当前位置: 仪器信息网 > 行业主题 > >

信号传导

仪器信息网信号传导专题为您整合信号传导相关的最新文章,在信号传导专题,您不仅可以免费浏览信号传导的资讯, 同时您还可以浏览信号传导的相关资料、解决方案,参与社区信号传导话题讨论。

信号传导相关的资讯

  • 世界最强X射线激光破解细胞信号传导密码
    p   中科院上海药物研究所徐华强研究员领衔的国际交叉团队经过联合攻关,成功解析了磷酸化视紫红质(Rhodopsin)与阻遏蛋白(Arrestin)复合物的晶体结构,并破解了负责关闭GPCR传导信号的磷酸化密码。7月27日,相关研究成果以封面文章发表于《细胞》杂志。 /p p   生命的功能是依靠信号传导密码来体现或来执行的。G蛋白偶联受体(GPCR)是人体内最大的细胞膜表面受体家族,通过G蛋白和阻遏蛋白这两条主要信号通路,承担着细胞信号转导的“信号兵”的职责。当受到外界信号刺激,GPCR激活G蛋白发出“开放”信号。而“关闭”信号的则来自于磷酸化密码——GPCR尾部一旦被磷酸化,随即将激活阻遏蛋白并与之形成紧密结合为复合物,从而关闭传导信号。因此鉴定与解释GPCR磷酸化密码是当今细胞信号传导领域的重要科学问题。 /p p   据悉,徐华强领衔的交叉团队在2015年成功解析GPCR与阻遏蛋白复合物的完整复合体结构的基础上,对于该结构的尾部高分辨率结构与磷酸化机制展开攻关。 /p p   “我们利用世界上最强X射线激光,看清楚了复合晶体的尾部结构信息,并从中解析了其尾部磷酸化招募并与阻遏蛋白结合的过程。”徐华强将研究过程比喻为生命密码的层层解密,“为了验证磷酸化密码的普适性,我们试验了96%的GPCR蛋白,发现70%-80%GPCR的“关闭”信号都由磷酸化密码控制。”最后通过一系列验证生物学功能验证,GPCR招募阻遏蛋白的磷酸化密码就此破解——GPCR通过其尾部氨基酸的磷酸化招募并与阻遏蛋白结合,同时发现该密码对整个GPCR蛋白组具有普遍性。 /p p   据了解,结构生物学的重大突破往往与同步辐射光源+X射线自由电子激光的组合密切相关。目前全球已有6个这样的组合,分别位于德国、美国、日本、韩国、瑞士和意大利。 “我们非常期待我国自有的重大科技基础设施,如正在建设与推进中的软X射线与硬X射线自由电子激光装置。”徐华强表示,“这些大科学平台能够为科学家提供更先进、丰富的综合实验手段。” /p p   据介绍,这项研究获得国家“重大新药创制”重大专项、973、先导专项以及国际项目等基金的资助。合作研究机构包括加拿大多伦多大学、斯克利普斯研究所、德国Desy自由电子激光科学中心、德国汉堡超快成像中心、加州大学洛杉矶分校、南加州大学、上海科技大学和范德堡大学等。 /p
  • 高分辨氢氘交换质谱技术解析天然免疫受体构象变化与信号传导机制
    高分辨氢氘交换质谱技术解析天然免疫受体构象变化与信号传导机制 MDA5是细胞内的异体RNA监测蛋白,属于RIG-I样受体家族(RLRs)的重要成员。MDA5参与多种RNA病毒引起的免疫反应,是天然免疫的一道重要屏障。RLRs家族共有RIG-I、MDA5及LGP2三个成员,其中RIG-I和MDA5的N端均拥有串联CARDs结构域,可通过CARD-CARD同型相互作用招募MAVS,最终促进I型干扰素(IFN)通路的激活。在RLRs抗病毒信号的激活过程中,K63连接的多聚泛素链(K63-polyUb)起着关键作用[1]。前期研究发现,短链K63-polyUb可以通过共价锚定和非共价锚定两种方式有效地促使RIG-ICARDs的寡聚[2, 3]。形成的异源四聚体复合物(K63-polyUb-RIG-ICARDs)可激活MAVSCARD寡聚,形成MAVS纤维的核心[2, 3]。然而,K63-polyUb是如何调控MDA5 CARDs组装以及招募、激活MAVS CARD的分子机制,仍是待解决的科学问题。 Immunity近期中国科学院上海药物研究所郑杰团队在Immunity杂志上以Research Article形式在线发表了题为“Ordered assembly of the cytosolic RNA-sensing MDA5-MAVS signaling complex via binding to unanchored K63-linked poly-ubiquitin chains”的研究成果,本研究通过生物大分子氢氘交换质谱技术(HDX-MS)以及冷冻电镜技术(Cryo-EM)揭示了长链,非锚定K63-polyUb促进MDA5-MAVS组装程序与信号传递的分子机制。MDA5-MAVS首先研究人员建立了K63-,K48-连接泛素链的生化合成平台,并制备了不同长度的K63-polyUbn(2≤n≤14)(图1)。通过基于Orbitrap Fusion平台的氢氘交换质谱技术(Hydrogen/Deuterium Exchange Mass Spectrometry,HDX-MS),研究人员发现MDA5CARDs和RIG-ICARDs的氢氘交换保护程度依赖于不同长度的K63-polyUbn(MDA5: n≥8 RIG-I: n≥3)而不依赖于K48-polyUbn(n≥10);并且保护强度随着K63-polyUb的长度增加而特异性加强。 图1:HDX-MS分析K63-polyUb(2≤n≤14)对RLR CARDs寡聚的影响(点击查看大图) 为了研究K63-polyUbn介导的MDA5CARDs寡聚体的组装机制,研究人员利用冷冻电镜首次解析得到了分辨率为3.3Å的MDA5CARDs与K63-polyUb13复合体的结构。这也是MDA5CARDs第一个近原子分辨率的冷冻电镜结构。 那么MDA5CARDs-K63-polyUbn异源四聚体又是如何招募其下游信号蛋白MAVS?研究人员进一步通过Cryo-EM解析得到了分辨率为3.2Å的由长链K63-polyUb11拴系的“自下而上”的左手螺旋MDA5CARDs-MAVSCARD复合体结构。 同时研究人员通过生物大分子氢氘交换质谱技术,首次证明了人类MDA5全长蛋白的CARDs在初始状态下处于张开的构象并可与长链K63-polyUb10结合。然而在早期研究中,氢氘交换质谱已经证明了RIG-ICARDs在初始状态下呈闭合的构象[4, 5]。这也直接证明了RIG-I和MDA5的CARDs在溶液状态下构象上的巨大差异。其次,研究人员进一步发现K63-polyUb10拴系的MDA5CARDs复合物在溶液中的稳定性受MDA5的RNA依赖的ATP酶活性别构调节。图2:HDX-MS分析全长MDA5在其识别配体或底物作用下(dsRNA/ATP/K63-polyUb)的动态的构象变化与信号传导机制(点击查看大图)综上所述该研究通过生物大分子氢氘交换质谱和冷冻电镜技术发现长链,非锚定K63-polyUb类似于一个“分子桥梁”,促进了MDA5CARDs四聚体的组装,使之形成一个激动状态的构象来招募下游MAVSCARD,以进一步促进MAVSCARD的寡聚和激活(图2)。激活状态下的MDA5可以结合并水解ATP,远程提升CARDs-K63-polyUb10的稳定性以持续激活MAVS。该研究弥补了MDA5通路激活与信号传导研究的空白,进一步揭示了长链,非锚定K63-polyUb在细胞内作为内源性激动剂的免疫学功能,为理解泛素分子多样性在抗RNA病毒天然免疫信号传导与调控中的作用提供了新的线索。