当前位置: 仪器信息网 > 行业主题 > >

性能表征

仪器信息网性能表征专题为您整合性能表征相关的最新文章,在性能表征专题,您不仅可以免费浏览性能表征的资讯, 同时您还可以浏览性能表征的相关资料、解决方案,参与社区性能表征话题讨论。

性能表征相关的资讯

  • 3D打印的基石——粉末材料的性能表征方法
    一、 概述在金属3D打印技术中,粉末材料作为“基石”,很大程度上决定了最终打印成品的质量和性能。金属3D打印技术的未来发展,也与材料本身的性能密切相关,包括材料的粒径、孔隙率、密度、流动性等。金属3D打印大多采用选择性激光烧结(SLS)与选择性激光熔化(SLM)技术,打印过程中均涉及铺粉这一关键步骤,要求形成均匀的粉层,因此需要考察金属粉末的成堆状态和流动性能,这也将影响最终烧结成件的表面粗糙度和抗拉强度等关键性能指标。二、 材料性能评价按照最新国标GB/T 39251-2020《增材制造 金属粉末性能表征方法》的要求,3D打印用金属粉末的粒径、孔隙率、有效密度、振实密度和流动性等特性都需要进行检测。因此,选择最合适的表征方法确定相关参数,并建立金属粉末原料的数据库尤为重要,可为材料研发和生产环节提供指导。金属粉末由于其固有属性,通常粒径较小、孔隙率较低、流动性较好,对表征方法的灵敏度和适用性都提出了一定的要求。本文将针对上述3D打印用金属粉末的关键参数表征技术进行介绍。1. 亚筛分法测量金属颗粒粒径测试原理:利用双压力传感器测量空气通过床层前后的压力变化,通过改变样品高度和孔隙率,同时控制一定流速通过颗粒床层,使用Kozeny-Carman方程确定特征表面积SSA和平均粒径。应用领域:符合ASTM B330-12标准,用于测量金属粉末以及相关化合物的粒径。全自动亚筛分粒径分析仪MIC SAS II(点击图片了解仪器详情)2. 压汞法计算孔隙率测试原理:在精确控制的压力下将汞压入材料的多孔结构中,通过测量不同外压下进入孔隙中汞的量,就可知道相应孔体积的大小。应用领域:孔隙率会显著减低材料的抗压强度与疲劳性能,无法满足材料的正常使用需求。压汞法可用于计算多孔材料或打印产品的总孔体积、孔径分布和孔隙率等参数。AutoPore V系列高性能全自动压汞仪(点击图片了解仪器详情)3. 气体置换法获得有效密度测试原理:使用气体置换法,常用惰性气体如氦气或氮气作为置换介质取代材料的孔隙体积,根据理想气体定律PV=nRT确定样品体积,并结合样品质量算得骨架密度,即有效密度。应用优势:气体置换法测密度比液体浸透法更准确,重复性更好;可测量材料或小型成件的有效密度。全自动气体置换法真密度仪ACCUPYC II 1345(点击图片了解仪器详情)4. 全自动振实密度分析测试原理:使用刚性球状颗粒作为替代介质,紧密裹覆在材料外表面并填充材料间隙,精确测出样品的包裹体积并算得密度。替代介质的颗粒很小,在混合过程中与样品表面紧密贴合,但不会进入样品孔隙。应用优势:与传统的振实密度相比,全自动振实密度分析仪能够更快速、更安静地获取更高重复性的精确结果;可测量材料或小型成件的振实密度。GeoPyc 1365全自动包裹密度分析仪(点击图片了解仪器详情)5. 流动性测试原理:使用独特的技术测量粉体在运动状态下流动的阻力。精密的桨叶旋转向下穿越粉体,建立精确的颗粒相互作用模式,粉体对桨叶所施加的阻力则代表了颗粒间相对运动的难易程度,即粉体的流动性能。同时集成自动化剪切盒,也能够测量密度、可压性和透气性等整体属性。应用优势:符合ASTM D7891标准,用于测量金属粉末的流动性。相比现有技术(霍尔流速计所用漏斗法)更加自动化,该技术灵敏度更高,能够精确表征批次间的微小差异,评价不同供应商和制造方法的影响以及评估原料筛分前后的差异。FT4粉体流变仪(点击图片了解仪器详情)三、 小结通过上述现代化评价手段,有助于优化3D打印用金属粉末的性能,从而实现重复利用;同时可避免因检测技术的不适用性而花费大量金钱和时间,减少成品的不合格率,帮助企业降本增效。作者:麦克默瑞提克(上海)仪器有限公司
  • 国家高性能纤维表征检测(宁波)基地建成
    近日,中国化学纤维工业协会授予中科院宁波材料技术与工程研究所“国家高性能纤维表征检测(宁波)基地”。表明宁波材料所在高性能纤维表征检测方面得到了业界的广泛认可,同时,也将促进中国高性能纤维产业的发展。   高性能纤维(High-Performance Fibers)是指具有高拉伸强度和压缩强度、耐磨擦、高耐破坏力、低比重等优良物性的纤维材料,它是近年来纤维高分子材料领域中发展迅速的一类特种纤维,主要包括碳纤维、超高强聚乙烯纤维、芳香族聚酰胺纤维、玄武岩纤维等。它们通常采用高技术制成,且大多应用于工业、国防、医疗、环境保护和尖端科学各方面。   经过几年的发展,宁波材料所先后置办了热分析仪(DSC、TG)、凝胶色谱仪(GPC)、气相色谱仪(GC)、万能材料试验机、纤维强伸度仪、纤维细度仪和密度梯度管等先进精良仪器,同时结合公共技术服务中心测试中心的大型设备仪器,在高性能纤维的表面微观形貌与结构分析、物性分析、有机和无机成分分析方面形成了比较完善的体系,在纤维检测方面取得了较大的进展,并为国内多家单位提供了测试服务。目前,宁波材料所能够依据实践得出的检测方法来测量高性能纤维的各种性能以及为高性能纤维的质量问题提供解决方案。
  • CCATM'2014之力学性能表征与校准会场
    仪器信息网讯 2014年10月21日上午,由中国工程院、中国合格评定国家认可委员会、中国标准化协会、中国金属学会、国际钢铁工业分析委员会、中国钢研科技集团有限公司主办的&ldquo CCATM&rsquo 2014国际冶金及材料分析测试学术报告会&rdquo 之&ldquo 力学性能表征与校准会场&rdquo 在北京· 国际会议中心顺利举办。   为期半天的会议,7个力学性能测试研究报告,50余位业内专家、学者、技术人员参会&hellip &hellip 这是可以描述本次会议的几个重要特征。 会议现场   会上的7个学术报告分别围绕力学标样、试验方法、材料断裂性能3个方面展开,其中涉及材料断裂性能的报告有4个。另外,钢研纳克检测技术有限公司在本次会议上共计分享了5个报告,贡献最大。 上海宝钢工业技术服务有限公司 李和平 报告题目:无时效力学性能标样的应用   金属室温拉伸、夏比冲击和硬度试验方法是应用最广泛的力学性能试验方法。尽管这些试验设备有静态直接校验计量要求,但为了能可靠评估试验设备测量结果的准确度,还需要采用合适的标样进行间接校验。宝钢检化验中心成功研制的系列无时效力学性能标样,可用于监测力学试验设备整机的长期稳定性,有效保证力学实验结果的可靠性。 钢研纳克检测技术有限公司 李颖 报告题目:浅谈国内外常用冲击试验方法的差异   目前,有些试验方法与国际上使用的试验方法存在很多差异,试验结果缺乏可比性,甚至出现数据相互矛盾的情况,其中冲击试验方法的差异比较突出。在报告中,李颖分别从冲击试验技术要点、冲击试样、冲击试验机的区别,重点阐述了常用冲击试验方法之间的差异,并得出了&ldquo 冲击试验机锤刃的尺寸对冲击试验数据起着关键作用&rdquo 的结论。 钢研纳克检测技术有限公司 郭子骏 报告题目:关于超小负荷下高温持久实验方法的研究   随着近年来金属材料领域的不断研究,各种新型材料逐渐进入人们的视野,针对不同金属材料的性能测试种类繁多,其中就包括超小负荷下高温持久实验。郭子骏通过改变对实验样品施加载荷的方式,减小试验机同轴度及砝码精度对实验数据的影响,从而顺利地在超小负荷下进行了高温持久蠕变实验。 宝钢集团韶关钢铁有限公司质量检测中心 罗新中 报告题目:大规格抗震螺纹钢反弯断裂原因分析 钢研纳克检测技术有限公司 翟战江 报告题目:基于延性断裂中的J-△a阻力曲线评定 钢研纳克检测技术有限公司 刘涛 报告题目:低强度高韧性钢的断裂韧度工程应用问题 钢研纳克检测技术有限公司 王艳峥 报告题目:金属材料平面应变断裂韧度KIc试验方法GB/T 4161-2007与TB/T 3276-2011对KQ有效性判定的对比
  • 碲系化合物半导体靶材制备及镀膜性能表征
    HS-TGA-101热重分析仪(TG、TGA)是在升温、恒温或降温过程中,观察样品的质量随温度或时间的变化,目的是研究材料的热稳定性和组份。广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控.碲系化合物半导体靶材制备及镀膜性能表征【北京有色金属研究总院 潘兴浩】碲系化合物半导体靶材制备及镀膜性能表征上海和晟 HS-TGA-101 热重分析仪
  • 视频回放|“复合材料性能表征与评价”网络研讨会
    p style=" text-align: justify text-indent: 2em " 2020年6月15日,仪器信息网 “复合材料性能表征与评价”网络研讨会成功召开,8位专家围绕复合材料力学与物理性能、损伤与破坏、宏微观多尺度模拟、疲劳特性等方面带来了精彩的报告。 /p table border=" 0" cellspacing=" 0" cellpadding=" 0" style=" border-collapse: collapse " tbody tr class=" firstRow" td width=" 259" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family:宋体" 报告题目 /span /strong /p /td td width=" 276" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p strong span style=" font-family:宋体 color:black" 报告嘉宾 /span /strong /p /td /tr tr td width=" 268" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 聚合物基复合材料疲劳试验方法 /span /p /td td width=" 276" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 陈新文 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 中国航发北京航空材料研究院 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 复合材料力学性能试验解决方案 /span /p /td td width=" 276" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 王斌 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 力试(上海)科学仪器有限公司 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 陶瓷涂层膨胀系数与残余应力测定 /span /p /td td width=" 276" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 包亦望 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 中国建筑材料科学研究总院 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 磁电弹复合材料多物理场耦合光滑有限元计算与表征 /span /p /td td width=" 276" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 周立明 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 吉林大学 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 面向未来——联用技术在材料表征中的应用 /span /p /td td width=" 276" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 刘文广 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 珀金埃尔默企业管理(上海)有限公司 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 湿热环境下复合材料机械连接结构破坏行为 /span /p /td td width=" 276" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 程小全 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 北京航空航天大学 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 特种复合材料的研究 /span /p /td td width=" 276" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 黄培 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 重庆大学 /span span style=" color:black" ) /span /p /td /tr tr td width=" 268" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 基于分级测试数据校验的大型复合材料结构失效行为的预测方法 /span /p /td td width=" 276" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 白瑞祥 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 大连理工大学 /span span style=" color:black" ) /span /p /td /tr /tbody /table p style=" text-indent: 2em " 为方便更多复合材料领域的用户学习了解相关技术内容,现特将会议内容剪辑整理,点击报告题目即可进入视频回放页面。 /p p style=" text-indent: 0em text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/c14a4f27-97a1-4dbf-aaa9-5c341bf5dc1f.jpg" title=" 程小全.jpg" alt=" 程小全.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告嘉宾:程小全((北京航空航天大学教授) /strong /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/webinar/video_112798.html" target=" _self" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline color: rgb(0, 112, 192) " 《湿热环境下复合材料机械连接结构的破坏行为》 /span /a /strong /span /p p style=" text-align: justify text-indent: 2em " 由于设计及使用维护的限制,机械连接成为复合材料结构中不可缺少的关键环节。随着多功能、多用途飞行器的发展,对复合材料机械连接结构在复杂环境中的承载能力提出新的要求,其中吸湿和高温环境的影响最为显著。湿热环境对复合材料机械连接结构机械性能的必须加以关注。本报告将介绍碳纤维复合材料连接结构在常温干态、常温湿态、高温干态和高温湿态等四种环境条件下的拉伸挤压力学特性,通过试验和数值模拟方法给出了单钉双搭、单搭连接结构的拉伸破坏行为和损伤机理,分析了湿热环境对复合材料机械连接结构性能的影响。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/ded99010-1d56-4c12-b44c-032a665d0d09.jpg" title=" 陈新文.jpg" alt=" 陈新文.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告嘉宾:陈新文(中国航发北京航空材料研究院高级工程师) /strong /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/webinar/video_112794.html" target=" _self" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline color: rgb(0, 112, 192) " 《聚合物基复合材料疲劳试验方法》 /span /a /strong /span /p p style=" text-align: justify text-indent: 2em " 概述了开展复合材料疲劳试验的目的,从疲劳S-N曲线、条件疲劳极限、试验频率、迟滞效应、刚度变化和失效模式几个方面阐述了聚合物基复合材料的疲劳行为,比较分析了国内外聚合物基复合材料疲劳标准试验方法,指出了每个标准试验方法存在的技术缺陷,最后给出了疲劳试验方法改进的方向。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/761494d8-b830-453d-8701-3bd77fb82a57.jpg" title=" 包亦望.jpg" alt=" 包亦望.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告嘉宾:包亦望((中国建筑材料科学研究总院高级工程师) /strong /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/webinar/video_112796.html" target=" _self" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline color: rgb(0, 112, 192) " 《陶瓷涂层膨胀系数与残余应力测定及其设备》 /span /a /strong /span /p p style=" text-align: justify text-indent: 2em " 从四个方面进行讲述:(1)研究背景;(2)传统Stoney法分析残余应力;(3)同温涂层残余应力分析与计算;(4)涂层膨胀系数与残余应力测试仪。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/83670c96-b56a-4b42-8cc9-0c5b26468fcc.jpg" title=" 周立明.jpg" alt=" 周立明.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告嘉宾:周立明(吉林大学副教授) /strong /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/webinar/video_112802.html" target=" _self" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline color: rgb(0, 112, 192) " 《磁电弹复合材料多物理场耦合光滑有限元计算与表征》 /span /a /strong /span /p p style=" text-align: justify text-indent: 2em " 磁电弹复合材料具有机械能、电能和磁能相互转换的独特性能,被广泛应用于新型传感元件、新型换能器和能量收集技术中,备受国内外学者的关注。为提升磁电复合材料结构性能计算与表征的准确性,将新加坡学者G.R. LIU等提出的光滑有限元技术拓展至磁-电-热-弹多物理场耦合问题的求解,提出了磁-电-热-弹多物理场耦合光滑有限元法,并自主研发了相关软件和多场耦合测试仪器,对典型磁电传感器、磁电俘能器等智能元件的力学特性进行了分析,验证了方法的正确性和有效性,为完整、真实和丰富的获取磁电弹复合材料的性能、制备及使用提供重要的基础数据。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/aa3fb032-fac0-470e-8c7b-78dc1c755a84.jpg" title=" 刘文广.jpg" alt=" 刘文广.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告嘉宾:刘文广(珀金埃尔默企业管理(上海)有限公司) /strong /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/webinar/video_112797.html" target=" _self" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline color: rgb(0, 112, 192) " 《面向未来——联用技术在材料表征中的应用》 /span /a /strong /span /p p style=" text-align: justify text-indent: 2em " 主要从三个方面进行讲述:(1)在新时代背景下,联用分析技术的发展与特点;(2)PerkinElmer在材料表征领域的联用方案;(3) 联用分析技术的应用案例。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/bc2c5a0b-0b2e-4ae9-9b33-b4b5d73d972c.jpg" title=" 王斌.jpg" alt=" 王斌.jpg" / /p p style=" text-align: justify text-indent: 2em " strong 报告嘉宾:王斌(力试(上海)科学仪器有限公司总经理) /strong /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong span style=" text-decoration: underline " strong a href=" https://www.instrument.com.cn/webinar/video_112795.html" target=" _self" style=" color: rgb(0, 112, 192) " span style=" text-decoration: underline color: rgb(0, 112, 192) " 《复合材料力学性能试验解决方案》 /span /a /strong /span /p p style=" text-align: justify text-indent: 2em " 主要从两方面进行讲述:(1)解决方案概述与设备介绍;(2)试验介绍。 /p p style=" text-align: justify text-indent: 2em " 点击底部链接观看全部“复合材料性能表征与评价”网络会议回放视频: /p p style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/Video/Video/Collection/10565" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " https://www.instrument.com.cn/webinar/Video/Video/Collection/10565 /span /a /p p style=" text-align: justify text-indent: 2em " br/ /p
  • 2022年度“复合材料性能表征与评价”网络会议将召开,日程公布
    复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了快速发展。为进一步促进全国各地高校、科研院所、企业等相关从业人员进行技术交流,仪器信息网将于2022年7月8日举办“复合材料性能表征与评价”网络会议,邀请领域内杰出专家和业内人士围绕复合材料物理性能的表征与评价带来精彩报告。会议日程2022年7月8日“复合材料性能表征与评价”网络会议报告时间报告题目报告嘉宾09:30--10:00聚合物基复合材料压缩性能试验方法陈新文 中国航发北京航空材料研究院 高级工程师10:00--10:30复合材料拉伸试验应变测量方法比较王斌 力试(上海)科学仪器有限公司 总经理10:30--11:00柔性压阻适变复合材料的研究黄培 重庆大学 副教授11:00--11:30易用、稳定、多元————引伸计的发展及未来趋势岳洋 天氏欧森测试设备(上海)有限公司 高级工程师11:30--12:00考虑局部效应的复合材料层合板界面参数表征与界面裂纹扩展研究白瑞祥 大连理工大学 教授/博导报告嘉宾及报告内容陈新文,中国航发北京航空材料研究院检测研究中心高级工程师,非金属及复合材料力学性能专业团队负责人,从事复合材料层合板、夹层结构、陶瓷基复合材料、有机玻璃、橡胶、胶黏剂等航空材料的力学性能表征和测试技术研究工作20多年。曾负责多项重点型号任务,为航空各型飞机非金属及复合材料结构研制、强度设计、定寿等提供了试验技术和力学性能数据支持。曾获奖和立功多次,发表文章近20篇,参与书籍《航空材料的力学行为》、《航空材料力学检测》、《先进复合材料技术导论》等的编写,制定企业标准15项,国家级标准6项。报告题目:《聚合物基复合材料压缩性能试验方法》报告摘要:压缩性能试验是聚合物基复合材料所有材料级力学试验中技术难度最大、标准方法数量最多的一种试验。本报告系统介绍了影响复合材料压缩试验结果的关键因素、现有试验方法的优缺点,经过标准技术内容的比较分析,给出工程上选择压缩试验标准的指南,最后对聚合物基复合材料压缩试验标准发展方向提出了建议。王斌,力试(上海)科学仪器有限公司 总经理&企业法人, 企业创始人。二十余年试验机行业从业经验,对试验机和试验技术有深入的研究与独特见解,在市场开发,试验技术发展方向,客户需求方面有深入的了解和经验。拥有多项发明专利。职业履历:美特斯(MTS)工业系统(中国)有限公司 技术总监;上海新三思计量仪器制造有限公司 总经理;力试(上海)科学仪器有限公司 总经理。报告题目:《复合材料拉伸试验应变测量方法比较》报告摘要:从测试标准对应变测量的要求出发,对粘贴应变片、夹持引伸计、全自动引伸计和视频引伸计及DIC等各种应变测量方法的精度、成本、操作难易程度等进行了比较,对各种方法测量得到的弹性模量的离散性进行了分析。黄培,重庆大学航空航天学院副教授,主要从事纳米材料、复合材料和传感器等方面的研究。主持国家自然基金项目2项,横向合作项目2项,发表SCI论文40余篇,其中以第一或通讯作者在Journal of Materials Chemistry A、ACS Applied Materials & Interfaces、Carbon、ChemSusChem、Nanoscale等期刊发表论文20篇。报告题目:《柔性压阻适变复合材料的研究》报告摘要:柔性压阻复合材料在医疗、环境保护、工业等领域有非常广泛的需求,然而目前柔性压阻复合材料的有效应力测试范围较窄,难以满足对人体运动的监测。考虑到压阻复合材料的有效应力测量范围主要受其力学性能决定, 因此我们制备了一系列机械性能适变的压阻复合材料,并研究了其有效应力测试范围的变化规律。岳洋,Tinius Olsen(天氏欧森)高级工程师,英国伯明翰大学和华中科技大学双工学学士,美国德州大学工学硕士。2016年加入Tinius Olsen,拥有美国A2L2校准资质,能够为客户提供完善的应用技术解决方案、产品校准,以及产品和软件相关的培训。报告题目:《易用、稳定、多元————引伸计的发展及未来趋势》报告摘要:经过130多年的发展,引伸计在材料试验中持续发挥着重要作用。从机械式引伸计到光学引伸计,从单方向、单视野到多方向、多视野的测试,设备的易用性和多功能性已经显著提高。选择合适的技术取决于许多因素,包括成本、准确性和易用性,以及材料和所进行试验的具体性质。白瑞祥,大连理工大学工程力学系教授,博士生导师,工业装备结构分析国家重点实验室固定人员。中国复合材料学会第六届、第七届理事,入选辽宁省百千万人才工程。主要研究方向包括先进材料的细观力学分析和设计,含损伤工程结构物的损伤和承载能力,复合材料结构动力学与故障诊断,复合材料工程结构分析与数值仿真,含损伤工程结构物修复和强化机理。承担和参与国家973课题、国家变革性技术课题、国家自然科学基金重点项目及面上项目多项,近年来负责国家大飞机和探月等航空航天工程中复合材料结构的失效行为检测和数值仿真课题二十余项。发表学术论文190余篇,SCI 检索论文50余篇。报告题目:《考虑局部效应的复合材料层合板界面参数表征与界面裂纹扩展研究》报告摘要:连续碳纤维增强树脂基复合材料是飞机结构设计中常用的材料,界面是其力学性能的薄弱环节。在外荷载作用下,界面应力较大的部位容易引起层间分层或胶层脱粘,导致裂纹扩展和结构早期失效。本研究对纤维/树脂界面、考虑邻近铺层纤维方向和裂纹尖端的桥联行为等局部效应的层合板界面破坏行为进行了探讨。运用修正梁理论(MBT)数据减缩方案对不同铺层界面的I型断裂韧性进行了表征,基于扩展断裂过程出现的“跳跃”现象对R曲线散点进行了过滤,应用Foote模型和最小二乘法对R曲线进行拟合,得到一套考虑不同铺层界面的断裂参数。采用基于有限元法的三线性牵引-分离准则的内聚区模型(CZM)预测了不同铺层界面的I型断裂行为,表征了有效的层间界面参数。基于双线性CZM模型表征了II型分层界面的牵引-分离关系,在ABAQUS中重现了不同铺层界面的II型分层断裂过程。建立了含圆形嵌入分层层合板轴压下分层扩展有限元模型,利用3D-DIC技术测量并重构了加载过程中试件表面位移场的变化规律,验证了模型和算法的有效性。参会方式(手机电脑均可听会)1、官网报名(点击此处链接或扫描下方二维码,免费报名听会);2、报名成功,通过审核后您将收到通知;3、会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。扫一扫,免费报名听会
  • 回放视频:听8位专家讲“复合材料性能表征与评价”
    复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了快速发展。为进一步促进全国各地高校、科研院所、企业等相关从业人员进行表征与检测技术交流,仪器信息网于2021年6月8日成功举办了“复合材料性能表征与评价”主题网络研讨会,邀请领域内杰出专家和业内人士围绕会议主题带来精彩报告,并为参会人员搭建了网络互动平台进行学术交流。回放视频链接如下:报告时间报告主题报告嘉宾回放链接09:30--10:00固化与湿热条件对挖补复合材料层合板力学性能的影响程小全(北京航空航天大学 航空科学与工程学院 实验室主任/教授)链接10:00--10:30复合材料固化的热分析表征曾智强(德国耐驰仪器制造有限公司 市场与应用副总经理)链接10:30--11:00聚乳酸基纳米复合材料的制备与结晶行为研究贾仕奎(陕西理工大学 材料科学与工程学院 系主任/副教授)链接11:00--11:30纤维增强树脂基复合材料基本力学性能测试与表征白瑞祥(大连理工大学 力学系 副教授/博士生导师)链接14:00--14:30复合材料破坏与强度预报黄争鸣(同济大学 航空航天与力学学院 教授)链接14:30--15:00聚合物基复合材料力学性能试验关键要素分析王斌(力试(上海)科学仪器有限公司 总经理)链接15:00--15:30高温环境下防热复合材料力学性能测试仪器与装备张建海(吉林大学 副教授/吉林省材料服役性能测试国际联合研究中心副主任)链接15:30--16:00环氧树脂复合材料的改性研究黄培(重庆大学 航空航天学院 讲师)不回放16:00--16:30纤维增强聚合物基复合材料拉伸性能试验方法陈新文(中国航发北京航空材料研究院 高级工程师)链接
  • 微观组合测试仪MCT3 | 焊接的机械性能表征
    焊接也被称作熔接,通常是一种以加热、高温或者高压的方式接合金属或其他热塑性材料如塑料的制造工艺及技术。焊接工艺多用于制造业,主要用途就是把小的金属材料连接成大的(按图纸或需要的尺寸),或通过连接(焊接)做出所需要的几何体。诸如造船厂、飞机制造业、汽车制造、桥梁等都离不开焊接。热源能量的分布即热量的传播和分布很大程度上与这些参数相关,然而由于热量的分布是呈现梯度的,从而造成焊缝周围的材料会受到影响,即所谓的“热影响区”(HAZ)。热影响区的形成原理非常简单,在焊缝周围的材料受到了热源的影响,而温度低于材料的熔点,但其温度足以让周围材料的显微组织发生变化。显微组织的变化可导致机械性能的变化,如可能会出现硬度增加和屈服强度降低。同时由于显微组织的发生变化,热影响区更容易出现开裂和腐蚀情况,所以热影响区通常是构件最薄弱的结构点。因此,了解热影响区和减少焊接所产生的不良热效应是至关重要。焊缝和热影响区的典型尺寸通常为数百微米至几毫米。为了研究由于焊接过程引起的局部材料变化,仪器化压痕测试方法是首选,因为它们提供了合适的位移分辨率。例如,安东帕微观组合测试仪(MCT3)可以获取焊缝或热影响区等等不同区域的硬度、弹性模量等力学性能。磨损量和摩擦性能可以很容易地通过摩擦磨损分析仪来测量,该分析仪测量摩擦系数并可用于估计磨损率。微观组合测试仪MCT3本文将展示焊缝及其邻近局部区域的机械性能的表征手段的实际例子,同时也将总结所用表征手段对于焊接工艺好坏的评定和意义。焊缝横截面的硬度分布情况图1: 焊缝及其热影响区的横截面的视图和相对应位置上的硬度变化情况如图1所示,使用Anton-Paar微观组合测试仪MCT3对采用弧焊工艺对球墨铸铁进行焊接后所产生的热影响区进行表征。简单来说,就是在焊缝截面上沿着从母材到焊缝的方向采用MCT3对材料进行压痕测试。压痕试验主要在两个位置上进行:焊缝区域横截面和焊缝顶面。使用的最大载荷为5 N,加载和卸载速率选择为30 N/min,在最大载荷下保载1 sec。具体是沿着从未受影响的母材穿过HAZ到焊芯进行压痕测试,单个压痕的间距为0.25 mm。压痕测试的大致位置和相应硬度分布如图1所示,结果清楚地表明了焊缝附近硬度的变化情况。靠近焊缝–在HAZ中–硬度在过渡区降低之前显著增加,在远离焊缝的未受影响母材中稳定在~3 GPa。在焊缝的上表面上发现了类似的结果(过渡区和热影响区的硬度增加),这证实了在横截面上获得的结果。该应用案例展示的是仪器化压痕测试方法对于测量焊接工艺产生的热影响区HAZ的材料性能变化的意义所在,用图1中所示的方法可以直观的获取相应位置的力学性能变化情况。从而,有助于科研人员及焊接工作者去估算HAZ的区域尺寸以及所检测出的焊缝及其周围局部区域的力学性能是否达标,更为如何优化焊接工艺参数提供一份助力。堆焊工艺下焊缝的摩擦学性能研究堆焊是将硬质金属焊接在母材上的一种工艺,旨在提高母材的耐磨性,是一个很广泛的焊接应用。它用于磨机锤、挤压螺钉、高性能轴承和土方设备。它也可用于压水反应堆的阀座和泵。与其他部件摩擦接触的此类堆焊焊缝的磨损和摩擦学性能对于实际应用至关重要。以下示例显示了对球墨铸铁进行的摩擦学试验,其中铸铁的堆焊层采用等离子转移电弧工艺焊接。图2: 热影响区和母材的摩擦系数变化情况由于焊接工艺也属于快速凝固的一种冷却方式,从而得到了3mm厚度的热影响区且发现该HAZ的微观结构中存在渗碳体结构,而且硬度明显高于铸铁。总共进行了两次摩擦试验:一次在母材上,另一次在焊接材料的热影响区内。在线性往复模式下均进行共5000次循环的摩擦学表征试验,而且在最大固定载荷为1 N情况下的最大线速度为1.6 cm/s,选取的摩擦副为直径为6 mm的100Cr6钢球。摩擦试验结果如图2所示:焊接层的热影响区(HAZ)的摩擦系数(~0.8)高于母材(~0.5)。图3: 采用表面轮廓仪测量并记录母材和热影响区的磨损轨迹轮廓图3展示的是运用表面轮廓仪采集并记录母材和热影响区在摩擦学试验后磨损轨迹的轮廓。通过比较图3的结果表明,热影响区的磨损远高于母材;母材的耐磨性高于热硬化区的耐磨性。图2和图3的表明,焊接工艺对焊接层热硬化区的摩擦系数和耐磨性产生了负面影响,尽管同一层的硬度有所增加。该问题的解决方案可以是改变焊接参数以提高热硬化区的耐磨性,或者减小其尺寸以最小化其对零件耐磨性的负面影响。总的来说,Anton-Paar自研自产的压痕仪和摩擦学表征仪器均能为焊接工艺的研究和生产提供非常大的助力,其新一代检测手段的开发对于焊接行业是非常有意义的。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • “复合材料性能表征与评价”网络会议即将召开
    p style=" text-align: justify text-indent: 2em " 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了快速发展。 /p p style=" text-align: justify text-indent: 2em " 为进一步促进全国各地高校、科研院所、企业等相关从业人员进行表征与检测技术交流,仪器信息网将于 span style=" color: rgb(0, 112, 192) " strong 2020年6月15日 /strong /span 举办 strong span style=" color: rgb(0, 112, 192) " “复合材料性能表征与评价”主题网络研讨会 /span /strong ,邀请领域内杰出专家和业内人士围绕复合材料力学与物理性能、损伤与破坏、宏微观多尺度模拟、疲劳特性等方面带来精彩报告,并为参会人员搭建网络互动平台进行学术交流。 a href=" https://www.instrument.com.cn/webinar/meetings/FHCL/" target=" _self" span style=" text-decoration: underline " strong span style=" text-decoration: underline color: rgb(0, 112, 192) " (报名听会链接) /span /strong /span /a /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/pic/9cdec0ea-0bed-45e3-acfd-953a5691dc1e.jpg" / /p p style=" text-align: center text-indent: 0em " strong style=" color: rgb(227, 108, 9) text-align: center " span style=" font-size: 20px " 专家介绍 /span /strong /p p style=" text-align: center " strong span style=" font-size: 20px " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/cb3aa619-fa0e-4a4b-a33c-37bf1b609967.jpg" title=" 程小全.PNG" alt=" 程小全.PNG" / /span /strong /p p strong span style=" font-size: 20px " /span /strong /p p style=" text-align: justify text-indent: 2em " 程小全,北京航空航天大学教授,实验室主任。1987年从西北工业大学飞机系毕业后分配到中国直升机设计研究所升力系统室,1992年入北京航空航天大学飞行器设计专业上研究生,1998年获工学博士学位。2000年9月出站后到北京航空航天大学工作至今。已有32年从事复合材料结构设计与试验研究与教学工作的经历。现任中国航空学会失效分析分会委员,《高科技纤维与应用》编委,中国材料与试验团体标准委员会(CSTM)航空专业领域委员,中国航空工业集团公司/中国航空发动机集团有限公司物理冶金人员资格鉴定委员会委员。先后承担过国家863、国家重大专项、国家自然基金等科研项目150多项,以及“985工程”学科建设任务。在国内外重要学术期刊和国际会议上发表论文200余篇、著作10部、获批专利5项。获国防科工委国防科学技术奖二等奖一项、中航工业集团科学技术奖三等奖一项、中国产学研合作创新与促进奖优秀奖一项、中国发明合作创新成果奖一项。 /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong 《湿热环境下复合材料机械连接结构破坏行为》 /p p style=" text-align: justify text-indent: 2em " strong span style=" text-indent: 2em " 报告摘要: /span /strong span style=" text-indent: 2em " 由于设计及使用维护的限制,机械连接成为复合材料结构中不可缺少的关键环节。随着多功能、多用途飞行器的发展,对复合材料机械连接结构在复杂环境中的承载能力提出新的要求,其中吸湿和高温环境的影响最为显著。湿热环境对复合材料机械连接结构机械性能的必须加以关注。本报告将介绍碳纤维复合材料连接结构在常温干态、常温湿态、高温干态和高温湿态等四种环境条件下的拉伸挤压力学特性,通过试验和数值模拟方法给出了单钉双搭、单搭连接结构的拉伸破坏行为和损伤机理,分析了湿热环境对复合材料机械连接结构性能的影响。 /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/423b596d-1b7b-4a91-9fb0-2004d863db05.jpg" title=" 陈新文.PNG" alt=" 陈新文.PNG" / /span /p p style=" text-align: justify text-indent: 2em " 陈新文,中国航发北京航空材料研究院检测研究中心高级工程师,非金属及复合材料力学性能专业团队负责人。从事复合材料层合板、夹层结构、陶瓷基复合材料、有机玻璃、橡胶、胶黏剂等航空材料的力学性能表征和测试技术研究工作20多年。曾负责多项重点型号任务,为航空各型飞机非金属及复合材料结构研制、强度设计、定寿等提供了试验技术和力学性能数据支持。曾获奖和立功多次,发表文章近20篇,参与书籍《航空材料的力学行为》、《航空材料力学检测》、《先进复合材料技术导论》等的编写,制定企业标准15项,国家级标准6项。 /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong 《聚合物基复合材料疲劳试验方法》 /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 概述了开展复合材料疲劳试验的目的,从疲劳S-N曲线、条件疲劳极限、试验频率、迟滞效应、刚度变化和失效模式几个方面阐述了聚合物基复合材料的疲劳行为,比较分析了国内外聚合物基复合材料疲劳标准试验方法,指出了每个标准试验方法存在的技术缺陷,最后给出了疲劳试验方法改进的方向。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/03c68f38-6f39-47c9-b99a-a66f11cb6a35.jpg" title=" 1.PNG" alt=" 1.PNG" / /p p style=" text-align: justify text-indent: 2em " 包亦望,中国建材检验认证集团股份有限公司总工程师,绿色建筑材料国家重点实验室学术带头人,兼任全国工业陶瓷标委会副主任委员、中国硅酸盐学会测试技术分会秘书长。先后获得德国洪堡基金和国家杰出青年基金;入选国家跨世纪“百千万人才工程”和中国科学院“百人计划”项目;被授予有重要贡献中青年专家,享受国务院政府特殊津贴;荣获全国留学回国人员成就奖和英国皇家工程院“Distinguished Visiting Fellow”称号。在陶瓷与玻璃等脆性材料的力学性能评价技术和材料优化设计、脆性材料的强度与断裂理论以及脆性材料的可靠性和寿命预测等方面有丰富经验和创新,特别在陶瓷和玻璃的高温和常温力学性能评价,建筑玻璃风险诊断与玻璃器件失效分析研究方面居国内领先水平,在结构陶瓷的强度理论、断裂力学、脆性材料的实验方法和测试技术等研究领域做出了突出贡献。 /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong 《陶瓷涂层膨胀系数与残余应力测定》 /p p style=" text-align: justify text-indent: 2em " 报告内容正在准备中。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/0185d254-1bf0-41c4-b6ff-0c05ad1b3d03.jpg" title=" 白瑞祥.PNG" alt=" 白瑞祥.PNG" / /p p style=" text-align: justify text-indent: 2em " 白瑞祥,大连理工大学工程力学系副教授,博士生导师,工业装备结构分析国家重点实验室固定人员。中国复合材料学会第六届、第七届理事,入选辽宁省百千万人才工程。主要研究方向包括先进材料的细观力学分析和设计,含损伤工程结构物的损伤和承载能力,复合材料结构动力学与故障诊断,复合材料工程结构分析与数值仿真,含损伤工程结构物修复和强化机理。承担和参与国家973课题、国家变革性技术课题、国家自然科学基金重点项目及面上项目多项,近年来负责国家大飞机和探月等航空航天工程中复合材料结构的失效行为检测和数值仿真课题二十余项。发表学术论文190余篇,SCI 检索论文40余篇。 /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong 《基于分级测试数据校验的大型复合材料结构失效行为的预测方法》 /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 针对大型复合材料结构的选型和验证试验周期长,费用高,优化设计难等问题,提出了一种基于分级测试数据校验的大型复合材料结构失效行为的预测方法,将该方法用于大型复杂复合材料选型和参数优化设计,可极大提高选型和优化设计效率。由于大型复杂的复合材料结构,设计参数多,结构失效模式丰富,在采用数值方法预测结构承载能力时计算模型庞大、引入的损伤演化判据、材料强度准则及响应材料参数过多、同时还需考虑制造缺陷、分层损伤和界面损伤扩展以及接触、几何大变形等行为,导致多重非线性耦合,使计算难于收敛。采用基于分级测试数据校验的大型复合材料结构失效行为的预测方法,可以通过将损伤失效模式进行分类,通过材料级和结构级小规模测试获得材料损伤断裂参数,并用于校正结构级数值仿真模型的精度,进一步结合整体-局部建模分析方法,首先预测出结构主控失效模式,进而建立一个只考虑主控失效模式的解耦模型对整体结构进行失效行为预测,提高了大型复杂复合材料结构的预测精度和计算收敛性。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/1bb6f327-cddf-4a19-8649-a7795e12c710.jpg" title=" 周立明.PNG" alt=" 周立明.PNG" / /p p style=" text-align: justify text-indent: 2em " 周立明,吉林大学副教授,博士生导师。主要从事计算复合材料力学研究,提出了力-热-电-磁多物理场耦合光滑有限元法,解决了磁电弹复合材料有限元求解精度低的难题。自主研发了基于MATLAB平台的各类光滑有限元求解程序,同时从事微纳机械力学和多尺度复合材料、机械结构力学测试与计算方法等方面的研究工作。主持各类国家级项目、省部级项目与企业项目8项。2019年以来在Compos Sci Technol等刊物上发表SCI论文15篇。国际权威学术期刊《Composite Structures》发表的10.1016/j.compstruct.2018.09.074进入ESI(1%)高被引论文之列,并被加拿大著名科研机构Advances in Engineering遴选为关键科学文章。获授权发明专利1项,EI论文20篇,软件著作权25项。担任Compos Part B-Eng、Compos Struct、Chinese J Aeronaut等期刊审稿人。 /p p style=" text-align: justify text-indent: 2em " 报告内容正在准备中。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/6338bce7-0070-467d-82df-1c592cafd783.jpg" title=" 1.PNG" alt=" 1.PNG" / /p p style=" text-align: justify text-indent: 2em " 黄培,博士,重庆大学航空航天学院讲师,主要从事纳米材料和复合材料的制备及应用研究。目前,主持和参与国家自然基金项目6项,横向合作项目2项,发表SCI论文23篇,其中以第一或通讯作者发表在ACS Applied Materials & amp Interfaces、Chemsuschem、Nanoscale等SCI论文15篇。 /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong 《特种复合材料的研究》 /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong 复合材料因其很强的可设计性,在汽车、航空航天、智能设备等领域有非常巨大的应用潜力。这里,我主要介绍我们课题组在连续性纤维增强、短碳纤维增强以及多功能复合材料方面的研究概况。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/a0adec44-0d46-468f-9d57-5e1498bac4a0.jpg" title=" 刘文广.PNG" alt=" 刘文广.PNG" / /p p style=" text-align: justify text-indent: 2em " 刘文广,毕业于东北林业大学,珀金埃尔默企业管理(上海)有限公司材料表征产品线技术支持,主要负责分子光谱、热分析仪器以及联用分析设备的应用支持,拥有7年以上的高分子材料分析经验。 br/ /p p style=" text-align: justify text-indent: 2em " strong 报告题目: /strong 《面向未来——联用技术在材料表征中的应用》 /p p style=" text-align: justify text-indent: 2em " strong 报告摘要: /strong (1)在新时代背景下,联用分析技术的发展与特点;(2)PerkinElmer在材料表征领域的联用方案;(3) 联用分析技术的应用案例。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/3569243d-228c-4e57-933c-24c478b5758b.jpg" title=" 1920_420cl.jpg" alt=" 1920_420cl.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(227, 108, 9) font-size: 20px " strong 参会方式(手机电脑均可参会) /strong /span /p p style=" text-align: justify text-indent: 2em " 1、官网报名( a href=" https://www.instrument.com.cn/webinar/meetings/FHCL/" target=" _self" style=" text-decoration: underline color: rgb(227, 108, 9) " span style=" color: rgb(227, 108, 9) " 点击链接免费报名听会 /span /a ); /p p style=" text-align: justify text-indent: 2em " 2、报名成功,通过审核后您将收到通知; /p p style=" text-align: justify text-indent: 2em " 3、会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。 /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(227, 108, 9) " strong 扫一扫,报名听会 /strong /span /p p style=" text-indent: 0em text-align: center " strong img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/pic/625425b9-85bb-43b0-84b8-99967f26c33b.jpg" / /strong /p p style=" text-indent: 0em text-align: center " /p p style=" text-align: justify text-indent: 2em " br/ /p
  • 205.9万!宁夏大学材料性能表征实验室显微镜等设备采购项目
    采购计划编号: 2022NCZ000614项目编号: YQ-NCZ-2022011项目名称: 宁夏大学材料性能表征实验室建设设备采购项目预算金额(元): 2059000.00最高限价(如有): 2059000.00元采购需求:采购标段标的名称数量简要规格描述或项目基本概况预算金额(元)备注宁夏大学材料性能表征实验室建设设备采购项目其他仪器仪表1显微镜、激光共聚焦显微镜、高温差热-热重测试仪、阻温测试系统等设备2059000.00数量合计:1预算合计:2059000.00合同履行期限:合同签订后60日内。本项目(是/否)接受联合体投标: 是 否
  • 顶刊速递,北航研究团队制备并表征高性能MXene纳米片薄膜!
