大学生理学、法医学、神经病学、中医诊断学、中西医结合、药理学5河北师范大学数学、生物学6河北农业大学作物学、林学、农业资源与环境、植物保护、畜牧学7华北理工大学冶金工程6山西总计:0个总计:2个总计:18个1山西大学物理学、化学、生物化学与分子生物学、应用化学、哲学2太原理工大学化学工程与技术机械工程、材料科学与工程、采矿工程、电气工程3中北大学仪器科学与技术材料科学与工程、兵器科学与技术、化学工程与技术、机械设计及理论4山西师大化学5山西医科生理学6山西农大作物学、兽医学、动物遗传育种与繁殖3内蒙总计:0个总计:2个总计:11个1内蒙古大学生态学生物学、理论物理、应用数学、中国少数民族语言文学、蒙古学2内蒙古农大学草学农业工程、食品科学与工程、畜牧学、兽医学、林学3内蒙科大冶金工程  (二)东北地区:总数29所 大学 名称 A类学科 总计:19个 B类学科 总计:51个 C类学科 总计:106个 15辽宁总计:5个总计:14个总计:52个1大连理工大学化学工程与技术、水利工程数学、力学、机械工程、材料科学与工程、土木工程、环境科学与工程、管理科学与工程物理学、化学、仪器科学与技术、动力工程机工程热物理、电气工程、控制科学与工程、计算机科学与技术、软件工程、建筑学、船舶与海洋工程、工商管理2东北大学冶金工程、控制科学与工程机械工程、材料科学与工程、计算机科学与技术、软件工程、矿业工程化学、土木工程、安全科学与工程、管理科学与工程、科学技术哲学、公共管理3沈阳药科大学药学中药学4中国医科大学临床医学生物学、基础医学、口腔医学、公共卫生与预防医学、药学5大连海事大学交通运输工程、船舶与海洋工程、环境科学、国际法学6东北财经大学应用经济学、统计学、工商管理7沈阳农业大学园艺学农业工程、作物学、农业资源与环境、植物保护学、食品科学8大连医科大学生物学、基础医学、临床医学、中西医结合9大连工业大学纺织科学与工程、食品科学与工程、轻工技术与工程10辽宁师范大学地理学、物理化学、心理学11辽宁工程技术大学安全科学与工程、测绘科学与技术、矿业工程12沈阳工业大学电气工程13大连海洋大学海洋科学、水产学14辽宁科技大学冶金工程15辽宁石油化工大学化学工程与技术4吉林总计:2个总计:21个总计:30个1吉林大学化学、地质资源与地质工程数学、物理学、生物学、地质学、机械工程、材料科学与工程、电子科学与技术、计算机科学与技术、软件工程、农业工程、兽医学、法学、政治学、考古学控制科学与工程、水利工程、应用化学、交通运输工程、基础医学、临床医学、卫生毒理学、药学、哲学、马克思主义理论、理论经济学、数量经济学、日本语言文学、技术经济管理、2东北师范大学化学、生物学、统计学、生态学、马克思主义理论、世界史数学、物理学、地理学、环境科学、政治学、教育学、心理学、音乐与舞蹈学、美术学3长春理工大学光学、机械工程、光学工程、仪器科学与技术、物理电子学4延边大学朝鲜语言文学生理学、药物化学10黑龙江总计:12个总计:16个总计:36个1哈尔滨工业大学力学、机械工程、仪器科学与技术、材料科学与工程、控制科学与工程、计算机科学与技术、土木工程、环境科学与工程、软件工程数学、物理学、光学工程、动力工程及工程热物理、电气工程、信息与通信工程、建筑学、化学工程与技术、城乡规划学、航空宇航与科学技术、管理科学与工程电子科学与技术、交通运输工程、技术经济管理2哈尔滨工程大学船舶与海洋工程机械工程、仪器科学与技术、材料科学与工程、动力机械工程、信息与通信工程、控制科学与工程、计算机科学与技术、核科学与技术3东北林林业大学林学、林业工程生态学生物学、风景园林学4东北农业大学兽医学、畜牧学作物学、食品科学与工程、农业工程、植物学、蔬菜学5哈尔滨医科大学生物学、基础医学、临床医学、药学、公共卫生与预防医学、社会医学与卫生事业管理6东北石油大学石油与天然气工程化学工程与技术、地质资源与地质工程7黑龙中医药大学中药学中医学、药学8黑龙江大学化学9哈尔滨理工大学电气工程、仪器科学与技术、机械制造及自动化10哈尔滨师范大学遗传学、自然地理学、音乐学与舞蹈学、美术学  (三)华东一区(沪苏浙):总数56所 大学 名称 A类学科 总计:34个 B类学科 总计:99个 C类学科 总计:181个 15上海总计:15个总计:37个总计:48个1同济大学建筑学、土木工程、交通运输工程、城乡规划学数学、物理、生物学、海洋科学、地球物理学、机械工程、材料科学与工程、测绘科学与技术、风景园林学、计算机科学与技术、软件工程、环境科学与工程、临床医学、口腔医学化学、力学、控制科学与工程、管理科学与工程、工商管理2华东师范大学地理学、教育学数学、物理学、生物学、生态学、统计学、软件工程、心理学、中国语言文学化学、计算机科学与技术、哲学、政治学、社会学、体育学、世界史、公共管理、金融学3华东理工大学化学工程与技术化学、材料科学与工程、动力工程及工程热物理、环境科学与工程、药学数学、机械工程、控制科学与工程、轻工技术与工程4第二军医大学基础医学、临床医学、药学生物学5上海大学冶金工程、电影学、美术学数学、物理学、力学、机械工程、材料科学与工程、信息与通信工程、环境科学与工程、社会学、设计学6东华大学纺织科学与工程材料科学与工程化学、机械工程、控制科学与工程、环境科学与工程、设计学7上海财经理论经济学、应用经济学统计学、工商管理法学8上海外语大学外国语言文学、政治学9上海中医大学中药学、中医学中西医结合10上海师范大学数学、中国语言文学11上海理工大学光学工程动力工程及工程热物理、机械工程、系统科学12华东政法大学法学13上**洋大学水产食品科学与工程、水生生物学14上海音乐学院音乐学与舞蹈学15上海戏剧学院戏剧戏曲学电影学、广播电视艺术学16上海体育学院体育学17上**事海事交通运输工程、轮机工程27江苏总计:18个总计:57个总计:97个1东南大学信息与通信工程、电子科学与技术、建筑学、土木工程、生物医学工程、交通运输工程仪器科学与技术、 新材料及其应用、新能源发电与利用、控制科学与工程、计算机科学与技术、软件工程、城乡规划学、风景园林学、艺术学理论数学、物理学、生物学、临床医学、管理科学与工程、公共卫生与预防医学、哲学、法学、美术学2南京农业大学作物学、兽医学、植物保护、农业资源与环境现代园艺科学、畜牧学、农业信息学、食品科学与工程生态学、农林经济管理、公共管理学、3南京航空航天大学力学、机械工程、物联网与控制技术、航空宇航科学与技术仪器科学与技术、材料科学与工程、动力工程及工程热物理、电气工程、核能安全与材料工程、软件工程、管理科学与工程4南京理工大学兵器科学与技术光学工程、材料科学与工程、控制科学与工程、化学工程与技术力学、高端装备与微纳器件设计制造、电子科学与技术、计算机科学与技术5苏州大学数学、物理学、绿色化学与化学工程、材料科学与工程、纺织科学与工程、光学工程、基础医学、特种医学、设计学计算机科学与技术、软件工程、临床医学、公共卫生与预防医学、药学、法学、金融学、体育学6江南大学食品科学与工程、轻工技术与工程纺织科学与工程、化学工程与技术、设计学控制科学与工程、环境工程、药学工程与技术、动物营养与饲料科学7中国医科大学药学中药学药物生物技术与制药工程8中国矿业大学矿业工程、安全科学与工程测绘科学与技术、地质资源与地质工程地质学、机械工程、电气工程、控制科学与工程、土木工程9南京师范大学地理学、教育学、美术学复杂系统建模与大规模科学计算、材料科学与技术、物理学、生物学、法学、马克思主义理论、心理学、中国语言文学、设计学10江苏大学食品科学与工程、新能源汽车材料科学与工程、动力工程及工程热物理、控制科学与工程、农业工程、生物技术及其医药转化11南京医科大学基础医学、公共卫生与预防医学临床医学、药学、口腔医学、护理学、生物化学与分子生物学12河海大学水利工程土木工程、测绘科学与技术、环境工程、技术经济管理、海洋科学13扬州大学作物学、兽医学畜牧学、数学、化学、农村水土安全与环境保护14南京工业大学化学工程与技术材料科学与工程、先进能源技术与装备、轻工技术与工程、土木工程防灾与技能、交通运输工程、安全科学与工程15南京信息大学大气科学16南京艺术学院美术学艺术学理论、音乐与舞蹈学、设计学17南京邮电大学信息与通信工程电子科学与技术、有机光电子学、计算机科学与技术、软件工程18南京林业大学林业工程林学、风景园林学生态学、轻工技术与工程、植物学19南京中医药大学中医学、中药学中西医临床结合20常州大学化学工程与技术、 新能源材料科学与工程21江苏师范大学有机化学22徐州医科大学麻醉学医药生物学23江苏科大先进材料及加工技术24苏州科技大学土木工程、城乡规划学、建筑学、环境功能材料与技术25南京审计大学现代审计科学26淮海工学院水产27解放军理工大学大气科学、信息与通信工程、软件工程、兵器科学与技术14浙江总计:1个总计:5个总计:36个1中国美术学院美术学艺术学理论、设计学2浙江工业大学化学工程与技术、机械工程控制科学与工程、药物化学、化工过程机械3浙江师范大学数学、物理学、生物学、化学、计算机科学与技术4宁波大学水产、信息与通信工程、工程力学、应用海洋生物技术、近海冲击与安全工程5温州医科大学临床医学6浙江理工大学纺织科学与工程机械工程7杭州电子科技大学计算机科学与软技术、电子科学与技术、信息与通信工程、控制科学与工程8杭州师范大学数学、生物学、有机化学9浙江中医药大学中医临床基础、中医骨伤科学、中西医结合临床10浙江工商大学食品科学与工程、统计学11中国计量大学仪器科学与技术、检测技术与自动化装置12浙江海洋大学海洋科学、水产13浙江农林大学林学、风景园林学、林业工程、农业资源与环境14温州大学化学  (四)华东二区(鲁皖闽赣):总数31所 大学 名称 A类学科 总计:6个 B类学科 总计:46个 C类学科 总计:125个 12山东总计:6个总计:32个总计:53个1山东大学数学物理学、化学、生物学、统计学、机械工程、材料科学与工程、动力工程及工程热物理、电气工程、控制科学与工程、土木工程、环境科学与工程、计算机科学与技术、软件工程、基础医学、临床医学、药学、哲学、中国语言文学光学工程、电子科学与技术、信息与通信工程、口腔医学、公共卫生与预防医学、应用经济学、法学、政治学、考古学2中国海洋大学海洋科学、水产环境科学与工程 港口、海岸及近海工程、药学、大气科学、生物学、食品科学与工程、计算机科学与技术3中国石油大学石油与天然气工程化学工程与技术、地质资源与地质工程化工过程机械、机械工程、安全科学与工程4山东农业大学作物学、园艺学、植物保护生物学、农业工程、食品科学与工程、农业资源与环境、畜牧学、兽医学、森林培育学5青岛大学生理学、眼科学神经生物学、材料科学与工程、病原生物学、 儿科学、耳鼻咽喉科学、营养与食品卫生学6山东师范大学物理学、化学、地理学、生物学、7青岛科技大学化学工程与技术高分子化学与物理、材料科学与工程、动力工程及工程热物理8济南大学材料科学与工程、化学工程与技术、眼科学9山东科技大学测绘科学与技术、采矿工程、安全科学与工程机械电子工程、控制理论与工程、地质资源与地质工程、软件工程10山东理工大学机械工程11山东中医药大学中医学13青岛理工大学土木工程14曲阜师范大学数学、光学15聊城大学光通信科学与技术、分析化学16青岛农业大学农业机械化及其自动化、水产品加工及贮藏工程、果树学7安徽总计:4个总计:22个1合肥工业大学机械工程、仪器科学与技术、材料科学与工程电气工程、计算机科学与技术、软件工程、食品科学与工程、土木工程、管理科学与工程2安徽大学化学、生态学、计算机应用技术、汉语言文字学3安徽师范大学化学、生物学、生态学4安徽医科大学临床医学、 公共卫生与预防医学、药学5安徽农业大学茶学生物学、林学6安徽理工大学矿业工程、安全科学与工程、土木工程7安徽工大冶金工程8福建总计:2个总计:8个总计:38个1厦门大学化学、海洋科学数学、物理学、生物学、统计学、理论经济学、应用经济学、环境科学与工程、 工商管理生态学、仪器科学与技术、材料科学与工程、电子科学与技术、信息与通信工程、化学工程与技术、计算机科学与技术、法学、教育学、新闻传播学、戏剧与影视学2福州大学化学机械工程、材料科学与工程、信息与通信工程、化学工程与技术、电气工程、土木工程、药物分析学3福建农林大学植物保护学、林学生物学、作物学、园艺学、食品科学与工程、林业工程4福建师范大学地理学、音乐与舞蹈学数学、高分子化学与物理、中国语言文学、戏剧与影视学5福建医科大学基础医学、内科学、神经病学、药理学6华侨大学机械工程、化学工程与技术、土木工程、数量经济学7集美大学船舶与海洋工程、水产学8福建中医药大学中医骨伤科学4江西总计:2个总计:12个1南昌大学材料科学与工程、食品科学与工程生物学、机械工程、环境科学与工程、内科学、外科学、营养与食品卫生学2江西师范大学化学3江西农业大学作物学、畜牧学、林学4江西财大应用经济学、管理科学与工程  (五)华中地区:总数35所 大学 名称 A类学科 总计:19个 B类学科 总计:97个 C类学科 总计:146个 