当前位置: 仪器信息网 > 行业主题 > >

药物结构

仪器信息网药物结构专题为您整合药物结构相关的最新文章,在药物结构专题,您不仅可以免费浏览药物结构的资讯, 同时您还可以浏览药物结构的相关资料、解决方案,参与社区药物结构话题讨论。

药物结构相关的资讯

  • 第五届化学和药物结构分析上海年会通知
    尊敬的同仁:   第五届化学和药物结构分析上海年会(CPSA Shanghai 2014)将于2014年4月16-19日在上海淳大万丽酒店举行。本届会议主题是&ldquo 个性化药物新时代:药物研发的创新方法&rdquo 。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2013年已经在美国连续举办十五年。   CPSA上海年会的目标是通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践。一年一度的CPSA上海年会主要是针对那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士。   CPSA上海年会采用带有高度互动性质的专题讨论会和圆桌会议的形式,邀请科学家分享他们的实际经验和经历。会议将重点讨论目前业内的新技术、存在的问题以及未来的需求,关注当前能够带动产品市场快速发展的全球工业景观和需求。   CPSA上海2014年会大会主席是来自诺华中国的张继跃博士。本届会议上,国际知名科学家将再一次就制药相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。   此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了&ldquo CPSA 青年科学家优秀奖&rdquo 和&ldquo 创新奖&rdquo 两个奖项。&ldquo CPSA 青年科学家优秀奖&rdquo 主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。有关参赛和评奖的细节,请登陆网站查询。   会议日程概览:   2014年4月16日 会前研讨会Workshops和欢迎晚宴   2014年4月17-18日 正式会议、游艇晚宴、午餐会、海报评选、企业展示、颁奖晚宴等   2014年4月19日 上海药物代谢动力学研讨会活动   会议注册费用: 类别 日期费用 2014年1月22日前 2014年1月23日-4月6日 2014年4月6日以后4月16日Workshop注册费用 700元 900元 1200元 4月17-18日正式会议注册费用(教师和企业代表) 1700元 2100元 2800元 4月17-18日正式会议注册费(学生/博士) 800元 1100元 1400元   付款账户信息:   账户全称:上海逸星商务咨询有限公司   开户银行:上海银行曹安支行   银行账号: 31661203001254927   有关会议的细节,注册方式及组委会名单可从以下网址获取:http://www.cpsa-shanghai.com。   期待您的支持和参与。   如有疑问,请随时联系我们。   杨老师   电话:021-39152015-801   邮箱:star.yang@mice-partners.com   地址:上海市嘉定区祁连山南路2199号真新商务楼411室,邮编:201824   上海逸星商务咨询有限公司   CPSA Shanghai 2014年会组委会   二零一三年十二月十二日
  • 第八届化学和药物结构分析上海年会
    p   第八届化学和药物结构分析上海年会(CPSA Shanghai 2017)将于2017年4月12-14日在上海淳大万丽酒店举行。本届会议主题是“从发现到监管批准的临床和药物成功:生物标记、建模和分析技术”。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2016年已经在美国连续举办十八年。 /p p   CPSA上海年会的目标是通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践。一年一度的CPSA上海年会主要是针对那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士。 /p p   CPSA上海年会采用带有高度互动性质的专题讨论会和圆桌会议的形式,邀请科学家分享他们的实际经验和经历。会议将重点讨论目前业内的新技术、存在的问题以及未来的需求,关注当前能够带动产品市场快速发展的全球工业景观和需求。 /p p   CPSA上海2017年会大会主席是来自匹兹堡大学 (University of Pittsburgh)的Nathan Yates博士。本届会议上,国际知名科学家将再一次就制药、临床、分析相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。 /p p   其中,备受行业专家和学者关注的以下议题也将在本次会议上得到讨论:药物代谢 蛋白质生物分析 药物活性 SM Bioanalysis 定量技术与应用 生物标志物的挑战 生物/生物仿制药 In vitro ADME Combined DMPK/BA 生物分子和核酸分析 蛋白质组学与新技术 药物研发最新进展 Regulated Bioanalysis等等。 /p p   此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了“CPSA 青年科学家优秀奖”和“创新奖”两个奖项。“CPSA 青年科学家优秀奖”主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。 /p p   会议日程概览: /p p   2017年4月12日 会前研讨会Workshops和欢迎晚宴 /p p   2017年4月13-14日 正式会议、晚宴、午餐会、海报评选、企业展示、颁奖晚宴等 /p p   有关会议注册、赞助、参赛和评奖的细节,欢迎访问会议官网: a href=" http://www.cpsa-shanghai.com" target=" _self" title=" " http://www.cpsa-shanghai.com。 /a /p p   期待您的支持和参与。 /p p   如有疑问,请发邮件给我们:邮箱:Info@mice-partners.com /p p br/ /p
  • 第四届化学和药物结构分析上海年会通知
    第四届化学和药物结构分析上海年会(CPSA Shanghai 2013)将于2013年4月24-27日在上海淳大万丽酒店举行。本届会议主题是“利用转化科学、监管效率和创新模式振兴医药研发”。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2013年已经在美国连续举办十五年。   CPSA上海年会的目标是通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践。一年一度的CPSA上海年会主要是针对那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士。   CPSA上海年会采用带有高度互动性质的专题讨论会和圆桌会议的形式,邀请科学家分享他们的实际经验和经历。会议将重点讨论目前业内的新技术、存在的问题以及未来的需求,关注当前能够带动产品市场快速发展的全球工业景观和需求。   CPSA上海2013年会大会主席是来自扬森药业的翁乃栋博士。本届会议上,国际知名科学家将再一次就制药相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。会议将特邀全球制药巨头赛诺菲公司全球副总裁John Newton博士和宾夕法尼亚大学药理学专家Ian Blair教授做大会主题报告。   此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了“CPSA 青年科学家优秀奖”和“创新奖”两个奖项。“CPSA 青年科学家优秀奖”主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。有关参赛和评奖的细节,请登陆网站查询。   会议日程概览:   2013年4月22日 卫星会议Workshop(地点:北京)   2013年4月24日 会前研讨会Workshops和欢迎晚宴   2013年4月25-26日 正式会议、游艇晚宴、午餐会、海报评选、企业展示、颁奖晚宴等   2013年4月27日 上海药物代谢动力学研讨会活动   会议注册费用: 类别 日期费用 2013年1月22日前 2013年1月23日-4月6日 2013年4月6日以后 4月24日Workshop注册费用 640元 800元 1120元 4月25-26日正式会议注册费用(教师和企业代表) 1440元 1728元 2304元 4月25-26日正式会议注册费(学生/博士后) 640元 800元 1120元   付款账户信息:   账户全称:上海逸星商务咨询有限公司   开户银行:上海银行曹安支行   银行账号: 31661203001254927   有关会议的细节,注册方式及组委会名单可从以下网址获取:http://www.cpsa-shanghai.com   期待您的支持和参与。   如有疑问,请随时联系我们。   杨会娟老师   上海逸星商务咨询有限公司   CPSA Shanghai 2013年会组委会   电话:021-39152015   邮箱:star.yang@mice-partners.com   地址:上海市嘉定区祁连山南路2199号真新商务楼411室,邮编:201824
  • 显微 CT 成像在药物制剂结构分析中的应用
    显微 CT 成像在药物制剂结构分析中的应用引言药物是用于预防、治疗、诊断疾病的活性物质,需制成一定的剂型才能作用于人体。药物攸关人民生命安全,因此对药物制剂的质量进行控制和评价至关重要。制剂的结构影响药物的疗效发挥,同时也影响制剂的释药行为,因此制剂的结构在制剂设计和评价方面发挥着重要的作用。药物制剂结构表征常用的技术有光学显微镜、电子显微镜等技术工具,但这些技术手段仅能给出制剂的表面特征,无法有效地表征其内部特征。X 射线具有波长短、分辨率高和穿透力强等特点,能够实现对样品内部结构进行成像,曝光时间短、效率高,可用于观察分析多种微观物理、化学变化以及微纳米结构,在生物医学、材料科学上有着广泛的应用。利用显微 CT 成像研究药物制剂结构的应用包括:&bull 药物制剂的晶型研究&bull 制剂内部结构的表征研究&bull 制剂涂层结构的无损表征&bull 药物释放机制研究图注:NEOSCAN 台式显微 CT 扫描抗过敏药盐酸西替利嗪片本文通过文献资料摘录 3 个实际应用案例介绍显微 CT 技术在固体制剂药品领域的应用和功能。Part 01 利用显微CT对仿制药开展一致性评价昝孟晴等利用显微 CT 技术对盐酸特拉唑嗪片的内部微观结构进行观察分析,发现溶出度测定结果不满足标准限度要求的样品与参比制剂相比具有更大的孔隙率。将溶出度不合格样品和参比制剂的结构进行对比分析,二者局部孔径大小分布见下图。由图可知,二者的局部孔径尺寸大多数都分布在 10~20 μm,平均孔径大小分布没有较大差别。图注:参比制剂样品(蓝色)和溶出度不合格样品(橘色)的局部孔径大小分布但通过分析制剂的孔隙率(片剂表观体积中,除原辅料外,内部的孔隙占总体积的比例),发现溶出不合格样品的孔隙率远大于参比制剂,分别为 32.851%(仿制制剂)和 6.545%(参比制剂),见下图(图中白色部分代表主药和辅料, 红色部分代表孔隙)。从结构对比结果推测,溶出度不合格样品可能是由于孔隙率偏大,因而能迅速吸收大量水分,由于重力作用而沉积在普通溶出杯底部。显微 CT 技术能够提供药品固体制剂的高分辨率三维内部结构图像,包括活性成分的分布、空隙、颗粒大小和分布等,这有助于了解药品的均匀性和质量分布。图注:参比制剂(左图)和溶出度不合格样品(右图)的三维结构图Part 02 显微CT 中药制剂结构研究中药制剂重视药辅合一, 其剂型和辅料的运用蕴含着丰富的药方配比智慧。中药活性成分从剂型里溶出、释放受制于制剂的结构, 并影响其疗效的发挥。制剂结构的创新是中药制剂的发展趋势, 在以缓控释制剂和靶向给药系统等为代表的新剂型发展过程中, 制剂结构发挥着重要作用。微丸压制片是由可持续释药微丸与适宜辅料混合后压制成的制剂, 压片后具有体积小、可刻痕和可分剂量使用等优点。使用显微 CT 无损成像技术对微丸压制片的三维微结构与药物、辅料的空间分布的研究, 有助于进行深度的质量评价与控制。茶碱微丸片 (THEODUR) 为 24h 骨架型缓释制剂, 微丸在片剂径向上的分布均匀, 但在轴向上存在明显的微丸富集区。片剂内部呈现 3 种不同的区域: 基质层、保护缓冲层与载药微丸, 基质层和保护缓冲层并无特定的结构, 两层依次包裹在微丸周围。基质层主要分布有茶碱、蔗糖、乳糖和十二烷基硫酸钠, 而单硬脂酸甘油酯主要存在于缓冲层 (图 A)。琥珀酸美托洛尔微丸片 (倍他乐克) 遇介质快速崩解成单个微丸, 持续释放药物 24h。其中, 微丸在片剂内均匀分布, 且呈光滑球形, 具三层球形结构。此外, 片剂中基质并非十分紧实, 基质中以及基质和微丸之间均有一些空隙, 这不仅有利于片剂在介质中快速崩解, 也保证微丸在压片过程中结构的完整性 (图 B)。另外, 肠溶型微丸压制片的结构研究也有报道, 如埃思奥美拉唑微丸片 (耐信)。图注:显微 CT 分析茶碱微丸片Part 03 显微 CT 对原辅料粉体结构中药物晶型的辨别制剂是由药物活性成分和辅料组成, 原辅料粉体中的药物晶型、粉体粒径及其分布、 配比与规格直接影响药物制剂的质量。显微 CT 成像可以避免剂型中辅料的干扰, 准确识别药物的晶型, 且能无损伤、原位检测制剂内药物微粒的粒径及其分布。该方法解决了固体制剂内药物晶体的识别和药物粒径及其分布的测定难题, 具有重要应用价值, 为仿制药一致性评价中原辅料粉体结构的研究提供了新的视角和思路。例如,Yin 等采用 SR-μCT 研究多晶型混合物中硫酸氢氯吡格雷的晶型, 基于两种晶型颗粒表面的粗糙度差异, 有效地识别硫酸氢氯吡格雷的不同晶型。关于台式显微 CT可在不破坏样品的同时,得到样品的结构信息(空腔孔隙)、密度信息(组分差异),同时可以输出三维模型,进行仿真分析。 参考文献《采用高分辨显微成像技术从药物制剂结构角度分析盐酸特拉唑嗪片溶出度测定结果》昝孟晴,黄韩韩,张广超,马玲云,许鸣镝,牛剑钊*,刘倩*(中国食品药品检定研究院,国家药品监督管理局化学药品质量研究与评价重点实验室)《结构药剂学与中药制剂结构研究进展》杨 婷, 李 哲, 冯道明等(1. 中国科学院上海药物研究所;2. 江西中医药大学)《从结构出发的制剂一致性研究策略》张继稳, 孟凡月, 肖体乔(1. 安徽中医药大学药学院 2. 中国科学院上海药物研究所 3. 中国科学院上海应用物理研究所)《高分辨三维 X 射线显微成像在药物制剂结构分析中的应用》昝孟晴,黄韩韩,南楠等(中国食品药品检定研究院,国家药品监督管理局化学药品质量研究与评价重点实验室)
  • 第五届化学和药物结构分析上海年会隆重开幕
    仪器信息网讯 第五届化学和药物结构分析上海年会(CPSA Shanghai 2014)于2014年4月17日在上海淳大万丽酒店开幕。约300位来自国内外多家科研院所、制药企业等单位从事药物研发的专家学者参加了本届会议。 会议现场   本届会议主题是&ldquo 个性化药物新时代:药物研发的创新方法&rdquo ,旨在通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践,为那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士提供一个高质量的信息交流平台。   本届会议聚集国际知名科学家,将制药相关行业最新研究成果带到中国,与国内的学者交流沟通。会议以&ldquo 药代动力学/临床科学&rdquo &ldquo 生物分析&rdquo 和&ldquo 制药科学&rdquo 三条主线进行探讨,将现下热门的生物分析、中药研究以及药物研发对仪器需求等议题分设话题探讨,给制药行业的企业用户与仪器供应商搭建了一条直接快速的供需交流平台。   来自诺华中国的张继跃博士担任本届大会主席,对本届会议进行了介绍,CPSA会议组织者Mike S. Lee博士致开幕词。 张继跃博士 Mike S. Lee博士   CPSA上海会议吸引众多先进科学仪器制造企业参展,将各自最新研究成果带给从事药物科学研究的学者。以下为部分参展企业。 安捷伦科技有限公司 赛默飞世尔科技 沃特世科技(上海)有限公司 AB Sciex公司 力扬企业有限公司 McKinley Scientific 公司 MS Parts 公司 CONVANCE公司 New Objective公司 美国剑桥同位素实验室公司 ES Industries 公司
  • 共价标记质谱分析抗体药物高阶结构的细微变化