* 上海药物所博士后宋斌和美国NIH Research Associate陈运为论文第一作者,上海药物所郑杰研究员为论文的通讯作者。该工作得到了新加坡南洋理工大学罗大海教授、吴彬教授,美国Scripps研究所Patrick Griffin教授,上海药物所罗成研究员和张乃霞研究员的大力支持,得到了国家自然科学基金、上海市浦江人才计划等项目的支持。 专家访谈郑杰(中国科学院上海药物研究所 研究员)Q根据您的经验对氢氘交换质谱技术的理解?以及这篇文章的主要的难点在哪里?答:我觉得HDX-MS是基于生物化学这个学科,围绕表征酶活反应机理的一个很实用的技术,HDX-MS第一个应用是来自美国工业界,可以很好地应用于药物发现。这个新工作的一个难点就是采用生化合成了不同长度的K63多聚泛素链,并对RLR CARDs进行了后续功能筛选和表征。如果无法系统合成K63-polyubn(n>8),我们也无法解决这个科学问题。Q基于高分辨质谱技术的HDX-MS技术作为捕捉蛋白质溶液构象变化的重要研究工具,相对于冷冻电镜技术提供哪些不可或缺的生物学信息?答:HDX-MS和cryoEM提供的信息非常互补,首先,两者联用可以提供高分辨的结构和溶液中动态构象变化的信息。其次,在我们这个研究中,我们使用了HDX-MS去表征MDA5全长蛋白的一系列的构象变化,这对cryoEM研究是很有难度的,因为全长MDA5 的CARDs和Helicase之间的linker长度达到了120个氨基酸且在溶液中是非常活跃的,我们这次利用了HDX分析了MDA5与RNA,ATP互作如何远程调控CARDs与K63-polyub的构象变化。表征好这一系列的构象变化就是表征MDA5在溶液状态下是如果进行信号传导的机制。QHDX-MS技术目前有哪些应用方向,未来应用前景如何?答:HDX-MS捕捉的是溶液状态下蛋白质稳态的信息,研究蛋白质动力学,这对药物发现(drug discovery)研究非常关键,可以大大加速药物的发现与研发。HDX-MS可以直接提供药物与小分子互作,以及生物大分子抗体药物识别抗原等研究提供接近生理意义的重要信息。我博士后是在美国Scripps研究所Patrick Griffin教授进行的训练,当时实验室的同事很多都去了美国大药企利用HDX-MS参与药物发现。其中Mike还在礼来公司搭建了一套高通量全自动的HDX设备,专门为礼来的小分子药物发现筛选而设定。回国后我们也正朝着这个方向努力,实现HDX-MS软件和硬件的进一步自动化,希望未来在国内可以实现HDX-MS高通量。另一个努力的方向是早日实现单氨基酸残基分辨率的HDX-MS技术的升级,这可以 帮助精准表征药物作用关键氨基酸残基。为了实现这个目标,HDX-MS的自动化进样平台机械臂模块需要一定的改造,比如更严格的控温,更高频率的连续进样来优化质谱的采集效率。最终我希望可以利用高通量HDX-MS平台去建一个蛋白库,提供氢键,自由能,单氨基酸残基HDX等可以量化的参数,更精准的帮助科研工作者了解蛋白质的折叠,去折叠等稳态的信息。 关于作者中国科学院上海药物研究所郑杰实验室长期结合生物大分子氢氘交换质谱技术交叉解决由蛋白质(酶)的动力学异常变化所导致的重大疾病的发生机制,聚焦RNA天然免疫模式识别受体的内源,外源性配体识别与信号传导机制,以及自身免疫疾病发生机制。围绕氢氘交换及其应用,以第一作者或通讯作者在Immunity 2021,Anal Chem 2019,Nat Commun 2018,structure 2018, Nat Commun 2017,Nucleic Acids Res 2015等期刊上。感谢郑杰老师对本文的指导与支持参考文献:1. Hu, H. and S.C. Sun, Ubiquitin signaling in immune responses. Cell Res, 2016. 26(4): p. 457-83.2. Zeng, W., et al., Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell, 2010. 141(2): p. 315-30.3. Peisley, A., et al., Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature, 2014. 509(7498): p. 110-4.4. Zheng, J., et al., High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Res, 2015. 43(2): p. 1216-30.5. Zheng, J., et al., HDX-MS reveals dysregulated checkpoints that compromise discrimination against self RNA during RIG-I mediated autoimmunity. Nat Commun, 2018. 9(1): p. 5366.扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+
  • 安捷伦公司大力支持第三届信号传导、炎症与癌症上海国际研讨会
    安捷伦公司大力支持第三届信号传导、炎症与癌症上海国际研讨会 (Shanghai Symposium: Signaling, Inflammation and Cancer)   癌症严重威胁着人类的健康和生命,人们至今仍未真正全面了解癌症的致病机制。近年的研究表明,细胞信号转导与肿瘤的发生、发展和复发、转移密切相关。               2011年7月25-28日,信号传导、炎症与癌症上海国际研讨会在中科院上海生化细胞所隆重召开,本次会议主题为:信号转导及癌症。会议讨论的议题包括:1.癌症与干细胞 2.炎症与癌症的关系 3.表观遗传学和癌症的关系 4.癌症的转化医学;5.肿瘤免疫的研究。约200位国内外该领域的顶级专家学者相聚一堂,进行了深入交流。   作为生命科学领域的领先行业解决方案供应商,从人类健康、疾病和衰老等基本问题出发,安捷伦公司对于本届会议给予了密切关注与大力支持,以共同推动国内相关领域的研究。对于蛋白质组学分析,安捷伦公司可唯一提供从样品前处理到仪器分析、数据处理到系统生物学解释的一体化解决方案;因同时具备ChipLC,高端QTOF和QQQ及相应软件手段,安捷伦公司可提供生物标识物从定性发现到定量确认的完整方案(下图);此外,安捷伦Mass Profiler Professional为目前业内唯一可全面整合基因组、蛋白质组及代谢组学数据,以及LC/MS,GC/MS,CE/MS平台数据的生物信息学软件,可进行路径分析、翻转评价或基因和生物体功能显型的相关性评价,协助用户真正实现系统生物学领域的研究与突破。        安捷伦可提供蛋白质组/代谢组学中生物标识物从定性发现到定量确认的完整解决方案      对于代谢组学分析,安捷伦科技可提供业内代谢物组学研究最完备的分析平台&mdash 包括GC、LC、CE、GC/MS、GC/MS/MS、GC/QTOF、LC/QQQ、LC/QTOF、CE/MS及NMR等,同时可提供强大的数据处理及软件工具包用于代谢物鉴定、定量和统计分析。代谢组学样品组分种类繁多,数量庞大,基质复杂,鉴别难度大,针对这一情况,安捷伦公司适时推出了用于LC/(Q)TOF的METLIN数据库,以及用于GC/MS的保留时间锁定代谢物谱库Agilent Fiehn Metabolomics Retention Time Locked Library,该库为第一个代谢组学研究的代谢物标准商业数据库,包括内源性代谢物鉴定。