15湖北总计:13个总计:50个总计:71个1武汉大学化学、生物学、测绘科学与技术、水利工程数学、物理学、地球物理学、地理学、电气工程、信息与信息系统、计算机科学与技术、软件工程、土木工程、环境科学与工程、基础医学、口腔医学、哲学、理论经济学、法学、马克思主义理论、图书情报与档案管理学统计学、机械工程、材料科学与工程、动力工程及工程热物理、电子科学与技术、临床医学、应用经济学、政治学、中国语言文学、新闻传播学、世界史、工商管理、公共管理学2华中科技大学机械工程、光学工程、电气工程、公共卫生与预防医学物理学、生物学、材料科学与工程、动力工程及工程热物理、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、生物工程、水利工程、基础医学、临床医学、药学、公共管理数学、物理学、化学、统计学、力学、建筑学、土木工程、城乡规划学、软件工程、船舶与海洋工程、理论经济学、社会学、教育学、新闻传播学、管理科学与工程、工商管理3华中农业大学生物学、作物学、园艺学食品科学与工程、农业资源与环境、植物保护、畜牧学、兽医学、风景园林学、水产、农林经济管理农业工程、土资源管理4华中师范大学数学、物理学、政治学、中国语言文学化学、地理学、生物学、农药学、马克思主义理论、教育学、心理学、体育学、公共管理学、情报学5武汉理工大学材料科学与工程机械工程、船舶于海洋工程、土木工程、设计学力学、信息与通信工程、计算机科学与技术、矿业工程、交通运输工程6中国地质大学地质学地质资源与地质工程海洋科学、地球物理学、岩土工程、水利工程、测绘科学与技术、环境科学与工程、石油与天然气工程7中南财经政法大学应用经济学理论经济学、法学、工商管理8武汉科技大学材料科与工程、冶金工程、化学工程与技术9湖北大学材料科学与工程、基础数学、生物化学与分子生物学10武汉纺织大学纺织科学与工程11三峡大学水利工程12长江大学石油与天然气工程、地质资源与地质工程13武汉工程大学化学工程与技术14武汉轻工大学食品科学与工程15海军工程大学电气工程、船舶与海洋工程动力工程及工程热物理、信息与通信工程、兵器科学与技术11湖南总计:5个总计:39个总计:43个1国防科学技术大学计算机科学与技术、信息与通信工程、航空宇航科学与技术系统科学、机械工程、光学工程、仪器科学与技术、材料科学与工程、控制科学与工程、电子科学与技术、管理科学与工程数学、物理学2中南大学材料科学与工程、冶金工程数学、生物学、统计学、机械工程、控制科学与工程、计算机科学与技术、土木工程、测绘科学与技术、地质资源与地质工程、矿业工程、化学工程与技术、交通运输工程、安全科学与工程、基础医学、临床医学、药学、管理科学与工程物理学、化学、控制科学与工程、法学、工商管理、社会医学与卫生事业管理3湖南大学数学、化学、材料科学与工程、机械工程、计算机科学与技术、土木工程、化学工程与技术、环境科学与工程、设计学物理学、统计学、电气工程、控制科学与工程、建筑学、软件工程、应用经济学、城乡规划学、管理科学与工程、工商管理4湖南师大生物学数学、物理学、化学、地理学、英语语言文学、舞蹈学5湘潭大学数学物理学、化学、化学工程与技术、材料科学与工程、6湖南农业大学作物学生物学、园艺学、农业资源与环境、生态学、植物保护7中南林业科大生态学植物学、林业工程、风景园林学、林学8长沙理工土木工程交通运输工程9南华大学核科学与技术、基础医学10湖南科技大学矿业工程、机械工程11湖南中医药大学中医学9河南总计:1个
  • 2017年暑假生物医学大型仪器理论与实验技术培训班通知
    p    /p p   (5日大型仪器综合、3日Aminis& reg 成像和CyTOF质谱流式、TissueFAXS类流式专题、3日Sequenom& reg 质谱基因检测专题和5日蛋白组学专题培训) /p p   (第一轮通知) /p p   中国医学科学院基础医学研究所∕北京协和医学院基础学院在医学领域具有国内一流的影响力和知名度,以尖端的医学研究及出色的理论和实验教学成为著名的医学科学研究与教育基地。为了培养生物医学领域创新人才,现推出以尖端仪器和实战训练为特色的“大型仪器原理与实验技术”寒假培训班。参加培训班的学员,将可获得国家级继续教育I类学分10分并颁发医疗卫生适宜技术推广培训结业证书。 /p p   1培训目标 /p p   1.1通过实战学习,使学员有机会亲自操作先进的大型仪器,了解其应用领域,促进这些技术在基础和临床科研中的推广。 /p p   1.2通过了解当前生物医学研究中先进的大型仪器原理与使用技术,结合对实验设计思路的理解,提高学员的科研水平,激发创新能力。 /p p   2培训特色 /p p   2.1尖端前沿:使用当前最先进、最主流的生命科学类大型仪器和技术,如最前沿的TissueFAXS类流式分析系统(价值约250万RMB)、Sequenom& reg MassArray 质谱生物芯片系统(约300万RMB)、Aminis& reg 成像仪(约328万RMB)、CyTOF质谱流式仪(约360万RMB)、Bio-Rad QX200第二代微滴式数字PCR仪(约100万RMB)、Bruker UltrafleXtreme MALDI-TOF/TOF质谱仪(约350万RMB)、PE UltraVIEW VoX活细胞高速激光共聚焦实时成像分析系统(约200万RMB)、。 /p p   2.2实际操作:上机实验课时数不低于50%,理论与实践紧密结合。小组授课学习(4~6人),每位学员均可亲自操作尖端的大型生命科学仪器。 /p p   2.3师资雄厚:讲师团成员均来自中国医学科学院基础医学研究所中心实验室科研和教学一线,实验经验丰富。 /p p   2.4后续指导:培训后学员将能继续和讲师们联系,获得一线丰富的经验指导。 /p p   3招生对象 /p p   临床的医务人员、科研人员和在读研究生。面向全国各大高校、科研院所和临床医院。 /p p   4培训规模 /p p   限报20人(综合培训)∕15人(专题培训),机会难得,预报从速。 /p p   5培训班内容 /p p   5.1培训内容(综合) /p p   理论部分:概论及光谱分析技术、荧光显微镜技术、电子显微镜技术、流 /p p   式细胞仪技术、色谱及质谱技术、定量PCR和液滴式数字PCR。 /p p   实验部分:荧光显微镜技术、电子显微镜技术、流式细胞仪技术、色谱及 /p p   质谱技术、定量PCR和液滴式数字PCR。 /p p   5.2教学方式 /p p   各项技术在老师的指导下由学员亲自动手操作,学员将掌握各项实验技术,包括实验技术原理与操作细节、课题设计方法、常见问题及结果分析等。 /p p   5.3培训时间 /p p   2017年7月10~14日(大型仪器综合) /p p   2017年7月15~17日(量化成像分析流式和质谱流式专题+TissueFAXS类流式分析系统) /p p   2017年7月15~17日(质谱基因检测专题) /p p   2017年7月15~19日(定量蛋白组学专题) /p p   5.4培训地点 /p p   北京东城区东单三条5号(基础医学研究所科研楼内) /p p   5.5培训费用 /p p   表:注册费(含资料费,提供午餐 住宿不统一安排,费用自理) /p p   序号培训组合注册费(RMB元) /p p   15日大型仪器综合5 000 /p p   23日量化成像分析、质谱流式和TissueFAXS类流式分析系统专题3 000 /p p   33日质谱基因检测专题3 000 /p p   45日定量蛋白组学专题5 000 /p p   备注:长期合作伙伴可享有8折优惠 组合培训(综合+任一专题)8折优惠 6月27日前确定报名可9折 2人以上同行可再享有9折优惠. /p p   缴费方式(银行汇款):银行转账付款账户 /p p   开户行:中行北京王府井支行 /p p   户名:中国协和医科大学出版社 /p p   账号:320 756 781 894 /p p   报名联系人: /p p   王老师(wangxin@ibms.pumc.edu.cn) /p p   范老师(corelabibms@ 163.com) /p p   联系电话:010-6915 6952/6995 /p p   主办单位: /p p   中国医学科学院基础医学研究所中心实验室中国协和医科大学出版社 /p p   2017年5月22日2017年5月22日 /p
  • “十二五”化学学科优先发展领域确定 分析仪器位列其中
    2010年10月19日,在“2010年微纳尺度分离和分析技术学术会议暨第六届全国微全分析学术会议”上,基金委化学科学部常务副主任梁文平研究员向与会代表们介绍了“十二五”期间我国化学学科发展战略及11项优先发展领域。 基金委化学科学部常务副主任 梁文平研究员   “十二五”化学学科发展战略   在报告中,梁文平研究员表示随着中国处在一个新的历史发展时期,中国的化学基础研究正处在发展的新的历史起点上,中国化学科学的发展需要更多的原始创新,世界化学科学发展需要贴上中国创造的标签,“十二五”期间我国化学学科还需要科学家们继续努力保持已有优势,赶超国际先进水平,推动我国从化学大国走向化学强国。“十二五”期间我国化学学科发展战略规划如下:   1. 保持已有优势,发展新的特色领域。在已有的研究基础上,坚持“有所为,有所不为”,继续深入开展以化学合成及理论为核心,以材料科学、能源科学、生命科学、农业科学、环境科学和信息科学等领域的重大需求为向导,发展定向、高效、低耗、绿色的化学合成、能量和物质转换体系及相关技术,加强基础研究思想和方法向原理器件设计及制备技术的转化,强化探索和创新意识,注重基础研究、基础应用研究和应用研究的结合与协调发展,加快化学学科的全面发展。   2. 在化学学科的前沿和新兴领域取得重要突破,赶超国际先进水平。在化学科学的前沿及其新兴领域,选择具有一定基础和优势,关系国计民生和国家安全的关键科学问题,集中力量、重点突破。争取在揭示分子及其组装体的可控合成、设计规律、性质与微观结构的本质关系,在高性能、不同凝聚态结构化学材料体系的制备、表征、理论模拟和计算方法,在高效能源和物质转化催化剂的设计和激励、在关乎人类生存和健康的药物设计和合成等领域取得重要研究成果。   3. 加强与材料科学、生命科学、信息科学等学科的交叉、渗透和融合形成新的生长点,有重点地发展一些新的国际前沿研究领域。瞄准化学科学前沿和国家战略需求,完善学科布局与结构,注重和加强化学科学各分支学科及其与材料科学、生命科学、信息科学、纳米科学等学科的交叉、渗透和融合,推动学科建设,形成新的学科生长点,赋予化学科学新的内涵和生命力。前瞻性地重点部署和发展一些新的具有战略意义的国际前沿研究领域(例如:能源、环保、生物、催化等),组织学科交叉研究和多学科综合研究。   4. 面向国民经济与国防建设的重大需求,取得一批具有自主知识产权的应用性成果。深入开展与化石能源高效绿色转化、太阳能和核能利用相关的能源科学和材料研究,深入开展与光、电、磁等的发生、转换、存储、输运、显示和掩蔽相关的信息及防护科学和技术成就;深入开展与人体健康相关的检测、诊断和治疗药物的技术研究;深入开展与动植物生长、发育和抗逆性相关的农业科学和技术研究;深入开展以水资源、土壤和空气等相关的分离净化科学和技术研究,坚持不懈地推动关键领域技术的群体突破。   5. 建设一批国际一流水平的研究基地,培养一批在国际有影响的优秀青年学术带头人,培养一批德才兼备的中青年拔尖和领军人才,使他们成为凝聚和带动研究团队的核心。优化资源配置,集中力量建设一批国际一流水平的、学科综合交叉的、资源共享的基础科学和前沿技术研究基地,继续发挥经济和文化发达、人才集中地区已有科研基地的示范和引领作用,注重对经济欠发达的西部地区科研基地的培育和扶持。针对国家对高素质创新人才的需求,围绕人才强国的发展战略,坚持以人为本,切实加强科技人才队伍建设,造就和吸引更多具有国际化教育和多学科背景的“领军人才”,为顺利实现“十二五”期间化学科学发展的战略目标提供人才保障。   “十二五”我国化学学科优先发展领域   梁文平研究员指出“十二五”期间我国化学学科优先发展的领域主要包括分析测试原理和检测新技术、新方法,合成化学,化学结构、分子动态学与化学催化,大分子和超分子化学,复杂体系的理论、模拟与计算,与生物和医学交叉界面的化学等11个领域。具体内容如下:   1. 合成化学   (1) 功能导向新物质的可控、高效、绿色设计合成理论和方法   (2) 分子剪裁和组装的控制和机理   (3) 复杂体系及其反应历程与机理的研究   (4) 新合成策略、概念和技术的探索   (5) 极端条件下的合成和制备。   2. 化学结构、分子动态学与化学催化   (1) 化学反应动态学理论与实验技术   (2) 表面、界面化学反应的本质、动态过程及反应控制   (3) 催化机理及其反应过程的调控   (4) 极端条件下的化学反应与物质结构。   3. 大分子和超分子化学   (1) 可控/“活性”聚合方法与不同拓扑结构聚合物精密合成   (2) 光电磁功能大分子性能优化   (3) 非石油大分子合成与高分子生物合成   (4) 高分子多层次结构动态过程与机制   (5) 生物医用高分子及其与细胞相互作用及调控规律   (6) 超分子体系与超分子聚合物的构筑与可控组装   (7) 超分子材料功能化的结构设计、理论计算与实验表征。   4. 复杂体系的理论、模拟与计算   (1) 复杂体系的理论、模拟与计算   (2) 从结构到性能预测为导向的复杂体系计算方法与应用   (3) 普适可靠的密度泛函形式、高精度和低标度的电子相关理论   (4) 激发态结构与过程理论   (5) 物质形态转换过程中化学反应过程的理论与计算   (6) 高维、多自由度及凝聚相体系的量子动力学理论与非平衡、非线性统计理论   (7) 自组装结构与过程多尺度的动力学理论。   5. 分析测试原理和检测新技术、新方法   (1) 复杂样品系统分离与鉴定方法学研究   (2) 多维、多尺度、多参量分析测试新原理与新方法研究   (3) 组学分析中的新方法和新技术   (4) 面向国家安全、人类健康、突发事件的分析方法与技术   (5) 分析器件、装置、仪器及相关软件的研制   (6) 极端条件下的分析化学基础研究。   6. 