    【科学背景】随着纳米科技的迅猛发展,二维纳米材料作为一类重要的新兴材料,因其独特的电子、光学和机械性能,引起了广泛的关注。其中,钛碳化物(Ti3C2Tx)MXene纳米片由于其优异的机械性能和电导率,显示出在航空航天和电子器件等领域的巨大应用潜力。然而,将MXene纳米片从单层的优异性能扩展到宏观尺度的应用中却面临着诸多挑战。目前报道的组装方法如真空过滤、刮刀涂布和空间限制蒸发等,虽然在一定程度上可以制备MXene薄膜,但仍然存在诸如取向度不高、孔隙率较大以及界面相互作用弱等问题。例如,通过真空过滤制备的MXene薄膜取向度仅为0.64,其机械性能显著低于单层MXene的理论值。有鉴于此,北京航空航天大学的程群峰教授团队在“Science”期刊上发表了题为“Ultrastrong MXene film induced by sequential bridging with liquid metal”的研究论文。一种新的制备策略——利用液态金属(LM)和细菌纤维素(BC)依次桥接MXene纳米片,被提出并成功实施。这种方法不仅通过LM纳米粒子有效减少了MXene薄膜的孔隙,还通过BC提供的氢键和LM提供的配位键显著增强了MXene纳米片之间的界面相互作用。研究结果表明,这种LBM薄膜不仅具有极高的拉伸强度,还表现出优异的电磁屏蔽效率,为MXene纳米片在宏观尺度应用中的进一步开发提供了新的思路和方法。【科学图文】图1:LBM薄膜的制备原理及表征。图2. LBM薄膜的界面相互作用表征。图3. LBM薄膜的力学性能和断裂机理。图4. 电磁干扰屏蔽效能的表现。【科学结论】本文克服钛碳化物(Ti3C2Tx)MXene纳米片组装过程中的关键挑战,提出了一种创新的策略,即利用液态金属(LM)和细菌纤维素(BC)依次桥接MXene纳米片,成功制备了超强的宏观LBM薄膜。通过LM纳米粒子的引入,有效减少了薄膜的空隙,同时利用BC提供的氢键和LM提供的配位键显著增强了MXene纳米片之间的界面相互作用。这些改进不仅显著提高了MXene纳米片在薄膜中的应力传递效率,还赋予了LBM薄膜优异的电磁屏蔽性能。这一研究不仅为MXene纳米片及其他二维纳米材料在高性能材料领域的应用提供了新的设计思路和解决方案,还展示了多层次、多材料协同作用的重要性和潜力。未来的研究可以进一步探索和优化这种组装策略,以扩展其在能源存储、传感器技术和柔性电子设备等领域的应用,从而推动纳米材料设计和制备技术的发展,实现更广泛的实际应用和产业化转化。文献信息:https://www.science.org/doi/10.1126/science.ado4257
  • 仪器情报,科学家表征开发了高性能MXene纳米片薄膜!
    【科学背景】钛碳化物(Ti3C2Tx)MXene纳米片由于其优异的机械性能和电导率,在航空航天和电子器件等领域显示出了广泛的应用前景,成为当前研究的热点。然而,将MXene纳米片有效地组装成宏观薄膜以应用于实际中却面临诸多挑战。现有的组装方法如真空过滤、刮刀涂布和空间限制蒸发法,尽管取得了一定的进展,但MXene薄膜的取向度和孔隙率仍然难以令人满意,导致其力学性能未能完全发挥。针对这些问题,北京航空航天大学的程群峰教授团提出了利用液态金属(LM)和细菌纤维素(BC)依次桥接MXene纳米片的新方法。通过此方法,LM纳米粒子有效地减少了薄膜中的空隙,而BC提供的氢键和LM的配位键显著增强了MXene纳米片之间的界面相互作用。结果表明,所制备的LBM薄膜不仅具有超强的拉伸强度,还具有优异的电磁屏蔽性能。【科学图文】图1:LBM薄膜的制备原理及表征。图2. LBM薄膜的界面相互作用表征。图3. LBM薄膜的力学性能和断裂机理。图4. 电磁干扰屏蔽效能的表现。【科学结论】本研究通过利用液态金属(LM)和细菌纤维素(BC)依次桥接钛碳化物(Ti3C2Tx)MXene纳米片,成功制备了超强的宏观LBM薄膜,为解决MXene纳米片组装中的关键问题提供了新的思路和方法。传统方法中,MXene薄膜常面临取向度不足、空隙多等挑战,限制了其在实际应用中的性能表现。LM纳米粒子的引入显著减少了薄膜的空隙率,而BC提供的氢键和LM提供的配位键则加强了MXene纳米片之间的界面相互作用,进一步提高了薄膜的应力传递效率。此外,新方法不仅改善了MXene薄膜的结构完整性,还赋予了LBM薄膜优异的电磁屏蔽性能,拓展了其在电子器件和航空航天等领域的潜在应用。这一研究不仅为MXene纳米片的可控组装提供了新的科学方法,也为其他二维纳米片材料的高效利用提供了借鉴。未来的研究可以进一步探索LM和BC在其他二维材料组装中的应用潜力,推动这些材料在能源存储、传感器和可穿戴设备等领域的广泛应用。文献信息:https://www.science.org/doi/10.1126/science.ado4257
  • 新标准图文解析-增材制造金属粉末性能表征方法
    本文由马尔文帕纳科应用专家张瑞玲女士供稿 自2021年6月1号起,GB/T 39251-2020《增材制造 金属粉末性能表征方法》等14项推荐国家标准开始实施!该标准主要规范了金属粉末性能的表征方法,检测项目主要包括:外观质量、化学成分、粒度及粒度分布、颗粒粒形、流动性、密度、夹杂物及空心粉。 马尔文帕纳科作为材料表征领域的专家,其先进的分析检测技术为增材制造行业提供粒度、粒度分布、颗粒形貌等贯标解决方案。涉及技术及仪器包含:ü 激光衍射法:Mastersizer3000超高速智能激光粒度仪ü 动态图像法:Hydro Insight 智能颗粒图像分析仪ü 静态图像法(显微镜法):Morphologi-4 全自动粒度粒形分析仪 一、粒度及粒度分布检测的必要性 为什么增材材料要对粒度及粒形分布进行检测呢?这是因为其工艺性质决定的。增材制造是在金属粉末层熔融过程中,先使金属粉末层分布于制造平台上,然后使用激光或电子束选择性地熔化或熔融粉末。熔化后,平台将被降低,并且过程将持续重复,直到制造过程完成。未熔融粉末将被去除,并根据其状态重复使用或回收。 粉末层增材制造工艺的效率和成品组件的质量在很大程度上取决于粉末的流动性和堆积密度。粒度会直接影响这些特性,是该工艺的关键技术指标,例如,对于选择性激光熔融工艺(SLM),最佳粉末粒度在 15-45 μm;而对于电子束熔融工艺(EBM),最佳粉末颗粒则应在 45-106 μm(对于 EBM)范围内。图1 层叠增材制造工艺的粉末床工艺图图1展示了SLM工艺中金属粉末床如何形成和扫描激光金属形成2D形貌。持续不断的新的粉末床为最终的3D金属部件提供原材料。金属部件的结构一致性和完成件的表面平整度与粉末的化学特性和堆积密度息息相关。 粉末的堆积密度是由颗粒大小和形状控制的。如图2,粉末中大颗粒过多降低填料的密度,而小颗粒过多则降低填料的流动性。只有当大颗粒和小颗粒比例最优时,填充密度最大,大颗粒中的小空隙被小颗粒填满,流动性和堆积密度达到最佳值。 图2 堆积密度和颗粒大小的关系 为了保证厚度的均一,通常会选择较窄的粒径分布。颗粒的填充和流通性对于金属粉末3D打印技术非常重要,这也是我们为什么要优化粒度及其分布,以实现所需的大颗粒和小颗粒的比例,这点非常重要。 堆积密度会影响熔融池的连续性,较低的堆积密度会导致熔融不连续,完成件表面粗糙,导致结果的一致性降低。图3 堆积密度影响的熔融池分析 如图3所示,粉末床在于激光接触时的熔融池模拟图像,熔融池的温度与粉末的组分和由堆积密度控制的熔融池的连续性直接相关,如果堆积密度高,就会形成一个连续的熔融池,生产出表面光滑、结构稳定的完成件。 二、新国标中的粒度及粒度分布的相关指标 2021年6月1日开始实施的系列标准中对于各种金属粉末的粒度及粒度分布,做了具体的推荐要求,涉及金属粉末粒度分析的标准如下所示:ü GB/T 38970-2020《增材制造用钼及钼合金》ü GB/T 38971-2020《增材制造用球形钴铬合金粉》ü GB/T 38972-2020《增材制造用硼化钛颗粒增强铝合金粉》ü GB/T 38974-2020《增材制造用铌及铌合金粉》ü GB/T 38975-2020《增材制造用钽及钽合金粉》 三、金属粉末粒度分布测试技术:激光衍射法 关于粒度及粒度分布,在6月1日施行的GB/T39251-2020 等6项国家标准中,推荐是使用激光衍射法,具体标准参考 GB/T 19077。这是因为激光衍射法且具备样品用量少、制备简单、测量速度快、重现性好等优点,除此之外,激光衍射发广泛适用于所有增材制造用金属粉末的粒度分布检测,该技术测试覆盖范围宽(马尔文帕纳科激光粒度仪测量范围达到0.01 μm ~3500 μm,完全覆盖增材制造行业金属粉末的粒径范围)。图4 激光衍射测量原理图 激光衍射测量是一种非常常用的测试粒径大小及分布的方法----特别是面对较小的粒度范围时。 在激光衍射测量中,激光束穿过分散的颗粒样品,测试散射光强度的角度变化。因为较大的颗粒有较小的角度和较大的散射光强,而较小的颗粒则有较大的角度和较小的散射光强。激光衍射分析仪运用米氏理论,根据所测量的散射光的角度依赖性来计算样品颗粒的粒度分布。 马尔文帕纳科粒度及粒度分布解决方案马尔文帕纳科 Mastersizer 3000 超高速智能激光粒度仪高度自动化,可实现按钮操作,并且只需很少的手动输入即可提供高产量分析,并且有非常广泛的动态范围0.01 至~3500 µm ,可以精确测量金属粉末的粒径分布。并且还可以很容易的在干法和湿法之间切换,测试金属粉末湿分散和干分散的粒径大小。图5 Mastersizer 3000 超高速智能激光粒度仪图6 钛合金粉末湿法和干法测量叠加图 图 6显示了在 Mastersizer 3000 上使用湿法和干法分散制备的金属粉末的测量结果,可以看到湿法和干法结果一致。其实,如果优化了分散程序且采样具有可比性,干湿法应具有等效结果。从趋势表也可以看出,干法和湿法结果一致性非常好。从GB/T 39251-2020 《增材制造 金属粉末性能表征方法》中,关于金属粉末粒度要求来看,这应该属于I 类金属粉末材料,适用于粉末床熔融(选区激光熔融)增材制造 。四、金属粉末颗粒形貌测试技术:动态图像法/ 静态图像法 目前测试颗粒大小和形貌的技术主要有三种:ü SEM技术:分辨率高,但统计颗粒数目不多,可作为定性技术;ü 动态图像技术:可以提供很多的颗粒数量,但图像质量较差,对于小颗粒的形貌还有区分颗粒的表面结构,较为困难;ü 静态图像技术:可以兼顾分辨率和颗粒数量,可以定性,也可以定量。 国标中对于各种金属粉末的颗粒形状,也就是粉末的微观形貌、球形度的表征方法推荐使用动态颗粒图像分析法和显微镜法(静态图像法)。粉末球形度以一定数量粉末颗粒投影界面的圆形度检测值的平均值进行近似表征。 马尔文帕纳科动态颗粒图像分析解决方案最新推出的 Hydro Insight 动态颗粒图像分析仪采用高速高分辨率摄像机实时采集动态颗粒图像,搭配 Mastersizer 3000 超高速智能激光粒度仪可以提供颗粒的分散和单个颗粒实时的图像,并且可以定量测试样品的分布数据,还有32个尺寸和形状的相关指标,如圆度、椭圆图、不透明度、平均直径、长宽比,可以帮助了解颗粒的大小和形状是如何影响了材料的性能。方便您更好地了解您的材料,简化故障排除,并助力快速开发新方法。图7 Hydro Insight 动态图像分析仪(左)金属粉末样品中少量的大颗粒或者小颗粒用激光衍射的方法很难捕捉到信号,Hydro Insight 动态颗粒形貌分析仪可以对单个颗粒进行成像,并提供数量分布,并且可以看到颗粒的形貌。帮助我们看到这些大颗粒是否真实存在,以及它的外观,是高度球形的颗粒,卫星颗粒还是高度不规则的颗粒。图8 Hydro Insight 呈现的大颗粒形貌图9 动态图像法颗粒分布累积曲线马尔文帕纳科静态图像分析解决方案马尔文帕纳科还提供静态图像法高效颗粒形貌测量工具——Morphologi 4 全自动粒度粒形分析仪,用于测量从0.5 微米到数毫米的颗粒粒度和形状。使用伸长率、圆度、凸度等参数报告形状信息,以量化颗粒不规则性和表面粗糙度。与手动显微镜和电子显微镜相比,自动成像更高效,可提供数万颗粒的统计数据。图10 Morphologi 4-ID 全自动粒度粒形分析仪 Morphologi 4 全自动粒度粒形分析仪粒度测量范围从0.5μm到1300μm,采用整体式干粉分散装置,优化的显微镜光学器件和高信噪比CMOS相机,从样品分散到结果分析,均实现自动化SOP控制。图11 钛合金粉末球形度分析示意图 由于80-95%的金属粉末在增材制造的整个周期中都没有使用,昂贵的金属粉末回收利用也是增材制造行业中的关注重点。 为减少制造过程中降解的粉末导致零件质量的下降,避免导致灾难性的零件故障,关注原始材料和回收材料形貌的微妙偏差就显得尤为重要。 Morphologi 4 粒度粒形分析仪对原始粉末和使用多次后的粉末进行检测,为您揭示回收粉末材料与原始粉末的细微差异,进一步解析造成粉体流动性和堆积密度不同的原因。图12 钛合金球形度分析统计结果,红色为原始粉末,绿色为使用8次的粉末,蓝色为使用16次的粉末图13 样品的圆当量粒度分布图,红色是原始粉末,蓝色为使用8次的粉末,黑色为16次的粉末关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。 通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。 这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。 联系我们:马尔文帕纳科销售热线: +86 400 630 6902售后热线: +86 400 820 6902联系邮箱:info@malvern.com.cn官方网址:www.malvernpanalytical.com.cn
  • SAMPE2019复合材料性能表征和测试技术论坛召开
    p    strong 仪器信息网讯 /strong 2019年5月7日,SAMPE中国2019年会暨第十四届先进复合材料制品、原材料、工装及工程应用展览会召开同期,作为重要分会场——复合材料性能表征和测试技术论坛成功举办。 br/ /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/9048b206-469a-49a0-966c-07f96df852fc.jpg" title=" IMG_1110.jpg" alt=" IMG_1110.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " SAMPE中国2019展会入口一角 /span /p p   借助SAMPE中国平台,该论坛由中国航发北京航空材料研究院发起并已成功举办了7届,与往届不同的是,本届(第8届)论坛由中国航发北京航空材料研究院首次与天氏欧森测试设备(上海)有限公司共同主办。邀请11位复合材料性能表征和测试技术领域专家依次分享精彩报告并现场交流互动。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/2e74dd34-9fc7-4f33-be34-9072102b4bd6.jpg" title=" IMG_1222.jpg" alt=" IMG_1222.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 复合材料性能表征和测试技术论坛现场 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/1874e0a9-42e8-47d6-b005-f014f5884a1f.jpg" title=" IMG_1657.jpg" alt=" IMG_1657.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 中国航发北京航空材料研究院高级工程师陈新文主持会 /span /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/244bbf31-17b2-4c4a-aec3-ed808366fc49.jpg" title=" IMG_1266.jpg" alt=" IMG_1266.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 报告人: 清华大学航天航空学院 王申博士 /span br/ span style=" color: rgb(0, 176, 240) " /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:复合材料结构非接触测试技术及应用 /span /p p   非接触测试是以光电、电磁等技术为基础,在不接触被测物体表面情况下,得到物体表面参数信息的测量方法。王申首先介绍了非接触测试技术的典型方法、特点等。接着分别重点介绍了基于3D扫描技术的物体形貌与损伤检测技术、数字图像相关方法(DIC)、基于红外热成像泄露定量测试方法、红外技术与数字图像相关技术结合等相关技术,包括基本测试原理、测试方法、实验装置等,并结合复合材料内部损伤检测、内部应力应变检测、飞行器结构在线健康检测等案例介绍了这些技术的相关应用。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/f5955fd9-c4fb-4447-8df4-5c1128e1ec4b.jpg" title=" IMG_1290.jpg" alt=" IMG_1290.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告人:天津工业大学先进纺织复合材料教育部重点实验室 郭玉路 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:含减纱点三维角联锁石英织物剪切性能试验研究 /span /p p   郭玉路主要介绍了其关于三维角联锁石英织物剪切性能试验的相关研究研究,结果表明,含减纱点的三维角联锁石英织物的剪切性能会降低,且不同减纱方式对其剪切性能的影响不大。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/66146969-6673-4492-bf52-32d2d0ac6ee5.jpg" title=" IMG_1302.jpg" alt=" IMG_1302.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告人:日本龙派公司首席官 细川 雅彦博士 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:多轴编复合材料的力学性能研究 /span /p p   细川 雅彦结合日本龙派公司在多轴编复合材料生产研发过程,介绍了系列相关力学性能的研究,研究表明,多轴编复合材料的抗拉强度与剪切角度无关,而抗拉模量则当剪切角为零度时最大。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/a04e7c75-2e7c-4a87-b41c-e61cbe33f788.jpg" title=" IMG_1342.jpg" alt=" IMG_1342.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告人:泰国拉贾马拉理工大学 萨蒙曼 尼姆朗教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:芳纶增强聚酰胺编制复合材料力学性能研究 /span /p p   关于芳纶增强聚酰胺编制复合材料的力学性能研究,萨蒙曼 尼姆朗首先介绍了样品的制备和前处理方法。接着利用微滴包埋拉出法测定了复合材料界面剪切强度,结果表明,该样品进行去油处理后,其界面剪切强度可以提高约26%。而通过对芳纶增强聚酰胺编制复合材料拉伸试验表明,表面预处理可以将样品的拉伸强度提升9.1%,成型时间为40分钟时比成型时间8分钟的拉伸强度高18.1%。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/0a68c222-a98b-4ce0-8483-007857c01f46.jpg" title=" IMG_1367.jpg" alt=" IMG_1367.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告人:北京理工大学 刘刘教授 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:有限元模型修正结合数字相关技术在复合材料本构参数识别中的应用研究 /span /p p   由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。而材料表征技术、无损检测技术、疲劳机构分析及失效分析等测试技术,可以有效的为复合材料的安全使用寿命提供保障。刘刘主要介绍了基于数字图像相关技术(DIC)和有限元模型修正(FEMU)相结合的方法,及在复合材料本构参数识别中的应用。研究结果表明,通过对高孔隙率陶瓷基复合材料的拉伸和v型缺口剪切试验,提取了具有参数的复杂本构模型。且该方法可以扩展全场变形测量的能力,以识别疲劳损伤的演化过程。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/be041841-694b-47d4-ba82-6213e8ffd3a0.jpg" title=" IMG_1454.jpg" alt=" IMG_1454.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告人: 赛默飞世尔科技大客户经理 蔡传忠 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:DVC技术在生物力学变化的体积表征中的应用 /span /p p   数字体积相关(Digital Volume Correlation,简称DVC)技术能测量出三维图像变形前后,任意位置的采样点的位移和应变,可用于分析物体内部的三维变形情况。该技术相关研究发表文章量也在逐年增长。蔡传忠主要介绍了DVC技术的最新进展、实验设计方法等,接着讲解了赛默飞Amira-Avizo软件在DVC方面的应用,该软件提供高性能3D可视化和分析解决方案,适用于科学和工业数据。最后结合在生物学、地质学、化学等领域的应用实例讲解了Amira-Avizo在DVC方面实际应用方案。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/ec41418e-9740-48db-9b42-054b928ce463.jpg" title=" IMG_1437.jpg" alt=" IMG_1437.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告人:京都工艺纤维大学 西谷 圭吾博士 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:注射工艺制造碳纤维复合材料界面性能评价 /span /p p   西谷 圭吾在报告中表示,PP和PC复合材料的界面性能可以通过100摄氏度热水处理碳纤维得以提高。纤维取向和残余纤维长度两个因素对注塑产品拉伸强度的影响要大于对其界面剪切强度的影响。而关于注塑成型的界面剪切强度的计算,Kelly Tyson方程计算相比微滴包埋拉出测试法更加精确。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/7be59fa3-7b34-4a3a-90e8-faffde76e4db.jpg" title=" IMG_1518.jpg" alt=" IMG_1518.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告人: 梅特勒-托利多技术应用顾问 陈成鑫 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:热分析技术在复合材料中的应用 /span /p p   常用热分析手段包括DSC、TGA、TMA、DMA等,陈成鑫首先按照检测项目不同分类,逐一介绍了此四种热分析技术在复合材料表征中的推荐应用情况。接着分别以案例形式介绍了四种热分析技术的应用方案,包括DSC技术用于环氧树脂固化度的测试、评价固化促进剂的影响、复合材料的后固化等 TGA技术用于玻璃纤维含量、固化产品质量的鉴定等 TMA技术用于纤维方向的影响、PCB爆板时间、凝胶时间等 DMA技术用于通过Tg进行质量监控、聚合物-填料体系的分析、取向的影响等。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/56c1974c-4d25-49cd-b907-b498e00faa28.jpg" title=" IMG_1676.jpg" alt=" IMG_1676.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告人:天氏欧森测试设备(上海)有限公司大客户经理 黄安超 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:视频引伸计在复合材料测试中的应用 /span /p p   黄安超首先介绍了聚合物基复合材料(PMC)和纤维增强材料(FRP)两种材料测试的国际标准情况,包括椎板/层板相关标准近40项、结构相关标准近20项、夹层结构相关标准近10项等。接着分别介绍了PMC/ FRP平面拉伸试验、平面压缩、平面剪切、弯曲、层间剪切强度、断裂韧性等相关力学试验的通用试验标准、夹具和附件的选择等。接着,介绍了天氏欧森视频引伸计在实时测试工程中的同心度检测应用,包括论证力学测试过程中实时同心度偏差、计算方法、搭配对中系统实时微量调整同心偏移等。天氏欧森光学视频引伸计在高低温应用方面,有效使用温度为,高分子材料(-150度至280度)、金属材料和复合材料(-150度至600度)等 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/14ce7618-35f3-4c01-bfa9-2c5e74468a8c.jpg" title=" IMG_1673.jpg" alt=" IMG_1673.jpg" / /p p style=" text-align: center "    span style=" color: rgb(0, 176, 240) " 报告人:中国航发北京航空材料研究院检测研究中心 王雅娜博士 /span /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) "   报告题目:复合材料ENF试验Ⅱ型层间断裂韧性数据处理方法综述 /span /p p   复合材料层板结构层间较弱,分层易于发生,王雅娜通过对层间断裂韧性原理的计算推导,与大家分享了ENF试验Ⅱ型层间断裂韧性数据处理方法综述。结论表示,面积法和J积分法不受线弹性断裂力学的限制。柔度标定方法依靠试验数据的拟合确定柔度表达式,试验过程比基于梁理论的方法繁琐,被认为具有更高精度。在三种柔度标定方法中,CCI方法被认为是准确性和实用性的最佳组合。J积分法不依赖裂纹的观测,利用对ENF试验件梁截面旋转角度的测量,对裂纹长度在试验件宽度方向分布不均的情形具有显著的优势,是一种很有前景的方法。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201905/uepic/59201d77-0202-4df7-bbe1-603fc910da73.jpg" title=" 互动.png" alt=" 互动.png" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 现场互动 /span /p
  • 多位大咖相聚直播间,共探复合材料性能表征与评价
    p style=" text-align: justify text-indent: 2em " 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了快速发展。 /p p style=" text-align: justify text-indent: 2em " 为进一步促进全国各地高校、科研院所、企业等相关从业人员进行表征与检测技术交流,仪器信息网将于2020年6月15日举办“复合材料性能表征与评价”主题网络研讨会,邀请领域内杰出专家和业内人士围绕复合材料力学与物理性能、损伤与破坏、宏微观多尺度模拟、疲劳特性等方面带来精彩报告,并为参会人员搭建网络互动平台进行学术交流。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/f990c2d9-422f-4a10-98d7-bc7101e12c9f.jpg" title=" 1920_420cl.jpg" alt=" 1920_420cl.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) font-size: 20px " 会议日程 /span /strong /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 20px " /span /p table border=" 0" cellspacing=" 0" cellpadding=" 0" style=" border-collapse: collapse " tbody tr class=" firstRow" td width=" 15" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span 13:30-14:00 /span /p /td td width=" 204" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 聚合物基复合材料疲劳试验方法 /span /p /td td width=" 266" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 陈新文 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 中国航发北京航空材料研究院 /span span style=" color:black" ) /span /p /td /tr tr td width=" 15" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" color:black" 14:00-14:30 /span /p /td td width=" 213" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 复合材料力学性能试验解决方案 /span /p /td td width=" 266" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 王斌 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 力试(上海)科学仪器有限公司 /span span style=" color:black" ) /span /p /td /tr tr td width=" 15" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" color:black" 14:30-15:00 /span /p /td td width=" 213" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 陶瓷涂层膨胀系数与残余应力测定 /span /p /td td width=" 266" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 包亦望 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 中国建筑材料科学研究总院 /span span style=" color:black" ) /span /p /td /tr tr td width=" 15" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" color:black" 15:00-15:30 /span /p /td td width=" 213" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 磁电弹复合材料多物理场耦合光滑有限元计算与表征 /span /p /td td width=" 266" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 周立明 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 吉林大学 /span span style=" color:black" ) /span /p /td /tr tr td width=" 15" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" color:black" 15:30-16:00 /span /p /td td width=" 213" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 面向未来——联用技术在材料表征中的应用 /span /p /td td width=" 266" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 刘文广 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 珀金埃尔默企业管理(上海)有限公司 /span span style=" color:black" ) /span /p /td /tr tr td width=" 15" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" color:black" 16:00-16:30 /span /p /td td width=" 213" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 湿热环境下复合材料机械连接结构破坏行为 /span /p /td td width=" 266" style=" background: white border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 程小全 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 北京航空航天大学 /span span style=" color:black" ) /span /p /td /tr tr td width=" 15" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" color:black" 16:30-17:00 /span /p /td td width=" 213" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 特种复合材料的研究 /span /p /td td width=" 266" style=" background: rgb(230, 230, 230) border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体 color:black" 黄培 /span span style=" color:black" ( /span span style=" font-family:宋体 color:black" 重庆大学 /span span style=" color:black" ) /span /p /td /tr tr td width=" 15" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span 17:00-17:30 /span /p /td td width=" 213" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 基于分级测试数据校验的大型复合材料结构失效行为的预测方法 /span /p /td td width=" 266" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p span style=" font-family:宋体" 白瑞祥 /span span ( /span span style=" font-family:宋体" 大连理工大学 /span span ) /span /p /td /tr /tbody /table p style=" text-align: center " span style=" color: rgb(0, 112, 192) font-size: 20px " strong 报告嘉宾 br/ /strong /span /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/202006/uepic/2702bdfb-fa29-4ce0-b537-ab7299b5ecb0.jpg" title=" 1.PNG" alt=" 1.PNG" style=" text-align: center max-width: 100% max-height: 100% " / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/4065661e-41f1-4875-aa78-2a6be8ee4bb3.jpg" title=" 2.PNG" alt=" 2.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/f5505dd7-ec87-4bb4-bc5f-aee0b5dcf952.jpg" title=" 3.PNG" alt=" 3.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/40aa02ea-5a92-472c-97b7-657b4439abfb.jpg" title=" 4.PNG" alt=" 4.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/f657fd15-9168-4b26-a9fb-e9feeafee8aa.jpg" title=" 5.PNG" alt=" 5.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/61edc5a2-b3cb-4648-835c-037da8b6c49d.jpg" title=" 6.PNG" alt=" 6.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/0e135f99-ecd2-44b6-9ef3-d229cdbbc1d9.jpg" title=" 7.PNG" alt=" 7.PNG" / /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8ec911db-d514-4c11-9e33-3c2bd148f5ab.jpg" title=" 捕获.PNG" alt=" 捕获.PNG" / /p p style=" text-align: justify text-indent: 2em " 本次网络研讨会免费参会,并设有答疑交流环节,诚挚欢迎各地高校、科研院所、企业等复合材料相关从业人员参与。 /p p style=" text-align: center text-indent: 0em " span style=" font-size: 20px " strong span style=" color: rgb(0, 112, 192) " 报名方式 /span /strong /span /p p style=" text-align: justify text-indent: 2em " 1、点击 span style=" color: rgb(0, 0, 0) " 此处 /span a href=" https://www.instrument.com.cn/webinar/meetings/FHCL/" target=" _self" style=" text-decoration: underline " span style=" color: rgb(0, 112, 192) " 链接 /span /a 后报名。 /p p style=" text-align: justify text-indent: 2em " 2、扫描下方二维码进行报名: /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/pic/ef40df0f-cee5-4549-98bd-8975e7fe1230.jpg" / /p p br/ /p
  • 直播预告!第四届材料表征与分析检测技术网络会议之热性能分会场
    仪器信息网讯 材料表征与检测技术,是关于材料的成分、结构、微观形貌与缺陷等的分析、测试技术及其有关理论基础的科学。是研究物质的微观状态与宏观性能之间关系的一种手段,是材料科学与工程的重要组成部分,是材料科学研究、相关产品质量控制的重要基础。仪器信息网将于2022年12月14-15日举办“第四届材料表征与分析检测技术网络会议(iCMC 2022)”,两天的会议将分设成分分析、表面与界面分析、结构形貌分析、热性能四个专场,邀请材料科学领域相关检测技术研究与应用专家、知名科学仪器企业技术代表,以线上分享报告、在线与网友交流互动形式,针对材料科学相关表征及分析检测技术进行探讨。为同行搭建公益学习互动平台,增进学术交流。为回馈线上参会网的支持,增进会议线上交流互动,会务组决定在会议期间增设多轮抽奖环节,欢迎大家报名参会。会议报名链接:https://www.instrument.com.cn/webinar/meetings/icmc2022/ 热性能主题专场会议日程:报告时间报告题目报告人专场四:热性能(12月15日下午)14:00--14:30高性能热电材料与近室温制冷器件中国科学院物理研究所研究员 赵怀周14:30--14:50锂离子电池热性能表征和失效分析沃特世科技-TA仪器部门TA仪器高级热分析应用专家 林超颖14:50--15:10高压重量法在储氢材料研究中的应用沃特世科技-TA仪器部门服务工程师 陈刚直播抽奖:Waters-TA定制三合一数据充电线10个15:10--15:40电子封装碳基热管理材料中国科学院宁波材料技术与工程研究所研究员 林正得15:40--16:10反钙钛矿化合物的反常热膨胀性质及其关联物性的研究北京航天航空大学教授 王聪16:10--16:50有机硅在热界面材料应用研究现状中国科学院深圳先进技术研究院研究员 曾小亮直播抽奖:《2021年度科学仪器行业发展报告》5本嘉宾介绍:中国科学院物理研究所研究员 赵怀周中科院物理所研究员,课题组长。长期从事热电材料、热电输运新机制、热电器件与应用系统研究。在新型高性能近室温热电材料、热电器件和热电应用系统研究方面积累了丰富的经验,取得重要创新成果,在基于镁基新材料的下一代热电制冷模块研究方面形成了国际特色。先后在Joule、Nat. Comm、Sci. Adv 、JACS、ACS Nano、Nano Energy、和Adv. Funct. Mater等著名刊物发表第一或者通讯论文70余篇,申请及授权国际国内专利10余项,文章引用次数2000余次。主持及参与国家自然科学联合重点及面上基金、国家重点研发计划等重要课题10余项。在国内外大型学术会议担任分会场主持人和特邀报告人二十余次,担任第12届中国热电材料大会会议主席。第三届中国发明协会发明创业成果奖二等奖(排序第一位)。【摘要】 报告聚焦热电材料和技术在全固态制冷方面的原理、优势和广泛应用,介绍了物理所热电研究团队近年来在热电新材料、新器件与新型应用系统方面的创新性工作。主要包括: (1)制备出全尺度可服役的基于Mg3(Sb,Bi)2新材料的热电制冷器件,基于新材料在性能投入比方面的显著优势,其有望颠覆一直以来行业上基于碲化铋的传统热电半导体制冷材料体系。(2)助力解决热电领域卡脖子材料与设备问题,在碲化铋缩颈热挤压制造相关设备和工艺方面获得进展,对实现我国热电制冷微器件的国产化有帮助作用。申请及授权发明专利和实用新型专利多项。该技术近期已在广西见炬科技有限公司、河北东方电子有限公司等热电企业获得推广。 (3) 提出地热-热电协同空调系统的思路并制造出原理样机。该系统可以替代现有商业空调的功能,同时具备分立式管理、无震动噪音和零碳排放的优势,有望实现规模应用。沃特世科技-TA仪器部门高级热分析应用专家 林超颖浙江大学高分子材料硕士,现任美国TA仪器高级热分析应用专家。长期从事各类材料的热分析、力学性能表征及失效分析等工作。【摘要】 锂离子电池在使用过程中,一旦正极材料、负极材料、电解液等的分解,或隔膜熔断、破裂导致正负极材料直接接触,或由于热管理设计缺陷导致锂离子电池出现安全性能的问题,会严重危害生命和财产安全。TA仪器从锂离子电池的热性能和力学性能出发,全方位剖析锂离子电池的安全性能。沃特世科技-TA仪器部门服务工程师 陈刚2000年毕业于华东理工大学,本科学历。从事德国Rubotherm磁悬浮天平系列设备的中国国内技术支持和售后服务近16年。曾多次前往德国原厂接受培训。熟悉国内磁悬浮天平用户及应用情况,对高压吸附领域有一定了解。曾工作于荷兰安米德公司,北京儒亚公司,于2017年加入美国TA公司,并工作至今。【摘要】 磁悬浮天平的发明是重量法应用领域里具有革命意义的里程碑。大大拓宽了重量法的应用范围,并附带了独特的性能优势。磁悬浮天平也为储氢材料研究带来了积极的帮助。中国科学院宁波材料技术与工程研究所研究员 林正得林正得,博士,研究员,博士生导师。入选2014年中国科学院"百人计划"、2013年浙江省"千人计划"等人才项目。2008年博士毕业于台湾清华大学材料科系。2012–2014年于美国麻省理工学院(MIT)电子学实验室和机械系担任博士后,2014年6月加入中国科学院宁波材料所。自加入材料所以来,已发表了ACS Nano、Advanced Science、Biosensors & Bioelectronics等SCI论文149篇,全部文章的引用数高于10,000次。现担任Biosensors & Bioelectronics期刊副主编。团队目前围绕着石墨烯应用开展研究课题,包含:导热应用、热界面材料、以及生医传感器件。【摘要】 近年来,基于氮化镓等第三代半导体的高频率、大功率芯片得到了国家和产业的重点关注与广泛应用;为了提升内核效能,新一代芯片架构正朝向微缩化和3D互联方向发展,致使芯片的功率密度大幅提高,发热量随之迅猛增加。芯片的“热失效”成为了制约5G、航空航天等精密装备内功率器件发展的主要瓶颈之一。要解决目前电子封装的散热难题,需要对既有热管理材料进行升级迭代,并有效连接与统合这些部件,形成从芯片至散热器的最优传热路径。本团队针对电子封装中“芯片–衬底–均热板–热沉”热输运串联系统的关键零部件进行了攻关开发,克服了复合材料中二维材料填料的“定制调控排列取向”与“强化异质传热界面”两个共性难题,研发出“超低热阻碳基热界面材料”、“轻质高导热碳/铝散热器”、“柔性绝缘氮化硼导热膜”等系列新型热管理材料,从而提出面向新一代芯片架构的综合解决方案,实现拥有自主知识产权的创新技术与产品。北京航天航空大学教授 王聪北京航空航天大学集成电路科学与工程学院教授,博士生导师。在Adv. Mater.,Phys. Rev. 系列, Chem. Mater. Appl. Phys. Lett.,等刊物上发表论文超过240篇, SCI收录200篇以上,SCI他引超过3500次,H=33,2020-2021两年连续被国际机构爱思唯尔(Elsevier)评为“中国被高引学者”;授权国家发明专利14项。2012年获得教育部自然科学二等奖。中国物理学会理事,中国晶体学会理事。长期从事固体反常热膨胀行为、自旋电子学反铁磁材料及器件、光学薄膜领域的研究工作。【摘要】 反钙钛矿化合物Mn3XN系列材料由于“晶格-自旋-电荷”的强关联性,发现诸多具有应用价值的物理特性,如零/负膨胀、压磁、磁热、近零电阻温度系数、反常霍尔效应等。在NMn6八面体中, Mn-Mn直接交换作用和Mn-X-Mn间接磁交换作用共存,形成复杂的磁结构, 且其磁结构对成分、温度、压力、磁场等的变化非常敏感,因此在多场耦合下产生丰富的物理特性。我们利用变温X射线衍射,中子衍射技术,结合热膨胀仪、差热分析(DSC)、磁、电测量等解析了这类化合物随温度、压力变化的晶体结构和磁结构,热膨胀系数及其关联的磁、电输运行为等。本报告将重点探讨Mn3XN(X: Ga, Ni, Ag, Zn)系列化合物在温度和压力场下的磁结构演变规律,以及由其诱导的物性变化,如负(零)热膨胀、反常电输运、压磁、压热效应等。中国科学院深圳先进技术研究院研究员 曾小亮中国科学院深圳先进技术研究院研究员,工学博士,中国科学院青促会会员、深圳市“孔雀计划”海外高层次人才(C类),入选2022年“全球前2%顶尖科学家榜单”,Google学术总引用次数7276,h指数47,荣获国际知名学术期刊Composites Part A,2020年“Top 5优秀审稿人”、国际学术期刊《Nanomaterials》(JCR 一区,影响因子:5.076)和《Frontiers in Materials》(JCR 二区,影响因子:3.515)的客座主编。以第一作者或通讯作者在Advanced Functional Materials, ACS Nano, Chemistry of Materials, Small等国际期刊上发表SCI论文50多篇,申请专利30多项,合著书籍《聚合物基导热复合材料》。2010年以来,主持或参与国家自然科学基金项目、科技部重点研发专项、科技部重大科技计划“02专项”,广东省创新科研团队项目等项目。【摘要】 在现代电子元器件中,有相当一部分功率转化为热的形式,耗散生热严重威胁电子设备的运行可靠性。更令人担忧的是,随着后摩尔时代的到来,电子元器件的封装技术由传统的二维封装向2.5维或更高级的三维封装方向发展。三维封装技术虽然提高了电子元器件运行速度、实现了电子设备的小型化和多功能化,但是也导致器件所产生的热量进一步的集中,采用常规的热传导技术已经无法实现热量有效传导。“热管理”的问题已经成为阻碍现代电子元器件发展的首要问题之一。有机硅是制备热界面材料最为常用的基础树脂,本报告将围绕如下三个方面阐述有机硅在热界面材料应用研究现状: 1. 芯片热量来源及趋势 2. 有机硅热界面材料研究现状 3. 热界面材料用有机硅未来发展趋势会议报名:https://www.instrument.com.cn/webinar/meetings/icmc2022/
  • 仪器表征,科学家揭示铁基催化剂稳定性与性能的提升新方法!