    单克隆抗体(mAb)是制药行业增长最快的治疗方法之一,mAb的高阶结构(HOS)影响药物与靶标的结合特异性,从而影响治疗效果和副作用。若储存而导致HOS发生变化,例如蛋白质错误折叠和聚集,会导致稳定性降低、功效丧失或可能的免疫原性。因此,监测HOS对保证mAb疗法的有效性和安全性至关重要。X射线晶体学和核磁共振(NMR)光谱可以提供原子级分辨率,但存在费时费样品的缺点;生物物理技术,如差示扫描量热法(DSC)、动态光散射(DLS)、荧光光谱、红外(IR)光谱和圆二色(CD)光谱只能提供低分辨率的整体构象。焦碳酸二乙酯(DEPC)作为亲电子试剂能够修饰溶剂可接近的亲核侧链(Cys、His、Lys、Thr、Tyr、Ser)和蛋白质的N末端,这些残基产生的羧基化产物具有+72.021Da的质量转移,经过蛋白水解消化、液相色谱分离和串联质谱分析后,可以识别和半定量特定的蛋白质修饰位点。将一种条件(例如天然)与另一种条件(例如加热)进行比较时,特定残基处共价标记程度的变化可用于探测蛋白质的HOS变化(图1)。在这篇文章中,作者使用DEPC共价标记联用质谱,以利妥昔单抗作为单抗药物的模型,以期在远低于mAb治疗药物熔点的温度下能够特异性检测细微HOS变化,并通过活性测定进行验证。图1. DEPC 标记与质谱联用分析单抗药物结构的流程在通过共价标记研究热应力(heat stressed)利妥昔单抗之前,作者使用CD光谱、荧光光谱和动态光散射(DLS)来识别加热对蛋白质结构的干扰。发现当在低于其熔点的温度下加热利妥昔单抗4小时时,这三种技术在45°C或55°C时无法检测到显著的结构变化,而在65°C时仅显示出轻微的变化。随后作者团队使用DEPC CL-MS探测利妥昔单抗的细微结构变化。在45°C压力下的利妥昔单抗样品中发现DEPC标记水平的变化较少,大多数变化是由于蛋白质受热去折叠导致的标记增加(图2),且可变区的变化远少于恒定区。超过70%的标记变化发生在Tyr、Ser和Thr残基处,而发生在His和Lys残基处的标记变化始终小于20%。标记变化表明,45°C时的结构变化主要是局部微环境的变化,而非溶剂可及性差异显著的大结构变化,也就是说修饰位点分散在整个蛋白质结构中,而不是集中在蛋白质的某些区域。图2. 45°C 热应力 4 h 后 DEPC修饰程度的变化。饼图表示在利妥昔单抗的每个结构域内标记变化显著的修饰残基比例。红色代表标记增加,而蓝色代表减少。条形图表示共价标记变化程度低 (L)、中 (M) 和高 (H)的残基数量。活性测定能反映一定程度的结构变化对利妥昔单抗活性的影响,从而验证DEPC标记结果。桥接ELISA的结果表明,在预热至45°C后,利妥昔单抗的Fc结合活性没有显著变化(图3a),Fc区域的CDC活性估计在45°C热应激后保持不变(图3b),利妥昔单抗的Fab结合活性估计与对照样品没有差异(图3c)。活性测定结果表明蛋白质在45°C时没有发生显著的结构变化。在Fab和Fc区域中标记变化的残基数量相对较少,主要标记对局部微环境变化更敏感的Tyr、Ser和Thr残基。修饰位点分散在整个蛋白质中,对Fab和Fc区域的构象几乎没有影响,与共价标记质谱联用的测定结果相吻合。图3.使用单抗活性测定验证CL-MS实验揭示的结构变化。Fc区的结构完整性通过(a)测量Fc与捕获抗体结合的利妥昔单抗桥接ELISA和(b)测量补体依赖性细胞毒性的Alamarblue测定来评估。Fab区域的结构完整性通过(c)Raji细胞下拉试验评估,测量Fab与B细胞CD20抗原的结合。55°C加热4h后利妥昔单抗所有结构域的残基修饰程度都发生了显著的变化,尤其是Fab区域的VH和VL结构域。(图4)加热至55°C时,His和Lys残基处发生的标记变化几乎是45°C的两倍,表明蛋白质在这些区域展开;Fab区域标记水平发生显著变化,特别是在VH、VL和CL域。这表明利妥昔单抗的Fab区域存在局部结构变化,据报道这也是IgG1分子中对热应激最敏感的区域。Fc区域中没有观察到类似的发生标记变化的残基聚集,Tyr、Ser和Thr处的大多数标记变化为中度或高度变化,这些结果表明蛋白质拓扑结构可能发生变化。图4. 55°C 热应力 4 h 后 DEPC修饰程度的变化。饼图表示在利妥昔单抗的每个结构域内标记变化显著的修饰残基比例。红色代表标记增加,而蓝色代表减少。条形图表示共价标记变化程度低 (L)、中 (M) 和高 (H)的残基数量。尺寸排阻色谱(SEC)测量表明在65°C加热条件下存在高分子量物质。将DEPC CL-MS方法应用于65°C热应力的利妥昔单抗后,发现所有利妥昔单抗结构域的标记发生显著变化(图5),主要体现为标记的减少,这可能是因为蛋白质聚集。利妥昔单抗的Fab和Fc区均发现标记减少的残基簇,活性测定结果显示Fc结合和CDC活性的降低(图3),说明了Fc区特别是CH3结构域的标记变化,与DEPC标记结果一致。图5. 65°C 热应力 4 h 后 DEPC修饰程度的变化。饼图表示在利妥昔单抗的每个结构域内标记变化显著的修饰残基比例。红色代表标记增加,而蓝色代表减少。条形图表示共价标记变化程度低 (L)、中 (M) 和高 (H)的残基数量。总结DEPC标记技术的结构分辨率和灵敏度足以探测细微的蛋白质构象变化,该技术与质谱联用可在低于Tm的温度下揭示利妥昔单抗中的细微HOS变化,与经典的生物物理技术互补。总体而言,鉴于CL-MS简便、灵敏的特点,该方法将适用其他抗体药物的结构研究。
  • 冷冻电镜解析高血压药物设计的关键蛋白结构
    冷冻电镜(cryo-EM)解析了一种帮助调节血压的蛋白质,即血管紧张素转换酶(ACE)的详细结构。这些结构提供了迄今为止对ACE的最全面的看法,将有助于改善心脏病的药物设计。这项工作是由开普敦大学(UCT)的研究人员与英国同步辐射光源"DIAMOND"的电子生物成像中心(eBIC)合作完成的。研究人员在《EMBO Journal》上发表了他们的研究结果("冷冻电镜揭示了血管紧张素I转化酶的异构化和二聚化机制")。ACE会产生激素血管紧张素II,使血管收缩并提高血压。高血压是心脏病和中风的主要风险因素。与以前的方法相比,冷冻电镜使研究人员能够在更多的功能相关状态下观察到ACE。他们的工作为其生物功能和潜在的药物结合特性提供了关键性的见解。ACE蛋白的一个副本(即单体形式)是由两个结构相似但功能不同的结构域连接而成的。二聚体化(即两个ACE单体的相互作用)发生在一个小的表面空腔附近,改变了对ACE功能至关重要的核心氨基酸的构象。研究人员提出,这种二聚体化可能像一个 "关闭开关",触发蛋白质核心的变化,并可能抑制它。如果能设计出一种类似药物的分子在腔内结合并引起同样的效果,它就能提供一种新的手段来使该酶失活。目前,许多ACE抑制剂在临床上可用于治疗高血压。但这些抑制剂非选择性地针对两个ACE结构域,并因此会在一些患者中引发副作用。开普敦大学教授、该研究的主要研究者Edward Sturrock博士解释说:“了解这些新发现的ACE结构和动态至关重要,这可能针对结构域选择性抑制剂的设计提供新的结合位点,进而规避副作用。”ACE蛋白在Sturrock的实验室生产,在UCT的电子显微镜单元(EMU)进行成像前的准备,并在之后转运到eBIC,在Titan Krios上进行冷冻电镜成像。图像处理在南非的CSIR高性能计算中心(CHPC)和EMU进行。“即使有高分辨率的成像,ACE的独特形状、小分子量和高度动态等特征也带来了许多挑战。"该研究的共同作者之一Jeremy Woodward博士解释道。该研究的第一作者Lizelle Lubbe博士解释说:"最近开发的冷冻电镜图像处理方法对解析这些结构至关重要。"我们必须通过广泛的分类来计算分离图像,这一过程相当于' 数字纯化' ,因为生化方法无法分离ACE的单体和二聚体形式。然后,我们可以将三维细化的重点依次放在结构的不同部分,从而解析这两种ACE结构"。该研究的发现独特地揭示了ACE的高度动态特征,以及其不同结构域之间发生二聚体化和交流的机制--这可能启发治疗心脏病的新药。DIAMOND科学组组长克里斯-尼克林博士说:“我们对非洲的杰出科学家团队利用eBIC先进的冷冻电镜取得的这项研究结果感到高兴。世界迫切需要针对致命的心脏病和其他慢性健康状况的可持续解决方案。我们非常高兴的是,这项研究的结构见解可以为改进抗高血压药物设计铺平道路。”相关文献:Cryo-EM Structures of a Key Hypertension Protein to Aid Drug DesignCryo-EM揭示了血管紧张素I转化酶的异构化和二聚化的机制高血压(高血压)是心血管疾病的一个主要风险因素,而心血管疾病是全世界死亡的主要原因。血管紧张素I转化酶(sACE)的体细胞异构体在血压调节中起着关键作用,因此ACE抑制剂被广泛用于治疗高血压和心血管疾病。我们目前对sACE结构、动力学、功能和抑制作用的理解是有限的,因为截短的、最小的糖基化形式的sACE通常被用于X射线晶体学和分子动力学模拟。在这里,我们首次报告了全长的、糖基化的、可溶性的sACE(sACES1211)的冷冻电镜结构。这个高度灵活的apo酶的单体和二聚体形式都是由一个数据集重建的。单体sACES1211的N端和C端结构分别在3.7和4.1Å被解析,而负责二聚体形成的相互作用的N端结构则在3.8Å被解析。此外,观察到两个结构域都处于开放构象,这对设计sACE调节剂有意义。参考资料:"Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization"
  • 第六届化学和药物结构分析上海年会会议通知
    CPSA上海2015会议通知   尊敬的同仁:   第六届化学和药物结构分析上海年会(CPSA Shanghai 2015)将于2015年4月15-17日在上海淳大万丽酒店举行。本届会议主题是&ldquo 穿针引线:共享跨学科科学技术,助推项目规划&rdquo 。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2014年已经在美国连续举办十六年。   CPSA上海年会的目标是通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践。一年一度的CPSA上海年会主要是针对那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士。   CPSA上海年会采用带有高度互动性质的专题讨论会和圆桌会议的形式,邀请科学家分享他们的实际经验和经历。会议将重点讨论目前业内的新技术、存在的问题以及未来的需求,关注当前能够带动产品市场快速发展的全球工业景观和需求。   CPSA上海2015年会大会主席是来自杨森制药的Philip Timmerman博士。本届会议上,国际知名科学家将再一次就制药相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。   其中,备受行业专家和学者关注的以下议题也将在本次会议上得到讨论:   1、液质、气质分析平台的新进展   2、代谢组学的检测平台新进展   3、体内小分子代谢标志物的检测研究进展   4、质谱分析与肿瘤等疾病诊断   此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了&ldquo CPSA 青年科学家优秀奖&rdquo 和&ldquo 创新奖&rdquo 两个奖项。&ldquo CPSA 青年科学家优秀奖&rdquo 主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。有关参赛和评奖的细节,请登陆网站查询:http://www.cpsa-shanghai.com/2014/yse_info.shtml。   会议日程概览:   2015年4月15日 会前研讨会Workshops和欢迎晚宴   2015年4月16-17日 正式会议、晚宴、午餐会、海报评选、企业展示、颁奖晚宴等   2015年4月18日 上海药物代谢动力学研讨会活动   会议注册费用: 类别 日期费用 2015年1月22日前 2015年1月23日-4月6日 2015年4月6日以后 4月15日Workshop注册费用 700元 900元 1200元 4月16-17日正式会议注册费用(教师和企业代表) 1700元 2100元 2800元 4月16-17日正式会议注册费(学生/博士) 800元 1100元 1400元   付款账户信息:   账户全称:上海逸星商务咨询有限公司   开户银行:上海银行曹安支行   银行账号: 31661203001254927   有关会议的细节,注册方式及组委会名单可从以下网址获取:http://www.cpsa-shanghai.com。   期待您的支持和参与。   如有疑问,请随时联系我们:   杨老师   电话:021-39152015   邮箱:info@mice-partners.com   地址:上海市嘉定区万镇路1177弄22号602室,邮编:201824   附:注册表   Registration Form注册表 注册类别 2015年1月22日前 2015年1月22日-4月2日 2015年4月2日后 4月15日Workshop注册费用 700元 900元 1200元 4月16-17日正式会议注册费用(教师和企业代表) 1700元 2100元 2800元 4月16-17日正式会议注册费(学生/博士) 800元 1100元 1400元   请完整填写此表后,连同付款凭证一起发邮件至:star.yang@mice-partners.com   Your Information参与人员信息   Mr. Mrs. Ms.   First Name Middle Initial Last Name   Institution/Company:   Address: Postal Code:   E-mail Address:   Telephone: Mobile:   如需发票,请注明发票抬头:   Conference Registration会议注册费用:   备注:   l 参会注册报名已实际收到会务费为准。   付款账户信息:   账户全称:上海逸星商务咨询有限公司   开户银行:上海银行曹安支行   银行账号: 31661203001254927   如有疑问,请联系:   杨老师   电话:021-39152015   邮箱:info@mice-partners.com
  • 技术推动天然药物宝库深入挖掘 “天然药物分离纯化及结构解析技术会议”即将召开
    p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 天然药物具有悠久的历史, 凝聚了人类数千年的药学知识和经验智慧,在化学药物未兴起前,天然药物几乎是治疗疾病的唯一手段。天然药物以其低毒性、低成本及某些特殊疗效而被重视,但其仍存在成分复杂,有效成分难以确定,质量控制标准缺乏等问题。随着科学技术进步,人类已不仅能将天然物质作为药物使用,还能够从天然物质中提取活性物质,经过多种纯化手段获得纯化合物并进行鉴定,才得以利用。 /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " 为加强天然药物分离、纯化以及化合物结构解析的技术交流,仪器信息网将于 strong 2020年4月21日 /strong 举办 a href=" https://www.instrument.com.cn/webinar/meetings/trywtq/" target=" _blank" span style=" color: rgb(255, 0, 0) " strong “天然药物分离纯化及结构解析技术” /strong /span /a 主题网络研讨会。会议共邀请到9位领域专家及技术专家做精彩报告,为来自企业、科研院所、高校与政府监管部门的相关用户搭建交流与沟通平台。 /p p style=" text-align: center " span style=" color: rgb(79, 129, 189) " strong 会议日程 /strong /span br/ /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/trywtq/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 513px " src=" https://img1.17img.cn/17img/images/202004/uepic/67339ca9-600f-4d0e-aefd-98b5605ce0f5.jpg" title=" 会议日程.png" alt=" 会议日程.png" width=" 600" height=" 513" border=" 0" vspace=" 0" / /a /p p style=" text-align: center " a href=" https://www.instrument.com.cn/webinar/meetings/trywtq/" target=" _blank" span style=" color: rgb(79, 129, 189) " 点击图片免费报名听会 /span /a strong span style=" color: rgb(79, 129, 189) " br/ /span /strong /p p style=" text-align: center " strong span style=" color: rgb(79, 129, 189) " 专家简介 /span /strong br/ /p p strong span style=" color: rgb(79, 129, 189) " /span /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/1a971853-66a3-4a78-8609-ec43fc4738d3.jpg" title=" 1.png" alt=" 1.