METLIN个性化代谢物数据库是目前最全面的代谢物数据库,包含23 000 多种内源性和外源性代谢物,以及二肽和三肽,用户还可自行补充个性化化合物库,以便更方便快捷地进行检索,代谢物二级谱库的建立及检索功能进一步确保了分析鉴定的准确性和可靠性。METLIN和Fiehn数据库大大方便了用户代谢组学研究工作,并显著提高其研究效率。安捷伦公司可提供代谢组学中生物标识物从发现到确认的完整解决方案。      7月27日晚举行的大会闭幕晚宴上,安捷伦公司大中华区生命科学市场经理庄晨杰先生代表安捷伦公司进行了晚宴致辞。      安捷伦公司将一如既往地携手广大生命科学领域用户,共同推进祖国生命科学事业的振兴,为全人类的健康事业共同努力!      更多安捷伦系统生物学信息,请访问:http://www.chem.agilent.com/en-US/solutions/integratedbiology/pages/default.aspx      订阅Access Agilent电子刊物,请登录: www.agilent.com/chem/accessagilent:cn 关于安捷伦科技   安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的18500 名员工为100 多个国家的客户提供服务。在2010 财政年度,安捷伦的业务净收入为54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 十年研究,徐华强教授突破GPCR信号传导领域世界级难题
    十年研究,徐华强教授突破gpcr信号传导领域世界级难题 近日,2016药明康德生命化学研究奖评选结果新鲜出炉。中国科学院上海药物研究所研究员、中国科学院受体结构与功能重点实验室主任徐华强教授凭借受体结构与功能研究领域的累累硕果,摘得2016药明康德生命化学研究奖“杰出成就奖”。徐华强教授主要研究的领域是gpcr(g蛋白偶联受体)的结构与作用机制。在全球,这个充满魅力的研究领域正不断为医药业带来新的活力——至少有三分之一的小分子药物是gpcr的激活剂或者拮抗剂,还有更多这样的候选药物小分子在临床研发中。全世界多个顶尖实验室和企业都在这一领域竞相研发。在这个重要的领域,徐华强教授持续攻坚十年,取得了多项重大突破。他在gpcr结构方面的多项研究攻克了许多未解难题,被学术界誉为结构生物学研究领域的里程碑,轰动了国内外医学界与药学界。一个激动人心的药物研发领域2012年,罗伯特莱夫科维茨(robert j. lefkowitz)和布莱恩克比尔卡(brian k. kobilka)两位科学家因“g蛋白偶联受体研究”获得当年的诺贝尔化学奖。这一发现揭开了人体信息交流系统的许多秘密:我们的身体究竟是如何感知外部世界,并将这些信号“通知”到各个细胞。然而,gpcr信号通路的多样性和复杂性决定了这一诺奖成果的取得并不是一个领域研究的完结,而是意味着更多探索旅程的开始。在细胞通讯中,作为信号蛋白的arrestin与多种g蛋白都可以结合gpcr,以传递重要的指令,执行例如生长调控和激素分泌等众多基本生命过程。不过,g蛋白信号通路和arrestin信号通路在生理作用上截然不同。arrestin通过脱敏作用会阻止g蛋白的激活,并通过内化作用的过程将gpcr回收。长期以来,科学家们对于arrestin如何结合gpcr、如何激活不同组的细胞信号、以及这与g蛋白和gpcr互作之间的差别知之甚少。这极大地限制了许多潜在药物的研发。实际上,如果能靶向作用于其中一条信号通路,那么这样的gpcr抑制剂往往更可能成为理想的药物分子。相比非选择性的药物,它们能够带来更好的疗效和更少的不良副作用。然而,要想得到这样的小分子,就必需了解它们与gpcr之间的详细作用过程。小细胞大贡献,毫厘之间进化生命医学过去十年间,徐华强教授所领导的团队始终致力于揭示arrestin与 gpcr rhodopsin构成的复合物的结构。沉浸于探索分子世界的他们,终于在去年取得了突破性进展,将生命过程的一条路径展现给了世界。 ▲徐华强教授的发现攻克世界级的科学难题研究中,徐华强教授创造性地采用了“最亮”的x射线自由电子激光技术lcls(linac coherent light source,目前世界上最强的x射线自由电子激光器,能够以比以往x-射线源强10亿倍的亮度发射x-射线脉冲),生成了与gpcr结合arrestin时的首个三维图像。这一发现攻克了细胞信号传导领域的世界级科学难题,也为开发选择性更高的药物奠定了理论基础,使开发出副作用更小、更有效的心脏病、神经退行性疾病和癌症等疾病疗法成为可能。徐华强教授表示:“在药物发现领域,对药物靶点蛋白的结构与功能关系理解越深,开发出高效低毒药物的几率就越大。”去年这一里程碑成果一经发布在《自然》期刊上后,马上在生物医学界引起热议,该新闻还入选了2015年中国十大科技进展新闻,并于今年3月再获国际蛋白质学会(the protein society)颁发的hans neurath奖。国际蛋白质学会执行委员会的成员查尔斯桑德斯博士评论道:“此项研究是结构生物学研究领域的里程碑,为众多基础生物学研究及生物医学发展提供了广泛而深入的见解,这项工作非常优秀。”科研狂人:成功就是99%的努力工作“从事科学研究,一是对科学的兴趣,尤其对生命科学的各种奥秘感兴趣;二是贵在坚持,科学研究是探索,长年的工作才有一点点突破,就是最大的欣慰;三是在于努力,科学研究的成功就是99%的努力工作,再加上1%的运气,”徐华强教授曾这样说道。在研究方面,徐华强所带领的团队可以说是硕果累累,已在《自然》、《科学》、《science signaling》、《jounal of biological chemistry》、《proceedings of the national academy of sciences》等国际著名学术期刊发表论文百余篇,获得专利十余项。在科研的道路上,教授从未停歇。同事都说,他是个”科研狂人”。自1980年在清华大学开始接触核子物理科学后,徐教授就一直沉浸在科研当中。从国内到国外,再从国外辗转回到国内,始终不变的是他对生命科学奥秘的探索和追求。在中国科学院上海药物研究所,他还先后创建了药物靶标结构与功能中心和受体结构与功能重点实验室,主要从事核激素受体、肝细胞生长因子(hgf)受体、g蛋白偶联受体(gpcr)、离子通道和植物激素受体等结构与功能领域研究,开展基于晶体结构的肿瘤与糖尿病的药物研发,并取得了多项原创性发现。一直以来,他研究的是生命科学。他尊重生命,懂得生命的意义。医生一次只能治疗一个患者,而基础研究成果却可能拯救无数人的生命、无数代人的生命。这也是为什么在科研这条道路上,他从不停歇、从不松懈。
  • 从细胞到球体:在 2D 和 3D 细胞模型中定量评估 TGF-β 信号传导的高通量方法