    【科学背景】铁基费托合成(FTS)催化剂是广泛用于合成气转化的重要催化剂,由于其产品分布灵活、反应条件广泛且成本低廉,因而成为了研究热点。然而,铁基催化剂在反应过程中,其铁碳化物活性相容易被生成的水氧化成Fe3O4,这导致催化性能逐渐下降,成为该领域面临的一大挑战。有鉴于此,武汉大学定明月教授、Yanfei Xu等课题组在“Nature Communications”期刊上发表了题为“Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer–Tropsch synthesis”的最新论文。科学家们提出了通过表面疏水化来保护铁碳化物活性相的策略。疏水表面能够在合成气转化过程中减少催化剂核心附近的水浓度,从而有效抑制水对铁物种的氧化。这一策略不仅增强了催化剂的C-C偶联能力,还促进了长链烯烃的形成。此外,研究进一步表明,适当的壳层厚度在稳定铁碳化物活性相、避免Fe3O4的生成以及实现良好催化性能方面发挥了关键作用。这一研究为开发高效、稳定的铁基FTS催化剂提供了新的思路。【科学亮点】(1) 本研究首次采用表面疏水化的方法,对铁基费托合成(FTS)催化剂进行改性,成功保护了铁碳化物活性相。通过实验发现,疏水表面能够在合成气转化过程中减少催化剂核心附近的水浓度,从而有效抑制了水对铁物种的氧化,保持了铁碳化物的稳定性。(2) 通过调控催化剂表面的疏水壳层厚度,实验进一步揭示了壳层厚度在稳定铁碳化物活性相中的关键作用。结果表明,适当厚度的疏水壳层不仅有效防止了Fe3O4的形成,还显著增强了催化剂的C-C偶联能力,促进了长链烯烃的生成,最终实现了优良的催化性能。这一研究为铁基FTS催化剂的性能优化提供了新的思路和方法。【科学图文】图1:结构表征与催化性能。图2:亲水性和疏水性催化剂的相变行为。图3:通过表面疏水化抑制水对碳化铁的氧化图4:壳层厚度对相结构与催化性能的影响。。图5:氯对相变行为及CO吸附行为的影响。【科学结论】本文揭示了通过表面疏水化策略有效保护铁基费托合成催化剂中铁碳化物活性相的重要性。传统铁基催化剂在合成气转化过程中,铁碳化物活性相容易受到生成的水的氧化,从而导致Fe3O4的形成,严重影响催化性能。而通过在催化剂表面引入疏水层,可以显著减少水在催化剂核心区域的浓度,抑制铁物种的氧化过程,进而稳定铁碳化物活性相,增强催化剂的C-C偶联能力,促进长链烯烃的生成。此外,本文强调了壳层厚度在这一过程中的关键作用,适当的壳层厚度不仅能有效防止Fe3O4的形成,还能在保持催化剂良好性能的同时,确保其活性相的稳定性。此研究为开发高效、稳定的铁基FTS催化剂提供了新的思路和方法。原文详情:Xu, Y., Zhang, Z., Wu, K. et al. Effects of surface hydrophobization on the phase evolution behavior of iron-based catalyst during Fischer–Tropsch synthesis. Nat Commun 15, 7099 (2024). https://doi.org/10.1038/s41467-024-51472-w
  • 高分子表征技术专题——热重分析技术及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 热重分析技术及其在高分子表征中的应用Thermogravimetric Analysis Technology and Its Application in Polymer Characterization作者:谢启源,陈丹丹 ,丁延伟*作者机构:中国科学技术大学,火灾科学国家重点实验室,合肥,230026 中国科学技术大学,合肥微尺度物质科学国家研究中心,合肥,230026  作者简介:  丁延伟,男,1975年生. 博士、中国科学技术大学合肥微尺度物质科学国家研究中心教授级高级工程师. 自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,现任中国化学会化学热力学与热分析专业委员会委员、全国教育装备标准化委员会化学分委会委员、中国分析测试协会青年学术委员会委员. 曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2020),以主要作者发表SCI论文30余篇,获授权专利7项. 编著《热分析基础》《热分析实验方案设计与曲线解析概论》.    摘要  热重分析技术(TGA)是在程序控制温度和设定气氛下表征材料受热过程中的质量随温度或时间变化的高精度研究工具,具有重复性好、灵敏度高和热过程控制精准等优点. 近年来,TGA技术在高分子材料领域得到了广泛应用,促进了高分子材料热稳定性、组成分析以及热分解机理等材料细观热响应特性的深入研究. 本文分别从热重分析基本原理、仪器校准、实验方案设计、实验操作、热重曲线综合解析以及各环节中易出现的不当操作、异常数据与解决方案等方面进行阐述,并给出了在高分子科学研究领域中的典型应用案例、未来发展趋势及机遇与挑战. 在实际的应用中,基于TGA与傅里叶红外光谱(FTIR)、示差扫描量热法(DSC)、气相色谱-质谱联用(GC/MS)等技术的联用分析,将有利于进一步揭示高分子材料在不同气氛和热激励等条件下的详细热响应信息,为性能优异的新型高层分子材料研发与设计、热解机理及燃烧蔓延动力学等领域提供支撑和指导.  AbstractThermogravimetric analysis technology (TGA) is an efficient research tool that characterizes the weight of materials with temperature or time under a program controlled temperature and a certain atmosphere. One of its advantages is that the TGA results can be well repeated with high sensitivity. In addition, its heating process is accurately and flexibly controlled according to real thermal environment of samples. In recent years, TGA is popularly used in the field of polymer materials, which promotes the detailed analyses on their thermal stability, composition analysis and thermal decomposition mechanismet al. This review will cover many aspects of TGA, including basic principles, calibration, scheme design, curve analysis, as well as those common errors during sample preparation and experiments, abnormal data figuring and the solution for them. Additionally, the typical application cases of TGA in polymer science, as well as their opportunity and challenges in future, are also presented. In the applications of TGA technology, more information about the thermal-response behavior of polymers under different atmosphere and heating conditions could be revealed by TGA coupled with FTIR, DSC, GC/MS technology. In this case, not only the weight information of sample during a specific heating condition, but also the endothermic and exothermic behaviors, released gas components at the same time can be analyzed together. They are helpful for new polymer design, thermal decomposition mechanism and flame spread models development.    关键词  热重分析技术  曲线解析  热稳定性  热解机理  案例分析  Keywords  Thermogravimetric analysis technology  Curve analysis  Thermal stability  Thermal decomposition mechanism  Case analysis   1热重分析技术简介  1.1热分析技术  作为现代仪器分析方法的一个重要分支,热分析技术在许多领域中得到了广泛应用[1~3]. 经历一百余年发展,热分析法与色谱法、光谱法、质谱法、波谱法等一起,构成了物质理化性能分析的最常用手段[4].  热分析技术是研究物质随温度变化而发生物理过程与化学反应的一种实验技术[4]. 该技术的主要理论基础包括:物质的平衡状态热力学、非平衡状态热力学、不可逆过程热力学和动力学等,针对微量样品,通过精确测定其宏观参数,如质量、热量、体积等随温度的变化关系,研究物质随温度变化而发生的物理和化学变化[4].  我国于2008年5月发布国家标准《GB/T 6425-2008热分析术语》[5],其中,对热分析技术的定义为:“在程序控制温度(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术.”  国际热分析与量热协会(International Confederation for ThermalAnalysis and Calorimetry,ICTAC)根据所测定的物理性质不同,将现有的热分析技术划分为9类17种[6].  1.2热重分析技术的定义  热重分析技术(thermogravimetry,TG)是指在程序控制温度和一定气氛下连续测量待测样品的质量与温度或时间变化关系的一种热分析技术,主要用于研究物质的分解、化合、脱水、吸附、脱附、升华、蒸发等伴有质量增减的热变化过程[4,5]. 基于TG法,可对物质进行定性分析、组分分析、热参数测定和动力学参数测定等,常用于新材料研发和质量控制领域. 在实际的材料分析中,TG法也常与其他分析方法联用,进行综合热分析,从而全面、准确地分析材料的各项热性质.  1.3热重分析的数学表达式  根据定义,样品在热重分析过程的质量随温度或时间的变化,可用下式表示:(1)  或(2)  其中,式(1)多用于等温(或包含等温)条件下测得TG实验曲线,而式(2)则多用于非等温条件下的TG实验曲线.  在实际表示中,为突出“测量”过程,常用重量(weight)来代替质量(mass).  1.4微商热重法简介  微商热重曲线(derivative thermogravimetric curve,DTG曲线)是TG曲线进行一次微商的结果. 因此,DTG曲线表征样品质量随温度或时间的变化速率,其峰值即为样品质量减小的最大速率. 对于线性升温加热条件下的DTG曲线,其纵坐标单位一般是%/℃,表示温度升高1 ℃时,样品的相对质量变化. 而对于等温实验,DTG曲线纵坐标单位一般是%/s.  微商热重法的数学表达式为:(3)  线性程序控制温度时,也可用下式表式(4)  式中,β为实验中所采用的加热或降温速率,单位℃/min.  如前所述,DTG曲线表征样品质量的变化速率,因此,为进一步分析样品质量变化的加速或减速特性,类似地,可对DTG曲线进行再次微商处理,得到二阶微商热重曲线,即DDTG曲线.目前大多数商品化仪器,DTG曲线可通过仪器自带的微商处理功能直接转换得到. 与TG曲线相比,DTG曲线给出的样品质量随温度的变化速度信息,常常更直接反映了样品失重特性. 图1给出了XLPE在10 ℃/min的加热速率下得到的TG曲线和DTG曲线,由图可见,随着温度的升高,XLPE在410~470 ℃温度区间急剧失重,交联聚乙烯在此温度区间迅速裂解,样品质量减少约95%,DTG曲线失重峰,对应于TG曲线的失重台阶,而由TG曲线,也可见样品受热失重后最终的残余质量.Fig. 1TG and DTG curves of XLPE with the heating rate of 10 ℃/min in air atmosphere.     1.5热重分析的优缺点  1.5.1优点  热重法针对微量样品进行实验,具有操作简便、可重复性强、精度高、响应灵敏快速等优点. 热重法可准确测量物质在不同受热和气氛条件下的质量变化特征. 例如:对于升华、汽化、吸附、解吸、吸收和气固反应等质量可能发生变化的物理和化学过程,都可使用热重法进行检测与分析. 此外,对于熔融、结晶和玻璃化转变等往往不形成质量变化的热过程,也可通过热重分析与其他热分析方法联用,给出所关注热行为所在温度区间的样品质量不变信息,从而支撑所针对热过程的热流分析.  由于热重法所测结果可重复性强且精度高,基于热失重数据的动力学参数计算与分析,也更具可靠性. 此外,热重法仅需微量样品. 因此,针对不同的样品牌号、老化样品的不同区域,都可取样进行细致分析,可深入研究各产品间的细微差异,例如:产品在使用一段时间后的材料分相行为等.  1.5.2缺点  在实际应用中,热重法也存在着一定的局限性,主要包括两个方面:样品质量变化信息表征其复杂热行为的单一局限性、微量样品检测结果与工程尺度样品实际热响应性能的一致性.  首先,对于复杂的材料受热响应性能,热重法主要针对样品在整个受热过程中所形成气相产物溢出而导致的质量减少特征,在不同温度区间或不同受热时刻的细致质量减少信息,是热重分析输出的关键数据. 由于大多物理和化学过程往往都伴随着质量的变化,因此,样品的质量变化信息能够很大程度上表征各温度/时间区间的反应强度,然而,若需进一步确定其中详细的反应机理等信息,单凭热重数据往往并不完备. 因此,可通过将热重技术与其他分析技术联用,综合分析材料的详细热响应行为.  其次,如前所述,针对微量样品,热重分析可实现其测量结果及其后续计算分析的精确性与可靠性等优点. 然而,也正因为所检测样品的微量特性,使其测量结果不一定与工程尺度样品实际热响应性能完全一致,甚至由于实际工程中的复杂传热传质耦合过程,使热重分析不宜简单、直接地进行应用. 因此,一方面,进行热重分析时,应首先清晰掌握材料的实际工程应用背景,科学系统地制定热重实验方案,并进行多工况数据的综合分析,从而确保热重分析数据与实际工程应用场景的吻合与一致 另一方面,在条件具备时,基于热重分析结果,应进行一定的放大尺度条件下的实验研究,综合不同尺度条件下的测量结果,给出材料真实热响应性能.  2热重分析仪及其工作原理  2.1工作原理  热重分析仪(thermogravimetric analyzer)是在程序控制温度和一定气氛下,测量试样的质量随温度或时间连续变化关系的仪器. 测量时,通常将装有试样的坩埚置于与质量测量装置相连的试样支持器中,在预先设定的程序控制温度和一定气氛下,进行实验测量与数据实时采集.  热重分析仪的质量测量方式主要有2种:变位法和零位法[4]. 变位法是根据天平横梁倾斜的程度与质量变化成比例的关系,用差动变压器等检测该倾斜度,并自动记录所得到的质量变化信息. 零位法是采用差动变压器法、光学法等技术测定天平梁的倾斜度,通过调整安装在天平系统和磁场中线圈的电流,使线圈转动抑制天平横梁的倾斜. 由于线圈转动所施加的力与质量变化成比例,该力与线圈中的电流成比例,通过测量电流的变化,即可得到质量变化曲线.  2.2仪器组成与结构形式  热重分析仪主要由仪器主机(程序温度控制系统、炉体、支持器组件、气氛控制系统、样品温度测量系统、质量测量系统等)、仪器辅助设备(自动进样器、压力控制装置、光照、冷却装置等)、仪器控制和数据采集及处理模块组成.图2给出了热重分析仪的结构组成示意图.Fig. 2Schematic of typical TG equipment with the sample in a heating furnace, whose temperature is controlled with a program.     根据试样与天平刀线之间相对位置的不同,可将热重分析仪分为3类:下皿式、上皿式和水平式,其结构框图分别如图3~图5所示.Fig. 3Schematic of TG equipment with the crucibleat lower position of the vertical heating furnace.   Fig. 4Schematic of TG equipment with the crucible at higher position of the vertical heating furnace.   Fig. 5Schematic of TG equipment with the horizontal.     由图3~图5可见,仪器质量检测单元的天平与常规分析天平不同. 该类天平横梁的一端或两端置于气氛控制的加热炉中,可以连续记录试样质量随温度或时间的变化. 温度变化通过加热炉进行程序控制,试样周围温度通常用热电偶实时测量. 热天平和热电偶所测数据,由仪器内置软件进行记录与处理线.  2.3基于热重分析的联用技术简介  如前所述,热重分析仪自身存在一定局限性,通常可将其与其他分析技术联用,从而对样品热响应行为进行全面分析. 常用联用技术如下所述[4].  (1)同时联用技术. 是指在程序控温和一定气氛下,对一个试样同时采用2种或多种热分析技术. 主要包括:热重-示差扫描量热联用(TG-DSC)和热重-差热联用(TG-DTA),它们通常统称为同步热分析技术,简称STA.  (2)串接联用技术. 是指在程序控温和一定气氛下,对一个试样采用2种或多种热分析技术,后一种分析仪器与前一种分析仪器进行串接. 常用可串接联用技术包括:红外光谱技术(IR)、质谱技术(MS)、气相色谱技术(GC)等. 此外,对于串接联用技术,可采用2种联用模式,连续串接和间歇串接模式. 前者模式下,各联用技术均连续采样分析 而后种模式下,最后一级串接仪器进行间歇式采样与分析.  2.4仪器校准与状态评价  2.4.1仪器的校准  为了确保仪器工作正常和数据准确,在热重分析仪正式投入使用之前和使用期间,需分别对仪器的温度和质量测量器件进行校正. 由于不同热重分析仪结构类型的差异,其校准方法存在着一定差别.  2.4.2温度校正  温度校正(temperature correction)是用已知转变温度的标准物质确定仪器的测量值(Tm)和真实值(Ttr)之间关系的操作过程. 通过温度校正,可得到以下关系式:(5)  其中,ΔTcorr为温度校正值.  通过温度校正,可以消除仪器的温度测量值与真实值之间的差别. 例如:当使用熔融温度为156.6 ℃的金属In进行温度校正时,若所测熔融温度为154.1 ℃,则(6)  因此,在温度校正时,测量值应增加2.5 ℃.  进行仪器温度校正后,通常,还应在相同的实验条件下,使用标准物质进行重复实验,验证测量值与真实值之间的偏离程度.  在实际应用中,当温度范围较宽时,通常需要使用具有不同特征温度的系列标准物质,进行多点温度校正. 在实际校正时,可在仪器的校正软件中分别输入相应测量值,由仪器软件生成相应的校正曲线.  对于大多商品化热重分析仪,常用的温度校正方法主要包括以下几种:(15)  取2个实验点T1和T2,则有:(16)  (c) Achar-Brindley-Sharp公式[36],如式(17)所示(17)  采用不同f(α)函数,由以上线性方程的斜率获得E,由截距求得A.
  • 高分子表征技术专题——基于原子力显微镜的单分子力谱技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!基于原子力显微镜的单分子力谱技术在高分子表征中的应用Application of Atomic Force Microscopy (AFM)-based Single-molecule Force Spectroscopy (SMFS) in Polymer Characterization作者:张薇,侯矍,李楠,张文科作者机构:吉林大学超分子结构与材料国家重点实验室,长春,130012作者简介:张文科,男,1973年生. 分别于1997、2002年在吉林大学化学系(学院)获得学士、博士学位,导师为张希教授;2001~2002年于德国慕尼黑大学(LMU)博士联合培养,导师为Hermann E. Gaub教授;2003~2007年于英国诺丁汉大学从事博士后研究. 2007年6月至今,吉林大学超分子结构与材料国家重点实验室教授. 2011年入选教育部“新世纪优秀人才支持计划”;2015年获得国家杰出青年基金资助. 以原子力显微镜及磁镊等技术,从单个分子水平开展超分子作用力及大分子组装结构与组装过程研究,主要研究方向包括:单分子力谱与超分子组装、高分子结晶及力致熔融、核酸-蛋白相互作用、聚合物力化学等.摘要基于原子力显微镜(atomic force microscopy, AFM)的单分子力谱技术以其操作简便、适用面广等优势,成为了单分子领域应用最为广泛的技术之一. 本文阐述了该技术的基础原理与实验技巧,包括仪器构造、工作原理、探针与基底的选择、样品固定、实验操作、单分子信号的获得以及数据处理. 介绍了基于AFM的单分子力谱技术在合成高分子及生物大分子表征中的典型应用及前沿进展. AFM单分子力谱技术将有助于建立合成高分子的链结构、链组成与单链弹性以及链间相互作用与其宏观力学性能间的关联,帮助理解生物大分子的结构、相互作用与其生物功能之间的联系.AbstractAtomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) has been used widely in the investigation of molecular forces because of its friendly user interface (e.g., easy to operate and canwork in liquid, air and high vacuum phase) and worldwide commercialization. This review is aimed to introduce the principle and protocol of AFM-based SMFS including the setup, the working principle, typicalcurves, the choice of AFM tip and substrate, immobilization of samples, manipulation of the device, empirical criteria for single-molecule stretching and data analysis. Recent progresses on the application of AFM-based SMFS in the characterization of synthetic polymers and biopolymers were reviewed. For synthetic polymers, the effects of primary chemical compositions, side groups, tacticity and solvents on the single chain elasticities were discussed. The applications of AFM-SMFS in disclosing the structure of unknown molecule, polymer-interface interactions and polymer interactions in polymer assemblies (e.g., polymer single crystal) were introduced. In addition, the nature of mechanochemical reactions and characterization of supramolecular polymers were realizedvia this technic. For biopolymers, the effects of base-pair number, the force-loading mode (unzipping or shearing) on the stability of short double-stranded DNA (dsDNA) were reviewed. According to this knowledge, the single-molecule cut-and-paste based DNA assembly was then discussed. The typical force fingerprints of long dsDNA, proteins and polysaccharides as well as the force-fingerprint-based investigation of molecular interactions were illustrated. Finally, the application of AFM-SMFS in revealing the intermolecular interactions and the mechanism of virus disassembly as well as the antivirus mechanism of tannin in tobacco mosaic virus were reviewed.Therefore, AFM-based SMFS is essential for revealing the relationship between the conformation/composition of polymer chains and micro/macro-mechanical properties of polymer materials as well as correlating the molecular structure/interaction of biopolymers with their biofunctions. 关键词AFM单分子力谱  合成高分子  生物大分子KeywordsAtomic force microscopy-based single-molecule force spectroscopy  Synthetic polymers  Biopolymers 合成高分子材料自诞生以来,迅速地以其优良的物理、化学及力学性能等在军事、航空航天、医疗及其他民用领域得到了广泛应用. 其力学性能是最基本、最重要的性质之一,同时受到高分子的单链弹性及链间相互作用的影响[1,2]. 因此,建立高分子链一级结构、单链弹性及链间相互作用与材料宏观力学性能间的联系, 对高分子材料的理性设计至关重要. 然而,传统的材料学研究方法,如宏观拉伸实验、X射线晶体衍射、固体核磁及拉曼等技术无论从样品制备到检测均涉及大量分子,体现平均效应,表征宏观力学性能,无法获得单个链或键的性质及行为的相关信息. 此外,传统研究方法也无法连续、动态及精确地体现出单个事件的不同步骤(例如高分子在不良溶剂中的塌缩行为),导致很多重要信息无法获取. 因此,可在纳米尺度精确操纵与测量的单分子技术,例如基于AFM的单分子力谱,被广泛应用于单个分子的结构、功能及其动态行为的研究中[1~5]. 利用该技术,人们获得了溶剂、取代基以及立构规整度等因素对高分子单链弹性的影响,验证并改进了一些经典高分子理论模型[1,6~9]. 该技术还可以研究高分子的构象变化及其在界面的吸附行为,揭示外力诱导下高分子链中化学键类型的变化规律(力化学)[1,10~12]. 同时,该技术还被用于凝聚态(晶体、层层组装薄膜等)中高分子间相互作用的相关研究[13,14].生物大分子(核酸、蛋白质及多糖等)结构与功能的研究对于认识复杂生命过程的本质,了解疾病的发生发展机制以及开发新型药物与生物医用材料至关重要. 因此,AFM单分子力谱技术也被广泛用来研究生物大分子,例如DNA的解链及动态结构变化、蛋白质的折叠与解折叠、生物大分子间的相互作用(病毒的遗传物质与蛋白质外壳的相互作用)等[9,15~20]. 相关研究深化了人们对这些生物分子所参与的生命过程的认识,并为其功能调控奠定了坚实基础.本文将重点评述AFM单分子力谱技术的基础原理、实验技巧以及该技术在合成高分子及天然高分子领域的典型应用及前沿进展.1单分子力谱的基础原理1.1几种典型的单分子力谱技术迄今为止,诞生了许多单分子操纵技术,例如生物膜力学探测技术、玻璃纤维技术、光学镊子(光镊)、磁性珠技术(磁镊)以及AFM单分子力谱技术[9,21~25]. 后3种技术的应用较为广泛. 光镊利用聚焦激光束产生辐射压力形成的光学陷阱来捕获修饰有样品分子的小球,通过移动激光光束控制小球的移动,实现对样品分子的三维操纵,其时间分辨力能够达到10-4 s,被广泛应用于蛋白质折叠及解折叠等研究. 但光镊系统构造复杂,对环境要求极高,有效样品捕获率低以及激光束容易对样品造成光和热损伤等不足亟待解决. 磁镊技术将样品固定在基底与超顺磁性小球之间,利用外加磁场控制磁球,操纵样品分子,例如旋转等 [22]. 因此,磁镊被广泛用于DNA缠绕及解缠绕等研究中. 该技术可以检测低至10-3 pN的力值,也被应用于一些极微小力的测量. 该技术还能同时对多个磁球进行操纵,实现高通量测试. 由于需要通过成像观测磁珠,因而相机的拍摄速度决定了磁镊的时间分辨率,通常在10 -2 s以上. 在众多的单分子力谱技术中,AFM单分子力谱技术的应用最广,理论发展更为成熟 [1~5,9,26,27]. 该技术将样品分子固定在AFM探针与基底之间,通过控制AFM探针的位移来操纵样品分子. 该技术具有较高的时间和空间分辨率,较宽的力学测量范围,可以在真空、水相以及有机相等多种环境下工作,因此被广泛地应用于合成与天然高分子等众多体系中的分子内及分子间相互作用的研究. 综上所述,光镊及磁镊的力学精度稍高,适用于由弱相互作用及熵弹性所控制的力学性质的研究;AFM单分子力谱更适合较强相互作用或者由焓控制的弹性性质的研究. 为了更全面地认识聚合物的结构与力学性质,可以将上述3种单分子力谱技术联合使用.1.2AFM单分子力谱1.2.1仪器构造基于AFM的单分子力谱是AFM的工作模式之一. 因此,其基本构造与AFM相同,主要由位置控制系统(压电陶瓷管)、力学传感系统(AFM探针的微悬臂及其顶端针尖)以及光学检测系统(激光二极管、棱镜、反射镜与四象限光电检测器)三部分组成(图1)[9,21,28,29]. 对压电陶瓷管两端施加电压,可以控制其驱动样品台或AFM探针进行亚纳米精度的位移.z方向的移动用于调整探针与样品间的距离;x,y方向的移动用以调整探针在样品表面的探测位置及范围. 光学检测组件中的激光器将激光照射在微悬臂靠近针尖的一端,再反射到四象限光电检测器上. 当AFM探针受到样品分子的牵拉发生弯曲时,其反射的激光的位置也会随之变化. 据此,可以计算出微悬臂的偏转量,结合微悬臂的弹性系数,可以获得待测样品分子的相关力学信息[3~5].Fig. 1The schematic diagram of AFM-SMFS.1.2.2工作原理实验前,样品分子的一端通过物理吸附、特异性相互作用或化学偶联等方法被固定在基底. 随后,驱动压电陶瓷管使AFM探针逼近待测样品(图2(a)). 如果基底对探针没有长程的吸引或排斥作用,微悬臂将处于松弛状态. 探针与基底接触后,受力向微悬臂上表面方向弯曲,引起二极管的2个象限间的差分信号(pha-b)的变化(图2(a)与2(b),状态2→3). 在此过程中,样品分子会通过化学、物理或特异性作用吸附在探针上,在探针与基底之间形成桥联结构. 随后,探针远离基底并恢复松弛状态(图2(a),4),pha-b也恢复初始数值. 探针继续远离基底,桥联于探针与基底间的样品分子受到拉伸,导致微悬臂向针尖方向偏转(图2(a),5),引起pha-b的增加(图2(b),5). 最后,桥联结构中稳定性最薄弱的部分发生断裂,微悬臂迅速恢复为不受力的松弛状态(图2(a),6),表现为pha-b的突然回落(图2(b),6)[1,9,21,29]. 每个完整的逼近-回缩过程都会产生pha-b对应压电陶瓷管位移的原始曲线(图2(b))[29].Fig. 2(a) Schematic illustration of the basic working principle of AFM-SMFS (b) Original volt-piezo displacement curves (c) Typical force-extension curves.Fig. 3Electron microscopy images of a commercial Si3N4 AFM probe. Fig. 4Molecular immobilization based on (I) physical absorption, (‍Ⅱ) specific binding, (‍Ⅲ) gold-thiol chemistry, (‍Ⅳ) silanization and enzymatic biosynthesis.Fig. 5Immobilization of thiol-labeled DNA based on silanization and bifunctional PEG.Fig. 6Typical curves obtained in constant velocity (a) and force-clamp mode (b), respectively.原始曲线经过校正才能正成为最终的力-拉伸长度曲线(图2(c))[1,2,4,9,21,29]. 将具有弹性的微悬臂看成弹簧,根据胡克定律F=kcΔx(kc为微悬臂弹性系数,Δx为微悬臂偏转量)可以计算出微悬臂受到的作用力,即样品分子内或分子间的作用力.kc通过对微悬臂在远离基底时热振动所获得的能量谱的积分即可获得;Δx利用图2(b)中斜线部分(状态2→3)的斜率(s),即Δx=s-1pha-b就可以计算出. 样品分子的拉伸长度通过从原始数据横坐标记录的压电陶瓷管的位移中扣除Δx获得. 至此,pha-b对应压电陶瓷管位移的原始曲线被成功地转化为样品分子的力-拉伸长度曲线.1.2.3力曲线及其含义AFM针尖逼近和远离样品表面的一个循环中可以获得2条力曲线,称为逼近力曲线与回缩力曲线(图2(c))[1,2,4,9,21]. 逼近力曲线上B区域的形状可以给出样品模量等信息. 例如:当AFM探针接触较软的样品时,受到的排斥力随位移缓慢增加;而接触硬度较大的样品时,受到的排斥力快速增加,B区域的力信号与水平基线之间形成近90°的直角. 对于回缩力曲线,C-D区域可以给出单分子弹性性质、链结构信息以及分子内、分子间相互作用强度等定量信息.2AFM单分子力谱实验技巧2.1探针与基底的选择AFM探针直接影响力学探测的稳定性、精确度及测量范围[1,2,4,9,21,29]. 其材质通常是硅或氮化硅,由针尖、微悬臂及承载微悬臂的基片组成(图3). 针尖通常是四面体形状,最尖端的曲率半径(tip radius)为几个到几十纳米,高度(tip height)通长为3~28 µm. 微悬臂有矩形和三角形2种,长度为7~500 µm,厚度为0.5~7 µm. 其材质及几何尺寸均对共振频率和弹性系数有重要影响,需要根据实验体系来选择探针. 对于弱相互作用体系(例如双链DNA的解拉链)[30],应选择相对柔软,即弹性系数小的探针;而强相互作用体系(例如:共价键强度的测量)[31],则需选择相对坚硬,即弹性系数较大的探针. 值得注意的是,刚性较大的探针在应力松弛时其内部储存的能量释放速度更快,更适于研究多重键的连续打开与形成的动态过程,例如聚酰胺(PA66)单晶中聚合物链在受力熔融过程中的黏滑运动(stick-slip)[32]. 此外,一些公司也生产了许多功能化的AFM探针. 例如:满足基于巯基-金的化学分子偶联的镀金AFM探针;为了增加激光束在微悬臂上表面的反射率,只在上表面蒸镀金属涂层(铝或金等)的探针等. 然而,只存在于微悬臂上表面的镀层,往往导致其上下表面的膨胀系数产生差异,引起热漂移[33]. 为了减小该热漂移,有些探针只在其微悬臂的尖端进行有限的金属蒸镀(例如MLCT-BioDC型号探针). 如需增加时间分辨率,可以选用超短探针[34]. 但超短探针的弹性系数通常较大. 科研人员曾利用离子束刻蚀的方法将微悬臂做成镂空结构,同时保证了时间分辨率和弹性系数[35]. 然而,使用较小尺寸微悬臂时,激光容易“漏射”到样品表面,发生反射,与微悬臂表面的反射光产生干涉,导致力曲线出现大幅度波动. 为了减少这种干涉效应,通常可以采取以下几种策略:(1)减小汇聚到微悬臂表面的激光光点的大小,从而减小漏光;(2)选用横向尺寸较大的微悬臂,增大反射面积;(3)选择透明基片(例如玻璃片)固定样品,降低基片的反射率;(4)适当增加样品平面相对于微悬臂平面的角度,降低反射光的相干性.AFM探针需要被牢固地固定在夹具上,以减少系统漂移. 为了提高微悬臂检测的灵敏度,将激光光斑尽可能地照射在微悬臂的最前端. 仪器调试完毕,让整个系统平衡10~30 min,使微悬臂上下表面材质差异所引起的界面张力达到平衡,减小系统漂移. 如在同一个样品上进行力谱探测的时间较长,且实验前期及后期羧甲基化淀粉以及多聚蛋白质的力学指纹谱是被经常采用的单分子拉伸指示剂. 为此,可以将待测分子与已知指纹图谱的分子进行串联(图7)[49]. 需要注意的是待测体系的力学稳定性要大于内标分子产生力学指纹谱所需的力值.Fig. 7Basic strategy to isolate/identify single chain/molecule pair stretching.2.5力谱数据的分析处理单分子力谱数据可以给出的信息包括长度及力值的定量信息. 为了更精确地描述这些定量信息,通常需要对大量力学信号进行统计分析[1]. 常用的统计方法是将所得数据以柱状图形式呈现,进行高斯拟合,得出最可几值.此外,还可以利用自由连接链模型及蠕虫链模型对数据拟合,获得库恩长度、相关长度或者链段弹性系数等信息[1]. 近年来,这些经典模型不断被修正,应用范围逐渐被拓展[56]. 例如:FJC模型中了增加参数Ksegment,表征高分子链中每一个链段的弹性,被修正为可伸长的FJC模型(eFJC). 该模型中,每一个链段类似弹簧,受力过程中伸长,可以更加精确地描述高分子受力时的弹性行为. 为了更好地描述高分子主链的固有弹性,即本征弹性,由量子力学(QM)计算得到的非线性单链焓弹性模量被整合到WLC、FJC及FRC模型中,得到了QM-WLC、QM-FJC与QM-FRC模型[57]. 在特定情况下,如水环境或真空条件,侧基和环境的非共价相互作用会对高分子链弹性产生影响. 为了得到上述情况下高分子主链的弹性,基于两态(two-states)系统的非共价作用动力学被引入,创建了TSQM-WLC、TSQM-FJC及TSQM-FRC模型. 上述修正模型能够更加精确地定量高分子链的结构及性质[57].一些非平衡态体系,例如受体配体的解离、力诱导下的转变等,力加载速率会影响力-拉伸长度曲线的形状. 因此,可以在较大力加载速率范围内,观察上
  • 仪器表征,科学家先进表征揭示电催化CO₂还原新突破!
    【科学背景】电化学还原一氧化碳(CORR)作为一种无碳酸盐的潜在方法,利用可再生电力生产乙烯引起了广泛关注。乙烯作为重要的化工中间体,其制备过程一直受到选择性和能效的限制。传统的碳-碳偶联反应在碱性条件下虽然有效,但同时也伴随着碳酸盐形成导致的CO2利用效率低问题。而在酸性电解质中进行CO2RR虽然能一定程度上解决了碳酸盐生成问题,但却面临能量效率不高的挑战,特别是在乙烯选择性方面表现不佳。为了解决这些问题,科学家们致力于减弱水解离过程,目的是抑制竞争的氢析出反应,进而提高CO2RR的选择性和能效。然而,初步的实验结果表明,减缓水解离过程并非一劳永逸的解决方案,因为使用重水代替普通水反而导致对乙烯的选择性进一步降低,这引发了新的思考和探索方向。有鉴于此,悉尼大学化学与生物分子工程学院李逢旺教授, 中国科学技术大学,合肥微尺度物质科学国家研究中心及化学物理系曾杰教授(国家杰青)联合多伦多大学David Sinton 和 Edward H. Sargent院士合作探索了促进水吸附并降低水解离能量壁垒的新方法。通过将强电子受体7,7,8,8-四氰基喹啉二甲烷(TCNQ)引入铜催化剂表面进行分子修饰,研究团队实现了显著的乙烯产率提升。修饰后的催化剂表现出75%的乙烯法拉第效率,比未修饰的铜催化剂高出1.3倍。在膜电极组件系统中,实现了32%的全电池能量效率,对应乙烯电合成的能量成本为154 GJ t-1。关键的创新在于,TCNQ修饰不仅增强了铜与水分子的相互作用,促进了水解离过程,还降低了CO到乙烯途径中关键中间体的氢化能量壁垒,从而显著提高了乙烯的选择性。通过一系列原位表征和密度泛函理论(DFT)计算,研究进一步揭示了修饰催化剂的作用机制。【科学亮点】(1)实验首次探索了使用7,7,8,8-四氰基喹啉二甲烷(TCNQ)对铜催化剂进行分子修饰,以提高CO电还原产乙烯的效率和选择性。(2)实验通过在流动电池中测试修饰后的催化剂,发现其乙烯法拉第效率达到75%,比未修饰的铜催化剂高出1.3倍。此外,在膜电极组件(MEA)系统中,实现了32%的全电池能量效率,对应的乙烯电合成能量成本为154 GJ t-1。(3)通过一系列原位表征和密度泛函理论(DFT)计算,揭示了TCNQ修饰如何增强铜与水分子的相互作用,降低了关键中间体*CHCOH到*CCH的氢化能垒,从而提高了CO到C2H4的选择性。【科学图文】图1:水解离对CORR产品分布的影响。图2. Cu-100TCNQ催化剂的表征。图3. TCNQ修饰铜电催化剂的CORR性能。图 4:TCNQ修饰铜催化剂促进C2H4形成的机理研究。【科学结论】本文探索利用强电子受体修饰铜催化剂以激活水解离过程,从而提升CO到C2H4途径的效率和选择性。通过这一设计原则,研究展示了铜与7,7,8,8-四氰基喹啉二甲烷(TCNQ)的相互作用如何增强水分子的吸附和解离能力,进而降低了关键中间体*CHCOH到*CCH的氢化反应能垒。这些发现不仅在实验层面证实了修饰催化剂在电化学还原反应中的潜力,而且通过密度泛函理论(DFT)计算提供了理论支持。此外,通过流动电池和膜电极组件系统的实际性能评估,显示出高达75%的C2H4法拉第效率和32%的能量效率,这为碳中和和可持续化学品生产提供了有前景的路径。这项工作不仅拓展了催化剂设计的思路,还为实现高选择性和能效的多碳产品生产提供了新的理论和实验基础。原文详情:Liang, Y., Li, F., Miao, R.K. et al. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00568-8
  • 仪器表征,科学家制备表征新型高效催化剂!