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " strong 吴海峰 /strong ,2009年毕业于中国科学院西北高原生物研究所,获理学博士学位,同年进入中国医学科学院药用植物研究所天然药物化学中心从事博士后研究,2017年获国家公派访问学者项目资助赴美国北卡罗来纳大学教堂山分校Eshelman药学院从事天然药物抗艾滋病新药研究。先后主持国家自然科学基金青年基金1项、江苏省淮安市食品组分与功能食品重点实验室开放课题1项、浙江省药学重中之重一级学科开放基金1项、怀化学院生物工程湖南省“双一流”应用特色学科开放课题1项。作为主要参与人,参加中国医学科学院医学与健康科技创新工程项目1项、国家自然科学基金面上项目1项、国家自然科学基金青年基金项目3项、北京市自然科学基金青年项目1项以及国家中药标准化项目1项。在European Journal of Medicinal Chemistry、Industrial Crops & amp Products、Journal of Natural Products等国际期刊,共发表Sci论文30余篇,出版英文论著1部,授权专利1项。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/e1cf04d6-e04d-4140-9124-31d45db8c620.jpg" title=" 2.png" alt=" 2.png" / /p p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " strong 陈森华 /strong ,博士,副研究员,2017年毕业于中山大学化学学院有机化学专业。目前研究方向为海洋天然产物和海洋药物。现从事海洋生物功能分子的发现和新型抗肿瘤药物分子机制的研究工作。研究主要兴趣:(1)海鞘真菌的生物功能分子的发现。利用代谢组和基因组组学技术,筛选天才菌株,分离活性物质并对其结构进行鉴定。(2)海鞘真菌的功能活性分子的评价和研发。对源自海鞘真菌的次级代谢产物进行活性研究,结构改造、构效关系研究和相关的作用机理研究。现承担了国家自然科学基金和广东省自然科学基金项目,作为研究骨干参与了多项广东省海洋经济创新发展区域示范项目的研究工作。发现了一系列具有显著的抗肿瘤、抗炎活性、抗病毒、抗结核杆菌等活性的先导化合物。相关研究以一作或通讯作者发表20余篇文章在Chemical Communications,Journal of Natural Products,Phytochemistry,Organic & amp Biomolecular Chemistry,Marine Drugs, New Journal of Chemistry,RSC Advances等期刊上。 br/ /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/b337e63f-f41f-49d8-aea2-8f0111165ce0.jpg" title=" 0.png" alt=" 0.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 冯宝民 /strong ,博士,教授。教育部新世纪优秀人才,辽宁省特聘教授,辽宁省青年科技奖获得者。主要从事天然药物化学及生物制药研究与开发,主持国家自然科学基金面上项目3项,其它省市级课题10余项。研究成果获教育部科技进步一等奖1项,教育部自然科学二等奖1项,辽宁省自然科学三等奖1项,大连市科技进步二等奖、三等奖各1项。已申请专利22项,授权发明专利14项。在国内外学术刊物上发表论文近240余篇,其中SCI收录40余篇。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/7741eba3-f8bc-4d78-b744-3de61d2da121.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 任虹 /strong ,1990年7月获北京大学生物化学学士学位,1990年8月-2000年8月在烟台大学生命科学院生化系任教,2001年9月-2006年6月在中国海洋大学药物研究所硕博连读,2006年7月获药物化学专业博士学位,2006年8月-2008年7月在军事医学科学院毒物药物研究所做博士后,从事药学专业研究,2008年8月-至今,在北京工商大学生物工程系任教,主讲生物化学、仪器分析、天然产物化学等课程。从事天然活性物质研发、食品安全检测等领域的科研工作。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/ad5d4ebd-0a73-4a57-ba00-77b8ccff45c7.jpg" title=" 5.png" alt=" 5.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 李国荣 /strong ,1985年李国荣在美国夏威夷大学获得化学博士学位。李博士的博士论文主要阐明如何从海洋生物中提取、纯化有机化合物并分析其化学结构。过去30年在美国的工作经验,李博士工作主要涉及多肽、蛋白质和单克隆抗体的纯化。李博士目前的研究兴趣主要关注用最短的时间获得产品最大的回收率和纯度。 br/ img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/c73a5888-f9ff-47c1-b387-5aa97a31c732.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 李海鹏 /strong ,2009年毕业于兰州理工大学,从事分离纯化事业近十年,参与并完成多个分离纯化样品制备,方法开发项目。对于制备纯化技术有丰富的经验,现任Agela-Phenomenex 市场部技术支持经理。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/fe48d220-75ea-44ae-8c61-6f7cac3185da.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 陈丽琴 /strong ,2010年加入安捷伦,现任安捷伦液相产品应用工程师。从事制备液相及相关产品的方法开发和应用支持工作,在液相色谱应用和分离纯化领域拥有丰富的经验。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/ce204a39-cfd3-45bb-b95a-9b6cc84efcd1.jpg" title=" 8.png" alt=" 8.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 尹宏瑞 /strong ,毕业于武汉大学,于2011年开始供职于岛津企业管理(中国)有限公司,长期从事LC/LCMS产品技术支持和市场推广工作,对液相色谱及相关检测技术经验丰富。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202004/uepic/de8a81c8-be72-4c14-92bf-9740caa288b8.jpg" title=" 9.png" alt=" 9.png" / /p p style=" text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em " strong 李延娟 /strong ,长期从事样品前处理和液相的工作,担任上海科哲产品部经理,在天然产物纯化方面有较丰富的经验,致力于为客户提供整体解决方案技术支持。 /p br/ p style=" margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em " strong 会议报名入口: /strong a href=" https://www.instrument.com.cn/webinar/meetings/trywtq/" target=" _blank" strong https://www.instrument.com.cn/webinar/meetings/trywtq/ /strong /a /p p style=" text-align: left text-indent: 2em " span style=" color: rgb(255, 0, 0) " strong 加入“天然药物会议交流群”随时关注会议动向及天然药物相关内容交流! br/ /strong /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 298px height: 381px " src=" https://img1.17img.cn/17img/images/202004/uepic/fae96163-d4aa-490e-8546-54d394aa64c5.jpg" title=" 天然药物交流群.jpg" alt=" 天然药物交流群.jpg" width=" 298" height=" 381" / /p p br/ /p
  • 第十届化学和药物结构分析上海年会通知
    p   尊敬的同仁: /p p   第十届化学和药物结构分析上海年会(CPSA Shanghai 2019)将于2019年4月10-12日在上海淳大万丽酒店举行。本届会议主题是“生物技术产业面临的转化挑战:从药物研发到临床”。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2018年已经在美国连续举办二十年。 /p p   CPSA上海年会的目标是通过公开讨论行业相关的问题和需求,提供创新的技术和工业实践。一年一度的CPSA上海年会主要是针对那些追求更高速的药物开发时间人员和对药物新兴市场的发展趋势有了解需求的市场营销经理等专业人士。 /p p   CPSA上海年会采用带有高度互动性质的专题讨论会和圆桌会议的形式,邀请科学家分享他们的实际经验和经历。会议将重点讨论目前业内的新技术、存在的问题以及未来的需求,关注当前能够带动产品市场快速发展的全球工业景观和需求。 /p p   CPSA上海2019年会大会主席是来自全球著名的生物科技企业Merck公司的Liu Min博士,Merck 公司Petr Vachal博士和Amgen公司副总裁Mingqiang Zhang博士将做大会主题报告。本届会议上,国际知名科学家将再一次就制药、临床、分析相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。 /p p   其中,备受行业专家和学者关注的以下议题也将在本次会议上得到讨论:Invitro to Invivo Translation and PBPK Modeling,Invitro ADME and Regulatory Bioanalysis of Small Molecules,New Biotherapeutic Modalities and Bioanalytical Support,Biomarkers from Discovery to Clinic,Technologies and Applications for Quantitation in the Clinic等等。 /p p   此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了“CPSA 青年科学家优秀奖”和“创新奖”两个奖项。“CPSA 青年科学家优秀奖”主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。 /p p   会议日程概览: /p p   http://www.cpsa-shanghai.com/2019/program.shtml /p p   2019年4月10日 会前研讨会Workshops和欢迎晚宴 /p p   2019年4月11-12日 正式会议、晚宴、午餐会、海报评选、企业展示、颁奖晚宴等 /p p   有关会议注册、赞助、参赛和评奖的细节,欢迎访问会议官网:http://www.cpsa-shanghai.com。 /p p   期待您的支持和参与。 /p p   如有疑问,请发邮件给我们:邮箱:3540279@qq.com /p p style=" text-align: right "   上海逸星商务咨询有限公司 /p p style=" text-align: right "   CPSA Shanghai 2019会议组委会 /p p style=" text-align: right "   二零一九年一月八日 /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201901/attachment/700b748c-70bf-4584-a544-50c001dece27.pdf" title=" CPSA Shanghai 2019 Support Opportunities.pdf" CPSA Shanghai 2019 Support Opportunities.pdf /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201901/attachment/6eddb47e-85a8-4d8c-a7f6-0ef8415c5cb8.pdf" title=" CPSA Shanghai 2019年会参会通知.pdf" CPSA Shanghai 2019年会参会通知.pdf /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201901/attachment/fc52416a-166c-435e-aa21-7ab4018d7291.docx" title=" CPSASh19_RMBRegistration 报名表.docx" CPSASh19_RMBRegistration 报名表.docx /a /p p br/ /p
  • 第十届化学和药物结构分析上海年会最新通知
    p   尊敬的同仁: /p p   第十届化学和药物结构分析上海年会(CPSA Shanghai 2019)将于2019年4月10-12日在上海淳大万丽酒店举行。本届会议主题是“生物技术产业面临的转化挑战:从药物研发到临床”。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2018年已经在美国连续举办二十年。 /p p   为了方便中国参会人员学习和交流,本次会议特意增加了几个中文专场,请见会议日程安排:http://www.cpsa-shanghai.com/2019/hotel.shtml /p p   需要住宿预订人员,请尽快在线预订您的住宿房间:http://www.cpsa-shanghai.com/2019/hotel.shtml。如果在线住宿预订遇到问题,请直接联系酒店服务人员:joyna.lu@renaissancehotels.com /p p   有关会议注册、赞助、参赛和评奖的细节,欢迎访问会议官网:http://www.cpsa-shanghai.com。 /p p   期待您的支持和参与,同时感谢您转发会议通知给相关同事或朋友,欢迎更多人报名参加这个业内一流的国际交流会议。 /p p   如有疑问,请发邮件给我们:邮箱:3540279@qq.com /p p style=" text-align: right "   上海逸星商务咨询有限公司 /p p style=" text-align: right "   CPSA Shanghai 2019会议组委会 /p p style=" text-align: right "   二零一九年三月十二日 /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201903/attachment/39bc73f3-994b-455e-bee1-2e2443ad589f.pdf" title=" CPSA Shanghai 2019年会参会通知.pdf" CPSA Shanghai 2019年会参会通知.pdf /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201903/attachment/4d421696-a607-499f-9bb7-f32c2dfa440d.docx" title=" CPSASh19_RMBRegistration 报名表.docx" CPSASh19_RMBRegistration 报名表.docx /a /p p br/ /p
  • 前沿应用∣岛津高分辨质谱助力合成多肽药物杂质结构鉴定
