当前位置: 仪器信息网 > 行业主题 > >

药物发现

仪器信息网药物发现专题为您整合药物发现相关的最新文章,在药物发现专题,您不仅可以免费浏览药物发现的资讯, 同时您还可以浏览药物发现的相关资料、解决方案,参与社区药物发现话题讨论。

药物发现相关的资讯

  • VisionSort用于药物发现:突破性药物筛选技术
    视频链接:https://www.bilibili.com/video/BV1btvke7EwP/?spm_id_from=333.999.0.0概述在本次网络研讨会上,介绍了用于药物发现的VisionSort平台。药物筛选方法主要有两种:靶向筛选和表型筛选。尽管两者互为补充,表型筛选因其广泛评估药物作用机制和对细胞表型影响的能力而重新受到重视,且识别了最多的首创药物。传统表型筛选的挑战存在孔间信号差异,需要复杂的细胞标记,图像存储和处理资源密集依赖自动化显微镜平台生成大量高内容数据需要大量的多孔板,通常受限于固定或贴壁细胞VisionSort 平台的优势采用更灵活、高通量的方法进行表型筛选同时捕获高内容的无标记形态信息和荧光信号不需要传统的计算图像处理和分析,速度快,能处理每小时1000万个细胞,适用于活细胞和固定细胞Ghost Cytometry 技术高级光学、机器学习和微流体技术相结合使用结构化照明捕获单细胞形态信息嵌入式机器学习模型快速分析数据使用温和的流体压力分选细胞,保持细胞活性数据生成与分析生成反映光强度随时间变化的波形数据,每秒超过1200万个数据点荧光波形不仅能检测细胞总荧光强度,还能捕捉荧光信号的详细空间分布使用监督和非监督机器学习进行细胞表型分类应用示例HEK 293细胞表型分类VisionSort能够无标记分离这两种表型,分类准确率为0.97使用荧光模式,将细胞标记为溶酶体或线粒体 2. T细胞表型分类无标记分离浆细胞与其B细胞前体激活的人初级T细胞,标记表面细胞标记CD25和CD69VisionSort能够仅通过形态学(无标记)分离这些T细胞表型,分类准确率为0.99无标记分离疲劳和非疲劳T细胞 药物筛选案例研究CRISPR筛选用于NFkB核转位模型,使用机器学习模型筛选目标基因,验证了TLR4信号通路的成员基因富集 2. 巨噬细胞极化使用无标记模式,识别可能调节M1极化的基因,如BRD2基因总结VisionSort平台通过高内容的形态信息、高速筛选能力、兼容多种CRISPR库和NGS平台,为药物筛选和目标识别提供了新的可能性,增强了药物发现流程。重点VisionSort平台的灵活性和高通量筛选能力Ghost Cytometry技术的先进性机器学习在实时数据分析中的应用实际应用中的高分类准确率和新颖基因调控发现对药物筛选流程的显著提升和加速通过这些优势,VisionSort平台在药物发现中展现了巨大的潜力和广泛的应用前景
  • 上海药物所合作发现双孔钾通道抗抑郁药物位点
    p   随着现代社会的高速发展,抑郁症发病率逐年提高,抑郁症已成为全球性社会问题。现有药物的副作用、起效慢、个体差异等问题依然困扰着抑郁疾病的临床治疗。双孔钾离子通道是近年发现的一类新型钾通道超家族,其中TREK1双孔钾离子通道成为抗抑郁治疗、镇痛和治疗脑缺血的重要潜在新靶点,筛选和发现TREK1钾通道的高效抑制剂是抗抑郁症药物研发的重要方向之一。通过在调控机制和调控位点等基础研究上取得突破,中国科学院上海药物研究所李扬课题组和华东师范大学阳怀宇课题组首次实现了靶向TREK1通道的抗抑郁抑制剂理性设计。 /p p   与其他钾离子通道不同,双孔钾通道有一个较大的胞外结构域,该结构域的生理和药理功能未研究清楚。研究人员首先通过理论计算发现TREK1通道胞外结构域存在一个动态空腔,是潜在小分子结合位点。开展靶向该动态空腔的药物设计后,研究人员获得了TREK1抑制剂。Inside-out、outside-out膜片钳实验和突变实验确证了活性化合物是结合于所发现的新位点。分子动力学模拟研究揭示所发现的抑制剂是通过变构调节的机制实现对通道胞外侧的堵塞,进而抑制通道。 /p p   以氟西汀为阳性对照药物,小鼠水平实验发现TREK1抑制剂具有抗抑郁能力,在化学角度验证了TREK1是抗抑郁靶标。慢性给药实验发现,TREK1抑制剂起效时间明显快于氟西汀,因此该研究表明,TREK1是开发快速起效抗抑郁药物的重要靶标。 /p p   相关研究结果于8月29日在线发表于《自然-通讯》(Nature Communications)杂志。该研究工作得到了国家自然科学基金委、科技部、中科院有关项目等的资助。 /p p br/ /p
  • 创新性高通量SPR技术加速生物治疗药物发现
    治疗性抗体是目前市场上增速最快的一类药物,截止到2022年2月,已有109种抗体药物获得FDA批准使用,包括93款单抗,4款双抗以及12款ADC药物,同时处于临床阶段的抗体药超过了600种。连续8年,年复合增长率超过10%,2021年抗体药规模增长更是达到了16.5%。目前抗体药热门靶点主要集中于肿瘤如PD1/PD-L1,BCMA,CD38等,自身免疫性疾病,如TNFα,Th17通路等,补体通路如C5,C3,C1s等,以及各种新冠病毒的中和抗体等。如何在激烈的抗体药市场争得先机,提升相关靶点治疗性抗体的发现速度和效率,成为一个热门的话题。Carterra Bio是一家总部位于美国盐湖城的创新技术公司,旨在加速和革新新型候选治疗药物的发现与开发。Carterra开发了用于单克隆抗体(mAb)表征的高通量LSA™ 仪器,仅需要传统平台1%的样品消耗量及10%的时间,可实现100倍的检测通量。LSA将专利的微流控技术与实时免标记分子互作检测技术表面等离子体共振(SPR)以及先进易用的数据分析和可视化软件结合,彻底革新了治疗性抗体的筛选和验证开发。LSATM平台为使用者提供了与最先进的高通量抗体表达平台的输出相匹配的抗体发现与表征的通量和功能,使得所有的抗体在发现过程的早期即可得到快速全面的筛选和表征,从而确定治疗性抗体独特的表位和发现潜在的新型候选治疗药物,极大提升了发现和开发的效率及生产力。2022年,Carterra-Bio与PerkinElmer达成协议,由PerkinElmer全面负责LSA平台在中国的技术和应用推广支持与售后及测试服务,并且借助PerkinElmer专业的实验室整合能力,将LSA平台整合进实验室自动化系统及数据管理系统,打造专业的自动化治疗性抗体发现和表征平台及数据处理分析系统,通过创新性的高通量SPR技术加速实验室抗体发现与表位表征分析,实现低成本高通量的检测与筛选。图1 高通量SPR平台为治疗性抗体药物发现筛选带来了革命性的变化,允许在开发早期即可将筛选和表征在同一步骤中完成。更快速发现治疗性抗体及对功能性表位进行表征,做出决策。发现一个治疗性抗体抗体表位特异性属于抗体固有的属性,通常无法进行设计,所以一个具有适当特性的抗体主要通过经验性表达筛选得到。现代抗体表达技术可以产生大量的克隆,以满足发现管线及找到合适的抗体药物的可能性,该抗体既需要在治疗疾病方面有很好效果,还需要具有足够的差异性以确保知识产权,这些抗体的储备可以被视为制药公司的宝贵资产。筛选和分类大型抗体库,找到并确认具有治疗潜力的抗体,需要详细表征靶标和候选抗体之间的分子水平结合作用。这种抗体筛选越早在抗体库中进行越好,以确认其功能范围。评估抗体库的表位覆盖率也是至关重要的,结合其他方法的研究数据,(可以参考Carterra与PerkinElmer的联合讲座,可在默存学院中进行观看),还可以帮助研究确认相关抗体的作用机制(MOA)。抗体筛选的历史与现状常规使用的一些高通量检测方法(如ELISA和FACS)常用于初步的筛选,将一大堆候选抗体缩减到一些可很好管理的子集,然后在使用分子互作的金标准低通量高信息含量的SPR进行验证。这样的过程非常费时费力,并且步骤繁冗,也很难自动化。而且会忽略原始抗体库库的全部表位和动力学的多样性,从而漏掉具有潜力的抗体;此外可能会选择到大量次优的克隆而错过最佳潜在抗体或过早地从库中剔除掉这些抗体。而Carterra LSA平台则通过高通量SPR解决了这样的问题,使得早期即可在同一步骤中完成筛选和表征。通过将SPR的能力扩大到超过传统SPR平台的一个数量级或更多(图2),Carterra LSA可同时进行数百种不同抗体并行高分辨率和高通量的相互作用分析。使得SPR不仅仅是用于验证和表征,更可以在药物发现早期就大显身手,极大提升发现速度和效率,以往需要几个月时间的过程可缩短到三周内进行。图2 与传统SPR平台相比,Carterra LSA将SPR的能力扩大了一个数量级或更多。Carterra LSA可以同时测定384个抗原、抗体相互作用的动力学数据,而其他SPR平台则一次只能产生8个(蓝框)或32个(绿框)抗原、抗体结合相互作用的动力学数据。LSA通过先进的微流控系统还提供了极小的样品消耗和高检测灵敏度的优势,并兼容多种样品类型(血清,细胞上清,裂解液等)使得LSA更适合于早期研究和发现以及后期的表征。通常研究早期需要检测大量的克隆,而单个克隆表达的抗体量比较有限,并且可能纯化不易或成本高昂。高通量SPR技术使得研究人员在早期即可评估抗体状况,对靶标抗原和大量候选抗体之间的结合相互作用进行详细研究分析比较,得到最好结论,作出决策并快速进入到下一步的研究中。结合动力学亲和力分析与表位聚类及作图通常均需要了解一个抗体如何结合抗原靶标,哪些因素会影响其作用机制、药效和药代动力学,SPR技术则是检测抗体抗原相互作用的结合动力学和亲和力数据的金标准的生物物理方法,但传统的方法是低通量的,常被用于验证或二次筛选。Carterra LSA则是一个颠覆性的高通量SPR平台,在抗体库初步筛选时即可发挥作用,得到动力学及亲和力数据。抗体的竞争性结合测定可用于将抗体组织成表位家族或分类,以帮助发现先导抗体以及更好的理解抗体作用机制。Carterra LSA平台改变了分组模式,可以在最小样品消耗条件下,快速对大量抗体进行全方位的表位分组分析。例如可同时对384种抗体以384x 384的检测模式进行表位分析,在一次运行中,每个抗体消耗不到10ug,检测完毕可产生超过14万个成对的相互作用的数据及可视化图表便于进行聚类分析。得到的结合相关参数,如动力学、亲和力和表位特异性,则为研究人员提供了一个全面的勾画信息图,指导决定哪些抗体可以进入下一步研究,以迅速聚焦到具有最有潜力和价值的抗体上。由于目前许多制药公司均聚焦在同样的靶标上,因此越快速高效筛选得到相应的治疗抗体,越快速进入到临床,决定了商业前景和未来。多参数表位聚类分析及作用机制揭示(MOA)阐明任何新型药物(包括治疗性抗体)的作用机制(MOA)均非常重要,有以下一些原因:帮助研究者做出更明智的选择和决定,对药物的安全性和有效性都有影响;帮助预测病人对某一特定治疗具有反应的可能性;对药物组合做出更好的判断,以减少耐药性的风险、毒性/副作用的可能性和治疗失败的风险;突出重要的分子相互作用的目标,以便进一步开发其他药物识别具有潜在价值和商业潜力的新型作用机制(MOA)目前已采用高通量SPR技术的LSA平台的药物研发公司已受益于更快速高效的抗体筛选流程,并减少失败的风险,过去一年中许多不同亚型新冠病毒中和抗体的快速发现和验证已经证实了这一点。期待下一个有机会发现新型高效抗体治疗药物的公司就是您的公司!期待能够诞生下一个抗体药王Humira的可能性!