    【科学背景】单原子催化剂(SACs)由于其高效的原子利用率和可调节的化学微环境,在电催化、热催化、光催化以及仿生酶催化等领域展示了卓越的活性和选择性。然而,由于潜在活性位点结构在材料表面上的分布不均,精确控制或识别其配位位点成为了一个挑战。X射线吸收精细结构(XAFS)表征和密度泛函理论(DFT)计算通常被用来探索SACs中活性位点的结构,但这些方法往往无法提供关于单个原子详细信息和三维结构,存在着实验与理论研究之间的差距。为了解决这一问题,清华大学王铁峰教授团队利用一锅法成功合成了Pt(0)单原子嵌入在基于苯-1,4-二甲酸(BDC)的MOFs中。具体地,作者选择了包括UiO-66–X(Zr)、MOF-5–X(Zn)、MIL-101–X(Fe)、NiBDC–X和CuBDC–X在内的MOFs作为载体,并重点研究了Pt1@UiO-66–X(-X&thinsp =-Br、-NH2、-I和-H)系统。作者发现,不同功能基团对Pt加氢活性和烧结抗性具有显著影响,表现出不同的催化活性和稳定性。特别是,Pt1@UiO-66-Br表现出优异的催化性能,其在硝基苯加氢和苯乙烯加氢反应中分别显示出高达37倍和68倍的TOF增益,相较于Pt1@UiO-66-I。此外,作者通过DFT计算揭示了Pt1@UiO-66–Br在300°C钙化时比Pt1@UiO-66–NH2更稳定的原因,这归因于其不同的H2化学吸附中间态配置。【科学亮点】(1)实验首次采用一锅法将Pt(0)单原子稳定地固定在基于苯-1,4-二甲酸(BDC)的金属-有机框架(MOFs)上,包括UiO-66-X(Zr)、MOF-5-X(Zn)、MIL-101-X(Fe)、NiBDC-X和CuBDC-X。(2)实验通过研究不同功能基团(-X&thinsp =&thinsp –Br、–NH2、–I和–H)对Pt1@UiO-66 MOFs中Pt单原子催化活性的影响,得出以下结果:&bull Pt1@UiO-66-Br展现出显著的加氢活性,其转化频率(TOF)比Pt1@UiO-66-I高出37倍(对硝基苯加氢)和68倍(对苯乙烯加氢)。&bull 结果显示,不同配位配体通过调节Pt中心的电子状态和中间体在Pt位点上的吸附行为,影响其催化性能。&bull 在H2气氛中的烧结抗性测试中,Pt1@UiO-66–Br在300°C的钙化条件下表现出比Pt1@UiO-66–NH2更高的稳定性,这一差异与不同的H2化学吸附亚稳态配置有关。【科学图文】图1:Pt1@UiO-66–X的合成与可视化。图2. Pt1@UiO-66–X的光谱表征与合成机理研究。图3. Pt1@IRMOF-3和Pt1@Fe-MIL-101–NH2的表征。图 4:Pt1@UiO-66–X的催化性能。图5. Pt1@UiO-66–X的电子性质。图6. Pt1@UiO-66–NH2和Pt1@UiO-66–Br的热稳定性。【科学结论】本文通过一锅法成功合成了一类新型的单原子催化剂(SACs),其中零价Pt原子被稳定地嵌入到UiO-66–X(–X&thinsp =&thinsp –H、-NH2、-Br和-I)的金属-有机框架中。这一成就不仅在催化领域展示了如何通过有机功能基团调控金属活性位点的方法,也在材料科学中探索了MOFs作为催化剂载体的潜力。首先,作者展示了通过有机配位基团对Pt中心的电子结构和活性具有显著影响。Pt1@UiO-66–Br表现出显著的加氢催化活性,远超过其他配体类型的Pt1@UiO-66。这不仅加深了对Pt在不同环境中电子态的理解,还为设计高效催化剂提供了新思路。其次,作者发现配位配体对单原子Pt在高温下的稳定性具有重要影响。UiO-66–Br和UiO-66-I中的Pt原子能在300°C下保持原子分散状态,而在UiO-66和UiO-66–NH2中则容易发生聚集。这一发现揭示了在设计稳定和持久的单原子催化剂时,配位环境的选择至关重要。最后,作者展望了将此合成策略推广到其他金属和MOFs的可能性,以拓展单原子催化剂在更广泛催化转化中的应用。通过结合实验和理论方法,作者期待未来能深入探索和优化这些设计的催化剂,为解决能源和环境挑战提供新的有效解决方案。原文详情:Liu, S., Wang, Y., Lyu, K.F. et al. A one-pot strategy for anchoring single Pt atoms in MOFs with diverse coordination environments. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00585-7
  • 高分子表征技术专题——扫描电镜技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!扫描电镜技术在高分子表征研究中的应用ApplicationsofScanningElectronMicroscopyinPolymerCharacterization作者:郑鑫,由吉春,朱雨田,李勇进作者机构:杭州师范大学材料与化学化工学院,杭州,311121作者简介:李勇进,男,1973年生.1996年和1999年在同济大学分别获学士和硕士学位,2002年获上海交通大学博士学位.2002~2011年,历任日本产业技术综合研究所JSPS博士后和研究员.2011年加入杭州师范大学,主要从事高分子材料成型加工研究.先后获得高分子成型加工新锐创新奖(2017年)、冯新德高分子奖提名奖(2018年和2020年)、国际高分子加工学会(PPS)的MorandLambla奖(2019年)、浙江省自然科学奖(2020年)等.摘要扫描电子显微镜(scanningelectronmicroscope,SEM)是表征高分子材料微观结构及其组成信息重要的手段之一,具有操作简便、信号电子种类多样且对样品损伤较小等特点.本文系统阐述了SEM的工作原理,通过与透射电子显微镜(transmissionelectronmicroscope,TEM)进行比较,突出了其优势与特色.详细讨论了该技术的测试方法,包括样品制备、仪器参数设定、操作技巧与图像处理,并揭示了获得高质量SEM图像的关键技术.介绍了SEM不同的信号电子成像、SEM与其他仪器联用及SEM原位分析技术在高分子材料表征中的应用与进展.最后,对SEM的发展趋势进行了展望.AbstractScanningelectronmicroscopy(SEM)isoneofthemostimportanttoolsforthecharacterizationofpolymermaterials' microstructureandcomposition.First,itiseasytooperate thentherearevariouselectronicsignalsavailablewhichcontaindifferentsampleinformationforSEMimaging besides,therearelittlesampledamageduringSEMobservation.Inthiswork,theworkingprincipleofSEMwaselucidatedsystematically.Also,acomparisonwasmadebetweenSEMandTEMwithrespecttoworkingprinciple,resolutionandmagnification,viewanddepthoffield,samplepreparation,sampledamageandpollution.Therefore,theadvantagesandfeaturesofSEMwerehighlighted.Inaddition,theexperimentmethodsofSEMwereillustratedindetail,includingsamplepreparation,instrumentparametersettings,operationskillsandimagetreatment.ThekeyfactorswhichdeterminesthequalityofSEMimagewererevealed.ThemainapplicationsofSEMinpolymercharacterizationwereintroduced.Specifically,thesecondaryelectronsimagingwasusedtoinvestigatethemicrostructureofpolymercomposition,compatibilityofpolymerblends,crystalstructureofpolymer,morphologyofpolymerporousmembrane,biocompatibilityofpolymermaterial,self-assemblebehaviorofpolymerandsoon.Besides,thebackscatteredelectrons,characteristicX-ray,transmittanceelectronswerealsousedtorevealthemorphologyandcompositioninformationofpolymersystems.ThecombinationofSEMwithRamanspectrometerandFocusedionbeamandtheinsituSEMtechniqueswereillustrated.Finally,therecenttrendsofSEMdevelopmentwereprospected.关键词扫描电子显微镜  高分子材料  微观结构  组成信息  应用KeywordsScanningelectronmicroscopy  Polymermaterial  Microstructure  Composition  Application 材料的宏观特性是由其组分及微观结构决定的,因此,深入了解材料的微观结构,明确微观结构与宏观特性之间的内在联系对于开发新材料、提升已有材料性能是至关重要的.电子显微镜技术是探测微观世界的重要研究手段之一,在材料的研究和发展历程中发挥了巨大的作用.电子显微镜是在光电子理论的基础上发展起来的,包括扫描电子显微镜(scanningelectronmicroscope,SEM)和透射电子显微镜(transmissionelectronmicroscopy,TEM)两大类.二者在结构、工作原理、对样品的要求等方面有着本质的区别.下文将对其进行详细阐述.由于二者的成像原理不同,所反映出来的样品信息也不尽相同,因此在实际应用中,往往需要二者相互配合,才能揭示材料最真实的微观结构.与TEM相比,SEM具有更大的视野和景深,样品制备相对简单且对样品厚度要求不严格,并且不容易造成样品的损伤和污染,是快速表征材料微观形貌结构的首选技术.自1965年第一台商用扫描电镜问世以来,经过不断的创新、改进和提高,扫描电镜的种类和应用领域也在不断拓展[1].现有的扫描电镜主要包括钨丝/六硼化镧扫描电镜(SEM)、场发射扫描电镜(FESEM)、扫描透射电镜(STEM)、冷冻扫描电镜(Cryo-SEM)、环境扫描电镜(ESEM)等[2].此外,通过配置功能附件,如X射线能谱仪、X射线波谱仪、阴极荧光谱仪、二次离子质谱仪、电子能量损失谱仪、电子背散射衍射仪等,许多扫描电镜除了研究材料微观结构之外,还兼具微区物相分析的功能[3].鉴于扫描电镜在材料微观结构表征中的重要作用,本文将从扫描电镜的结构与工作原理出发,通过与透射电镜进行对比,突出其性能和特点;详细讨论扫描电镜的实验方法与操作技巧,揭示获得高质量扫描电镜图像的关键技术;总结扫描电镜在高分子材料表征中的应用与最新进展;最后,对扫描电镜的发展趋势进行展望.1扫描电镜的结构与特点1.1扫描电镜的结构扫描电镜的内部结构较为复杂,可分为电子光学系统、样品仓、信号电子探测系统、图像显示与记录系统、真空系统这5个主要部分[3].下文将针对这5个主要部分详细展开.扫描电镜实物图及其主要部件如图1所示.Fig.1TheHitachiS-4800cold-fieldemissionSEManditsmaincomponents.1.1.1电子光学系统电子光学系统主要包括电子枪、聚焦透镜、扫描偏转线圈等.其作用是产生用于激发样品产生各种信号的电子束.为了获得较高的信号强度和图像分辨率,通常要求电子束具有较高的亮度、稳定的束流及尽可能小的束斑直径.因此,电子光学系统是扫描电镜中尤为重要的组成部分.电子枪阴极用来提供高能电子束,常见的有钨丝电子枪、六硼化镧电子枪和冷/热场发射电子枪.表1汇总了几种电子枪的性能及相关参数[4].Table1Severalelectrongunsandthemainperformanceparameter.由电子枪阴极发射的电子束初束尺寸通常较大,需通过聚焦透镜将其大幅度缩小方可照射样品并获得较高分辨率的扫描图像.聚焦透镜分为强激磁、短焦距的聚光镜和弱激磁、长焦距的物镜,二者均通过磁场作用改变电子射线的前进方向而使电子束产生汇聚.扫描系统是扫描电镜一个独特的结构,包含扫描发生器、扫描偏转线圈和放大倍率变换器,其作用是使电子束在样品表面和显示屏中作光栅状同步扫描,以获得样品表面形貌信息.这即是扫描电镜的工作原理,可简单总结为“光栅扫描,逐点成像”.下文将对其进行进一步说明.此外,通过改变电子束在样品表面的扫描振幅还可获得不同放大倍数的扫描图像.1.1.2样品仓样品仓位于物镜的下方,用于放置样品和信号探测器.内设样品台,并提供样品在X-横向、Y-纵向、Z-高度3个坐标方向的移动,以及样品绕自身轴旋转R和倾斜T的动作.通过对这5个自由度的选择性控制,可以实现对样品全方位的观察.其中“Z”方向的距离称为工作距离,通常在2~50mm范围内,工作距离越大,观察的视野越大.1.1.3信号电子探测系统信号探测系统包括信号探测器、信号放大和处理装置及显示装置,其作用是探测样品被电子束激发出的各种信号电子,并经放大转换为用以调制图像的信号,最终在荧光屏上显示出反映样品特征的图像.图2给出了电子束激发样品所产生的主要信号电子,包括二次电子(SE)、背散射电子(BSE)、特征X射线、透射电子(TE)、俄歇电子(AS)、阴极荧光(CL)等,及其所反映的样品性能特征的示意图.而不同的信号电子要用不同的探测系统,目前扫描电镜的探测器有电子探测器、阴极荧光探测器和X射线探测器三大类.Fig.2Theoverviewofmainsignalelectronsgeneratedduringtheinteractionbetweenelectronbeamandsample.1.1.4图像显示与记录系统图像显示与记录系统由显像管和照相机组成.显像管的作用是将信号探测系统输出的调制信号转换成图像显示在阴极射线荧光屏上,并由照相机将显像管显示的图像、放大倍率、标尺长度、加速电压等信息拍摄到底片上.1.1.5真空系统为了确保电子光学系统能正常、稳定地工作,防止样品污染,电子枪和镜筒内部都需要严格的真空度.以场发射扫描电镜为例,通常要靠一台机械泵、一台分子泵和一台离子泵联合完成.真空度越高,入射电子的散射越少,电子枪阴极的寿命越长,同时高压电极间放电、打火等风险隐患也会降低.1.2扫描电镜的性能和特点扫描电镜和透视电镜是分析材料微观形貌的2种常用表征手段.为了明确扫描电镜性能和特点,本文将扫描电镜与同为电子显微镜的透射电镜进行全方面比较说明.1.2.1成像原理结合扫描电镜的结构,其成像原理如下:在高压作用下,由电子枪阴极发射出的电子束初束,经聚光镜汇聚成极细的电子束入射到样品表面的某个分析点,与样品原子发生相互作用而激发出各种携带样品特征的信号电子,通过相应的探测器接收这些信号电子,经放大器放大后进行成像,即可分析样品在电子束入射点处的特征.同时,通过扫描线圈驱动入射电子束在样品表面选定区域作从左到右、从上到下的光栅式扫描,实现对选定区域每个分析点的采样,从而产生一幅由点构成的图像.其工作原理如图3(a)所示.扫描电镜是信号电子成像,主要用来观察样品表面形貌的立体(三维)图像.Fig.3SchemeofthestructureandimagingprincipleforSEM(a)andTEM(b).作为电子显微镜的另一大类,透射电镜的总体工作原理与扫描电镜有着显著差别[2].在透射电镜中,由电子枪发射出的电子束初束同样通过聚光镜汇聚成极细的电子束照射在极薄的样品(50~70nm)上.与扫描电镜不同的是,透射电镜通过穿过样品的电子,即透射电子,来反映样品的内部结构信息.携带了样品信息的透射电子经过物镜的汇聚调焦和初级放大后,形成第一幅样品形貌放大像;随后再经过中间镜和投影镜的2次放大,最终形成三级放大像,以图像或衍射谱的形式直接投射到荧光屏上,通过配有电荷耦合器件(chargecoupleddevice,CCD)的相机拍照或直接保存在计算机硬盘中.其工作原理如图3(b)所示.透射电镜是透射成像,用来观察样品在二维平面内的形态和内部结构.1.2.2分辨率和放大倍数分辨率表示对物点的分辨能力,指的是能够清晰地分辨2个物点的最小距离.显微镜的理论分辨率(γ0)可用贝克公式(公式(1))表述.显然,仪器所用光源波长越短,分辨率越高.根据德布罗意公式(公式(2))和能量公式(公式(3)),电子显微镜的电子束波长随加速电压增加而缩短,进而明显提高电子显微镜的分辨率.而仪器的有效放大倍率(M有效)与仪器的理论分辨率是直接相关的.由公式(4)可知,仪器分辨率越高,有效放大倍率越大.当仪器分辨率确定后,其有效放大倍率也随之确定.因此,分辨率才是评价显微镜的核心指标.而我们通常意义上说的放大倍率实际是图像放大倍率,也即屏幕输出比(M)(公式(5)).在超高真空条件下,扫描电镜的水平和垂直分辨率分别可达0.14和0.01nm.放大倍数从10倍到1.5×106倍连续可调;透射电镜的最高分辨率可达0.1nm,放大倍数从几百倍到1.5×106倍连续可调.式中λ为光源波长,n为显微镜内介质的折光率(真空环境时n=1),α为透镜孔径半角.式中h为普朗克常数,m为电子质量,v为电子运动速度.式中e为电子电荷量,U为加速电压.式中γe为人眼分辨率(0.2mm).式中Lm为荧光屏成像区域边长(通常为10cm),Ls为电子束在试样上的扫描区域边长.1.2.3视野和景深视野指的是能看到的被检样品的范围,与分辨率和放大倍率有关;景深指可获得清晰图像的深度范围.扫描电镜的视野(10mm~10μm)比透射电镜(1mm~0.1μm)大得多,景深也比透射电镜大.如图4所示,扫描电镜图像更有立体感,更适合观察样品凹凸不平的细微结构[5].Fig.4TheSEM(a)andTEM(b)imagesforthesamesample(ReprintedwithpermissionfromRef.[5] Copyright(2019)ElsevierLtd.).1.2.4样品制备扫描电镜的样品制备比较简单,对样品的厚度要求不严格,不导电的样品要经过镀膜导电处理(后文将以高分子材料为例,详细介绍扫描电镜样品的制备方法),强磁性样品需消磁后方可观察;而对于透射电镜来说,电子必须穿过样品才能成像,因此样品要很薄,通常要经过特殊的超薄切片进行制备,过程相对复杂.1.2.5样品的损伤和污染在用扫描电镜观察样品时,照射在样品上的束流(10-10~10-12A)、电子束直径(5nm)和加速电压(2kV)都较小,故电子束能量较低.此外,电子束在样品上做光栅状扫描,因此观察过程中对样品的损伤和污染程度较低;而使用透射电镜时,为了使图像有足够的亮度,要用较强的束流(~10-4A)和加速电压(100kV),因此电子束能量较高,且固定照射在样品的某处,因此引起样品的损伤程度较大,易造成样品和镜筒的污染.综上所述,扫描电镜的性能和特点显著,如成像立体感强,放大倍数范围大、分辨率高,不仅对样品具有普适性,且制样简单,观察时对样品的损伤和污染小,此外还可以通过调节和控制各种影响成像的因素和参数来改善图像质量(详见下文),因此是观察材料显微结构的重要工具.2实验方法与技巧要获得一幅优质的扫描电镜图像,需掌握样品制备技术、熟知操作要点并对图像进行必要的处理.下文将以高分子材料为例,对扫描电镜的实验方法与操作技巧进行阐述.2.1样品制备高分子材料扫描电镜样品的制备方法根据要观察的部位、样品形态及高分子本身的性质有所不同.观察块状或薄膜样品表面时,只需将大小合适的样品表面朝上用导电胶黏贴在样品台上;观察块状或薄膜样品内部结构时,通常要将样品置于液氮中,通过淬断获得维持形貌的断口,然后再将断口朝上用导电胶固定在样品台上进行观察.对于较薄且自支撑性较差的薄膜样品,可带支撑层一起淬断.如将载有纳米纤维膜的锡箔纸,或将纤维膜浸水之后进行淬断,更便于得到其断面.此外,黏贴样品时应尽量保持样品平稳、牢固,减少样品与导电胶之间的缝隙,以增加其导电和导热性.有时,为了分辨高分子复合体系的组分分布情况,还需要对样品进行适当的刻蚀,利用选择性溶剂去除复合体系中的某一相,以暴露更多微观细节[6~8],之后再进行清洗、干燥、黏贴、镀膜等步骤.观察粉末样品时,要保证粉末与样品台粘接牢固,在样品仓抽真空时不会飞溅导致电镜污染.根据粉末样品的尺寸,可选择用干法或湿法来制备扫描样品.其中,干法适用于制备尺寸大于2μm的粉末样品.通常在导电胶上负载薄薄一层粉末样品后,要用洗耳球等从不同方向吹掉粘接不牢固的粉末;湿法适用于制备尺寸在2μm以下的粉末样品.首先选择合适的分散液(如水、乙醇等),将粉末样品通过超声处理均匀地分散在其中,随后用滴管将样品溶液滴加到硅片上,待溶剂挥发后固定在样品台上进行下一步处理.对于导电性好的高分子样品,只要用导电胶将要观察的部位朝上粘接在样品台上即可观察[9,10];而大部分高分子材料都是绝缘的,经过高能电子束的持续扫描,样品表面会产生电荷积累,不仅会排斥入射电子,还会干扰信号电子,影响探测器对信号电子的接收,造成图像晃动、亮度异常、出现明暗相间的条纹等现象.这就是所谓的“荷电效应”[11~13].为了解决这个问题,除了要用导电胶将其粘接在样品台上,还可以选择对其进行镀膜处理以提高样品的导电性[11].通常,5nm的镀膜厚度足以改善样品的导电性.对于具有特殊结构的样品,如表面不致密或者起伏较大的样品,可以适当增加镀膜厚度.常用的镀膜材料有碳膜、金膜、银膜、铂膜等.其中,金膜二次电子产率高、覆盖性好,在中低倍(1.5×104倍)以下观察时较常使用.在进行更高放大倍数、更高分辨率分析时,通常会选择颗粒较小的铂膜或金-铂合金膜.而镀膜可以通过真空镀膜和离子溅射镀膜技术来实现.镀膜层的厚度以能消除荷电效应为准.但是,镀膜会掩盖一些样品的微观形貌细节,使得观察结果产生偏差;此外,对于还要进行能谱分析的样品,镀膜也会对结果产生不利影响.此时,可以选择在低压模式下对样品进行观察(详见3.4节),即使不镀膜也可以观察到细微的结构.当使用常规扫描电镜观察时,磁性样品要预先消磁,所有样品还需要经过彻底的干燥处理后方可观察.2.2实验技巧2.2.1仪器参数样品制备完成后,需要对扫描电镜进行操作,调整相应的参数,获取扫描电镜图像.通常,一幅优质的扫描电镜图像要能够清晰、真实地反映样品的形貌,需具备较高的分辨率、适中的衬度、较高的信噪比、较大的景深等.其中,信噪比指一个电子设备或者电子系统中信号与噪声的比例.当扫描过程中采集的信号电子数量太少时,仪器或测试环境的噪声太大,信噪比太低,会导致显示屏上出现雪花状噪点,从而掩盖了样品图像的细节.而较高的分辨率是高质量扫描电镜图像的首要特征.此外,图像的分辨率、衬度、信噪比、景深等特征之间是相互关联的,通过调整电镜的参数可以改变上述特征发生不同效果的变化.(1)加速电压加速电压升高,束斑尺寸减小,束流增大,有利于提高图像的分辨率和信噪比.此外,升高加速电压还能提高二次电子的发射率,但与此同时,电子束对样品的穿透厚度增加,电子散射增强,这些反而会导致图像模糊、分辨率降低.因此,应根据样品的实际情况进行适合的选择.对于高分子材料来说,由于其耐热性和导电性均不佳,为了避免观察、拍摄过程中样品发生热损伤及荷电效应导致图像不清晰,应适当采取较低的加速电压.(2)束流束流是表征入射电子束电子数量的参数,束流与束斑直径之间的关系可用公式(6)表示:其中,i束流,d是束斑直径,β是电子源的亮度,α是电子探针的照射半角.由此公式可知,当其他参数不变时,束流增大,束斑尺寸也会相应变大,此时分辨率会下降,而由于束流增大有利于激发出更多的信号电子,故信噪比提高.所以,束流对分辨率和信噪比的影响是相反.通常,随着观察的放大倍数增加,图像清晰度所要求的分辨率也要增加,因此可适当减小束流,而信噪比可以通过其他途径,如延长扫描时间等手段来弥补.(3)工作距离工作距离是指物镜最下端到样品的距离,对入射至样品表面的电子束的束斑尺寸有直接影响.缩短工作距离可以减小束斑尺寸,进而提高图像分辨率.然而,缩短工作距离会导致电子束入射半角α增大,因此景深变小,图像立体感变差.因此,要得到高分辨率的图像时,需选择较小的工作距离(5~10mm);而要观察立体形貌时,可选用较长的工作距离(25~35mm),获得较大的景深.(4)物镜光阑物镜是扫描电镜中最靠近样品的聚光镜,多数扫描电镜在物镜上都设有可动光阑,用于遮挡非旁轴的杂散电子并限定聚焦电子束的发散角,同时还兼具调节束斑尺寸的功能.所用的光阑尺寸越小,被遮挡的杂散电子越多,在一定的工作距离下,孔径半角越小,因此景深变大,图像立体感变强,同时束斑尺寸减小,图像分辨率提高.另一方面,光阑孔径小会导致入射电子束束流减小,激发出的信号电子数量减少,导致信噪比变差.因此,对于放大倍率不高的扫描样品,或者需要使用能谱仪对样品微区进行化学组成成分分析时,应选用较大孔径的光阑,获得较大的束流和较高的信噪比.通过上述分析可知,影响扫描电镜图像质量的各个因素之间是有内在联系的,在实际操作过程中,需根据样品的自身性质及拍摄的具体需求选择合适的条件参数.2.2.2操作要点为了获得高质量的扫描电镜图像,除了选择合适的仪器参数,还应掌握正确的操作方法.(1)电子光学系统合轴在扫描电镜中,由电子枪阴极发射的电子束通过聚光镜、物镜及各级光阑,最终汇聚成电子探针照射到样品表面并激发出电子信号.其中,到达样品表面的电子束直接决定了扫描电镜的图像质量.因此,在观察样品前必须使上述各部件的中轴线与镜筒的中轴线重合,使得电子束沿中轴线穿行,将光学系统的像差减到最小,这就是“合轴”‍.合轴主要通过镜筒粗调和电子束微调来实现.镜筒粗调又称机械合轴,一般仪器安装后会由专业的维修工程师进行操作.此外,仪器使用过程中发现光斑偏离过大也需要进行机械合轴.以日立SU8000扫描电镜为例,通过调节对应位置的螺丝和旋钮,依次进行电子枪、聚光镜光阑、物镜光阑、各级聚光镜、像散合轴等,此时屏幕中心应会出现一个既圆又亮的光斑,说明机械合轴完成.随后,还要利用扫描电镜的对中电磁线圈所产生的磁场拖动电子束进行精确合轴,又称电子对中.相较于机械对中,电子对中幅度小、合轴精确度高,一般在完成机械对中的基础上进行.实际使用扫描电镜时,如在调焦或消像散时发现图像位置移动,说明电子束对中出现问题,需对其进行校正.电子对中可通过倾斜(tilt)和平移(shiftX/Y)实现.Tilt用于调整电子束的发射倾斜角度,ShiftX/Y用于电子束平面X、Y方向的移动.在调整过程中注意观察图像的亮度,亮度最大时调整结束.(2)放大倍数和视野选择根据观察要求,选择合理的放大倍数及视野,确保观察部位具有科学意义,通过观察到的样品形貌能够回答要解决的研究问题.此外,所观察的画面和角度要符合传统的美学观点,同时具有良好的构图效果.(3)电子束聚焦和相散消除电子束聚焦和相散消除是电镜操作中最核心的步骤.聚焦是指通过旋转Focus旋钮调节物镜的励磁电流,使其在欠焦、正焦、过焦这3种状态下反复切换,并通过对比图像的清晰度来确认正焦的位置,此时束斑直径最小.调焦过程中电子束在样品表面的变化如图5所示.在过焦和欠焦状态下,图像在相互垂直的方向上出现拉长的现象,且在正焦状态下也不清晰,此时就表明出现了像散.在消除像散时,首先要把图像聚焦到正焦状态,随后通过调节消像散器的X、Y旋钮,辅以调焦操作,并观察图像是否被拉长,再根据实际情况,重复上述过程,直到图像清晰为止.图5也展示了不同聚焦状态下有无像散的电子束斑形状及尺寸.显然,消除像散后正焦时电子束斑尺寸更小,因此此时的图像具有更高的清晰度.Fig.5Theshapeandsizechangeofelectronbeamduringfocusingprocessbeforeandaftertheastigmatismbeingeliminated.(4)衬度和亮度调整图像中最大亮度和最小亮度的比值就是图像的衬度,也称对比度或反差,可通过改变扫描电镜中光电倍增管的电压进行调整.亮度则是通过改变电信号的直流成分进行调节.实际上,反差增强时直流成分也会增加,因此相应地亮度也会提高.在进行扫描电镜观察与拍摄时,应交替调节衬度和亮度,保证图像具有清晰的细节和适当的明暗对比.(5)扫描速度调整扫描速度要结合样品自身的性质与观察要求进行调整.通常情况下,低倍观察时用快速扫描,高倍观察时用慢速扫描.当图像要求高分辨率时常用慢速扫描.对于导热性和导电性较差的高分子材料,为避免热损伤和荷电效应,通常要采用快速扫描.(6)样品台角度调整表面较为光滑的样品通常其形貌衬度较弱,通过调整样品台的角度,可以使更多二次电子离开倾斜的样品表面,提高信号电子的强度(如图6所示),进而改善图像衬度和分辨率[14].Fig.6TheSEescapedfromthehorizontal(a)andtilted(b)sample.(7)图像拍摄在实际观察与拍摄时,通常要先在较低的倍率下对整个样品进行观察,之后选择具有代表性的区域再进行放大.遵循“高倍聚焦、低倍拍照”的原则,在高于所需拍摄放大倍数的状态下(1.2~2倍放大倍数)进行聚焦,后回调至所需放大倍数进行拍照,可获得清晰度更高的图像.此外,为了使SEM图像更具有代表性和准确性,一方面,要对具有代表性的观察区域进行一系列放大倍数的拍摄,此时可按从高倍率到低倍率的顺序进行拍摄,过程中无需反复执行电子束聚焦的步骤,仍可获得高清晰度的图像;另一方面,也要进行多点观察,即对样品不同区域进行观察.2.3图像处理图像处理是指在探测器的后续阶段,通过各种图像处理技术,对图像的衬度、亮度或噪声等进行改善,获得一幅细节更清晰、特征更明显的图像.在此过程中,不应改变样品的原始信息.表2总结了仪器参数和操作要点对图像质量的影响[3,4].Table2TheinfluencefactorsoftheSEMimagesandthecorrespondingadjustment.3扫描电镜在高分子材料表征方面的主要应用总体而言,扫描电镜是一个功能十分强大的测试平台,除了最基本的成像功能之外,通过搭配不同的信号电子探测器,或与其他仪器(如拉曼光谱、单束聚焦离子束系统等)联用,或引入原位分析手段等方法,可以对材料的微观结构、元素、相态等进行分析.3.1不同信号电子在高分子材料表征方面的应用常用于高分子材料表征的信号电子为二次电子(SE)、背散射电子(BSE)、特征X射线、透射电子(TE).其中,SE、BSE和特征X射线对样品厚度没有要求,当高能电子束入射至样品后,这3类信号电子的逃逸深度及大致对应的扫描电镜图像分辨率如图7所示[15].而TE要求样品的厚度在100nm以下,因此需要超薄切片处理,且为了获得足够的衬度,通常要对共混物的其中一个组分进行染色处理.通过在SEM平台搭配不同的信号电子探测器,可以得到不同的SEM成像方式.Fig.7TheescapedepthofSE,BSEandcharacteristicX-rayandtheirapproximateimageresolution.3.1.1二次电子成像高能入射电子与样品原子核外电子相互作用使其发生电离形成自由电子,并克服材料的逸出功,离开样品的信号电子即为二次电子SE,其产额为每个入射电子所激发出的二次电子平均个数.二次电子是扫描电镜中应用最多的信号电子.由于其能量较低且容易损失,只有样品表面或亚表面区域所产生的二次电子才能离开样品到达探测器[16].此外,表面形貌的变化对二次电子产额影响较大,图8展示了不同表面形貌,如尖端、平面、斜面、空洞、颗粒等,对二次电子产额的影响.显然,凸出的尖端、较为倾斜的面以及颗粒在经电子束照射后逃逸的SE较多[17].在成像时,SE产额较多的表面形貌通常更亮.这种由于形貌差异导致的图像亮度不同而获得的图像衬度即为形貌衬度.二次电子提供的形貌衬度是扫描电镜最常用的图像衬度.通过搭配二次电子探测器,可以做如下研究:Fig.8SchemeoftheSEyieldondifferentsurfacemicrostructure.(1)高分子复合材料微观结构以高分子为基体,通过引入增强材料(如各种纤维[18~20]、晶须[21~23]、蒙脱土[24,25]、粒子[26~28]等)作为分散相,可以获得具有优异特性的复合材料.通常,其性能强烈依赖于增强材料的尺寸、分散性等.SEM在开发高性能高分子复合材料中发挥了重要作用.于中振等制备了一种具有良好电磁屏蔽性能的聚苯乙烯(PS)/热还原氧化石墨烯(TGO)/改性Fe3O4纳米粒子的复合材料[29].由扫描电镜图像可以清晰地分辨不同形貌的填料,如改性的零维Fe3O4颗粒结构(图9(a))与二维还原氧化石墨烯(RGO)的片层结构(图9(b)).此外,扫描电镜图像也能反映填料的分散情况.如图9(a),RGO在PS基体中表现出明显的聚集,而从图9(c)可见,TGO和改性的Fe3O4纳米颗粒(Fe3O4-60)在PS基体中可以很好地分散.图9(c)所显示的具有许多小空间的微观结构有利于电磁波的衰减.Fig.9SEMimagesof(a)PS/RGO,(b)PS/Fe3O4-60and(c)PS/TGO/Fe3O4-60composites(ReprintedwithpermissionfromRef.[29] Copyright(2015)ElsevierLtd.).刘欢欢等通过扫描电镜对MWCNTs在PP基体中的分散进行了观察,扫描电镜图像中PP基体和MWCNTs表现出明显的衬度差异(图10(a)),是由于二者不同的形貌造成的[30].在较暗的PP基体中出现了大块较亮的MWCNT团聚体,说明其分散性较差.通过引入马来酸酐接枝PP(MAPP)作为增容剂,同时引入Li-TFSI离子液体帮助MWCNTs分散后,图10(b)的扫描电镜图像呈现均一的衬度和亮度,说明此时MWCNTs在PP基体中的分散性有大幅改善.Fig.10SEMimagessofimpactfracturesurfaceofPP/MWCNTs(a)andPP/MWCNTs/Li-TFSI/MAPP(b)(ReprintedwithpermissionfromRef.[30] Copyright(2019)ElsevierLtd.).(2)高分子共混体系相容性对现有高分子材料进行共混是获得高性能新材料的有效途径.共混体系组分之间的相容性是共混改性的基础,其对共混体系的性能起到了决定性的作用[31].因此,对共混体系相容性的研究十分重要,通常要用多种方法,如DSC、FTIR、NMR、SEM等,从不同角度进行研究分析[32].其中,SEM可以直接反应共混物的相形貌,能粗略、直观表征共混体系的相容程度,因此相较于其他方法应用更为广泛.近年来,李勇进和王亨缇等针对不相容共混体系做了一系列工作,通过设计合成并添加反应性增容剂,制备了众多高性能功能化的高分子共混物[5,33~39].在其工作中,大量运用扫描电镜对增容共混体系的相结构、微区尺寸、两相界面等进行研究,并结合透射电镜与红外等其他表征手段,系统研究了不同反应性增容剂的增容机理.图11(a)的扫描电镜图像中,较大的分散相尺寸以及较差的界面黏附性说明了增容前的共混体系是完全热力学不相容的;加入反应性接枝共聚物作为增容剂后,分散相尺寸明显细化,并形成了双连续的相形貌,同时界面也有显著增强(如图11(b)所示).图11(c)的透射电镜图像同样印证了增容后共混体系相容性得到改善的结论[36].Fig.11(a)SEMimageofpolyvinylidenefluoride(PVDF)/poly(lacticacid)(PLLA)=50/50blendwithoutcompatibilizer SEM(b)andTEM(c)imagesofPVDF/PLLA=50/50blendwithcompatibilizer(ReprintedwithpermissionfromRef.[36] Copyright(2015)AmericanChemicalSociety).(3)高分子的晶态结构晶态和非晶态结构是高分子最重要的2种聚集态,其对材料的性能有着重要的作用.扫描电镜为研究高分子的结晶形态提供了更直观的视角[40~42].为了更清晰地观察晶体及其细微结构,如片晶等,通常要对样品进行选择性的刻蚀,以去除晶体中的无定形区[43~46].Aboulfaraj等用扫描电镜对等规聚丙烯(iPP)的球晶结构进行了详细的研究[46].扫描样品经抛光处理,得到平整、光滑的观察面,随后浸泡在含1.3wt%高锰酸钾、32.9wt%浓H3PO4和65.8wt%浓H2SO4的混合溶液中去除PP球晶中的无定型部分,经清洗、干燥、喷金后用扫描电镜进行观察.从图12(a)~12(d)的SEM图像中可以分辨出衬度明显不同的2种PP的球晶结构,其中暗的是α-球晶而亮的是β-球晶.之所以出现这种对比效果,与电子束照射在不同表面形貌的样品上时二次电子的产额不同有关.首先,α-球晶的片晶沿径向和切向交互贯穿呈互锁结构,因此刻蚀后表面平整,在进行扫描电镜观察时,入射电子的径向扩散很弱;作为对比,β-球晶以弯曲的片晶和束状晶体结构为特征,因此刻蚀后表面较为粗糙,可以产生更多的二次电子供探测器接收.通过调整样品台的旋转角度,可以根据衬度的变化清楚地分辨出PP的2种球晶.不同旋转角度对应不同二次电子的产额,如图12(e)和12(f)所示.Fig.12SEMimagesofPPplateobservedatdifferenttiltangles:(a)0°,(b)20°,(c)40°and(d)60° Schemeofthereflectionoflightraysbytheetchedsectionsofα‍-andβ‍-spherulitesunderconditionsofdirect(e)andlow-angle(f)illumination.(ReprintedwithpermissionfromRef.[46] Copyright(1993)ElsevierLtd.).傅强等用扫描电镜研究了高密度聚乙烯(HDPE)/多壁碳纳米管(MWCNTs)复合材料注塑样品从皮层到芯层的微观结构和晶体结构[44].扫描样品同样经过了刻蚀处理.扫描电镜图像明显揭示了复合材料中的纳米杂化shish-kebab晶体,其中CNTs作为shish,而HDPE的片晶作为kebab(图13).此外,由于注塑成型过程中的剪切梯度和温度梯度的影响,纳米杂化shish-kebab晶体结构沿着复合材料注塑样条厚度方向发生变化.Fig.13SEMmicrophotographofthenanohybridshish-kebabatthelayerof400μmalongthethicknessdirectionintheHDPE/MWCNTscomposite.ThesamplewasetchedbeforeSEMobservation.(ReprintedwithpermissionfromRef.[44] Copyright(2010)ElsevierLtd.).此外,扫描电镜在研究结晶-结晶[45,47~49]、结晶-非晶[50,51]聚合物共混体系中的晶体形态方面也有重要的应用.李勇进等系统研究了聚乳酸(PLLA)/聚甲醛(POM)结晶/结晶聚合物共混体系的结晶形态及结晶动力学,通过用氯仿刻蚀掉共混物中的PLLA组分,利用扫描电镜对POM的结晶形态、PLLA的分布等进行了研究[45].由图14可见明显的聚甲醛环带球晶结构,说明即使在PLLA存在的情况下,POM仍会发生结晶形成连续的晶体框架.此外,在POM的环带球晶中观察到许多周期分布的狭缝孔,说明此处原本是PLLA的聚集区.Fig.14SEMimagesobtainedfromquenched(a),141℃(b)and151℃(c)isothermallycrystallizedPOM/PLLA=50/50blendinwhichthePLLAwasetched.(ReprintedwithpermissionfromRef.[45] Copyright(2015)AmericanChemicalSociety).(4)高分子多孔膜的形貌表征膜分离技术是解决水资源、能源、环境等领域重大问题的有效手段,其核心是分离膜[52,53].高分子多孔膜是一类成本相对较低、应用较为广泛的分离膜,但由于其普遍疏水的特性,在实际应用中容易造成污染,导致膜孔堵塞,通量下降,分离效率降低等问题[54].广大专家学者发展了多种改性方法来提高高分子多孔膜的亲水性及防污性[55~59].扫描电镜在开发高性能多孔膜的过程中发挥了重要的作用.徐志康等利用扫描电镜对比了改性前后PP微孔膜的表面孔形貌变化[60];魏佳等研究了不同Gemini表面活性剂体系对多孔膜污染类型及堵塞指数的影响,并用扫描电镜对膜表面形貌和污损情况进行了观察[61];靳健等用扫描电镜表征了聚酰胺(PA)纳滤膜(NF)表面褶皱结构的形成过程[62].从图15的扫描电镜图像中可以清晰地分辨纤维结构、纳米颗粒结构、孔结构及随着反应时间延长所产生的形貌变化.Fig.15Thepreparationofpolyamide(PA)nanofiltration(NF)membranewithcrumpledstructures:Top-viewSEMimagesofpristinesingle-walledcarbonnanotube(SWCNTs)/polyethersulfone(PES)compositemembrane(a),polydopaminemodifiedMOFZIF-8nanoparticles(PD)/ZIF-8loadedSWCNTs/PEScompositemembrane(b)andmorphologychangeofthemembraneimmersedintowaterindifferenttimeafterinterfacialpolymerizationreactiononPD/ZIF-8nanoparticlesloadedSWCNTs/PEScompositemembrane(c-f)(Thescalebarofimagesis1μm).(ReprintedwithpermissionfromRef.[62] Copyright(2018)SpringerNatureLimited).(5)高分子材料的生物相容性聚醚砜(PES)是一类十分重要且应用十分广泛的生物医用膜材料,表现出优异的化学稳定性、机械性能及成膜性[63].然而,其疏水性极大地限制了其在临床领域的应用.为了提高PES作为血液透析膜的使用性能,赵长生等展开了一系列改性研究,旨在改善PES膜的血液相容性[64~66].通过扫描电镜观察血小板在生物材料表面的黏附情况是评估材料血液相容性的重要手段.由图16所示的扫描电镜图像可见,未改性的PES膜有较多的血小板黏附,说明血液相容性较差;而改性过后的PES膜血小板黏附情况有明显改善,对应了较好的血液相容性[65].Fig.16SEMmicrographsoftheadheredplateletsonsurfacesofPES(a)andmodifiedPESHMPU-2(b)andHMPU-8(c).(ReprintedwithpermissionfromRef.[65] Copyright(2014)ElsevierLtd.).(6)高分子自组装行为高分子自组装可以获得具有特定结构和功能的聚合物超分子体系.利用扫描电镜对其组装结构进行观察是揭示其构效关系的重要手段.ByeongduLee等合成了一系列不同接枝密度的嵌段共聚物,并利用SEM对的自组装形貌进行了研究[67].如图17所示,所合成的聚乳酸-聚苯乙烯嵌段共聚物(PLA-b-PS)自组装成了长程有序的片层状结构,且从扫描电镜图像中可以明显看出,随着接枝密度的降低,其片层尺寸也有明显的减小.SEM观察到的这种标度行为为嵌段共聚物及其材料的设计提供了新的思路.Fig.17SEMimagesofpoly(D,Llactide)‍-b-polystyrene(PLA-b-PS)with(a)z=1.00,(PLA)100-b-(PS)100 (b)z=0.75,(PLA0.75-r-DME0.25)110-b-‍(PS0.75-r-DBE0.25)110 (c)z=0.50,(PLA0.5-r-DME0.5)104-b-‍(PS0.5-r-DBE0.5)104 and(d)z=0.25,(PLA0.25-r-DME0.75)112-b-‍(PS0.25-r-DBE0.75),inwhichthegraftingdensities(z)changedbysubstitutingPLAwithendo,exonorbornenyldimethylester(DME)andPSwithendo,exonorbornenyldi-n-butylester(DBE).(ReprintedwithpermissionfromRef.[67] Copyright(2017)AmericanChemicalSociety).2004年,颜德岳和周永丰等创新性地制备了一类两亲性超支化多臂共聚物,其可以在丙酮溶剂中自组装成宏观多壁螺旋管,首次实现了具有不规整分子结构的超支化聚合物的溶液自组装及分子的宏观自组装[68].在之后的工作中,高超和颜德岳等利用这类两亲性超支化聚合物制备了具有高度有序蜂窝状孔结构的多孔膜,并用SEM对其结构进行了详细研究[69].从图18(a)的扫描电镜中可以明显观察到,几乎所有孔都是规整均匀的六边形孔,孔径宽度为5~6mm.此外,由图18(b)和18(c)可见,每个六边形单元都像一个有六面双层墙壁的巢室.这里应用了2个扫描电镜的观察技巧:图18(b)是将样品台倾斜了45°所观察到的形貌,而观察图18(c)时所使用的加速电压高于20kV,此时被顶层覆盖的下层骨架也可以显示出来.Fig.18RepresentativeSEMimagesofthehoneycombpatternedfilmspreparedfromanamphiphilichyperbranchedpoly(amidoamine)modifiedwithpalmitoylchloride(HPAMAM10KC16)onasiliconwafer(a-c).Thesamplewastilted45°intheimagesof(a)and(b).Theacceleratingvoltagewas20kVfor(c).Thescalebarsare20mm(a),2mm(b),5mm(c).(ReprintedwithpermissionfromRef.[69] Copyright(2007)Wiley-VCHVerlagGmbH&Co.KGaA,Weinheim).3.1.2背散射电子成像高能入射电子受到样品原子核的散射而大角度反射回来的电子称为背散射电子BSE,其产额为样品所激发的背散射电子数与入射电子数的比值.当加速电压大于5kV时,背散射电子产额可用公式(7)表示[3]:其中,φ为样品倾斜角,Z为原子序数.显然,背散射电子的产额随样品倾斜角和原子序数的增加而增加,尤其原子序数越高时,其对应的背散射电子图像越亮[70].这种由于原子序数差异导致的图像衬度称为成分衬度.通过在高分辨扫描电镜平台上搭配背散射电子探测器,不仅可以对高分子材料的总体相形态进行分析[71~73],还可以显示出更细节的片晶结构[74,75].其优势在于,BSE成像既不需要像TEM那样的超薄样品,也不需要像二次电子检测或原子力显微镜成像的高压,仍可以显示出较高的衬度、分辨率和信息量.张立群等用原位动态硫化的方法制备了一种可再生的热塑性硫化橡胶(TPV)作为3D打印材料,该TPV包含一种生物基弹性体PLBSI和聚乳酸PLA[72].SEM-BSE图像清晰了反映了动态硫化过程中共混体系的相态变化,其中PLA是亮相而PLBSI是暗相(如图19所示).此外,Bar等利用SEM-BSE观察了聚丙烯共聚物、乙丙共聚物等样品的片晶结构[75].不同于SE成像时通过形貌衬度观察结晶性高分子的晶体及其片晶结构,BSE成像则是通过成分衬度突出片晶形貌.Fig.19SEM-BSEmicrographsofpoly(lactate/butanediol/sebacate/itaconate)bioelastomers/poly(lacticacid)(PLBSI/PLA)(70/30)thermoplasticvulcanizate(TPV)samplescollectedatA(a),B(b),C(c),D(d),E(e)andF(f)pointintorquecurvewhichvariedwithblendingtime(g)andthechemicalreactionofinsitudynamicalvulcanization(h).(ReprintedwithpermissionfromRef.