    了解不同生物复杂性水平的疾病过程对于全面了解疾病机制非常关键,想要实现这一目标,就需要以可靠、可重复和具有统计学意义的方法,来获取复杂的生物数据。包括细胞图像分析在内的自动化数据收集方式,在帮助用户获得高质量数据这个方面提供了有力保障。自动化数据收集的另一个优势还在于,可以提高工作流程效率和减少固有的用户偏好。来自安捷伦的应用开发科学家ErnestHeimsath博士和来自CellsignalingTechnology产品设计与战略高级总监AntonyWood博士开展了一项合作,旨在开发自动化高通量的TGF-β信号传导检测方法。近日,他们通过网络研讨会展示了他们的合作成果——将经过严格验证的CST免疫分析试剂应用于AgilentBioTekCytationC10共聚焦成像微孔板检测系统上,在2D和3D细胞模型中定量评估TGF-β信号传导的高通量方法。如果您也在进行信号通路研究,欢迎扫描下方二维码观看本次研讨会的中文回放。观看回放您将了解到:免疫分析试剂选择高通量实验设计与样品制备2D和3D细胞模型的成像与分析报告嘉宾:
  • 北京大泽科技ZN1186型传导抗扰度测试系统
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201709/insimg/2c6edd7b-e7d7-461b-8fd2-7458332c1dc6.jpg" title=" 北京大泽_副本.png" / /p p   ■仪器名称:传导抗扰度测试系统 ZN1186型 /p p   ■英文名称:Conduction immunity test system /p p   ■厂家名字:北京大泽科技有限公司 /p p   ■仪器介绍:ZN1186 150K~230M传导敏感度测试系统(以下简称ZN1186)是根据国标GB/T17626.6-2008/IEC61000-4-6:的要求,执行传导敏感度测试的自动测试系统。系统由ZN1186主机、CDN、EM钳及相关校准件组成。ZN1186内部的信号源和宽带功放,配合CDN电磁钳,可以按标准产生试验等级1V、3V、10V、的测试电压,系统配有完善的操作软件。具有时实检测输出电平大小的功能。操作软件分为校准软件和测试软件二种。测量设备时,该信号是用1KHz正弦波调幅(80%调制度)来模拟实际的骚扰影响。可以通过耦合/去耦网络(CDN及电磁钳)将骚扰信号耦合到被测设备上。测试软件,可以根据用户的需要很方便的操作电脑,来完成所需要的测试。在出厂时测试系统进行过校准,不必再进行校准。系统具有测量精度高、重复性好、操作简便、性价比高等特点。 /p
  • HORIBA新一代热传导式防爆气体分析仪TCA-51d/51p产品发布
    HORIBA新一代热传导式防爆气体分析仪TCA-51d/51p,是TCA-31系列的升级版仪器,主要测量H2,51d采用隔爆型防爆构造,51p采用内压型防爆构造。 测定原理: 利用气体固有的热传导率之差,检测气体的浓度。检测部分使用安装有白金等材质热线的检测池和比较检测池,在比较检测池中封入样气的背景气体(一般为氢气或氧气)。 通过通电对热线进行加热,当在样气中混入有和基准气体(比较检测池中的封入气体)的热传导率不同的 气体气体时,因为检测一侧的热线温度变化,根据实验气体的组成不同,电阻也发生变化。电阻的变化将作为惠斯通电桥的不平衡电压的变化,转换成需检测气体的浓度信号,并被输出来。
  • 高内涵——基于FRET分析活细胞中的ERK信号转导
    Extracellular signal-regulated kinase(ERK)是胚胎发生,细胞分化,细胞增殖和细胞死亡调控的关键组成部分。ERK途径起源于质膜中的活化受体,并通过Ras/Raf/MEK至ERK(图1)。图1. Ras/Raf/MEK/ERK信号级联将信号从细胞表面受体如EGF受体(EGFR)传播到细胞内蛋白质。ERK是该途径的最终组分,并且在被生长因子(例如EGF(表皮生长因子))激活后,触发下游效应,如激酶或转录因子的激活。该途径被不同类型的受体激活,包括受体酪氨酸激酶 (例如EGF受体)以及G蛋白偶联受体。作为信号传导途径的最终组分,ERK磷酸化不同的细胞内蛋白质,包括大量其他激酶和转录因子。ERK信号传导途径存在于各种癌症类型中,因此正在研究作为治疗干预的靶标。在这里,我们描述了如何在Operetta CLS高内涵分析系统上自动化研究ERK信号传导的活细胞FRET测定。该测定可以用于药物发现。基于FRET的ERK生物传感器FRET是从供体分子到受体分子的非辐射能量转移。能量转移需要供体和受体间隔小于10nm,因此提供了研究分子接近度变化的敏感工具,例如蛋白质 - 蛋白质相互作用(分子间FRET)或蛋白质的构象变化(分子内FRET)。在这项研究中,我们专注于分子内FRET,使用称为EKAREV的CFP-YFP生物传感器(图2)。稳定表达EKAREV的细胞由Somponnat Sampattavanich博士友情提供(图3)。在该生物传感器中,供体和受体荧光团以单一融合蛋白编码。EKAREV生物传感器经过优化,可以减少随机触发的基础FRET信号,并使其可靠地与距离相关。ERK对EKAREV的磷酸化触发构象变化,使CFP和YFP靠近诱导FRET。图2.细胞外信号调节激酶活性报告基因(EKAREV)的示意图。在该生物传感器中,两种荧光蛋白通过ERK底物结构域,接头和结合结构域分开。一旦ERK底物结构域经过ERK的磷酸化,就会触发构象变化,使CFP和YFP紧密接近并允许FRET发生。EKAREV生物传感器是分子内FRET的实例,其中供体和受体以1:1的固定化学计量存在。因此,进行双通道比率实验就足够了,通道1检测受体发射光(IAcceptor),通道2检测供体发射(IDonor),将得到的两个荧光信号强度进行背景校正,并计算它们的比率以给出相对FRET效率EFRET:测定方法将1.2×104EKAREV细胞/孔接种到CellCarrier-96Ultra微量培养板(PerkinElmer#6055300),150μl培养基(表1)中。孵育2天后(37℃,5%CO2),150μl饥饿培养基洗涤两次并在饥饿培养基中孵育5小时以降低基础ERK活性。另外,在孵育开始时向细胞中加入各种浓度的抑制剂或DMSO。4.5小时后,将细胞核用4μM DRAQ5在37℃,5%CO2下染色30分钟。然后用饥饿培养基洗涤细胞一次,并加入含有8μl 20x浓缩抑制剂或DMSO对照的150μl新鲜饥饿培养基。作为对照,在某一时间点,向细胞中加入8μl20x浓缩诱导物(PMA或EGF)。为了抑制FRET信号,应用PD184352,SCH772984和Ulixertinib。含有或不含有所测试化合物的最高DMSO浓度的培养基用作对照。试剂,化合物和介质列表成像在宽场模式下使用20x高NA物镜(NA 0.8)在Operetta CLS系统上建立长时间实验,获取图像总共97分钟。将FRET诱导化合物添加到血清饥饿细胞后,开始时间序列,测量间隔为每8分钟一次,在此设置中获得了四个渠道:DRAQ5 (ex 615-645,em655-760),CFP(ex 435-460,em 470-515),YFP(ex490-515,em 525-580)和FRET(ex 435-460,em 515-580)(图3)。图3.稳定表达EKAREV生物传感器的人乳腺上皮细胞。细胞核用DRAQ5染色。随后,在Operetta CLS系统上使用宽场模式的20x高NA物镜对细胞成像。分析策略使用Harmony® 高内涵成像和分析软件进行自动图像分析。简言之,将图像分割成细胞和背景。计算细胞质和背景中的供体和FRET强度,然后计算背景校正的FRET比率作为最终结果(图4)。图4.