与生物和医学交叉界面的化学   (1) 基于化学小分子探针的复杂生物体系中信号转导过程研究   (2) 具有重大意义的生物大分子及其类似物的合成及功能研究   (3) 非编码RNA结构与功能研究   (4) 干细胞化学生物学及神经化学生物学   (5) 生物体系中信息获取新方法和新技术:化学探针与分子成像   (6) 计算机模拟技术,特别是针对复杂生物网络体系的计算技术。   7. 绿色与可持续化学   (1) 有毒、耗能和污染产品的分子替代与可持续产品创制   (2) 高效“原子经济性”新反应   (3) 无毒无害及可再生原料的高效转化   (4) 环境友好的反应介质的开发和利用   (5) 绿色化工过程与技术   (6) 全生命周期分析与评价。   8. 人类生存环境中的基本化学问题   (1) 环境分析新方法、新原理、新技术   (2) 大气、水体、生物、土壤复合污染过程与控制   (3) 污染物的生物有效性与生态效应的化学机制   (4) 污染物的生态毒理与健康效应   (5) 化学污染物暴露与食品安全   (6) 化学品风险评估与管理的理论和方法。   9. 功能导向材料的分子设计与可控制备   (1) 不同尺度物质间相互作用的机制及其调控规律   (2) 表面和界面的结构调控与功能化   (3) 研究“从分子到固体”的组装过程和规律,构筑有序纳米结构和材料   (4) 光电磁及其复合性能等功能无机晶态材料的分子设计与可控制备   (5) 有机/高分子光电功能材料的设计与可控制备   (6) 极端条件下材料的化学结构形态及物相的控制和调控。   10. 能源和资源的清洁转化与高效利用   (1) 化石能源高效清洁转化   (2) 生物质高效转化的化学化工基础   (3) 我国特有资源的高效高值利用   (4) 太阳能高效低成本转换利用   (5) 核能高效安全利用的化学化工基础   (6) 新型、高效、清洁的化学能源与替代能源。   11. 面向节能减排的过程工程   (1) 可再生能源开发、利用中的化学工程基础   (2) 发展绿色工艺和技术的基础理论问题   (3) 先进功能材料制备、大规模生产与应用的化学工程基础理论   (4) 极端条件下化学反应、生物转化过程   (5) 化工过程的信息获取、加工与应用   (6) 重要化工过程的先进计算与模拟   (7) 复杂体系或过程的介尺度理论、结构及其调控。
  • “100家实验室”专题:访浙江工商大学食品感官科学实验室
    为广泛征求用户的意见和需求,了解中国科学仪器的市场情况和应用情况,仪器信息网自2008年6月1日开始,对不同行业有代表性的“100家实验室”进行走访参观。近日,仪器信息网工作人员参观访问了本次活动的第三十六站:浙江工商大学食品感官科学实验室。   浙江工商大学食品感官科学实验室是目前国内唯一的食品感官科学实验室,主要研究方向包括食品感官实验心理学、智能感官研究、分子识别与化学仿生、味觉分子细胞生物学。是由浙江工商大学食品学院副院长邓少平教授领导的一支多学科交叉科研团队,专业背景涵盖食品、化学、生物学、机械、电子和计算机等。   浙江工商大学食品感官科学实验室邓少平教授、田师一博士热情接待了仪器信息网到访人员,并介绍了实验室目前的科研情况以及科研仪器使用情况。   食品感官科学研究   该实验室在食品感官科学方面的研究处于国内领先地位,近年来承担了一系列的科研项目,并取得了丰硕的成果,如智能感官仿生系统(智舌和智鼻)研究、人工甜味受体的甜味识别热力学研究、味蕾细胞甜味识别的热动力学研究等。   甜味偏好可塑性现象   人类为什么对不同味道具有倾向性喜好?比如我国许多地方的人喜欢吃甜食,这是一种饮食习惯,还是基因遗传,对于甜味的偏好到底有没有可塑性呢?   实验室从行为学、心理学、组织学、细胞学等多个层面进行了系统研究,揭示了外周味觉感受器-味蕾细胞及其信号转导关键蛋白分子可塑性变化与甜味偏好行为可塑性之间的关系。实验室之前所做的工作中用一种没有能量的甜味剂去刺激小老鼠,在小老鼠的羊水中发现了甜味剂,并且实验发现下一代的小老鼠更加喜好喝含有该甜味剂的水。   味蕾细胞甜味识别的热动力学   邓少平教授介绍说实验室研究了味蕾细胞甜味识别的热动力学,该研究以甜味感作为研究的切入点,以等温滴定微量热仪作为技术手段,依托味觉受体及其信号转导研究成果,通过不同甜味剂溶液滴定刺激味细胞,实时、连续记录热力学与动力学信息,获得甜味剂与受体相互作用总体的能量变化特征。并通过解析能量变化特征,深入揭示外周味觉识别的热动力学规律,进而揭示甜味感觉的动力学过程,为系统的味觉感觉动力学研究提供理论与技术支撑。 图1. 味蕾细胞分离过程   味觉细胞传感器构建   研究中通过提取小老鼠的舌面上皮细胞,在丝网印刷碳电极上贴壁培养作为一级敏感元件,形成一体化味觉传感器,以高精度信号采集和放大仪器记录味觉刺激响应信号,采用非线性双稳态随机共振信号处理技术提取味觉检测特征信息,达到了味觉类型和味觉强度的辨识,为一种新型仿生舌的实现开辟了一条新途径,可以用来判断真正的甜味、酸味、苦味。目前,味细胞传感器开发还处于研究阶段,以后可以考虑产业化,而且这类传感器的市场比较大,添加剂公司、食品公司等都可能需要用到。现在对于味道的品评还没有特别好的评价手段,这类以传感器为“神经”传导的活味觉细胞的仿生舌至少可以作为一种辅助手段。 图2. 丝网印刷碳电极   由于味觉分子细胞生物学研究的对象大多数是细胞或者分子,实验里配置了不同放大倍率、不同作用的显微镜,如共焦显微镜,用于观察微米级对象 体视镜,虽然放大倍数可能要比共焦显微镜低一到两个数量级,但是它可以提供立体感较强的显微效果,而且物镜离载物台较远,可以观察较大的物体 还有原子力显微镜,用于观察纳米级对象。 图3. Leica SP2激光共焦扫描显微镜 图4. Leica MZ16A体视镜 图5. Agilent PicoLE 原子力显微镜 图6. Niko EclipseTi-s荧光倒置显微镜    人工甜味受体构建与甜味识别热力学   “设计合成一种称为人工味觉受体的化学分子,在化学意义上仿生人类味感是化学仿生研究的目标”,邓少平教授介绍,“目前实验室里研究以多羟基富勒醇为基础,构建各类无机人工仿生受体代替生物蛋白质。实验室研究了C60(OH)18与十种甜味剂的相互作用,从反应的热力学参数可以看出,天然甜味剂与富勒醇的结合中,氢键起着非常重要的作用;而对于人工甜味剂与富勒醇的结合过程中,熵对自由能的贡献更大。这与溶液中的水分子对甜味识别的参与有关。”这方面研究主要使用的仪器是热分析仪器。 图7.MicroCalorimeter VP-DSC差示量热扫描仪 图8. MicroCalorimeter VP-ITC等温滴定量热仪   基于分子识别原理的快速检测技术   “如何根据物理化学或生物的原理,迅速地找到或设计出一个与待测分子具有特异分子识别的检测分子,这也是一个在不同领域(医学检验、环境监测等)都亟待解决的理论和技术难题”,田师一博士表示:“这一研究方向旨在根据食品安全问题中待测分子的结构,设计合成与之具有强烈相互作用的识别分子,并以分子动力学理论计算和微量热实验筛选识别分子的结构,最终构建基于分子识别原理的快速检测技术平台。目前实验室已经研究出了能够猝灭三聚氰胺荧光的识别分子。在不同浓度下,识别分子对三聚氰胺分子采用静态和动态不同的猝灭方式。目前,基于这种荧光猝灭原理的传感器正在研究中。”   国内第一套电子舌产业化   “创造出一种同人的舌头和鼻子一样灵敏的智能化学感觉系统是实验室几代研究人员不断努力的方向”,邓少平教授介绍说,“现在,实验室团队积数十年的研究经验,在实验室原创的组合脉冲驰豫谱理论和技术基础上,已经自主研发出了国内第一套、世界第三套商品化电子舌系统,并且已经产业化,在国内外同行中具有较大的影响力。目前,电子鼻系统现在也将要实现产业化。” 图9. 电子舌商品化样机 图10. 电子鼻商品化样机   邓少平教授介绍电子舌具有快速、稳定、灵活、自主等特性。样品不需要前处理,三分钟就可以得到测量结果;传感器寿命长;可以根据用户的需求,自定义机型;另外拥有完全自主的知识产权,性价比高,使用维护方便。目前,电子舌主要应用于食品、饮料、香水、化学品、环境、农业等领域,可以进行产品质量稳定性评价、品牌区分、微生物快速检测、食品感官属性相关性、配方开发和调整、在线品质监控等。 图11. 应用于康师傅研发中心的电子舌样机   国家精品课程——《食品感官科学》   《食品感官科学》是实验室负责的国家精品课程,主要培养四个方面的人才。工艺工程师、产品设计师、质量品控与市场营销师、品评员。邓少平教授介绍说对于感官品评人才的选拔一方面对个人感觉敏感性有一定的要求,但是还需要有对整个品评过程做合理设计、组织和统计分析的能力,这也是人才培养的一个重要方向。另外感官品评员一般都需要学习食品感官实验心理学,因为在品评过程中需要屏蔽自己的个人偏好。 图12. 食品感官科学课程   实验室将科学研究、科研成果的产业化以及人才培养紧密结合了起来。科研成果的产业化为进一步的科学研究提供了更大的动力,也为提高相关企业的创新能力提供了一条捷径 而具有针对性的人才培养为科学研究以及社会相关领域的需求储备了人才。   附录1:浙江工商大学食品感官科学实验室   http://www.sensory.cn/   附录2:食品感官科学理论与技术专家邓少平教授简介   邓少平(1956-),教授,博士生导师。毕业于南京大学生物化学专业,曾任总工程师、厂长、南昌大学食品学院副院长,现任浙江工商大学食品与生物工程学院副院长。兼任中国食品工业协会白酒专业分会技术顾问、食品物流专业委员会专家、浙江省食品科学技术学会副理事长。先后主持承担四项国家自然科学基金项目和多项省科技项目。主要研究方向为食品感官科学理论与技术。   近年来,建立了国内唯一的食品感官科学实验室,形成了学科匹配完整的研究梯队、关键实验技术平台的系统积累和具有特色优势稳定的研究方向,长远目标是发展具有中国特色的食品感官科学理论和技术体系。
  • 上交大吕海涛课题组运用功能代谢组学STORM策略发现胰腺癌治疗的潜在新靶点
    聚焦“癌症之王”胰腺癌,其发病隐匿性强,致死率高,五年生存期不足5% WHO最新预测数据显示, 2030年胰腺癌致死率将上升到全球癌症引起死亡的第二位。目前胰腺癌的诊疗面临四大严峻挑战,1)缺乏有效生物标志物用于早期预警诊断 2)发病隐匿的分子机制不明 3)缺乏决定性药物靶点 4)由于铂类药物抗药和副作用频发,临床治疗缺乏安全有效药物。究其原因,胰腺癌发病机制复杂,缺乏对其深层次分子科学认知和新研究策略。  基于课题组胰腺癌代谢特征谱和生物标志物的前期研究基础, 上海交通大学系统生物医学研究院/系统生物医学教育部重点实验室吕海涛课题组近期在国际权威药理学杂志Pharmacological Research上发表题为“Functional metabolomics revealed the dual-activation of cAMP-AMP axis is a novel therapeutic target of pancreatic cancer”的研究论文,重点报道利用课题组新开发的功能代组学Spatial Temporal Operative Real Metabolomics (STORM)策略,全新精准鉴定、空间可视化、动态补获和靶向调控AMP-cAMP axis是胰腺癌的潜在新靶点,确定临床常用药物吉西他滨是通过调控AMP和cAMP的关键底物ATP的生物合成,促进AMP和cAMP显著累积,进而激活AMPK信号通路的磷酸化过程和PKA信号通路,而系统发挥抑制胰腺癌肿瘤生长作用。本研究有如下三点创新:1)构建全新的STORM功能代谢组学策略,实现胰腺癌决定性功能代谢物的精准定性、空间可视化、动态补获和靶向合成调控 2) 运用STORM策略发现治疗胰腺癌潜在的新靶点AMP-cAMP axis 3)本研究将为胰腺癌药物分子的快速筛选评价提供全新靶点。此外,通过制剂优化等手段增强吉西他滨对新靶点的靶向性,将有助于改善其治疗胰腺癌的有效性。  论文第一作者为上海交通大学系统生物医学研究院/系统生物医学教育部重点实验室2020级博士生(直博)刘京净同学,2019级硕士生(已毕业)王天宇同学等参与部分工作,论文通讯作者为上海交通大学系统生物医学研究院/系统生物医学教育部重点实验室吕海涛研究员(长聘教席)。本论文研究工作的开展得到科技部国家重点研发计划课题、国家自然科学基金,上海自然科学基金,国家转化医学中心(上海)重点项目,安捷伦科技ACT-UR奖项目和上海市院士专家工作站项目等支持,在此致谢!  论文链接:https://doi.org/10.1016/j.phrs.2022.106554  功能代谢组科学实验室(Laboratory for Functional Metabolomics Science, LFMS)简介:  实验室成立于2016年9月,主体依托上海交通大学系统生物医学研究院,系统生物医学教育部重点实验室和系统生物医学111引智计划等一流科研设施平台,目前建有完善的组学分析平台、细胞生物学平台、细胞与动物实验设施,生物信息学分析平台等。近五年,实验室在国家重点研发计划,国家自然科学基金、上海自然科学基金,国家转化医学研究中心和上海交通大学,上海市院士专家工作站(专家级),安捷伦科技(中国),SCIEX中国和鹿明生物科技等基金项目支持下,重点开展面向生命健康科学交叉应用的下一代功能代谢组学研究(Spatial Temporal Operative Real Metabolomics-STORM 和Spatial Temporal Operative Real Metabolomics Plus-STORM+)。主要围绕功能代谢组学理论与方法学创新,及其生命健康交叉科学领域的微生物源/中药源功能天然产物的治疗发现等关键科学问题,开展了系列探索性研究工作,主要在如下三方面取得阶段性新进展:1) 创新功能代谢组学理论与方法学 2) 基于功能代谢组学阐明微生物铁载体的新功能和生物膜形成的新机理 3) 基于功能代谢组学革新肝胆胰疾病诊断与解析天然产物治疗疾病的新机制:  PI: 吕海涛博士,上海交通大学系统生物医学研究院/系统生物医学教育部重点实验室研究员(终身教席)/博士生导师, 英国皇家化学会会士(FRSC), 英国皇家生物学会会士(FRSB),TALENT-100和绿色通道引进高层次人才,Faculty Opinions (F1000 Prime)Faculty 专家,澳门科技大学兼职教授/博导,功能代谢组科学实验室主任, 上海院士专家工作站(专家级) 首席专家。主要研究方向:生命健康交叉应用驱动的下一代功能代谢组学研究(STORM和STORM+)。先后主持国家重点研发计划课题等10多项课题 权威杂志发表SCI检索论文58篇 任中国生物物理学会代谢组学分会副秘书长等,Pharmacological Research-Section主编和Royal Society Open Science 副主编等 安捷伦科技ACT-UR奖获得者。