    截至2020年,全球共有76个多肽类药物被批准上市,7000多个活性多肽被发现,约150个多肽药物进入临床试验,在过去20多年中,平均每年被批准的多肽药物约3个。微球、脂质体、聚乙二醇(PEG)修饰等方法的深入应用解决了多肽药物稳定性差、体内易降解、半衰期短等成药性差的问题,促进了多肽药物的开发利用。多肽药物药效广泛,临床上以慢性病治疗为主,例如罕见病、肿瘤、糖尿病、胃肠道、骨科、免疫、心血管疾病等。国内外药典将合成多肽类药物列入化药的范畴进行杂质的控制。欧洲药典规定合成多肽含量在0.5%以上的相关杂质需进行定性分析,对含量在1%以上的相关杂质进行定量分析并考察其毒副作用。2007年国家食品药品监督管理局发布了《合成多肽药物药学研究技术指导原则》,指出合成多肽原料药中工艺杂质的来源和一般化学药物有所不同,其可能的工艺杂质如:缺失肽、断裂肽、去酰胺多肽、氨基酸侧链的不完全脱保护所形成的副产物、氧化肽、二硫键交换的产物、非对映异构的多肽、低聚物和/或聚合物及合成中所用的毒性试剂和溶剂等。 多肽含有二硫键、裸露的氨基和羧基,容易因分子间二硫键或氨基羧基间脱水形成共价聚合物。共价键形成的聚合物杂质可能存在较大免疫原性风险,在多肽类药物制剂质量研究和新药申报中应予以重点关注。质谱分析、氨基酸组成分析和氨基酸序列测定是合成多肽药物及杂质结构确证最常用的技术手段。 岛津解决方案 ● 分析仪器岛津液相系统Nexera LC-40 +高分辨质谱仪LCMS-9030 ● 分析条件流动相为水:乙腈:TFA=60:40:0.2流速:0.5 mL/min等度洗脱柱温:25℃质谱:离子源:ESI(+)扫描范围:m/z 100 ~5000 多肽药物应用案例一STN聚合物杂质结构鉴定图1. 注射用STN破坏样品HPLC色谱图(UV 210 nm)图2. STN聚合物杂质可能的聚合方式 通过STN聚合物杂质精确质量数预测其分子式,结合多肽的质谱峰归属对STN聚合物杂质进行结构推测(如图2)。STN结构中含有一对二硫键,综合判断其聚合位点为分子间二硫键。 多肽药物应用案例二TJN聚合物杂质结构鉴定图3. 注射用TJN破坏样品HPLC色谱图(UV 214 nm) 图4. TJN聚合物杂质MS2质谱图 使用岛津精确分子式预测工具Formula Predictor对TJN聚合物杂质进行分子式预测,其分子式预测结果恰好相当于两分子TJN脱水,因此推测其聚合位点为两分子TJN的氨基端和羧基端缩合生成肽键。TJN为20肽,其游离氨基端为苯丙氨酸,游离羧基端为亮氨酸。结合TJN二聚体的推定氨基酸序列进行二级质谱碎片归属,TJN聚合物MS2质谱图中识别出多种特征碎片。特别是y19和b21碎片的存在证明聚合位点为亮氨酸(L)和苯丙氨酸(F)缩合而成的肽键。 结论随着我国成为国际人用药品注册技术协调会(ICH)成员国,药品的技术标准逐步与国际接轨。同时随着我国药品一致性评价工作的全面开展,合成多肽药物杂质结构鉴定将面临巨大的技术挑战。岛津公司采用尺寸排阻色谱法建立合成多肽药物的聚合物分析方法,并通过高分辨质谱LCMS-9030测定聚合物的准确质量数推测其分子式,同时结合MS/MS特征碎片推测聚合物杂质的结构。本文展示LCMS-9030在多肽药物的两种主要聚合方式(二硫键和肽键)鉴定中的应用。岛津液相色谱四极杆飞行时间串联质谱LCMS-9030具有高质量准确度,高分辨率的性能优势,是合成多肽药物杂质一级结构鉴定的强有力工具。 本文内容非商业广告,仅供专业人士参考。
  • 会议通知: 蛋白药物结构表征及质量设计前沿技术研讨会
    蛋白药物具有分子量相对较大,结构复杂多样性和可变性等特点,其产品质量容易受到生产过程中各种理化条件影响,如发酵或细胞培养条件改变,分离纯化工艺不同,产品质量都会有差别,因此对蛋白药物结构的表征和质量的控制必须贯穿于蛋白药物研发的整个过程中,以确保对蛋白药物产品质量属性进行全程、实时的监控。但在蛋白药物产品结构表征和质量监控中,样品前处理(如氨基酸序列分析,糖基化分析)和数据挖掘都是非常耗时的工作,如何提高蛋白质药物生产过程中质量监控效率至关重要。本次研讨会由 Bruker 和 Ludger 联合主办,为大家介绍 Bruker 特色的质谱表征方案和Ludger功能性糖链塑形(GlyShape)的质量设计理念,并通过 IgG1, EPO 和 FSH 等生物药物结构表征应用实例和临床案例分析,来诠释如何利用低成本和高效率的方法加强蛋白药物的质量监控,提高蛋白药物有安全性和有效性。竭诚欢迎您的莅临。会议日期:2017年9月15日 13:00 - 16:15会议地点:上海张江高科技园区蔡伦路720弄1号楼一楼多功能厅会议咨询:于小姐 13370119923 yiting.yu@bruker.com会议报名:邮件报名,请于2017年 9月13日前将参会信息 姓名+电话+工作单位+职位+参会人数发送至: yiting.yu@bruker.com 一.报告简介 报告 1:《布鲁克创新质谱技术助您提高蛋白药物质谱表征效率》 -- 让细节和速度能同时兼顾不再成为蛋白药物质谱表征的难题 质谱仪在蛋白质药物结构表征中的应用越来广泛,但质谱分析中耗时的样品前处理和数据挖掘大大制约了质谱仪在蛋白质药物生产中的应用,Bruker特色的质谱表征方案则致力于让质谱表征方法细节和速度同时兼顾,大幅提高蛋白药物质谱表征效率。报告 2:《功能性糖链塑形(GlyShape)的临床应用及案例分析》--加速提高生物药研发的安全性和有效性,帮助生物药公司节省研发和生产成本 Ludger专业的糖组学和糖基化分析技术,将通过IgG1, EPO 和FSH 等生物药物的临床案例分析来诠释如何用更低的成本和更快的速度提高生物药物的安全性和有效性。糖基化对蛋白的生物活性至关重要,因此,需要对多批次抗体的糖基化形式都进行表征,检测其糖基化形式的变化范围,之后证明该单抗药物的糖型结构在参照糖型的变化范围内。 基于QBD的质量控制理念与临床实践相结合,Ludger首先提出了功能性糖链塑形(GlyShape)的质量设计理念。二.讲师简介Daryl Fernandes 博士, 英国 Ludger 生物科技公司创始人和总裁。1980年获得了牛津大学糖生物学研究所生物寡糖结构分析专业的博士学位。在医学和生物技术领域利用和开发糖基化分析技术已经拥有超过三十年的经验。于1999年建立了自己的生物科技公司—Ludger。刘先明,布鲁克质谱生物制药应用与市场专员。毕业于苏州大学生物物理专业,拥有多年蛋白药物质谱表征分析经验,目前主要负责基于 ESI-Q-TOF 和 MALDI-TOF/TOF 技术平台在生物制药领域中的应用技术支持和技术推广。 三. 公司介绍Ludger 生物技术公司 Ludger 是一家专门从事糖组学和糖基化分析技术的生物科技公司,以支持生物制药的实现和药物的转变。公司成立于 1999 年,由 CEO 达里尔费尔南德斯博士创立,实验室和办公室座落在英国牛津附近的卡拉姆科技中心。Ludger 已通过 ISO9001 认证,目前拥有28位研究人员,分别从事以下科学和商业活动:合同定制研究,糖基化分析服务、研究和开发,糖技术耗材和试剂的生产等,其中也包含纯化的多糖标准品。布鲁克(北京)科技有限公司 布鲁克公司作为全球领先的分析仪器公司之一。自成立五十多年以来,我们始终坚持一个理念:针对当今的分析需求,开发最先进的技术和最全面的解决方案。今天,遍布几大洲九十多个地点的五千多名员工正在为这个信念努力工作。刀工作。作为质谱技术的领导者,布鲁克公司质谱部门为您提供各种类型的先进质谱系统,产品包括:基质辅助激光解吸电离飞行时间质谱质谱仪(MALDI-TOF和MALDI TOF/TOF)、电喷雾-离子阱质谱仪(ESI-Ion Trap)、电喷雾-飞行时间质谱仪(ESI-TOF)、电喷雾-四极杆-飞行时间串级质谱仪(ESI-Q-q-TOF)、超高分辨飞行时间质谱仪(UHR-TOF)、傅里叶变换回旋共振质谱仪(Q-q-FTMS)、气相-三重四极杆质谱仪(GC-MS/MS) 、液相-三重四极杆质谱仪(LC-MS/MS)。与此同时,我们还开发了农残筛查、毒物检测等一系列解决方案和软件产品,以最大化的满足科研、工业生产及检测等领域快速增长的需要。我们服务的客户群分布广泛,包括制药,生物科技,蛋白质组学和分子诊断等领域里的公司、学术研究单位和政府机构。公司总部设在美国,生产基地在德国,服务与销售中心遍布全球,以提供给用户最快捷和全面的服务。 Ludger 生物技术公司布鲁克(北京)科技有限公司2017年9月7日
  • 安捷伦再次盛装出席第二届化学和药物结构分析研讨会
    安捷伦再次盛装出席第二届化学和药物结构分析研讨会 (CPSA Shanghai 2011)   CPSA(Chemical & Pharmaceutical Structure Analysis, 化学和药物结构分析研讨会)是每年在美国举办的化学和制药行业领域的顶级盛会,深受广大药物研发和药物分析科学家的欢迎。继去年4月CPSA Shanghai 2010首届中国年度研讨会在上海成功登陆之后,CASA Shanghai 以先进技术与解决方案汇集一堂,东西方文化迸发出卓越思想的独特理念在广大中国药物研发和药物分析的高端科研人员之间引起了广泛的期待和良好的口碑。2011年4月13-16日,CPSA Shanghai 2011 在中国上海浦东Renaissance酒店如期举行,三百余位来自五湖四海,汇聚全球顶尖国际跨国制药公司,药物研发外包公司(CRO)及中国一流药物研发和药物分析的科研人员济济一堂,共同探讨了化学和药物结构分析领域的热点问题和需求,结构分析策略和业绩基准,深度审视创新型技术和药物研发的实践方法。   安捷伦公司再次以特别赞助商盛装出席了本次CPSA Shanghai 2011 ,安捷伦美国总部的众多公司高管和科学家应邀积极参与了晚宴主题报告,主持并参加了部分分会报告,以及展会,墙报等系列学术活动。   4月 14日晚,安捷伦公司再次举办了本次研讨会的大会欢迎晚宴----&ldquo 安捷伦之夜(Agilent Night)。在安捷伦公司大中华区生命科学市场部经理庄晨杰先生的主持下, 安捷伦公司副总裁及生命科学集团全球业务总经理John Pouk 先生,安捷伦公司副总裁及全球LC/MS业务总经理John Fjeldsted 先生,以及安捷伦公司生命科学集团大中华区总经理赵影女士带领他们的全球经理团队和中国团队热烈祝贺CPSA 2011 的再次成功召开,并诚挚感谢多年来一直支持和关心安捷伦中国业务成长的广大用户。安捷伦公司全球LC/MS产品经理Lester Taylor博士应邀作了Simultaneous Determination of the PK Profile of Clozapine and its Metabolites in Rat Plasma Using a High-Resolution 6540 QTOF Instrument的晚宴主题报告,博得全体与会专家,学者和与会科研人员的热烈掌声。席间,祥和欢乐之余,欢迎晚宴仍然充满高度互动的学术交流气氛,东西方文化再次交汇,大家热切期待明年再相逢。                     安捷伦公司副总裁及生命科学集团全球业务总经理John Pouk 先生致辞                        安捷伦公司全球LC/MS产品经理Lester Taylor博士做主题报告                            CPSA Funder Mike Lee 与Lester Taylor 关于安捷伦科技 安捷伦科技(NYSE: A)是全球领先的测试测量公司,是化学分析、生命科学、电子和通信领域的技术领导者。公司18,500名员工为世界上100多个国家的客户提供服务。安捷伦2010财政年度的业务净收入为54亿美元。了解有关安捷伦科技的详细信息,请访问:www.agilent.com.cn 。
  • 中国计量科学研究院李红梅团队:肝素类药物结构表征新方法建立
    p style=" text-indent: 2em " 中国计量科学研究院李红梅团队近期在Carbohydrate Polymers发表系列文章,阐述了团队近3年来针对肝素类药物结构表征新方法开发取得的研究进展(Wang, Zhang et al. 2018, Zhang, Liu et al. 2019, Zhang, Xie et al. 2020)。 /p p style=" text-indent: 2em margin-bottom: 10px " 肝素类药物是一种目前临床上应用最广泛的多糖类抗凝血药物,其构成组分极为复杂,分子量分布范围广,其中各组分的精细结构及含量决定了其药物活性。亚硝酸降解是针对肝素类药物进行结构分析的重要手段。降解得到的寡糖片段保留了肝素类药物的差向异构化构象,而差向异构化构象与药物活性密切相关。然而由于亚硝酸降解产物结构的复杂性,针对该类寡糖结构一直缺乏完善的表征方法。李红梅团队成功利用超高效亲水/弱阴离子交换色谱(UPLC-HILIC/WAX-MS)与高分辨串联质谱联用的分析方法,形成了一套完整的、针对亚硝酸降解产物的分析体系(图1)。另一方面,团队还建立了基于离线强阴离子交换-质谱(offline-SAX-MS)序列分析的寡糖链结构表征方法。以上方法适用于所有肝素类似物的结构表征,可以用来分析人工合成的、结构多样的硫酸乙酰肝素(HS),探究结构-功能的对应关系;完善肝素类药物结构表征方法,优化产品工艺,提升药物的安全性和有效性。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 620px height: 419px " src=" https://img1.17img.cn/17img/images/202010/uepic/a67b8516-6919-461b-b256-81d7f99d1a02.jpg" title=" 2.png" alt=" 2.png" width=" 620" height=" 419" / /p p style=" text-align: center " span style=" font-size: 14px color: rgb(89, 89, 89) " strong 图1:亚硝酸降解四糖的UHPLC-MS表征 /strong /span /p p style=" text-indent: 0em margin-top: 10px " Wang, Z., T. Zhang, S. Xie, X. Liu, H. Li, R. J. Linhardt and L. Chi (2018). & quot Sequencing the oligosaccharide pool in the low molecular weight heparin dalteparin with offline HPLC and ESI–MS/MS.& quot Carbohydrate Polymers 183(Supplement C): 81-90. /p p style=" text-indent: 0em " Zhang, T., X. Liu, H. Li, Z. Wang, L. Chi, J. P. Li and T. Tan (2019). & quot Characterization of epimerization and composition of heparin and dalteparin using a UHPLC-ESI-MS/MS method.& quot Carbohydr Polym 203: 87-94. /p p style=" text-indent: 0em " Zhang, T., S. Xie, Z. Wang, R. Zhang, Q. Sun, X. Liu, L. Chi, J. P. Li, H. Li and T. Tan (2020). & quot Oligosaccharides mapping of nitrous acid degraded heparin through UHPLC-HILIC/WAX-MS.& quot Carbohydr Polym 231: 115695. /p p style=" text-indent: 2em margin-top: 10px " strong span style=" color: rgb(38, 38, 38) " 学者简介: /span /strong span style=" color: rgb(38, 38, 38) " 李红梅:研究员,中国计量科学研究院化学所所长。享受国务院政府特殊津贴,全国“三· 八”红旗手荣誉称号获得者。 /span /p
  • 博纳艾杰尔参加上海化学和药物结构分析年会(CPSA 2012)
    2012年4月25-27日,第三届化学与药物结构分析年会(CPSA)在上海浦东淳大万丽酒店隆重召开。这是关于药物开发和分析的国际学术会议, 2010年开始,历时三年。 三年里,博纳艾杰尔与CPSA年年相会,共同进取。此次会议除常规产品外,更重点展示了药代相关产品,如:Cleanert® 96孔固相萃取板、模块化96孔板、蛋白沉淀板等。 会中,北美、欧洲和亚太地区等多国专家欢聚一堂,就药物代谢动力学及相关领域的新成就进行交流探讨。博纳艾杰尔展台也吸引了众多学者前来参观,许多老师留下联系方式,表示愿意有更深入了解,期待更多合作机会。 此次会议让博纳艾杰尔与众多DMPK领域的专家学者有了面对面的接触,为后期交流合作奠定了良好基础!