使用Harmony软件进行比率FRET定量的图像分析工作流程:细胞和背景的细胞质被分段,低表达细胞被强度阈值排除。量化供体和FRET通道的强度及其适当的背景,并计算背景校正的FRET强度比。减去背景强度在活细胞应用中尤其有利,其中具有自发荧光组分的培养基通常导致更高的背景并因此导致更小的测定窗口。结果为了探索是否可以使用基于FRET的生物传感器在Operetta CLS上研究ERK信号传导的调节,用不同的ERK和MEK激活剂和抑制剂处理EKAREV细胞。(图5)。图5.外源添加的活化剂(绿色)和抑制剂(红色)示意图及其对ERK信号通路的影响。表达EKAREV的细胞用EGF或PMA处理以诱导ERK活化,另外,用三种MEK和ERK特异性抑制剂(PD184352,SCH772984,Ulixertinib),在途径的不同位置中断信号转导。PMA和EGF充当Ras/Raf/MEK/ERK信号级联的特异性激活剂。EGF特异性结合细胞表面上的EGF受体,而PMA作为亲脂性,膜可渗透的分子通过直接激活RAF激活该途径。PD184352可以通过选择性抑制MEK1/2来抑制ERK途径,而Ulixertinib和SCH772984都是ERK1/2的有效和选择性抑制剂。首先,为了更多地了解FRET诱导和抑制的动态性质,记录了97分钟的长时实验。正如所料,与未处理的对照相比,单独用EGF或PMA处理细胞导致FRET比率的强烈增加(图6)。大约30分钟后信号处于高位。对照显示较低水平的ERK活化,并且观察到随时间稳定增加。由于ERK1/2可以通过多种生长因子和有丝分裂来调节,这可能是由活细胞成像过程中的自分泌或旁分泌信号引起的。用不同浓度的ERK抑制剂(SCH772984)共同处理细胞导致ERK反应的剂量依赖性降低。在5μMSCH772984中,通过EGF的ERK活化几乎可以忽略不计,表明在该浓度下ERK被完全抑制。请注意,0.5%DMSO是实验中使用的最高浓度,确实对FRET比率有影响,因此需要包括此对照。用第二种ERK1/2特异性抑制剂Ulixertinib获得了类似的结果(数据未显示)。图6.在Operetta CLS系统上使用基于EKAREV FRET的生物传感器的ERK信号传导的时间进程。通过EGF或PMA刺激ERK诱导快速FRET信号增加,在约30分钟后平稳。高浓度的SCH772984(5μM)导致几乎完全抑制ERK活化(1μg/ ml EGF),没有可测量的FRET信号增加。较高稀释度的SCH772984仅部分抑制EGF诱导的ERK活化。control显示没有任何处理的样品有中间轻微上升的FRET信号。0.5%DMSO略微抑制FRET信号,这是实验中使用的DMSO的最高浓度。测定统计:Z' = 0.87(在时间点32分钟计算,DMSO为阴性,EGF为阳性对照)当FRET信号在32分钟后达到恒定水平时,选择该时间点以确定SCH772984的IC50值。用1μg/ mL EGF和系列稀释的SCH772984处理EKAREV细胞,稀释范围为10pM至3μM。计算的IC50值为272nM的剂量反应曲线如图7所示。图7.ERK抑制剂SCH772984导致基于FRET的EKAREV信号的剂量依赖性降低。在1μg/ ml EGF存在下,用递增浓度的SCH772984处理EKAREV细胞。在孵育32分钟后,在Operetta CLS系统上测定FRET比率,因为信号在此时间点稳定。高Z' 值(Z' = 0.89)显示出优异的分析性能。为了研究EKAREV FRET成像测定是否可用于研究直接作用于MEK1/2的途径调节,测试了MEK1/2抑制剂PD184352对PMA化细胞的作用(图8)。如图所示,PD184352抑制PMA诱导的ERK活化。图8.在Operetta CLS系统上测量的PD184352对PMA活化的Ras/Raf/MEK/ERK信号级联的抑制。EKAREV细胞用另一组活化剂和抑制剂(PMA+PD184352)处理,其作用在RAF/MEK的上游(与图5比较)。用200或2000nM PMA处理的EKAREV细胞显示出高FRET反应(诱导后32分钟)。通过将细胞与MEK1/2特异性抑制剂PD184352以10μM的浓度共孵育来抑制活化。结论EKAREV FRET生物传感器可用于Operetta CLS系统的活细胞成像测定,以研究ERK的激活和抑制。级联内不同靶标的调节很容易测量,因此这种方法可以有助于鉴定干扰Ras/Raf/MEK/ERK信号级联的新化合物。该测定在活细胞中进行,因此它可用于分析ERK信号传导动力学,而定量ERK磷酸化的常规生物化学技术通常是终点测定。尽管细胞群中生物传感器表达水平相对不均匀(图3),但FRET比率的计算提供了特别好的化验数据和统计数据,Z' 值高于0.87。EKAREV生物传感器的优化设计,Operetta CLS系统的高质量成像以及Harmony内图像分析的出色工具都有助于提高这里提供的高含量FRET分析的稳定性。Harmony软件的构建模块概念允许创建易于设置和理解的图像分析序列,并且不需要专业的图像分析知识。该测定还提供了Opera Phenix™ 高含量筛选系统的可比较结果和测定统计数据。由于Operetta CLS和Opera Phenix系统比传统显微镜具有更高的通量,基于FRET的生物传感器的高含量成像为药物发现和细胞信号传导中的基础研究开辟了新的可能性。参考文献1. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B-E.,Karandikar, M., Berman, K. & Cobb, M. H. (2001).Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocrine Reviews, 22(2), 153-183. doi/10.1210/edrv.22.2.04282. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M.,Roberts, K. & Walter, P. (2007) Molecular Biology of the Cell,Garland Science., 5th revised edition, ISBN-10: 08153410593. McCubrey, J. A, Steelman, L. S., Chappell, W. H., Abrams,S. L., Wong, E. W. T., Chang, F., Lehmann, B., Terrian, D.M., Milella, M., Tafuri, A., Stivala, F., Libra, M., Basecke, J.,Evangelisti, C., Martelli, A. M., and Franklin, R. A. (2007):Roles of the Raf/ MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta, 1773,1263–84. doi:10.1016/j.bbamcr.2006.10.0014. F?rster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 437 (1-2), 55-75.5. Sun, Y., Wallrabe, H., Seo, S.