  • 第四届亚洲近红外光谱大会第二轮通知
    2014年6月17日至20日,第四届亚洲近红外研讨会(ANS 2014)将在韩国大邱召开(http://www.ans-2014.org)。ANS 2014旨在交流、展示近年来近红外(NIR)光谱领域所取得的最新进展及成果。   近红外光谱技术是一种快速、无损、无需样品制备的分析方法,应用范围广泛。近红外光谱相关研究和技术进展将是ANS 2014的主要内容,ANS 2014主要内容包括,但不限于:   近红外光谱学理论;提高分析准确性的新化学计量学;近红外光谱仪器金属进展,包括小型化和成像技术;近红外光谱法在临床和生物医学诊断领域的应用;近红外光谱定性、定量分析进展。   ANS 2014的内容将涵盖近红外光谱法的理论和应用所有方面,应用领域包括农业、聚合物、医药、化学和在线质量控制等。   ANS 2014也邀请从事近红外光谱分析相关技术和应用的专家和学者参会,介绍最新研究和应用的进展。   具体日程安排请见以下附件:第四届亚洲近红外光谱大会第二轮通知.pdf
  • 国家自然科学基金“十四五”发展规划遴19个学科重点支持方向
    近日,《国家自然科学基金“十四五”发展规划》正式公布全文,包括发展思路、发展目标、学科发展战略、优先发展领域等在内共21个章节,完整的阐明了国家自然科学基金委“十四五”期间的发展方向与相关理念。其中,在学科发展战略章节,公布了四大板块19个学科重点支持方向,这对于近几年的国家自然科学基金申请具有重要意义。“十四五”学科发展战略依据源于知识体系逻辑结构、促进知识与应用融通、突出学科交叉融合的原则,按照基础科学、技术科学、生命与医学、交叉融合四个板块构筑资助布局,夯实学科发展基础,打破学科交叉壁垒,构建全面协调可持续发展的高质量学科体系。四个板块  基础科学板块主要由数学、力学、天文、物理、化学、地学等组成,着重面向世界科技前沿,强化基础科学发展,贡献人类知识体系,为各领域前沿技术创新培育先发优势。  技术科学板块主要由工程、材料科学、信息等组成,着重面向国家重大需求和经济主战场,加强前沿技术基础研究,解决需求背后的核心科学问题,提供重要技术源头供给,强化技术科学的知识基础并形成技术科学体系。  生命与医学板块主要由生物学、医学、农业科学等组成,着重面向世界科技前沿和人民生命健康,在不断认识生命本质的同时,加强临床医学和农业科学基础研究,为保障人民生命健康和国家粮食安全提供有力科技支撑。  交叉融合板块主要由交叉科学、管理科学等组成。以重大交叉科学问题为导向,探索新的科学研究范式和支持交叉研究的新机制,培育新兴交叉领域的重大原创突破,在解决实际问题的同时,拓展共性知识和原理。管理科学兼顾实践需求和学科发展,坚持运用自然科学方法论探索管理活动的规律,提高水平,形成特色,为国家治理和社会经济发展提供支撑。1. 数学:在纯粹数学领域,瞄准处于核心地位的若干重要问题,组织优秀团队开展攻关研究;在应用数学及其与其它学科交叉领域,围绕学科前沿与国家重大需求组织和承担重大任务,为解决关键核心技术问题做出重要贡献,显著提升我国数学研究水平和国际影响力。“十四五”期间,重点支持代数与几何的现代理论,现代分析理论及其应用等前沿方向;进一步强化问题驱动的应用数学前沿理论与方法;扶持数理逻辑与数学史,可计算性与复杂性理论等计算理论;关注量子计算、数据科学、人工智能等交叉融合的新兴数学分支。2. 力学:优化力学学科布局,引导和激励优秀学者对力学核心科学问题开展潜心研究,努力实现重大科学发现和技术突破;加强协同创新,促进基础研究与国家需求的有机结合,补齐技术短板,有力支撑国家经济建设。到2025年,大幅提升力学学科原始创新能力和培养优秀人才能力,显著提升学科水平和影响力,进入世界力学第一方阵。“十四五”期间,重点支持新材料和新结构的力学理论与方法,高速流动理论、方法与控制,复杂系统动力学机理认知及设计调控等前沿方向;持续推进极端条件下复杂介质力学与方法、多相多场功能系统的物理力学理论与方法、生命体的力学表征与调控等交叉研究;扶持分析力学、理性力学等传统研究;强化高性能力学软件、高端力学仪器等方面研究。加强与信息科学、材料科学、能源科学、生命科学的深度交叉与融合,催生新的学科生长点。3. 天文学:针对重大科学问题和国家需求,加强基于已有重大观测设备的科学研究,推动新天文观测设施的建设,部署系外行星等新兴研究领域,广泛开展国际合作。到2025年,基于已建成设施产出若干重大的科研成果,总体研究水平明显提升,在航天和深空探测等领域发挥重要支撑作用。“十四五”期间,推进暗物质和暗能量,宇宙结构的形成和演化,星系和活动星系核的形成和演化,星际介质和恒星的形成,恒星的结构、演化及其大气,恒星的晚期演化及致密天体,太阳的内部结构、大气、磁场与爆发活动,太阳系各类天体的结构、大气及其起源和演化,太阳系外行星的探测与性质等方向的研究;加强光学、紫外、红外和射电天文技术与方法,空间天文和高能天体物理技术与方法,实验室天体物理,数值模拟方法,天文信息技术方法及海量数据处理等方向的研究;扶持天体测量和天体力学方向的研究。4. 物理学:以物理学基础问题为导向,不断积累实力,以新的科学发现推动实验方法的变革,进而开发新的技术和开拓新的应用。到2025年,培养一大批活跃在国际前沿的科学家,开辟出多个新的学科生长点,整体的研究体量和质量接近科技强国的水平。“十四五”期间,重点支持量子材料与器件、新奇量子体系的制备和物性操控、量子物理与量子信息及精密测量、复杂结构与介质中的电磁场和声场的机理与调控、引力波/暗物质/暗能量探测、基本费米子的性质、强相互作用力的本质、质量起源与超出标准模型新物理和受控聚变中的关键科学问题等前沿方向;鼓励核天体物理、生物物理等交叉领域研究;强化基于物理学相关的第四代同步辐射和自由电子激光等关键大科学基础设施的研究和应用;扶持和关注理论物理、统计物理、声学等传统学科领域的发展。5. 化学:以夯基础、补短板、蕴特色、促交叉为目标,进一步加强顶层设计,推动化学学科跨越发展。到2025年,实现发展理念从跟踪并行向原创引领、研究范式从学科相对分离向融合贯通、科研评价从量化衡量向科学导向的转变。“十四五”期间,重点推进新范式下的分子科学与工程,超越传统体系的电化学能源,多功能耦合的化学传感与成像,免疫与神经化学生物学,生命体系多层次交互通讯的分子基础,软物质功能体系的设计、调控与理论,大数据与人工智能在化学化工中的应用;强化分子功能体系的精确构筑,物质科学的表界面基础,分子选态与动力学,绿色合成与过程,新材料的化学创制,能源资源高效转化与利用的化学化工基础;扶持化学与化工关键基础数据库构建,非常规条件下的传递、反应及测量,环境生态体系中关键化学物质的溯源与安全转化等;关注星际化学、可视化学、离子化学、爆炸与燃烧化学、芯片化学等。6. 纳米科学:针对高性能电子、光电子、量子和自旋等固态器件领域的国家战略需求,聚焦纳米科学与技术领域的关键科学问题,发展高精准度纳米加工方法,突破制约我国纳米科技领域的关键核心技术。到2025年,实现高性能纳米器件的有序集成,催生纳米技术变革和新兴产业。“十四五”期间,重点推进纳米材料本征性质的多尺度和跨尺度表征和调控,纳米材料合成与制备新方法,纳米催化及表界面研究;强化纳米结构及体系理论,纳米尺度极限测量,基于高性能纳米结构单元的先进宏观结构材料创制,纳米单元器件的研制及集成器件的全链条开发;扶持纳米生物医学与纳米安全,药物输运及纳米载体;关注纳米技术的变革性应用。7. 生物学:围绕生物的生理、生化、生殖、发育、遗传、进化、变异、合成、代谢以及与外界环境的互作等开展多维度、多层次、系统性研究。到2025年,促进我国研究整体水平和技术创新能力显著提升,为保障国家粮食安全、人口健康与生态文明提供科技创新源动力。“十四五”期间,重点支持生物重要性状与环境适应,生态系统对全球变化的响应与适应,病原微生物致病及与宿主互作,细胞命运可塑性与器官发生、衰老、再生和再造,机体功能活动的生物信息流,认知和感知的神经生物学基础,跨时空、跨尺度生物分子事件探测与解析,生命体的精准设计、改造与模拟等前沿方向;强化重要生物资源的收集、分类和评价,生物大数据管理及共享、分析与挖掘等;扶持动物学、生理学、心理学等传统学科,加强物种分类、运动生理、生物仿生与人工智能等薄弱方向。8. 农业科学:围绕粮食安全、乡村振兴和绿色可持续发展等国家重大战略需求,聚焦高产、优质、高效、绿色、安全等主题,为农业生物种质创新和新品种培育、重大病虫害控制、外来物种入侵防控、农业资源高效利用、农业减排固碳、林草固碳增汇、食品安全与加工制造、绿色优质农产品供给提供理论和技术支撑。到2025年,农业科学基础研究整体上处于世界先进水平,部分研究领域处于国际领先。“十四五”期间,重点支持构建完善的农业生物组学理论和技术体系,解析高产高效、优质营养、绿色生态以及生物安全所蕴含重要性状的形成机理,完善农业生物重要性状遗传改良及分子育种的理论基础;强化重要农业生物种质资源的收集、评价、创制和应用;加强农业碳减排和农田、林草固碳能力研究;扶持食品科学尤其是食品安全控制、食品加工与制造、食品营养与品质相关的研究领域,农业生产栽培与生理研究、农作物抗逆减灾与丰产优质的生物学基础及关键技术等薄弱方向;培植农业生物组学与大数据、智慧农业等新兴领域和学科生长点;推动农业生物人工智能设计、农业合成生物技术等交叉融合发展;加强跨境农业生物重大病虫害传播规律等领域的国际合作研究。9. 地球科学:围绕“深空”“深海”“深地”“地球系统科学”总体框架,加强基于物理-化学-生物多参数深度交叉融合综合研究,探究固体圈层、流体圈层和生物圈层的耦合演化机制与资源环境效应。到2025年,进一步加深对地球系统过去、现今和未来及其宜居性的认识。“十四五”期间,重点支持地球与行星观测的新理论、新技术和新方法,地球深部过程与动力系统,全球俯冲带的界面结构与性质,地球系统过程与全球变化研究,地球内/外核的结构与成分及其形成与演化,地球发动机动力学,地幔柱作用过程与环境,生物与环境的协同演化机制、地球早期地质-环境背景与生命演化,地球系统模式与气候系统预测,天气和气候系统与可持续发展、地质-环境突变与富有机质沉积体的形成,资源能源形成理论及供给潜力以及基于物理-化学-生物多参数深度交叉融合的综合研究。10. 资源与环境科学:研究在自然条件和人类活动影响下地球系统资源和环境的演变过程、相互关系及其观测和调控原理。到2025年,进一步揭示地球系统资源的形成和演化规律,促进对各类环境问题的发生发展规律认知及实践应用。“十四五”期间,重点支持人地系统耦合与可持续发展,“一带一路”沿线构造-气候因素对地表物质循环和环境演化的作用,陆地表层系统集成与模拟,陆地生态过程及大尺度生态系统演变模拟预测,气象水文耦合过程与灾害风险防范,安全-环境-健康耦合系统,气候变化-公共卫生事件耦合系统,环境污染过程、调控与修复,环境质量演变、预测与可持续管理,地质及工程灾害的致灾机理及早期识别、预警与防控,污染物的环境风险与健康效应,土地利用变化与土地退化,城乡融合过程、效应与调控,区域人类活动与资源环境耦合及其调控,资源环境制衡与风险预警,地表环境变化过程与生态效应,水碳循环与全球变化以及地球系统过程的数值模拟等。11. 空间科学:建立健全天基、地基和实验室多种观测能力和研究手段,加强以国家需求为导向的战略性基础研究及以科学问题为导向的原始性创新自由探索,进一步促进学科交叉和集成研究。到2025年,实现对现有空间科学科研资源的优化、整合和增强。“十四五”期间,重点支持行星宜居性及演化的研究,主要包括日地空间环境和空间天气,行星际空间环境对行星宜居性的影响,行星大气及其对宜居性的影响,宜居行星物质来源及挥发分演化,近地小行星物质特性与天体运动规律、撞击效应与环境影响机理,太阳爆发活动及其行星际传输和太阳周行为,地表环境灾变及其与太阳及行星活动的关系,太阳风-磁层-电离层-中高层大气的多时空尺度结构、演化和耦合过程,空间天气、空间气候和日地联系的基本物理过程,空间天气预报和灾害性空间天气预警的模式和方法,空间天气对航空航天、通信导航等的影响等。12. 海洋科学:重点布局依托物联网技术的太空-海气界面-深海-海底的多要素立体观测网。到2025年,实现前沿核心技术研发以及技术平台整合,提升开展跨尺度、跨圈层的多学科交叉研究层次。“十四五”期间,重点支持海洋动力学及其与生物地球化学、生态过程的耦合作用,极地环境快速变化与多圈层相互作用,深海多圈层物质能量循环及资源效应,高-低纬海洋过程对全球变化的驱动和响应,极地环境快速变化与多圈层相互作用,极地渔业生态系统演化与资源形成规律,海洋固-水-气演变过程和灾害机理,深海全天候原位实时观测体系,洋盆间的水体、物质、能量交换及全球效应,近海多界面耦合过程以及洋-陆边界综合观测及集成研究等。