  • 第四届化学和药物结构分析上海(CPSA)2013年会第二轮通知
    第四届CPSA 上海2013年会(CPSA Shanghai 2013)将于2013年4月24-27日在上海淳大万丽酒店举行。本届会议主题是“利用转化科学、监管效率和创新模式振兴医药研发”。CPSA会议是化学与药物结构分析领域内享有极高声誉的国际性会议,截至2013年已经在美国连续举办十五年。   CPSA上海2013年会大会主席是来自扬森药业的翁乃栋博士。本届会议上,国际知名科学家将再一次就制药相关行业焦点问题进行讨论:药代动力学/临床科学,生物分析,与制药科学。会议将特邀全球制药巨头赛诺菲公司全球副总裁John Newton博士和宾夕法尼亚大学药理学专家Ian Blair教授做大会主题报告。   此外,本届会议将延续圆桌会议和培训会议、海报展以及社会活动等形式,奖项方面与以往相同,设置了“CPSA 青年科学家优秀奖”和“创新奖”两个奖项。“CPSA 青年科学家优秀奖”主要是为了培养和鼓励年轻科学家并给他们创造更多机会和来自工业界和学术界的资深科学家们进行学术交流。有关参赛和评奖的细节,请登陆网站查询。   会议日程概览:   2013年4月22日 卫星会议Workshop(地点:北京,需另行注册,注册方法近期公布)   2013年4月24日 会前研讨会Workshops和欢迎晚宴   2013年4月25-26日 正式会议、游艇晚宴、午餐会、海报评选、企业展示、颁奖晚宴等   2013年4月27日 上海药物代谢动力学研讨会活动(地点:中科院上海药物所,需另行注册,注册方法近期公布)   附件:   CPSA Shanghai 2013 Program.pdf   CPSA Shanghai 2013_Brochure.pdf   第一轮优惠注册截止日期为2013年1月22日,目前报名人数已接近100人。   报名表: Registration Form注册表 请完整填写此表后,连同付款凭证一起发邮件至:star.yang@mice-partners.com   Your Information参与人员信息   Mr._____ Mrs._____ Ms._____ ____________ _____________ _____________    First Name Middle Initial Last Name   Institution/Company:_______________________________________________   Address: __________________________________ Postal Code:___________   E-mail Address:_______________________________________   Telephone: Mobile:____________________________________   Conference Registration会议注册费用: 注册类别 2013年1月22日前 2013年1月23日-4月6日 2013年4月6日后 4月24日Workshop注册费用 640元 800元 1120元 4月25-26日正式会议注册费用(教师和企业代表) 1440元 1728元 2304元 4月25-26日正式会议注册费(学生/博士) 640元 800元 1120元   Workshop Selections (2013年4月24日下午12:00 - 4:00)   DMPK____________Bioanalytical____________ Pharmaceutical Sciences____________   备注:   l 2013年4月24日下午三个workshop同时举行,仅能任选一个注册   l 参会注册报名已实际收到会务费为准。   付款账户信息:   账户全称:上海逸星商务咨询有限公司   开户银行:上海银行曹安支行   银行账号: 31661203001254927   如有疑问,请联系:   杨会娟老师   电话:021-39152015-801 手机:13764632826   邮箱:star.yang@mice-partners.com   有关CPSA Shanghai 2013会议的更多信息,请访问: http://www.cpsa-shanghai.com.   有关会议的细节,请访问会议官网:http://www.cpsa-shanghai.com。   会务组联系方式:   Frank冯军豪   Meeting Service Manager   CPSA Shanghai 2013 Meeting   上海逸星商务咨询有限公司   Shanghai MICE Partners Consulting Co., Ltd.   Add: Rm 411 Zhenxin Biz Bld, No. 2199 South Qilianshan Rd, Shanghai 201824 China   Mobile: 86-18917509848 86-13817660578   Tel: 86-21-39152015 Ext801   Fax: 86-21-39152015 Ext803   Email: frank.fung@mice-partners.com   Website: www.mice-partners.com
  • 【培训班通知】2016符合CFDA申报要求的生物药物特性分析与结构确证技术研讨班
    关键词:生物制药、实用分析方法、深度分享 上海中科新生命(中国科学院上海生命科学研究所蛋白质组研究分析中心)赛默飞世尔科技中国有限公司联 合 主 办 近年,生物药发展迅速,针对目前国内生物药企业在蛋白类药物分析经验不足的情况,上海中科新生命与赛默飞联合主办“符合CFDA申报要求的生物药物特性分析与结构确证”系列技术研讨班。研讨班将在北京、武汉、深圳三地展开。作为国内最早开展生物药物分析服务的第三方平台之一,上海中科新生命(简称APT)已经积累了十余年蛋白质专业分析经验,并已为国内超过300家生物制药企业提供分析服务。积累了极为丰富的分析和申报经验。中科新生命将在本次研讨班中分享其多年积累的实用分析方法和宝贵经验。作为全球最大科学服务领域领导者之一,赛默飞提供的Orbitrap质谱系列产品,已经成为蛋白质分析领域中最普遍使用的一类超高分辨质谱。每年,全球各地区应用科学家,开发出大量基于Orbitrap的生物制药分析应用方法,成为蛋白药物分析的宝藏。赛默飞将在本次研讨班中分享高分辨质谱在蛋白质药物分析中的最新应用案例。 本次研讨班,在国内生物制药领域,开创了国际质谱产品领导企业与国内分析服务方的深度合作模式,不但体现了相互间技术实力的认同,更是为了将双方多年在生物制药领域深厚的应用实践经验相乘后,与国内制药企业分享。相信通过双方多年来的实战经验讲授,可以帮助国内企业更加顺利地掌握、越过蛋白质药物分析难点。 会议地点: 会议主要内容:1、生物药结构表征综合解决方案 (抗体、重组蛋白、多肽、疫苗等药物)2、蛋白药物质谱分析难点及应对方法 (二硫键、天冬氨酸异构、O-糖基化、溶出物、ADC位点)3、翻译后修饰分析4、HCP相关分析 (抗体专属性验证、基于2D LC-MS/MS的HCP定性与定量分析)5、PEG位点确证和杂质分析 (PEG理论位点确证、PEG修饰异构体比例与修饰位点分析)6、多肽类药物结构确证难点 (环肽、非标氨基酸、二硫键)7、组学技术在蛋白药物开发中的应用 (未知抗体序列鉴定)8、蛋白质和代谢组学在药理学与生产工艺研究中的应用 (药理作用与机制解析、杂质鉴定与定量、细胞发酵监控) 讲师简介:阮宏强:APT技术服务部负责人毕业于浙江大学,中国科学院蛋白质组学分析研究中心研究员,从事蛋白质组学及蛋白质化学研究十多年,积累了丰富的仪器分析检测和复杂项目研究的实战经验。擅长质谱分析技术、高效液相分析技术、电泳技术等蛋白质组学及生物药物分析常用技术。参与编写《蛋白质电泳技术指南》、《蛋白质化学与蛋白质组学》等专业书籍。孙晓斌:APT技术支持毕业于上海大学分子生物学系,多年来主要从事蛋白质表征及蛋白质质量控制方面的研发工作。擅长蛋白质及多肽的质谱/色谱相关分离和分析方法的建立和优化。对于PEG修饰蛋白类药物具有丰富的表征及理化分析经验。严峻:APT技术支持中国药科大学博士,从事蛋白质结构表征、蛋白质组学、代谢组学的售前支持工作,负责质谱技术的应用推广与实验方案设计。对质谱技术在蛋白质结构表征、药物生产质量控制、生理与病理研究、临床诊断研究等领域的应用有着丰富的认识与研究经验。贾伟:赛默飞质谱部生物制药应用开发经理10余年大分子液质分析经验。中国科学院生物物理所、北京蛋白质组研究中心联合培养博士。在MCP、AC等学术期刊以第一作者发表研究论文;曾担任国家自然科学基金青年基金课题负责人,并曾参与863、973、国家自然科学基金重点等项目工作。 报名方式:请将报名回执(见后)发送至:林江 marketing@sibs.ac.cn 贾伟 jerry.jia@thermofisher.com 报名费用:北京、武汉6月10日前,深圳6月30日前,报名并付费为800元/人,同一公司2人及以上参加600元/人。现场报名付费:1000元/人。报名费含午餐;交通费自理,若需住宿请自行安排。现场领取参会发票。 支付账户信息:帐 号:033908-00040007818上海中科新生命生物科技有限公司农行漕河泾开发区支行营业部*注意事项:请务必在汇款时注明“2016研讨班”,方便信息核对。
  • 中科院物理所团队发现小分子药物调控人源电压门控钠离子通道蛋白的结构学基础
    电压门控钠离子通道蛋白在产生和传导动作电位中发挥重要作用。在哺乳动物中,基于组织特异性,至少有9种电压门控钠离子通道异构体,其中命名为“Nav1.3”的电压门控钠离子通道蛋白在中枢神经系统中表达量高。有证据表明Nav1.3蛋白的突变与局灶性癫痫和多微脑回畸形疾病有关,因此Nav1.3蛋白可以作为治疗癫痫药物的靶点。  3月11日,中国科学院物理研究所团队在nature communications杂志上发表了题为“Structural basis for modulation of human Nav1.3 by clinical drug and selective antagonist”的文章,解析了Nav1.3/β1/β2分别与小分子药物乌头碱A和选择性拮抗剂ICA121431结合的冷冻电镜三维结构,揭示了乌头碱A和ICA121431调节Nav1.3的不同机制。  研究表明,Nav1.3蛋白的整体结构与已报道的其他哺乳动物Nav蛋白结构高度相似。调控Nav1.3蛋白功能的β1亚基通过其N端结构域和Nav1.3蛋白相互作用,同时其C端跨模域的螺旋稳定在Nav1.3蛋白第三个结构域上。调控Nav1.3蛋白功能的β2亚基柔性大,整体分辨率较低,但仍能看到其第55位的半胱氨酸与Nav1.3蛋白第911位的半胱氨酸形成了二硫键。小分子药物乌头碱A结合位点位于Nav1.3蛋白第一个结构域与第二个结构域之间,部分阻挡了离子通道。选择性拮抗剂ICA121431结合位点位于Nav1.3蛋白第四个结构域,增强了“异亮氨酸-苯丙氨酸-甲硫氨酸”模体与该模体的受体的结合,将离子通道稳定在失活状态。  该研究解析了不同小分子调节剂与Nav1.3蛋白结合位点的结构,阐明了这些小分子在Nav1.3蛋白上的作用机制,为后续基于结构开发特异性更高的药物提供支撑。  论文链接:https://www.nature.com/articles/s41467-022-28808-5
  • 上海药物所等解析糖皮质激素与GPR97和Go蛋白复合物的冷冻电镜结构
    中国科学院上海药物研究所研究员徐华强团队与山东大学教授孙金鹏团队、浙江大学教授张岩团队等首次解析了糖皮质激素与其膜受体GPR97和Go蛋白复合物的冷冻电镜结构,这也是国际上首次解析的黏附类GPCR与配体和G蛋白复合物的高分辨率结构。相关研究成果以Structures of glucocorticoid-bound adhesion receptor GPR97-Go complex为题,于2021年1月6日在线发表在Nature上。  黏附类G蛋白偶联受体(Adhesion G protein-coupled receptors, aGPCRs)是GPCR超家族成员之一,在生物体一些重要的生理过程中发挥关键分子开关的作用,如脑的发育、水盐调节、炎症以及细胞命运决定等。与GPCR超家族其他成员相比,aGPCRs除了具有经典的7次跨膜核心(7TM)外,还具有较长的胞外区域,组成了拥有不同功能的结构域。目前普遍认为aGPCRs可被结合胞外的基质蛋白或可溶性小分子激活,然而,学界尚不清楚小分子配体是否可以直接结合7TM并激活受体。  糖皮质激素对机体的发育、生长、代谢及免疫等功能发挥重要的调节作用,是机体应激反应最重要的调节激素和临床上使用最广泛的抗炎及免疫抑制剂之一。经典理论认为,糖皮质激素通过与糖皮质激素核受体结合,并穿过核孔,在细胞核内发挥调控相关基因表达的作用。该作用方式通常需要较长的反应时间,被称为基因组机制。徐华强课题组分别在2002年和2014年解析了糖皮质激素核受体与地塞米松(Cell, 110: 93-105)和内源性糖皮质激素——氢化可的松(Cell Research, 24: 713–726)的晶体结构,揭示了糖皮质激素识别与功能调控其核受体的机制,推动了糖皮质激素受体靶向药物的开发。此外,糖皮质激素被发现能够快速引起细胞和机体的变化,这提示生物体内可能存在糖皮质激素的膜受体,其能够介导糖皮质激素的快速反应。研究发现,糖皮质激素的快速反应与G蛋白有密切关系,Gi的抑制剂PTX能够抑制糖皮质激素的快速作用,并据此推测GPCR是糖皮质激素的潜在膜受体。孙金鹏和山东大学教授易凡团队等对GPR97进行了受体生理学和内源性配体发现等工作,发现包括糖皮质激素类的氢化可的松、可的松以及11-脱氧皮质醇等在内的内源性类固醇激素均能够激活GPR97,其中,地塞米松具有更强的GPR97激活能力,并最终确认Go是GPR97激活后偶联的G蛋白通路。  在前期工作基础上,合作团队采用单颗粒冷冻电镜技术,分别对外源配体倍氯米松(BCM)以及内源性配体氢化可的松(cortisol)激活GPR97后形成的复合物进行了结构解析,最终分别获得了两个配体激活态的GPR97受体与Go蛋白的复合物结构,分辨率分别为3.1埃和2.9埃(图1a和1b)。  与其他GPCR亚家族成员相比,GPR97的7TM呈现独特的空间分布,其螺旋展现出与其他受体不同的长度。根据传统理论,aGPCR特有的胞外GAIN结构域和7TM在激活GPCR的过程中作为整体发挥其核心功能,然而,研究人员在结构中首次发现糖皮质激素结合在GPR97 7TM核心中的一个椭圆形正构结合口袋(图1c);此外,GPR97还展现出不同于其他A类GPCR成员的独特激活机制。GPR97序列中不含有保守的PIF、DRY和NPxxY等motif,其首先通过toggle switch W6.53识别配体并被激活。激活的受体借助首次发现的upper Quaternary core(UQC)将受体TM3-TM5-TM6捆绑在一起,继而通过HLY motif介导与Go蛋白的结合。受体7TM组成较大的胞内侧G蛋白结合口袋,3个胞内环均参与受体与G蛋白的相互作用,胞内环与受体的组成性激活密切相关;该研究中,研究人员还首次阐述了G蛋白的棕榈酰化修饰在其偶联GPCR中的关键作用。研究首次发现Gαo的α5螺旋C351位点被棕榈酰化修饰(图2),并进一步验证了该修饰在Go与GPR97的偶联中的独特作用。  综上,合作团队首次发现了糖皮质激素的高亲和力膜受体,并通过单颗粒冷冻电镜技术,解析了黏附类GPCR家族中GPR97在糖皮质激素的激活作用下与Go蛋白复合物的结构,从而在近原子分辨率上揭示了糖皮质激素识别并激活膜GPR97,以及受体偶联Go蛋白的分子机制。该成果将对糖皮质激素膜受体功能研究和黏附类GPCR的激活机制理解发挥重要的示范及推动作用。  上海药物所为该研究的第一完成单位。上海药物所与山东大学基础医学院联合培养博士生平玉奇,浙江大学基础医学院博士后毛春友,山东大学基础医学院副教授肖鹏、硕士研究生赵儒嘉,上海药物研究所研究员蒋轶为论文的共同第一作者;孙金鹏、张岩、徐华强为论文的共同通讯作者;易凡和山东大学教授于晓为论文的共同作者。研究工作得到国家基金委、科技部、上海市科委等单位的支持。  论文链接图1.GPR97的冷冻电镜结构图2.Go棕榈酰化修饰
  • 上海药物研究所启动抗“超级细菌”药物研究