[72] Copyright(2017)ElsevierLtd.).3.1.3X射线能谱分析高能入射电子作用于样品后,部分入射电子打到核外电子上,使原子的内层(如K层)电子激发并脱离原子,而邻近外层(如L层)电子会填充电离出的电子穴位,同时产生特征X射线,如图20所示.该X射线的能量为邻近壳层的能量差(ΔE=EK-EL=hc/λkα)[3].由于不同原子壳层间的能量差值不同,因此利用能量色散X射线光谱仪(EDX)对特征X射线的能量进行分析,可以研究样品的元素和组成[76~80].需要注意的是,EDX通常用于分析原子序数比硼(B)大,含量在0.1%以上的样品,且加速电压必须大于被测元素线系的临界激发能,加速电压对分析的深度、面积、体积等起到重要影响.此外,EDX又包括3种分析方法:点分析、线扫描分析及面分布分析.其中,点分析是指高能入射电子固定在某个分析点上进行定性或定量的分析,当需要对样品中含量较低的元素进行定量分析时,通常只能选用点分析方法;线扫描可以分析样品中特定元素的浓度随特征显微结构的变化关系,是电子束沿线逐点扫描的结果;面分布分析则是指高能入射电子在某一区域做光栅式扫描得到元素的分布图像,又称Mapping图.背散射电子像可以通过图像衬度粗略反映出所含元素的原子序数差异,而特征X射线的Mapping图则可以精确反映出元素构成及其富集状态.在Mapping图中,不同元素可以用不同颜色进行区分,元素富集程度不同则元素的颜色深度不同,因此可以获得彩色的衬度图像.该衬度为元素衬度.在上述的3种分析方法中,点分析灵敏度最高,面分布分析灵敏度最低,但可以直接观察到相分布、元素分布的情况及均匀性.具体实验中,应根据样品自身特点及分析目的等选择合理的分析方法.图21(a)、21(b)和21(c)~21(e)分别为典型的EDX点、线、面分析结果[78,79].Fig.20ThegenerationmechanismofcharacteristicX-ray.Fig.21PointEDXscanonoutersurfaceoftheglassfiber(a)(ReprintedwithpermissionfromRef.[78] Copyright(2011)AmericanSocietyofCivilEngineers) lineEDXscanforCainglassfiber-reinforcedpolymer(GFRP)(b)(ReprintedwithpermissionfromRef.[78] Copyright(2011)AmericanSocietyofCivilEngineers) SEMimage(c)andthecorrespondingEDXmappingscanspectraofC(d)andF(e)elementofpoly(acrylicacid)graftedPVDF(G-PVDF)hollowfibermembrane.(ReprintedwithpermissionfromRef.[79] Copyright(2013)ElsevierLtd.).3.1.4透射电子成像当样品厚度低于100nm时,部分高能入射电子可以穿透样品,从样品下表面逃逸,这部分信号电子称为透射电子TE,其携带了样品内部的结构信息.扫描透射电子显微镜(STEM)是一种通过位于样品正下方的TE探测器接收TE信号的新型SEM,它同时具备了TEM信息量丰富和SEM分辨率较高的优势.在高分子材料表征中,可以利用STEM得到样品的内部形貌、化学成分及晶体结构等信息[36,81~85].如图22(a)和22(b)所示,STEM及其EDX元素分析为研究反应性增容体系的内部形貌及增容剂纳米胶束的分布提供了直观的图像[36];图22(c)的STEM图像揭示了嵌段共聚物的微相分离结构[84];此外,STEM还可用于观察聚合物的片晶结构,由于晶区密度高于无定形区密度,这种密度差提供了衍射衬度,故在STEM图像中晶区更明亮而无定形区较暗(图22(d))[83].Fig.22STEMimagesoftheselectivedispersionofnanomicellesinP((S-co-GMA)‍-g-MMA)compatibilizedPVDF/PLLA=50/50blend(a)anditscorrespondingFelementmapping(b),thesamplewasstainedbyRuO4.(ReprintedwithpermissionfromRef.‍[36] Copyright(2015)AmericanChemicalSociety) STEMimage(darkfieldTEMmode)ofpolystyrene-polyisopreneblockcopolymer(PSt-PI-1)(c),inwhichthebrightanddarkpartsareattributedtothePImoietiesWstainedwithOsO4andPStmoieties,respectively(ReprintedwithpermissionfromRef.‍[84] Copyright(2008)TheRoyalSocietyofChemistry) STEMimageofHDPEspecimenshowingdiffractioncontrastoflamellae(d)(ReprintedwithpermissionfromRef.‍[83] Copyright(2009)AmericanChemicalSociety).综上所述,本文对SE、BSE以及特征X射线成像的特点进行了总结,详见表3.Table3Featuresofimagesobtainedfromdifferentsignalelectrons.3.2SEM与其他仪器联用在高分子材料表征方面的应用3.2.1拉曼光谱(Raman)-SEM联用Raman光谱在高分子科学中应用十分广泛,它提供了各种关于化学结构、分子构象、结晶、取向等的定量信息[86].SEM与共聚焦Raman光谱的联用(RISE)是显微镜学一个重要的里程碑.如图23所示,利用RISE既可以获得高分辨率的电镜图像,还能获得关于化学和结构组成的信息[87].此外,在SEM图像中衬度较弱的样品还能通过其光特性的差别突出显示[88].如图24所示,在SEM图像中不明显的PS微球,通过拉曼成像,可以清晰地分辨其位置.此外,由于拉曼信号强度强烈依赖于颗粒数量,因此拉曼成像中颗粒的亮度也反映了颗粒数量.Fig.23(a)SEMimagesofthematrix(M)ofrecycledpolyvinylchloride(PVC)powders(RPP)andtheselectednanoparticles(P1,P2,andP3)onRPPsurface (b)RamanspectraofnanoparticlesonthesurfaceofRPPrecordedwiththeconfocalRaman-in-SEMsystem(532nmlaser)(ReprintedwithpermissionfromRef.[87] Copyright(2020)AmericanChemicalSociety).Fig.24(a,d)SEMimagesof500nmPSbeads,inwhichtheredsquareindicatedselectedregionforRamanimaging (b,e)Ramanimagesoftheindicatedregionsshowingtheintensityofthe1001cm-1bandafterspectralintegrationovertherangefrom970cm-1to1015cm-1,indicatedbytheblackcrossesin(c).(f)ThespatiallyintegratedRamanintensity,shownin(b)and(e),foreverysingleorclusterofpolystyreneparticles.(ReprintedwithpermissionfromRef.[88] Copyright(2016)JohnWiley&Sons,Ltd.).3.2.2聚焦离子束(focusedionbeam,FIB)-SEM联用FIB是一种将离子源产生的离子束经离子枪加速并聚焦后对样品表面进行扫描的技术.与SEM联用成为FIB-SEM双束系统后,通过结合各种附件,如纳米操纵仪、各种探测器和样品台等,FIB-SEM可用于快速制备TEM样品[89,90]和进行微纳加工[90],此外基于其层析重构技术还能实现材料微观结构的三维重建及分析[91~94].图25(a)~25(a' ' )为利用FIB-SEM制备TEM样品的示意图及原位观察得到的样品SEM图像[89,90].FIB-SEM联用为精确定位制样区域,高效制备TEM样品提供了新的方向.图25(b)和25(b' )展示了FIB在聚合物薄膜样品上铣削微米尺寸孔洞的SEM和TEM图像[90].FIB-SEM在材料的精细加工领域表现出明显的优势.图25(c)的SEM图像中,暗相对应较深的孔,亮相对应较浅的孔,而中等亮度区域对应乙基纤维素(EC)固体.在其对应的三维重构图中(图25(c' )),较硬的多孔EC骨架结构是黑色的,而白色的区域表示孔洞结构[91].三维重构是理解晶粒、孔隙及分相等微结构与性能之间关系的重要手段,通常要经过SEM传统的二维成像手段结合FIB连续切片获取不同位置截面信息,再经过图像处理获得二值化数据之后方可进行三维重构.该方法具有较高的空间分辨率,但同时也存在重构范围有限,重构效率低等不足,这也是后续扫描电镜等技术发展的重要方向.Fig.25(a)SchematicoftheShadow-FIBtechniqueforTEMsamplepreparation(ReprintedwithpermissionfromRef.[89] Copyright(2009)MicroscopySocietyofAmerica) SEMimagesofpoly(styrene-b-isoprene)(PS-b-PI)filmonthesiliconwafers(a' )beforeand(a' ' )aftershadowFIBpreparation(ReprintedwithpermissionfromRef.[90] Copyright(2011)ElsevierLtd.) (b)SEMimageof100pAFIB-milledholesinthepoly(styrene-b-methylmethacrylate)(PS-b-PMMA)diblockcopolymersheetand(b' )thecorrespondingBFTEMimageofPS-b-PMMAsheetmilledfor9s(ReprintedwithpermissionfromRef.[90] Copyright(2011)ElsevierLtd.) (c)SEMimageoftheporousnetworkofleachedethylcellulose(EC)/hydroxypropylcellulose(HPC)filmwhichcontained30%HPC(HPC30)and(c' )itscorresponding3DreconstructionsoftheporousstructureofHPC30.(ReprintedwithpermissionfromRef.[91] Copyright(2020)ElsevierLtd.).3.3原位表征技术在高分子材料表征方面的应用通过配置专门的样品台,如制冷台、加热台、拉伸台,可以在电镜样品室内对样品进行诸如加热、制冷、拉伸、压缩或弯曲等操作,并可以用SEM实时观察样品的形貌、成分等的变化.冷冻扫描电镜(Cryo-SEM)是一种集冷冻制样、冷冻传输与电镜观察技术于一体的新型扫描电镜,需配置制冷台.常规的扫描电镜要求高真空环境,因此样品需干燥无挥发组分.而一些特殊样品,如囊泡、凝胶、生物样品等,在干燥过程中会发生结构变化,通过常规扫描电镜无法观察样品的真实结构.Cryo-SEM则弥补了这一不足,适用于含水样品的观察.图26展示了Cryo-SEM在表征高分子囊泡[95]、凝胶[96]与乳胶[97]方面的应用.显然,Cryo-SEM最大限度地保留了样品的原始结构.Fig.26(a)Cryo-SEMimagesofpolymervesiclesarmoredwithpolystyrenelatexspheres(ReprintedwithpermissionfromRef.[95] Copyright(2011)AmericanChemicalSociety) (b)High-pressurefrozen-hydratedpoly(acrylicacid)(PEG-AA)microgels(ReprintedwithpermissionfromRef.[96] Copyright(2021)AmericanChemicalSociety) (c)Plasticallydrawnparticlesfromfrozensuspensionsofpolystyrenelatexwithadiameterof500nm.(ReprintedwithpermissionfromRef.[97] Copyright(2006)AmericanChemicalSociety).加热台常用于分析金属或合金样品的腐蚀、还原或氧化反应[98,99],在高分子材料表征中少有应用.此外,拉伸台在高分子材料表征中较为常用.图27(a)为碳纤维/环氧树脂共混物薄片沿加载方向的破坏情况[100];图27(b)展示了循环荷载的炭黑填充天然橡胶体系的裂纹尖端演变[101].显然,原位分析可以清晰地反映材料性能变化的第一现场.Fig.27(a)InsituSEMimageof:initialfailureinacarbonfiberreinforcedpolymer(HTA/L135i(902/07/902))laminate(ReprintedwithpermissionfromRef.[100] Copyright(2006)ElsevierLtd.) (b)Evolutionofacracktipduringcyclicloadingafter1,10and21insitucycles,respectively.(ReprintedwithpermissionfromRef.‍[101] Copyright(2010)WileyPeriodicals,Inc.).3.4其他扫描电镜技术在高分子材料表征方面的应用高分子材料通常具有较高的电阻值和较差的导热性,当高能入射电子束在样品表面持续扫描时,样品极易发生荷电效应并受到热损伤,这些对扫描电镜的观察均会造成不利影响.因此,在使用常规扫描电镜时,为了消除荷电效应,提高样品的导热性,一般要在样品表面镀上一层导电薄膜.但是,镀膜有时会掩盖样品表面的形貌信息.低压扫描电镜(LV-SEM)通过低能电子束照射样品,能够实现对高分子材料的极表面进行无损伤的测试观察,因此可以反映材料最真实的微观结构[102~104].LV-SEM对样品表面形貌的灵敏度由图28可见.图28(a)和28(b)均是聚氨酯/二氧化硅复合物的扫描电镜图像,其中,图28(a)样品经过了镀碳处理,且是在20kV加速电压下捕捉的;图28(b)未经镀膜处理,观察所用加速电压为1kV[15].显然,在较低的加速电压下,样品表面细节更清晰,而在较高电压下,由于电子束穿透深度更大,因此表面以下的二氧化硅颗粒也显现出来.Fig.28SEMimagesofpolyurethanesamplefilledwithsilicamicroparticlesobservedatdifferentacceleratingvoltages:(a)20kV(carboncoated),(b)1kV(uncoated).(ReprintedwithpermissionfromRef.‍[15] Copyright(2014)DeGruyter).4扫描电镜的发展趋势随着高分子材料科学的发展,扫描电镜及其应用技术也在不断改进.首先,低压成像技术的发展为观察绝缘、耐热差的高分子材料表面的微观结构提供了可能.同时,即使不喷镀导电膜也能清晰成像,因此可以获得更真实、更细节的微观结构.此外,用传统的扫描电镜无法观察的特殊样品也可以利用低压技术成像,如含水高分子材料或生物样品,几乎不需要对样品进行处理.现有水平下,1kV加速电压成像的分辨率也可以达到1~1.8nm[3].如何在超低压下获得更高分辨率的扫描电镜图像是后续扫描电镜发展要解决的问题.其次,如文中介绍,电子束与样品相互作用所产生的信号电子种类较多,每种信号电子都携带了样品大量的特征信息,通过配置不同的功能附件,可以获得高分子样品形貌、结构、化学组成等信息.一方面,对高分子材料来说,很多信号电子所携带的信息未能被充分解析.如背散射电子(BSE),除了直接成像,其对应的衍射(EBSD)技术还可以揭示材料的晶体微区取向和晶体结构等信息.然而由于高分子材料通常结晶度不能达到100%,因此很难通过EBSD进行检测.另一方面,开发功能更强大的扫描电镜附件也是重要的发展方向.此外,扫描电镜的原位分析技术也为高分子材料科学的发展提供了有力支撑,二者的有效结合实现了对材料宏观-微观多层次结构的分析.最后,基于扫描电镜的二维图像进行拼接、重构三维图像几近年来也获得了极大的发展.这种跨多维度的扫描电镜分析技术在高分子材料的表征中目前还存在很大限制.综上,扫描电镜的发展将会为高分子材料提供更为便捷、信息量更丰富、更准确的表征手段.致谢感谢南京大学胡文兵教授在论文修改过程中给予的帮助和指导.参考文献1PeaseRFW.AdvImagElectPhys,2008,150:53-86.doi:10.1016/s1076-5670(07)00002-x2GuoSuzhi(郭素枝).ElectronMicroscopeTechnologyandItsApplication(电子显微镜技术及应用).Xiamen(厦门):XiamenUniversityPress(厦门大学出版社),20083RenXiaoming(任小明).ScanningElectronMicroscope/PrincipleofEnergySpectrumandSpecialAnalysisTechnique(扫描电镜/能谱原理及特殊分析技术).Beijing(北京):ChemicalIndustryPress(化学工业出版社).20204ZhangDatong(张大同).ScanningElectronMicroscopeandX-RayEnergyDispersiveSpectrometerAnalysisTechnics(扫描电镜与能谱仪分析技术).Guangzhou(广州):SouthChinaUniversityofTechnologyPress(华南理工大学出版社).20085WeiB,LinQ,ZhengX,GuX,ZhaoL,LiJ,LiY.Polymer,2019,185:121952.doi:10.1016/j.polymer.2019.1219526ParkJ,EomK,KwonO,WooS.MicroscMicroanal,2001,7(3):276-286.doi:10.1007/s1000500100747ZhengX,LinQ,JiangP,LiY,LiJ.Polymers,2018,10(5):562.doi:10.3390/polym100505628SumitaA,SakataK,HayakawaY,AsaiS,MiyasakaK,TanemuraM.ColloidPolymSci,1992,270(2):134-139.doi:10.1007/bf006521799SainiP,ChoudharyV,DhawanSK.PolymAdvTechnol,2012,23(3):343-349.doi:10.1002/pat.187310LiW,BuschhornST,SchulteK,BauhoferW.Carbon,2011,49(6):1955-1964.doi:10.1016/j.carbon.2010.12.06911EgertonRF,LiP,MalacM.Micron,2004,35(6):399-409.doi:10.1016/j.micron.2004.02.00312HeinLRO,CamposKA,CaltabianoPCRO,KostovKG.Scanning,2013,35(3):196-204.doi:10.1002/sca.2104813RaviM,KumarKK,MohanVM,RaoVN.PolymTest,2014,33:152-160.doi:10.1016/j.polymertesting.2013.12.00214JoyDC.JMicrosc,1987,147(1):51-64.doi:10.1111/j.1365-2818.1987.tb02817.x15ŠloufM,VackováT,LednickýF,WandrolP.Polymersurfacemorphology:characterizationbyelectronmicroscopies.In:PolymerSurfaceCharacterization.Berlin:WalterdeGruyterGmbH&CoKG,2014.169-206.doi:10.1515/9783110288117.16916SeilerH.JApplPhys,1983,54(11):R1-R18.doi:10.1063/1.33284017JoyDC.JMicrosc,1984,136(2):241-258.doi:10.1111/j.1365-2818.1984.tb00532.x18SathishkumarTP,SatheeshkumarS,NaveenJ.JReinfPlastCompos,2014,33(13):1258-1275.doi:10.1177/073168441453079019KarataşMA,GökkayaH.DefTechnol,2018,14(4):318-32620ForintosN,CziganyT.ComposBEng,2019,162:331-343.doi:10.1016/j.compositesb.2018.10.09821WangWenjun(王文俊),WangWeiwei(王维玮),HongXuhong(洪旭辉).ActaPolymericaSinica(高分子学报),2015,(9):1036-1043.doi:10.11777/j.issn1000-3304.2015.1500722FavierV,ChanzyH,CavailléJY.Macromolecules,1995,28(18):6365-6367.doi:10.1021/ma00122a05323ConverseGL,YueW,RoederRK.Biomaterials,2007,28(6):927-935.doi:10.1016/j.biomaterials.2006.10.03124RameshP,PrasadBD,NarayanaKL.Silicon,2020,12(7):1751-1760.doi:10.1007/s12633-019-00275-625YangJintao(杨晋涛),FanHong(范宏),BuZhiyang(卜志扬),LiBogeng(李伯耿).ActaPolymericaSinica(高分子学报),2007,(1):70-74.doi:10.3321/j.issn:1000-3304.2007.01.01326LiShaofan(‍李‍少‍范),WenXiangning(‍温‍向‍宁),JuWeilong(‍鞠‍维‍龙),SuYunlan(‍苏‍允‍兰),WangDujin(‍王‍笃‍金).ActaPolymericaSinica(高分子学报),2021,52(2):146-157.doi:10.11777/j.issn1000-3304.2020.2018927HuangDengjia(黄‍登‍甲),SongYihu(宋‍义‍虎),ZhengQiang(郑‍强).ActaPolymericaSinica(高分子学报),2015,(5):542-549.doi:10.11777/j.issn1000-3304.2015.1436528FuZhiang(傅志昂),WangHengti(王亨缇),DongWenyong(董文勇),LiYongjin(李勇进).ActaPolymericaSinica(高分子学报),2017,(2):334-341.doi:10.11777/j.issn1000-3304.2017.1628829ChenY,WangY,ZhangH,B,LiX,GuiC,X,YuZ,Z.Carbon,2015,82:67-76.doi:10.1016/j.carbon.2014.10.03130LiuH,GuS,CaoH,LiX,JiangX,LiY.ComposBEng,2019,176:107268.doi:10.1016/j.compositesb.2019.10726831SeyniFI,GradyBP.ColloidPolymSci,2021,299(4):585-593.doi:10.1007/s00396-021-04820-x32KrauseS.Polymer-polymercompatibility.In:PolymerBlends.NewYork:AcademicPress,1978.15-113.doi:10.1016/b978-0-12-546801-5.50008-633WangH,YangX,FuZ,ZhaoX,LiY.LiJ.Macromolecules,2017,50(23):9494-9506.doi:10.1021/acs.macromol.7b0214334FuZ,WangH,ZhaoX,LiX,GuX,LiY.JMaterChemA,2019,7(9):4903-4912.doi:10.1039/c8ta12233d35WangH,FuZ,ZhaoX,LiY,LiJ.ACSApplMaterInterfaces,2017,9(16):14358-14370.doi:10.1021/acsami.7b0172836WangH,DongW,LiY.ACSMacroLett,2015,4(12):1398-1403.doi:10.1021/acsmacrolett.5b0076337FuZ,WangH,ZhaoX,HoriuchiS,LiY.Polymer,2017,132:353-361.doi:10.1016/j.polymer.2017.11.00438DongW,HeM,WangH,RenF,ZhangJ,ZhaoX,LiY.ACSSustainChemEng,2015,3(10):2542-2550.doi:10.1021/acssuschemeng.5b0074039WeiB,ChenD,WangH,YouJ,WangL,LiY,ZhangM.Polymer,2019,160:162-169.doi:10.1016/j.polymer.2018.11.04240GanZ,KuwabaraK,AbeH,IwataT,DoiY.PolymDegradStabil,2005,87(1):191-199.doi:10.1016/j.polymdegradstab.2004.08.00741ChenX,DongB,WangB,ShahR,LiCY.Macromolecules,2010,43(23):9918-9927.doi:10.1021/ma101900n42ShahD,MaitiP,GunnE,SchmidtDF,JiangDD,BattCA,GiannelisEP.AdvMater,2004,16(14):1173-1177.doi:10.1002/adma.20030635543AboulfarajM,G' sellC,UlrichB,DahounA.Polymer,1995,36(4):731-742.doi:10.1016/0032-3861(95)93102-r44YangJ,WangK,DengH,ChenF,FuQ.Polymer,2010,51(3):774-782.doi:10.1016/j.polymer.2009.11.05945YeL,ShiX,YeC,ChenZ,ZengM,YouJ,LiY.ACSApplMaterInterfaces,2015,7(12):6946-6954.doi:10.1021/acsami.5b0084846AboulfarajM,UlrichB,DahounA,G' sellC.Polymer,1993,34(23):4817-4825.doi:10.1016/0032-3861(93)90003-s47YeL,QiuJ,WuT,ShiX,LiY.RSCAdv,2014,4(82):43351-43356.doi:10.1039/c4ra06943a48YeC,CaoX,WangH,WangJ,WangT,WangZ,LiY,YouJ.JPolymSci,2020,58(12):1699-1706.doi:10.1002/pol.2019023249YeC,ZhaoJ,YeL,JiangZ,YouJ,LiY.Polymer,2018,142:48-51.doi:10.1016/j.polymer.2018.02.00450WangJ,DingM,ChengX,YeC,LiF,LiY,YouJ.JMembrSci,2020,604:118040.doi:10.1016/j.memsci.2020.11804051WangJ,ChenB,ChengX,LiY,DingM,YouJ.JMembrSci,2021:120065.doi:10.1016/j.memsci.2021.12006552JhaveriJH,MurthyZVP.Desalination,2016,379:137-154.doi:10.1016/j.desal.2015.11.00953YanX,AnguilleS,BendahanM,MoulinP.SepPurifTechnol,2019,222:230-253.doi:10.1016/j.seppur.2019.03.10354RynkowskaE,FatyeyevaK,KujawskiW.RevChemEng,2018,34(3):341-363.doi:10.1515/revce-2016-005455LiJH,ShaoXS,ZhouQ,LiMZ,ZhangQQ.ApplSurfSci,2013,265:663-670.doi:10.1016/j.apsusc.2012.11.07256ZhangX,LiangY,NiC,LiY.MaterSciEngC,2021,118:111411.doi:10.1016/j.msec.2020.11141157XingC,GuanJ,LiY,LiJ.ACSApplMaterInterfaces,2014,6(6):4447-4457.doi:10.1021/am500061v58ZhengX,ChenF,ZhangX,ZhangH,LiY,LiJ.ApplSurfSci,2019,481:1435-1441.doi:10.1016/j.apsusc.2019.03.11159HuMX,YangQ,XuZK.JMembrSci,2006,285(1-2):196-205.doi:10.1016/j.memsci.2006.08.02360YangYF,LiY,LiQL,WanLS,XuZK.JMembrSci,2010,362(1-2):255-264.doi:10.1016/j.memsci.2010.06.04861ZhangW,LiangW,HuangG,WeiJ,DingL,JaffrinMY.RSCAdv,2015,5(60):48484-48491.doi:10.1039/c5ra06063j62WangZ,WangZ,LinS,JinH,GaoS,ZhuY,JinJ.NatCommun,2018,9(1):1-9.doi:10.1038/s41467-018-04467-363HariharanP,SundarrajanS,ArthanareeswaranG,SeshanS,DasDB,IsmailAF.EnvironRes,2021:112045.doi:10.1016/j.envres.2021.11204564NieS,XueJ,LuY,LiuY,WangD,SunS,RanFZhaoC.ColloidSurfaceB,2012,100:116-125.doi:10.1016/j.colsurfb.2012.05.00465MaL,SuB,ChengC,YinZ,QinH,ZhaoJ,SunSZhaoC.JMembrSci,2014,470:90-101.doi:10.1016/j.memsci.2014.07.03066FangB,LingQ,ZhaoW,MaY,BaiP,WeiQ,ZhaoC.JMembrSci,2009,329(1-2):46-55.doi:10.1016/j.memsci.2008.12.00867LinTP,ChangAB,LuoSX,ChenHY,LeeB,GrubbsRH.ACSNano,2017,11(11):11632-11641.doi:10.1021/acsnano.7b0666468YanD,ZhouY,HouJ.Science,2004,303(5654):65-67.doi:10.1126/science.109076369LiuC,GaoC,YanD.AngewChem,2007,119(22):4206-4209.doi:10.1002/ange.20060442970RobinsonVNE.Scanning,1980,3(1):15-26.doi:10.1002/sca.495003010371MurariuM,FerreiraADS,DegéeP,AlexandreM,DuboisP.Polymer,2007,48(9):2613-2618.doi:10.1016/j.polymer.2007.02.06772HuX,KangH,LiY,GengY,WangR,ZhangL.Polymer,2017,108:11-20.doi:10.1016/j.polymer.2016.11.04573GoizuetaG,ChibaT,InoueT.Polymer,1993,34(2):253-256.doi:10.1016/0032-3861(93)90074-k74BlacksonJ,Garcia-MeitinE,DarusM.MicroscMicroanal,2007,13(S02):1062-1063.doi:10.1017/s143192760707604075BarG,TochaE,Garcia-MeitinE,ToddC,BlacksonJ.MacromolSym,2009,282(1):128-135.doi:10.1002/masy.20095081376BoraJ,DekaP,BhuyanP,SarmaKP,HoqueRR.SNApplSci,2021,3(1):1-15.doi:10.1007/s42452-020-04117-877KorolkovIV,GorinYG,YeszhanovAB,KozlovskiyAL,ZdorovetsMV.MaterChemPhys,2018,205:55-63.doi:10.1016/j.matchemphys.2017.11.00678KamalASM,BoulfizaM.JComposConstr,2011,15(4):473-481.doi:10.1061/(asce)cc.1943-5614.000016879ZhangF,ZhangW,YuY,DengB,LiJ,JinJ.JMembrSci,2013,432:25-32.doi:10.1016/j.memsci.2012.12.04180AbdMutalibM,RahmanMA,OthmanMHD,IsmailAF,JaafarJ.Scanningelectronmicroscopy(SEM)andenergy-dispersiveX-ray(EDX)spectroscopy.In:Membranecharacterization.Amsterdam:ElsevierLtd,2017.161-179.doi:10.1016/b978-0-444-63776-5.00009-781GuiseO,StromC,PreschillaN.Polymer,2011,52(5):1278-1285.doi:10.1016/j.polymer.2011.01.03082FortelnýI,ŠloufM,SikoraA,HlavatáD,HašováV,MikešováJ,JacobC.JApplPolymSci,2006,100(4):2803-2816.doi:10.1002/app.2373183LoosJ,SourtyE,LuK,deWithG,BavelS.Macromolecules,2009,42(7):2581-2586.doi:10.1021/ma802658984HiguchiT,TajimaA,YabuH,ShimomuraM.SoftMatter,2008,4(6):1302-1305.doi:10.1039/b800904j85InamotoS,YoshidaA,OtsukaY.MicroscMicroanal,2019,25(S2):1826-1827.doi:10.1017/s143192761900986386ButlerHJ,AshtonL,BirdB,CinqueG,CurtisK,DorneyJ,MartinFL.NatProtoc,2016,11(4):664-687.doi:10.1038/nprot.2016.03687ZhangW,DongZ,ZhuL,HouY,QiuY.ACSNano,2020,14(7):7920-7926.doi:10.1021/acsnano.0c0287888TimmermansFJ,LiszkaB,LenferinkAT,vanWolferenHA,OttoC.JRamanSpectrosc,2016,47(8):956-962.doi:10.1002/jrs.493189KimS,LiuG,MinorAM.MicroscToday,2009,17(6):20-23.doi:10.1017/s155192950999100390TimmermansFJ,LiszkaB,LenferinkAT,vanWolferenHA,OttoC.Ultramicroscopy,2011,111(3):191-199.doi:10.1016/j.ultramic.2010.11.02791FagerC,BarmanS,RödingM,OlssonA,LorénN,vonCorswantC,BolinDRootzénH,OlssonE.IntJPharmaceut,2020,587:119622.doi:10.1016/j.ijpharm.2020.11962292ČalkovskýM,MüllerE,MeffertM,FirmanN,MayerF,WegenerM,GerthsenD.MaterCharact,2021,171:110806.doi:10.1016/j.matchar.2020.11080693NeusserG,EpplerS,BowenJ,AllenderCJ,WaltherP,MizaikoffB,KranzC.Nanoscale,2017,9(38):14327-14334.doi:10.1039/c7nr05725c94GhoshS,OhashiH,TabataH,HashimasaY,YamaguchiT.IntJHydrogEnergy,2015,40(45):15663-15671.doi:10.1016/j.ijhydene.2015.09.08095ChenR,PearceDJ,FortunaS,CheungDL,BonSA.JAmChemSoc,2011,133(7):2151-2153.doi:10.1021/ja110359f96LiangJ,XiaoX,ChouTM,LiberaM.AccChemRes,2021,54(10):2386-2396.doi:10.1021/acs.accounts.1c0010997GeH,ZhaoCL,PorzioS,ZhuoL,DavisHT,ScrivenLE.Macromolecules,2006,39(16):5531-5539.doi:10.1021/ma060058j98MotomuraS,SoejimaY,MiyoshiT,HaraT,OmoriT,KainumaR,NishidaM.JElectronMicrosc,2015,65(2):159-168.doi:10.1093/jmicro/dfv36399HeardR,HuberJE,SiviourC,EdwardsG,Williamson-BrownE,DragnevskiK.RevSciInstrum,2020,91(6):063702.doi:10.1063/1.5144981100HobbiebrunkenT,HojoM,AdachiT,DeJongC,FiedlerB.ComposPartA,ApplSciManuf,2006,37(12):2248-2256.doi:10.1016/j.compositesa.2005.12.021101BeurrotS,HuneauB,VerronE.JApplPolymSci,2010,117(3):1260-1269.doi:10.1002/app.31707102JoyDC,JoyCS.Micron,1996,27(3-4):247-263.doi:10.1016/0968-4328(96)00023-6103MohaiyiddinMS,OngHL,OthmanMBH,JulkapliNM,VillagraciaARC,Md.AkilH.PolymCompos,2018,39:E561-E572.doi:10.1002/pc.24712104PrimoGA,ManzanoMFG,RomeroMR,IgarzabalCIA.MaterChemPhys,2015,153:365-375.doi:10.1016/j.matchemphys.2015.01.027原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21377&lang=zhDOI:10.11777/j.issn1000-3304.2021.21377《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304