13. 材料科学:遵循材料科学自身发展规律,加强与工程科学的交叉融合,注重解决材料领域重大战略需求中的关键科学问题,推动基础研究与应用研究贯通。到2025年,形成有中国特色的新材料研究体系,我国材料科学基础研究水平得到显著提升,更好地支撑国民经济、社会和人民健康等发展需求。“十四五”期间,重点推进金属光电磁功能材料、金属能源材料、高性能结构陶瓷材料、高性能工程用天然橡胶材料、无机非金属信息功能材料、生物医用材料先进制造及材料生物学、有机/聚合物太阳能电池材料、电子信息用高性能高分子与功能高分子材料,以及材料多功能集成与器件设计等前沿方向研究;强化金属材料制备科学基础、无机非金属材料设计理论、高分子材料合成与改性、新概念材料人工智能设计和材料共性科学等重要基础性工作;扶持和关注材料加工与成型、理论与模拟等传统学科领域。推动材料科学与其他学科的深度融合,加强变革性材料前沿探索。14. 能源科学:能源科学领域将聚焦国家碳达峰重大战略目标,加强前瞻布局和系统部署,为推动能源革命和减污降碳提供高质量源头科技支撑。到2025年,我国能源科学领域整体研究水平和技术创新能力得到明显提升,产出若干具有国际重大影响的原创性成果,实现若干关键核心技术突破,推动我国能源学科整体发展达到国际先进水平。“十四五”期间,重点推进能源清洁低碳高效利用与节能减排的基础理论与关键技术研究,以及低碳能源电力系统与电能高效高质利用的前沿研究;加强化石能源低碳利用、可再生能源与新能源高效利用、智慧能源系统、高密度储能、高效制氢/储氢、能源电力系统减碳与安全、极端条件电磁能应用、超导电工技术、疾病电磁诊疗技术与仪器等领域的基础研究。15. 工程科学:将围绕矿业与冶金、机械设计与制造、建筑与土木、水利、环境、海洋、交通与运载等学科的重大科学问题和关键技术瓶颈,突出原始创新,强化学术引领;加强国家战略需求牵引的基础研究,加快与材料科学、信息科学等跨学科、跨领域的融合发展。到2025年,我国工程科学领域研究整体水平和创新能力将显著增强,在重点发展方向取得一批突破性成果;形成一批有国际重要影响力的研究群体。“十四五”期间,重点支持非常规油气智能开采技术基础,深部资源采选充冶一体化及原位转化基础,冶金与材料加工数字化与智能化技术基础,超滑新体系和超滑零部件的设计和实现方法,增材制造与激光制造科学与工程,土木工程结构全寿期安全保障与综合性能提升,极端环境条件下岩土工程基础理论,河流物质通量和调控基础理论,水系统协同演化与适应性调控基础理论,环境污染控制与安全保障,生态友好的海工结构物基础理论,超高速/极端服役条件下轨道交通系统基础理论与关键技术等重要基础问题的研究。16.信息科学:将围绕全面建设信息化和智能化社会战略需求,进一步加大支持前瞻性和原创性基础研究,强化关键核心技术攻关,补齐重点领域短板,增强自主创新能力。到2025年,初步完善信息科学基础理论与技术体系,逐步实现元器件、芯片、基础软件、网络通信等关键技术的创新。“十四五”期间,重点推进空天地海协同信息网络、网络安全、精准探测与信息融合处理、新型网络、类脑模型与类脑信息处理等前沿方向;继续强化安全可信人工智能基础理论、智能无人系统技术、面向复杂场景的计算理论和软硬件基础、大数据与交互计算技术、电子器件、射频电路关键技术、生物与医学电子信息获取和处理等创新研究;前瞻布局太赫兹科学与技术、宽禁带半导体、多功能与高效能集成电路、光电子器件及集成技术、新型光学技术、工业信息物理系统等学科方向。17. 数据与计算科学:将围绕社会治理、经济与金融、智能制造等国家战略需求,加大前瞻性、引领性基础研究支持力度,强化数据存储与管理、安全与隐私等关键技术创新。到2025年,为实现大数据科学在应急管理与公共安全等社会治理领域的率先应用提供支撑。“十四五”期间,重点支持数据与计算科学的基础理论与算法、大数据存储与管理技术、数据安全与隐私等重要基础问题的研究;强化数据分析与挖掘、大数据获取与计算、大数据机器学习与可视分析、数据知识工程与系统等核心技术的创新;探索数据科学与计算智能融合的新型科研范式;推动面向大数据理论研究与技术创新的重大基础科研平台建设;支持经济与金融、智慧城市、健康医疗、智能制造、能源环保、社会治理等应用领域中与数据和计算科学交叉问题的研究。18. 管理与经济科学:立足中国管理实践,服务国家战略需求,促进学科交叉,不断提升我国管理科学水平。到2025年,形成若干基于中国实践原创的管理与经济科学理论,提升服务国家战略需求的学科能力和水平,推进管理与经济规律的前沿探索,形成具有国际影响力的学术中心和科学家群体。“十四五”期间,重点支持数字和智能技术驱动的管理科学理论,包括复杂系统管理、人机融合管理、决策智能理论、企业数字化转型、数字经济新规律、城市管理的智能化转型、智慧健康医疗管理等前沿方向;强化中国管理实践的科学规律研究,包括中国企业管理与全球化、中国经济发展规律、政府治理及其规律、扶贫与乡村发展机理;扶持全球变局下的管理研究,包括全球变局下的风险管理、巨变中的全球治理、全球性公共卫生危机管理;重点关注应对人类发展挑战的管理科学,包括能源转型与管理、人口结构变化与社会经济发展。19. 医学:立足面向人民生命健康,坚持预防为主、防治结合策略,强化源于临床科学问题的临床与转化研究;加强中医药理论和技术的创新性研究;大力促进学科交叉,推进医学诊疗核心技术突破。到2025年,完善基础研究成果向临床转化机制,实现若干重大疾病诊疗核心技术突破,取得传统中医药在疾病防治基础研究中的突破,在多个领域取得具有国际影响的研究成果,形成若干有重要国际影响力的研究队伍。“十四五”期间,重点支持重大疾病的代谢紊乱、免疫异常、微生态失衡等共性病理机制及防治研究,肿瘤发生与演进机制和精准诊疗策略,重大慢病病因、致病机制及预防干预,新发和重大传染病的流行病学特征、发病机制及新型防控与诊疗策略,脑发育与功能异常与脑重大疾病的关系及诊治策略,衰老及其相关疾病的机制、早期诊断及治疗新方法,人类生殖健康、生育障碍及出生缺陷的发病机制与防控新技术,儿童重大疾病发生发展机制及早期防控,中医药学防治疾病的症候表型与整体疗效评价,创新药物、生物治疗、物理诊疗的新理论、新策略、新技术与新方法,基于医学大数据赋能的人工智能技术的疾病防、诊、治新技术等领域。
  • 2024年首届全国超声大会通知(第一轮)
    各相关单位和专家:中国声学学会生物医学超声工程分会、中国声学学会检测声学分会、中国声学学会物理声学分会、中国声学学会微声学分会、中国声学学会功率超声分会定于2024年11月1-4日在陕西省西安市西安曲江国际会议中心联合举办“2024年首届全国超声大会”,会议依托陕西省超声学重点实验室主办,由陕西师范大学物理学与信息技术学院承办。会议将围绕超声学及超声工程相关的基础理论、应用开发、前沿技术、工业及临床应用等研究热点,为在本领域从事科学研究、应用开发及临床应用研究的高校、科研院所、企事业单位和临床医学人员提供充分交流的平台,促进国内超声研究事业的高质量发展。一、征文范围生物医学超声及临床医学应用(01)诊断和治疗超声、超声生物效应、超声医学成像、超声造影剂微泡、医用光声成像、超分辨率超声成像、超声靶向治疗与药物输送、组织的超声波特性分析、超声弹性成像、医用超声换能器、医学超声的临床应用、功能超声成像、临床超声医学。检测超声、光声检测和固体声学(02)检测声学理论与方法;超声导波、非线性超声学、声发射技术、超声成像方法与技术;超声信号检测与处理;超声换能器与测试方法;超声在线检测系统等。固体中的声波与声波导理论;复杂固体介质中的声场计算;深部钻测声学理论、方法、技术及应用,包括声波测井理论与方法、声波测井换能器及有关仪器装备技术。物理声学(03)声学超构材料、声子晶体、拓扑声学、非厄米声学、非线性声学、复杂介质和结构中的计算声学、光声学、热声学、声表面波及应用等。功率超声(04)国内外功率超声领域研究动态;功率超声的新设备,新工艺,新应用;功率超声系统的设计、测试和评价方法;功率超声应用(如声化学、超声植物提取等)领域的理论和实验研究;其他功率超声领域的热点研究成果。超声传感与仪器(05)超声传感以及超声波仪器设备新系统开发;超声智能控制系统新工艺与新应用;超声信号处理新方法等。微声学(06)压电与弹性波理论,微声滤波器与信号处理器件,微声传感器,微声操控器件,新型微声器件与材料。交叉融合新兴领域(07)数字岩石和岩石声学物理学、储层声学中的机器学习和统计方法、储层声学和声波测井、新型大功率超声换能器材料与器件、超声加工前沿技术等。二、主办、承办、协办单位主办单位:中国声学学会生物医学超声工程分会中国声学学会检测声学分会中国声学学会物理声学分会中国声学学会微声学分会中国声学学会功率超声分会陕西师范大学陕西省超声学重点实验室承办单位:陕西师范大学物理学与信息技术学院陕西师范大学应用声学研究所西安声学学会陕西省声学学会协办单位:中华医学会超声医学分会中国生物医学工程学会医学超声分会中国仪器仪表学会声学仪器专委会中国研究性医院学会超声医学专委会中国科学院声学研究所北京市海洋深部钻探测量工程技术研究中心陕西省超声医学工程学会西安科技大学三、大会委员会(排名不分先后)大会主席:林书玉 教授,陕西师范大学(功率超声分会主任)大会副主席:刘晓峻 教授,南京大学(物理声学分会主任)马晋毅 研究员,中国电子科技集团公司第二十六研究所(微声学分会主任)他得安 教授,复旦大学(生物医学超声工程分会主任)王秀明 研究员,中国科学院声学研究所(检测声学分会主任)学术委员会:学术委员会主席:郑海荣 院士 中国科学院深圳先进技术研究院/南京大学李风华 研究员 中国科学院声学研究所苏众庆 教授 香港理工大学学术委员会委员:程建春 教授 南京大学程 茜 教授 同济大学陈 昕 教授 深圳大学程 营 教授 南京大学丁德胜 教授 东南大学邓明晰 教授 重庆大学郭建中 教授 陕西师范大学胡恒山 教授 哈尔滨工业大学李保文 教授 南方科技大学梁 彬 教授 南京大学梁 萍 教授 中国人民解放军总医院第五医学中心林书玉 教授 陕西师范大学廉国选 研究员 中国科学院声学研究所林伟军 研究员 中国科学院声学研究所刘晓峻 教授 南京大学刘晓宙 教授 南京大学刘正猷 教授 武汉大学罗渝昆 教授 中国人民解放军总医院第一医学中心马晋毅 研究员 中国电子科技集团公司第二十六研究所孙明健 教授 哈尔滨工业大学(威海)他得安 教授 复旦大学唐晓明 教授 中国石油大学(华东)屠 娟 教授 南京大学王小民 研究员 中国科学院声学研究所王秀明 研究员 中国科学院声学研究所王 文 研究员 中国科学院声学研究所王成会 教授 陕西师范大学项延训 教授 华东理工大学徐春广 教授 北京理工大学杨 军 研究员 中国科学院声学研究所章 东 教授 南京大学周光平 教授 深圳职业技术大学祝 捷 教授 同济大学张 涛 教授 西安科技大学周晓东 教授 西安国际医学中心医院组织委员会: 曹 辉 教授 陕西师范大学凤飞龙 教授 陕西师范大学郭建中 教授 陕西师范大学郝长春 教授 陕西师范大学李 锦 教授 陕西师范大学何 晓 研究员 中国科学院声学研究所贺西平 教授 陕西师范大学李 勇 教授 同济大学刘 洋 教授 天津大学林伟军 研究员 中国科学院声学研究所莫润阳 教授 陕西师范大学沈壮志 教授 陕西师范大学唐代华 研究员 中国电科第二十六研究所(微声学分会秘书)王成会 教授 陕西师范大学 (功率超声分会秘书)王 玥 副研究员 中国科学院声学研究所 (生物医学超声工程分会秘书)许凯亮 研究员 复旦大学张光斌 教授 陕西师范大学张 涛 教授 西安科技大学张小凤 教授 陕西师范大学周吟秋 副研究员 中国科学院声学研究所 (检测声学分会秘书)张志旺 研究员 南京大学 (物理声学分会秘书)四、会务组崔致远 副教授 陕西师范大学高 洁 副教授 陕西师范大学胡 静 副教授 陕西师范大学田 华 高级实验师 陕西师范大学田 野 副教授 陕西师范大学尹冠军 副研究员 陕西师范大学唐一璠 博士后 陕西师范大学王成会 教授 陕西师范大学武耀蓉 博士 陕西师范大学五、相关说明1. 本次会议的会议网站已经发布,诚邀各位专家学者通过会议网站投稿链接投稿参会。投稿要求:通过会议网站投稿地址(http://ncu2024.meeting666.com/)投稿,本次会议只接收稿件摘要,摘要格式见附件:投稿摘要格式.docx。投稿截止日期:2024年6月30日,录用通知发送日期:2024年8月30日。2. 如有疑问,请与会务组联系。中国声学学会生物医学超声工程分会中国声学学会检测声学分会中国声学学会物理声学分会中国声学学会微声学分会中国声学学会功率超声分会2024年5月
  • 叶笃正、吴孟超获2005国家最高科技奖