    8月18日从中国科学院上海药物研究所了解到,该研究所相关科研人员已经启动抗“超级细菌”药物研究。 中科院上海药物研究所启动抗“超级细菌”药物研究   最近,一种对几乎所有的抗生素都有耐药性的新型“超级细菌”NDM-1(新德里金属β内酰胺酶-1)已使全球170人被感染,其中在英国至少造成5人死亡,这种新型细菌变种基因有可能在全球蔓延。   为此,中国科学院上海药物研究所成立了“抗NDM-1药物研究联合攻关小组”,并召开了由相关学科科研骨干参加的“抗超级细菌(NDM-1)药物研究工作布置会”。据研究所工作人员介绍,上海药物研究所将集中力量投入抗“超级细菌”药物研究联合攻关,重点开展“超级细菌靶标确证及感染机制研究”“抗超级细菌药物筛选模型的建立”“抗超级细菌化合物的设计与筛选”和“大规模化合物样品的合成”的研究。   NDM-1是一种超级抗药性基因,这种基因的脱氧核糖核酸结构可以在同种甚至异种细菌之间“轻松”复制。研究人员现阶段多在大肠杆菌和肺炎克雷伯氏菌等细菌内发现NDM-1基因,含这种基因的细菌对几乎所有抗生素具有抵抗力,就连“杀伤性较强的”碳青霉烯类抗生素也拿这类细菌束手无策。国外专家表示这类细菌难以对付,目前还“没有任何药物可以对付它”。
  • 中科院上海药物所等优化新型药物载体材料
    p   中国科学院上海药物研究所研究员张继稳领衔中法合作团队发明了一种快速、温和的方法,显著改善环糊精金属有机骨架(CD-MOFs)在水中的稳定性,克服了CD-MOFs在水中稳定性差的缺点,拓展了CD-MOFs在医药领域的应用前景。该研究成果于7月26日发表于《化学通讯》(ChemComm)上。 br/ /p p   金属有机骨架(MOFs)作为新的“明星”材料,迅速成为科学家的研究热点。以环糊精为有机配体、钾离子为无机金属中心形成的CD-MOFs,是安全性高的新型药物载体,其微粒尺寸可控、功能多样,具有良好的生物相容性,在药物输送领域具有重要的应用价值。但CD-MOFs遇水迅速崩解,限制了它的应用。现有的增加CD-MOFs在水中稳定性的策略反应耗时长,并降低CD-MOFs的载药能力。因此,合成稳定的多孔性CD-MOFs材料仍然是一个巨大的挑战。 /p p   由上海药物所、法国Paris-sud大学、吉林大学、中山大学组成的合作团队采用简单高效的方法将胆固醇分子嫁接到CD-MOFs上,在CD-MOFs表面形成一层保护性的疏水性外壳,显著提高了CD-MOFs在水中的稳定性,即胆固醇修饰的CD-MOFs (CD-MOF-CHS)。胆固醇修饰的CD-MOFs(CD-MOFs-CHS)与水接触24 小时后仍能保持其内部结晶性结构和外部完整的形态。CD-MOF-CHS纳米粒可显著提高阿霉素在HeLa细胞的摄取,有效地递送药物。大鼠体内药代动力学研究表明,CD-MOF-CHS载阿霉素纳米粒的生物半衰期和曲线下面积(AUC)均显著提高。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/a61a375b-37cb-4865-ad02-a63b672a4fd7.jpg" title=" 1.jpg" width=" 564" height=" 130" style=" width: 564px height: 130px " / /p p style=" text-align: center " 胆固醇表面修饰CD-MOF可显著提高其在水中的稳定性 /p p br/ /p
  • 上海药物所报道抗万古霉素耐药菌候选药物
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   近日,中国科学院上海药物研究所黄蔚课题组与蓝乐夫课题组的研究成果,以 em Extra sugar on vancomycin: new analogues for combating multidrug-resistant Staphylococcus aureus and vancomycin-resistant Enterococci /em 为题,发表在《医药化学杂志》( em Journal?of?Medicinal?Chemistry /em )上,研究报道了新型糖肽抗生素衍生物,针对多重耐药的金黄色葡萄球菌和粪肠球菌抗菌活性高于万古霉素128-1024倍。 /p p   细菌的抗生素耐药已成为日益严峻的全球公共卫生问题,各种耐药的“超级细菌”威胁着人类健康与生命。近年来,世界卫生组织多次发布报告指出,目前新抗生素的研发严重不足,难以面对日趋严峻的耐药菌感染威胁。很多国家和机构开始采取激励措施,鼓励新型抗(耐药)菌药物的研发。糖肽类抗生素万古霉素曾被誉为人类对付超级细菌MRSA(Methecillin-resistant? em S.aureus /em )的“终极抗生素”,然而,2002年后出现了万古霉素中度耐药(Vancomycin-intermediate em S.aureus /em ,VISA)和完全耐药(Vancomycin-resistant em S.aureus /em ,VRSA)的菌株。此外,在世界范围内,万古霉素耐药的肠球菌(Vancomycin-resistant em Enterococci /em ,VRE)对人类的威胁也日益加剧。针对国内感染病例数据的分析显示,每年多重耐药的MRSA、VRSA、VRE等耐药菌感染人群达1000万以上,研发新型抗耐药菌新药迫在眉睫。 /p p   针对万古霉素耐药机制,研究在万古霉素结构基础上通过引入疏水基团增加耐药菌细胞膜通透性,同时引入糖结构片段促进药物与细菌细胞壁肽聚糖前体配体的结合,显著增强抗耐药菌效果,MIC降低了2-3个数量级。在成药性方面,合理的结构修饰在体内药代和安全性评价方面均表现出良好的优势,疏水基团延长了药物的半衰期、提高了AUC,同时亲水糖结构调控了体内清除率,避免了积蓄毒性。优选化合物SM-V-61大鼠药代显示其半衰期为万古霉素的5倍,AUC为万古霉素的15倍。在安全性方面,SM-V-61的肝肾细胞毒性均小于万古霉素。大鼠急毒实验显示,在药效剂量40倍下无明显不良反应。目前该项目正在进行系统性临床前评价,为临床申报做准备。 /p p   研究工作获得中组部“青年千人”计划、国家自然科学基金、中科院药物创新研究院“自主部署项目”的资助。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171228572156269982.jpg" src=" http://img1.17img.cn/17img/images/201801/uepic/eb3e54c9-1003-427d-ac4e-0dd0e71ae121.jpg" / /p p style=" text-align: center " 上海药物所报道抗万古霉素耐药菌候选药物 /p
  • 创新药物研发新热点之糖类药物研究——访北京大学药学院李中军教授
    糖,是组成生物体的基本物质之一,与蛋白质、核酸并称为三大生物大分子。然而,由于糖结构的高度复杂性和多样性,糖类物质的研究进展相对缓慢,从基础研究到功能解析,甚至包括糖类药物的开发和应用方面,都远远滞后于蛋白质和核酸。近年来随着糖科学的发展,尤其是寡糖合成手段的进步和各类探针分子的应用,使得糖类的功能逐步得到解析,糖化学与糖类药物的开发也逐渐成为生命科学与制药领域的研究热点之一。日前,笔者有幸采访到了日本东京理化的一位重要客户——北京大学天然药物及仿生药物国家重点实验室,北京大学药学院李中军教授,并与李教授聊起了糖化学及糖类药物的相关研究,以及李教授课题组在教学研究中经常用到的一些仪器设备等,陪同采访的还有东京理化中国贸易公司,埃朗科技售后服务部技术总监张京明先生。北京大学天然药物及仿生药物国家重点实验室,北京大学药学院李中军教授糖化学相关研究的意义与挑战李中军教授可以说是一位地地道道的“北医人”,从1982年开始就读于北京医科大学(后并入北京大学)药学院化学专业,本、硕、博都是在北医完成,后留校任教从事教学和科研工作,长期以来从事糖化学、糖化学生物学及相关创新药物的研究。对于糖在生物医药中的重要作用,李教授引用了两个重要的例子,一个是人类ABO血型真正的区别其实就是血红蛋白外面糖链结构的差别;另一个是肿瘤细胞的糖链结构会发生异常改变,是进行早期肿瘤诊断的生物标记物,同时也是抗肿瘤药物疗效及预后的重要指标。而要进行糖的功能研究,首先要解决糖的来源问题,就是寡糖的获得性。制备纯度高、结构清楚的寡糖可以说是影响糖类学科发展的瓶颈,近年来受到越来越多的关注。寡糖的制备方式主要有三种,一种是从天然产物中分离,另一种是酶促法,还有一种就是化学合成法。由于天然产物中的多糖分布不均匀且结构复杂,因此分离难度非常大。而酶促法虽然可行性高,但酶来源受限,价格昂贵。所以寡糖制备大多数采用的是化学合成法。传统的寡糖合成步骤特别长、成本非常高,譬如法国制药巨头赛诺菲获得专利的一个抗凝血肝素类药物——磺达肝素,可有效用于临床手术中防治血栓形成或栓塞性疾病,光合成步骤就有60步,每公斤合成成本高达600万元以上,这种步骤繁琐且高成本的制备方式严重制约了糖类药物的发展。李中军教授团队长期关注寡糖合成新方法及快速组装新策略的研究。譬如,人体内的凝血包括外源性和内源性,外源性凝血可阻止伤口不断出血,而内源性凝血则容易引起血栓等,肝素类药物虽然具有出色的抗凝血活性,每年全球销售额高达数十亿美元,但由于其口服无活性,且同时作用于内、外源性凝血,存在潜在出血风险,因此被局限于医院等专业医疗机构用于临床手术方面。近年来科学家从天然海参中提取到肝素的结构类似物——岩藻糖基化硫酸软骨素(FuCS),研究表明FuCS九糖片段具有市售低分子量肝素相当的抗凝血活性,且由于其独特的化学结构,使其具有口服抗凝活性,且药理活性机制表明其可选择性激活内源性凝血通路,因此在出血倾向方面比肝素具有更高的安全性,通过优化改造之后有望发展成为新一代肝素抗凝药物。李中军教授研究团队通过采用降解加修饰的半合成策略,开发了一种可以简便合成FuCS九糖的化学合成工艺。这一工艺的实现可以提高FuCS的可获得性,降低目标药物的获取难度,合成步骤和成本大大减少,实现了高效、简洁的寡糖合成,为后期药物筛选与中式放大提供了最优合成路线,应用前景非常好,目前已实现技术转让。除此之外,李中军教授研究团队还致力于各种生物活性寡糖的合成及活性评价,基于糖类的天然产物合成及不对称合成研究以及创新药物研究等。糖化学研究的主力——小型仪器近年来,糖类药物的研究越来越热,由于我国具有丰富的生物资源,糖类药物来源广泛,因此在糖类药物研究方面也取得了一系列的重要进展,相关研究团队的数量也在逐渐增多。正如李中军教授所说,20年前国内做糖的没有一个组织,而现在各类相关学会下面已经有4个糖药物专委会,由此可见糖药物在国内的发展速度。而由于糖链结构的复杂性,目前获得糖链的主要方法还是提取或化学合成,没用通用性的合成方法,难以像核酸和蛋白质那样进行高效、准确的自动化化学合成,也不能像核酸PCR扩增或蛋白质表达那样大量制备。虽然从2000年左右开始陆续有科学家发明糖的合成仪,但基本上都是一些模型机或验证设备,还没有通用的商品化糖合成仪。在糖类药物合成的实验室研究中,目前用到的基本上都是一些小型的仪器设备,主要包含搅拌器、旋转蒸发仪、冻干机、真空泵等,而李教授实验室中有大半的这些仪器设备来自于东京理化。据李教授介绍,他与东京理化仪器的渊源要追溯到上世纪90年代中期,那时候他还在北医做学生,就开始使用东京理化的旋转蒸发仪了,而东京理化那时也还没有正式进入到中国,是通过代理商进行合作的。左:埃朗科技售后服务部技术总监张京明 右:北京大学药学院李中军教授寄语东京理化对于东京理化的产品,李教授认为最重要的一点就是性价比高,譬如,同样性能的旋转蒸发仪,东京理化产品的价格要比欧洲同类产品便宜不少,而且后期的售后服务和维修成本也相当值得称道。李教授提到,有些国外的大品牌,将仪器售后委托给代理公司,由于代理公司的频繁变动和工作人员的更换,培训工作难以到位,有时候售后价格昂贵不说,售后人员的专业性还大打折扣。譬如,隔膜泵有时候真空上不去,明明不一定是膜片的问题,可能只是单向阀需要调整一下,但售后人员一来就要换膜片,且每次报出来的价格都不一样,四百、五百、六百都有可能。因此长期使用下来,用户对于这些品牌的后期印象非常差。而在这一点上,东京理化由于在国内设立了多个分支机构(包括生产工厂),在售后方面有稳定的人员保障,能够提供相对较好的用户培训和售后服务。此外,东京理化的产品也非常耐用,据介绍,北医最久的一台东京理化的旋转蒸发仪,目前已经使用了20余年,虽然中间也换过配件,但现在仍然还在实验中为老师和学生们服务。在谈到对于当下产品的改进建议上,李教授认为,像旋转蒸发仪、冻干机等这类仪器,从技术水平上来说,并不是什么高精尖的仪器设备,在功能开发方面其实已经做得非常好了,目前更需要做的其实是用户培训。因为很多时候你会发现,其实用户对于仪器已有功能的了解还是很不够的。譬如像冻干机的使用,当样品冻干到一定程度时,冻干速度会越来越慢,而为了保持冻干速率,其实厂商在每个托盘底上都加了一个加热装置,通过适当加热可以提高升华速度,而这个功能很多学生并不知道。因此很多时候学生从外面看产品好像已经干了,结果拿出样品才发现底部还是有一些冰块。当然,这个问题目前已经通过歧管瓶的方式解决了。但这个例子充分说明了用户对于仪器功能的不了解。后记在采访即将结束的时候,李教授向笔者表示,在提高仪器耐用性方面,特别是对于那些实验常用的仪器设备,仪器使用者和仪器制造商,双方都有提升的空间。对于使用者而言,尤其是年轻的科研人员,要掌握正确的仪器设备使用方法。而对于厂商而言,则要不断提高一些易损件(例如:隔膜泵的膜片、旋蒸仪的密封件等)的耐用性。同时,在仪器功能的开发方面,则应尽可能向简便、实用方向发展。
  • 日程详览|第四届药物研发及分析技术网络会议之【药物代谢专场】
    随着生命科学、分子药物学、材料科学及信息科学的迅猛发展,各学科之间不断交叉渗透,药物制剂的新技术、新工艺、新材料等不断涌现,科学的发展为我们提供了更多更好的技术、方法和手段应用于药物研发分析及质量控制。为帮助制药领域用户快速了解、高效学习药物分析相关技术方法,仪器信息网将于2023年11月21-23日举办第四届“药物研发及分析技术”网络会议,设置药物代谢、生物分析、药品质量控制及安全性研究、药物分析技术新进展等专场,邀请多位业内专家做精彩报告,为广大制药领域从业人员搭建一个即时、高效的交流和学习的平台。11月21日药物代谢专场主持人吴彩胜(厦门大学 实验室与设备管理处副处长/教授)刁星星(中国科学院上海药物研究所 研究员)报告日程9:00-9:35刁星星(中国科学院上海药物研究所 研究员)《从2018-2023年我国上市新药解读》【摘要】放射性药物代谢技术是国际制药行业公认的研究创新药物“物质平衡、组织分布、代谢物鉴定”的“金标准”。美国FDA批准的新药,几乎全部使用放射性标记技术来做药物代谢研究,而我国这一比例在IND阶段很低。此技术的落后,严重制约了我国创新药物的发展。 报告将通过2018-2023年我国上市新药及发表的文献,来解读2023年7月24日发布的《放射性标记人体物质平衡研究技术指导原则(征求意见稿)》。并通过多个国产创新药的实例,阐明放射性同位素标记在新药研发中的重要作用,为新药研发提供全新的思路和解决方案。9:35-10:10顾景凯(吉林大学 药物代谢研究中心主任)《PEG化长循环脂质体的体内命运与相关技术指南解读》【摘要】纳米药物递送系统(NDDS)是与创新药物并驾齐驱的最受瞩目、最具前景的药物发展方向之一,但存在“高投入、低产出”的突出问题。究其主要原因,在于目前缺乏前瞻性的理论指导与有效的分析方法,无法为NDDS的设计与生物效应评价提供最基本的药代动力学数据指导。 本研究突破了阿霉素脂质体在组织水平上的游离与包裹药物定量分析的“卡脖子”问题,并成功揭示了嵌入脂质体中的DSPE-PEG2000 体内命运及PEG-脂质的脱落动力学。 报告还将基于我们以往的研究经验,尝试解读FDA与CDE有关NDDS的药代动力学指南。10:10-10:40张劭阳(赛默飞世尔科技中国有限公司 高级应用支持工程师)《高分辨质谱在ADC抗体药物中的全面表征方案》【摘要】 1、ADC药物分子量及DAR值检测 2、ADC药物肽图分析 3、HCP的鉴别和定量10:40-11:15唐崇壮(苏州锐迪欧医药科技有限公司 总经理)《抗体偶联药物ADC的代谢研究难点、对策和案例分析》【摘要】 ADC药物的代谢研究可以为药效学机制、毒性机理及DDI研究提供关键信息。 在ADC药物发现阶段,选择合适的体外体系,并综合利用非靶标性和靶标性的LC-HRMS方法鉴定ADC在体外释放的载荷及其代谢物,对选择和确认毒理种属和开展代谢物表型研究至关重要。在非临床阶段,放射性标记载荷在动物的ADME结果可以用于预测ADC的载荷在人体的ADME和相关临床DDI。 由于ADC的载荷体内浓度低,代谢物结构难以预测,载荷的体外代谢和体内ADME研究模型和代谢物鉴定方法与小分子代谢有很大的区别,为此锐迪欧建立了支持ADC研发和申报的代谢研究策略和方法,并成功应用到多个ADC研发的项目上。11:15--11:50邹灵龙(康维讯生物技术有限公司 创始人、董事长、CEO)《抗体药的生物分析与药代动力学研究》【摘要】 抗体药是生物药中最主要的品种,FDA迄今批准了一百多款抗体药,包括单抗、双抗、ADC和抗体片段。本报告将介绍常见抗体药的药代动力学简况以及相应的生物分析方法学,包括但不限于适用于临床前研究的通用型检测方法。扫码报名,免费参会解锁更多精彩专场报告时间上午下午11月21日药物代谢生物分析11月22日药品质量控制及安全性研究专场11月23日药物分析技术新进展
  • 双抗药物为何能引领生物药研发新时代?