-A., & Periasamy, A. (2012). FRET microscopy in 2010: The legacy of Theodor F?rster on the 100th anniversary of his birth. Chemphyschem., 12(3), 462–474.doi:10.1002/cphc.201000664. FRET6. Fassler, M., Boettcher, K., Malle, M. (2015): Measuring FRET using the Opera Phenix High Content Screening System: A High Throughput Assay to Study Protein-Protein Interactions,Application Note published by PerkinElmer, In., Waltham,MA, USA7. Komatsu, N., Aoki, K., Yamada, M., Yukinaga, H., Fujita,Y., Kamioka, Y., & Matsuda, M. (2011). Development of an optimized backbone of FRET biosensors for kinases and GTPases.Mol Biol Cell, 22, 4647-56. doi/10.1091/mbc.E11-01-00728. Harvey,C. D., Ehrhardt, A. G., Cellurale, C., Zhong, H., Yasuda,R., Davis, R. J., & Svoboda K. (2008). A genetically encoded fluorescent sensor of ERK activity. PNAS, 105(49), 19264-19269. doi_10.1073_pnas.080459点击链接了解更多珀金埃尔默高内涵相关资料http://e86.me/0ZaJW1关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • PP:南土所施卫明 山大夏光敏ABA充当NO3-传导器激活TaNRT2促NO3-吸收
    NMT是基因功能的活体检测技术,已被103位诺贝尔奖得主所在单位,及北大、清华、中科院使用点击添加图片描述(最多60个字)期刊:plant physiology主题:ABA充当NO3-传导器激活TaNRT2促NO3-吸收标题:TaANR1-TaBG1 and TaWabi5-TaNRT2s/NARs link ABA metabolism and nitrate acquisition in wheat roots影响因子:6.305检测指标:NO3-流速检测样品:小麦根(分别距离根尖端0.05、0.1、0.3、0.5、1.5、3、5、10、20、30 mm的位点)NO3-流实验处理方法:15天的小麦幼苗,在0.2mM KNO3/0.2mM KNO3+50uM ABA处理1小时NO3-流实验测试液成份:未写明作者:中科院土壤所施卫明、王萌,山东大学夏光敏中文摘要(谷歌机翻)硝酸盐是大多数植物的首选氮素形式,既可作为营养物又可作为信号分子。然而,控制面包小麦(世界上最重要的农作物之一)中硝酸盐吸收的成分和调控因素仍不清楚,这主要是由于其六倍体基因组的复杂性。在此,根据最近发布的面包小麦全基因组信息,对高亲和力硝酸盐转运蛋白2(NRT2)和硝酸盐同化相关(NAR)基因家族进行了表征。我们表明,硝酸盐撤除后,硝酸盐再供应会刺激面包小麦根中的ABA-GE解偶联,从而导致根组织ABA积累增强,而这种增强反过来又会影响根型NRT2 / NAR基因的表达。显示TaANR1通过直接激活TaBG1来调节硝酸盐介导的ABA积累,而TaWabi5参与ABA介导的NRT2 / NAR基因的NO3-诱导。基于先前的证据,证明ABA参与了对高硝酸盐胁迫的发育反应,我们的研究表明ABA还通过调节有限的硝酸盐供应下的NRT2 / NAR基因的表达来促进硝酸盐吸收的优化,为改良提供了新的目标作物中硝酸盐的吸收。点击添加图片描述(最多60个字)不同处理下,小麦根系分生区、伸长区、成熟区NO3-流对比。英文摘要Nitrate is the preferred form of nitrogen for most plants, acting both as a nutrient and a signaling molecule. However, the components and regulatory factors governing nitrate uptake in bread wheat (Triticum aestivum), one of the world' s most important crop species, have remained unclear, largely due to the complexity of its hexaploid genome.Here, based on recently released whole-genome information for bread wheat, the high-affinity nitrate transporter 2 (NRT2) and the nitrate-assimilation-related (NAR) gene family are characterized. We show that ABA-GE deconjugation is stimulated in bread wheat roots by nitrate resupply following nitrate withdrawal, leading to enhanced root-tissue ABA accumulation, and that this enhancement, in turn, affects the expression of root-type NRT2/NAR genes. TaANR1 is shown to regulate nitrate-mediated ABA accumulation by directly activating TaBG1, while TaWabi5 is involved in ABA-mediated NO3- induction of NRT2/NAR genes.Building on previous evidence establishing ABA involvement in the developmental response to high-nitrate stress, our study suggests that ABA also contributes to the optimisation of nitrate uptake by regulating the expression of NRT2/NAR genes under limited nitrate supply, offering a new target for improvement of nitrate absorption in crops.