    在2006年1月9日上午举行的全国科学技术大会上,叶笃正与吴孟超两位科技工作者荣获国家最高科学技术奖。   以下是这两位获奖者的介绍:    叶笃正   叶笃正,男,1916年2月出生于天津市,1948年11月在美国芝加哥大学获博士学位 气象学家,中国科学院院士 历任中国科学院地球物理研究所研究员、研究室主任,大气物理研究所研究员、所长,中国科学院副院长等职 现任中国科学院特邀顾问,中国科学院大气物理研究所名誉所长 美国气象学会荣誉会员 英国皇家气象学会会员 芬兰科学院外籍院士 曾在许多国际国内学术组织中担任重要职务。   叶笃正院士的主要科学技术成就如下:   (1)开创青藏高原气象学。叶笃正首先发现围绕青藏高原的南支急流、北支急流及它们汇合成为北半球最强大的急流,严重地影响着东亚天气和气候 他与国外气候学家Flohn各自指出了青藏高原在夏季是大气的一个巨大热源,叶笃正还首先指出青藏高原冬季是冷源 他同时还深入地研究了夏季青藏高原热源及其对东亚大气环流的影响。由于他的研究工作,国际上才接受了大地形热力作用的概念,为青藏高原气象学的建立奠定了科学基础。   (2)创立大气长波能量频散理论。提出了大气平面Rossby波的能量频散理论,从理论上证明了西风环流中的能量可按远大于风速的群速度向下游(或上游)传播,为现代大气长波的预报提供了理论基础 同时,也对阻塞高压天气系统的生成、维持和移动给出一种动力学解释。这个理论31年后才由B.Hoskins的“大圆理论”所推广,成为对遥相关和遥响应的理论解释。   (3)创立东亚大气环流和季节突变理论。叶笃正与陶诗言等发现东亚和北美环流在过渡季节(六月和十月)有急剧变化的现象,这一发现对中国天气预报有重要意义。他们还发现阻塞形势的建立和崩溃常伴随着大范围环流形势的强烈转变,它的长期维持则带来大范围气候反常现象,从而证明了阻塞高压在持续异常天气预报中的重要性。这些发现和理论成为研究东亚气象学问题的重要文献,奠定了中国天气预报的重要基础。国外的学者在10多年后,由于1976年冬季北美出现极其寒冷的天气,才开始提出各种系统理论,并形成了一个重要的研究方向。   (4)创立大气运动的适应尺度理论。大气环流中究竟是气压场还是风场为主导是学术界长期争论的问题,也是天气预报的关键之一。叶笃正等通过一系列工作建立了大气运动适应尺度理论:对不同空间尺度的运动都存在着特征尺度,当实际运动的空间尺度大于这个特征尺度时,气压场起主导作用 当运动的空间尺度小于特征尺度时,风场起主导作用 对中小尺度的大气运动,同样存在适应问题。这个独创的理论完善了大气运动各分量的相互作用过程的物理解释,在天气预报业务上有重要的应用。   (5)开拓全球变化科学新领域。上世纪70年代末至80年代,叶笃正积极组织并领导中国开始气候变化的研究。他积极参加全球变化科学组织(IGBP)的创立,并发挥了重要作用,并贡献了一系列科学思想,如:气候和植被过渡带的敏感性、全球变化中大气化学的作用和“有序人类活动”适应全球变化等。他通过模拟计算后指出,大范围的灌溉对气候和水文的影响时间可长达3-6个月,从而证明了人类活动对气候的影响的可能性(被称为“陆面记忆”)。   (6)对中国现代气象业务事业发展的卓越贡献。叶笃正的理论研究成果对提高气象业务水平起到重要作用,有些至今仍在发挥作用,如大气长波能量频散理论在业务天气预报中俗称为“上游效应” 阻塞高压形成和维持的理论,一直是业务上对持续异常天气预报的重要理论基础 青藏高原气象学理论,在中国气象业务中不仅是天气预报的重要基础之一,更是气候预报的主要基础 大气运动的风场和气压场的适应的尺度理论至今仍是天气分析和预报的主要理论基础之一。此外,他积极参与和指导建立中国气象业务系统,为中国气象局的“气象中心”、“气候中心”和“信息中心”的建立做出了实质性贡献。   叶笃正的科学贡献得到了国内外一致承认,也为他赢得许多荣誉,主要有:国家自然科学一等奖 何梁何利基金科学与技术成就奖 陈家庚地球科学奖 世界气象组织最高奖-第48届IMO奖等。世界气象组织在授予叶IMO奖时确认叶笃正获奖理由为:建立青藏高原气象学 大气环流的突变的发现 提出大气能量频散理论 倡导与可持续发展相联系的全球变化研究和人类有序活动对全球变化影响的适应等。    吴孟超   吴孟超,男,1922年8月出生于福建省,1949年毕业于同济大学医学院,获学士学位 肝脏外科学家,中国科学院院士 现为中国人民解放军第二军医大学东方肝胆外科医院院长、东方肝胆外科研究所所长 曾任第二军医大学副校长、中华医学会副会长、解放军医学科学技术委员会副主任等 12次担任“国际肝炎肝癌会议”等重要学术会议的主席或共同主席。   吴孟超院士的主要科技成就如下:   (1)创立了肝脏外科的关键理论和技术体系。   为奠定肝脏外科的基础,从1958年起,他进行了肝脏解剖的研究,在建立人体肝脏灌注腐蚀模型并进行详尽观察研究和外科实践的基础上,创造性地提出了“五叶四段”的解剖学理论 为解决肝脏手术出血这一重要难题,在动物实验和临床探索的基础上,建立了“常温下间歇肝门阻断”的肝脏止血技术 为掌握肝脏术后生化代谢的改变以降低手术死亡率,通过临床和肝脏生化研究发现了“正常和肝硬化肝脏术后生化代谢规律”,并据此提出了纠正肝癌术后常见的致命性生化代谢紊乱的新策略 为进一步扩大肝脏外科手术适应症,提高肝脏外科治疗水平,他率先成功施行了以中肝叶切除为代表的一系列标志性手术。以上述工作为基础,创立了独具特色的肝脏外科关键理论和技术,建立了中国肝脏外科的学科体系,并使之逐步发展、壮大。   (2)开辟了肝癌基础与临床研究的新领域。他针对肝癌发现时晚期多、巨大且不能切除者居多的特点,提出“二期手术”的概念,即对巨大肝癌先经综合治疗,待肿瘤缩小后再行手术切除,为晚期肝癌的治疗开辟了一条新的治疗途径 针对肝癌术后复发多、但又缺乏有效治疗的特点,率先提出“肝癌复发再手术”的观点,显著延长了肝癌患者的生存时间 针对中国肝癌合并肝硬化多,术后极易导致肝功能衰竭的特点,提出肝癌的局部根治性治疗策略,使肝癌外科的疗效和安全性得到有机统一。上述研究使肝癌术后5年生存率由60-70年代的16.0%,上升到80年代的30.6%和90年代以来的48.6%,不断丰富和发展了中国的肝脏外科事业。为了提高中国肝脏外科的科学研究水平,使肝脏外科事业持续、深入的发展,吴孟超院士组建了国际上规模最大的肝脏外科专业研究所,牵头指导了一系列具有国际先进水平的基础研究工作,研制了细胞融合和双特异性单抗修饰两种肿瘤疫苗,发明了携带抗癌基因的增殖性病毒载体等,研究结果发表于《Science》、《NatureMed》、《Hepatology》、《Oncogene》、《CancerResearch》等学术刊物。   (3)创建了世界上规模最大的肝脏疾病研究和诊疗中心,培养了大批高层次专业人才。他领导的学科规模从一个“三人研究小组”发展到目前的三级甲等专科医院和肝胆外科研究所,成为国际上规模最大的肝胆疾病诊疗中心和科研基地 设立吴孟超肝胆外科医学基金,奖励为中国肝胆外科事业作出卓著贡献的杰出人才和创新性研究 培养了大批高层次专门人才。通过他和同行们的共同努力,推动了国内外肝脏外科的发展,多数肝癌外科治疗的理论和技术原创于中国,使中国在该领域的研究和诊治水平居国际领先地位。   他从事肝脏外科领域研究近五十年来,发表学术论文796篇,主编《黄家驷外科学》、《PrimaryLiverCancer》等专著15部,获得国家、军队、省部级科技奖励26项,获中央军委授予的“模范医学专家”称号和国际肝胆胰协会授予的“杰出成就奖”等荣誉26项。   年逾八旬的吴孟超院士,为了中国的肝脏外科事业,至今仍奋斗在临床、教学、科研第一线。
  • 一大波展会即将来袭,优普等您!
    一、第31届国际医疗仪器设备展览会 国际医疗仪器设备展览会是在中国医疗器械行业中颇具影响力的专业展览会。作为中国首家通过国际展览业协会(UFI)认证的国际医疗仪器设备展览会,CHIND MED一直致力于成为国际先进产品和技术亮相的舞台,前沿医学理论与实践的交汇的平台。@会议地点:国家会议中心北京@会议时间:2019年3月22日-24日@优普展位:5B061、1A031二、2019年第三十届北部湾广西医疗器械展览会 北部湾广西医疗器械展览会(简称:广西医博会)从2000年创办至今,已经走过了十八年的辉煌历程。2019年第三十届广西医博会,将站在更高的起点,面向更广阔的市场,用实效与服务推动本届展会迈上更高的台阶,实现更高的跨越!@会议地点:南宁国际会展中心@会议时间:2019年3月22日-24日@优普展位:C区25号三、第十六届国际检验医学暨输血仪器试剂博览会 2019年3月22日-24日第十六届国际检验医学暨输血仪器试剂博览会(CACLP)将在南昌绿地国际博览中心隆重举行。CACLP历经16年风雨,在全体体外诊断人的共同努力和关心下,已经成长为驰名国内外的旗帜性体外诊断专业商业展。@会议地点:南昌绿地国际博览中心@会议时间:2019年3月22日-24日@优普展位:A4-B35(转角)
  • 中国高光谱成像技术应用领域及发展前景
    特色高光谱技术具备对植被、水体、土壤等地物进行精准定量分析的能力,已经在军民融合、自然资源监测、环保监测、海洋监测、农作物面积统计以及估产、保险定价与理赔、应急管理、城市规划、重大工程监测等领域得到了示范应用,受到了部队、政府、行业等诸多用户的好评,树立起了业内高光谱卫星数据应用的新标杆。例如,在贵州省玉米种植面积统计、新疆棉花种植面积统计、雄安新区农作物分类等应用中,精确度达到95%以上。 高光谱成像技术应用领域及发展前景中国高光谱技术应用于遥感卫星行业,主要包括农业高光谱、动物高光谱成像、矿物高光谱检测等,帮助人们更好地分析、理解这个世界。高光谱技术具有波段多、光谱范围窄、波段连续、信息量大等特点,是多光谱技术的升级。随着测谱学理论的发展和成像光谱学的建立以及成像光谱技术的应用,使得人们有能力获得这些信息,并利用这些信息,使得人们对景物或目标的分析和识别变得更加精准。应当说,成像光谱学理论及其相关技术使得人们可以从中获取更多的信息,使宇宙空间和微观世界的探索更为有效、准确,同样也使人们对自然界的认知水平和能力有了较大的提高。高光谱成像技术,在民用和军事上都已经成为发达国家科技争夺的制高点之一,其不仅可用于宇宙物质探测鉴别,而且可利用航空遥感或卫星遥感技术,对地质、矿产蕴藏、森林、水利、海洋、农业等资源进行有效而准确的物质分析判断 在气象方面可进行自然灾害预测、预报、环境污染检测 在生物医学领域可进行细胞、染色体分类、分析、识别和医疗诊断 在军事、公安等国家安全部门中用于军事目标侦察、制导、警戒系统、防御系统及其反伪装侦察。遥感卫星主要包括光学遥感卫星及雷达遥感卫星,其中光学遥感卫星分辨率高:光学遥感卫星空间分辨率高,但易受环境影响,而雷达遥感卫星可全天候工作,但分辨率相对较低。全球遥感卫星占在轨卫星比例迅速上升,遥感卫星因具有用途广泛、技术准入门槛低、卫星制造成本低、发射成本低、无轨位限制等特点,受到创新型商业航天企业青睐。遥感卫星可在气象、灾害监测、资源和测绘等应用方面创造较高的社会经济效益,其受益者为国家和全体公众,因此数据本身具有社会性和公益性、大部分遥感数据无法在短期内实现商业化发展,但未来行业的商业化发展是未来的必然趋势。根据美国Union of Concerned Scientists数据,截至2021年4月,美国拥有的遥感卫星存量排名第一,数量为442颗 其次为中国,遥感卫星存量215颗,美国和中国遥感卫星存量相比其他国家处于绝对优势地位。但美国遥感卫星存量在中国的两倍以上,中美遥感卫星存量差距依旧明显。不过从中国遥感卫星年发射情况来看,我国遥感卫星发射量呈现上升趋势。2009年我国遥感卫星发射数量仅为3颗,而到了2020年发射数量为33颗,我国遥感卫星发射规模大幅提升。遥感卫星市场规模的快速增长得益于航空航天技术的进步和国家鼓励政策的推进。《“十三五”国家战略性新兴产业发展规划》中曾提出打造国产高分辨率商业遥感卫星运营服务平台,推进商业卫星发展和卫星商业化应用。2020年据初步测算,中国遥感卫星市场规模达到了102亿元,相比2016年增长了61.90%。
  • 原西安理工大学理学院院长田英炎为金义博题词
    无锡市金义博仪器科技有限公司是拥有自主知识产权以分析仪器研制、开发、制造、市场营销为一体的现代化高科技公司。专业制造红外碳硫分析仪、光电直读光谱仪、等离子体发射光谱仪、系列湿法化学分析仪器等产品。可分析碳、硫、硅、锰、磷、镍、铬、铜、钼、铁、钛、稀土、镁等多种元素。其中高频红外碳硫分析仪、光电直读光谱仪技术居国内领先水平。产品广泛应用于钢铁、冶金、铸造、机械、建筑、大专院校、石油化工、质量监督及进出口商检等领域。 田英炎,曾任西安理工大学理学院院长。在高速分析领域设计新理论、新仪器、新方法,研制的电导碳硫分析仪远销国内外。特别在电弧燃烧炉燃烧机能理论上有重大突破。合著《高速分析技术及其应用》,主编《碳硫分析专论》一书。 2010年,金义博投入大量的科研力量致力于提升红外碳硫分析仪的制造水平,首创将CO转化为CO2的装置应用到我公司生产的高频红外碳硫分析仪上www.instrument.com.cn/show/news/050656.shtml ,并推出新品CS-8800C型高频红外碳硫分析仪。2010年,我公司研制生产的TY-9610型光电直读光谱仪和CS-8800型高频红外碳硫分析仪均获得了省高新技术产品证书www.instrument.com.cn/show/news/054185.shtml,同时我公司先后获得了6项专利证书。针对无锡市金义博仪器科技有限公司的迅速发展,原西安理工大学理学院院长田英炎特在2011年春节来临之际为金义博题词一首,以贺金义博公司的快速发展。全文如下: 七律.创新领先    公司简名金义博, 创新惊奇喜当歌。   红外用上铂催化,   领先仪器更准确。   直读光谱抗洋货,   技术精湛用户多。   闪亮登场“ICP”,   科技花朵萃博乐。   自作小句,献金义博。    2011年春节。 田英炎 词
  • 纳克微束邀您参加2023年全国电子显微学学术年会