    双特异性抗体(Bispecific Antibody,bsAb)是拥有两种特异性抗原结合位点的新型第二代抗体,可以同时与靶细胞与功能细胞(一般为T细胞)相互作用,进而增强对靶细胞的杀伤,是当前医药研发最热门的领域之一。关于双抗概念的提出已经60年,距首款双抗药物Removab获批上市,已跨越十二年,在这期间全球仅有四款双抗药物获批上市,其研发难度不言而喻。双特异性抗体结构(抗体密码,奥开证券研究院)双抗药研发现状作为创新药研发的黄金赛道,全球双抗药有近百款处于临床阶段,有部分已进入临床Ⅲ期,国内涉足双特异性抗体研究的企业也越来越多,目前处于临床阶段的双抗药物接近60个,随着药物研发的逐步推进,未来3-5年将有望迎来双抗药物上市井喷。目前,获批上市的四款双抗药分别是Removab、Blincyto、Hemlibra、Rybrevant。Removab,2009年由Trion Pharma公司研发上市,其一条抗原结合臂特异性结合肿瘤细胞上高表达的跨膜糖蛋白EpCAM,另一条抗原结合臂特异性结合T细胞上的CD3,Fc区可与巨噬细胞、NK细胞等免疫细胞上的Fc受体结合并激活其免疫功能,适应症为恶性腹水。但由于价格高昂,且有更简单的治疗方案替代,Removab销售每况愈下,最终于2017年宣告退市。Removab结构Blincyto,2014年由Amgen公司研发上市,一端可以与B细胞表面表达的CD19结合,另一端可以与T细胞表面表达的CD3结合。通过连接CD19恶性B淋巴细胞与CD3+T淋巴细胞,Blincyto可介导T细胞对肿瘤细胞的溶解,适应症为淋巴细胞白血病。上市后,Blincyto全球销售额持续走高,2020年销售额达3.79亿美元,同比增长21.47%。Blincyto同样价格高昂,目前是市场上价格最高的药物之一,美国市场每两轮疗程的定价为17.8 万美元。Blincyto作用机理Hemlibra,2017年由Roche公司研发上市,通过桥接FIXa和FX,促进凝血酶的生成,恢复A型血友病患者的凝血过程,使FⅧ功能障碍或完全缺乏FⅧ的A型血友病患者的出血部位达到止血。Hemlibra 在2019年的销售额达15.09亿美元,同比增长超过500%,2020年前三季度销售已达到17.78亿美元,同比增长78%。Hemlibra作用机理Rybrevant,由强生公司研发的治疗非小细胞肺癌双抗药,2021年被批准上市。Rybrevant的活性药物成分为Amivantamab,是一款全人源的IgG1双抗,具有免疫细胞导向活性, FAB 端分别靶向EGFR和cMet。Amivantamab作用机理引领生物药研发新时代精准靶向,降本增效与单抗药物结构相比,双抗药物增加了一个抗原结合位点,靶向精度提高,充分发挥了协同调控多条下游信号通路的作用,突破了靶向或免疫药物作用靶向单一的局面,对一些复杂的肿瘤治疗研究起到重大推动作用。双抗药物可以通过灵活设计,与两个甚至三个不同抗原结合,实现多靶点协同治疗,增强治疗效果。在剂量使用方面,由于双抗药物的治疗效果可以达到普通抗体的 100-1000 倍,使用剂量最低可降为原来的 1/2000,显著降低药物治疗成本,增加了市场竞争力。双抗药物在提升疗效的同时,降低了脱靶等引起的副作用,使得用药更加安全。这是由于作用机制的不同,双抗的新分子形态在一定程度上可改善单抗药物联用部分肿瘤仍不应答现象。结构多变,机制灵活单抗药物一般使用IgG型抗体,包括2个Fab区和1个Fc区,而双抗药物从结构上分为全长双抗(结构和IgG单抗类似,有Fc区)和片段双抗(由IgG单抗的Fab区组成,无Fc区)两种类型。根据抗体的抗原结合区域组件的类型,双抗可以分为基于scFv、Fv、Fab、scFab、scFv-CH等。抗原结合区域可以融合在双抗的N端或C端末端,也可以插入C端的CH2和CH3结合域之间。多变的结构使得双抗具有相对灵活的靶向策略。国内进入临床阶段的典型的分子作用机制主要有五大类,包括桥连T细胞和靶细胞、双免疫检查点靶向类双抗(双抑制、抑制+激活)、双信号通路靶向类双抗、同抗原双表位双抗、靶向免疫检查点及肿瘤抗原双抗。
  • VisionSort用于药物发现:突破性药物筛选技术
    视频链接:https://www.bilibili.com/video/BV1btvke7EwP/?spm_id_from=333.999.0.0概述在本次网络研讨会上,介绍了用于药物发现的VisionSort平台。药物筛选方法主要有两种:靶向筛选和表型筛选。尽管两者互为补充,表型筛选因其广泛评估药物作用机制和对细胞表型影响的能力而重新受到重视,且识别了最多的首创药物。传统表型筛选的挑战存在孔间信号差异,需要复杂的细胞标记,图像存储和处理资源密集依赖自动化显微镜平台生成大量高内容数据需要大量的多孔板,通常受限于固定或贴壁细胞VisionSort 平台的优势采用更灵活、高通量的方法进行表型筛选同时捕获高内容的无标记形态信息和荧光信号不需要传统的计算图像处理和分析,速度快,能处理每小时1000万个细胞,适用于活细胞和固定细胞Ghost Cytometry 技术高级光学、机器学习和微流体技术相结合使用结构化照明捕获单细胞形态信息嵌入式机器学习模型快速分析数据使用温和的流体压力分选细胞,保持细胞活性数据生成与分析生成反映光强度随时间变化的波形数据,每秒超过1200万个数据点荧光波形不仅能检测细胞总荧光强度,还能捕捉荧光信号的详细空间分布使用监督和非监督机器学习进行细胞表型分类应用示例HEK 293细胞表型分类VisionSort能够无标记分离这两种表型,分类准确率为0.97使用荧光模式,将细胞标记为溶酶体或线粒体 2. T细胞表型分类无标记分离浆细胞与其B细胞前体激活的人初级T细胞,标记表面细胞标记CD25和CD69VisionSort能够仅通过形态学(无标记)分离这些T细胞表型,分类准确率为0.99无标记分离疲劳和非疲劳T细胞 药物筛选案例研究CRISPR筛选用于NFkB核转位模型,使用机器学习模型筛选目标基因,验证了TLR4信号通路的成员基因富集 2. 巨噬细胞极化使用无标记模式,识别可能调节M1极化的基因,如BRD2基因总结VisionSort平台通过高内容的形态信息、高速筛选能力、兼容多种CRISPR库和NGS平台,为药物筛选和目标识别提供了新的可能性,增强了药物发现流程。重点VisionSort平台的灵活性和高通量筛选能力Ghost Cytometry技术的先进性机器学习在实时数据分析中的应用实际应用中的高分类准确率和新颖基因调控发现对药物筛选流程的显著提升和加速通过这些优势,VisionSort平台在药物发现中展现了巨大的潜力和广泛的应用前景
  • ADC药物的深度表征
    抗体偶联药物(antibody-drug conjugate,ADC)是一类通过特定的连接子将靶向单克隆抗体与高杀伤性的细胞毒性小分子药物偶联起来的生物药,以单克隆抗体为载体将小分子细胞毒性药物高效地运输至目标肿瘤细胞中,起到治疗的目的。与传统抗体药相比,ADC药物的结构复杂度和异质性更高,因为添加了多变的有效载荷和连接子1。为确保药物安全性和有效性,ADC的深度表征在其开发过程中至关重要。这不仅包括对mAb的翻译后修饰(PTM)的鉴定和定位,还包括药物偶联的鉴定。由于质谱技术的飞速发展,质谱已经成为ADC药物表征中最广泛使用的方法。完整质量分析是用于确定小分子药物与抗体比率(DAR)的常规方法,而对结合位点的深入表征,通常依赖于bottom-up的方法。现在最广泛采用的碰撞诱导解离(CID)技术能够提供氨基酸序列确认,但是这种能量比较大的碎裂技术也将有效载荷碎裂为更小的片段,从这种方法获得的高度复杂的谱图可能很难解析。而能量更柔和的碎裂方法可以促进此类复杂样品的解析,一种基于电子活化裂解(EAD)2,3的创新、高度可重复的碎裂方法用于分析来自商业化ADC药物的偶联肽。使用10 Hz快速非靶向的数据依赖采集(DDA)方法采集数据,通过此工作流程,一次进样就可以应用基于EAD的碎片进行常规和高级表征。曲妥珠单抗美坦新偶联物(T-DM1)是最早的ADC治疗药物之一,于2013年获得FDA批准用于治疗人表皮生长因子受体2(HER2)阳性转移性乳腺癌。T-DM1是由单克隆抗体曲妥珠单抗和细胞毒素美坦新(DM1)通过不可裂解连接子共价偶联而成(图1)。将单克隆抗体(mAb)的靶标特异性与细胞毒性药物的高效率相结合,可充分利用两个方面的优势,最大限度地减少副作用3。T-DM1是与氨基连接,如连接在曲妥珠单抗的赖氨酸残基的侧链中。先前的完整质量研究表明,T-DM1的平均DAR约为3.5.1,4。但是曲妥珠单抗中有88个赖氨酸残基和4个N端基团,可能会出现450万个以上的不同分子形式1。有效载荷的位点和结构将直接影响药物的功效和安全性,因此将其归类为关键质量属性(CQA),并且需要在开发过程中进行全面表征和严格监控。图1. 细胞毒药物有效载荷和连接子与mAb偶联的示意图。T-DM1由DM1(黑色),靶向连接氨基残基的MCC连接子(linker,蓝色)和单克隆抗体组成。本研究选择了与Zeno&trade EAD相结合的DDA方法。采用这种方法,不仅可以执行常规的肽图分析,而且EAD可以在同一针分析中进行高级表征。此外,Zeno EAD增强了碎片离子的检测能力,从而正确鉴定了低丰度物质。图2展示了在偶联肽SCDK [DM1]THTCPPCPAPELLGGPSVFLFPPKPK上观察到的碎裂模式的例子。在分析中未观察到没有连接子和药物或其部分的肽,表明其完全偶联。获得了此肽段高质量的MS / MS谱图,从而使该特定肽段的MS / MS序列覆盖率达到96.6%。一个更占优势的碎片从 m/z大于500的有效载荷产生(请见图2中的标记)。观察到的有效载荷结构的主要裂解位点是DM1的COO-C键,这种碎裂模式与先前利用CID技术产生的一系列小碎片的数据不同1。较大分子量的药物碎片可以用作特征碎片,以更具体地确认有效载荷的存在,并可以用来确认有效载荷的结构。图2. 应用Zeno EAD得到的偶联肽SCDK [DM1] THTCPPCPAPELLGGPSVFLFPPKPK(z =+4)的碎片数据。来自肽段主链指定偶联肽段离子的全扫描MS / MS数据,以及有效载荷中的碎离子信息。此外,通过将Zeno EAD技术用于增强的碎片离子检测,还可以很好地检测到来自肽段主链的片段信息,从而提供有关肽段的分子完整性的信息。由于酶的空间位阻,抗体上偶联药物的存在会导致样品制备酶解过程中的更多漏切位点。另外,赖氨酸残基和有效载荷之间的结合过程是随机反应,偶联的比率并不总是100%,这导致了多样性和低丰度物质存在。当一个肽段中存在多个潜在连接形式时,鉴定正确的连接位点可能是一个挑战。肽段ASQDVNTAVAWYQQKPGKAPK是这种具有挑战性的另一个例子(图3)。它包含一个漏切位点和一个脯氨酸相邻的N端赖氨酸,导致偶联位点的多种选择。但是,有了从EAD技术碎裂得到丰富、高质量的MS / MS质谱图,就可以实现药物定位的自动匹配(图3A)。由于有效载荷靠近肽的C端,因此检测到的C离子比Z离子丰富(图3A),而未结合的肽显示出来自C端和N端的丰富片段(图3B)。众所周知因为电子活化解离技术不会解离脯氨酸的N端,我们还检测到了除了C15以外的从C3到C17的全系列C片段7。这提供了确凿的证据表明K15未与细胞毒药物偶联。此外,z4,z5和z7表明K18(而非K21)是药物偶联的正确位点。图3. 应用Zeno EAD得到的来自偶联/非偶联肽ASQDVNTAVAWYQQKPGK [DM1] APK(z =+3)的碎片的数据。A:来自肽段主链指定偶联肽段离子的全扫描MS / MS数据,以及有效载荷中的碎离子信息。B:来自肽段主链指定非偶联肽的全扫描MS / MS数据。 连接子显示为蓝色,DM1药物显示为黑色。结论:通过EAD的新型碎裂模式,实现了具有多个潜在位点的多肽中药物偶联的准确定位与传统的MS / MS分析相比,EAD技术获得更丰富的MS/MS碎片信息。应用Zeno EAD技术,即使对于中等强度或极低强度的母离子(例如低丰度的偶联肽),也能获得令人信服的二级碎片和出色的数据质量SCIEX ZenoTOF&trade 7600系统强大、高重现性且易于使用的多重碎裂技术,使用户能够以简单的方式解决具有挑战性的分析问题(CN)Characterization of an antibody-drug-conjugate (ADC) using electron activated dissociation (EAD).PDF点击下载声明:版权为 SCIEX 所有。欢迎个人转发分享。其他任何媒体、网站如需转载或引用本网版权所有内容须获得授权, 转载时须注明「来源:SCIEX」。申请授权转载请在该文章下“写留言”。