  • 高分子表征技术专题——二维相关红外光谱分析技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!二维相关红外光谱分析技术在高分子表征中的应用Applications of Two-dimensional Correlation Infrared Spectroscopy in the Characterization of Polymers本文作者:侯磊,武培怡 作者机构:东华大学化学化工与生物工程学院,上海,201620作者简介:武培怡,男,1968年生. 1985年,南京大学化学系获学士学位,1998年,德国ESSEN大学获博士学位. 1998~2000年在日本触媒研究中心从事研究工作,2000~2017年任复旦大学高分子科学系教授,2017年起任东华大学化学化工与生物工程学院教授. 2001年入选上海市科委启明星计划、上海市教委曙光计划,2003年入选上海市科委白玉兰科技人才计划,2004年入选上海市科委启明星跟踪计划,获得国家杰出青年基金资助、上海市引进海外高层次留学人员专项资金资助,2005年度入选教育部首届新世纪人才计划,2007年入选上海市优秀学科带头人计划,2016年入选英国皇家化学会会士,2017年获陶氏化学“Dow Innovation Challenge Award”. 主要研究方向包括二维相关光谱在聚合物体系中的应用、智能仿生材料、聚合物功能膜等.摘要二维相关光谱作为一种先进的光谱分析方法,具有提高谱图分辨率、解析动态过程等优势,近来在高分子表征中引起了越来越多的关注. 高分子体系涉及了丰富的相互作用和复杂的结构,分子光谱是常用的表征手段,而借助二维相关光谱分析技术,能够有效识别精细结构、判别动态变化机制,从而显著丰富和完善分析结果. 本文重点围绕二维相关红外光谱,简述了发展历史和基本原理,随后结合实际过程,介绍了相关实验和分析技巧,最后列举了其在高分子表征中的典型应用,展示了二维相关红外光谱分析的特点,具体涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散、天然高分子的结构表征等研究. 希望通过本文的介绍,能够帮助读者更好地理解二维相关光谱,进一步拓展其在高分子领域中的应用.AbstractTwo-dimensional correlation spectroscopy (2Dcos) is an advanced analysis method, which holds great advantages in improving spectral resolutions and interpreting dynamic processes, and has attracted great attention in the field of polymers. Molecular spectroscopy is frequently applied in the characterization of polymers, which involves abundant molecular interactions and complex structures. Under the help of 2Dcos analysis, fine structures as well as dynamic mechanisms within the polymer systems can be effectively identified, thus significantly enriching and improving the analysis results. In this paper, we will mainly focus on the two-dimensional correlation infrared spectroscopy (2DIR). Firstly, the history and basic principles of 2Dcos are briefly introduced. Then, some relevant experimental and analytical techniques are presented based on the actual process. Finally, typical applications of 2DIR in the polymer characterization are demonstrated and the features thereinto are also shown. Particularly, the response mechanisms of temperature-responsive polymers, complex molecular interactions in stretchable ionic conductors, diffusion processes of small molecules in polymer matrix and structures of natural polymers are investigated. It is hoped that this paper will help readers better understand 2Dcos and further expand its applications in the field of polymers.关键词分子光谱   二维相关光谱   高分子   分子相互作用 KeywordsMolecular spectroscopy   Two-dimensional correlation spectroscopy   Polymer   Molecular interactions  高分子材料体系涉及丰富的相互作用和多级结构,这是决定材料最终性能的关键. 分子光谱(红外、拉曼光谱)作为表征高分子材料的常用手段,一方面可以检测不同化学结构/组分所对应的官能团,依据特征吸收峰强度和位置,实现对高分子化学结构的鉴别,另一方面,可以基于不同官能团特征吸收峰的强度和位置变化,判别基团所处的物理或化学环境,实现对体系中复杂相互作用的解析. 随着高分子材料的发展,体系趋向多样化、多功能化,而传统的一维分子光谱存在谱峰重叠严重、分辨能力有限等问题,一定程度限制了分子光谱在复杂高分子体系的应用拓展.二维相关光谱(Two-dimensional correlation spectroscopy,2Dcos)作为一种先进的光谱分析手段,尤其适合于从分子水平探讨各类外扰作用下复杂高分子体系涉及的结构和相互作用变化. 相较于传统的一维光谱,二维相关光谱的优势在于:(1)对于包含许多重叠峰的复杂谱图,起到图谱简化的作用;(2)通过将原始谱图在第二维度上延伸,能够明显提高原始一维谱图的分辨率;(3)谱峰的相关性可帮助判断体系中的相互作用以及峰归属;(4)可用于确定外界刺激下不同过程的发生次序. 本文首先将结合二维相关光谱的发展历史,介绍其基本原理. 其次,围绕动态谱图获取和二维相关分析,介绍二维相关光谱的一些实验和分析技巧. 最后,结合具体体系,重点阐述二维相关光谱在高分子表征中的应用.1 基本原理1.1 发展历史二维相关光谱分析方法的基本概念最早起源于核磁共振(NMR)领域. 二维核磁共振(2DNMR)谱通过多脉冲技术激发核自旋,采集原子核自旋弛豫过程的衰减信号,最后经双重傅里叶变换得到[1]. 通过将核磁信号扩展到第二维度,可以显著提高谱图的分辨率,并且有效简化包含许多重叠峰的复杂光谱. 与此同时,通过选择相关的光谱信号,可以鉴别和研究分子内/间的相互作用. 尽管二维光谱技术在核磁领域取得了快速发展,却在很长一段时间内未能深入到其他光谱分支,如红外、拉曼、紫外-可见吸收、荧光光谱等. 阻碍二维光谱技术发展的一个根本原因在于多重射频脉冲的二维核磁技术可以成功地在精密而昂贵的核磁仪器上实施,却不能在普通的红外、拉曼和紫外-可见吸收等光谱仪器上实现. 因为这类光谱的时间标尺(time scale)远小于核磁共振[2]. 一般来说,核磁时间标尺数量级在毫秒到微秒之间,而红外吸收光谱观察分子振动的时间标尺在皮秒数量级,因此产生二维红外光谱必须采用特殊的新途径.二维相关光谱概念上的突破是由特拉华大学(University of Delaware)的化学家Noda[3,4]提出的. 他把核磁实验中的多重射频励磁看作是一种对体系的外扰(外部扰动). 施加于体系的外扰可以多种多样,如热、磁、机械、电场、化学甚至声波等. 每种外扰对体系的影响是独特而有选择性的,并由特定的宏观刺激和分子相互作用的机理所决定. 因此,包含在动态光谱中的信息类型是由外扰的方式和电磁波的种类所决定的. 外扰的波形没有任何限制,从简单的正弦波、脉冲、到随机的噪音或静态的物理量(如时间、温度、压力等)的变化均可应用于外扰. 由此,Noda设计出一种完全不同的二维光谱实验技术,他用外扰来激发被检测体系的分子,由于被激发分子的弛豫过程慢于振动光谱的时间标尺,因而可使用时间或温度等外扰分辨振动光谱(红外、拉曼)技术来跟踪研究被检测体系受外界扰动而产生的动态变化,结合数学中的相关分析技术,将原有的光谱信号扩展到第二维度,从而得到二维相关光谱(如图1所示). 二维相关光谱实际研究的就是动态光谱的变化[5,6]. 此后,随着二维相关光谱技术的发展,逐渐在荧光光谱、X射线衍射谱、凝胶渗透色谱等也得到了应用. 总体而言,二维相关光谱分析在红外光谱中的应用最为成功,这主要是由于红外光谱的信噪比相对较高,具有高灵敏度、高选择性和非破坏性等特点,能够在分子结构和链段运动等方面提供丰富信息. 另一方面,红外光谱的谱峰重叠严重,解析起来存在一定困难,二维相关光谱的引入可以很好地解决这一问题. Fig. 1 Acquisition procedure of generalized 2D correlation spectra. In the 2D synchronous and asynchronous spectra, red colors represent positive intensities while green colors represent negative ones.1.2 计算原理二维相关光谱考虑外扰变量下(如时间、温度、压力、浓度、电场、磁场等)光谱强度y(v, p)的变化情况,其中v为光谱变量,可以为任何光谱量化的参数,如红外波数、拉曼位移、紫外波长、X射线散射角等,p为外扰变量,可以是任意合理的物理或化学变量,如时间、温度、压力、电场强度、浓度、pH、离子强度等. 对于体系在一定外扰区间(1~N)下引起的动态光谱y˜(v, p)定义为[2,5]:y¯(v)为体系的参考光谱,通常选为平均谱. 参考光谱的定义为实际过程中,可以选择某一个参考点p = Pref处的光谱作为参考光谱. 参考点可以是实验的初始状态或结束状态,也可以直接简单地设为0,这种情况下,动态光谱即为我们观察到的光谱强度.二维相关强度X(v1, v2)表示在外扰变量区间内,对光谱变量v1和v2光谱强度变化y˜(v, p)的函数进行比较. 由于相关函数是计算2个互不依赖的光谱变量v1和v2处强度的变化,因此可以将X(v1, v2)转变为复数形式[2]:这里,组成复数的相互垂直的实部和虚部分别称作同步和异步二维相关强度. 同步二维相关强度Ф(v1, v2)表示随着p值的变化,v1和v2处光谱强度的相似性变化,而异步二维相关强度Ѱ(v1, v2)则表示光谱强度的相异性变化.二维相关光谱的快速计算方式在于对动态光谱进行Hilbert-Noda变换,将其从外扰域转换到频率域上,最终得到二维相关光谱[2,5].二维相关同步谱:二维相关异步谱:其中Mjk代表Hilbert-Noda转变矩阵的第j行第k列的元素,表示为:1.3 解谱规则二维相关光谱图包含同步谱和异步谱2类,图1展示了典型的同步和异步谱图.1.3.1 二维相关光谱同步谱图二维相关光谱同步谱图表现了给定2波数v1和v2处光谱强度的同步或者一致变化. 同步谱图沿对角线(对应于光谱坐标v1 = v2)方向对称,其中相关峰可以出现在对角线上,也可以出现在对角线外. 落在对角线上的相关峰称作自动峰,自动峰强度对应于外扰过程中光谱变化的自相关函数. 在同步谱中,自动峰的强度始终为正,代表了对应波数下光谱强度动态波动的整体程度. 所以,在动态谱图中表现出更大程度强度变化的区域对应的自动峰越强,而那些基本保持不变的峰自动峰强度小甚至没有自动峰. 交叉峰处于同步谱图的非对角线区域,表现了不同波数光谱信号的同步变化. 这样一种同步的变化,反过来,预示着2波数间可能存在一定的相关性. 尽管自动峰的强度始终为正,但交叉峰的强度可正可负. 如果2波数的交叉峰为正,说明这2个波数对应的光谱强度在外扰下同时增加或者同时降低;如果两波数的交叉峰为负,说明这2个波数对应的光谱强度一个增加另一个降低.1.3.2 二维相关光谱异步谱图异步谱图呈现了2个给定波数v1和v2处光谱强度的异步或者相继变化,它关于对角线反对称. 异步谱图中只有交叉峰,而无自动峰. 异步交叉峰只有在2个给定波数的光谱强度发生异相(如延迟或加快)变化时才出现. 这一特点尤其可以帮助区分光谱中的来源不同的重叠峰. 于是,外扰过程中,混合物中的不同组分、材料中的不同相或者化学基团经历不同的变化对光谱强度的贡献能够得以辨别. 即使是2个谱带靠的很近,只要它们的瞬间特征或者时间依赖光谱强度变化模式存在本质不同,它们之间便会出现异步交叉峰. 所以异步交叉峰的出现意味着这些谱带有着不同的来源或者是不同分子环境下的官能团. 异步谱图的交叉峰可正可负,而异步谱图中交叉峰的符号可以用来辅助判断谱带在外扰过程中的变化次序.1.3.3 二维相关光谱读谱规则利用同步和异步谱图的交叉峰,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为方便表述,将同步谱图中(v1, v2)处的峰强度记为Φ(v1, v2),将异步谱图中(v1, v2)处的峰强度记为Ψ(v1, v2). 根据Noda规则[5]:(1)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v1谱带处的强度变化发生先于v2谱带处的强度变化(表示为v1→v2),而如果Ψ(v1, v2) 0,则v2→v1;(2)当Φ(v1, v2) 0时,如果Ψ(v1, v2) 0,则v2→v1,而如果Ψ(v1, v2) 0,则v1→v2. 简单说来,如果(v1, v2)在同步和异步谱图的交叉峰符号一致(都为正或者都为负),则v1→v2;如果(v1, v2)在同步和异步谱图的交叉峰符号不一致(一个为正而另一个为负),则v2→v1.2 实验技巧二维相关光谱作为一种有效的光谱分析手段,是针对一系列动态光谱的数学分析,具体可分为2个过程:动态谱图获取和二维相关分析. 本节将结合实际操作过程,介绍二维相关红外光谱的一些实验和分析技巧.2.1 动态谱图获取2.1.1 样品制备对于固体聚合物样品,溴化钾压片法制备的样品可直接用于透射红外光谱测试;另外,还可使用溶液铸膜(solution casting)法在红外窗片上直接制备得到适合透射红外光谱测试的薄膜. 对于溶液样品,主要应考虑样品的密封问题,避免测试过程中溶剂的挥发. 此外,水溶液或者水凝胶样品,为避免H2O分子的红外吸收对高分子链上C―H和C=O基团吸收峰的影响,可以用D2O作溶剂.2.1.2 测试条件测试模式方面,为得到高信噪比的红外光谱图,一般使用透射模式进行数据采集. 特殊的样品也可选用其他附件,例如对样品表面进行研究时可选用ATR附件. 测试条件方面,为兼顾扫描时间和信噪比,可设置红外谱图分辨率为4 cm-1,扫描次数为32次.2.1.3 测试环境二维相关光谱的特点在于只对光谱的变化敏感,能够显著放大一系列动态光谱的变化情况. 不论样品浓度、厚度如何,如果其处于静态,不发生变化,则对应的二维相关光谱无任何信号. 因此,为了使二维相关光谱的信号只来源于样品本身的结构变化,需要保证测试过程中环境的相对稳定,排除测试环境变化引起的水或二氧化碳吸收峰变化的干扰. 通常,可以借助干燥空气或者氮气吹扫,待测试环境稳定后进行背景采集,随后开展一系列动态光谱的采集.2.2 二维相关光谱分析将采集的一系列动态光谱在特定的软件上进行数学处理,即可得到二维相关光谱同步和异步谱图. 目前,能够快速获得二维相关光谱的软件种类很多[7],大都是免费获取或者是商业化的软件,包括2D Shige、TDCOS、Mat2DCorr、2DCS、Midas 2010、R corr2D、Python Scikit Spectra、Python NumPy等. 关于二维相关光谱的谱图分析,重点在两部分:精细结构的分辨和动态过程的解析. 二维相关光谱异步谱可以区分光谱中来源不同的重叠峰,将异步谱中谱峰对应的波数进行基团归属,即可分辨体系的精细结构. 此外,通过结合同步谱和异步谱交叉峰的符号,可以获得外扰条件下光谱强度发生变化的先后次序关系. 为了方便解析复杂体系谱峰响应的先后次序,根据Noda规则,本课题组提出了一种简便的判断方式[8]. 如表1、2所示,分别读出了图1异步谱中所有谱峰对应的波数及其在同步和异步谱中交叉峰的符号(强度正负),之后将其对应一一相乘,结果如表3所示. 该表中每一个正值都代表它所对应的横轴的波数先于或快于纵轴的波数响应,而每一个负值代表它所对应的横轴的波数后于或慢于纵轴的波数响应. 基于此,可以直观地得出对应动态过程的谱峰响应次序(“→”表示先于或快于):1647→1628→1622→1615 cm-1.Table 1 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 2 Signs of cross-peaks in synchronous spectrum (corresponding to Fig. 1).Table 3 The final results of multiplication on the signs of each cross-peak in synchronous and asynchronous spectra.3 典型应用基于二维相关光谱在判断精细结构和解析动态过程的优势,本节将结合本课题组的研究工作,介绍二维相关光谱在高分子表征中的应用,主要涉及温度响应高分子的响应机制、可拉伸离子导体中复杂相互作用、小分子在聚合物基质中的扩散机理等.3.1 温度响应高分子的响应机制温度响应高分子能够在外界温度发生变化时改变自身的物理或化学性质,形成对环境的感应并产生反馈,在智能传感、药物缓释、可控驱动、过滤分离、智能窗户等领域得到了广泛关注和应用[9~11]. 温度响应高分子的响应过程往往源于分子结构或链构象的变化,分子光谱(红外、拉曼光谱)对分子基团及相应的相互作用十分敏感,非常适合于研究其中的响应机理. 传统的一维分子光谱存在谱峰重叠严重、分辨能力低以及难以捕捉动态过程等不足,借助二维相关光谱分析,可以对温度响应高分子的精细结构和动态响应机制进行深入解析,探讨其中的构效关系.聚(N-异丙基丙烯酰胺)(PNIPAM)在水溶液中呈现LCST (lower critical solution temperature)型转变,即升温过程发生相分离,相转变温度约为32 ℃[12]. PNIPAM分子链同时存在亲水的酰胺基团和疏水的碳链骨架、异丙基侧基,利用变温红外光谱对PNIPAM水溶液升温过程进行跟踪,观察到vas(CH3)和vs(CH2)吸收峰波数的降低以及Amide I区域1625和1649 cm-1处吸收峰的相互转化,表明聚合物链C―H基团的脱水和分子间/内氢键C=O… H―N的形成. 基于二维相关光谱分析,获取了PNIPAM水溶液相分离的微观动力学机理:温度升高首先发生侧基CH3的两步脱水,随后是主链的塌缩和聚集,最后为酰胺氢键的形成,并最终导致了相分离[13].PNIPAM的LCST型转变对溶剂组成也十分敏感. 尽管水和甲醇都是PNIPAM的良溶剂,但在两者以一定比例混合的状态下对PNIPAM则为不良溶剂. 例如:当甲醇和水的体积比为0.35:0.65时,PNIPAM在该混合溶剂中的LCST约为-7.5 ℃,这种现象称为“共不溶”现象. 利用红外光谱和二维相关光谱分析研究PNIPAM在水/甲醇混合溶剂中温度响应行为[14],传统一维红外光谱分析表明,相比于纯水溶液,PNIPAM链在水/甲醇混合溶剂中处于塌缩的状态,并且PNIPAM和甲醇的相互作用明显被削弱了,这主要归因于混合溶剂中水-甲醇团簇的形成导致了PNIPAM链水合位点的减少. 进一步的二维相关红外光谱分析证实了水-甲醇团簇对PNIPAM链水合过程的抑制作用.除此之外,本课题组还探讨了其他LCST型聚合物的转变机理[15~19]、共聚(无规共聚、嵌段共聚)结构对温敏聚合物相变行为的影响[20~22]、温度响应水/微凝胶的体积转变过程[23~25]等,相关工作已进行过系统总结[26,27],这里不再赘述.水凝胶结构与生物组织十分相近,在仿生皮肤等领域获得了广泛关注. 将两性离子单体与丙烯酸(acrylate acid, AA)共聚,通过调节盐浓度,制备得到具有优异可塑性、可拉伸性、自愈合性的超分子聚电解质水凝胶[28]. 同时,聚电解质的离子传输性质赋予了水凝胶对温度、应变、应力的多重感知功能. 基于对干态和湿态凝胶的红外光谱解析,获取了该水凝胶涉及的丰富的分子间/内相互作用,包括聚丙烯酸(PAA)链段羧基之间的氢键相互作用、两性离子链段中磺酸根与季铵盐的静电相互作用、PAA链段羧酸根和两性离子链段季铵盐的静电相互作用等,而这些丰富的分子间/内相互作用是该超分子水凝胶力学性能的决定性因素. 在此基础上,用甲基丙烯酸(methyacrylate acid, MAA)取代丙烯酸,即在PAA链段引入疏水的α-甲基,通过调节MAA和两性离子单体的比例,实现了超分子水凝胶在LCST和UCST (upper critical solution temperature)行为之间的转变[29],如图2所示. 具体地,当两性离子单体与MAA质量比大于1时,聚合物在水溶液中表现出UCST行为;当两性离子单体与MAA质量比等于1时,聚合物在宽的温度范围(10~80 ℃)内均不溶于水;两性离子单体与MAA质量比小于1时,聚合物在水溶液中表现出LCST行为. 同时,LCST和UCST可以通过两性离子和MAA单体的共聚比例方便地进行调节. 二维相关红外光谱从分子水平有效揭示了这一体系独特相行为的产生原因. 结果表明,羰基氢键结构的转化是LCST型水凝胶相行为的驱动力,而磺酸根涉及相互作用(水合作用、静电作用等)的变化是UCST型水凝胶相行为的驱动力.Fig. 2 (a) The chemical structure of the polyzwitterion Turbidity curves and typical photos for the (b) UCST- and (c) LCST-type hydrogels Temperature-dependent FTIR spectra (d, e) and 2D correlation spectra (f, g) of typical UCST- and LCST-type hydrogels (Reprinted with permission from Ref.[29] Copyright (2018) American Chemical Society).在天然的阳离子多糖(季铵化壳聚糖)中原位聚合亲水的阴离子单体(AA),构筑了具有温度、pH、机械力、电学等刺激响应行为的双网络聚电解质水凝胶. 该水凝胶同时集成了生物相容、离子传输、黏附、可拉伸、自愈合等多种功能,可作为仿生离子皮肤用于监测压力、温度、pH、电信号等刺激引起的生理信号变化[30]. 值得注意的是,该离子皮肤具有温度可调的黏附性,即升温黏附强度提升,降温黏附强度下降,例如水凝胶在猪皮上37 ℃下的黏附强度是20 ℃下的5.5倍,且具有良好的循环稳定性,这主要源于聚电解质水凝胶的UCST型转变. 季铵化壳聚糖由疏水主链和亲水的季铵盐基团组成,具有两亲性结构,通过改变聚合过程中AA组分的比例,可以实现对双网络聚电解质水凝胶相变行为的调控. 利用温度分辨红外光谱及二维相关分析对水凝胶的温度响应机理进行研究,结果表明体系的UCST型转变源于焓变驱动的季铵化壳聚糖与PAA链段间离子相互作用的解离和氢键作用的增强. 关于水凝胶的黏附性,涉及了丰富的分子相互作用,如PAA与基体间的氢键、季铵化壳聚糖与基体间的疏水相互作用、离子相互作用等. 二维相关红外光谱分析表明,升温相变过程中离子对解离,释放了大量解离的羧基,促使了PAA链段中羧基二聚体之间强氢键以及与季铵化壳聚糖链段羟基之间氢键的形成,提高了水凝胶的强度. 同时,水凝胶中羧基二聚体的形成有利于氨基的质子化,从而改善了组织黏附性.聚甲基丙烯酸(PMAA)在合适的水环境中也可表现出LCST型相转变[31]. 通过在PMAA水溶液中引入AlCl3等无机盐,调节盐浓度,实现了体系相转变温度的广泛可调,并构筑了具有多级结构、可实现紫外-可见-红外宽谱带光管理的新型水玻璃. 该水玻璃不仅可以可逆地切换可见光区域的透射率,阻挡紫外和红外光,还具有缺口不敏感性、自我修复断裂和划痕的功能. 借助二维相关红外光谱可对该水玻璃的动态响应机制进行解析,经分析,PMAA链段上不同化学基团在升温过程的响应次序为:α-甲基→亚甲基→羧基,表明疏水的α-甲基的脱水合是该体系相转变过程的驱动力,导致了聚合物主链的塌缩以及羧基之间氢键结构的解离. 此外,温度分辨小角X射线散射(SAXS)、微小角中子散射(VSANS)光谱证实了聚合物链塌缩引起的散射强度增加,从而产生可见光透过率的变化.一些聚电解质复合物在水溶液中也表现出热致相转变行为[32]. 通过调节典型聚电解质复合物——聚苯乙烯磺酸盐/聚二烯丙基二甲基铵在溴化钾水溶液中的浓度,同时观察到了LCST和UCST型相转变现象:低浓度下,聚电解质复合物呈现UCST型固液相转变;高浓度下,聚电解质复合物则表现为LCST型液液相分离. 基于温度分辨拉曼光谱和二维相关光谱分析,深入研究了体系中的水合效应和阴-阳离子相互作用. 研究发现,在水溶液中,聚电解质复合物的阴-阳离子相互作用呈现2种状态:直接接触型离子对(contact ion pairs, CIPs)和溶剂分离型离子对(solvent-separated ion pairs, SIPs). 聚合物浓度较低时,疏水的聚电解质链段使得阴-阳离子直接结合,CIPs占主导,而温度的升高导致了CIPs的解离,从而引起体系的UCST型转变;聚合物浓度较高时,CIPs比例低,升温导致了阴-阳离子的结合,从而引起体系的LCST型转变. 二维相关拉曼光谱分析则给出了相转变过程中的基团衍化次序,进一步揭示了聚电解质复合物两种截然不同的相转变机理:UCST型体系升温呈现出阴-阳离子相互作用逐渐减弱的解离过程,即“CIPs→SIPs→自由离子”,而LCST型体系升温呈现出阴-阳离子相互作用逐渐增强的缔合过程,即“自由离子→SIPs→CIPs”(图3). Fig. 3 2D correlation synchronous and asynchronous Raman spectra of polyelectrolyte complexes with (a) UCST- and (b) LCST-type transitions (c) Schematic illustration of the phase transition mechanisms (Reprinted with permission from Ref.[32] Copyright (2020) American Chemical Society).将温度响应聚合物引入分离膜,能够赋予膜材料温度响应功能,实现可控的物质分离[33]. 利用温敏性聚N-乙烯基己内酰胺(PVCL)和非温敏性聚乙烯基吡咯烷酮(PVP)协同稳定金属有机框架(MOF)纳米片,并进一步抽滤得到层层堆叠的温度响应纳米片复合膜. 其中PVCL提供温敏性,PVP提供支撑作用,PVCL和PVP的协同作用使得在升降温循环过程中,层间纳米孔道体积既可以同步增大和缩小,而层间距维持稳定. 所得MOF纳米片复合膜水通量及对染料截留能力具有温度敏感性. 温度升高,PVCL链塌缩使得层间纳米孔道体积增大,因而水通量增大,且升降温循环过程稳定性良好. 将尺寸相近的3种染料分子(亮绿、中性红、结晶紫)混合液进行过滤测试发现,随温度升高,尺寸较小的亮绿和中性红分子截留率下降明显高于结晶紫. 值得注意的是,对不同温度下滤液的紫外-可见光谱进行二维相关光谱分析,可以得到不同染料随温度升高的流出顺序:亮绿→中性红→结晶紫,证实了复合膜中纳米孔道尺寸随温度升高而逐渐增大. 利用二维相关红外光谱进一步对纳米片复合膜的温度响应机制进行了解析,结果显示,PVCL链段在升温过程的脱水和塌缩作为复合膜温敏行为的驱动力,降低了MOF纳米片的界面润湿性,最终导致纳米孔道的变化,而PVP链段在这一过程中并未发生明显变化,主要起到层间支撑作用(图4).Fig. 4 (a) Temperature-dependent FTIR spectra of the composite membrane (30-60 ℃). The arrows indicate the spectral variation trends at different wavenumbers (b) 2D correlation synchronous (left) and asynchronous (right) spectra of the composite membrane (c) Schematic illustration of the "smart" membrane separation performance (Reprinted with permission from Ref.[33] Copyright (2020) Springer Nature).3.2 可拉伸离子导体中复杂相互作用的揭示生命系统的生理活动与离子传导密切相关,譬如皮肤和神经纤维须通过离子传导电信号实现环境感知和运动反馈. 可拉伸离子导体是模拟弹性生物组织离子传输的重要材料,在仿生皮肤、人工肌肉、可拉伸储能、软机器人等领域取得了广泛应用.在进行可拉伸离子导体的构筑时,往往需要兼顾力学和离子传导等性能,其中涉及了丰富的分子相互作用. 本课题组围绕可拉伸离子导体,在对体系分子内/分子间相互作用机理的研究基础上,提出了一系列调控力学、电学和光学性质的分子设计. 例如:利用纳米级无定形矿物粒子和天然多糖的离子作用,调节物理交联PAA的黏弹性,所构筑的仿生皮肤可以快速自修复,且具有更高的应力响应灵敏度[34];基于AA和两性离子共聚物,选择结构匹配的离子液体,通过带电荷基团之间的离子协同效应构筑了导电纳米通道,氢键作用实现了导电通道和动态交联网络之间的协同效应,所制备的本征可拉伸导体材料透明性好、可拉伸性能突出(10000%)[35];基于聚阴离子和聚阳离子间的弱氢键相互作用构筑了一种聚离子弹性体,所得聚离子弹性体高度透明,具有接近生物组织的力学性能和感知功能,并且可以实现同步的致动和反馈效果[36];利用含氟聚离子液体与离子液体之间的离子-偶极和离子-离子相互作用,设计了一种可水下通信的光学伪装离子凝胶,该离子凝胶透明、力学性能可调、可3D打印,且具有水下自愈合、水下黏附、导离子等功能[37]. 二维相关红外光谱的优势在于从动态过程中识别体系的精细结构和复杂相互作用,因而是研究离子凝胶/弹性体中分子相互作用机制的有效手段.通过合理调控分子间/内相互作用,设计制备了一种基于天然小分子α-硫辛酸(α-thioctic acid, TA)的可涂覆离子凝胶油墨(图5)[38]. 在离子液体1-乙基-3-甲基咪唑硫酸乙酯([EMI][ES])存在的条件下,TA室温即可进行浓度诱导的自发开环聚合,得到稳定、透明、高拉伸且自愈合的离子凝胶弹性体. 该弹性体易溶于乙醇,因而能够方便地涂覆到任意表面,赋予涂覆体稳定的离子导电能力和应变感知功能. 利用红外光谱等手段探讨了离子凝胶中离子液体对聚硫辛酸(polyTA)的稳定机制:相比于纯的polyTA体系,离子凝胶的COOH伸缩振动区域在1734 cm-1出现了明显的肩峰,而离子液体的S=O伸缩振动峰在离子凝胶中呈现了明显的红移,表明polyTA的羧基与硫酸乙酯阴离子形成了COOH… [ES]氢键. 分子动力学模拟结果表明了COOH… [ES]氢键的热力学稳定性,同时该氢键能够有效降低polyTA的势能. 因此,离子液体主要通过阴离子ES与polyTA基间形成强氢键而稳定polyTA. 二维相关红外光谱则揭示了离子凝胶升温过程不同化学基团的响应次序:COOH… [ES]氢键→羧酸二聚体→自由羧基,说明COOH… [ES]氢键对温度变化最敏感,进一步证实了COOH… [ES]氢键对于稳定polyTA离子凝胶的重要作用. Fig. 5 (a) Schematic illustration of the COOH[ES] H-bonding in the ionogel (b) ATR-FTIR spectral comparison among ionogel, [EMI][ES] and neat polyTA (c) Temperature-variable FTIR spectra of the ionogel in the C=O stretching region from 25 °C to 151 °C Perturbation-correlation moving window (d) and 2D correlation synchronous and asynchronous spectra (e) generated from (c). (Reprinted with permission from Ref.[38] Copyright (2021) Wiley).受指纹结构启发,构筑了一种具有共形和可重复编辑褶皱结构的本征可拉伸离子导电芯鞘纤维[39],其中,纤维芯层为离子凝胶弹性体,鞘层为氟橡胶,芯鞘界面借助共价交联网络和离子-偶极相互作用实现协同拓扑互锁和物理黏附. 经过表面褶皱结构的优化,该离子纤维拉伸应变感知灵敏度(gauge factor)可提升至10以上,超过了绝大多数可拉伸离子导体应变传感器. 利用红外光谱对离子凝胶芯层的分子相互作用进行研究,发现其中涉及了离子液体阳离子咪唑环上C―H与聚合物侧基乙氧基间的氢键、聚合物链段C=O间的偶极-偶极相互作用、离子液体阴-阳离子间的弱静电相互作用等,而这些都对离子凝胶的高拉伸行为做出了重要贡献. 基于对芯层和鞘层力学性能的研究,发现表面褶皱形成的主要原因在于,高模量的氟橡胶鞘层弹性回复率显著低于离子凝胶芯层,在应变回复过程中造成了芯层和鞘层的界面失稳. 随着预应变的增加,弹性回复率差异变大,从而导致更加密集的褶皱结构. 此外,形成的表面褶皱可通过加热至60 ℃完全消除,从而赋予纤维可重复编辑褶皱的能力. 二维相关红外光谱揭示了离子凝胶芯层高温下残余应变的消除主要源于聚合物链段C=O间偶极-偶极相互作用的减弱和构象重排,而氟橡胶鞘层由C―F间偶极-偶极相互作用锚定的链构象也可以通过加热消除.通过在强氢键交联的PAA网络中引入熵驱动的弱交联两性离子超分子网络,产生竞争机制,设计制备了一系列透明、抗冻、保湿、黏附、高拉伸、高回弹、自愈合、应变硬化、导质子、可重复加工等综合性能优异的离子皮肤(图6)[40]. 不同于传统水凝胶和离子凝胶,该离子弹性体不含大量溶剂,仅含有少量达到吸湿平衡的水分子,这使得分子间的羧酸二聚体氢键足以交联PAA分子链而形成强交联网络,而弱交联的两性离子超分子网络则提供柔性. 通过红外光谱、核磁共振谱和力学松弛等实验探讨了这一二元网络体系中的分子相互作用. 其中,具有较低pKa值的两性离子的存在使得PAA轻度去质子化,游离的质子是主要载流子. 去质子化的PAA与两性离子的阳离子端也可以发生离子缔合. 利用变温红外光谱并结合二维相关光谱分析,验证了体系中的3种主要分子相互作用,并根据它们对于温度的响应顺序判别了其结合强度,即PAA链段羧酸二聚体氢键 PAA-甜菜碱离子相互作用 甜菜碱-甜菜碱离子相互作用,这一光谱表征结果为该离子皮肤强弱协同竞争网络的分子设计提供了重要依据. Fig. 6 (a) Temperature-variable FTIR spectra of PAA/betaine ionic elastomer upon heating (b) 2D correlation synchronous and asynchronous spectra generated from (a) FTIR (c) and 1H-NMR (d) spectra of PAA, betaine, and PAA/betaine (e) Schematic illustration of PAA/betaine elastomer and the order of interaction strength among the three main interacting pairs (Reprinted with permission from Ref.[40] Copyright (2021) Springer Nature).3.3 小分子在聚合物基质中的扩散聚合物生产和加工的许多工序都涉及小分子物质在聚合物基体的扩散,研究这类扩散行为具有重要的理论和实践意义. ATR-FTIR光谱可对小分子在聚合物基质中的扩散过程进行实时、原位、快速、多组分检测,能够同时获取扩散系数和分子层面相互作用等信息. 扩散装置示意图如图7所示,聚合物基体处于ATR晶体和扩散物质之间,当扩散物质从聚合物基体的上表面扩散至下表面时即可被检测到. 随着时间的增加,与扩散物质相关的特征吸收峰强逐渐增大直至扩散平衡(扩散谱图,图7(b)). 以扩散时间为横坐标、扩散物质特征吸收峰强度/面积为纵坐标作图,即可得到扩散曲线(图7(c)). 结合二维相关光谱分析,可以提供动态扩散过程结构与相互作用的变化信息,有助于解析扩散机制[41~45].Fig. 7 (a) Schematic illustration of the diffusion experiments by ATR-FTIR spectroscopy (b) typical diffusion spectra (c) a typical diffusion curve.基于朗伯比尔定律和菲克扩散模型,Fieldson等[46]建立了基于ATR-FTIR光谱测试计算扩散系数的公式:其中这里,At为扩散时间t时,特征红外吸收峰的强度或面积;A∞为扩散达到平衡时,特征红外吸收峰的强度或面积;L为聚合物薄膜基体的厚度;D为扩散剂的扩散系数;γ为光波在聚合物基体中渗透深度的倒数,可表示为:其中,θ (θ = 45o)为红外光的入射角;n1和n2分别为聚合物和ATR晶体的折光指数;λ为红外光的波长. 基于以上扩散方程对ATR-FTIR光谱测试得到的扩散曲线进行拟合,即可得到相关扩散系数. 此外,根据曲线拟合情况可以判断该扩散过程的扩散模型.利用时间分辨ATR-FTIR光谱并结合二维相关光谱分析技术对水分子在乙基纤维素(EC)基薄膜中的扩散行为进行系统研究[47]. 分析表明,水分子在EC中的扩散行为符合菲克扩散模型,通过对扩散曲线的拟合计算得到了相关的扩散系数. 此外,探讨了EC中增塑剂(柠檬酸三乙酯)含量对水分子扩散行为的影响,结果表明,增塑剂的添加不影响水分子的扩散模型,主要起到加速水分子扩散的作用,这主要源于增塑剂的加入改善了EC链的活动性而提高了EC基体的自由体积(free volume). 利用二维相关光谱对水分子羟基伸缩振动区域扩散谱图进行解析,观察到在整个扩散过程中,主要存在着4种类型的水分子,即本体水(强氢键作用)、团簇水(中等强度氢键作用)、相对自由的水分子(弱氢键作用)以及自由的水分子(极弱氢键作用). 依据Noda规则,判别出不同状态水分子扩散的先后顺序:团簇水→本体水→相对自由的水分子或自由的水分子,表明扩散首先来自体积较小、相对弱氢键结合的团簇水,其次才是大量的本体水,而随着扩散过程的进行,部分水分子与聚合物基体相互作用而脱离团簇水或本体水,产生了(相对)自由的水分子.EC被广泛用作药物包衣材料以实现药物缓释的功能,利用ATR-FTIR光谱对药物分子在EC基薄膜中的扩散行为进行实时监测可以有效模拟这一药物缓释过程(图8),从而为EC基药物包衣材料的配方优化提供理论指导[48]. 扩散谱图直观呈现了体系中各组分的变化情况,包括水分子(1637 cm-1)和药物分子(1569 cm-1)特征吸收峰强度的上升,增塑剂(1737 cm-1)特征吸收峰强度的下降等,表明水分子和药物分子在EC基薄膜中的扩散以及薄膜中增塑剂的部分溶解. 定量分析结果表明,扩散主要包含3个阶段:(A)水分子扩散;(B) EC膜吸水饱和,水扩散停止并溶解EC基体中的致孔剂;(C) 随着致孔剂的溶解,EC薄膜中形成孔道,使得药物分子和水分子共同扩散,同时增塑剂溶解. 二维相关红外光谱分析结果进一步证实了C阶段的各组分变化顺序:水分子扩散→药物分子扩散→增塑剂溶解,并且显示药物分子始终处于水合状态. 此外,通过改变药物分子的水溶性、致孔剂的种类以探讨膜配方对扩散行为的影响,结果表明随着致孔剂水溶性的增加和/或药物分子水溶性的降低,B阶段将缩短甚至消除. Fig. 8 (a) Time-resolved ATR-FTIR spectra collected during the water and drug diffusion (b) 2D correlation synchronous and asynchronous spectra during the diffusion of Stage C (c) Schematic illustration of water and drug diffusion across the EC-based film (Reprinted with permission from Ref.[48] Copyright (2015) Elsevier).氢氧化物/尿素是溶解纤维素的重要组合,其中尿素可稳定纤维素的疏水部分,有利于形成包合物从而促进纤维素的溶解. 在分子层面上,尿素溶液对纤维素的作用机理尚不明确. 采用ATR-FTIR光谱并结合二维相关光谱衍生的外扰相关移动窗口(perturbation-correlation moving window,PCMW)技术研究了不同浓度尿素水溶液(0,20 wt%、40 wt%和50 wt%)在黏胶纤维膜中的扩散行为,在分子水平揭示了尿素溶液的动态扩散行为以及与黏胶纤维的相互作用机制[49]. 从扩散谱图的变化规律以及对应的扩散曲线看,尿素溶液的扩散过程可大致分为2个步骤,水分子首先通过黏胶纤维膜,随后带动尿素分子一起通过. PCMW谱图显示,尿素浓度越高,尿素分子扩散滞后现象越明显. 根据菲克扩散模型,尿素分子在黏胶纤维膜的扩散系数随尿素浓度的增加而减小. 在红外光谱中,特征谱峰出现位移表明相应官能团相互作用的变化. 基于扩散过程Amide Ⅲ(尿素)和CH2-O(6)H伸缩振动(纤维素)的峰位移变化趋势,尿素水溶液在黏胶纤维中的扩散过程可以概括为:首先水分子破坏黏胶纤维膜无定形区的氢键网络,与羟基形成新的纤维素-水氢键,随后尿素分子在水分子的“桥连”作用下形成纤维素-水-尿素氢键,从而间接作用于纤维素. 低浓度下,水分子相对含量较大,可以快速打开扩散通道带动尿素分子通过黏胶纤维膜. 而高浓度下,尿素分子发生聚集且固定了大量水分子,从而在宏观上延缓了尿素溶液的扩散.热转移印花是纺织品印花方法之一,本质上是分散染料向聚酯纤维动态扩散的过程. 借助ATR-FTIR光谱对分散红9 (DR 9)在聚对苯二甲酸乙二醇酯(PET)薄膜中的扩散过程进行了原位跟踪,模拟了热转移印花过程,并结合二维相关光谱探讨了分散染料-分散染料、分散染料-PET相互作用机制,在分子水平上阐释了其扩散机理(图9)[50]. DR 9在PET薄膜中的扩散过程符合菲克扩散模型. 温度越高,扩散速度越快,这主要归因于:(1) 温度升高导致了PET基体自由体积的增加和分子链热运动的增强;(2) DR 9在高温下分子运动的增强. 此外,将不同温度下的扩散系数按照Arrhenius公式进行线性拟合,可以计算得到DR 9在PET中扩散活化能为15.33 kJ/mol. 通过对扩散过程中不同阶段的红外谱图进行对比,观察到了体系中存在丰富的分子间/内相互作用,包括PET和DR 9的C=O基团间偶极-偶极相互作用、芳香基团间π-π相互作用以及DR 9分子内氢键等. 二维相关红外光谱分析进一步细化了扩散体系中不同化学基团的分子间/内相互作用及其在扩散过程中的变化情况. 高温下,随着DR 9分子热运动增强,DR 9分子之间的相互作用减弱. 借助DR 9和PET中C=O基团之间的偶极-偶极相互作用,DR 9扩散进入PET基体. 在扩散过程中,DR 9中形成了较强的分子内氢键,从而提高了DR 9的平面性,促进了扩散过程. 随着越来越多的DR 9分子扩散到PET基体中,DR 9和PET的芳香基团之间的π-π相互作用成为主导,DR 9的分子内氢键减弱. Fig. 9 (a) Time-resolved ATR-FTIR spectra and (b) 2D correlation synchronous and asynchronous spectra of DR 9 diffusion in PET at 140 ℃ (c) Schematic diagram of DR 9 diffusion into PET (Reprinted with permission from Ref.[50] Copyright (2020) American Chemical Society).采用时间分辨ATR-FTIR光谱对不同温度下碳酸丙烯酯(PC)-双三氟甲磺酰亚胺锂(LiTFSI)在聚偏氟乙烯-六氟丙烯共聚物(P(VDF-HFP))中的扩散行为进行了原位监测,同时获得了凝胶聚合物电解质中各扩散组分的扩散系数和分子层面相互作用信息[51]. 基于PC中C=O伸缩振动区域的二阶导数分析,推断出PC在凝胶电解质主要存在四种状态,即与P(VDF-HFP)发生偶极-偶极相互作、PC分子间发生偶极-偶极相互作用、与锂离子发生强离子-偶极相互作用、与锂离子发生弱离子-偶极相互作用. 同时,LiTFSI参与的分子相互作用也得以识别,包括锂离子与PC中C=O之间的离子-偶极相互作用,锂离子与P(VDF-HFP)中C―F之间的离子-偶极相互作用、TFSI-的溶剂化作用等. 扩散过程中,首先是PC分子以溶剂团簇的形式扩散进入P(VDF-HFP),PC分子中的C=O与P(VDF-HFP)中的C―F发生偶极-偶极相互作用,一定程度减弱了P(VDF-HFP)聚合物链间的偶极-偶极相互作用,从而有利于锂盐的扩散. 随后,借助锂离子与C=O的离子-偶极相互作用,锂离子随着PC分子扩散进入P(VDF-HFP),TFSI-在扩散过程中也一直处于溶剂化状态. 这里,PC分子既充当了增塑剂的角色,同时也是离子(包括阴离子和阳离子)扩散的载体. 本工作在分子水平上揭示了PC-LiTFSI在P(VDF-HFP)的传导机制,对高性能凝胶聚合物电解质的结构设计和性能优化具有一定的指导意义.3.4 天然高分子的结构表征海藻酸钠(SA)作为一类天然多糖,生产成本低、无毒且具有良好的生物相容性、可降解性,在食品工业、制药、纺织印染等领域得到了广泛应用. 随着实验室和工业对SA的日趋重视,理解SA内部的氢键结构也变得越发重要. 利用红外光谱对SA升温过程特征基团的变化进行原位监测,结合二维相关光谱等分析手段从分子水平研究了SA体系的相互作用机制,探讨了温度扰动下SA分子间/内、SA与水分子间氢键结构的演变历程[52]. 研究发现,加热过程可分为30~60 ℃和60~170 ℃ 2个阶段:第一阶段为弱氢键结合的水分子脱除,第二阶段为强氢键结合的水分子脱除. 二维相关红外光谱结果表明:30~60 ℃区间内,随脱水过程发生,SA与水分子的氢键逐步断裂,SA中C―OH和COO-基团逐渐参与形成分子间/内氢键(O3H3⋯O5和O2H2⋯O=C―O-),因此水分子的存在一定程度破坏了SA中原有的氢键结构;60~170 ℃区间内,强结合水脱除,SA与水分子的氢键进一步断裂,同时SA分子间/内氢键相互作用逐步减弱,出现了部分相对自由的C―OH和COO-基团(图10). 由于相对自由的COO-比C―OH更早出现,可以推测C―OH形成的分子间/内氢键相互作用比COO-更强.Fig. 10 2D synchronous and asynchronous spectra of the SA film during heating between (a) 30-60 °C and (b) 60-170 °C (c) Schematic illustration of the heat-induced hydrogen bonding transformation in the SA film[52] (Reprinted with permission from Ref.[52] Copyright (2019) Elsevier).多元羧酸与纤维素的羟基反应,能使纤维素大分子间形成立体的交联网络结构,从而赋予棉纤维织物抗皱性能. 1,2,3,4-丁烷四羧酸(BTCA)作为一类典型的用于棉纤维织物抗皱整理的多元羧酸,其与纤维素的酯化过程受到了广泛关注,但其中关于分子水平相互作用机制及动态反应机理仍不清晰. 利用FTIR光谱对加热过程中纤维素与BTCA在催化剂次亚磷酸钠(SHP)作用下的酯化反应过程进行原位跟踪,并借助二维相关光谱分析技术探讨了该反应的分子机理,重点关注了分子层面相互作用机制以及反应全过程中的化学基团转变历程[53]. 分析表明,室温下,体系中的O―H和C=O等极性基团有强氢键相互作用. SHP存在时,碱金属离子(Na+)与羧基反应并将其转化为相应的羧酸盐,从而一定程度削弱了BTCA间的氢键相互作用. 在30~100 ℃的加热过程中,体系中的氢键部分断裂,导致一些O―H和C=O处于相对自由的状态. 这里,SHP的存在和加热过程都会导致体系中氢键相互作用的减弱,从而使相应的化学基团更自由,有利于酸酐生成和酯化反应. 当加热至100 ℃以上后,羧酸盐和自由羧酸开始脱水形成环酐. 一旦形成环酐,就会与纤维素大分子链上的O―H反应生成酯. 通过逐步成酐和酯化反应过程,BTCA实现了对纤维素的交联. 该结果对多元羧酸的抗皱整理工艺优化及寻找更有效的多元羧酸类抗皱整理剂和催化剂具有一定的指导作用.4 总结与展望本文主要介绍了二维相关光谱的基本原理、实验和分析技巧等,并结合具体的体系(如温度响应高分子、可拉伸离子导体、小分子在聚合物中的扩散过程、天然高分子等),简述了二维相关光谱在高分子表征中的应用. 这里,二维相关光谱不仅能够有效鉴别高分子体系涉及的丰富相互作用,还能提供外扰作用下动态过程发生的分子机制. 相关研究结果一方面有助于启发新型功能高分子材料的结构设计,另一方面也可以为实际工艺过程的配方优化和参数调整提供指导.二维相关光谱作为一种先进的光谱分析手段,在高分子材料体系的表征中得到了越来越多的关注. 随着高分子材料涉及的体系越来越复杂、功能越来越强大,这为二维相关光谱的应用提供了更多的机遇,但同时也带来了更多的挑战. 在后续的研究工作中,二维相关光谱分析可以重点关注以下几方面:(1) 光谱手段的多样性. 目前关于二维相关光谱在高分子体系中的应用主要是基于中红外光谱,关注的是分子层面相互作用信息. 一方面,中红外光谱也有一定的局限性,例如低浓度溶液体系信号弱、水的吸收峰干扰严重等. 对于中红外光谱难以表征的体系,可以尝试其他分子光谱手段,如拉曼光谱、近红外光谱等,开展二维相关光谱分析. 另一方面,其他光谱手段,包括荧光光谱、圆二色谱、紫外-可见吸收光谱、X射线衍射谱等,都可以进行二维相关光谱分析,以获取多层面丰富的结构信息. 目前,这些光谱在处理二维相关分析时,大部分因信噪比低而导致噪音被显著放大,使得结构解析变得困难,如何有效解决这一问题是丰富二维相关分析光谱手段的关键.(2) 外扰变量的丰富性. 时间、温度便于控制,是目前获取动态光谱最常用的外扰变量. 然而,影响高分子结构和性能的因素是多种多样的,例如湿度变化能够引起高分子力学性质的改变、紫外光照射可以引起高分子的老化等,尤其是刺激响应高分子,可以对温度、压力、电场、磁场、pH、浓度等丰富的外扰产生响应,引起物理或化学性质的变化. 最近,Li等[54]利用二维相关红外光谱研究了乙醇诱导聚丙烯酰胺/Pluronic 127水凝胶相分离的机理,获取了氢键解离和无定形-结晶转变等信息. 因此,利用二维相关光谱探讨不同刺激下高分子结构的演变机制,将进一步拓宽二维相关光谱的应用范围. 需要注意的是,对于测试过程无法原位施加的外扰变量,应尽量避免其他因素改变而引起的光谱变化,否则将影响二维相关光谱分析结果的真实性和可靠性.(3) 多种分析手段的关联. 一方面,通过二维相关光谱交叉谱的计算和解析,可以将不同分析手段所得结果进行关联,这能够帮助理解高分子不同层面结构的内在联系. 另一方,二维相关光谱分析结果涉及丰富的相互作用和结构变化,经过与其他分析表征手段的结果进行比对和相互验证,可有效加深人们对二维相关光谱分析结果的理解. 