  • 未来五年 色谱树脂在药物发现领域市场将达到4亿美元
    p   用于药物发现的色谱填料包括离子交换色谱填料、亲和色谱填料、疏水相互作用色谱填料、体积排除色谱填料以及多模态色谱填料等。据MarketsandMarkets预测,至2022年,用于药物发现的色谱树脂市场将达到4.01亿美元,2017年到2022年,以6.65%年均复合增长率增长。该市场增长驱动力主要来源于不断增长的治疗性抗体的需求以及和生物制药研发的快速增长等因素。 /p p    strong 离子交换树脂份额最大 /strong /p p   报告分析,用于药物发现的填料中,离子交换层析填料的市场份额最大。报告指出,在2016年,离子交换树脂已经成为用于药物发现的份额最多的色谱填料,未来预期将以相当大的速度增长。离子交换色谱技术广泛应用于生物制药纯化工艺。生物药物的工业规模净化和药物的定性和定性分析是色谱树脂的关键应用领域。越来越多地使用色谱法来制造生物药物,例如单克隆抗体和其他重组蛋白质,这有望推动色谱树脂在药物发现中的应用。 /p p    strong 天然聚合物领域需求最大 /strong /p p   报告指出,2016年,天然聚合物的药物发现对色谱树脂的需求最多,尤其是琼脂糖,纤维素和葡聚糖三类天然聚合物。此类聚合物最大的特点是在其结构中具有大量的羟基,因此,亲水性较好,提供了适当配体偶联功能位点。 /p p    strong 北美最大 亚洲增长最快 /strong /p p   从区域上看,用于药物发现的色谱树脂市场主要分布在北美、欧洲、亚太和其他地区。研究报告指出,美国是此类色谱树脂的主要市场,其次是加拿大,主要是因为该地区单克隆抗体治疗市场的强劲增长带动了色谱树脂的需求。此外,由于中国,印度和南韩等国家仿制药和生物仿制药的增长,亚太地区药物发现的色谱树脂市场预计将从2017年至2022年以最高的速度增长。由于经济效益和技术专业人才的可用性,全球大量制药企业正在这些国家建立研发中心。 /p p   用于药物发现的色谱树脂供应商包括通用电气、德国默克、美国颇尔、伯乐、赛默飞和日本东曹。这些公司通过新产品发布,扩张,合同和协议等策略,逐步加强市场地位,扩大产品组合,扩展客户群。 /p p br/ /p
  • 上海药物所发现非编码miRNA抗肿瘤耐药的功能和机制
    肿瘤的耐药性是国际上抗肿瘤药物研究的难题。根据美国国家癌症协会发布的研究数据:90%以上肿瘤患者治疗失败都与耐药相关。因此研究肿瘤耐药的机制、寻找新的抗肿瘤靶点以及研发新型抗肿瘤药物一直是全球关注的热点。MRP(Multidrug Resistance associated Protein,多药耐药相关蛋白)是ABC转运体家族的一员,也是第一个被发现并确定与耐药相关的ABC转运体,因此具有尤为重要的作用。MicroRNAs(miRNAs)则是近年来RNA生物学领域中的重大发现。在人类中表达的miRNA有1000多种,人体中60%的基因都可能被其调节,它是一类平均长度只有22个核苷酸的小分子非编码RNA,其对靶基因的调节参与了个体发育、细胞分化与增殖、凋亡等一系列生物学过程,在肿瘤、代谢紊乱等人类疾病的产生和发展过程中起到了重要的作用,但其在肿瘤耐药中的作用和机制仍不十分清楚。中国科学院上海药物研究所药物安全评价中心(以下简称“安评中心”)博士研究生高曼在研究员任进、副研究员戚新明的指导下,经过多年潜心研究,采用多种分子生物学最新技术和方法,发现miR-145可以通过不完全碱基互补配对作用于ABCC1的3’UTR的结合位点,在转录后水平来下调靶基因MRP1的表达这一重要新机制。进一步体外、体内研究证明:miR-145可以下调MRP1,减少细胞内阿霉素的外排,升高细胞内阿霉素的累积量,增强乳腺癌细胞对阿霉素的敏感性。因此首次发现了miR-145可通过直接靶向抑制MRP1而增强阿霉素对耐药的三阴性乳腺癌的作用,为抗肿瘤耐药研究提供了新靶点、新机制和新的治疗手段。该研究工作于2016年7月在线发表在Oncotarget上,是继今年3月在国际期刊BBA-Gene Regulatory Mechanisms上发表首次发现了非编码miRNA具有双重调控作用的全新分子机制之后,再次发表新研究成果。安评中心关于非编码miRNA相关的研究此前已有多篇文章相继发表,从发现的非编码miRNA双重调控作用的新机制,到非编码miRNA抗肿瘤耐药的新功能,建立了非编码miRNA的发现、筛选、优化、功能和机制确证等一系列研究体系,取得了一系列新进展,获得了国外同研究领域的广泛认可。该项研究获得国家“重大新药创制”科技重大专项以及中科院先导专项的支持。
  • 美谷分子第二届高通量药物筛选与发现研讨会在北京召开
    2016年10月20日,由Molecular Devices(美谷分子,简称MD公司)举办的第二届高通量药物筛选与发现研讨会在北京举办。来自全国各地科研院所、制药企业的150余名MD公司用户参加了研讨会。  会议现场  本次研讨会由美谷分子仪器(上海)有限公司高通量药物发现部业务经理黄国庆主持。  美谷分子仪器(上海)有限公司高通量药物发现部业务经理黄国庆  研讨会伊始,首先由MD公司全球副总裁、大中华区总经理江滔先生致开幕辞。  MD公司全球副总裁、大中华区总经理江滔  江滔先生介绍道,Molecular Devices(美谷分子)创立于上世纪80年代美国硅谷,长期为生命科学研究及药物研发提供相关解决方案。主要产品覆盖微孔板检测分析、高通量筛选、高内涵成像、高效克隆筛选等。目前,MD公司是丹纳赫集团一员,与Leica、Sciex、Beckman Coulter及PALL等公司同属丹纳赫生命科学部。2005年,MD公司在上海设立了第一个中国代表处,之后于2012年在国内正式成立商务公司,即美谷分子仪器(上海)有限公司。  高通量药物筛选与发现研讨会每年举办一次,大部分研讨会报告由MD公司的产品用户带来。  报告人:杨建国博士 桉璐生物技术(上海)有限公司首席执行官  报告题目:ClonePix在高产细胞株筛选中的方法发展  桉璐生物技术(上海)有限公司首席执行官杨建国博士  报告人:黄长江博士 烟台迈百瑞国际生物医药有限公司高级副总裁  报告题目:抗体药物偶联物的分子设计与偶联工艺  烟台迈百瑞国际生物医药有限公司高级副总裁黄长江博士  报告人:周景文博士 江南大学生物工程学院教授  报告题目:工业生物技术中的高通量筛选策略  江南大学生物工程学院教授周景文博士  报告人:连忠辉 北京亦庄国际生物医药投资管理有限公司副总工程师  报告题目:高通量细胞筛选服务平台的建立与应用  北京亦庄国际生物医药投资管理有限公司副总工程师连忠辉  报告人:顾津明博士 上海恒瑞医药有限公司生物医药研发部执行总监  报告题目:在中国建立世界一流的抗体发现平台  上海恒瑞医药有限公司生物医药研发部执行总监顾津明博士  报告人:杨巍博士 诺和诺德(中国)研究发展中心生物制药研究部分子生物学部门总监  报告题目:高通量克隆和筛选技术在蛋白药物研发中的应用  诺和诺德(中国)研究发展中心生物制药研究部分子生物学部门总监杨巍博士  报告人:何柯博士 上海恒瑞医药有限公司研究员  报告题目:基于高通量筛选技术的单克隆细胞株开发策略  上海恒瑞医药有限公司研究员何柯博士  报告人:Steve Wiltgen博士 MD公司全球产品经理  报告题目:使用ClonePix和其他自动化方法加速抗体药物发现进展  MD公司全球产品经理Steve Wiltgen博士  研讨会现场座无虚席,气氛非常热烈,每位报告人都为现场参会者耐心解答了各类问题,会议间歇期间,与会者还积极地互相交流了关于实验以及产品使用的相关问题。  现场答疑  茶歇交流
  • Eurofins Discovery | 片段药物发现新「组合拳」
    01研究背景Eurofins Discovery是全球领先的早期药物研发服务平台,拥有超过40年的药物发现研究经验。作为业内领导者,Eurofins Discovery为研究者提供包括但不限于药物化学、合成化学、体外药理学、安全性药理学与功效、ADME-Tox(药物吸收、分布、代谢、排泄和毒性研究)以及定制蛋白质和检测服务。Eurofins Discovery支持多种药物发现,如GPCRs(G蛋白偶联受体)、激酶、离子通道、核激素受体以及其他蛋白质和酶。在药物研发领域,GPCR家族因其在细胞信号传导中的重要作用而备受关注。近日,Eurofins Discovery团队利用前沿的生物物理技术--光谱位移(Spectral Shift, SpS),在属于GPCR家族的人类腺苷A2A受体(A2AR)上发现了新拮抗剂片段,为GPCR药物设计提供了新视角。与此同时,该研究也利用了来自NanoTemper公司专利的MST(微量热泳动)、TRIC(温度依赖的荧光强度变化)和nanoDSF技术设计GPCR配体。这项研究不仅为GPCR药物开发提供了新策略,也为基于片段药物发现设计(FBDD)带来了新「组合拳」!02技术亮点基于Eurofins Discovery片段文库和Eurofins CALIXAR专利的去垢剂,利用MST-TRIC和超灵敏光谱位移技术,可以在单剂量实验中,从2342个片段库快速筛选出826个片段,作为第一轮初步Hits筛选。之后,利用MST-TRIC和光谱位移技术进行第二轮Hits确认。利用Echo® MS声滴喷射技术,实现了在384孔板中的纳升级精确分配,确保了数据的稳健性。利用nanoDSF技术作为正交检测手段,进一步确认这些片段Hits的稳定性。最后进行A2AR与参考化合物和片段苗头化合物的分子对接研究(Docking Studies)。点击此处,解锁海报全文 Eurofins Discovery | 片段药物发现新「组合拳」 原创_诺坦普科技(北京)有限公司 (instrument.com.cn)03关于NanoTemperNanoTemper的愿景是致力于创造一个任何疾病都可以被治愈的世界!NanoTemper是全球领先的科学仪器制造商,2008年成立于德国慕尼黑,历经十余载发展,在全球13个国家设立分支机构。卓越的产品和优质的服务使NanoTemper成为全球成千上万的制药公司、学术研究机构及科技公司的首选合作伙伴。Dianthus 高通量筛选平台 可直接在溶液中检测亲和力,无需固定 检测一个Kd仅需1min 标准规格384孔板,单次运行可检测32个Kd 无微流控系统,无需清洗维护 专利技术加持:TRIC(温度依赖的荧光强度变化),Spectral Shift(光谱位移)PR Panta 蛋白稳定性分析仪 高数据质量,超高分辨率,多参数精准表征 天然条件下检测,无需染料标记 检测浓度范围广,低样品消耗量 可同时支持四大技术模块:nanoDSF,DLS,SLS,背反射
  • 干货科普|浅析基于质谱分析的药物靶点发现方法
    药品与我们的生活密不可分。新药研发一方面关系着全人类的健康需求,另一方面也关系着国家经济与社会的发展需求。 据权威统计,单一药物上市的成本超过十亿美元,整个过程花费约十年的时间,药物筛选的失败率高达97%。但药物筛选是新药研发中至关重要的一步,确定靶标分子及筛选模型是现代新药开发的基础。它主要有两种方式,表型筛选(Phenotypic drug discovery, PDD)和靶点筛选(Target-based drug discovery,TDD)。PDD的起点是一个化合物库或抗体库,用一个和疾病高度相关的临床前模型或者实验来筛选库中的药效,找到达到期望药效的分子再进一步优化和开发。经典的药物表型筛选更多的是基于动物疾病模型的筛选,实验选择遗传背景明确或者来源清楚的动物,例如鸡、猪、狗、猫、鼠、蛙、蛇、猴子、鱼、果蝇、线虫等。TDD则是基于对疾病和靶点机理的理解,针对某一个和疾病机理高度相关的特定的靶点,从而有针对性的设计大分子或小分子药物的研发方式。由于表型筛选无法提供活性化合物作用靶标信息, 因此需要利用化学蛋白组学回溯鉴定那些因与小分子药物直接发生作用而引起功能改变的蛋白质,在分子水平上系统揭示特定蛋白质的功能以及蛋白质与化学小分子的相互作用, 从而准确找到药物的作用靶点。旨在建立药物活性与细胞表型之间的联系,阐明药物的作用机理,一方面探究药物的脱靶效应和耐药性机制, 提高药物发现的效率;另一方面在药物研发的早期阶段预测潜在的副作用和毒性, 从而降低药物研发失败的风险。 化学蛋白质组学研究方法的一般流程是, 先将化学探针或小分子化合物与蛋白质提取液进行共孵育,然后利用亲和层析等方法将这些蛋白质分离,再通过高灵敏度的质谱鉴定, 最后对它们做进一步的生物信息学分析。1. 基于活性的蛋白质谱分析 (activity-based protein profiling, ABPP)ABPP利用基于靶酶活性的特异化学小分子探针 (activity-based probes, ABPs) 来探测功能蛋白质组, 利用活性小分子探针来识别蛋白质靶点。分子探针是指能与特定的靶分子发生特异性相互作用并能被特殊方法所检测的分子。ABP 的设计通常包括两个基本组成部分:“反应基团”和“报告基团” , 一般通过碳链或者聚乙二醇链将二者连接在一起. 反应基团通常是具有独特化学结构的亲电性化学小分子, 能够选择性地与蛋白质组中某一类蛋白酶的活性中心结合, 并与其中执行重要催化功能的亲核性氨基酸发生反应, 从而将探针分子共价地标记在靶标蛋白上。活性分子探针结构示意图2. 药物亲和致靶点稳定性(drug affinity responsive target stability,DARTS)DARTS通过对比药物处理组与DMSO对照组蛋白质酶解片段的差异,找出酶解情况不同的蛋白质,再进行结合特异性分析,找出特异结合的靶标。DARTS实验步骤这种方法的优点是, 仅依靠药物和蛋白直接结合而并不需要对小分子化合物进行修饰, 从而确定出小分子的任意靶点。因此, 可采用小分子稳定其靶蛋白的结构从而导致蛋白酶抵抗, 结合质谱分析法发现未知靶点。DARTS 可将具有生物活性的天然产物提取物在分离之前就用于靶点发现,多用来研究多靶点药理学以及复方中成药物。3.细胞热转变分析(Cellular Thermal Shift Assay,CETSA)CETSA是一种检测细胞内药物与靶蛋白结合效率的实验,其原理是靶蛋白与药物分子结合时通常会变得稳定。即随着温度的升高,蛋白会发生降解;当蛋白结合药物后,相同温度下,未降解蛋白的量会提高,该复合蛋白的热熔曲线会右移。用溶解蛋白质的量作温度的函数可以得到蛋白质的变性曲线,由此可以确定蛋白质的变性温度点或蛋白质的熔点。CETSA实验的样品来源,可以是细胞,也可以是组织样本,检测方法主要有Western blot和MS。该技术能在天然的细胞环境中进行,也无需对目标分子和蛋白进行任何修饰以及标记。CETSA实验步骤目前已证实该技术能识别许多已知的抗癌试剂的靶点,如在细胞裂解液、完整细胞或组织样本中均鉴定出多个药物的作用靶标。然而,CETSA方法不适用于高度不均匀的蛋白质或蛋白质配体结合域的结构展开,并不会诱导蛋白的聚集和变性的情况,如DNA和伴侣蛋白质的结合。有研究将cellular thermal shift assay与质谱联用(MS-CETSA),可以同时监测整个蛋白质组在药物作用下蛋白质稳定性的变化,因此可以鉴定出与药物相互作用的蛋白质,而不需要预先知道药物的作用通路或机制。MS-CETSA流程图4. 有限蛋白水解质谱(Limited Proteolysis-Mass Spectrometry,LiP-MS)LiP-MS不需要对配体进行化学修饰,就可以实现在复杂的生物环境中鉴定药物靶标。实验步骤是用低浓度的非选择性蛋白酶K进行有限的蛋白水解,优先切割蛋白质暴露在外的柔性部分(环或者未折叠部分), 经过变性和胰蛋白酶消化后,通过LC-MS分析肽混合物。基于LiP-MS的小分子图谱靶点的发现在整个药物研发过程中起着至关重要的作用。随着现代分子生物学技术的发展和人类基因组计划的完成,出现了大量可供治疗干预的新型分子靶点,但并不是所有的靶点都能够成为与疾病有关的有效靶点,因此对新型靶点进行发现和验证便成为非常重要的工作。
  • 因美纳与阿斯利康开展战略研究合作,以加速药物靶点发现
    美国加利福尼亚州圣迭戈——2022年10月11日,全球基因测序和芯片技术的领导者因美纳(纳斯达克股票代码:ILMN)宣布与以科学为驱动的全球生物制药公司阿斯利康(AstraZeneca)达成战略研究合作,将结合双方在基于人工智能(AI)的基因组解读和基因组分析技术优势及行业专长,加速药物靶点的发现。该合作将评估这些技术的组合框架能否提高靶点发现的效益与置信度,从而根据人类组学信息找到具有应用前景的药物。因美纳首席战略和企业发展官兼代理首席财务官Joydeep Goswami表示:“因美纳和阿斯利康都具有独特的优势,双方强强联合,利用业界领先的专业能力来识别导致人类疾病的遗传变异,从而提高药物研发管线的效率。通过识别与人类疾病相关的基因,该组合框架有望用于候选药物的优先级排序,并增加药物获批的可能性。”此次合作利用了因美纳基于AI的新一代解读工具——PrimateAl和SpliceAl,并结合阿斯利康用于罕见变异基因组发现的分析框架和AI工具,包括JARVIS和计算机预测工具(容错率)。作为研究合作的一部分,阿斯利康基因组学研究中心将采用结合了两家公司基于AI的工具的框架,来分析其生物信息数据库中的大规模多组学数据集。这些互补的AI工具可以更加可靠地查明导致人类疾病的遗传变异,这是开发有效且安全的疗法的过程中至关重要的一步。阿斯利康基因组学研究中心、发现科学中心和研发中心负责人Slavé Petrovski表示:“对应用于不断发展的人类基因组学、转录组学和蛋白质组学医学研究资源的AI工具和框架的持续创新,将使我们能够解决一些棘手的问题,有助于我们在发现新的药物靶点时实现更高的成功率,同时确定最有可能从我们发现的疗法中获益的患者群体的特征。”因美纳首席技术官Alex Aravanis表示:“新一代药物发现正处于人类遗传学和AI的交叉点,这使得此次合作或将成为一项十分关键的研究合作,结合了因美纳在大规模解读基因组方面的出众能力与阿斯利康在大规模人类遗传学研究方面的广泛能力。”此次研究合作重点聚焦于通过一项组合框架为广泛的人类疾病研究提供差异化性能的能力。一旦合作取得成功,两家公司将评估长期合作的机会。
  • “小贝开讲”之遗传文库筛选技术在药物靶点发现中的作用