  • 知名药物研究专家汇聚药谷张江研讨药物创制关键技术
    2019年5月17日,“2019第六届新药创制高层学术研讨会”在位于上海张江的中国医药工业研究总院文思楼隆重召开,美中医药开发协会(SAPA)和岛津企业管理(中国)有限公司联合举办的本次大会得到了中国医药工业研究总院、浙江省药学会药剂专业委员会等单位的大力支持。本次大会旨在探讨药物研发中的关键技术和关键质量属性,促进我国药物研发与国际接轨,为我国制药企业、研发机构及科研院所提供一个与世界知名药企与国内一流药物研究、监管单位建立合作的桥梁和纽带。 药物创制关键技术对于促进我国药物研发,推动医药产业国际化发展具有十分重要的意义。根据FDA “质量源于设计”(QbD)的理念,药品从研发开始就要考虑最终产品的质量。在此背景下,来自国内外的近三百位药物研发界专家出席大会,围绕着药物研发中的关键技术和质量属性,从不同侧面进行广泛学术交流。 在大会开幕式上,岛津公司分析测试仪器市场部吕冬部长率先发表致辞,他表示:今天能够在美中药协、中国医药工业研究总院和浙江省药学会药剂专业委员会的共同组织下,将活跃在业界的各位专家聚集在此,共同对新药创制过程中的关键问题进行探讨,是一件非常有意义的事情。提升药品质量、促进药品研发,实现医药产业的健康发展,是我们共同的目的。他强调:岛津公司坚持开拓创新,将包括ICPMS、串联质谱、显微镜成像质谱等多项尖端分析技术应用到药物分析的各个相关领域中,以先进分析技术提供有针对性的整体解决方案。 在开幕式上,大会会议主席、华海药业副总裁李敏博士介绍美中医药开发协会(SAPA)的成长历史、及其开展的卓有成效的活动以及所取得的可喜成果。 浙江中医药大学中医药科学院副院长李范珠博士代表浙江省药学会发表致辞,在致辞中呼吁产学研紧密结合,共同提高我国药物创制水平。 简短的开幕式结束后,大会进入报告环节,由李敏博士和SAPA终身会员、岛津美国公司吕迎春博士共同主持。本届研讨会邀请了来自海内外著名高校,大型制药企业,药检所和药物科研机构等多位具有丰富实践经验的专家作大会报告,内容涵盖药物杂质研究和分析策略,注射剂一致性评价和包材相容性研究,先进制剂技术及工艺等多方面内容。 中检院化学药品检定首席专家、国家药典委员、药物分析领域的著名专家胡昌勤研究员率先做了题为《仿制药一致性评价杂质分析策略》的报告。他在报告中介绍了仿制药一致性评价与杂质谱分析、杂质谱控制相关法规与流程、杂质谱分析的关注点。他强调,仿制药一致性评价中,杂质谱分析是应被予以高度关注的项目;杂质谱不仅与药品的安全性密切相关,且常与药品生产过程的关键质量属性(QCAs)、关键原辅料参数(CPPs)相关联,表征产品的工艺控制水平等;对影响杂质谱分析关键因素的认知是杂质谱分析的关键。 美国罗格斯大学 (Rutgers University) 公共卫生学院教授洪钧言博士做了题为《药物杂质的毒性问题探讨》的报告。他在报告中介绍了药物杂质类型、药物杂质毒性以及药物杂质的规管,特别针对基因毒性的研究、试验与评估进行了深入探讨。 上海医药工业研究院分析测试中心副主任潘红娟研究员做了题为《化学原料药 CQA 和分析控制策略》的报告。她在报告中以大量实例,从药物分析工作者角度探讨了质量研究问题,指出:1. 识别CQA并进行风险评估具有挑战性,但有助于控制策略的确立;多团队的合作是非常有必要的。2. 有效的质量控制策略可以保障药品质量体系的稳定。3. QbD设计的关键要素包括QTPP、CQA、产品和工艺理解、工艺开发控制理解、控制策略,以促进产品质量在其生命周期内不断提高。4. QbD 方法并不否定传统方法,而是对传统方法的强化。 岛津公司分析测试仪器市场部经理吴国华博士做了题为《塑料包装材料相容性研究分析探讨》的报告。他在报告中对塑料药包材相容性研究中的分析技术进行了探讨。他指出,包材相容性研究是药品关键质量属性研究的内容之一,药包材和药品之间可能产生物理、化学和生物的作用,发生物质的迁移、吸附或产生新的物质,影响药品的质量或者服用者的健康,所以要做相容性研究。他回顾了药包材相容性研究的背景、主要国家和组织的政策标准、技术指导原则,不同包材的风险等级和药包材的研究对象和研究方法,并通过塑料的生产过程,介绍了塑料药包材相容性研究的对象,然后针对这些研究对象提出药包材研究对分析技术的需求。最后,他分享了岛津公司为应对这些分析需求而提供的整体解决方案。 中国科学院上海药物研究所研究员张馨欣博士做了题为《化学药注射剂一致性评价技术探讨》的报告。她在报告中介绍了注射剂一致性研究研发要求概况与一致性评价研究主要内容,并通过大量实例解读了复杂注射剂一致性研究的研发技术。 浙江中医药大学中医药科学院副院长、二级教授李范珠博士做了题为《微透析技术在体内分析领域研究中的应用》的报告。他首先介绍了该研究的背景概况,随后介绍了微透析的原理、装置与适用范围,通过多个分析实例说明了微透析的特点。并从普通药物的在体分析、局部给药制剂的在体分析、植物生理机能在体分析、靶向制剂的在体分析、中药及复方有效物质的寻找等角度详尽介绍了微透析在体内分析的应用。最后展望了未来微透析技术在体内分析领域研究中的应用。 华海药业副总裁、分析领域首席科学家李敏博士做了题为《基因毒杂质的挑战与控制策略-从ICH指导纲领到实际操作层面》的报告。他在报告中首先介绍基因毒性杂质是能够直接或间接与DNA产生化学反应的物质,介绍了基因毒性杂质的研究历史与指南历史,解读了警示结构,他在报告中以原料药为例全面介绍了基因毒性杂质的风险评估、控制与策略、毒理学评估以及分析方法。 大会的最后环节为圆桌讨论,知名专家和与会者进行了长达一个半小时的热烈互动,针对与会者提出的药物研发中关键技术和质量属性的相关问题以及目前工作中的困惑,专家们依据个人丰富的实践经验给予了全面、深入的解答,令与会者收获颇丰。
  • 全球10大最贵药物榜单
    美国GoodRx网站公布了全球10大最贵药物榜单,其中诺华的SMA基因疗法Zolgensma以212.5万美元的天价位居榜首,且整体来看TOP10主要以治疗罕见病的孤儿药为主,其中生物药占据主要地位。目前我国关于“孤儿药”的研发甚少,罕见病患者所需的治疗药物基本依赖于国外进口,导致国内许多罕见病患者只能选择昂贵的进口药甚至无药可用。⑽Soliris® (eculizumab)Soliris(依库珠单抗)是一种抑制剂终末补体 (C5a 和C5b)的单克隆抗体,用于治疗成人和儿童阵发性睡眠性血红蛋白尿症(PNH),非典型溶血性尿毒症综合征(aHUS)和成人视神经脊髓炎谱系障碍(NMOSD)。由美国Alexion Pharma研发,于2007年首次在美国批准上市,后陆续在欧洲、日本和中国上市。Soliris的包装及其上市情况⑼RavictiRavicti是Horizon Pharma公司研发的一种氮结合剂的小分子,用于部分2岁或以上尿素循环障碍(UCD)患者的长期治疗。Ravicti于2013年首先在美国上市,后续在许多国家上市,它作为一种液体制剂,患者每天需要服用三次,据统计,该药的年人均支出费用达69.5万美元。Ravicti的结构式及上市情况⑻Blincyto(blinatumomab)博纳吐单抗是Amgen公司研发的一个双特异性抗体(CD3和CD19),用于治疗费城染色体阴性前体B细胞急性淋巴细胞白血病(rrALL)。于2014年首次在美国获批上市,后陆续在欧洲、日本和中国上市。Blincyto采用周期给药,一个治疗周期包括给药前服用抗炎药物,后持续静脉输注28天,最后休息14天。Blincyto的作用机理和给药周期⑺BrineuraBrineura是由BioMarin研发的一种酶替代疗法,其活性成分(cerliponasealfa)是人类TPP1的重组形式,于2017年四月首次在美国被批准上市,成为首个针对晚发婴儿型神经元蜡样脂褐质沉积症(CLN2)的疗法,CLN2又被称为三肽基肽酶-1(TPP1)缺乏症,是Batten病的一种。治疗中需通过特殊脑室内注入装置将Brineura输送至患者脑脊髓液[2]。由于缺少竞争对手,其价格较为昂贵,每年治疗费用高达73万美元。脑室注入系统装置图⑹Folotyn(Pralatrexate)普拉曲沙是由Allos Therapeutics公司开发的一款叶酸代谢小分子抑制剂,于2009年9月获得美国FDA批准上市,后陆续在许多国家上市,是首个用于治疗复发性或难治性外周T细胞淋巴瘤(PTCL)的二氢叶酸还原酶抑制剂。Folotyn的给药方式为静脉注射,一般每周一次,其单价为5880美元,年治疗费约79万美元。Folotyn的结构式及上市情况⑸LuxturnaLuxturna是由Spark Therapeutics公司研发用于治疗RPE65基因突变导致的Leber先天性黑朦(LCA)的首个被获批上市的基因疗法注射剂(2017年底美国首次获批)。其作用机制是将RPE65序列编码到AAV2载体后将其注射到患者的视网膜内,从而使之表达[3],通常来说患者只需单次注射一支就可达到治疗的效果,Luxturna的单价为42.5万美元,双眼治疗费用为85万美元。Luxturna的作用机制示意图⑷MyaleptMyalept是由Amryt公司研发的用于治疗先天性或获得性全身脂肪代谢障碍患者的瘦素缺乏并发症。在患有全身性脂肪代谢障碍的患者中,脂肪组织的损失导致瘦素缺乏进而加剧了代谢异常,皮下注射的myalept通过结合并激活瘦蛋白受体(Leptin Receptor),进而提高患者的胰岛素敏感性以及降低食物的摄入量[5]。Myalept首次于2013年在日本上市,后陆续在美国、欧洲等地上市,由于Myalept是目前唯一治疗该罕见病的上市药,因此其定价较高,年治疗费用约89万美元。Myalept的作用机理示意图⑶DanyelzaDanyelza是由Y-mAbs公司研发的用于治疗骨骼或骨髓神经母细胞瘤的一种靶向神经节苷脂GD2的单克隆抗体。其杀死癌细胞的方式有两者:补体依赖性细胞毒性 ( CDC )和抗体依赖性细胞介导的细胞毒性 ( ADCC )。Danyelza的每个治疗周期为10天,分别在1、3、5天静脉给药,且给药前五天以及给药期间需要皮下注射粒细胞-巨噬细胞集落刺激因子(GM-CSF)和其它治疗疼痛的药物,治疗周期每四周重复一次,直到癌症缩小或消失。Danyelza于2020年获得美国FDA加速批准上市,年治疗费用约97万美元。Danyelza的作用机制和治疗周期⑵Zokinvy(Lonafarnib)Zokinvy是由EigerBio Pharmaceuticals公司研发的用于治疗哈金森-吉尔福德早衰综合征(HGPS)和早衰样核纤层蛋白病(PL)的小分子药物,它是一种口服法尼基转移酶抑制剂,通过抑制早衰蛋白的异戊二烯化,进而降低早衰蛋白在细胞核中的积累。Zokinvy于2020年获得美国FDA批准上市,是美国第一个用于治疗早衰的药物,年治疗费用约103万美元。Zokinvy的结构式⑴ZolgensmaZolgensma是由Novartis Pharma AG公司研发的用于治疗脊髓性肌萎缩(Spinal Muscular Atrophy,SMA)的AAV基因药物,于2019年首次在美国被批准上市,目前在全球已获批的SMA疗法有3款,分别是Zolgensma、lonis的Spinraza以及罗氏的Evrysdi。与另外两种药物相比,Zolgensma只需一次静脉注射给药,患者全身就能长期表达survival of motor neuron(SMN)蛋白,达到长期缓解甚至治愈的效果,因此其定价也较高,年治疗费用约212万美元。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制