  • 中国科大等发明新型离子膜实现近似无摩擦的离子传导
    近日,中国科学技术大学徐铜文、杨正金团队与合作者设计了一类新型离子膜,首次实现膜内近似无摩擦的离子传导,有望应用于能源转化、大规模储能以及分布式发电等领域。相关研究成果论文4月26日发表于《自然》杂志。  离子膜是液流电池、燃料电池等电化学器件或装备的关键部件,传统离子膜普遍存在吸水后容易发生溶胀变形、结构疏松等问题,特别是长时间使用后,可能会发生结构老化、性能下降。中国科大研究团队经过多年研究,创新性地设计了一种具有贯通亚纳米离子通道的微孔框架离子膜材料,同时在通道中进行了化学修饰,不仅解决了传统离子膜材料中离子通道老化和吸水溶胀问题,还兼具高选择性和高传导率,离子传输更加迅速,在膜内实现了近似无摩擦传导。使用该膜组装的液流电池,充放电电流密度可以达到每平方厘米500毫安,是当前普遍报道值的5倍以上。  审稿人认为,这种离子膜在液流电池中展示出了非凡的性能,与迄今为止使用的最好的膜相比,此类离子膜的性能显著提高。研究人员表示,该成果涉及的微孔框架离子膜的设计理念,还可拓展至其他功能化框架聚合物膜,并以此为基础进行高性能膜材料的定向设计。  中国科大研发的这种国产离子膜有望大幅提升液流电池等储能装备的效率,在我国太阳能、风能等新能源的储能领域得到广泛应用。目前,项目孵化的特种离子膜产品已申请中国发明专利,研究人员正加紧实现该型离子膜的量产。
  • 大连化物所设计开发出具有K+高效传输能力的离子传导膜
    近日,中科院大连化学物理研究所储能技术研究部(DNL17)李先锋研究员团队与分子反应动力学国家重点实验室分子模拟与设计研究组(1106组)李国辉研究员团队合作,在离子传导膜材料的结构设计与研究方面取得新进展。团队通过对膜内离子传输通道的设计,实现了K+快速传输,并对膜结构和离子传输机理进行了详细地研究和探讨。   具有快速离子选择性传输能力的膜材料在工业分离、能源等应用领域具有广阔的应用前景。这些应用场景通常涉及从复杂混合物中分离特定离子,因此设计具有高效离子选择性传导的膜材料至关重要,但仍然存在挑战。在本工作中,团队通过金属离子与聚苯并咪唑的配位构建了具有可控离子传输通道的膜材料。研究表明,Zn2+与聚苯并咪唑PBI配位得到均匀的聚合物配位网络,形成连续的水通道,并暴露出更多的极性基团,促使K+的快速传输。团队通过分子动力学模拟计算K+在聚合物网络中的运输行为,揭示K+与聚合物链上的-N=相互作用,并靠近链段的含氧醚键,从而快速通过聚合物膜。 同时,配位膜的自由体积增大,形成亚纳米级分子通道。纳米通道的物理约束和膜的静电相互作用使K+在浓盐和浓碱溶液中的迁移不受溶液浓度的影响,迁移数高达0.9,与阳离子交换膜相当。采用K+高效传输离子传导膜组装碱性锌铁液流电池,可有效缓解电池运行过程由于锌沉积带来的离子强度失衡进而导致水迁移的问题。研究提供了一种通过金属离子配位调节聚合物链结构,进而调控聚合物膜离子传输特性的策略;同时加深了对金属配位聚合物膜离子传输机制的理解。   相关研究成果以“Metal-coordinated polybenzimidazole membranes with preferential K+ transport”为题,于近日发表在《自然—通讯》(Nature Communications)上。该工作的共同第一作者是我所DNL17博士研究生吴金娥、1106组副研究员廖晨伊。上述工作得到国家自然科学基金、中科院电化学储能技术工程实验室等项目的支持。
  • 青岛能源所开发出稳定制氢离子传导膜的新型制备技术
    与可再生能源电解水制氢技术相比,通过提纯工业副产氢获取燃料氢气是现阶段更廉价的制氢方式。金属氧化物构成的氧离子传导膜具有对氧100%的选择性,将高温水分解反应和工业副产氢燃烧反应耦合在致密氧离子传导膜的两侧,可实现低纯氢气燃烧反应,进而驱动膜另一侧水分解,直接获得不含一氧化碳的氢气,用于氢燃料电池。   然而,氧离子传导膜通常暴露在含H2、CO2、H2S、H2O、CH4等气氛中,因而常见含钴或铁的膜材料面临抗还原腐蚀性能差的问题。因此,亟需开发适用于副产氢提纯的氧离子传导膜,为分布式氢能的发展提供技术支撑。   在前期氧离子传导膜材料开发基础的上(Angew.Chem.Int.Ed. 2021,60,5204-5208;Chem.Mater. 2019,31,7487-7492;AIChE J. 2019,65,e16740),近日,中国科学院青岛生物能源与过程研究所膜分离与催化研究组研究员江河清提出界面反应-自组装技术在陶瓷氧化物膜表面构筑一层超薄氧离子传导致密膜,形成多层结构陶瓷膜,用于稳定高效地提纯工业副产氢,制取不含CO的氢气。   与传统制膜工艺对比,研究利用该技术原位构筑的氧离子传导膜非常薄(~1 μm),致密并且牢固地粘附在支撑层上,从而既可显著降低氧离子传输阻力,又能避免薄膜分层或剥离,保持多层结构陶瓷膜的完整性。另外,该过程只需一步热处理,有望降低多层结构陶瓷膜的制备成本。该方法适用于十余种不同的陶瓷体系,具有较好的普适性,其中氧离子传导薄膜包含Ce0.9Gd0.1O2-δ、Y0.08Zr0.92O2-δ、Ce0.9Pr0.1O2-δ、Ce0.9Sm0.1O2-δ等。科研人员将开发的具超薄氧离子传导膜的多层结构陶瓷膜作为膜反应器进行工业副产氢提纯,在H2、CH4、CO2、H2S、H2O气氛下连续稳定运行超过1000个小时,展现出优异的稳定性和制氢性能。   该研究开发出的高性能氧离子传导膜有望为工业副产氢提纯、固体氧化物燃料电池/电解池及氧传感器等提供技术支撑,并为制备其他具功能薄层的高性能多层结构陶瓷提供新策略。近期,相关研究成果发表在《德国应用化学》上,并已申请一项中国发明专利和一项国际专利。   研究工作得到国家重点研发计划、国家自然科学基金、中科院国际合作局对外合作重点项目、中科院青年创新促进会等的支持。界面反应-自组装技术制备多层结构氧离子传导膜
  • 蛋白质组学Cell重磅新成果:黄超兰团队利用新型绝对定量质谱法揭示CD3ε 的多重信号转导功能