    时间:2018年12月25日 14:00 - 15:00内容简介:1. 肿瘤精准化用药和靶向药物的研究进展。目前全球已经批准了数十种靶向治疗药物,靶向药物已经被广泛用于多种恶性肿瘤疾病的治疗。截至2015年靶向药物市场已经超过430亿美元,其市场的大幅增长也吸引了更多的制药企业投身于靶向药物的研发。但肿瘤的异质性是其重要的特点,即使是同一个部位的肿瘤,不同患者的肿瘤突变情况也千差万别。如果不进行检测和针对性用药,肿瘤药物的有效率仅为20%。因此目前已经公认肿瘤精准化用药是发展趋势。但是癌症精准化用药还存在以下难点:⑴ 拥有明确治疗靶点的肿瘤只占少数比例。⑵ 大部分肿瘤患者检测不到有价值的药物治疗靶点。⑶ 靶向药物容易产生耐药性等。2. 高通量大规模遗传筛选技术是以上难题的解决方案之一。目前高通量筛选是发现药物作用靶点或寻找有效治疗药物的有效手段。高通量筛选,可以在同一时间对数以千万的样品进行检测,幅度地缩短了新药和药物新靶点发现的时间。SiRNA和CRISPR技术是现代生命科学领域最伟大的发现。siRNA可以对特定基因产生敲低(knockdown)效果。而CRISPR/Cas9更是可以在基因组水平上对特定基因进行敲除、基因编辑和激活。我们这个讲座主要介绍遗传筛选文库技术的原理。同时介绍其结合大规模细胞筛选和高通量深度测序技术,在筛选和揭示复杂信号网络调控、寻找药物靶点和制定联合用药方案中的应用。主讲人简介:陈红波副教授,博士生导师 中山大学陈红波,中山大学 副教授 博士生导师 PI,中山大学“百人计划”引进人才,深圳市海外高层次人才(孔雀计划)。近年来在包括Nat Commun, PNAS, Biomaterials,Hum Mol Genet, Acta Biomater等国际著名医学生物学期刊发表SCI论文30多篇,影响因子加和约200点,被引用次数约1000次。目前是多个期刊的编辑和特约审稿人。主持了包括国家自然科学基金面上项目、广东省自然科学基金自由申请项目、教育部博士点基金、深圳市科技创新项目(学科布局和自由探索等)、清华大学深圳研究生院青年项目、中山大学人才启动基金和教育部高校基本科研业务费“重点和交叉培育项目”等在内的多个科研项目。此外曾主持的一个国家一类新药正在准备申报一期临床。 曾获得过北京昭衍新药研究中心“创新奖”,清华大学校级综合优秀一等奖,清华大学深圳研究生院 “科研优秀二等奖”,清华大学深圳研究生院第五届“学术新秀”和2014年深圳市科学技术奖(自然科学奖二等奖)等荣誉和称号。2016年一项成果在“深圳市科技创新委员会”网上登记。陈红波副教授的研究方向为1.基于基因工程技术的皮肤及神经营养因子类药物的研发2.核仁功能与疾病的发生3.利用高通量高内涵细胞筛选技术或CRISPR遗传文库筛选技术鉴定药物作用靶点及开发新型药物分子。
  • 首届《冷冻电镜与药物创新发现论坛》在京举行
    p   2019年11月23日,由水木未来(北京)科技有限公司主办,中国医药生物技术协会协办的首届《冷冻电镜与药物创新发现论坛》在北京西郊宾馆隆重召开。本次论坛的主题是“突破与机遇”,会议聚集海内外的专家,围绕着冷冻电镜技术最新突破与药物创新研发新机遇这一主题,为中国自主创新药研发献言献策。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/4bede6f1-1fcf-4328-a0ef-ab3c193e493e.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p   清华大学副秘书长、北京清华工业开发研究院院长金勤献教授、北京市科学技术委员会医药健康科技处处长曹巍、中关村海淀园管理委员会企业发展促进处处长何建吾出席论坛并致辞 /p p   清华大学生命学院院长王宏伟教授就冷冻电镜最前沿的进展做了专题报告 专程从海外参会的药学专家北海道大学Katsumi Maenaka教授和赛默飞世尔科技电镜业务制药市场高级总监Raymond Schrijver以国际视角诠释了在药物研发过程中冷冻电镜的贡献和价值 北京生命科学研究所黄牛研究员、清华大学生命学院张强锋教授介绍了AI和高性能计算对药物研发的推动意义 水木未来科技CEO郭春龙和安杰律师事务所何菁律师分别研讨了冷冻电镜对我国原创新药研发的作用和中国创新医药知识产权的法律环境。与会专家还通过沙龙对话的方式,重点探讨了中国药物研发和创新之路。精彩纷呈的会议内容带给与会者耳目一新的学术饕餮,引发了对于原研创新药物在中国发展道路的深度思考。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/56b78471-c82c-40bd-b8ce-e2af3e10b7ff.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 清华大学生命科学院王宏伟院长专题演讲“冷冻电镜赋能药物发现” /span /p p   论坛上同时举行了“冷冻电镜与药物发现创新中心”的启动仪式,该中心由北京市科委、清华大学和赛默飞世尔科技共同支持建立,由水木未来(北京)科技有限公司承载运营。该中心首个冷冻电镜实验室坐落在北京生命科学研究所。中心集成世界最先进的冷冻电镜设施,集结世界一流的结构生物学专家和药物智能计算专家,中心的启动和建成将标志着我国在优势技术领域产学研结合的重大突破和成果。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/2d47b3f3-427e-4075-a6c1-bc153aace2fc.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   冷冻电镜作为结构生物学新兴技术,对于药物研发的靶标确定,前导化合物结构解析,小分子候选药物结构及手性确定具有不可替代的突破性价值。以清华大学2009年装备亚洲首台高端冷冻电镜为标志,十年来我国已经建成全球一流的冷冻电镜集群和顶尖科学家团队,产生了一大批尖端科研成果。冷冻电镜技术的突破对于我国自主药物创新研发的作用日益受到学界和产业界的重视。水木未来科技将以北京为原点,辐射海内外,为制药企业和科研机构提供结构解析与药物研发相关的一系列科研技术服务。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/8fdef1be-0fc9-4970-8f2d-27326a720e02.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 水木未来CEO郭春龙先生以“从炼丹到登月:基于结构+计算的新药研发”为主题演讲 /span /p p   清华大学副秘书长、北京清华工业开发研究院院长金勤献教授,北京市科学技术委员会医药健康科技处处长曹巍、中关村海淀园管理委员会企业发展促进处处长何建吾等出席了论坛并致辞,并与清华大学生命学院王宏伟院长、赛默飞电镜业务亚太商务拓展高级总监Marc Peeters、赛默飞材料与结构分析高级商务总监Tim Chen、水木未来科技CEO郭春龙等嘉宾一起见证了“冷冻电镜与药物发现创新中心”的启动仪式。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/21c586e2-546d-4e4d-9835-e8919dea2638.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p br/ /p
  • 上海药物所谢欣课题组发现维生素C可促进髓鞘再生
    p style=" text-align: left text-indent: 2em " strong span style=" color: rgb(153, 153, 153) " /span /strong 现有药物均为免疫抑制剂,只能缓解和减少复发,但对已经造成的神经损伤并无修复作用。发现能促进髓鞘再生和修复的药物作用靶点及小分子化合物是该类疾病研究的新方向。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/images/201803/uepic/5b5e8cdc-85ad-4ebb-9f58-4424f401f807.jpg" / br/ /p p style=" text-align: center " span style=" color: rgb(153, 153, 153) " DOI: 10.1002/glia.23306 /span /p p style=" text-indent: 2em " 中枢神经系统的髓鞘是由少突胶质细胞缠绕神经轴突形成。中国科学院上海药物研究所研究人员近期建立了少突胶质前体细胞(OPC)向少突胶质细胞(OL)分化的高通量药物筛选体系,发现维生素C(Vc)可以有效促进OPC向OL的分化及成熟。在OPC与神经元共培养体系中,Vc也可有效促进髓鞘的包裹。更有意思的是,在药物诱导的小鼠脱髓鞘动物模型中,Vc可以加快OL的生成及髓鞘的修复。机制研究显示,Vc主要在细胞内而不是细胞外起作用,且其促OPC向OL分化的作用与其抗氧化功能无关。 /p p style=" text-align: center " img alt=" " src=" http://img1.17img.cn/17img/images/201803/uepic/6eb94a09-6d9d-4c1f-821d-284965771809.jpg" / br/ /p p style=" text-align: center " span style=" color: rgb(153, 153, 153) " 研究发现维生素C可促进髓鞘再生 /span /p p style=" text-indent: 2em " 研究成果于2月9日发表于Glia。该研究在中科院上海药物所研究员谢欣指导下完成,论文的第一作者为谢欣课题组博士研究生郭玉娥。 /p p style=" text-indent: 2em " 谢欣课题组一直从事GPCR及干细胞相关的研究,其前期研究发现Kappa阿片受体的激活有利于OL的分化及髓鞘的再生(Nature Communications, 2016 7:13594)。该研究工作得到国家重大科学研究计划、中科院干细胞先导专项及国家自然科学基金的支持。 /p
  • 安捷伦在药物发现和研究领域荣获两项“科学家选择奖”
    2023年 3 月 9 日,北京——安捷伦科技公司(纽约证交所:A)近日荣获了两项年度“科学家选择奖”,分别是“年度最佳新药发现和研发产品奖”以及“年度药物发现和研发网络研讨会奖”。本次“科学家选择奖”于 2023 年 2 月 27 日在 SLAS2023 国际会议和展览会上公布,旨在表彰目前世界上最具创新性和最高效的分析科学技术与交流活动。  安捷伦 Seahorse XF Pro 分析仪荣获 “2022 年度药物发现和研发产品”奖。该仪器使用无标记传感器测量细胞呼吸、糖酵解和 ATP 生成,它们对维持所有细胞生命的能量代谢过程至关重要。XF Pro 分析仪于 2022 年 2 月推出,集成了改进的硬件、软件和工作流程功能,尤其在制药和生物制药治疗开发及毒性研究项目中,极大地提升了性能并改善了客户体验。  安捷伦 Seahorse 业务部副总裁兼总经理 Richard Fernandes 表示:“安捷伦致力于开发以客户为中心的行业领先技术,XF Pro 分析仪能够获奖我表示十分高兴。同时,我们为获得此殊荣深感自豪,此奖项是由全世界的科学家投票选举而出,这是我们期盼的最高荣誉。”  安捷伦还获得了“年度药物发现和研发网络研讨会”奖,以表彰其主办的由弗吉尼亚大学医学院人类细胞治疗 cGMP 中心主任、医学副教授 Archana Thakur 博士主讲的“双特异性抗体武装的、代谢增强的无头 CAR T 细胞:安全有效的实体瘤超级杀伤细胞”网络研讨会。该网络研讨会涵盖了安捷伦 Seahorse XF 技术、安捷伦 xCELLigence 实时细胞分析仪 (RTCA) 和安捷伦 NovoCyte 流式细胞仪的应用。  安捷伦流式细胞仪和实时细胞分析业务部总经理王小波表示:“Thakur 博士和她的团队在代谢增强的无头 CAR T(hCAR T)细胞领域所做的工作具有革命性意义。我非常高兴看到他们的工作得到认可,从全新视角展现关于 CAR T 疗法的免疫细胞杀伤力、适应性和持久性,我们迫不及待地想要看到这项研究的进展。”  安捷伦细胞分析事业部包括细胞成像、实时细胞分析、流式细胞分析等方面的创新技术,旨在重新定义疾病治疗方法。安捷伦的使命是通过开发研究和测试的解决方案,帮助实验室加速发现进程,并最终改善人们的生活质量。
  • 贝克曼库尔特获2013科学家选择奖药物发现产品
    近日,Select Science公布了&ldquo 第六届科学家选择奖(2013 Scientists&rsquo Choice Awards)最佳药物发现产品获奖者&mdash &mdash 贝克曼库尔特Biomek 4000 实验室自动工作站。此前,Select Science已经公布了最佳通用实验室产品、最佳分离产品及最佳光谱产品(含质谱)、最佳生命科学产品、最佳临床实验室产品的获奖名单。   最佳药物发现产品:   产品:Biomek 4000 实验室自动工作站   制造商:贝克曼库尔特   其他获奖产品详见:http://www.instrument.com.cn/news/20140807/138406.shtml   (编译:杨娟)
  • 重点关注类器官|赛多利斯携手英伟达借助AI推动药物发现
    据最新公开消息,赛多利斯(Sartorius)正在扩大与英伟达(NVIDIA)的多学科合作,将赛多利斯在生命科学和生物处理方面的专业知识与英伟达的 AI 支持的计算平台和软件相结合,以期共同探索开发更优质的创新疗法。赛多利斯首席技术官 Oscar-Werner Reif 博士教授表示:“生物相互作用异常复杂。通过将生命科学专业知识与 AI 解决方案相结合来更好地利用数据,是简化和加速生物制药药物发现和制造进度的一种很有前途的方法。与英伟达的进一步合作将有助于为我们的客户带来相关技术创新并最终造福于患者。”干细胞衍生类器官是重点合作方向值得一提的是,此次合作的重点是开发干细胞衍生类器官的预测人工智能模型,以取代药物发现和精准医学中的动物模型。自 2020 年以来,赛多利斯一直与英伟达合作。该生命科学团队已将英伟达的技术集成到其仪器中,使其活细胞成像平台的前沿计算应用能够在实验室中进行商业化的 AI 检测。赛多利斯还使用英伟达解决方案进行预测性生物工艺设计,并使用模拟工具来制造创新疗法。本次合作包括在赛多利斯生态系统中更多地采用NVIDIA Clara人工智能驱动的计算平台、软件和服务套件。计划涉及基于赛多利斯广泛且独特的数据集创建强大的基础模型并将其商业化。赛多利斯客户还将通过 NVIDIA Clara 套件和NVIDIA DGX 平台获得适用于众多应用领域的新预测AI 模型、工具和模拟。此次合作将以前瞻性的视角推动实现生物制药领域的创新与技术整合,双方将共同探索包括基于计算机的设计和复杂3D生物打印球体和类器官的模拟等众多先进技术,甚至基于赛多利斯设计的合成生物途径和生物体细胞系,以生产新的治疗剂和疗法。——————END————————相关阅读:AI 单细胞应用!英伟达携手Deepcell开发单细胞分析的生成式AI技术应用
  • Nature综述丨冷冻电镜在药物发现中的应用前景
    p    span style=" background-color: rgb(255, 0, 0) " strong span style=" color: rgb(255, 255, 255) " 1 前言 /span /strong /span /p p   近日,欧美多国科学家在Nature Reviews Drug Discovery杂志发表了题为Cryo-EM in drug discovery: achievements, limitations and prospects的重要综述,系统阐述了Cryo-EM(Cryo-electron microscopy)的前世今生,以及它在药物筛选方面的应用前景【1】。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/66b6d798-469a-49c7-84ae-5aa101c5cc96.jpg" title=" 01.jpg" / /p p   众所周知,2017年诺贝尔化学奖授予了三位杰出的生物物理学家Jacques Dubochet、Joachim Frank和Richard Henderson,以表彰他们在Cryo-EM发展过程中的推动性贡献。有了他们,众多生物学家的工作才如行云流水,探囊取物似的发文(特约评论丨2017年诺贝尔化学奖评述——冷冻电镜技术获奖并不意味着该技术已经成熟)。 /p p   结构生物学似乎一直被很多人,甚至被很多“吃瓜群众”所诟病。不少人认为结构生物学就是“灌水+搬砖”,觉得结构生物学领域发高水平文章很容易,其实不然。外行看结构生物学,可能大部分仅停留在结构表面,对结构生物学的应用和对科学问题的阐述缺乏深入的了解和认识。颜宁老师曾说过,“拿到一个结构只是一个起点,从结构里去发现大自然的奥秘才是结构生物学的精髓所在!” /p p   其实结构生物学的重要性毋庸置疑,这一点可以从近几年(如2003、2006、2009、2012)的诺贝尔奖直接授予结构生物学家看出。这些诺贝尔奖获得者也并非一直从事结构生物学研究,比如说2012年诺贝尔化学奖得主Brian K. Kobilka最初从事细胞生物学,后来转行从事结构生物学研究分子机制 (https://www.nature.com/-news/2011/110824/full/476387a.html),因为他觉得他的科学问题只有结构生物学才能解答,才能从原子水平解释G蛋白偶联受体(GPCR)的分子机理。另一方面,结构生物学在药物筛选中也起着举足轻重的作用。 /p p    span style=" color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) " strong 2 三足鼎立的时代 /strong /span /p p   目前的结构生物学的三大手段分别是X-ray晶体衍射、核磁共振(NMR)和Cryo-EM。X-ray晶体衍射在这三种方法中一直是占主导地位,在PDB数据库中,晶体结构大约占总数的90%,NMR结构占9%,剩下EM结构仅占不到1%(图1)。尽管如此,这三种技术各自有各自的优势和地位。 /p p   X-ray晶体衍射主要覆盖的蛋白分子大小在10-150 kd,超过150 kd的晶体结构非常少,不过大部分蛋白都在这个分子量范围内。该技术经过几十年成熟的发展,已经解析了12万多个蛋白结构,如今想找一个容易结晶的重要蛋白可不易。 /p p   NMR技术主要覆盖的蛋白分子小于50 kd,可以直接对溶液中的蛋白进行结构解析 不过它对蛋白的表达量和稳定性要求很高,所以可以继续深入发掘的潜力有限。 /p p   Cryo-EM技术近些年来才兴起,经过近几年的飞速发展,倒是大有取代X-ray晶体衍射方法之势【2-4】(0.73埃,最高分辨率的结构揭示淀粉样聚集蛋白功能性可逆的精密调控分子机制)。不过目前来说,Cryo-EM的蛋白结构主要是大于150 kd的大蛋白或复合物,而且分辨率3 埃以下的还是少数,但是这一现状正在改观。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/309627e1-6d74-4b20-91ce-c2794ad85c8b.jpg" title=" 02.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "  图1. 结构生物学三种方法解析的结构比例 /span /p p   span style=" color: rgb(255, 255, 255) " strong   /strong /span span style=" color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) " strong 3 结构生物学在药物筛选中的应用 /strong /span /p p   结构生物学一直在药物设计中扮演着重要的角色,它可以用于临床前药物设计的每一步,包括药物靶点的设计和鉴定,先导化合物优化等。由于能提供直接的证据,所以往往在筛药初期,可以对药物设计提供可靠的靶点,为小分子药物指明方向 在后期,直接提供结构生物学的证据,起到画龙点睛的作用。 /p p   结构生物学的三大方法对药物设计均有很大的帮助,但是也各自有各自的优缺点。X-ray晶体学是目前来说最高效、最强大,也是实际作用最大的方法,当靶点是可结晶的蛋白,一旦强大的结晶系建立,就可以快速和可重复地产生高分辨率结构,就可以源源不断的对蛋白进行位点突变或药物设计了 核磁共振(NMR)允许快速识别和分类,并提供有关系统动态的信息,但是该方法本身受到很多因素的限制,比如目标蛋白的覆盖范围不是特别广泛 Cryo-EM允许在溶液中确定大的和/或动态的大分子复合物的结构,而不需要获得晶体,甚至在它们的天然状态下即可实现,比如翻译后修饰的状态 此外,由于蛋白在接近天然状态下的溶液中是高度动态的,所以蛋白的不同构象状态可以在一个实验中解决。 /p p   Cryo-EM已经证明了其在靶标鉴定、验证等方面的实用性,通常涉及目标结构分析,以理解作用机制和评估可药用性。该分析需要参考天然的结构,理想情况下会结合其他方法的结果作为参考。自20世纪90年代以来,Cryo-EM已与X-ray晶体学结合使用了几十年,以解决不易结晶的大型复合物的结构。从EM密度图的轮廓获得的低分辨率分子包络(通过使用与对象的分子质量相关的阈值以去除与噪声对应的三位像素)可以给高分辨率晶体结构域、个别蛋白质或复合体提供近似轮廓,可与X-ray晶体学相辅相成。 /p p   结构生物学在药物开发中的应用,最好的例子当属GPCR了【1, 5, 6】。在2007年GPCR结构解析之前,药物筛选基本上就是处在盲筛和半盲筛的阶段。有了晶体结构之后,临床药物的开发迅速发展,上市药物也全面发展(图2)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/618242c1-392e-49bc-b99d-6668a25c284f.jpg" title=" 03.jpg" / /p p style=" text-align: left " span style=" color: rgb(0, 176, 240) " 图2. a.近年来GPCR的临床阶段中的药剂数量 b. 每种受体配体类型在所有结晶GPCR中的比例 【6】 /span /p p    span style=" color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) " strong 4 Cryo-EM技术的历史与现状 /strong /span /p p   1931年,Max Knoll和Ernst Ruska发明了电子显微镜,并在1933年第一次打破了光镜的理论极限,使人类能够看到更加细小的颗粒。在发明之初,电镜并不被看好被用于对生物样品的观测。因为两个基本的问题摆在生物学家面前:一是电镜成像时,需要在真空中 二是成像时电子的辐射对生物样品的损伤很大。所以在之后的几十年里,科学家仅仅是用它做一些细胞形态学、病毒颗粒之类的负染,除此外,电镜在生物领域的贡献不太大。 /p p   但是技术瓶颈总是阻挡不住科学家求真的脚步!1981年,Jacques Dubochet和他的同事在电镜技术上取得了突破性进展——他们将快速冷冻的方法引入其中,即,将单个分子快速冷冻在单层的玻璃态的水(或者叫无定形的冰,vitrified water)中,即可解决上述两个基本问题。玻璃态化(Vitrification)的过程不仅可以使样品保持天然的状态,还可以保护样品在低温成像时免受脱水的危险,而冷冻本身也减少了由电子束引起的伤害。 /p p   尽管如此,在当时,要使电镜成像达到原子分辨率水平,还依然面临诸多挑战。比如说低信噪比、如何将2D成像转化为3D结构等问题。Joachim Frank和他的同事率先使用计算图像处理技术(computational image processing techniques),利用多个成像生物大分子拷贝的计算平均来改善信噪比的问题,得到不同角度的2D图像,再利用计算机软件进行3D重建,解析蛋白质的结构。近些年来众多的设备改善也极大促进了Cryo-EM技术的发展,比如高自动化程序的软件开发、高性能charge-coupled device(CCD)相机的应用等。正是由于这些技术的使用,Cryo-EM的应用才越来越广泛。 /p p   从电镜发明开始至今,解析的生物样品的结构大约有2200个(蛋白结构、病毒颗粒等)。1968年,第一个电镜结构被解析 1981年,有了冷冻样品的电镜技术 1999年,使用电镜技术解析的ribosome分辨率达到7.5 埃 【3】。大约2000年之后,电镜结构的数量开始逐年增长,但那时的分辨率一直不佳 而在2010年之后,用电镜技术解析的生物样品结构开始井喷式增长,2010年首次超过50个,分辨率也接近原子分辨率或近原子分辨率。目前总量已经接近2200个(图3) 。相信未来增长的势头会更加迅猛。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/75dd84b2-eacd-4043-af6c-bcdaf9e2afa7.jpg" title=" 04.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图3.Cryo-EM结构增长情况。数据来源于PDB数据库,截至2018年6月13日) /span /p p    span style=" color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) " strong span style=" color: rgb(255, 255, 255) " 5 Cryo-EM技术在药物筛选中的应用前景 /span /strong /span /p p   最近,单颗粒Cryo-EM为不适合结晶的蛋白提供了高分辨率结构,包括大型动态复合物和膜蛋白,技术进步使得Cryo-EM可用于研究更小的物体和分辨率更高的物体,包括与小分子的复合物。本节将通过几个例子重点介绍具有药物发现相关性的Cryo-EM结构。 /p p   strong  5.1膜蛋白 /strong /p p   GPCRs。GPCRs是最丰富的细胞表面受体蛋白,并且被市场上约30%的药物所靶向 【5, 6】。尽管GPCR的X-ray晶体学研究取得了重大进展(这在历史上一直是非常具有挑战性的),但由于需要获得高质量晶体和纯化过程中相对较低的稳定性,X-ray对该家族的一些成员仍然难以应付。然而,cryo-EM可以确定GPCRs的不同构象以及与G蛋白复合物的结构,从而用于配体筛选或设计药物。以前,构象不稳定且不能结晶的大复合物无法成像,Cryo-EM则使其成为可能。2016年,单颗粒cryo-EM解析了第一个GPCR的cryo-EM结构(4.1埃),确定了激活状态下鲑降钙素、G蛋白和人降钙素受体(B类GPCR)的异源三聚体结构【7】。此后不久,结合兔胰高血糖素样肽(glucagon-like peptide 1, GLP1)、G蛋白和GLP1受体(B类GPCR)4.1 埃的cryo-EM结构被解析,解释了B类受体如何通过激素活化结合【8】。人类GLP1受体结合的激动剂和G蛋白异源三聚体的3.3 埃的Cryo-EM结构,给出了偏向激动作用(biased agonism)的见解【9】(图4)。分子量为150 kDa时,这种重要的药物靶点曾经被认为几乎不可能在近原子分辨率下使用cryo-EM成像,直到最近这些GLP1受体结构被解析出来。这些结构侧链清晰可辨,可帮助设计治疗II型糖尿病和肥胖症的新药,同时也为以后的更高分辨率GPCR蛋白复合物的解析提供了很好的样本范例。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/cc9980c1-7215-4f0d-ba7d-a30e1edc15f5.jpg" title=" 05.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "  图4. 偏向信号(Biased signalling)可以通过三种通用机制进行编码【5】 /span /p p   γ-分泌酶(γ-secretase)。 γ-secretase是涉及淀粉样-β肽裂解的四组分170 kDa的膜内蛋白酶。γ-secretase的功能障碍是促进早发性阿尔茨海默病(AD)患者大脑中淀粉样斑块形成的原因,因此科学家有兴趣将其作为潜在的药物靶标。γ-secretase也作为Notch信号传导的关键介质参与癌症。在分辨率为3.4 埃的γ-secretase的cryo-EM结构中发现,四跨膜束内核(core of a four-transmembrane bundle)的两个热点突变,削弱了蛋白酶活性,从而引起早发性阿尔茨海默病。这个原子模型可以帮助设计更具选择性的化合物。值得注意的是,γ-secretase糖基化对Cryo-EM数据集的结构重建几乎没有影响,而它却可能妨碍X-ray的结晶【10】。 /p p   离子通道。各种离子通道结构已经在不同的分辨率下得到了解决,包括几种潜在的药物靶标。 这些包括:瞬时受体电位阳离子通道亚家族V成员1(TRPV1)【11-13】和TRPA1【14】通道,它们分别参与传感和传导温度和刺激物 电压门控钙通道Ca v1.1【15】和钠通道NavPaS【16】,它们分别涉及骨骼肌组织的收缩以及可兴奋细胞中动作电位的产生和传播。被解析的通道蛋白还有很多,特别要指出的是,冷冻电镜最近对TRP家族中的通道蛋白研究产生了巨大的影响,在过去的4年中,约解析出了50个冷冻电镜结构。历史上,获得良好衍射的TRP通道晶体非常困难,因为它们在细胞中的基因表达水平低,并且对化学和物理刺激非常敏感。结合激动剂的TRPV1(2.9 埃)【13】,TRPML3(2.9 埃)【17】和TRPM4(2.9 埃)【18】结构是目前为止由Cryo-EM解析的膜蛋白的最高分辨率结构。同样重要的是,Cryo-EM在研究极大离子通道复合物也具有无可估量的价值,如Ryanodine受体(RyRs)【19, 20】,它们是已知最大的离子通道之一,质量为2.2 MDa,介导细胞内Ca2+释放并且是心脏疾病的新兴治疗靶点。这些解析出来的离子通道蛋白结构,将成为药物设计的重要靶点,同时也再次证明了Cryo-EM技术的强大。 /p p   ATP结合蛋白(ABC)转运蛋白。Cryo-EM也揭示了X-ray衍射难以处理的其他膜蛋白复合物的结构。例如解析并阐明真核ABC转运蛋白多药耐药相关蛋白1(multidrug resistance-associated protein 1, MRP1)识别底物以及底物结合如何刺激ATP水解的机制【21】。ABC转运蛋白在多种药物的吸收,分布,代谢和消除中发挥关键作用,可导致药物相互作用,因此,有关其结构的信息可能对药物开发同样具有重要价值。 /p p   strong  5.2抗体和疫苗 /strong /p p   要理解潜在生物治疗剂作用机制,必须通过表位作图分析阐明单克隆抗体(mAb)的活性。近年来,负染和cryo-EM已用于抗体的线性和构象表位作图。该方法仅需要微克量的抗体-抗原复合物,并且可以与其他表位定位技术结合使用,如氢-氘交换质谱(HDX-MS)或蛋白的快速光化学氧化(FPOP)技术。在最近的例子中,Long和他的同事使用cryo-EM阐明了病毒中和人mAb是如何结合病毒样颗粒,并阻断病毒和宿主膜融合的机制的【22】。Ciferri及其同事使用负染技术研究与HTRA1(一种与年龄相关的黄斑变性有关的丝氨酸蛋白酶)形成独特复合物并抑制其酶活性的抗体的结构【23】。该研究突出了IgG-HTRA1复合物的笼状结构,其较不紧凑的螺旋桨状排列,具有比Fab对应物更高的效力【23】。使用新的cryo-TEM技术可以进一步使表位作图更高效地辅助mAb设计。在抗体疫苗研究中使用cryo-EM的报道还有不少,该技术在研究动态目标中起着非常大的作用。 /p p   strong  5.3潜在的先导化合物优化 /strong /p p   目前药物研发人员非常感兴趣的一个问题是,Cryo-EM是否可用于药物设计的命中导向和前导优化阶段,这往往依赖于基于结构的药物设计(structure-based drug design,SBDD)。为了使SBDD在这些阶段发挥作用,在短时间内(与候选药物开发时间相比)快速而夯实地产生多种结构的流程是先决条件 而当目标可以结晶时,高通量X-ray晶体学一直是黄金标准——用一系列化合物与蛋白共结晶或浸泡法来产生共晶体,再通过同步辐射光源进行衍射数据收集,以高通量自动化方式进行分子置换和配体模型构建,产生多重化合物-靶标复合物的结构。为了有效利用结构信息进行药物设计,分辨率理想情况下应该小于2.5 埃。 /p p   尽管最近在 Cryo-EM方面解析的靶标复合物结构分辨率能够低于3 埃,但它还远没有X-ray高效。例如,一个限制是获得高分辨率Cryo-EM结构所需的时间框架仍然比X-ray晶体学慢几个数量级。尽管如此,一些例子说明了如果可以解决这些限制,Cryo-EM的潜力将是非常可喜的。Merk和他的同事确定了异柠檬酸脱氢酶(93 kDa)的3.8埃分辨率下的cryo-EM结构,并在结构上表征了小分子抑制剂结合引起的构象变化。Wong和他的同事确定了结合抗原生动物药物吐根碱【24】和甲氟喹【25】的恶性疟原虫80S核糖体的Cryo-EM结构,并且分辨率都达到了3.2 埃。 /p p   尽管在设计新的先导化合物中使用Cryo-EM的例子尚未见报道,但一些有希望的结果和正在进行的技术改进表明,Cryo-EM很快将被考虑作为SBDD的一个关键工具,特别是对难以结晶的目标,如膜蛋白。随着Cryo-EM产生的近原子分辨率结构的比例增加,相信制药行业的兴趣和期望也会越来越高。 /p p    strong 5.4其他蛋白 /strong /p p   除了膜蛋白之外,Cryo-EM在获得对神经退行性疾病靶标蛋白的结构理解方面也取得很多进展。最近的成功例子是,从阿尔茨海默病患者的脑中分离出了第一个高分辨率结构(3.4-3.5埃)的tau蛋白细丝【26】,其特征是成对螺旋丝(PHF)和直丝(SF)组成的神经原纤维tau聚集体。PHF和SF的Cryo-EM结构揭示了tau聚集体分子构象异构之间的差异,发现了异构体如何被掺入到长丝中。这些细丝的高分辨率结构测定开启了基于结构的药物发现的新的可能性,例如设计特定的抑制剂。 /p p    span style=" color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) " strong 6 药物筛选中X-ray晶体学与Cryo-EM的比较 /strong /span /p p   与Cryo-EM相比,X-ray晶体学在药物筛选方面的关键优势在于,能够快速提供高分辨率结构数据。一旦建立了合适的结晶系统,通过X-ray晶体学快速连续获得后续结构或筛选化合物所需的时间非常短:1小时内可以通过结晶自动工作站设置约2,000个结晶条件,2-3个小时即可评估所有图像以确定合适的结晶条件(可以通过图像识别软件来降低)。在同步加速器上采集一套完整的晶体数据不到2分钟,随后的数据整合、结构解析和蛋白质-配体复合物的精修已经很大程度上已经实现自动化,并且通常可以在1 小时内完成。然而,筛选以确定EM的合适样品和冷冻条件时,1次分析仅能评估12个样品,而为了充分表征它们又需要3-4个小时,与X-ray相比慢了好几个数量级。 /p p   重要的是,这意味着X-ray晶体学的通量对于药物配体筛选足够快。目前,用不同化合物浸泡的约500个晶体的数据可以在24小时内收集(例如,在英国Diamond synchrotron的XChem线站 上海SSRF的BL17U和BL19U1也有此潜力),并且可以在在1周内在线处理和精修好(视结构解析者的数量和熟练程度)。 为了实现相同的目标,EM则需要大约半年的时间收集数据(假设每套数据8小时),并且至少需要一年的计算和模型构建。即使有这些乐观的时间尺度假设,使用Cryo-EM的配体筛选过程也比使用X-ray晶体学的要慢2-3个数量级。 /p p   正如前文指出的那样,cryo-EM的一个关键优势是:它可以很容易地用于确定其天然状态下的大分子和/或动态大分子(包括膜蛋白)的结构,包括翻译后修饰。Cryo-EM对蛋白质的需求通常比X-ray晶体学更少,这对于要求苛刻的蛋白质可能是特别有利的。事实上,对于在药物研发中使用X-ray晶体学,获得合适的晶体仍然是一个关键挑战,有延迟项目的风险,特别是膜蛋白,重糖基化蛋白和大型或柔性蛋白或蛋白复合物,能否持续获得稳定、可靠、质量上乘的晶体存在很多不确定因素。为了应对这些挑战,人们已经开发了许多方法,例如将大的药物靶标减少到单个结构域,以期促进蛋白质生产,纯化和结晶。所以,在结构化指导的药物发现项目开始时,对时间和资源的投入往往是强制性的,以确保在筛选数百种化合物时具有足够的通量。 /p p   Cryo-EM的另一个重要优点是相位信息可以在重建结构和实验中直接获得,而相位信息在X-ray晶体学中丢失,必须通过实验进行相位重构,这取决于实验数据的准确性采集。因此,尤其是对于4-7.5 埃范围内的分辨率水平,通过Cryo-EM确定的结构,通常能够以无法通过X-ray晶体学获得的清晰度显现单个结构域和二级结构单元。