参考文献1Ernst R R, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in one and Two Dimensions. Oxford: Clarendon Press, 19872Noda I, Dowrey A, Marcott C, Story G, Ozaki Y. Appl Spectrosc, 2000, 54(7): 236A-248A. doi:10.1366/0003702001950454 3Noda I. J Am Chem Soc, 1989, 111(21): 8116-8118. doi:10.1021/ja00203a008 4Noda I. Appl Spectrosc, 1990, 44(4): 550-561. doi:10.1366/0003702904087398 5Noda I. Appl Spectrosc, 1993, 47(9): 1329-1336. doi:10.1366/0003702934067694 6Noda I. Anal Sci, 2007, 23(2): 139-146. doi:10.2116/analsci.23.139 7Park Y, Jin S, Noda I, Jung Y M. J Mol Struct, 2020, 1217: 128405. doi:10.1016/j.molstruc.2020.128405 8Sun S, Tang H, Wu P, Wan X. Phys Chem Chem Phys, 2009, 11(42): 9861-9870. doi:10.1039/b909914j 9Kim Y J, Matsunaga Y T. J Mater Chem B, 2017, 5(23): 4307-4321. doi:10.1039/c7tb00157f 10Chilkoti A, Dreher M R, Meyer D E, Raucher D. Adv Drug Deliv Rev, 2002, 54(5): 613-630. doi:10.1016/s0169-409x(02)00041-8 11Weber C, Hoogenboom R, Schubert U S. Prog Polym Sci, 2012, 37(5): 686-714. doi:10.1016/j.progpolymsci.2011.10.002 12Tang L, Wang L, Yang X, Feng Y, Li Y, Feng W. Prog Mater Sci, 2021, 115: 100702. doi:10.1016/j.pmatsci.2020.100702 13Sun B, Lin Y, Wu P, Siesler H W. Macromolecules, 2008, 41(4): 1512-1520. doi:10.1021/ma702062h 14Sun S, Wu P. Macromolecules, 2010, 43(22): 9501-9510. doi:10.1021/ma1016693 15Sun S, Wu P. J Phys Chem B, 2011, 115(40): 11609-11618. doi:10.1021/jp2071056 16Wang H, Sun S, Wu P. J Phys Chem B, 2011, 115(28): 8832-8844. doi:10.1021/jp2008682 17Sun B, Lai H, Wu P. J Phys Chem B, 2011, 115(6): 1335-1346. doi:10.1021/jp1066007 18Sun S, Wu P. Macromolecules, 2013, 46(1): 236-246. doi:10.1021/ma3022376 19Zhang B, Tang H, Wu P. Macromolecules, 2014, 47(14): 4728-4737. doi:10.1021/ma500774g 20Hou L, Wu P. Soft Matter, 2014, 10(20): 3578-3586. doi:10.1039/c4sm00282b 21Hou L, Wu P. Soft Matter, 2015, 11(14): 2771-2781. doi:10.1039/c5sm00026b 22Sun W, An Z, Wu P. Macromolecules, 2017, 50(5): 2175-2182. doi:10.1021/acs.macromol.7b00020 23Hou L, Ma K, An Z, Wu P. Macromolecules, 2014, 47(3): 1144-1154. doi:10.1021/ma4021906 24Li T, Tang H, Wu P. Soft Matter, 2015, 11(10): 1911-1918. doi:10.1039/c4sm02812k 25Sun S, Hu J, Tang H, Wu P. J Phys Chem B, 2010, 114(30): 9761-9770. doi:10.1021/jp103818c 26Sun S, Wu P. Chinese J Polym Sci, 2017, 35(6): 700-712. doi:10.1007/s10118-017-1938-1 27Sun Shengtong(孙胜童), Wu Peiyi(武培怡). Materials Science and Technology(材料科学与工艺), 2017, 25(1): 1-9. doi:10.11951/j.issn.1005-0299.20160386 28Lei Z, Wu P. Nat Commun, 2018, 9(1): 1134. doi:10.1038/s41467-018-03456-w 29Lei Z, Wu P. ACS Nano, 2018, 12(12): 12860-12868. doi:10.1021/acsnano.8b08062 30Shi X, Wu P. Small, 2021, 17(26): 2101220. doi:10.1002/smll.202101220 31Lei Z, Wu B, Wu P. Research, 2021, 2021: 4515164. doi:10.34133/2021/4515164 32Ye Z, Sun S, Wu P. ACS Macro Lett, 2020, 9(7): 974-979. doi:10.1021/acsmacrolett.0c00303 33Jia W, Wu B, Sun S, Wu P. Nano Res, 2020, 13(11): 2973-2978. doi:10.1007/s12274-020-2959-6 34Lei Z, Wang Q, Sun S, Zhu W, Wu P. Adv Mater, 2017, 29(22): 1700321. doi:10.1002/adma.201700321 35Lei Z, Wu P. Nat Commun, 2019, 10(1): 3429. doi:10.1038/s41467-019-11364-w 36Lei Z, Wu P. Mater Horiz, 2019, 6(3): 538-545. doi:10.1039/c8mh01157e 37Yu Z, Wu P. Adv Mater, 2021, 33(24): 2008479. doi:10.1002/adma.202008479 38Wang Y, Sun S, Wu P. Adv Funct Mater, 2021, 31(24): 2101494. doi:10.1002/adfm.202101494 39He C, Sun S, Wu P. Mater Horiz, 2021, 8(7): 2088-2096. doi:10.1039/d1mh00736j 40Zhang W, Wu B, Sun S, Wu P. Nat Commun, 2021, 12(1): 4082. doi:10.1038/s41467-021-24382-4 41Shen Yi(沈怡), Peng Yun(彭云), Wu Peiyi(武培怡), Yang Yuliang(杨玉良). Progress in Chemstry(化学进展), 2005, (3): 499-513. doi:10.3321/j.issn:1005-281X.2005.03.016 42Liu M, Wu P, Ding Y, Chen G, Li S. Macromolecules, 2002, 35(14): 5500-5507. doi:10.1021/ma011819f 43Tang B, Wu P, Siesler H W. J Phys Chem B, 2008, 112(10): 2880-2887. doi:10.1021/jp075729+ 44Wang M, Wu P, Sengupta S S, Chadhary B I, Cogen J M, Li B. Ind Eng Chem Res, 2011, 50(10): 6447-6454. doi:10.1021/ie102221a 45Lai H, Wang Z, Wu P, Chaudhary B I, Sengupta S S, Cogen J M, Li B. Ind Eng Chem Res, 2012, 51(27): 9365-9375. doi:10.1021/ie300007m 46Fieldson G T, Barbari T A. Polymer, 1993, 34(6): 1146-1153. doi:10.1016/0032-3861(93)90765-3 47Hou L, Feng K, Wu P, Gao H. Cellulose, 2014, 21(6): 4009-4017. doi:10.1007/s10570-014-0458-1 48Feng K, Hou L, Schoener C A, Wu P, Gao H. Eur J Pharm Biopharm, 2015, 93: 46-51. doi:10.1016/j.ejpb.2015.03.011 49Dong Y, Hou L, Wu P. Cellulose, 2020, 27(5): 2403-2415. doi:10.1007/s10570-020-02997-y 50Yan L, Hou L, Sun S, Wu P. Ind Eng Chem Res, 2020, 59(16): 7398-7404. doi:10.1021/acs.iecr.9b07110 51Li H, Hou L, Wu P. Chinese J Polym Sci, 2021, 39(8): 975-983. doi:10.1007/s10118-021-2571-6 52Hou L, Wu P. Carbohydr Polym, 2019, 205: 420-426. doi:10.1016/j.carbpol.2018.10.091 53Hou L, Wu P. Cellulose, 2019, 26(4): 2759-2769. doi:10.1007/s10570-019-02255-w 54Li Y, Wang D, Wen J, Liu J, Zhang D, Li J, Chu H. Adv Funct Mater, 2021, 31(22): 2011259. doi:10.1002/adfm.202011259 《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304原文链接:http://www.gfzxb.org/thesisDetails#10.11777/j.issn1000-3304.2021.21362DOI:10.11777/j.issn1000-3304.2021.21362
  • 赛默飞世尔科技推出全新表面表征工具
    —— 用于表面化学表征的全集成式X射线光电子能谱仪   2009年12月19日,MADISON – 服务科学的世界领导者赛默飞世尔科技近日宣布,全新Thermo Scientific Escalab 250Xi光电子能谱仪(XPS)是一种全集成式表面表征工具,专门设计用于满足从事表面,薄膜和涂层的常规表征工作,乃至前沿表面化学研发的工程师们的要求。   Escalab 250Xi是享誉世界的Thermo Scientific Escalab产品线的最新产品。该全新设备集成了出色的光谱仪性能和Thermo Scientific Avantage XPS采集和处理用户界面。这种仪器与软件的组合不仅具有高样品通量,而且具有市场领先的分析性能,尤其适用于当今表面分析领域中复合材料的表征。另外,高级平行图像监测系统的集成可对图像视场内的微小特征进行定量光谱分析。   Avantage数据系统利用一种优化的工作流程提供优异的分析效率,该流程可以指导分析人员进行数据采集,解析,处理和报告生成。Avantage在进行一系列XPS光谱和图像处理任务时,还具有全数字工具控制。只需点击一下鼠标,即可利用自定义的实验室报告模板轻松将分析报告输出到标准PC应用程序中,例如Microsoft® Office。   Escalab 250Xi平台具有非凡的灵活性,因此分析人员可以利用一系列其他表面表征工具配置该系统。仪器配备了离子散射谱(ISS)和反射电子能量损失谱(REELS),同时可选配紫外光电子能谱(UPS)和俄歇电子能谱(AES)。仪器的标准配置还包括了样品制备室。如果需要,可以利用样品制备选项和附加的实验样品室扩展该系统。   关于赛默飞世尔科技(Thermo Fisher Scientific)   赛默飞世尔科技 (Thermo Fisher Scientific)(纽约证交所代码:TMO)是全球科学服务领域的领导者,致力于帮助客户使世界更健康、更清洁、更安全。公司年销售额超过105亿美元,拥有员工约3万4千人,在全球范围内服务超过35万家客户。主要客户类型包括:医药和生物公司,医院和临床诊断实验室,大学、科研院所和政府机构,以及环境与工业过程控制装备制造商等。公司借助于Thermo Scientific和Fisher Scientific这两个主要的品牌,帮助客户解决在分析化学领域所遇到的从常规测试到复杂研发的各种挑战。Thermo Scientific能够为客户提供一整套包括高端分析仪器、实验室装备、软件、服务、耗材和试剂在内的实验室综合解决方案。Fisher Scientific为卫生保健、科学研究、安全和教育领域的客户提供一系列实验室装备、化学药品及其他用品和服务。赛默飞世尔科技将努力为客户提供最为便捷的采购方案,为科学研究的飞速发展不断改进工艺技术,提升客户价值,帮助股东提高收益,为员工创造良好的发展空间。更多信息,请浏览公司网站:www.thermofisher.com (英文)或www.thermo.com.cn (中文)。
  • 高分子表征技术专题——示差扫描量热法进展及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20234《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304示差扫描量热法进展及其在高分子表征中的应用陈咏萱 , 周东山 , 胡文兵 南京大学化学化工学院 配位化学国家重点实验室机构 南京 210023作者简介: 胡文兵,男,1966年生. 南京大学化学化工学院高分子系教授、博士生导师. 1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系. 分别于1998~1999年赴德国弗莱堡大学物理系、2000~2001年美国田纳西大学化学系、2001~2003年荷兰物质科学研究院(FOM)原子与分子物理研究所从事博士后研究. 2004年至今,在南京大学任教. 2008年获杰出青年科学基金资助,2020年入选美国物理学会会士(APS Fellow). 主要研究方向为采用蒙特卡洛分子模拟和Flash DSC研究高分子结晶机理及材料热导率表征 通讯作者: 胡文兵, E-mail: wbhu@nju.edu.cn摘要: 示差扫描量热法(DSC)是表征材料热性能和热反应的一种高效研究工具,具有操作简便、应用广泛、测量值物理意义明确等优点. 近年来DSC技术的发展大大拓展了高分子材料表征的测试范围,促进了对高分子物理转变的热力学和动力学的深入研究. 温度调制示差扫描量热法(TMDSC)是DSC在20世纪90年代的标志性进展,它在传统DSC的线性升温速率的基础之上引入了调制速率,从而可将总热流信号分解为可逆信号和不可逆信号两部分,并能测量准等温过程的可逆热容. 闪速示差扫描量热法(FSC)是DSC技术近年来的创新性发展,它采用体积微小的氮化硅薄膜芯片传感器替代传统DSC的坩埚作为试样容器和控温系统,实现了超快速的升降温扫描速率以及微米尺度上的样品测试,使得对于高分子在扫描过程中的结构重组机制的分析以及对实际的生产加工条件的直接模拟成为可能. 本文从热分析基础出发,依次对传统DSC、TMDSC和FSC进行了介绍,内容覆盖其发展历史、方法原理、操作技巧及其在高分子表征中的应用举例,最后对DSC未来的发展和应用进行了展望. 本文希望通过综述DSC原理、实验技巧和应用进展,帮助读者加深对DSC这一常用表征技术的理解,进一步拓展DSC表征高分子材料的应用.关键词: 高分子表征 / 示差扫描量热法 / 温度调制示差扫描量热法 / 闪速示差扫描量热法 目录1. 热分析基础1.1 温度和热1.2 热分析(thermal analysis)2. 示差扫描量热法2.1 基本原理2.2 实验技巧2.2.1 仪器校准2.2.2 样品制备2.2.3 温度程序2.2.4 保护气氛2.3 应用举例2.3.1 比热容2.3.2 热转变温度2.3.3 转变焓2.3.4 DSC与其他技术连用3. 温度调制示差扫描量热法3.1 基本原理3.2 实验技巧3.2.1 样品质量3.2.2 温度程序3.3 应用举例3.3.1 可逆热容和不可逆热容3.3.2 等温可逆热容3.3.3 玻璃化转变4. 闪速示差扫描量热法4.1 基本原理4.2 实验技巧4.2.1 样品制备4.2.2 样品质量4.2.3 临界条件4.3 应用举例4.3.1 等温总结晶动力学4.3.2 不可逆熔融转变4.3.3 与其他表征技术连用4.3.4 玻璃化转变4.3.5 热导率5. 总结与展望参考文献1. 热分析基础1.1 温度和热温度是表征物体冷热程度的物理量,它仅由系统内部的热运动状态决定,是系统中物质分子热运动强度的量度. 热力学第零定律表明,所有互为热平衡的系统都存在一个共同的数值相同的态函数,这个态函数被称为温度,是一个强度量. 热力学第零定律阐明了温度计的工作原理:在测量温度时,首先选择一个作为标准的测温物体,也就是温度计,然后让它分别与各个物体接触并达到热平衡,得到的标准物体的温度就是各待测物体的温度. 值得注意的是,温度计的热容必须比待测物体的热容要低得多,以保证接触过程中不会改变物体的温度. 然而,温度测量获得的是一个相对量,为了定量测定温度,人们还需要建立一个温标.最初的温标是经验温标,它依据测温质的某一种物理属性随温度的变化关系来表征温度的大小. 例如,酒精和水银温度计是根据液体加热时的体积膨胀设计的,铂和RuO2温度传感器是依据金属导体的电阻随温度的变化关系设计的. 通常,这种变化关系是显著而单调的,假定其为简单的线性关系,那么测温属性x和温度θ的关系为:其中,常数a和b是由标准点和分度法确定的,根据不同的标准点和分度法可以确定不同的温标. 1714年,Fahrenheit将水的冰点设为32 °F,沸点为212 °F,建立了华氏温度. 1742年,Celsius将水的冰点设为0 °C,沸点为100 °C,建立了摄氏温度. 到1779年为止,全世界并存有19种经验温标. 然而,这些温标缺乏统一的标准,除了标准点外,采用不同的测温质测得的温度并不完全一致. 此外,测温属性往往无法在整个温度范围内保持完全线性的变化关系. 例如,水银在−39 °C发生固化,在357 °C发生气化,因此水银温度计的测温范围在其凝固点和沸点之间. 1848年,Kelvin依据卡诺定律提出了开氏温度作为物理学温标,它不依赖于任何测温物质的具体测温属性,故又称为绝对温标. 相应的温度也被称为热力学温度,以T表示,单位为开尔文,记为K.1967年,第13届国际标度会议确立热力学温度为基本温标,并将水的三相点的热力学温度设为273.15 K. 摄氏温度与热力学温度之间的关系为即,摄氏温度的0 °C对应热力学温度的273.15 K.热量是物质状态发生转变的一种反映,它与人类的日常生活息息相关,很早以前人们就开始了对热的探索. 早在公元前5世纪,Empedocles[1]就提出这个世界是由气、水、土和火(热)四大元素所组成的. 一直到18世纪中叶以前,热质说(theory of caloric)盛行. 18世纪后期,人们开始通过实验证明热是粒子内部的运动. 19世纪后半期,Joule和Boltzmann等建立了统计热力学的基本原理,从而彻底推翻了传统的热质说.由热力学第一定律可知,热是能量的一种形式,记为Q,它可以和其他形式的能量互相转化,且总能量保持不变,即:物体吸收或放出热量的能力由热容C (JK−1)来表征,表示物体温度升高1 K所吸收的热量(单位J),而单位质量(克,g)物体升高1 K所吸收的热量为比热容cm (JK−1g−1),将能量表示为体积和温度的函数,则根据体积不变的条件可以得到同样可以将能量表示为压强、温度的函数, 在压强不变的条件下,可得到其中,H为定义的一个态函数,称为焓(enthalpy). 它与内能的关系为由此得到等容热容和等压热容的关系为1.2 热分析(thermal analysis)广义上来说,所有控制温度的测量过程都可以称为热分析. 1999年,国际热分析和量热协会(International Confederation for Thermal Analysis and Calorimetry, ICTAC)和美国材料与试验协会(American Society for Testing and Materials, ASTM)[2~4]对热分析的定义为:在程序温度下,测量物质的物理性质与温度或时间关系的一类技术. (A group of techniques in which a physical property of a substance is measured as a function of temperature or time while the substance is subjected to a controlled-temperature program.)常见的热分析所测量的物理性质包括质量、温差、热量、应力和应变等. 按照测量性质的不同,最基本的热分析包括以下几种:差热分析法(differential thermal analysis, DTA)、示差扫描量热法(differential scanning calorimetry, DSC)、热机械法(thermomechanical analysis, TMA)、热重分析法(thermogravimetric analysis, TGA)等等.示差扫描量热法(DSC)的定义是:在程序控温和稳态保护气氛下,测量进出样品和参比物之间的热流差随温度或时间变化的一种技术. 它是目前应用最为广泛的一种热分析技术. 随着科学技术的进步,DSC也得到了不断的发展,特别是近年来取得了显著的进展. 其中一个主要的进展是在20世纪90年代出现的温度调制DSC (temperature-modulated DSC, TMDSC). TMDSC在传统DSC线性扫描速率的基础上加入了调制升降温速率,可测得非线性调制热流信号,对该热流信号进行解调制,可以将总热流信号区分为可逆信号和不可逆信号两部分. TMDSC还可以通过对等温过程施加微量调制升降温速率进行准等温实验,追踪实验过程中的不可逆过程随时间的演化,并最终获得平衡状态下的可逆热容. DSC技术的另一个重要进展是近年来发展起来的闪速示差扫描量热法(fast-scan chip-calorimetry, FSC). FSC其商业化版本为Flash DSC,是基于芯片量热技术和微制造技术而发明的超快速示差扫描量热技术,它可达到106 Ks−1的扫描速率,具有较高的灵敏度,进一步将DSC的表征时间和温度窗口拓展到了发生较快速热转变的区间,增强了其表征和研究各种热转变动力学的能力.2. 示差扫描量热法2.1 基本原理示差扫描量热法起源于19世纪中期. 1887年,Le Chatelier[5,6]采用热电偶首次记录了陶土的温度随时间变化的升温曲线. 1899年Roberts-Austen[7]使用参比热电偶,首次测量了样品与参比物之间的温差,发展了差热分析法(DTA). 然而这种方法只能用于定性测量样品和参比物之间的温差ΔT.1955年,Boersma[8] 改进了DTA设备并建立了一个定量DTA测量单元,该仪器的热阻与试样无关. 对仪器的热容进行校正,可使得扫描过程中样品的热流与温差呈稳定的线性关系,从而可以定量测量热流. 这一发现最终导致了热流型DSC的诞生. 热流型DSC保留了差热分析法引入的参比物,并监测试样和参比物之间的热流差变化,得到了比只测定试样的绝对热流变化更为精确的测试结果,这也是示差扫描量热法中“示差”的含义及来源. 1964年,Watson等[9,10]提出了功率补偿型DSC的概念,这一概念有利于提高DSC的升降温速率. 此后,DSC技术不断发展并成为热分析领域的常规分析手段. 目前,市场化的DSC设备根据加热方法和测量原理主要分为热流型示差扫描量热仪(heat flux DSC)和功率补偿型示差扫描量热仪(power compensation DSC)两类[11].热流型DSC的测试装置如图1所示.图 1Figure 1. Illustration of heat-flux DSC (Mettler-Toledo heat-flux DSC) with the heating rate controlled through the furnace temperature. There are two sets of thermocouples measuring the heat flow between the furnace and the pan for sample and reference and two central terminals bringing the average T signal from all the thermocouples out to the computer.热流型DSC从外部加热整个炉体,并给样品和参比物提供同样的加热功率. 由热欧姆定律可知,由炉体流到试样坩埚的热流[Math Processing Error]ϕs 以及由炉体流入参比坩埚的热流[Math Processing Error]ϕr分别为[12]其中,[Math Processing Error]Ts、[Math Processing Error]Tr和[Math Processing Error]Tc分别为试样温度、参比温度和炉体温度,[Math Processing Error]Rth为热阻.DSC检测信号[Math Processing Error]ϕ为2个热流之差,由于参比坩埚和试样坩埚相同,仪器两边具有对称性,可将上式简化为即,热流型DSC的检测信号[Math Processing Error]ϕ与试样和参比物之间的温差[Math Processing Error]ΔT=Ts−Tr成正比.热流型DSC对整个炉体进行加热,测试氛围均匀且稳定,因此能保持较为稳定的基线. 另一方面,炉体的热容较大,不利于快速升降温,因此热流型DSC的升降温速率较慢.功率补偿型DSC的测试装置如图2所示.图 2Figure 2. Illustration of power-compensation DSC as invented by Perkin Elmer with the reference and the sample separately heated by two platinum resistance thermometers in two calorimeters mounted in a constant temperature block.功率补偿型DSC采用2个独立的加热器分别对样品盘和参比盘进行控温和功率补偿,当样品发生吸热或者放热效应而导致样品与参比物之间的温差不为零时,电热丝将及时对参比盘或样品盘输入电功率以进行热量补偿,使两者的温度始终处于动态零位平衡状态,同时记录样品和参比物的2只补偿电热丝的功率之差随时间的变化关系,功率补偿型DSC的热源更贴近样品,温度响应灵敏,因此升降温速率更快. 为了准确测量样品的热效应,功率补偿型DSC的2个炉体必须具有很高的对称性,然而仪器内部的环境往往会随着时间而发生改变,因此功率补偿型DSC的基线容易发生漂移,不如热流型DSC稳定.2.2 实验技巧2.2.1 仪器校准首先采用标准物质在待测温度范围内对仪器进行校准,以保证测量值与参考值相吻合. 校准的内容主要包括DSC曲线上的温度值以及热流速率值. 因此标准物质应具有较好的稳定性,其测量性能必须具有可靠的文献参考值. 常用于校准的标准物质有铟、锡、尿素、苯甲酸等等,这些标准物质可用于不同温度范围内的校准. 图3是采用铟进行熔点以及熔融焓校准得到的测量结果,将标准物质的熔点以及熔融焓的测量值与文献参考值进行比较,若测量值不在误差限之内,则需要对仪器的参数进行调整,使测量值与参考值相符合[13].图 3Figure 3. Illustration of the calibration of temperature and heat-flow rate with the standard material Indium for DSC measurement. The curve is characterized by its baseline and the endothermic process with some characteristic temperatures including the beginning of melting, Tb, the extrapolated onset of melting, Tm, the peak temperature, Tp, and the end of melting where the baseline is finally recovered, Te. Generally, Tm is the most reproducible point as an accurate measure of the equilibrium temperature which are used for the temperature calibration. The peak area below the baseline can be compared with the expected fusion heat of standard materials for the calibration of the heat flow rate.2.2.2 样品制备DSC实验采用坩埚作为试样容器,包括铝坩锅、高压坩埚以及具有特殊用途但使用较少的铂金、黄金、铜、蓝宝石或者玻璃坩埚等等. 其中最常用的是铝坩埚,包括40 μL标准铝坩埚和20 μL轻质铝坩埚. 带盖的40 μL标准铝坩埚应用范围较广,能进行固体和液体样品的测试. 20 μL的轻质铝坩埚的热容较小,有利于提高测试信号的分辨率和灵敏度,可用于质量较小的薄膜或者粉末样品的测试,一般不用于液体样品的测试. 称量样品之前首先需要选取2个质量十分相近的坩埚,以保证DSC仪器具有较好的对称性. 此外,取放坩埚时采用镊子夹取坩埚,并将坩埚放置在称量纸上,以免污染坩埚及坩埚内的样品.然后选择样品质量. 一般来说,样品质量越少越好,较少的样品量可以减小样品内部的温度梯度,提高信号的分辨率,此外还能保证与坩埚底部的良好接触,有利于提高基线的稳定性和温度测量的准确度. 然而样品质量过少会导致信号的灵敏度较低. 因此,在称量样品时需要综合考虑两者的影响. 通常,样品的体积不超过坩埚体积的2/3,有机样品的质量为5~10 mg,无机样品的质量为10~50 mg[12]. 称量时采用差减法,先用分析天平称量空坩埚的质量,然后放入样品,称量样品和坩埚的质量之和,两者相减则得到样品的质量. 称量时每个质量都需要测量3遍,保证质量称量的准确度在±0.2%.装样过程需要注意3个方有关高分子标准热容数据可从ATHAS (Advanced THermal AnalysiS)[16]等数据库中查找.2.3.2 热转变温度高分子材料的物理热转变温度主要包括玻璃化温度和熔点. 玻璃化温度[Math Processing Error]Tg是非晶态聚合物在玻璃态和高弹态之间转变的温度. 研究玻璃化转变温度可以得到有关样品的热历史、稳定性、化学反应程度等重要信息,对于实验研究、质量检测等具有重要意义. 玻璃化转变温度通常取DSC曲线发生玻璃化转变台阶上下范围的中点. 图5是ASTM方法[17]测量聚合物玻璃化转变温度的热流曲线图,在台阶的拐点[Math Processing Error]Ti处做一条切线,由这条切线与基线的交点可得到外推起始温度[Math Processing Error]Tb1和外推终止温度[Math Processing Error]Te1,这两点的中点即为玻璃化转变温度[Math Processing Error]Tg.图 5
  • 日化专题 | 如何科学表征日化中的表面和界面行为?
    研究背景日化中的很多现象都跟表界面的作用有关系,比如化妆品中的乳化、分散、增溶、发泡和清洁等等。KRÜ SS作为表面科学仪器的全球领导品牌,此次从以下几个方面为大家介绍日用化学品中的表面科学表征方法:典型应用1.清洁类产品的泡沫行为分析在日常使用洗面奶,洗发水时,我们通过揉搓等各种方式将洗面奶和空气充分接触而产生泡沫。在揉搓出丰富泡沫的过程中,很容易产生幸福感和仪式感,一整天的油腻都被洗掉了。KRÜ SS DFA100动态泡沫分析可以对泡沫的起泡性,泡沫稳定性和泡沫结构进行科学的表征。选择了市售的几个洗面奶进行了测试,通过DFA100的搅拌模块,可以非常清晰的筛选出起泡性较好和泡沫丰富的产品。如上图所示,横坐标是时间,纵坐标是泡沫高度,从图上可以清晰地看到有的产品起泡性速度很快,且短时间内起泡高度就可以达到最大。一般来讲,样品起泡性越强,产生的泡沫越多,其泡沫高度也越高;反之,起泡性差的样品,其泡沫高度也相对较低。从泡沫高度上的衰减也能分析泡沫稳定性,泡沫高度降低越快,泡沫越不稳定。由于此次样品测试时间较短,泡沫比较稳定,没有观察到泡沫高度的衰减,故而不做泡沫稳定性的对比。挑了其中2个样品,对比泡沫的结构和尺寸大小,从而分析泡沫的细腻程度。从图中可以看到,2号样品刚开始产生泡沫后,就比较细腻,泡沫尺寸比较小。随着时间的变化,泡沫大小一直比较稳定,不发生特别大的增加。而1号样品产生了较大的泡沫,随时间延长, 泡泡大小急剧增加。2.通过接触角表征彩妆类产品的防水抗汗性能消费者使用底妆的痛点主要有卡粉、脱妆和浮粉,而通过水,人工汗液和人工皮脂在彩妆上的接触角,可以评估抗汗和抗皮脂性能。接触角是气、液、固三相交点处所作的气-液界面的切线,此切线在液体一方的与固-液交界线之间的夹角θ。通过接触角的大小,可以判断固体和液体的润湿性能。如果粉底液和汗液,皮脂,水等的接触角越大,说明产品的防水抗汗性能越好。 选择市售的几款口红,通过接触角评价产品的防水,抗汗性能。将口红涂抹在手臂内侧,干燥后测试接触角。通过接触角可以明显区别不同产品的防水,抗汗,抗皮脂的差异,1号样品性能更加优越,防水抗汗都优于其他产品。彩妆中除了口红,也可以通过接触角分析底妆产品中原料和基底的润湿性。大多数化妆品都含有粉末和颜料,以着色、保护皮肤或协助清洁。以表面活性剂形式存在的分散剂确保粉末的精细分布和混合物的稳定。粉末和液体的接触角可以帮助判断润湿和分散行为。3.护肤品的乳化行为分析:常见的护肤类化妆品是水包油或者油包水的乳液或者膏霜。水油原本不相容,通过添加表面活性剂,可以吸附于液液界面,降低体系的热力学不稳定性。表面张力仪可以精准的分析油水两相的界面张力,判断乳化效果;表面张力仪还可以测试表面活性剂的临界胶束浓度,判断表面活性剂的添加量。分析表面活性剂的动态表面张力行为,监控喷雾雾化效果等;除此之外,KRUSS的各类产品还可以分析头发的接触角。正常头发具有疏水性,受损后头发油脂层被破坏或部分缺损,接触角变小其亲水性越强。该方法广泛用于头发受损及修复后的情况。 KRÜ SS的表界面分析仪器可以帮助您从原料到成品,从生产到研发,多维度解决您的难题!
  • 中国电镜产业链系列走访第8站祺跃科技:致力原位扫描电镜产业化,赋能材料结构与性能一体化表征
    秉承“国产科学仪器腾飞行动”宗旨,仪器信息网于 2018 年启动“国产科学仪器腾飞行动”之“创新 100”项目,通过筛选一批具备自主创新能力的中小仪器厂商,在企业发展的关键时期“帮一把”。五年以来,天时地利人和至,中国电镜产业迎来发展窗口期,国内电镜产业链企业们也纷纷抓住历史机遇,实现生机蓬勃的发展之势。2023 年迎来国产电镜的“全新时代”。此背景下,“创新 100”项目组在2023年底走进13家中国电镜产业链代表性企业,邀请电镜专家联合走访,探寻中国电镜产业发展进展,为发展新阶段赋能,也为 2024 年即将在苏州举办的“第三届中国电镜产业化发展论坛”的内容筹备作前期调研。交流现场走访第8站,由仪器信息网材料物性组执行主编杨厉哲、“创新 100”项目负责人韦东裕、营销服务中心经理韩永风、牛群山等组成的走访项目组走进浙江祺跃科技有限公司(以下简称“祺跃科技”),祺跃科技董事长张跃飞、研发总监唐亮等接待了走访一行人员。——企业发展进展浙江祺跃科技有限公司主要从事材料显微结构与性能一体化检测的纳米分辨可视化原位扫描电镜、真空与镀膜装备的研发、生产、销售和维护服务,并提供材料检测、材料大数据与AI应用、原位微观表征解决方案服务。祺跃科技的技术根基源自浙江大学张泽院士主持的国家重大科研仪器设备研制项目。基于该项目的研究成果,2019年,张跃飞和祺跃科技踏上了扫描电镜纳米分辨高温力学原位仪器的产业化之路。从创办第一年,只能生产电子显微镜的一个功能模块,到2022年短短三年,祺跃科技已经研制出满足市场上扫描电子显微镜的系列化原位高温力学功能模块与整机,完成多项科技成果转化。期间,祺跃科技还获批浙江省“院士工作站”、国家高新技术企业、浙江省级研发中心、承担国家重点研发计划,杭州市领军型创新团队项目等。经过坚实且成果斐然的初创期之后,祺跃科技稳健地迈向发展新阶段,于2023年成功完成天使轮融资。——产品技术与布局2019年,张泽院士主持的“国家重大科研仪器项目”成果落地转化,祺跃科技研制出原位拉伸力学与原位加热测试装置,极限载荷与温度分别为2000N、1150℃。2020年,原位拉伸力学与原位加热测试装置产品型号愈加丰富,产品性能进一步提升,极限载荷与温度分别进一步提升到5kN、1200℃ 。2021年,祺跃科技提高产品的标准化与通用性,发布尺寸最小的原位拉伸台、长时间原位真空疲劳测试系统等多款设备。2022年,祺跃科技形成系统解决原位方案,推出系列化原位SEM疲劳和蠕变台、原位电化学测试台,原位冷热台;同时,原位SEM拉伸台载荷提升至10kN,EBSD测试温度提升至1000℃和-180℃原位低温力学测试,开发出了原位SEM-EBSD-DIC关联应用原位表征测试方法。原位扫描电镜In-situ SEM 660F值得一提的是,预计在2024年祺跃科技将正式发布首台原位扫描电子显微镜(In-situ SEM 660F)。In-situ SEM 660F作为一款创新性的产品,填补了国内外原位高温微观结构与力热耦合一体化测试仪器的空白,可以实现1400℃纳米级高分辨成像,并可以与多种原位测试系统联用,在高/低温条件下对样品进行原位力学、氧化腐蚀、电化学等多场耦合测试。该仪器提供跨尺度研究材料液-固、固-固相转变过程演化研究的新方法,可以在高/低温环境作用下对样品施加拉伸、疲劳、蠕变、电化学、氧化腐蚀等多场耦合作用,表征样品/样件性能与微观组织演变实时相关的过程信息,极大程度满足用户的多功能、多场景测试需求。目前,祺跃科技基于长期研发投入,在高温-应力耦合加载同时保持电子显微纳米级分辨快速成像的核心技术方面具有领先优势,已布局原位扫描电子显微镜、原位测试模块、真空镀膜设备等系列化高端科学仪器。未来,公司将充分发挥产学研用一体化优势,以“成为微观过程可视化检测行业引领者,提供材料与高端制造业升级和创新的眼睛与大脑”为愿景,聚焦于开发显微结构与性能一体化高通量原位表征新仪器,为客户提供创新性的材料原位检测研究新产品与高水平分析测试服务。实验室参观——国产电镜发展观点国产电镜的发展近年来取得了显著的进步,但同时也面临着多方面的挑战。技术创新与突破:国产电镜在技术创新方面已经取得了长足的进步。通过不断研发新技术、新材料和新工艺,国产电镜的性能和稳定性得到了显著提升。然而,与国际先进水平相比,国产电镜在某些关键技术方面仍存在一定的差距。因此,加大技术创新力度,持续推动技术进步,是国产电镜发展的关键。市场需求与拓展:随着科学技术的快速发展,电镜在材料科学、生命科学等领域的应用越来越广泛。这为国产电镜提供了巨大的市场机会。然而,国产电镜在高端市场领域的份额仍然有限。因此,国产电镜厂商需要深入了解市场需求,加强产品研发和市场推广,提高产品的竞争力和市场占有率。人才培养与团队建设:电镜技术的研发和应用需要一支高素质、专业化的团队。然而,目前国产电镜领域的人才储备相对不足,尤其是缺乏高层次的专业人才。因此,加强人才培养和团队建设,提高从业人员的专业素养和技能水平,是国产电镜持续发展的重要保障。国际竞争与合作:在国际市场上,国产电镜面临着来自国际知名品牌的激烈竞争。这要求国产电镜厂商不仅要提高自身的技术水平,还要积极参与国际合作与交流,学习借鉴国际先进经验和技术成果。同时,通过与国际同行的合作与交流,可以推动国产电镜技术的国际化发展,提高国际竞争力。合影留念附1:2024年4月,“第三届中国电镜产业化发展论坛”将在苏州举办,现进入论坛内容筹备阶段,为更好解决产业痛点,切实助力产业发展,现向广大网友征集论坛内容建议,欢迎大家积极参与,建议被采用的网友或专家将获得论坛定向邀请函,邀请现场与电镜业界专家、企业精英共议行业发展!扫码填写论坛内容建议或点击链接填写:https://www.wjx.cn/vm/hxJFe0g.aspx#或直接邮件或电话沟通,邮箱:yanglz@instrument.com.cn,电话(同微信):15311451191。附2:2023年年底中国电镜产业链系列走访名单走访企业聚束科技惠然科技速普仪器大束科技格微仪器康尔斯特国仪量子祺跃科技雷博科仪屹东光学苏州冠德上海精测纳克微束
  • 高分子表征技术专题——小角X射线散射技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!小角X射线散射技术在高分子表征中的应用Typical Applications of Small-angle X-ray Scattering Technique in Polymer Characterization作者:吕冬,卢影,门永锋作者机构:中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室,长春,130022作者简介:门永锋,男,1973年生. 1995年获东南大学理学学士,1998年获中国科学院长春应用化学研究所理学硕士,2001年德国弗赖堡大学物理系获自然科学博士. 2002~2005年,德国BASF公司高分子研究中心,博士后、Physicist. 2005年加入中国科学院长春应用化学研究所开展工作. 2005年入选中国科学院百人计划,2014年入选科技部中青年科技创新领军人才,2016年入选第二批万人计划科技创新领军人才,2015年获国家基金委杰出青年基金、英国皇家学会牛顿高级学者基金. 目前担任高分子物理与化学国家重点实验室主任、中国晶体学会小角散射专业委员会主任、IUPAC商用聚合物结构与性能分会主席. 主要从事高分子结构与性能方面研究工作.摘要小角X射线散射(SAXS)技术是表征高分子材料微观结构的一种重要手段. 当X射线穿过材料时,在材料不均一的电子云密度分布作用下,发生散射并形成特定的散射图案,使得我们可以根据特定的模型来反推材料的微观结构,并计算相关结构参数. SAXS特有的对微观结构的统计平均及无损探测使其成为了一种不可或缺的高分子材料微观结构分析手段. 本文首先简述了SAXS技术的基本理论,在此基础上根据测试中的实际问题给出了测试时可采取的实验技巧. 最后,结合典型实例,概述了高分子材料中可用SAXS技术表征的微观结构及其相应的理论模型. 希望本文能作为入门文献,帮助初学者更好地理解SAXS技术的原理,并结合实际需求迅速了解SAXS技术的适用范围及相关实验技巧,高效地完成相关实验.AbstractSmall-angle X-ray scattering (SAXS) technique is one of the most significant methods for determining the micro-structures of polymeric materials due to its statisticalaverage and nondestructive detecting feature. Usually, a monochromatic parallel beam of X-rays is used for scattering experiments. When passing through a sample, the oscillating electromagnetic field (mostly the electric part) of X-rays interact with electrons, making the electrons secondary sources of X-rays of the same frequency. Those secondary X-rays interfere with each other to form a specific pattern deviating from the primary beam path depending on the actual locations of the electrons in the sample. Mathematically, such interferences can be obtained by a summation of all secondary X-ray waves. As the number of the electrons within the sample is very large, an integration is used to represent the summation mentioned above. Because of the wave nature of the X-rays, the amplitude of the scattered X-rays determined by the above integration is just a Fourier transformation of the electron density distribution within the scattering volume. Due to the limitation in detection technique, the complex value of amplitude of scattered X-rays with real and imaginary parts cannot be recorded. It is the intensity rather than the amplitude that is recorded during experiments resulting in a loss of the phase information. Therefore, obtaining exact structural information (electron density distribution) becomes not easy and must be based on specific model fittings. Besides structures, SAXS intensity distribution can be used to investigate sample’s gross properties such as fraction of phases or local properties such as fractal dimensions of interfaces between phases. This work began with an introduction of the fundamental theories of the SAXS technique, followed by practical suggestions on performing the experiments and brief summaries of models developed for different structures. The authors wish this review could help the beginners to comprehend the elements of the SAXS technique and serve as an instruction manual for valid data acquisition.关键词高分子表征  小角X射线散射(SAXS)  片晶  微观结构KeywordsPolymer characterization  Small-angle X-ray scattering (SAXS)  Lamellae  Micro-structure 11小角X射线散射原理简述X射线是波长介于紫外与γ射线之间的电磁波,其波长范围涵盖了10-8~10-12 m,相应的频率范围为10 16~1022 Hz. 人们通常利用单一波长(单色)的X射线进行散射与衍射实验,例如:实验室中通常使用波长为0.154 nm的CuK α线特征辐射作为入射光源开展实验,而在同步辐射光源则可以根据需要选择合适的波长. X射线散射通常是指一束近乎平行的单色X射线穿过样品后产生的偏离入射光方向散射光强的现象. 