    2023年10月26日-30日,由中国电子显微镜学会主办的2023年全国电子显微学学术年会将于东莞会展国际大酒店召开。会议瞄准国家重大需求和国际前沿科学问题,邀请著名专家、学者参加会议并作大会特邀报告,并邀请电子显微产业上下游企业展示最新技术研究成果与应用解决方案,纳克微束邀您共同探索。 本届年会按材料科学与生命科学拟设立十三个分会场,包含:1)显微学理论、技术与仪器发展;2)原位电子显微学表征;3)功能材料的微结构表征;4)结构材料及缺陷、界面、表面,相变与扩散;5)先进显微分析技术在工业材料中的应用;6)扫描探针显微学(STM/AFM等);7)扫描电子显微学(含EBSD);8)聚焦离子束(FIB)在材料科学中的应用;9)低温电子显微学表征;10)生物显微学研究;11)生物医学和生物电镜技术分析;12)中国电子显微镜运行管理开放共享实验平台经验交流;13)先进材料。 本届年会学术交流内容包括:球差校正透射电子显微学及应用、原位显微学技术(包括力学、物理、化学、生物等)及应用、高分辨扫描电子显微学、微束分析、扫描探针显微学(包括STM、AFM等)、低温电子显微学和激光共聚焦显微学等。会议亦包含这些技术在前沿物理科学、化学、地学、生命科学、医学和信息科学等学科及新能源技术、热电材料、信息技术、环境科学与技术、先进结构材料等领域中的基础研究和应用基础研究成果;会议将展示显微学相关仪器理论、技术和实验方法的最新进展;会议将促进电镜及其他显微学仪器的共享、运行、管理、开放共享、实验平台使用、改进与维修的交流等。 纳克微束作为上市央企钢研纳克(股票代码:300797)控股子公司,纳克微束传承钢研纳克70年技术沉淀与研发精神,自成立起就全 球世界顶 尖的电子显微类相关产品研发与制造,对标世界顶尖电镜仪器厂商和产品,不断推动国产高端仪器的发展。不断为我国“卡脖子”难题的攻克贡献中国电子显微行业不可或缺的重要力量。
  • 盘点|湖南以“四大实验室”为牵引,重构实验室体系
    仪器信息网讯 近年来,湖南正在加速形成以“岳麓山实验室、岳麓山工业创新中心(实验室)、湘江实验室、芙蓉实验室”等“四大实验室”为牵引,领域布局合理、定位层次明晰、特色优势明显的湖南省实验室体系。这其中,岳麓山实验室着力打造种业创新国家战略科技力量;岳麓山工业创新中心将打造成工业共性技术创新平台;芙蓉实验室则聚焦精准医学领域,着力打造国内顶尖、世界一流的新型实验室。(图:长沙晚报)01【湘江实验室】——建成国际一流的先进计算与人工智能实验室湘江实验室是湖南强化算力支撑的重大创新平台,是湖南首个揭牌的省级实验室。2022年7月10日上午,湘江实验室揭牌仪式在湖南湘江新区长沙高新区北斗产业园举行。 首批19个院士专家团队入驻实验室。(点击查看 )湘江实验室依托湖南在先进计算与人工智能领域具备的人才链、创新链、产业链优势,积极聚集国内外科技创新资源,按照“总部+分部+创新中心”进行布局,总部由重大基础研究、科技创新和成果转化等部门组成,分部设在国防科技大学、中南大学、湖南大学、湖南工商大学等7所高校,建立共性关键技术的研究基地;创新中心设在华为、百度、湖南钢铁、中车株机、三一重工、中联重科、中电48所、景嘉微、拓维信息等25家企业,建立科创中心和成果转化中心。湘江实验室以“1346”整体框架建设,将建成一个实验室总部,建设算力、算法、算据三大中心,聚焦数据智能、高性能计算的人工智能、新型智能计算、面向领域的关键共性技术四大主攻方向,在智能制造、智慧医疗康养、智慧资源能源与环境、智慧交通与物流、科学监管与社会治理、数字媒体六大领域开展深度应用,打造示范引领区。实验室将瞄准先进计算与人工智能基础科学理论与前沿尖端技术发展趋势,不断集聚优秀科技力量、高端人才与创新资源,逐步实现构建一套原创性科学理论,攻克一组突破性技术方法,建设一个国家级创新平台,形成一批交叉型新兴学科,引培一支世界级人才队伍,形成一套创新型科研管理体系,推动形成一批千亿级产业集群等“七个一”建设目标。02【岳麓山实验室】——着力打造种业创新国家战略科技力量2022年3月7日,岳麓山实验室建设项目开工仪式在湖南农业大学耕园基地举行,意味着湖南在打造生物育种科学研究高地、种源关键核心技术创新高地、重大战略品种培育高地、高水平种业创新人才聚集高地上迈出标志性一步。2022年6月20上午,岳麓山实验室(林大林科院片区)正式开工建设。湖南省副省长陈飞宣布开工。岳麓山实验室是对标国家实验室,立足湖南省优势种业创新资源,开放集聚国内外种业创新力量,将建设1个实验室总部,统筹种植与养殖2大领域,面向动物、植物、微生物3大种业,在全国“东南西北中”5大区域布局基地,聚焦“驯化、选育、杂交育种、分子育种、设计育种”5种方式,实现“安全、发展、品种、育种、推广、产业化”6大任务。岳麓山实验室长沙总部包括农大农科院片区、隆平片区、林大林科院片区、岳麓山大科城四大片区,有十余家高校院所和企业参建。农大农科院片区主攻育种基础理论与种业安全战略、前沿育种技术等种业重大基础科学问题研究和国家重大战略种质培育。着力打造水稻、旱粮、畜禽、蔬菜、油菜、茶树、微生物和中药材等重大战略种源创新区、育种共性技术研究创新区以及高水平种业创新人才集聚区。隆平片区主攻分子设计育种、大数据智能育种等研究,着力促进种业科技成果转化和重大战略性品种培育与产业化。打造分子育种、大数据智能育种共性技术研发共享区、种业科技成果转移转化示范区、重大战略品种培育与产业化区。林大林科院片区主攻油茶、林果等优势特色林木育种研究,着力打造木本油料与特色林木育种创新区、油茶产业化基地。岳麓山大学科技城片区主攻生物种业超算系统、水产育种研究、淡水鱼类战略性新品种培育等研究。打造淡水鱼类战略性新品种培育创新区、生物育种算力共享区。03【岳麓山工业创新中心】——将打造成工业共性技术创新平台2020年12月26日下午,“中国工程科技联合创新中心—湖南工业创新中心”(又称“岳麓山工业创新中心”)院士咨询座谈会举行。湖南省委副书记、省长许达哲与中国工程院院长李晓红共同为中心揭牌。岳麓山工业创新中心将借助中国工程院智库资源优势,面向湖南省重点优势产业,依托湖南大学建设,整合岳麓山大学科技城、“两山一湖”创新创业基地和长沙高新区麓谷产学研基地等资源,聚焦湖南轨道交通、工程机械、中小航空发动机等特色优势产业,着力打造服务于全产业链的技术创新中心、应用基础研究中心、新兴产业孵化中心、工业战略咨询中心等四类中心,下设轨道交通、工程机械、中小航空发动机、新材料、信息、新能源、智能制造、冶金与环保等八大分中心。同时,中心还将依托中车株所、中车株机、中车株电、湘电、三一重工、中联重科、铁建重工、山河智能、中国航发608所、中国航发331厂等核心企业,面向国家重大需求开展关键技术攻关和成果转化,形成一批具有国际竞争力的企业和引领产业升级的特色新兴产业集群。04【芙蓉实验室】——聚焦精准医疗领域,着力打造国内顶尖、世界一流的创新实验室日前,湖南省人民政府办公厅正式印发《芙蓉实验室建设方案》,中南大学牵头建设芙蓉实验室。(点击查看 )中南大学牵头建设芙蓉实验室芙蓉实验室聚焦精准医学领域,是以保障人民生命健康为目标,以重大临床问题为导向,以精准医学前沿基础研究为核心,以精准诊疗技术创新为抓手的新型实验室。实验室依托我省在生命健康领域相关高等学校、科研院所、医疗机构和疾控机构优势资源,充分调动相关领军企业积极性和主动性,紧密围绕“保障人民生命健康,不断提升医疗水平,不断降低治疗费用”的初心和“统筹力量,形成合力,建成一流的精准医学实验室”的使命,结合我省卫生健康领域特点,围绕我省医疗优势特色领域锻长板、补短板。芙蓉实验室按照“总部+基地”进行布局,总部由功能研究部、公共创新平台和重大疾病研究中心组成,基地包括创新诊断试剂、创新器械和创新药物产业基地。实验室将先期组建创新药物与前沿治疗等7个研究部,打造公共卫生风险预警防控平台等9个公共创新平台和肿瘤、心血管疾病、老年性疾病等18个重大疾病研究中心。第一期总投资预计20亿元,主要用于人才队伍建设、实验室升级改造、日常运行、科研仪器设备和维护、重大科研项目攻关。文件明确,实验室筹建期间,委托中南大学湘雅医学院履行统筹管理职责。目前,中南大学已启动芙蓉实验室总部核心区—湘雅医学院东校区整体规划,组建工作专班,全力推进实验室筹建工作。芙蓉实验室将与我校已获批的个体化诊疗技术国家工程研究中心、国家医学中心功能互补、相互支撑、协同建设,全面提升我校医学研究和医疗技术水平,打造体现国家意志、实现国家使命、代表国家水平的战略科技力量。(本文编辑:刘立东)仪器信息网有奖征集:欢迎新闻爆料或投稿(点击查看)【行业征稿】若您有生命科学、医药、临床等行业相关研究、技术、应用、管理经验等愿意以约稿形式共享,欢迎自荐或引荐投稿联系人:刘编辑word图文投稿邮箱:liuld @instrument.com.cn 微信/电话:13683372576
  • 金艾顺教授与日本研究团队合作发现T细胞活化新机制并研发快速筛选功能性TCR新技术
    4月8日,重庆医科大学基础医学院金艾顺教授与日本富山大学医学部免疫学研究室Kishi Hiroyuki/Atsushi Muraguchi/Kobayashi Eiji等合作的研究成果在生物医学工程TOP期刊《Nature Biomedical Engineering》杂志在线发表。该成果发现了T细胞识别抗原新机制,并研发了将其应用于肿瘤特异性T细胞受体(TCR)快速筛选和TCR-T细胞免疫治疗的新技术。机体免疫系统的免疫细胞能识别和清除体内的肿瘤细胞或被病毒感染的细胞。T淋巴细胞(T细胞)介导的细胞免疫应答反应在识别和清除病变细胞中发挥重要作用。T细胞杀伤靶细胞(肿瘤细胞或被病毒感染的细胞等)的作用机制是通过T细胞表面表达的TCR识别并结合靶细胞表面MHC分子提呈的抗原肽(MHC-抗原肽复合物),对其进行攻击和杀伤进而清除靶细胞。至今,T细胞上的TCR与靶细胞上的MHC-抗原肽相互作用而活化T细胞,我们叫做trans-activation(图1b),这种T细胞的活化机制是被发现几十年以来被公认的公理。图1 TCR与同一T细胞表达的pMHC复合物结合模拟图(a)。TCR与同一T细胞上的pMHC的cis相互作用(b)。传统的TCR与pMHC-I的trans活化机制(传统的)(c)。通常,T细胞也通过自身表达的MHC分子提呈抗原肽。该合作团队研究发现同一个T细胞上的TCR能与这个T细胞上的MHC-抗原肽结合并被活化,并将这个新发现的活化机制叫做cis-activation(图1ab)。至今国际上尚未见有相关报道,是对T细胞活化机制的补充。合作团队利用这个T细胞活化的新机制研发了特异性T细胞快速分析和TCR基因快速筛选技术,比此前报道的TCR-T细胞技术(Nat Med. 2013 Nov 19(11):1542-6)更加快速有效,为TCR-T细胞抗肿瘤免疫治疗提供了崭新的技术平台。通过该技术筛选的TCR制备的TCR-T细胞展现出比以往方法用于临床试验的TCR- T细胞具有更强的肿瘤杀伤作用。该研究成果的重大意义在于:一是发现T细胞活化新机制,将为详细阐明T细胞发生发育机制提供重要科学理论依据。二是研发的TCR基因筛选技术能更有效从患者血液筛选具有杀伤性的TCR,为TCR- T细胞抗肿瘤或抗感染的免疫治疗提供技术平台。基础医学院免疫研究中心主任金艾顺教授是本研究主要作者之一。金艾顺教授长期致力于肿瘤免疫治疗研究,早期主要从事抗体药物研究,在全人源单克隆抗体快速筛选技术研发和抗体药物研究等方面取得突破性研究成果(Nat Med. 2009 Sep 15(9):1088-92.)。近年来,金艾顺主要聚焦于T细胞活化机制和TCR-T细胞免疫治疗方面。在T细胞活性机制研究时,受抗体技术研发的启发,金艾顺团队将T细胞用于单细胞分离独立培养,发现在添加抗原肽刺激没有靶细胞提呈MHC分子时T细胞也能被活化分泌效应因子,在经历长达10年研究和求证后提出T细胞活化新机制和新理论,该理论如果通过更先进技术得到更多更深的研究和应用,将有望为阐明自身免疫性疾病等更多疾病的发病机制提供新思路。原文链接:https://rdcu.be/cKSAh
  • 第八届全国微波化学及第三届样品前处理学术会议 (第一轮通知)
    尊敬的专家、学者:   由中国电子学会微波化学专业委员会和中国分析仪器学会样品前处理专业委员会主办、湖北师范学院和黄石理工学院承办、污染物分析与资源化技术湖北省重点实验室协办的“第八届全国微波化学及第三届样品前处理学术会议”定于2010年10月14日至17日在湖北省黄石市召开。会议组织委员会热忱欢迎国内外从事微波化学、样品前处理及相关技术研究的专家、学者及相关企事业单位踊跃参加,相互交流学术成果,促进我国微波化学、样品前处理及技术的发展。现将会议有关事宜通知如下:   一、会议主题:   ★微波化学是实现节能减排国家战略的重要技术支撑之一,样品前处理是目前分析化学的瓶颈和和工业产品纯化中的薄弱环节。   ★深化微波化学与样品前处理技术的创新研究,促进专用仪器的研发与应用,推动产学研合作和节能减排战略的实施。   二、 征文范围   1. 微波化学理论及应用研究进展   2. 微波技术在化学、化工、医学、食品科学、环境等领域中的研究和应用   3. 微波化学反应设备研制、开发和应用   4. 微波化学及技术与节能减排   5. 样品前处理理论及其技术的新进展   6. 样品前处理专用仪器设备的研制、开发和应用   7. 样品前处理技术和仪器在食品监控、质检、环境监测及工业分析中的应用   8. 工业产品的样品前处理技术和仪器。   会议将有国内外仪器公司参加展出,欢迎国内外公司、厂商到会介绍和展出产品。   三、征文要求   会议论文将在《材料保护》杂志(CSCD源)增刊上正式发表!   论文格式:请参照《材料保护》杂志投稿须知(http://www.mat-pro.com/)。   截止日期:2010年8月10日   四、联系方式   地址:湖北黄石市湖北师范学院污染物分析与资源化技术湖北省重点实验室   联系人:吕鉴泉、欧阳宇   e-mail: y.ouyang@163.com   电话: 0714-6575919,传真:0714-6531032   邮编:435002 中国电子学会微波化学专业委员会   中国分析仪器学会样品前处理专业委员会   全国微波化学与样品前处理会议组委会(湖北师范学院)
  • 上交大吕海涛|功能代谢组科学实验室成立六周年啦!