但是,分辨率超过 3 埃时情况不同。只有一小部分已发表的Cryo-EM结构有超过3 埃的分辨率,并且在许多情况下,从Cryo-EM获得的3D图谱无法在质量上与通过X-ray晶体学获得的图谱在类似的分辨率下竞争。不过,在这一方面应该指出的是,X-ray晶体学和Cryo-EM的分辨率基于的方法差异很大,因此很多时候不能直接比较(见下一部分)。 /p p    span style=" color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) " strong 7 X-ray晶体学和Cryo-EM的分辨率比较 /strong /span /p p   在X-ray晶体学中,基于晶格的光子最大衍射、统计学、电子密度图谱与原子模型比较等标准直接度量分辨率【27】。在Cryo-EM中,傅里叶壳层相关函数(FSC)通常被用作主要的分辨率确定工具,用两个独立确定的三维图谱的一致性来衡量两个独立确定的三维图谱。分辨率由相关性下降到特定阈值(通常为0.143)以下的空间频率确定。FSC代表数据处理的自我一致性测量 因此,在Cryo-EM密度图中观察到的结构特征有时可能会偏离他们应该看到的分辨率期望。下图中显示了这一点,其中包含一系列Cryo-EM图,显示了在不同模拟和实际计算分辨率下可视化的芳香族和非芳香族残基(图5)。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201807/insimg/30c45ae1-d18a-4fc5-99d1-57089dc937a5.jpg" title=" 06.jpg" / /p p style=" text-align: center "   span style=" color: rgb(0, 176, 240) "  图5. 芳香族和非芳香族残基的EM密度图 /span /p p   FSC是一种全局措施,因此仅提供一个平均分辨率值,考虑到大分子的结构柔性和典型的Cryo-EM辐射图中的非各向同性分辨率分布,这其实是误导性的。在最佳定义的密度图区域中,分辨率可能被低估 而所有Cryo-EM密度图的结构特征比FSC所指示的分辨率低得多。同样值得注意的是,FSC没有提供关于计算3D图谱给定质量的信息。 /p p   目前,有许多提交数据库的Cryo-EM结构报道有约3.5 埃的分辨率,与3.5 埃分辨率的X-ray晶体结构相比,它们的结构特征更为明确(在其结构明确的区域)。这部分是因为如上所述,FSC的全局分辨率低估了明确界定的特征分辨率。然而,这也是因为在分辨率& gt 3.5 埃时,X-ray晶体学的结构解析在技术上是很困难的。其原因在于X-ray晶体学的观测参数比较差。因此,从采集的幅度数据进行相位重构效率低下,这反映在这些分辨率下的差的数据质量上。当晶体学数据处理变得越来越自动化和可靠时,这种情况在较高分辨率下会反转。相比之下,与3.5-4 埃分辨率范围内的结构相比,更高分辨率的结构测定(& lt 3埃分辨率)在 Cryo-EM中困难得多。Cryo-EM结构测定中有几个参数可能会导致这种影响。例如,区分可能属于给定大分子复合物不同构象的粒子图像是非常困难的 --随着一个样品中存在不同状态的数量,这个问题变得越来越突出。诸如光束损伤和电子光学像差等其他效应也越来越限制高分辨率结构测定(& lt 2.5埃)。当想确定& lt 2 埃分辨率下的可靠结构时,轴向彗形像差将成为Cryo-EM中主要的分辨率限制像差。 /p p    span style=" color: rgb(255, 255, 255) background-color: rgb(255, 0, 0) " strong 8 Cryo-EM技术的未来展望 /strong /span /p p    strong 8.1目前Cryo-EM技术的瓶颈 /strong /p p   处理较小的蛋白。 Cryo-EM一直被认为是只能适用于分子量大于500 kDa的生物大分子,然而,很多的药物靶点都是比这小的多的蛋白或者蛋白复合物。近年来技术的发展,理论上可以使Cryo-EM的样品小于65 kDa,实际上也确实在这方面有很多很大的突破。因此,越来越多的小于200 kDa的高分辨结构被解析出来。 /p p   样品制备的优化和数据分析。尽管Cryo-EM对样品的均一性没有X-ray那么高,但是样品的均一性还是保持样品完整度的重要保证。不均一的样品对后期数据处理非常艰难,而且也有可能使得数据的分辨率和结构信息的完整度下降。同样,EM Grid(格栅)的准备过程、数据采集和数据等过程的优化也可以提高Cryo-EM的分辨率。随着科学家的不懈努力,相信Cryo-EM技术会越来越强大,应用会越来越广泛。 /p p    strong 8.2Cryo-EM技术的未来 /strong /p p   在短短的几年内,令人振奋的Cryo-EM技术的进步推动了一个时代。今天,结构生物学家正在使用cryo-EM研究大型蛋白质复合物,大型细胞机器和病毒的结构和功能。技术的改进可能很快会产生更多小的膜蛋白结构。这些进步推动了人们的希望,未来的发展可能很快就会在“可以常规实现2 埃分辨率的黄金时代”即将来临时出现【4】,并且甚至提高了期待——Cryo-EM快速而有效的预期将与许多应用竞争,甚至取代晶体学【2, 3】。 /p p   事实上,对于制药行业的一些应用,Cryo-EM已经具有相当大的吸引力,因为它可能并不需要总是达到4 埃以下的分辨率 低分辨率结构对于更好地理解目标蛋白,以及位于蛋白质复合物的结构域或结合伴侣之间结合口袋的识别 药物设计时也可能不总是需要准确确定化合物的结合模式。此外,尽管Cryo-EM结构的分辨率通常受蛋白质动态变化导致的构象多样性限制,但由于重构各种中间状态有助于理解SBDD,所以该限制可转化为SBDD的优势,并解释一个复合体如何与其底物结合的机制。 /p p   为了利用这些机会,很多公司已经将更多的注意力集中在Cryo-EM上,使用各种方法来收集和处理EM数据,包括与学术实验室合作(通过合作或收费服务)。虽然即将推出的类似于同步加速器的设备承诺满足对Cryo-EM日益增长的需求,但存在诸多限制。在晶体学方面,晶体数据收集,结构解析与优化都非常迅速,使其成为需要多种结构小分子项目的极佳资源。在Cryo-EM中,每个数据采集跨越几个小时或几天的时间,使得cryo-EM的通量比晶体学小得多。但可以肯定的是,工业中使用Cryo-EM的速度正在迅速增加。因此,对于常规的药物研发来说,仍需要开发一些工具,才能使Cryo-EM成为药物猎手的首选方法----这需要投入强大的资金和耐心。 /p p   最后,在药物研发中使用Cryo-EM不仅取决于Cryo-EM技术的的发展,还可能取决于晶体学的进一步发展。在今天,可以看到完善的、自动化的、快速的、易于量化的晶体结构筛选体系,因为这个领域已经发展了几十年的时间。很难想象在接下来的几年或几十年中,Cryo-EM会发展成什么形式和速度,可以说,取代晶体学用于常规药物发现也不是没有可能。不过,可能更好的、更有可能的结果是:虽然选择二者的界限已经开始转向有利于Cryo-EM的方向,但似乎更有可能这两种技术仍将作为药物发现的方法、互相补充共同进步很长一段时间。 /p p   本文主要内容整理自参考文献【1, 5, 6】,可能存在个别专业词汇翻译不够准确的情况,敬请谅解!有兴趣的读者请查看原文。 /p p    span style=" color: rgb(0, 176, 240) " strong 参考文献 /strong /span /p p   1. Renaud, J.P., et al., Cryo-EM in drug discovery: achievements, limitations and prospects.Nat Rev Drug Discov, 2018. /p p   2. Luo, F., et al., Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation.Nat Struct Mol Biol, 2018. 25(4): p. 341-346. /p p   3. Rubinstein, J.L., Cryo-EM Captures the Dynamics of Ion Channel Opening.Cell, 2017. 168(3): p. 341-343. /p p   4. Frank, J., Advances in the field of single-particle cryo-electron microscopy over the last decade.Nat Protoc, 2017. 12(2): p. 209-212. /p p   5. Smith, J.S., R.J. Lefkowitz, and S. Rajagopal, Biased signalling: from simple switches to allosteric microprocessors.Nat Rev Drug Discov, 2018. 17(4): p. 243-260. /p p   6. Hauser, A.S., et al., Trends in GPCR drug discovery: new agents, targets and indications.Nat Rev Drug Discov, 2017. 16(12): p. 829-842. /p p   7. Liang, Y.L., et al., Phase-plate cryo-EM structure of a class B GPCR-G-protein complex.Nature, 2017. 546(7656): p. 118-123. /p p   8. Zhang, Y., et al., Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein.Nature, 2017. 546(7657): p. 248-253. /p p   9. Liang, Y.L., et al., Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex.Nature, 2018. 555(7694): p. 121-125. /p p   10. Bai, X.C., et al., An atomic structure of human gamma-secretase.Nature, 2015. 525(7568): p. 212-217. /p p   11. Cao, E., et al., TRPV1 structures in distinct conformations reveal activation mechanisms.Nature, 2013. 504(7478): p. 113-8. /p p   12. Liao, M., et al., Structure of the TRPV1 ion channel determined by electron cryo-microscopy.Nature, 2013. 504(7478): p. 107-12. /p p   13. Gao, Y., et al., TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action.Nature, 2016. 534(7607): p. 347-51. /p p   14. Paulsen, C.E., et al., Structure of the TRPA1 ion channel suggests regulatory mechanisms.Nature, 2015. 525(7570): p. 552. /p p   15. Wu, J., et al., Structure of the voltage-gated calcium channel Ca(v)1.1 at 3.6 A resolution.Nature, 2016. 537(7619): p. 191-196. /p p   16. Shen, H., et al., Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution.Science, 2017. 355(6328). /p p   17. Hirschi, M., et al., Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3.Nature, 2017. 550(7676): p. 411-414. /p p   18. Guo, J., et al., Structures of the calcium-activated, non-selective cation channel TRPM4.Nature, 2017. 552(7684): p. 205-209. /p p   19. Yan, Z., et al., Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution.Nature, 2015. 517(7532): p. 50-55. /p p   20. des Georges, A., et al., Structural Basis for Gating and Activation of RyR1.Cell, 2016. 167(1): p. 145-157 e17. /p p   21. Johnson, Z.L. and J. Chen, Structural Basis of Substrate Recognition by the Multidrug Resistance Protein MRP1.Cell, 2017. 168(6): p. 1075-1085 e9. /p p   22. Long, F., et al., Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity.Proc Natl Acad Sci U S A, 2015. 112(45): p. 13898-903. /p p   23. Ciferri, C., et al., The trimeric serine protease HtrA1 forms a cage-like inhibition complex with an anti-HtrA1 antibody.Biochem J, 2015. 472(2): p. 169-81. /p p   24. Wong, W., et al., Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine.Elife, 2014. 3. /p p   25. Wong, W., et al., Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis.Nat Microbiol, 2017. 2: p. 17031. /p p   26. Fitzpatrick, A.W.P., et al., Cryo-EM structures of tau filaments from Alzheimer& #39 s disease.Nature, 2017. 547(7662): p. 185-190. /p p   27. Karplus, P.A. and K. Diederichs, Linking crystallographic model and data quality.Science, 2012. 336(6084): p. 1030-3. /p
  • “掌握药物发现化学”-2011中国北京第二届国际药物化学大会顺利召开
    仪器信息网讯 2011年8月9日,“中国北京第二届国际药物化学大会”在北京国际会议中心开幕。本次会议由国家外国专家局国外人才信息研究中心和中国医药生物技术协会主办,百奥泰国际会展(大连)有限公司承办,会议为期3天,来自国内外大学、科学院所、全球相关企业、代理商等机构的专家、项目负责人、课题带头人、企业高管等近300人参加了此次会议。仪器信息网作为合作媒体参加了此次会议。   2011中国北京第二届国际药物化学大会会议现场   本届会议主题为“掌握药物发现化学”。大会共设置了7个分会场、49个专题论坛,分会主题为:生物科学、化学生物学和药物化学;新技术在药物化学研究中的应用;基于药物设计和合成的合理靶点;候选药物的先导优化;生物治疗和天然产物药物化学;药物合成和生产技术;药物化学研发外包联盟趋势。   会议邀请了来自全球30多个国家和地区在药化领域最具影响力的著名大学与研究机构的专家、前500强制药企业高管及资深科学家,就药化领域前沿技术和科技成果,国际药化领域的发展趋势和前沿动向,科研成果产业化合作等方面做精彩报告。 “新技术在药物化学研究中的应用”分会现场   仪器信息网特别关注了“新技术在药物化学研究中的应用”分会场,多位专家在该会场就纳米成像技术、改进型高通量筛选技术、相关分析软件的应用等做了精彩报告。现场与会人员同专家进行了热烈的讨论。 报告人:奥兰治自由洲大学 Lodewyk Kock博士 报告题目:A New Imaging Nanotechnology for Drug Development   奥兰治自由洲大学Lodewyk Kock博士在报告中指出:纳米探针配备扫描俄歇显微镜在药物筛选中可以深度剖析药物的元素组成和一些细胞结构,对制药研究可能产生重大的影响,因此,对纳米成像技术在药物探究领域的应用值得进一步的评估。 报告人:美国礼来公司研究实验室高级研究顾问Thomas A. Engler博士 报告题目:Merging High-content Imaging, Informatics and SAR in Phenotypic Drug Discovery报告人:高级化学发展有限公司亚太区业务总监 K.K.Bhagchandani博士 报告题目:Simplifying Analytical Work-up For the Medicinal Chemist   以下是部分参展企业: 飞世尔实验器材(上海)有限公司 郑州长城科工贸有限公司   会议同期,主办方还举办了“2011第二届不对称催化合成大会(WCCAS-2011)”,会议主题是:“迈向低碳绿色化学”。
  • 【瑞士步琦】你知道药物发现和开发过程中有哪五个典型的步骤吗?步琦伴随你的每一步!