当X射线通过物质时,其电磁波中的高频电场迫使物质中的电子发生同频震荡,产生次级波,这些次级波在空间中传播叠加. 不同位置的电子发出的次级波到达空间特定位置时具有不同的相位,因此,最终在不同位置的散射光的振幅取决于样品中电子的空间分布[1~3]. 由于物质中电子的数量极其巨大,上述各个位置振幅的叠加过程可以简化为积分,也就是:其中ρ(r)是样品内部电子密度分布函数,r是样品内电子的坐标,V是X射线照射的体积,q是散射矢量,定义为:其中S0和S分别为入射光及散射光方向的单位矢量.q的大小为:其中2θ是入射光与散射光之间的夹角,也就是散射角. 可见,X射线散射实验获得的散射光振幅在q空间的分布只与样品内部电子密度分布函数相关,利用不同波长X射线进行测试获得的散射光振幅分布具有不同的角度依赖性,但换算成q空间分布则是唯一的. 观察公式(1)可以发现A(q)其实就是ρ(r)的傅里叶变换. 如果我们可以直接测量A(q),便可以直接进行反傅里叶变换获得期待的ρ(r),也就是样品内部的微观结构.然而,如前所述,X射线的频率非常高,目前的电子学技术不能有效测量A(q),在测量过程中会丢掉相位信息,只能测得强度信息,也就是:公式(1)所展示的代表实空间结构的ρ(r)与A(q)代表q空间散射光振幅分布函数显然具有倒易性,即,实空间中尺度越大的结构将在q空间中小q区呈现强的散射光. 可见,根据公式(3)及通常使用的X射线的波长(在0.1 nm量级),几纳米至几百纳米的微观结构将在较小的q(2θ)处产生散射信号. 因此,探测纳米至微米尺度微观结构的X射线散射技术被称为小角X射线散射(SAXS). 尽管通过散射强度I(q)不能直接得到体系的电子云密度分布函数ρ(r),但是ρ(r)的自相关函数Γρ(ρ)恰巧是散射强度的反傅里叶变换. 因此,代表体系微观结构的ρ(r)、散射光振幅A(q)、可测量的散射光强度I(q)及ρ(r)的自相关函数Γρ(ρ)之间就具有了图1所示的关系. 这一物理量间相互转化的关系是SAXS技术的基础[4,5]. 值得注意的是,由Γρ(ρ)不能直接反推样品体系的电子云密度分布情况. 在实际数据分析中,我们还需结合体系的电子云密度分布特性进行讨论. 因此,对于体系电子云密度分布的描述十分重要,目前主流的数据分析发展趋势主要是集中于如何选取简化的模型,推导出具有特征形状的自相关函数Γρ(ρ)[6],来间接描述体系的电子云密度分布. 模型确定后,就可以根据散射强度分布来计算一些特定的结构参数. 篇幅所限,这里只给出了极简版的SAXS原理以及获得结构信息的大致思路,想要深入地了解SAXS技术的原理的读者可以参考文末所列出的经典教科书[1~4,7~11].Fig. 1Relationships amongρ(r),A(q),Γρ(r) andI(q)[5].SAXS技术的测试结果不直观,倒空间的散射信号还原成实空间中材料的微观结构的过程中,涉及到大量的数学运算及相应理论模型的拟合,稍有不慎极有可能得出错误的结果. 因此,在利用SAXS分析材料微观结构时,常常需要扫描电子显微镜(SEM)、透射电子显微镜(TEM)、示差扫描量热仪(DSC)等实验来辅助验证分析结果. SAXS技术的优点则在于适用于多种材料体系,对测试样品不需要进行前期预处理,测试过程中也不改变样品的结构性质,属于无损测试. SAXS测试结果为体系的统计平均值,更能代表材料的整体信息. 此外,多数SAXS仪器与其他仪器兼容性好,可以实现SAXS技术与各种小型设备,例如拉伸仪、剪切仪、热台、注塑机、模拉仪器等多种仪器的联用[12],从而在线观测材料在各种条件下的微观结构演变及服役行为. 因此,虽然SAXS技术对于初学者来说门槛略高,但由于其多方面的优势,在高分子材料结构表征领域中仍扮演着不可替代的角色.2实验技巧从上述X射线散射的基本原理可知SAXS实验方面相对简单,只需利用成熟的商用仪器或同步辐射线站将待测样品置于X射线光路之中特定的位置即可. SAXS也可以通过以很小的角度掠过表面来测试薄膜样品,此时的SAXS实验被称为掠入射SAXS (GISAXS),其基本原理与SAXS相近,本文受篇幅限制不对GISAXS进行讨论. 除了简单的静态样品SAXS测试,还可以利用SAXS测试样品在不同外场下的微观结构演化过程,例如高分子加工成型条件下的相变与结晶、服役环境中的形变与破坏等. 为实现最优化的SAXS实验,在开始实施之前确实需要做一些必要的准备. 以下是一些常见的需要注意的事项.2.1谱仪参数选择任何SAXS设备都只具备有限的可测量q范围,这就决定了可观测的微观结构尺寸必然是有限的,因此,一个初步的判断,甚至是初步的实空间实验通常是需要的. 很多SAXS设备具有多段可调q范围,初步的实验有助于选择合适的仪器参数实现相关尺度微观结构的统计平均测试.目前主流的实验室SAXS设备及同步辐射SAXS实验站都可提供X射线波长、光斑尺寸、样品到探测器距离等参数的选择. 配备2种金属靶(例如铜及钼)的实验室SAXS设备逐渐成为一个很好的选择,其提供的铜或钼的特征辐射具有不同的波长,也就是具备不同的穿透能力,在具有环境腔窗口的情况下可根据不同的窗口材料选择合适的光源. 光斑尺寸的选择原则是在宏观的谱仪尺度上可被看成是点光源,但在微观结构尺度上又能实现足够大的覆盖以实现统计平均. 简而言之,如光斑尺寸过大则会对SAXS数据造成明显的模糊效应,也就是探测器同一个像素点采集到了样品不同位置散射的本应是不同q处的信号. 尽管可以利用光斑形状的数据对最终获得的SAXS数据进行去模糊处理,通常我们还是应该避免这一步骤,原因是去模糊过程不可避免地带来计算的简化及误差,进而影响实验数据的精度. 同样的道理,如果光斑尺寸过小则会造成统计平均不足的问题,特别是在先进的同步辐射实验站,当光斑尺寸接近待测微观结构尺寸时就会丧失应有的统计性及小q区数据的可靠性. 这一点可从公式(1)来理解,其中的积分体积V是X射线照射的样品体积,因此,光斑的尺寸的倒数就决定了可探测的最小q值.取决于通常的二维面探测器像素点尺寸,我们在实验之前可估算能实现的q空间分辨率,也就是2个相邻像素代表的q之差Δq. 常见的误区是只关注能实现的最小q而忽视Δq. 这种情况在探测目标微观结构尺寸较大时尤为突出. 根据SAXS谱仪的结构,可通过改变样品到探测器之间的距离实现Δq的合理选择,该距离越大则对应的从样品位置出发的2个相邻像素点对应的角度也就越小,从而实现更小的Δq.2.2样品尺寸选择样品的宏观尺寸对获得优质的SAXS数据也很重要,通常选用足够大的样品以使入射X射线全部照射在样品上而不触及样品边缘,这样做的目的是尽量避免边缘光滑表面可能带来的对掠过的X射线的反射,这种反射将会污染实际的SAXS数据. 这种情况在测试直径小于光斑尺寸的纤维样品时比较突出,通常的做法是利用与纤维密度相仿的液体浸润一束纤维以消除纤维与空气的界面影响.X射线与物质相互作用除了散射以外还包括被吸收,因此,在确定样品沿X射线传播方向的最佳厚度时就需要考虑吸收和散射的平衡. 基本的思想非常简单,散射强度依赖于X射线照射到的总电子数,也就是和厚度成正比,吸收则相反,厚度越大则吸收越严重,因此,对特定的样品在特定的X射线波长下一定存在一个最佳的厚度进行SAXS实验. 根据计算,通常实验室SAXS设备利用的CuKα线下聚乙烯样品的最佳厚度为2 mm左右. 因吸收系数是X射线波长的函数,具体到特定条件下最优样品厚度的寻找需借助工具书或进行实测[7].2.3数据处理从上述讨论可知,与显微学手段(如电子显微镜、原子力显微镜等)相比,SAXS实验实现起来相对简单,但SAXS数据是在q空间呈现的,远没有显微学实验获得的结果直观,并且实验测得的原始数据还需校正才能使用.首先,任何SAXS谱仪都不可避免会有背底散射,也就是在没有加载样品时也会有一定程度的散射信号可被探测器记录,这些背底散射来自光路中可能的窗口、气体分子及探测器的电子学噪音. 因此,正确扣除这部分背底散射非常重要. 目前主流的SAXS设备和同步辐射SAXS实验站都配备了标准的流程进行背底散射的扣除. 这里需要注意的是正确计算加载样品之后的背底散射,考虑到样品对入射X射线的吸收,在加载样品后通过样品后光路中的X射线总量减少,因此,在没加载样品条件下测得的背底散射数据实际上是被高估了,需要进行样品吸收校正. 背底散射扣除后的SAXS数据已经可以用于体系微观结构参数的计算,但其散射强度还只具有任意单位,需要进行进一步的数据处理才能获得绝对散射强度[10,13]. 绝对散射强度包含了体系微观结构的所有信息. 通常可以利用已知绝对散射强度的样品(例如纯水)作为标准进行比对,获得所测样品的绝对散射强度分布. 上述介绍的强度校正基本可以满足一般需求,但在精确的计算中还涉及到更多信号校正,这里不再一一展开说明. Pauw在综述中关于信号校正的种类,校正对信号影响大小,及应用各类校正的先后顺序进行了详细的阐述[14].按照正确步骤得到散射曲线后就可以进行数据分析. SAXS数据中散射强度与散射矢量之间一般具有幂率关系,也就是I(q)~q−ν ( ν是正自然数),因此,SAXS曲线通常用双对数坐标表示以方便获得幂律关系,这就要求我们不能对散射强度进行加减操作,以免改变应有的幂律关系. 有时为图示清晰,可对SAXS数据进行乘除常数的操作,获得曲线在双对数坐标下的上下平移,达到合适的视觉效果而不影响通过幂指数规律进行数据分析.在高分子领域,利用SAXS对结晶高分子体系片晶-非晶区叠层结构长周期的研究极为广泛和成功,其中常见对散射强度(I(q)versusq)数据做洛伦兹校正,既将I(q)乘以q2之后对q做图,然后利用I(q)q2versusq曲线探讨体系结构参数[7,9]. 这里的洛伦兹校正是考虑到片层体系的特殊几何结构而进行的对测得的散射强度的必要修正,具有其他几何形状的微观结构产生的散射强度不能直接套用该校正. 首先,我们考虑一个在空间中固定的片层结构,其宽度和长度远大于厚度,这就意味着该片层产生的散射强度将集中在片层法向方向,在q空间形成一个细棒状分布,所以,理论上该片层在法向方向以外都不产生散射信号. 然而,实际体系中由于片层结构会沿不同方向平均化,这主要是因为在液体分散体系中的片层会高速运动(旋转、平动),使得测量时间尺度范围内本应是细棒状的强度分布平均分不到整个三维q空间,那么对于任意q而言,强度就被稀释了以q为半径的球壳面积倍,也就是4πq2倍. 所以,测得的散射强度需要按q2校正. 在结晶高分子体系,尽管片晶不能旋转,但是众多片晶在空间中沿不同方向分布,其实际效果和上述分散体系类似,因此也需对测得的I(q)进行q2校正. 根据上述讨论,其他形状的散射体,例如球状散射体因其理论上的散射强度在不同q处就应该是均匀分布的,不存在稀释的问题,所以是不能盲目进行洛伦兹校正的.常用的SAXS数据处理软件有Fit2d[15],GNOM[16],SASfit[17],SasView[18],Scatter[19],ATSAS[20],McSAS[21],BioXTAS RAW[22]等,可实现二维SAXS散射图到各类一维散射曲线的转换,并且部分软件兼具简单的数据拟合功能. 各个软件有其特定的侧重点,需要根据自己的实际需求来选择. 此外,也可使用Matlab、Python等程序语言,自行编辑所应用的公式及选择相应拟合模型,对自己的体系进行个性化处理. 但值得注意的是,曲线拟合完美并不一定代表结果的真实可靠,在得出正式结论前一定要三思.3小角X射线应用实例在这一节中,首先介绍不依赖于具体微观结构模型的散射不变量Q的相关应用以及如何利用散射峰位置确定微观粒子的排列模式,之后再按照微观结构分类,分别给出对应结构的拟合公式及实际应用. 由于篇幅所限,本文选取了有限的应用实例而非面面俱到,对特定结构测定有兴趣的读者可参考文末所列的基本SAXS经典教科书[1~4,7~11].3.1散射不变量Q散射不变量Q,以两相结构体系为例,取决于样品体系内部各散射体间电子云密度差及各散射体的体积分数[4,7]:其中,ρ1和ρ2分别为两相的cle/doi/10.11777/j.issn1000-3304DOI:10.11777/j.issn1000-3304.2020.20249
  • 高分子表征技术专题——同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!同步辐射硬X射线散射表征高分子材料:原位装置的研制和应用Characterization of Polymer Materials by Synchrotron Radiation Hard X-ray Scattering Technology: The Development and Application ofin situInstruments作者:赵景云,昱万程,陈威,陈鑫,盛俊芳,李良彬作者机构:中国科学技术大学国家同步辐射实验室 安徽省先进功能高分子薄膜工程实验室 中国科学院软物质化学 重点实验室,合肥,230026 西南科技大学核废料处理与环境安全国家协同创新中心,绵阳,621010作者简介:昱万程,男,1990年生. 2010年本科毕业于天津工业大学轻化工程专业,2015年博士毕业于中国科学技术大学高分子科学与工程系. 2015~2017年和2017~2020年分别在中国科学技术大学高分子科学与工程系,北京航空航天大学物理系从事博士后研究. 2020年9月至今,任中国科学技术大学国家同步辐射实验室特任副研究员. 主要从事利用同步辐射X射线散射技术结合原位装置在线研究高分子材料加工过程中的多尺度结构演变,同步辐射X射线散射数据高通量处理方法的开发和应用.李良彬,男,1972年生. 1994年本科毕业于四川师范大学近代物理专业,2000年博士毕业于四川大学高分子材料科学与工程系. 2000~2004年在荷兰国家原子分子物理研究所和Delft科技大学从事博士后研究,2004~2006年在荷兰联合利华食品与健康研究所担任研究员. 2006年至今,任中国科学技术大学国家同步辐射实验室研究员,兼任化学与材料科学学院高分子科学与工程系教授、博士生导师. 2013年获国家杰出青年基金资助. 担任《Macromolecules》副主编,《Polymer Crystallization》《Chinese Journal of Polymer Science》《Journal of Polymer Science》和《高分子材料科学与工程》编委. 主要从事同步辐射时间空间能量分辨技术、原位研究方法和高分子材料加工-结构-性能关系方面的研究.摘要同步辐射硬X射线散射技术是表征高分子材料晶体结构和其他有序结构的有力手段. 高时空分辨的现代同步辐射光源具备强大的实时、原位、动态和无损表征能力,在高分子材料加工和服役过程中远离平衡态的多尺度结构演变研究方面有着巨大优势. 为了充分发挥这一优势,合理设计同步辐射原位研究装置,实现原位实验过程中的样品环境控制十分关键. 本文通过结合具体的研究案例,首先介绍同步辐射原位实验的设计、原位研究装置的研制、操作技巧和数据处理等整个在线实验流程,帮助读者建立对同步辐射原位实验的基本认识. 最后,选择了若干具有代表性的高分子材料体系和样品环境,简要概述同步辐射硬X射线散射技术在表征复杂加工外场作用下高分子材料多尺度结构演变方面的应用,帮助读者加深对同步辐射原位研究装置及相关实验过程的理解,以期引发读者的思考,积极拓展同步辐射硬X射线散射技术在高分子材料表征中的应用.AbstractThe synchrotron radiation hard X-ray scattering technology is a powerful tool to characterize the crystalline and other ordered structures of polymer materials. For the high temporal and spatial resolutions, modern synchrotron radiation light sources own the powerful capability of real-time,in situ, dynamic and non-destructive characterization. Thus, it gives the synchrotron radiation hard X-ray scattering technology a huge advantage for the study of structural evolutions far away from the equilibrium during the processing and service of polymer materials. To give full play to this advantage, the reasonable design ofin situ instruments and the control of sample environments during the in situ synchrotron radiation experiments are critical. In this review, we first introduce the whole procedures of in situ experiments through a specific research case, including the design of in situ synchrotron radiation experiments, the development of in situ instruments, operation skills and data processing. We hope that the detailed introduction can help the audiences establish a fundamental cognition of the in situ synchrotron radiation experiments.Finally, we select several representative polymer material systems and the corresponding sample environments, and briefly overview the applications of the synchrotron radiation hard X-ray scattering technology in studying the multi-scale structural evolutions of these polymers under complex processing fields. We believe that these applications would inspire the audiences to think and deepen their understanding on the synchrotron radiation in situ experiments by using in situ instruments. Undoubtedly, it is beneficial to further expand the applications of the synchrotron radiation hard X-ray scattering technology on the characterization of polymer materials. 关键词同步辐射硬X射线散射技术  同步辐射原位研究装置  高分子材料加工  多尺度结构演变KeywordsSynchrotron radiation hard X-ray scattering technology  In situ instruments  Processing of polymer materials  Multi-scale structural evolutions 同步辐射是带电粒子以接近光速的速度在沿弧形轨道的磁场中运动时释放的电磁辐射. 对比普通X射线光源,同步辐射X射线光源亮度更高、光谱连续、具有更好的偏振性和准直性,并且可精确计算. 至今,我国经历了三代同步辐射大科学装置的建设、研究和发展,从第一代北京同步辐射装置、第二代合肥同步辐射装置到较为先进的第三代上海同步辐射光源[1]. 目前,我国正在积极建设和规划第四代先进光源,如北京高能同步辐射光源和合肥先进光源[2]. 同步辐射光源是前沿基础科学、工程技术和材料等领域所需的重要研究手段,是国际科学研究竞争的关键资源.同步辐射硬X射线散射技术在高分子结构表征中的应用非常广泛,例如广角X射线散射(WAXS)和小角X射线散射(SAXS)可表征高分子材料在亚纳米至百纳米尺度上的结构信息[3]. 目前,上海光源即将建成我国第一条超小角X射线散射(USAXS)线站,可进一步实现微米尺度的结构探测. 在此基础上与毫秒级分辨的超快探测器联用可以实现高时间分辨. 依托时间分辨的同步辐射WAXS/SAXS/USAXS研究平台,我们将能够同时获取高分子材料在0.1~1000 nm尺度内的结构信息,可以满足半晶高分子材料加工成型过程中多尺度结构快速演化、嵌段共聚物微相分离以及高分子复合材料研究等方面的表征需求.高分子材料制品的服役性能强烈依赖于加工工艺. 即使是相同的高分子原材料,通过不同的加工工艺,所获得的产品性能可能是完全迥异的. 例如:聚乙烯通过吹塑成型可加工成柔韧的包装膜,通过挤出成型则可制成刚韧适中的排水管道,还可通过纺丝加工成超强纤维. 高分子材料的加工参数主要包括加工温度、升降温速率、剪切和拉伸等加工外场的应变速率、应变和压强等. 因此,温度场、流动场等复杂外场、多加工步骤和参数相互耦合是高分子材料加工过程的主要特点[4,5]. 研制与多尺度表征技术联用的在线研究装备是表征高分子材料在加工过程中发生多尺度结构快速演化的重要实验手段. 高分子材料加工与服役在线研究装备类型多样,有小型的剪切和拉伸流变仪,也有模拟实际工业生产的大型原位装备,如原位双向拉伸装置和原位挤出吹塑成膜装置等. 此外,通过发展和集成与同步辐射联用的高分子材料性能表征技术,如用于光学膜的光学双折射检测系统,可建立高分子材料加工-结构-服役性能的高通量表征平台,大幅提高在多维加工参数空间中搜索最优参数的能力,以期为实际的生产加工提供理论指导.为帮助读者建立对同步辐射在线实验的基本认识,本文将以聚二甲基硅氧烷(PDMS)原位低温拉伸为具体研究实例,详细介绍同步辐射在线装置研制、实验设计和数据处理等相关知识;在此基础上,我们将简要概述本课题组多年来利用自主研制的同步辐射原位在线装置及高分子材料加工过程多尺度结构演变研究中的代表性成果. 以此引发读者的思考和共鸣,进一步扩展同步辐射硬X射线散射技术在高分子材料表征中的应用,取得更多更好的创新研究成果.1同步辐射在线实验研究方法同步辐射在线实验是指利用可与同步辐射光源联用的原位装置,研究复杂外场下的高分子合成或者加工过程中的化学或者物理问题. 在开展同步辐射在线实验前,需根据所要研究的具体科学问题,明确样品控制环境. 在充分考虑同步辐射光束线站的空间限制后,购买或研制原位装置. 样品制备完成后,利用原位装置进行样品的离线预实验. 完成以上准备工作后,在预先申请的机时时间段内,携带样品、原位装置和其他配套设备至同步辐射光束线站进行在线实验. 实验过程中需严格按照线站的规定步骤操作,最后保存好实验数据. 我们课题组长期致力于高分子薄膜加工物理的研究和相关原位研究装置的研制,并取得了系列研究成果. 下面我们以典型的硅橡胶——聚二甲基硅氧烷(polydimethyl-siloxane, PDMS)的同步辐射原位低温拉伸实验为例,详细介绍同步辐射在线实验的具体流程和操作.硅橡胶作为一种可以在低温保持高强度和韧性的弹性体,是高新技术、航天航空和武器装备等领域不可或缺的关键材料. 与天然橡胶等常规橡胶相比,PDMS具有极低的玻璃化转变温度(Tg≈-110 ℃)和结晶温度(Tc≈-65 ℃)[6]. 在拉伸和压缩等服役工况条件下,PDMS发生应变诱导结晶(stain-induced crystallization, SIC),因此其服役温度区间及性能主要受SIC而非玻璃化转变控制. 显然,结晶温度Tc的降低将缩小橡胶态的温度窗口. 已有研究表明,PDMS的应变诱导结晶行为非常复杂,在Tc以上至近Tg的范围内,存在多晶型结构并发生不同晶型间的固-固相转变行为. 在拉伸过程中,PDMS出现了α' ,α,β' 和β 4种晶型 [7],对应的WAXS二维图和方位角一维曲线积分分别如图1(a)和1(b)所示. PDMS复杂多晶型晶体结构直接影响材料的物理性质和宏观力学行为. 只有充分了解PDMS的晶体结构,掌握晶型间的转变规律,才能深入认识和理解材料的性能,实现根据服役条件和需求对材料进行改进和设计的目标. 然而,由于在线低温拉伸等研究条件的限制,PDMS应变诱导结晶行为和晶型间的相互转变的相关研究仍较少,并缺乏基础数据和定量模型. 其中,尚未完全解决的问题主要有以下2个方面:(1) PDMS可形成多种晶型,但所有晶型的晶体结构尚未完全确定;(2) 拉伸可诱导不同晶型发生固-固相转变,但目前对转变路径和机理还缺乏认识. 高时空分辨的同步辐射硬X射线散射技术为解决上述科学问题提供了可能. 我们选择以较低应变速率在低温下拉伸PDMS,实时跟踪拉伸过程中的晶体结构演化和固-固相转变. 在计算实验所需的时间分辨率后,我们选择上海光源(SSRF)BL16B1(小角X射线散射光束线站)进行同步辐射在线实验. BL16B1的技术参数和指标符合软物质材料表征需求,其能量范围为5~20 keV,光子通量达到1011 phs/s @10 keV,时间分辨率达到100 ms,X射线波长 λ=0.124 nm,可探测的空间尺度范围为1~240 nm.Fig. 1(a) The 2D WAXS patterns of polymorphous PDMS (b) The 1D azimuthal intensity curves with the azimuthal angle (ψ) ranging from 0° to 180° of diffraction peaks at 2θ=10.42° (Reprinted with permission from Ref.‍[7] Copyright (2020) American Chemical Society).在明确所要解决的科学问题后,需要解决样品环境的控制问题,即能与同步辐射硬X射线联用的低温原位拉伸装置. 通过调研,我们发现市面上早已有了商业化的低温拉伸设备,如Linkam公司配置液氮制冷系统的拉伸热台TST350以及Instron 3366型万能拉伸机. 然而,这些商业化设备都存在明显的不足,并不能满足我们的实验需求. 例如:TST350虽可实现与同步辐射联用,然而为了使得温度控制均匀并提高升降温速率,其样品空间很小,所能达到的应变空间十分有限,因此很难将具有较高断裂伸长率的橡胶类样品拉伸至大应变乃至断裂;此外,TST350采用按压式夹具,在拉伸过程中存在严重的打滑现象,即样品从夹具处滑脱. Instron 3366型万能拉伸机仅仅可以实现低温拉伸,并不能与同步辐射联用. 因此,我们转而自行研制与同步辐射硬X射线联用的低温原位拉伸装置. 在研制过程中,需要解决的主要难点问题有:(1) 单轴拉伸至断裂,即大应变的实现;(2) 低温环境的实现(室温至-110 ℃);(3) 样品的打滑现象;(4) 考虑上海光源光束线站的空间限制,在尺寸上实现与同步辐射硬X射线的联用. 我们受商业化流变仪(sentmanat extensional rheometer, SER)的启发,在研制时通过伺服电机驱动2个对向旋转的辊夹具对样品施加拉伸(如图2(a)). 如此,样品能以卷绕的方式无限拉长,可以在不增大腔体体积的前提下实现大应变,同时保证样品腔内部温度均一可控. 通过使用安川伺服电机,并配置减速机、运动控制器和MPE720控制系统,装置能够实现较宽的应变速率范围(0.0025~30 s-1). 低温环境的实现参考低温热台和示差扫描量热仪等仪器常用的降温模块,采用液氮降温的方法,使用自增压液氮罐将液氮注入低温腔体. 考虑到PDMS样品不能直接与液氮接触,需要在样品腔外部设计液氮流道. 样品腔采用导热性较好的不锈钢304,流道和样品腔采用一体式加工设计,避免焊接可能带来的缝隙. 我们利用有限元方法模拟了样品腔内温度,结果表明当环境温度为室温时,样品腔内部温度最低能够达到-150 ℃(图2(c)),可以较好地满足实验环境温度要求. 通过将样品腔内抽真空,外部采用吹氮气的方式,可以有效解决窗口结霜的问题,从而避免窗口结霜对X射线散射实验产生不利影响[8,9]. 根据锥形散射计算X射线窗口尺寸,并采用聚酰亚胺薄膜(杜邦公司Kapton系列薄膜)作为窗口材料. 为解决上海光源BL16B1线站的空间限制问题,低温原位拉伸装置的整体设计秉持小型化原则,设计效果图如图2(b)所示. 最终研制的装置实物如图2(d)所示[10].Fig. 2Schematic diagram of uniaxial stretching (a), the design of low-temperature stretching device (b), finite element simulation of temperature distribution in cryogenic chamber (c), physical image of low-temperature uniaxial stretching device combined with synchrotron radiation (d).结合本课题组多年的研究和实践经验,我们想要强调的是,在真正开展同步辐射在线实验前,离线预实验非常重要. 一方面,可以对力学曲线、装置升降温速率、保温时间等进行重复性验证,将在线实验的每个步骤都离线模拟重复,确保在有限的机时内高效执行实验计划;另一方面,在同步辐射光束线站的装置安装和校准需要丰富的操作经验,通过离线预实验,可以充分掌握装置的操作细节和常见问题的解决方法,如此方能在突发情况出现时从容应对. 此外,在进行在线实验时,需严格遵守同步辐射光束线站的管理规定,保障人身安全.同步辐射硬X射线原位实验通常在空气、氮气、溶液等环境中进行,获得的原始WAXS/SAXS数据包含空气等背底的散射. 因此,在原位实验的过程中,除了获得不同实验条件下的样品散射信号外,还需单独获得相应实验条件下的空气等背底散射信号,然后在后续的数据处理过程中扣除这些背底散射. 扣除背底散射通常是在WAXS/SAXS一维积分曲线上进行的,扣除操作恰当与否的判读标准是扣除背底后一维积分曲线的两端基线应保持水平. 同时,也要考虑原位研究装置对散射信号的影响. 为了进行数据的对比分析,通常需要对所获得的数据进行归一化处理.图1(b)为归一化处理后PDMS不同晶型的方位角一维积分曲线. 从图中可以明显看出PDMS 4种不同晶型所对应特征峰的区别:ψα=90°,ψα' =80/100°,ψβ=60°/120°,ψβ' =42°/72°和109°/138°.heng Lirong(郑黎荣).Chinese J Phys(高压物理学报),2020,34(5):3-15.doi:10.11858/gywlxb.202005543Xu Lu(许璐),Bai Liangui(柏莲桂),Yan Tingzi(颜廷姿),Wang Yuzhu(王玉柱),Wang Jie(王劼),Li Liangbin(李良彬).Polymer Bulletin(高分子通报),2010, (10):1-26.doi:10.1021/la904337z4Cui K,Ma Z,Tian N,Su F,Liu D,Li L.Chem Rev,2018,118(4):1840-1886.doi:10.1021/acs.chemrev.7b005005Chen W,Liu D,Li L.Polymer Crystallization,2019,2(2):10043.doi:
  • 高分子表征技术专题——X射线晶体结构解析技术在高分子表征研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!X射线晶体结构解析技术在高分子表征研究中的应用X-ray Diffraction Methodology for Crystal Structure Analysis in Characterization of Polymer作者:扈健,王梦梵,吴婧华作者机构:青岛科技大学 教育部/山东橡塑重点实验室,青岛,266042 北京化工大学 碳纤维及复合材料教育部重点实验室,北京,100029作者简介:扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究. 扈健,男,1986年生. 2013~2016年在日本丰田工业大学获得工学博士学位;2016~2019年于青岛科技大学从事博士后研究;2019年任青岛科技大学高分子科学与工程学院特聘副教授. 主要利用广角和小角X射线散射,振动光谱等技术,从事结晶高分子各级结构表征、相变行为以及结构-性能关系的研究.摘要高分子材料结构具有多尺度的复杂性,解析高分子材料各级微观结构并建立结构与性能之间的关系是高分子研究领域的重要目标和挑战. 对结晶性高分子而言,第一步工作就是对其晶体结构进行表征和解析,X射线衍射法是高分子晶体结构解析中最经典也是最常用的方法. 本文主要介绍X射线衍射等技术在高分子晶体解析中的基本原理和测试表征方法,总结概述近些年来晶体结构解析在高分子领域内的主要进展以及应用. 通过晶体结构解析的方法建立可靠的高分子晶体结构,不仅可以应用于新合成结晶高分子结构的解析,也可以进一步研究高分子各级结构在外场作用下的演变,探明微观结构与宏观性能之间的关系.AbstractBecause of complicated multi-scale structure for the polymer material, studying microscopic structure of polymer and clarifying the relationship between structure and physical property are the major goal and challengein the polymer science. For the crystalline polymer, crystal structure should be analyzed and established at first. X-ray diffraction is the most classical and conventional method for the crystal structure analysis in polymers, which gives the detailed information of molecular chain conformation, chain aggregation in the crystal lattice. This article reviews the main principles and experimental techniques of X-ray diffraction methodology, and also summarizes the progress and application in the polymer field over the past decade. By utilizing X-ray diffraction method, the crystal structure of newly synthesized crystalline polymers can be analyzed, which may help us recognize crystal phase transition and hierarchical structure evolution by the external force, and also study towards the microscopic clarification of structure-property relationship. By combining other techniques such as neutron scattering, electron diffraction, nuclear magnetic resonance, vibrational spectroscopy and computer simulation, the crystal structure of polymers with higher reliability can be established, leading us to the highly quantitative discussion from the molecular level. For this purpose, the study of polymer crystal structure is still on the way, and the contents may be helpful for the beginners and researchers.关键词结晶性高分子  晶体结构  X射线衍射  结构与性能KeywordsCrystalline polymer  Crystal structure  X-ray diffraction method  Structure and property 目前已知的高分子中,大约70%的都是结晶性高分子,它们在日常生活和高端领域有着大量的应用. 结晶性高分子受分子链结构不规整、链缠结和链间相互作用等效应的影响,很难像小分子一样完全结晶,通常也被称作半结晶性高分子[1-3]. 高分子结构具有多尺度复杂性,其各级结构通常包括聚合物链结构、晶体(胞)结构、晶胞堆砌结构、晶区与非晶区堆砌结构以及球晶中片晶结构等,各级结构都有可能影响着高分子相态及形貌,进而影响高分子材料的性能. 而其中,晶体结构的确定是研究结晶性高分子的基础,所以建立高质量的结晶性高分子的晶体结构是非常必要的[4,5].近几十年来,随着各类表征技术和计算机模拟等领域的快速发展,大量的高分子晶体结构被建立或者修正. 确定结晶性高分子在单元晶胞基础上的晶体结构信息,最传统和经典的方法是广角X射线衍射法,并且结合红外光谱、拉曼光谱、核磁共振谱、中子散射以及高分辨电子衍射等技术能够得到更为准确的晶体结构. 这些技术的进步和运用不仅有助于分析聚合物的晶体结构,而且也提供了新方法去研究更为复杂的高分子材料. 基于晶体结构的建立,我们可以研究高分子的各级结构以及在外场作用下各种相态之间的演变规律,对阐明聚合物材料微观结构与物理性能之间的关系都具有重要意义[6,7].1高分子X射线晶体结构解析法X射线是一种波长为埃(1 Å = 10-10 m)级的电磁波,由于其波长的数量级与晶体点阵中原子间距一致,晶体点阵可以成为X射线发生衍射效应的光栅,而衍射图会随晶体点阵的变化而变化,因此X射线适用于晶体结构解析. 从20世纪30年代开始,X射线衍射法对聚合物科学领域的发展就起到了重要的作用,例如通过X射线衍射方法确定了各类合成或天然高分子的纤维周期均为几个Å到几十个Å,这也证明了一根聚合物分子链可以贯穿多个晶胞. 随着近几十年同步辐射技术的应用,拓宽了X射线的波长范围,更短的波长可以使我们获得更多倒易空间的坐标信息,灵敏度更高的探测器可以帮助我们更细致观测相变的动力学以及其他行为. 另外,通过分子模拟软件进行数据分析,建立模型以及能量最小化等已经普遍用于X射线衍射法解析或精修晶体结构. 1.1X射线衍射法基本原理解析晶体结构的衍射原理和方法学主要是20世纪初期建立的,包括布拉格定律、晶体学对称、群论以及从实空间到倒易空间的傅里叶变换等等. 很多书籍对这些方法都有着详尽的描述,这里对几个重要的概念和原理进行简要的概述[8~11].1.1.1Bragg和Polanyi公式Bragg公式:如图1所示,当一束单色X射线非垂直入射晶体后,从晶体中的原子散射出的X射线在一定条件下彼此会发生干涉, 满足下列方程:其中λ为入射光波长,d为晶面间距,θ为入射光与晶面的夹角.Fig. 1Bragg' s condition.Polanyi公式: 如图2(a)所示,当一束波长为λ的X射线垂直入射在一维线性点阵时(例如单轴取向的纤维样品),其等同周期为I, 当满足Polanyi方程公式时,散射出的X射线间会产生强烈的衍射:其中Φm为第m层衍射的仰角. 结晶高分子中分子链排列时以相同结构单元重复出现的周期长度被称为等同周期(identity period)或者纤维周期(fiber period),图2(b)为全同聚丁烯-1的(3/1)螺旋构象,可以利用Polanyi公式从二维X射线纤维图中计算等同周期.Fig. 2(a) Polanyi' s condition (b) Identity period ofit-PB-1.1.1.2倒易空间倒易点阵是根据晶体结构的周期性抽象出来的三维空间坐标,是一种简单实用的数学工具来描述晶体衍射,X射线衍射的图样实际上是晶体倒易点阵的对应而不是正点阵的直接映像. 正点阵与倒易点阵是互易的,倒易晶格中越大的晶面指数(hkl),在实晶格中就对应越小的晶面间距. 如图3(a)所示,假设晶体点阵中的单位矢量为a1,a2和a3,和它对应的倒易点阵的单位矢量为a1*,a2*和a3*,其关系如下式:其中晶胞体积V=a1 × ( a2 × a3),a1*垂直于a2和a3,a2*垂直于a1和a3,a3*垂直于a1和a2,其长度是相应晶面间距的倒数的向量.Fig. 3(a) Relationship between real space and reciprocal space (b) Reciprocal lattice and vector.倒易晶格中的任一点称作倒易点,倒易点阵的阵点与晶体学平面的矢量相关,每一组晶面(hkl)都对应一个倒易点. 从倒易空间原点指向倒易点的矢量被称为倒易矢量Hhkl,如图3(b)所示,其关系如下:其中指标(h,k,l)就是实空间中的晶面指数,h,k,l均为整数. 倒易矢量Hhkl垂直于正点阵中的(hkl)晶面,并且矢量的长度等于其对应晶面间距的倒数|Hhkl|=1/dhkl.1.1.3Ewald球Bragg方程指出,当散射矢量等于某倒易点阵矢量时就具备发生衍射的基础,如果把Bragg方程进行变形可得到公式(5):以1/λ为半径画一个球面,C点为圆心,CP为散射X射线,球面与O点相切,只要倒易点阵与球面相交就可以满足Bragg方程而发生衍射现象,这个反射球就被称为Ewald球,如图4所示.Fig. 4Relationship between Ewald sphere of radius 1/λ and reciprocal lattice. 根据图中的几何关系OP = 1/d,假设O点为倒易空间原点,OP即为倒易散射矢量,P点与倒易空间点阵的交点即为(hkl)晶面指数. 转动晶体的同时倒易点阵亦发生转动,从而会使不同的倒易点与Ewald球的表面相交. Ewald球直径的大小与X射线波长成反比,衍射点数量取决于Ewald球与倒易空间的交点的数目,实验可探测衍射的最小d值取决于Ewald球的直径2/λ,在实际测试中,可以减小入射光波长以增加可观测的衍射点数量.如图5所示,对于单轴取向的样品,拉伸方向平行于c轴方向,而a轴和b轴仍然是随机取向,所以倒易空间的(hkl)点呈同心圆分布,这一系列同心圆与Ewald反射球的交点就构成了一系列的hk0,hk1,hk2… hkl的倒易格子的平面. 通常定义(hk0)层为赤道线方向,沿拉伸方向的(00l)为子午线方向.Fig. 5The relationship among Ewald sphere, circular distribution of reciprocal lattice points and a diffraction pattern on a flat photographic film.1.1.4X射线衍射强度X射线的衍射强度Intensity公式如下:其中K是比例因子,m是多重性因子,p为极化因子,L是Lorentz因子,A是吸光因子,F为结构因子. 其中需要强调的是结构因子F,它是由晶体结构决定的,和晶胞中原子的种类和位置相关.如图6所示,一束平行X射线经过电子A和B分别发生散射,假设A到B的距离为r,S0和S分别为入射和散射单位矢量,其光程差为:其中b即为散射矢量,与图4中OP矢量一致.Fig. 6Sketch of classic scattering experiment.一个原子中的核外电子云呈球形分布,对环绕中心的所有可能实空间矢量的干涉进行积分可以得到一个原子周围的电子产生的相干散射:这个公式就是ρ(r)的傅里叶变换,其中ρ(r)是原子的散射因子.晶体中原子的周期排列决定了晶体中的一切都是周期的,相当于一种周期函数,这种周期函数的实质就是晶胞中的电子密度分布函数,倒易晶格就是实晶格的傅里叶变换. 晶格对X射线的散射为晶格中每个原子散射的加和,每个原子的散射强度是其位置的函数,加和前必须考虑每个原子相对于原点的位相差.r为实空间中的原子位置矢量,设r = xna1 + yna2 + zna3,b为倒易空间的倒易矢量,b = Hhkl = ha1* + ka2* + la3*,根据倒易空间的性质可以得出公式:通过此公式可以看出结构因子和原子坐标位置相关,这也就决定了系统消光现象,也就是说在不同晶系中不是所有衍射点都会出现,可以通过计算结构因子来判断.另外由于衍射强度正比于|Funit cell|2,在晶体计算过程中,衍射峰的绝对强度意义不大,但是衍射峰的相对强度对最后晶体结构的确定影响很大.1.1.5分子链排列方式和空间群一根分子链一般包含内旋转相互作用、非键接原子间相互作用、静电作用、键长伸缩和键角变形作用以及氢键作用等. 在晶格中分子链排列大多遵循2个原则:最稳定的空间螺旋构象以及最密堆砌.晶体学中的空间群是三维周期性的晶体变换成它自身的对称操作(平移,点操作以及这两者的组合)的集合,一共有230种空间群. 空间群是点阵、平移群(滑移面和螺旋轴)和点群的组合. 230个空间群是由14个Bravais点阵与32个晶体点群系统组合而成[12].我们挑选比较简单的空间群操作进行比较直观的说明,如图7所示,若一个右旋向上的分子链(图7(a)中Ru),通过以箭头方向为旋转轴做180°转动,可以得到右旋向下的分子链(图7(a)中Rd),如果空间中只有这一种对称操作,那么这种空间为P2;又若Ru分子链通过镜面对称操作可以得到左旋向上的分子链(图7(b)中Lu),如果空间中只有这一种对称操作,那么这种空间为Pm;若空间群中同时包含以上2种对称操作,且镜面法线方向与对称轴垂直,也就是说在此晶胞内就同时存在右旋向上Ru,右旋向下Rd,左旋向上Lu,左旋向下Ld 4种分子链构象,那么这种空间群为 P2/m,如图7(c)所示.Fig. 7Introduction of different operation in the space group.1.2其他方法简介1.2.1振动光谱法振动光谱法通常包括红外及拉曼光谱,其可以提供分子链构象,晶体对称性等信息[8]. 虽然通过X射线衍射法进行晶体结构解析时可以得到晶区高分子链的构象信息,但无法获知分子间作用力的信息,而有时分子间作用力在晶体结构的形成起到很重要的作用.1.2.2中子衍射法X射线衍射是X射线与电子相互作用,它在不同原子上的散射强度与原子序数成正比,对高分子而言通常都给出主链的信息,而中子衍射法是中子与原子核相互作用,其衍射强度随原子序数的增加不会有序的增大,主要与原子的种类有关,因此中子衍射法可以确定晶体结构中轻元素的位置. 很多力学性能的各向异性通常受侧链的氢原子影响很大,结合X射线衍射和中子衍射法能得到更为准确的晶体结构[13,14].1.2.3电子衍射法电子衍射法可以给出聚合物单晶的形貌信息并且可以得到相应电子衍射图进行结构分析[15]. 但是通常电子衍射法得到衍射点数量较少,而且容易产生次级衍射,样品容易被电子束破坏.1.2.4固体核磁共振谱法固体NMR适用于解析固态高聚物的本体结构、链构象、结晶、相容性以及分子动力学等[16,17]. 谱峰的化学位移(chemical shift)是固体核磁波谱的主要信息,它依赖于分子的局部电子云环境. 电子云结构对分子构象的变化非常灵敏,是研究多晶型的重要依据. 但固体核磁法很难给出晶体的直接结构,常作为X射线衍射法的补充.2X射线衍射测试方法及技巧对于聚合物而言很难培养出0.1 mm以上的单晶,所以测试大多数采用的都是多晶样品. 相较于小分子和低分子量的化合物而言,高分子结晶区的尺寸通常只有几百个Å,晶格内分子链排列不完善,衍射点的数量较少并且衍射点尺寸较宽,大角度范围衍射点强度衰减非常严重,要得到高质量的数据和非常可信的结构解析结果是比较困难的,从样品制备到测试以及后续分析的每一个环节都需要仔细的处理.图8为X射线衍射法解析高分子晶体结构的具体步骤.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制