    Laboratory for Functional Metabolomics Science (LFMS) (功能代谢组科学实验室) is at The Frontiers of Functional Metabolomics Toward The Interdisciplinary Sciences of Life and Health功能代谢组科学实验室 (LFMS)主体依托上海交大系统生物医学研究院/系统生物医学教育部重点实验室吕海涛课题组主体依托上海交通大学系统生物医学研究院,系统生物医学教育部重点实验室和系统生物医学111引智计划等一流科研设施平台,目前建有完善的组学分析平台、细胞生物学平台、细胞与动物实验设施,生物信息学分析平台等。近五年,实验室在国家重点研发计划,国家自然科学基金、上海自然科学基金,国家转化医学研究中心和上海交通大学,上海市院士专家工作站(专家级),安捷伦科技(中国),SCIEX中国和鹿明生物科技等基金项目支持下,重点开展面向生命健康科学交叉应用的下一代功能代谢组学研究(Spatial Temporal Operative Real Metabolomics-STORM 和Spatial Temporal Operative Real Metabolomics Plus-STORM+)。主要围绕功能代谢组学理论与方法学创新,及其生命健康交叉科学领域的微生物源/中药源功能天然产物的治疗发现等关键科学问题,开展了系列探索性研究工作,主要在如下三方面取得阶段性新进展:1) 创新功能代谢组学理论与方法学 2) 基于功能代谢组学阐明微生物铁载体的新功能和生物膜形成的新机理 3) 基于功能代谢组学革新肝胆胰疾病诊断与解析天然产物治疗疾病的新机制。  Laboratory for Functional Metabolomics Science (LFMS)has been mostly focusing on the method innovations and translational applications of functional metabolomics in the interdisciplinary sciences of life and health. The track-record of the LFMS can be summarized as the follows: 1) definition and development of novel methods and strategies of functional metabolomics, such as precision-modification metabolomics and spatial temporal operative real metabolomics (STORM). 2) elucidation of the new regulatory-mechanism of siderophore biosynthesis on the virulence formation of pathogenic Escherichia coli 3) clarification of novel mechanism of biofilm formation in pathogenic Escherichia coli at a functional-metabolism level, conserving novel strategy to tangle all the harmful impact of biofilms by targeting functional metabolites, which are extremely threaten-microorganisms mostly account for high-frequency drug resistance, air pollution and food contamination. 4) identification of novel metabolite biomarkers that can facilitate the diagnosis and metastasis monitoring of pancreatic cancer, as well as characterization of novel metabolic targets for disease therapeutic discovery. Currently, LFMS further studies the novel methods of next-generation functional metabolomics (STORM+) aiming at promoting the interdisciplinary applications of life and health sciences by the discovery of poly-functional metabolites in a diversity of biological matrixes .  Over the past five years, based on these research findings on functional metabolomics and its translational applications in the interdisciplinary sciences of life and health, LFMS has successfully secured many national competitive research grants from The National Natural Science Foundation of China and The Ministry of Science and Technology of People’s Republic of China, as well five competitive research grants from different funding agencies. As a corresponding author, LFMS Faculty Director Dr. Haitao Lu has published 58 peer reviewed papers in many high-profile journals. Dr. Lu has delivered 40 invited presentations and plenary lectures in International/national conferences, and overseas top-ranking institutions.  In terms of academic achievements and impactful contribution in the field of functional metabolomics and its translational applications in the interdisciplinary sciences of life and health, Dr. Lu was elected as a fellow of The Royal Society of Chemistry in UK (FRSC), a fellow of The Royal Society of Biology in UK (FRSB), a fellow of Linnean Society of London in UK (FLS), and an vice secretary general, Metabolomics Committee Biophysical Society of China. In addition, Dr Lu actively participates in public service by providing peer-review support, knowledge exchanging, and scholar-Insight, who has been invited to be a faculty member (chemical biology)- Faculty Opinions Prime (Former F1000 Prime), an academic membership for Editorial Board of many peer-reviewed journals: Pharmacological Research (Section Editor, Q1, TOP), Phytomedicine (Ex-Associate Editor, Q1, TOP), Royal Society Open Science (Q1, Associate Editor), Chinese Medicine (Q1, Associate Editor), Proteomics(Q1, EBM), APSB (Q TOP, Young EBM), JAT, as well as act as peer-reviewed expert for National Natural Science Foundation of China, NHMRC in Australia and Health and Medical Research Fund (HMRF) in Hong Kong, and more than 30 high-impact journals.  Faculty Director/Principal Investigator  吕海涛博士,上海交通大学系统生物医学研究院/系统生物医学教育部重点实验室研究员(长聘教席)/博士生导师, 英国皇家化学会会士(FRSC), 英国皇家生物学会会士(FRSB),伦敦林奈学会会士(FLS), TALENT-100和绿色通道引进高层次人才,Faculty Opinions (F1000 Prime)Faculty 专家,澳门科技大学兼职教授/博导,功能代谢组科学实验室主任, 上海院士专家工作站(专家级) 首席专家。主要研究方向:生命健康交叉应用驱动的下一代功能代谢组学研究(STORM和STORM+)。先后主持国家重点研发计划课题等10多项课题 权威杂志发表SCI检索论文58篇 任中国生物物理学会代谢组学分会副秘书长等,Pharmacological Research-Section主编和Royal Society Open Science 副主编等 安捷伦科技ACT-UR奖获得者。
  • 当超声“碰到”神经元,脑科学有了新工具——记国家重大科研仪器研制项目“基于超声辐射力的深部脑刺激与神经调控仪器”
    项目组科研人员与同行专家交流合影。 研究团队供图中国科学院深圳先进技术研究院(以下简称深圳先进院)实验室里,一台高精尖仪器一排排控制灯交替闪烁。一万多个探头发出超声波形成的操控声场,如同“上帝之手”穿过实验动物的颅骨,直抵大脑深处,精准“触碰”一些神经元,产生仅仅几微米的细微形变,被磁共振仪敏锐捕捉到。“亮了!亮了!”深圳先进院研究员郑海荣看到,磁共振图像上黑漆漆的实验动物大脑中间出现白色的小亮点,犹如在脑科学的未知宇宙中点亮一颗新的星球。2019年初,郑海荣团队迎来里程碑式的一天,这也是他们在国家自然科学基金国家重大科研仪器研制项目支持下开发“基于超声辐射力的深部脑刺激与神经调控仪器”的第4年。如今项目顺利结题,这台原创的高端科研仪器已进入产业化阶段。“科研需要一股不服输的韧劲!”回首研发历程,郑海荣向《中国科学报》表示,“6年来,一步步攻克科学难题、一个个突破工程难关,离不开整个团队攀登科学高峰的坚定信念和持久韧劲。”解脑科学“刚需”之急近年来,帕金森病、阿尔茨海默氏症、抑郁症、癫痫等脑疾病得到越来越多的关注,患者数量剧增,脑疾病带来的经济负担和社会负担越发严重,已成为我国人口老龄化面临的重要社会问题之一。然而,从科学上看,脑疾病发病机制仍不清晰,其诊治仍然是重大医学难题。“国际上脑科学研究者已经认识到,帕金森病、抑郁症等疾病多与深部脑区核团病变有关,对核团及其所在环路的神经调控是疾病治疗和科学研究的基本途径之一。”郑海荣表示。多年来,科学家将电、磁、光等技术与神经科学相结合,产生了脑深部电刺激、磁刺激、光遗传学等神经刺激与调控技术。但是,由于各自物理属性的不同,如何实现无创、精准对大脑深部进行有效调控仍面临严峻挑战。因此,脑科学面临的“刚需”是开发出一种适用于灵长类动物和人类、可无创到达大脑深部的刺激与调控工具。2013年前后,从事物理医学成像研究的郑海荣开始思考,有没有可能利用超声波来操控神经元活动。这个想法并不是天方夜谭。据了解,超声是一种机械波,医学上利用超声波在人体组织中的波散射来成像,就是大家熟悉的B超。早在几十年前,科学家曾观察到,超声波能够通过“声辐射力”让声场中的微小颗粒产生移动。不过,从来没有人尝试过专门设计一台这样的仪器,用超声波辐射力实现对大脑中神经元的“隔空探物”。基于此前对超声辐射力的研究,郑海荣团队下决心对“基于超声辐射力的深部脑刺激与神经调控仪器”进行自主研发,经多轮严格论证,2015年获得国家自然科学基金国家重大科研仪器研制项目支持。啃原创仪器“硬骨头”“虽然我们之前做过体量小一些的成像仪器,但这个项目从科学验证到工程实践面临的挑战非常大,刚开始心里也不太有底。”郑海荣坦承。一开始,他们就做好了啃“硬骨头”的打算。这台仪器共有4个关键部件,包括超声面阵辐射力产生与发射部件、超声电子指向与时间反演控制部件、磁共振导航超声刺激定位部件和多模态刺激反应监测部件。其中,超声面阵辐射力产生与发射部件中包含16384个阵元的面阵列超声辐射力发生器。“我们做的是原创仪器,不仅仪器国际上没有,连其器件和部件在国际市场上也买不到现成的,只能利用基础材料、元器件和芯片,在深圳自主设计、自主加工、自主调试和验证。”郑海荣介绍。更大的困难还在科学和工程上。他们遇到的第一道难题便是如何让超声波安全“穿过”颅骨。在体外实验阶段,研究人员已经实现了用面阵列超声换能器发射的声辐射力“点亮”神经元。为模拟动物体内环境,仪器部件被置于水中,如果跨过颅骨能“击出”水花则代表超声辐射力发挥作用。“外边(超声)打得挺激烈,(颅骨)里边却没丝毫动静、一点水花都没有,超声波几乎完全被颅骨散射和吸收了。”在前期屡败屡战的实验中,大家互相鼓励坚持下去。郑海荣说:“就像在挖一条隧道,没挖通之前总是黑暗笼罩,谁也不知道已经挖了多少,但只要确定大概的方向,坚持下去,终究会看到光明。”为打通这条“隧道”,他们回到科学理论中,引入非均匀多层介质中的“时间反演”理论,对每一个声信号通道的时空传播特征进行模拟、计算、调控与调试,实现各通道间纳秒级高精度控制,最终成功让上万个超声通道协同工作,“齐心协力”安全地穿过颅骨,精准聚焦在预定靶点,而且不引起脑组织损伤。一个通俗的解释是,就像北京2022年冬奥会开幕式《雪花》节目中,从节目结束时每位小演员的站位开始,通过“倒放”的方式确认每位小演员的出发时间、地点和行走路径。第二道难题是如何用核磁共振成像灵敏地检测到超声辐射力给神经元带来的4~5微米的精细变化。这事关刺激的精准,但超声本身“看不到”颅内自己的轨迹。为此,在项目支持下,他们坚持不懈开展攻关,发挥磁/声兼容的优势,创造性地研制了“快速磁共振射频激发与梯度编码成像技术、磁共振声辐射力成像技术”,用于监测超声辐射力刺激引起的微形变,有效地提高磁共振成像的时空分辨率和灵敏度,实现磁共振对于声波轨迹和靶点的敏感捕捉和可视化。2019年初,项目进行到第4年,研究团队终于解决这个问题,在“隧道”中迎来一束光明。合作才能融通高端科研仪器的研制不仅需要开创前沿科学理论,也要挑战诸多工程技术极限,只有团队相互协作、密切配合,才能实现共同的目标。该项目汇集了来自多家科研机构、不同学科背景的多个团队,70多位研究人员在统一的目标下开展分工合作。据郑海荣介绍,由他带领的深圳先进院团队主要承担超声辐射力高密度面阵辐射力发生器、万通道电子控制系统及实时磁共振刺激定位成像部件等仪器主体部分研制。强梯度声场设计工作主要由中国科学院声学研究所团队承担,刺激效果对标与标定工作由清华大学团队承担,神经生物学基础机制工作由浙江大学等团队承担,刺激的应用效果工作由首都医科大学、苏州大学团队承担。几年实践下来,多学科交叉团队形成了一套行之有效的工作机制和组织模式。“我们整个大仪器团队划分为12个小组,每周召开一次小组会,每月召开一次大组会,会议纪要有厚厚的几大本。”郑海荣介绍。研究成员表示,这样的机制形成了不同学科背景研究人员之间相互交流和学习、围绕同一目标共同攻关的良好氛围,为高效解决问题奠定了基础。如今,这台由中国科学家独创的高端仪器已经成为脑科学研究领域的“抢手货”。团队核心成员之一、深圳先进院研究员牛丽丽告诉《中国科学报》,目前已经有超过40家国内外科研机构使用了超声刺激仪器,主要应用在有癫痫、帕金森病、抑郁症、成瘾等疾病的小动物和非人灵长类大动物实验中,其有效性和安全性得到了验证。面向未来,让更多科学家用上这种仪器、助力人类脑疾病诊疗,是团队成员共同的期待。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制