    药物研发的过程也许是漫长的,也许是痛苦的。一批又一批的科学家们为了人类的健康,为了未来的发展夜以继日的劳累着,奋斗着。我们作为设备供应商,能且只能做的就是为这些伟大的科学家们尽最大的努力提供精良可靠、智能高效、安全稳定的仪器,以期能帮助他们。更希望有那么一天,可以和他们一起分享胜利成果的喜悦。在药物发现过程中,感兴趣的成分被从实验室中合成或从天然产物中得到。后续对潜在候选成分进行理想化的特征修饰与分析等。任何药物发现流程都需要可靠的、高通量的方法来进行准确、快速的发现活性良好的化合物。一旦确定了活性药物成分(API),就可以开始药物开发和生产过程。在药物开发过程中,重点放在工艺优化和有效的质量控制上,以避免大规模生产所带来的高昂的错误代价。现在让我们探讨一下药物发现和开发过程中典型的五个步骤。01萃取/合成索氏萃取和回流合成是制备样品最常用的技术。例如,索氏提取法应用回流和虹吸原理,用新鲜溶剂连续提取感兴趣的目标物。该方法高度自动化,帮助您在更短的时间内获得更高的产品收率。回流合成和索氏提取可通过配备相关附件的旋转蒸发仪上进行。这就给了你用一种乐器演奏两种技术的好处。当放大药物开发应用时,尽量保持与你的回流合成或索氏提取步骤相同的参数。为了帮助您实现这一点,请考虑使用可以兼容小尺寸蒸发瓶与工业级尺寸的设备。工业级旋蒸可用于扩大目标化合物的合成或提取。▲ R-300 可搭配多种冷凝器实现不同应用02浓缩合成或提取化合物后,必须通过蒸发浓缩或干燥混合物。在这里我有一些节省时间的建议给你。考虑使用平行蒸发同时干燥多个样品或杜瓦附件,以帮助准备样品直接在旋转蒸发器上冷冻干燥。▲ 最多支持 96 位样品进行浓缩干燥03分离/纯化既然已经达到了提纯阶段,我建议使用 Flash 色谱作为快速的提纯前步骤,将化合物从浓缩混合物中分离出来。然后后续使用制备型高效液相色谱,以达到更高纯度的目标化合物。我还建议使用同时带有 UV 检测器测器和 ELSD 检测器的系统,以确保您不会错过目标产物。哦对,如果样品成分过于复杂,或追求更高效率,超临界色谱(SFC)或二维色谱也是个不错的选择。为了简化您的药物开发过程,考虑使用不同尺寸的Flash色谱柱,制备 HPLC 柱,玻璃柱,以及收集系统。同时也可以增加干法上样器、液体进样环、外部注射泵来提高样品进样的选择性。中高压一体制备液相色谱√ Flash 模式√ Prep 模式√ DAD 检测器√ ELSD 检测器04冻干浓缩分离后,您需要再次浓缩您感兴趣的药物化合物。通过使用温和的过程,如冷冻干燥:可以去除溶剂,对敏感产品的损害最小。该技术使用稳定的参数来提高药物发现和开发过程的可重复性。▲ 稳定高效 or 无极限?您想要,都可以拥有!05纯度测定药物发现的最后一步,类似于最终巧克力产品的分析,涉及严格的质量控制。分析化合物纯度的一种方法是确定目标化合物的熔点。有些熔点体系甚至符合《药典》要求。▲ 兼容熔/沸点检测自动装样器最后,在开发过程中,将目标化合物融入一个配方当中又不失其药理作用或掩盖不必要的特性可能是具有挑战性的。优化配方的一种方法是通过喷雾干燥或胶囊封装来尝试预配方。这些技术可以产生各种材料制成的干颗粒、微胶囊、湿珠和核壳胶囊,有助于提高最终配方的性能。同样的,新化合物的研究与发现与药物开发流程是几乎相同的步骤。您有没有发现,其实在整个药物开发/新化合物发现研究的过程当中,Buchi公司的设备都伴随在其中,这也是我们的初衷:希望Buchi产品能帮助到您实验的每一步!所以说,药物研发也好,天然产物也罢,设备整体解决方案?真不是吹,我们是真的有!好啦,我是“小步”同学,我们下期再见!
  • 用于糖尿病药物发现的悬滴器官芯片,在一滴悬着的水里养个小器官
    用于糖尿病药物发现的悬滴器官芯片,在一滴悬着的水里养个小器官我们知道,器官芯片(Organ-on-Chips, OOC)一般是多层或者多个腔室的结构,例如皮肤芯片、肺芯片。但这次要和你分享的是一种悬滴式的器官芯片,也就是把微组织放在一滴悬着的培养液里培养,这滴培养液可以晃来晃去,但又不会掉下来,也就是你看到的封面图那样,看起来就像是在一滴悬着的水里养了个小器官。左图是胰岛微组织,右图是在悬滴器官芯片里培养微组织的示意图。这可不是什么不靠谱的设计,这项研究由苏黎世联邦理工学院的帕特里克博士(Dr. Patrick Misun)和瑞士InSphero公司布尔卡克博士(Dr. Burcak Yesildag)一同完成,文献链接放在了文末。左为帕特里克博士(Dr. Patrick Misun),右为布尔卡克博士(Dr. Burcak Yesildag)。这个芯片设计简单但很独特,你看下图,它就一个入口一个出口,再加一个半球形的培养区,芯片底部那滴培养液直接正对着显微镜——这根本就不是在一个密闭腔室里面做实验,是一个十分大胆但又很有创意的设计,它看起来好像不稳定,但这种设计又打破现有芯片设计壁垒,谁说芯片一定要设计成密封好的样子?悬滴器官芯片图示,研究人员使用此芯片能让微组织持续保持在悬滴中。帕特里克说,在这种悬滴里做微组织的药物测试,已经被证实是绝对可靠的,并且是可重复的。在他们的实验里,胰腺微组织会“跑”到那滴培养液和空气的交界处,这时往芯片里灌注少量液体,为微组织提供营养的同时,也将其暴露于药物环境中,然后用处于胰腺微组织正下方的显微镜记录数据。咱再来看看实验数据。当胰腺微组织刚开始暴露在高浓度葡萄糖环境中时,胰岛素的分泌会出现一次爆发性增长,然后在之后的几分钟,分泌的胰岛素会稍降低一些,处于一个持续震荡的状态。这和咱们正常人的调节机制是一致的,而糖尿病患者的这些反应机制是受损的。胰岛微组织在不同血糖浓度下的胰岛素分泌情况,先出现一次爆发增长,随后处于震荡状态。现在利用这个悬滴器官芯片平台,可以在高时间分辨率下观察到这些反应细节,这非常有利于研究糖尿病背后的潜在生物学机制。这分辨率有多高呢?帕特里克说,到目前,他们的平台提供了前所未有的高时间分辨率(2020年)。帕特里克:悬滴已被证明为微组织药物测试提供了绝对可靠和可重复的环境。我们将单个微组织放置在单个液滴中,它们在液滴底部的水-空气界面处沉淀(见图 2)。我们直接通过这些悬滴灌注少量液体,为组织提供营养并将其暴露于药物中。与封闭室中的流动相比,悬滴内的流动液体具有独特的流动模式。我们利用这种特定的流动模式来获得高时间分辨率的分泌曲线。你可能有疑问,他们用的微组织从哪来的?是否能反应人体真实情况呢?事实上,他们使用了真正的胰腺微组织。InSphero公司的布尔卡克博士(Dr. Burcak Yesildag),专门负责从供体器官中制备胰腺微组织,分离胰岛(是分泌激素的微器官,比如胰岛素),并把它们拆分为不同大小和成分的胰岛,再重新组装成标准化3D微组织,这样就保留了胰岛微组织对各种刺激的自然反应,从而保证获得真正有生理意义和可重复的数据。帕特里克说,这些微组织样本越规则,实验结果可重复性就越高。这个研究公开后,很快就有人就关心“能否商用”的话题。布尔卡克回答,这个平台很容易和InSphero其他项目达成合作。帕特里克也表示,现在做的虽只是一个平台原型,但已经实现对单个胰岛的高灵敏测量。不管是学术交流还是工业合作,他们都十分愿意一同优化现有平台,希望这项技术进展能帮助糖尿病研究人员找到新药,并更深入地了解胰岛生物学。下一步研究,帕特里克他们暂定了两个目标:一个是提高实验吞吐量,这也是复合测试(Compound testing)的关键要求之一;另一个是降低实验复杂度,让更多人实验人员也能完成此项实验。测试平台,该平台将帮助糖尿病研究人员找到新药并更深入地了解潜在的生物学机制。带有悬滴的器官芯片平台图示模型图——该芯片使研究人员能够将样本组织保持在悬滴中。您在芯片上使用人体细胞?帕特里克:没错。我们建立了在尽可能类似于活体器官的条件下在体外测试药物的平台。我们的目标是获得生理上有意义和可重复的数据。在这种特殊情况下,我们研究了胰腺微组织随时间的胰岛素分泌。对人体胰岛组织和悬滴内的组织进行采样图 2(左)人类胰岛组织样本。(右)悬滴内的组织。营养物质和药物顺利通过悬滴。样本组织来自哪里?Patrick: 这是我在 InSphero 的同事 Burcak 的问题。对于这个项目,我们进行了出色的合作,其中苏黎世联邦理工学院负责芯片上器官测试的工程部分,InSphero 负责制备微组织。Burcak:确实,我们的互补技能会派上用场。在 InSphero,我们从供体器官制备胰腺微组织。我们获得了分离的人类供体胰岛,它们是胰腺中分泌激素(如胰岛素)的微器官,可调节我们体内的血糖水平。我们拆解不同大小和成分的胰岛,并将它们重新组装成标准化的 3D 微组织。样本组织越规则,这些组织的实验结果就越具有可重复性。这些制造的微组织仍然是天然的吗?布尔卡克:我们的胰腺微组织密切模仿原始人类胰岛的结构,并保持其对各种刺激的自然反应。当暴露于高浓度的葡萄糖时,它们会显示出胰岛素分泌的第一次瞬时爆发。几分钟后,随之而来的是强度稍低但持续良好的胰岛素振荡释放(见图 3)。在糖尿病的情况下,这些反应受损,并且有多种策略旨在恢复健康的胰岛素分泌。研究人员希望以高时间分辨率观察这些细节,以便他们能够更好地了解糖尿病的潜在机制并开发用于治疗的化合物。据我们所知,功能强大的胰岛微组织与 Patrick 的悬滴平台相结合,提供了前所未有的时间分辨率。图表显示随时间推移的胰岛素分泌和相应的葡萄糖水平图 3 微组织在暴露于升高的血糖水平时分泌胰岛素。胰岛素分泌遵循一个非常典型的模式:第一次爆发,然后是脉动的第二阶段。最后一个问题:器官芯片平台是否可以商用?Burcak:微组织很容易用于与 InSphero 的合作项目。帕特里克:目前我们有工作平台原型,我们愿意与学术和工业合作伙伴合作以优化我们的平台。我们的原型使我们能够对单个胰岛进行非常灵敏的测量。我们希望这项技术进步将帮助糖尿病研究人员找到新药并更深入地了解胰岛生物学。在下一步中,我们希望提高实验吞吐量,因为这是复合测试的关键要求之一。此外,我们正在进一步降低操作复杂性,目标是使该系统可供不同实验室的研究人员使用。文献链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/adbi.201900291
  • 2018年上海药物所吴蓓丽连发3篇高水平文章(总影响因子90多)为靶向NPY受体的药物发现提供新思路
    p   2018年5月28日, strong span style=" color: rgb(31, 73, 125) " 中科院上海药物研究所吴蓓丽课题组与中科院生物物理研究所的研究人员合作在Nature Structural & amp Molecular Biology上在线发表了题为“Structural basis for signal recognition and transduction by platelet-activating-factor receptor”的研究论文。 /span /strong 这是继2018年1月5日吴蓓丽研究组在Nature报告与胰高血糖素类似物和部分激动剂NNC1702复合的全长人胰高血糖素受体(GCGR)的3.0Å 分辨率晶体结构和2018年4月19日在Nature发表题为“Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor”的研究论文, strong span style=" color: rgb(31, 73, 125) " 报告了2.7和3.0Å 分辨率结合两种选择性拮抗剂UR-MK299和BMS-193885的人Y1R的晶体结构 /span /strong 。并且首次,确定其N端与受体相互作用。对Y1R的这些基于结构的见解,可以实现靶向NPY受体的药物发现的又一重磅研究成果。 /p p    strong span style=" color: rgb(31, 73, 125) " 1Nature子刊:血小板活化因子受体识别和转导信号的结构基础 /span /strong /p p style=" text-align: center " img title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/bf8ea427-658e-4ba7-a8be-0ce3466f51d9.jpg" / /p p   血小板活化因子受体(PAFR)对血小板活化因子(PAF)有反应,PAF是细胞间通讯的磷脂介质,表现出不同的生理效应。 PAFR被认为是治疗哮喘,炎症和心血管疾病的重要药物靶标。在这里,研究人员报告了分别与拮抗剂SR 27417和反向活化剂ABT-491在2.8Å 和2.9Å 分辨率下复合的人PAFR的晶体结构。由PAF的分子对接支持的结构提供对PAFR的信号识别机制的见解。 PAFR-SR 27417结构揭示了一种不寻常的构象,显示螺旋II和IV的细胞内尖端分别向外移动13Å 和4Å ,螺旋VIII采用向内构象。 PAFR结构与单分子FRET和基于细胞的功能测定相结合,表明螺旋束中的构象变化是配体依赖性的,并且在PAFR激活中起关键作用,因此极大地扩展了G蛋白偶联信号的知识受体。 /p p   原文链接:https://www.nature.com/articles/s41594-018-0068-y /p p    strong span style=" color: rgb(31, 73, 125) " 2Nature:2018年第一弹,中科院药物所吴蓓丽等研究组揭示GPCR复合物结构(糖原受体) /span /strong /p p style=" text-align: center " img title=" 2.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/89bf1c1d-b8bb-4254-8306-136cbe73dc94.jpg" / /p p    strong span style=" color: rgb(31, 73, 125) " 吴蓓丽研究组报告与胰高血糖素类似物和部分激动剂NNC1702复合的全长人胰高血糖素受体(GCGR)的3.0Å 分辨率晶体结构。 /span /strong 该结构提供了GCGR与肽配体之间相互作用的分子细节。吴蓓丽研究组进一步提出了GCGR激活的双结合位点触发模型,其需要茎,第一细胞外环和TMD的构象变化,这扩展了我们对先前建立的B类GPCR的双结构域肽结合模型的理解。 /p p   近日,中国科学院上海药物研究所在B型G蛋白偶联受体(G protein-coupled receptor, GPCR)结构与功能研究方面取得又一项重要进展: strong span style=" color: rgb(31, 73, 125) " 首次测定了胰高血糖素受体(Glucagon receptor, GCGR)全长蛋白与多肽配体复合物的三维结构,揭示了该受体对细胞信号分子的特异性识别及其活化调控机制。 /span /strong 这项成果有助于深入理解B型GPCR发挥生理效应的结构生物学基础,加快2型糖尿病治疗新药的开发。相关研究论文于北京时间2018年1月4日在国际顶级学术期刊《自然》(Nature)上发表,通讯作者为吴蓓丽研究员和赵强研究员。 /p p   GPCR是人体内最大的膜受体蛋白家族,在细胞信号转导中发挥重要作用。GPCR与人体疾病关系密切,目前有40%以上的上市药物以GPCR为靶点。根据其相似性,GPCR可分为A、B、C和F等四种类型。B型GPCR包括GCGR等多种重要的受体蛋白,识别并结合多肽类激素,对于维持体内激素平衡至关重要。这类受体包含胞外结构域和跨膜结构域,两者共同参与识别细胞信号。由于获得稳定和完整的B型GPCR蛋白(尤其是B型GPCR与多肽配体结合的复合物)难度极大,其结构研究极具挑战性。 /p p   GCGR参与调节体内血糖稳态,是治疗2型糖尿病药物的重要靶点,其结构信息的缺失不仅严重制约了对该受体信号识别和转导机制的认识,也极大地影响了靶向GCGR的药物研发?目前尚无上市药物。2017年,由中国科学院上海药物研究所吴蓓丽、王明伟和蒋华良分别领衔的三个研究组合作解析了全长GCGR蛋白同时与一种小分子变构调节剂(NNC0640)和拮抗性抗体(mAb1)抗原结合片段结合的复合物晶体结构,首次在较高分辨率水平为人们呈现了全长B型GPCR蛋白的三维结构,并揭示该受体不同结构域对其活化的协作调控机制,迈出了阐明B型GPCR信号转导机制的关键一步。 /p p   尔后, strong span style=" color: rgb(31, 73, 125) " 中国科学院上海药物研究所的相关科研团队再次联合攻关,成功解析了全长GCGR与胰高血糖素类似物NNC1702结合的复合物晶体结构,从而揭示了B型GPCR与多肽配体结合的精细模式。 /span /strong 该项目负责人吴蓓丽研究员表示:“这项成果是我们针对B型GPCR开展结构与功能研究的又一重要进展。GCGR与多肽配体相互作用模式的阐明不仅有助于深入理解B型GPCR对细胞信号分子的识别机制,并且为靶向GCGR的药物设计提供了迄今为止精度最高的结构模版,将在很大程度上促进治疗2型糖尿病的新药的研发”。 /p p   该团队成员在以往的研究中发现,GCGR连接胞外结构域和跨膜结构域的肽段通过与受体蛋白其他区域的相互作用在受体活化调控中扮演关键角色。分析GCGR与多肽配体NNC1702结合的复合物结构,并与以往解析的全长GCGR结构进行比较,他们进一步发现该连接肽段在受体结合多肽配体时发生了显著的构象变化,其二级结构由β折叠转变为α螺旋,并伴随结构的迁移,使受体的两个结构域之间的相对取向发生了巨大变化,从而促进受体与多肽配体的紧密结合,导致受体激活。此外,该连接肽通过与多肽配体中段区域的相互作用对受体跨膜结构域的构象进行精细调节,进而调控受体活化。该论文的共同通讯作者赵强研究员说:“这一发现着实令人惊叹,虽然只含12个氨基酸,但这个连接肽却发挥着如此重要的作用,这在过去的GPCR结构研究中从未被发现过,使我们对B型GPCR的信号调控机制有了更为深入的认识”。 /p p   基于GCGR与NNC1702结合的复合物结构,该团队还运用受体?配体竞争结合、计算机模拟和双电子共振等多种技术手段开展了一系列功能性研究,阐明了GCGR在不同功能状态下构象的动态变化,并对受体活化的调控机制进行了深入的探究。这项研究得到上海药物研究所、复旦大学和上海科技大学等多个研究组的大力支持。项目的主要合作者之一、上海药物研究所所长蒋华良院士强调:“这不仅是上海药物所GPCR研究团队取得的又一项重大研究成果,也标志着一个GPCR研究高地已在上海科创中心建设的核心区——张江高科技园区崛起”。 /p p   研究论文的第一作者是研究生张浩楠,该项目的主要合作者还有中国科学院上海药物研究所王明伟研究员、杨德华研究员,上海科技大学iHuman研究所Raymond Stevens教授,丹麦诺和诺德公司Steffen Reedtz-Runge博士,加拿大多伦多大学Oliver Ernst教授,美国GPCR研究联盟Michael Hanson博士,郑州大学杨琳琳博士以及华东师范大学阳怀宇教授等。中国科学院、国家自然科学基金委员会、上海市科学与技术发展基金和上海市教育委员会等部门资助了这项研究。 /p p style=" text-align: center " img title=" 3.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/666c231c-94ff-404e-b55a-21bdda1b803e.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(31, 73, 125) " 全长GCGR结构示意图 /span /strong :GCGR参与调节体内血糖稳态,是治疗2型糖尿病药物的重要靶点。 /p p style=" text-align: center " 左图为全长GCGR蛋白与小分子变构调节剂NNC0640以及拮抗性抗体mAb1结合的复合物晶体结构 /p p style=" text-align: center " 右图为全长GCGR蛋白与多肽配体NNC1702结合的复合物晶体结构。 /p p style=" text-align: center " 两个结构以飘带图和表面图表示,GCGR的跨膜结构域为蓝色,胞外结构域为橙色,连接肽为绿色,第一个胞外环区为紫红色,NNC1702为红色(右图),NNC0640为黄色(左图),抗体mAb1为蓝绿色(左图)。细胞膜以灰色区域表示 /p p    strong span style=" color: rgb(31, 73, 125) " 3Nature:厉害了,2018年上海药物所吴蓓丽研究组再次发表重磅研究成果 /span /strong /p p style=" text-align: center " img title=" 4.jpg" src=" http://img1.17img.cn/17img/images/201805/insimg/b7ee28c2-3ed2-44b5-baa2-ac490b0f1a3f.jpg" / /p p   2018年4月19日,上海药物所吴蓓丽研究组,德国雷根斯堡大学Keller研究组,莱比锡大学Beck-Sickinger研究组合作在Nature发表题为 strong span style=" color: rgb(31, 73, 125) " “Structural basis of ligand binding modes at the neuropeptide Y Y1 receptor”的研究论文 /span /strong ,该论文报告 span style=" color: rgb(31, 73, 125) " strong 分别以2.7和3.0Å 分辨率结合两种选择性拮抗剂UR-MK299和BMS-193885的人Y1R的晶体结构 /strong /span 。结合诱变研究的结构揭示了Y1R与几种结构不同的拮抗剂的结合模式以及配体选择性的决定因素。 Y1R结构和内源性激动剂NPY的分子对接,以及核磁共振,光交联和功能研究,为激动剂的结合行为提供了深入的见解,并且首次,根据上海药物所吴蓓丽等研究组的知识,确定其N端与受体相互作用。 strong span style=" color: rgb(31, 73, 125) " 对Y1R的这些基于结构的见解,可以实现靶向NPY受体的药物发现。 /span /strong 这是继2018年1月5日吴蓓丽研究组在Nature报告与胰高血糖素类似物和部分激动剂NNC1702复合的全长人胰高血糖素受体(GCGR)的3.0Å 分辨率晶体结构的又一重磅研究成果。 /p p   神经肽Y(NPY)受体属于G蛋白偶联受体超家族,在食物摄入,焦虑和癌症生物学中具有重要作用。 NPY-Y受体系统已经成为具有三种肽配体(NPY,肽YY和胰多肽)与大多数哺乳动物中的四种受体结合的最复杂网络之一,即具有不同亲和力的Y1,Y2,Y4和Y5受体和选择性。 NPY是最强大的食物摄入兴奋剂,这种作用主要由Y1受体(Y1R)介导。许多肽和小分子化合物已被定性为Y1R拮抗剂,并且在治疗肥胖,肿瘤和骨丢失方面显示出临床潜力。然而,它们的临床使用受低效力和选择性,脑穿透能力差或口服生物利用度不足妨碍。 /p p   在这里,上海药物所吴蓓丽等研究组报告分别以2.7和3.0Å 分辨率结合两种选择性拮抗剂UR-MK299和BMS-193885的人Y1R的晶体结构。结合诱变研究的结构揭示了Y1R与几种结构不同的拮抗剂的结合模式以及配体选择性的决定因素。 Y1R结构和内源性激动剂NPY的分子对接,以及核磁共振,光交联和功能研究,为激动剂的结合行为提供了深入的见解,并且首次,根据上海药物所吴蓓丽等研究组的知识,确定其N端与受体相互作用。 strong span style=" color: rgb(31, 73, 125) " 对Y1R的这些基于结构的见解,可以实现靶向NPY受体的药物发现。 /span /strong /p
  • 第七届P4议程首发!突破肿瘤领域:精准早筛、诊断与药物发现
    第七届P4议程首发!突破肿瘤领域:精准早筛、诊断与药物发现  P4 2023 第七届国际肿瘤精准医疗大会将于12月7-8日在北京重新蓄势起航,60余位院士/监管/临床医生/科研权威专家与精准药企/诊断企业KOL领衔出席,1000余位精准医疗领域行业精英代表齐聚现场。大会将深度探讨行业痛点与年度热门议题,与行业专家共探肿瘤精准医疗最新法规、早筛/诊断技术革新与商业化路径、免疫疗法/靶向药物精准开发、临床精准用药/诊疗之路!  限时粉丝福利!  本媒体作为P4 2023第七届国际肿瘤精准医疗大会官方合作媒体,为粉丝朋友们申请到10张免费参会票,仅限肿瘤诊断企业及药物企业,转发本篇推文至朋友圈或2个肿瘤精准医疗相关社群,【将转发截图上传至报名链接中】,即可获得免费票!  扫描下方二维码点击“立即报名”即可报名免费票  记得上传转发截图哦!  * 该门票为全场通票,仅限官方合作媒体粉丝中的肿瘤诊断企业及药物企业使用,不含会议资料和自助午餐,VIP参会票(双11特惠2人减1111元)欢迎联系组委:13122785593(同微信)。  01重磅嘉宾阵容持续加码!  * 更多重磅监管、临床PI、科研转化及产业大咖阵容持续更新中!议程详情,欢迎咨询13122785593(同微信)02P4 2023议程重磅揭晓!  *以上更新截止至11月6日,最终议程以现场为准!实时嘉宾阵容与议程信息欢迎联系组委:131 2278 5593(同微信)  感谢以下赞助商对本届大会的大力支持!  感谢以下媒体对本届大会的大力支持!     限时粉丝福利!  本媒体作为P4 2023第七届国际肿瘤精准医疗大会官方合作媒体,为粉丝朋友们申请到10张免费参会票,仅限肿瘤诊断企业及药物企业,转发本篇推文至朋友圈或2个肿瘤精准医疗相关社群,【将转发截图上传至报名链接中】,即可获得免费票!  扫描下方二维码点击“立即报名”即可报名免费票  记得上传转发截图哦!  * 该门票为全场通票,仅限官方合作媒体粉丝中的肿瘤诊断企业及药物企业使用,不含会议资料和自助午餐,VIP参会票(双11特惠2人减1111元)欢迎联系组委:13122785593(同微信)。  P4 2023赞助机会即将售罄!  论坛开放特装展位,主题演讲、卫星会、晚宴赞助,插页广告,吊绳&名卡、手提袋、瓶装水、椅套广告等多种形式、全方位供您展示肿瘤精准“诊+疗”产品与技术!  详情欢迎咨询:180 1793 9885(同微信)  点击图片了解岗位详情  赞助/演讲详情欢迎联系组委会:  电话:180 1793 9885(同微信)  邮箱:p4china@bmapglobal.com  媒体合作详情欢迎联系组委会:  电话:131 2278 5593(同微信)  邮箱:p4china@bmapglobal.com  网站:www.bmapglobal.com/p4china2023
  • Molecular Devices 2016第二届高通量药物筛选与发现研讨会圆满闭幕
    2016年10月20日,由Molecular Devices(美谷分子,简称MD公司)举办的第二届高通量药物筛选与发现研讨会在北京举办。来自全国各地科研院所、制药企业的150余名客户参加了研讨会。 会议现场 研讨会伊始,首先由MD公司全球副总裁、大中华区总经理江滔先生致开幕辞。 江滔先生介绍道,Molecular Devices(美谷分子)创立于上世纪80年代美国硅谷,长期为生命科学研究及药物研发提供相关解决方案。主要产品覆盖微孔板检测分析、高通量筛选、高内涵成像、高效克隆筛选等。 目前,MD公司是丹纳赫集团一员,与Leica、Sciex、Beckman Coulter及PALL等公司同属丹纳赫生命科学部。2005年,MD公司在上海设立了第一个中国代表处,之后于2012年在国内正式成立商务公司,即美谷分子仪器(上海)有限公司。 报告人:杨建国博士 桉璐生物技术(上海)有限公司首席执行官报告题目:ClonePix在高产细胞株筛选中的方法发展 报告人:黄长江博士 烟台迈百瑞国际生物医药有限公司高级副总裁报告题目:抗体药物偶联物的分子设计与偶联工艺 报告人:周景文博士 江南大学生物工程学院教授报告题目:工业生物技术中的高通量筛选策略 报告人:连忠辉 北京亦庄国际生物医药投资管理有限公司副总工程师报告题目:高通量细胞筛选服务平台的建立与应用 报告人:顾津明博士 上海恒瑞医药有限公司生物医药研发部执行总监报告题目:在中国建立世界一流的抗体发现平台 报告人:杨巍博士 诺和诺德(中国)研究发展中心生物制药研究部分子生物学部门总监报告题目:高通量克隆和筛选技术在蛋白药物研发中的应用 报告人:何柯博士 上海恒瑞医药有限公司研究员报告题目:基于高通量筛选技术的单克隆细胞株开发策略 报告人:Steve Wiltgen博士 MD公司全球产品经理报告题目:使用ClonePix和其他自动化方法加速抗体药物发现进展研讨会现场座无虚席,气氛非常热烈,每位报告人都为现场参会者耐心解答了各类问题,会议间歇期间,与会者还积极地互相交流了关于实验以及产品使用的相关问题。现场答疑茶歇交流
  • 珀金埃尔默加入埃森哲生命科学生态系统 推动药物发现与科研创新
    致力于以创新技术打造更健康世界的全球技术领导企业珀金埃尔默,日前在2019生物-IT世界研讨与展览会上宣布正式加入埃森哲的开放式合作伙伴生态系统,该生态系统旨在促进解决方案提供商、软件供应商和生命科学企业之间更高效的合作,以加快药物发现,改善患者健康。 该生态系统是埃森哲基于云技术的信息研究平台不可分割的一部分,专注于提高药物开发过程的生产力和效率,推进创新。埃森哲目前正与包括珀金埃尔默在内的多家组织以及独立软件供应商合作,将其技术和内容集成到埃森哲研究平台中。 加入该生命科学生态系统与珀金埃尔默致力于提供先进的信息解决方案战略高度一致。珀金埃尔默旨在通过先进的信息解决方案,帮助研究人员在数量、类型和复杂程度不断增加的科学大数据中更快速、更轻松地聚焦关键性发现。 珀金埃尔默正努力使其信息解决方案与埃森哲的综合生态系统相兼容,并将首先从以下三方面入手:电子实验室记录本,应用于高效的实验数据整理与共享;TIBCO® Spotfire® 软件,应用于研究和临床分析的数据可视化;ChemDraw® 软件,基于化学分析和工作流的领先应用程序。此外,为先导物发现和转化医学等研究提供先进分析的珀金埃尔默Signals™ 解决方案,也计划在未来进入埃森哲生态系统平台中。 珀金埃尔默Informatics部门总经理David Wang说:“当今,制药公司面临着庞大的、相互隔离的数据,这些数据很难获取,维护成本高,如果没有高效的处理手段,我们很可能会与那些能够推动新疗法的真知失之交臂。一些高瞻远瞩的生命科学组织正在以数字化和大数据集成的方式,去重构、简化和提高其研究能力。这些是实验室信息化技术所能做到的,我们很高兴成为目前加入埃森哲生态系统中最大的仪器和信息学解决方案提供商。” 埃森哲生命科学业务的总经理Joe Donahue说:“珀金埃尔默是一家领先的实验室仪器和信息学解决方案供应商,我们欢迎珀金埃尔默加入埃森哲的开放式合作伙伴生态系统,将他们的能力整合到我们基于云计算的研发平台中,为客户带来裨益。我们期待与珀金埃尔默合作,帮助我们共同的客户从数据中汲取洞察,推动科学发现,最终为患者带来福音。” 关于珀金埃尔默珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。欲了解更多,请访问www.perkinelmer.com.cn
  • 北京市科委、清华大学、赛默飞三方共建“冷冻电镜与药物发现创新中心”
    p   近日,北京市科学技术委员会与清华大学、美国赛默飞世尔科技公司在生命科学领域达成战略合作共识,三方将共建“冷冻电镜与药物发现创新中心”(Global Innovation Institute of Cryo-EM for Drug Discovery, CDD)。该中心将建设成为一个开放式服务平台,重点研究运用冷冻电镜、高性能计算、虚拟现实、人工智能等技术,构建全球领先的蛋白质结构检测、分析和合作研究创新平台,为创新药物研发提供研究支撑。 /p p   此次三方建立合作,正值美国商务部代表团随美国总统特朗普访华之际,具有非同寻常的意义。共建三方将依托各方优势资源,为北京乃至全国生命科学创新发展提供源源不断的动力,助力北京全国科技创新中心建设,提升北京生命科学领域技术创新水平和全球国际影响力。 /p p    strong 合作方简介 /strong /p p   清华大学是中国最早开展生命科学教育与研究的高校,先后建设了国家蛋白质科学基础设施、结构生物学高精尖中心等一批高水平生物学研究平台,在结构生物学研究方面处于世界领先水平。2005年在市科委的支持下,清华大学与赛默飞世尔公司共建“清华大学-赛默飞世尔科技联合分析实验室”。 /p p   赛默飞世尔科技公司:科学服务领域的全球领导者,是全球最大的生命科学实验仪器制造商和科研服务提供商,进入中国发展已有30多年。公司在结构生物学与蛋白质分析领域的仪器设备研发与生产处于全球领先地位。 /p p   10月4日,瑞典皇家学院宣布将2017年诺贝尔化学奖授予了对冷冻电镜技术有着突出贡献的三位科学家——瑞士洛桑大学生物物理学荣誉教授Jacques Dubochet、哥伦比亚大学教授Joachim Frank以及英国MRC分子生物学实验室项目主任Richard Henderson。 /p
  • CPSA上海2010之讨论主题:药物发现阶段的ADME数据整合
    仪器信息网讯 2010年4月7日-9日,第一届化学和药物结构分析上海研讨会(CPSA Shanghai 2010,the 1st Annual Shanghai Symposium on Chemical and Pharmaceutical Structure Analysis)在上海锦江饭店顺利举行;来自国内外的100多位学者和专家到会;仪器信息网作为特邀媒体参加了此次研讨会。   一年一度的CPSA会议起始于1998年,通过制药工业有关问题的公开讨论,对其创新技术与工业实践进行回顾,分享他们各自的高新技术实践经验以及对当前学术发展前景的看法。本届上海研讨会主题为“分析性能研究进展:创新应用和新型工作流程”。   【讨论主题:药物发现阶段的ADME数据整合】 Frank Lee博士 Haojing Rong博士 Jeff Zhang博士   相关主题报告:   The use of ADME/PK information in Lead Optimization and Drug Candidate Selection   主讲人:Frank Lee博士(Millennium Pharmaceuticals)   When ADME Meets Potency – It’s All About the Dose   主讲人:Haojing Rong博士(辉瑞Pfizer)   Strategies and Experiences in DMPK Support of Drug Discovery and China R&D Center   主讲人:Jeff Zhang博士(诺华Novartis)   相关观点/见解:   (1)以药代动力学(PK)为基础的临床试验失败已经明显地减少了;药物相互作用(DDI)是难于避免的,但可以被控制;   (2)把药效和毒理信息成功地从动物转移到人类仍然是很大的挑战,需要更多人体细胞试管内培养和组织测试,以支持候选药物的选择将是未来的发展趋势;   (3)DMPK(药物代谢及动力学)的评价具有对候选药物选择阶段的药物发现具有很大影响;   (4)对DMPK(药物代谢及动力学)的支持,需要内部和外部资源的平衡;尤其是对一个新成立的研发机构来说,这种平衡更为重要;   (5)如果当前的经济增长趋势持续下去,在未来,中国可能成为全球主要的创新药物研发中心之一。
  • 中科院上海药物所合作发现小分子抑制剂诱导的CDK-Cyclin K变构激活解离新机制
    近日,中国科学院上海药物研究所药物发现与设计中心罗成研究员团队与大连化物所生物技术研究部生物分子结构表征新方法研究组王方军研究员团队合作,通过整合赖氨酸反应性分析质谱(LRP-MS)和非变性质谱(nMS)的结构质谱策略,发现了小分子抑制剂SR-4835诱导细胞周期蛋白依赖性激酶12/13-细胞周期蛋白K复合物(CDK12/CDK13-Cyclin K)变构激活解离的抑制新机制,为CDK12/CDK13小分子抑制剂的理性设计开拓了新思路。2023年5月19日,该工作以“Structural Mass Spectrometry Probes the Inhibitor-Induced Allosteric Activation of CDK12/CDK13-Cyclin K Dissociation”为题,发表在《美国化学会志》(Journal of the American Chemical Society)上。CDK12和CDK13在转录和mRNA加工中发挥重要的调节作用,靶向抑制CDK12和CDK13已在体外模型中被证明是多种癌症治疗的有效手段。但是还没有CDK12/CDK13的小分子抑制剂被批准在临床使用。目前仍然缺乏对小分子抑制动态相互作用分子机制进行高通量表征的方法,极大限制了CDK12/CDK13抑制剂的理性设计和相关药物研发。在本工作中,合作团队发展了整合LRP-MS和nMS的结构质谱策略,系统研究了多种小分子抑制剂调控下CDK12/CDK13-Cyclin K复合物的动态构象变化和整体蛋白组装。研究团队通过前期发展的LRP-MS策略获得了包括抑制剂结合口袋、结合强度、界面分子细节和动态构象变化在内的分子作用结构信息;发现SR-4835能够使CDK12/CDK13-Cyclin K相互作用界面赖氨酸标记反应性(溶剂可及性)显著增大,推测其诱导了CDK12/CDK13-Cyclin K复合物的解离。进一步,利用自主研发的高灵敏度静态电喷雾离子源和nMS分析证明了SR-4835能够有效减弱CDK12/CDK13-Cyclin K的相互作用,并通过免疫共沉淀试验在活体细胞水平进行了验证。相关研究结果展示了LRP-MS整合nMS在分子水平评估和理性设计激酶抑制剂的巨大潜力。 图1.赖氨酸反应性分析质谱研究CDK12/CDK13-Cyclin K变构机制王方军团队致力于发展生物大分子质谱新仪器和新方法,在大连相干光源搭建了高能紫外激光解离—串联质谱仪器,已在蛋白质及其复合物动态结构和相互作用的质谱分析中取得了系列研究进展(J.Am.Chem.Soc.,2023;Cell Chem.Biol.,2022;CCS Chem.,2022;Chem.Sci.,2021)。罗成团队基于药物设计和化学生物学技术,在蛋白质动态调控与创新药物早期发现取得系列研究进展(Nature,2021 Cancer Cell,2023 Nature Communi,2022等)。该工作的共同第一作者为大连化物所1822组联合培养硕士研究生白玉、刘哲益副研究员以及南京中医药大学/上海药物研究所联合培养博士研究生李元卿。该工作的通讯作者为王方军研究员与罗成研究员。项目获得科技部前沿生物重点专项、基金委、中科院和临港实验室等项目的资助。
  • 中科院物理所团队发现小分子药物调控人源电压门控钠离子通道蛋白的结构学基础
    电压门控钠离子通道蛋白在产生和传导动作电位中发挥重要作用。在哺乳动物中,基于组织特异性,至少有9种电压门控钠离子通道异构体,其中命名为“Nav1.3”的电压门控钠离子通道蛋白在中枢神经系统中表达量高。有证据表明Nav1.3蛋白的突变与局灶性癫痫和多微脑回畸形疾病有关,因此Nav1.3蛋白可以作为治疗癫痫药物的靶点。  3月11日,中国科学院物理研究所团队在nature communications杂志上发表了题为“Structural basis for modulation of human Nav1.3 by clinical drug and selective antagonist”的文章,解析了Nav1.3/β1/β2分别与小分子药物乌头碱A和选择性拮抗剂ICA121431结合的冷冻电镜三维结构,揭示了乌头碱A和ICA121431调节Nav1.3的不同机制。  研究表明,Nav1.3蛋白的整体结构与已报道的其他哺乳动物Nav蛋白结构高度相似。调控Nav1.3蛋白功能的β1亚基通过其N端结构域和Nav1.3蛋白相互作用,同时其C端跨模域的螺旋稳定在Nav1.3蛋白第三个结构域上。调控Nav1.3蛋白功能的β2亚基柔性大,整体分辨率较低,但仍能看到其第55位的半胱氨酸与Nav1.3蛋白第911位的半胱氨酸形成了二硫键。小分子药物乌头碱A结合位点位于Nav1.3蛋白第一个结构域与第二个结构域之间,部分阻挡了离子通道。选择性拮抗剂ICA121431结合位点位于Nav1.3蛋白第四个结构域,增强了“异亮氨酸-苯丙氨酸-甲硫氨酸”模体与该模体的受体的结合,将离子通道稳定在失活状态。  该研究解析了不同小分子调节剂与Nav1.3蛋白结合位点的结构,阐明了这些小分子在Nav1.3蛋白上的作用机制,为后续基于结构开发特异性更高的药物提供支撑。  论文链接:https://www.nature.com/articles/s41467-022-28808-5
  • 蛋白质组学药物发现成果|μMap光催化临近标记支持小分子结合位点映射
    大家好,本周为大家分享一篇2023年发表在Journal of the American Chemical Society上的文章,μMap Photoproximity Labeling Enables Small Molecule Binding Site Mapping1。该文章的通讯作者是来自美国普林斯顿大学化学系的David W. C. MacMillan教授。  目前,药物发现主要分为两种方式:基于靶点的药物研发(Target-based drug discovery,TDD)和基于表型的药物筛选(Phenotypic drug discovery, PDD)。表型筛选主要是在细胞或动物水平开展实验,因此蛋白靶点以及蛋白-配体结合模式一开始就是未知的,如何在确定活性分子后快速地找到其作用通路、靶点、结合位点、结合模式(正构/别构)一直以来都是众多研究员所关心的问题。常规的蛋白质组学差异性分析能够帮助我们快速确认作用通路、发现潜在靶点,但却缺少更精细的结构信息。光亲和标记(Photoaffinity Labeling)能够有效地补充这方面的信息,将PAL探针靶向交联至靶蛋白结合口袋,再利用LC-MS去寻找标记位点或肽段,从而提供肽段或残基分辨率的结合位点信息。然而,由于PAL探针与蛋白是按照一定的化学计量比进行结合的,所以产生的标记信号和序列覆盖都非常有限。除此之外,每个PAL探针都有不同的二级碎裂模式,使质谱分析复杂化。基于此,David W. C. MacMillan团队开发了一种稳健且通用的光催化标记方法来定位蛋白结合位点。  如图1B所示,活性分子上连接有具有光催化功能的标签(Catalytic tagging),本文使用的是铱光催化剂。活性分子-铱光催化剂偶联物能够靶向至蛋白的结合口袋,在可见光的照射下,铱通过能量转移的方式催化附近的双吖丙啶探针生成卡宾自由基,卡宾自由基能够与邻近的氨基酸残基发生反应,从而实现结合口袋的邻位标记。值得一提的是,这种独特的μMap光催化临近标记法将靶向定位和邻近标记分配给不同的分子去完成,邻位标记不受限于靶向定位所需要满足的化学计量比的要求,可实现多个邻近位点的标记,具有信号放大的效果。此外,所有活性分子-铱光催化剂偶联物都可以配合使用统一的邻位标记探针,具有一致二级碎裂模式,有助于简化后续LC-MS数据分析。  图1 μMap光催化邻近标记法原理  为了确认该方法的选择性标记能力,作者以牛碳酸酐酶(CA)为例,探究磺胺类抑制剂-铱催化剂偶联物(图2A sulfonamide-Ir (1))能否触发CA上邻近结合位点的选择性标记。将CA与BSA蛋白按照1:1混合,向中加入sulfonamide-Ir,随后加入带有生物素标签的邻位标记探针(图2A Diazirine-PEG3-biotin(2)),根据Western blot的结果可知(图2B),sulfonamide-Ir (1)的加入触发了CA上的选择性标记,相比于未开启光照以及直接加入free-Ir的两组样品,加入sulfonamide-Ir的样品中CA条带明显变深,说明此条件下,CA上有较多的带有生物素标签的标记位点。随后,作者对样品进行柱上酶切,利用LC-MS鉴定标记肽段、定位标记位点(图2C-E)。值得注意的是,为了获得高置信度的标记残基信息,作者将free-Ir设置为对照组,通过统计sulfonamide-Ir组与free-Ir组中同一标记肽段信号强度的倍差变化(fold change)以及显著性差异分析,筛选出最可靠的标记位点。此次实验结果显示,邻近标记位点为Q135和H2,将其映射至CA的晶体结构上可知两个位点距离磺胺类小分子与CA的结合位点分别17和11Å,说明μMap光催化临近标记法在小分子结合位点的鉴定上是准确且可靠的。  图2 μMap光催化邻近标记法用于sulfonamide-CA结合位点的表征。为了展现μMap光催化临近标记法的普适性。作者将该方法应用到了其它一些蛋白-配体复合物模型上,如:(+)-JQ-1与BRD4(图3A)、dasatinib与BTK(图3B)、AT7519与CDK2(图3C)和lenalidomide与CRBN(图3D),以上实验均获得符合预期的结果。此外,作者还将μMap光催化临近标记法应用到了分子胶rapamycin介导的FKBP12-rapamycin-mTOR蛋白复合物结合界面的表征,展现了该方法“穿越空间”的结构表征能力,从蛋白FKBP12与小分子rapamycin互作到小分子rapamycin与蛋白mTOR的互作,描绘了整个结合界面的轮廓(图3E)。  图3 μMap光催化邻近标记法用于A)(+)-JQ-1与BRD4 B)dasatinib与BTK C)AT7519与CDK2 D)lenalidomide与CRBN E)FKBP12-rapamycin-mTOR蛋白复合物结合位点的鉴定。  以上均是在已知结合位点的蛋白-配体模型中开展的方法学验证实验,后续作者还将μMap光催化临近标记法应用到难成药靶点STAT3。MM-206是STAT3的小分子抑制剂,在临床前疾病模型研究中显示出较好的抗STAT3活性,但到目前为止还没有STAT3与MM-206结合的晶体结构报道,也没有关于MM-206与STAT3结合位点的信息。在本文中,μMap光催化临近标记的结果显示MM-206主要是结合在STAT3的CCD结构域上,大致在Q198和V291位点附近,属于一种变构调节剂(图4A-B)。最后,作者进一步探究了μMap光催化临近标记法在活细胞水平上的标记能力。如图C-E,使用μMap光催化临近标记法成功找到了(+)-JQ-1的结合蛋白:BRD2、BRD3及BRD4,并定位到了(+)-JQ-1与BRD4结合位点,大致在V90、K91、W81氨基酸残基附近。  图4 μMap光催化邻近标记法用于A-B)MM-206与难成药靶点STAT3结合位点的鉴定 C-E)组学样品中小分子(+)-JQ-1结合蛋白的鉴定及结合位点的锁定。  总之,本文开发了一种通过标记近端残基来绘制小分子结合位点的通用方法。该方法已被证明适用于一系列小分子配体-蛋白质、多蛋白质复合物和“不可成药”的靶点蛋白的互作表征,从单一蛋白到组学层面均展现出良好的应用前景。  撰稿:刘蕊洁编辑:李惠琳原文:μMap Photoproximity Labeling Enables Small Molecule Binding Site Mapping  参考文献  Huth SW, Oakley JV, Seath CP, et al. μMap Photoproximity Labeling Enables Small Molecule Binding Site Mapping. J Am Chem Soc. 2023 145(30):16289-16296.
  • 中科院上海药物所领衔研发 一天两款抗新冠创新药上市
    1月29日,记者从中国科学院上海药物研究所获悉,该所联合中科院武汉病毒研究所等科研单位与相关医药企业,自主研发的两款抗新型冠状病毒创新药——民得维(氢溴酸氘瑞米德韦片,VV116)、先诺欣,通过了国家药品监督管理局特别审批程序,附条件获批上市。民得维是一种新型口服核苷类抗新型冠状病毒药物,用于治疗轻中度新型冠状病毒感染(COVID-19)的成年患者。这是我国自主研发的靶向新冠病毒RNA依赖的RNA聚合酶(RdRp)的抗新冠病毒口服药物。2019年底新冠疫情爆发后,上海药物所第一时间成立了抗疫联合攻关团队,并与武汉病毒所紧密合作,启动抗疫药物应急研发工作。上海药物所沈敬山、蒋华良团队,与武汉病毒所肖庚富团队、新疆理化所阿吉艾克拜尔艾萨团队合作,快速发现并评价出靶向RdRp的口服核苷类候选化合物VV116。该化合物以核苷三磷酸形式非共价结合到新冠病毒RdRp的活性中心,直接抑制病毒RdRp的活性和干扰RNA的合成,从而阻断病毒的复制,实现抗新冠病毒的作用。临床前研究结果显示,VV116对包括奥密克戎在内的新冠病毒原始株和突变株表现出显著的抗病毒作用。在新冠病毒感染小鼠模型上,VV116可有效清除病毒,同时显著改善肺组织病理变化。多项临床前和临床研究显示,VV116安全有效、用药禁忌少,其获批上市,将有效减轻新冠病毒对人民生命健康的威胁。2021年12月28日VV116在乌兹别克斯坦获批上市,成为全球首个获批可用于重度新冠病毒感染患者治疗的口服抗病毒药物。先诺欣是先诺特韦片与利托那韦片的组合包装药物,用于治疗轻至中度新型冠状病毒感染(COVID-19)成年患者。这是我国首款自主研发的靶向3CL蛋白酶的抗新冠病毒口服药物,与辉瑞Paxlovid靶点一致。据介绍,先诺特韦能抑制新冠病毒复制所必需的3CL蛋白酶,与低剂量利托那韦联用,能减缓先诺特韦在体内的代谢,有助于发挥其抗病毒作用。新冠疫情爆发后,上海药物所第一时间成立了抗疫攻关团队,联合武汉病毒所开展抗新冠病毒感染治疗药物应急研发工作。他们迅速发现并确定出靶向3CL蛋白酶的候选化合物VV934,即先诺特韦。临床前研究结果显示,先诺特韦能选择性抑制新冠病毒3CL蛋白酶;与利托那韦联用,可有效抑制病毒在小鼠肺部和脑部的复制,并显著减轻病毒感染引起的肺组织损伤;在体内外安全性评价试验中,未发现遗传学毒性。2021年11月,上海药物所、武汉病毒所与先声药业达成合作,全速推进先诺特韦的后继研发工作。先诺欣的III期临床试验是国内外第一个针对奥密克戎毒株感染者达成“以咳嗽、鼻塞流涕、咽痛、发热、头痛、肌肉或全身痛等11个症状持续恢复”为主要终点的III期临床试验,共纳入全国20个省市自治区43家临床参研中心1208例受试者。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制