    p style=" line-height: 1.5em text-align: justify text-indent: 2em " span style=" text-align: justify " 日前,黄超兰课题组及合作者的最新成果,利用新型绝对定量质谱法解析T细胞受体(TCR)磷酸化修饰动态全过程,揭示了CD3ε 的新型信号转导及其在CAR-T细胞治疗中的应用。相关成果近日发表在《Cell》。 /span br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 193px " src=" https://img1.17img.cn/17img/images/202007/uepic/c9be87de-7748-4400-ab38-28fab92a68ad.jpg" title=" 黄超兰.png" alt=" 黄超兰.png" width=" 600" height=" 193" border=" 0" vspace=" 0" / /p p style=" text-align: justify " strong span style=" text-align: justify "   2020年7月29日,北京大学医学部精准医疗多组学研究中心黄超兰团队,中科院上海生化与细胞所许琛琦团队、美国加州大学圣地亚哥分校惠恩夫团队,联手在Cell上发表了题为“Multiple signaling roles of CD3ε and its application in CAR-T cell therapy”的论文,该研究通过开发基于质谱的绝对定量蛋白质组新方法,揭示了T细胞受体-共受体(TCR-CD3)复合物酪氨酸在不同抗原刺激下的动态磷酸化修饰全貌,解析了不同CD3链ITAM结构域磷酸化特征的奥秘,从中发现了其中一条亚基CD3ε的单磷酸化新功能,有望助力于设计全新的CAR-T疗法。 /span /strong /p p style=" text-align: justify " strong span style=" text-align: justify " /span /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 245px " src=" https://img1.17img.cn/17img/images/202007/uepic/b6abe943-5c1a-4258-8d80-ee14ae449013.jpg" title=" high light.png" alt=" high light.png" width=" 600" height=" 245" border=" 0" vspace=" 0" / /p p style=" line-height: 1.5em text-align: justify "   TCR-CD3复合物在T细胞的发育、激活及对病原的免疫反应中起着决定性作用。这一重要作用来自于CD3链胞内端的免疫受体酪氨酸激活基序(Immunoreceptor tyrosine-based activation motif-ITAM)。而ITAM的多样性功能主要取决于其结构域的酪氨酸(Tyrosine)磷酸化,比如招募SYK激酶家族蛋白ZAP70进而激活下游的信号传导。另外,ITAM的功能也被广泛应用在对嵌合抗原受体(CAR)的研究中。其中CD3ζ亚链便常用于构建CAR-T细胞疗法抗肿瘤活性,但其他CD3链的功能和对于CAR的设计也还有很多未知。 /p p style=" line-height: 1.5em text-align: justify "    strong 深入探索 CD3 ITAM的酪氨酸动态磷酸化模式可为全面理解不同CD3链的功能提供核心信息。 /strong TCR-CD3受体复合物有10个ITAM结构域分布着20个磷酸化位点,在时间分辨率下实现对全部磷酸化位点的同时定量分析在技术上极具挑战性。为了直观比较不同TCR刺激下的磷酸化模式,精确绘制出TCR所有酪氨酸磷酸化的动态过程,黄超兰团队开发了一种新颖的绝对定量方法Targeted-IP-Multiplex-Light-Absolute-Quantitative Mass Spectrometry(TIMLAQ-MS)。区别于目前报道的蛋白组绝对定量手段,不需要加入同位素重标的合成肽段,而是巧妙地利用串联质量标签(TMT),设计将6个标准样品和4个分析样品混合起来作为内标。标准样品为不同浓度梯度的合成非重标磷酸化/非磷酸化CD3肽(A)和从未经抗原刺激的T细胞中通过IgG抗体免疫沉淀下来的背景蛋白(B)的混合物 用数据依赖采集(Data-dependent acquisition, DDA)结合平行反应监测(Parallel reaction monitoring, PRM)的方式获得抗原刺激下,TCR-CD3免疫沉淀(IP)复合物中不同酪氨酸位点的磷酸化/非磷酸化在不同时间点的定量结果。 strong TIMLAQ 成功绕过了以前的定量方法中通常使用的同位素重标记肽,既节约了成本,又有效降低了方法的复杂性和数据采集误差,进一步提高了定量准确性,最终可完全实现在一次测量中对不同时间点全部ITAM磷酸化修饰的绝对定量,描绘TCR-CD3复合物的酪氨酸动态磷酸化修饰全貌。 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 492px " src=" https://img1.17img.cn/17img/images/202007/uepic/17408230-fe19-4e90-a93b-06bbeea1254b.jpg" title=" 111.png" alt=" 111.png" width=" 600" height=" 492" border=" 0" vspace=" 0" / /p p style=" line-height: 1.5em text-align: center " 基于TIMLAQ-MS法的CD3 ITAM磷酸化修饰鉴定 /p p style=" line-height: 1.5em text-align: justify "    strong 利用这一方法鉴定到在不同的TCR刺激条件下,CD3各亚基主要表现为双磷酸化修饰模式,而唯独CD3ε呈现出单磷酸化修饰模式。 /strong 前研究表明,双磷酸化的ITAM与激酶家族蛋白ZAP70有很强的结合而激活下游信号传导,而单磷酸化的ITAM则表现出很低的结合性。 strong 本文中这一特殊的新发现驱使作者进一步深入探索CD3ε在TCR通路中的新潜在功能。 /strong 结果显示,单磷酸化的CD3ε可通过专门募集抑制性Csk激酶减弱TCR信号传导, strong 说明TCR中既有激活基元又有抑制基元,总体呈现为一种自制的信号传导机制。 /strong 作者团队进一步深入研究,发现一旦将CD3ε细胞质结构域整合到第二代CAR中,CD3ε的ITAM结构域可以通过募集Csk减少CAR-T细胞因子的产生,而CD3ε的BRS结构域则可以通过募集p85促进CAR-T细胞的持久性。总体而言,将CD3ε应用于CAR的设计可显著提高CAR-T细胞的抗肿瘤活性。 /p p style=" line-height: 1.5em text-align: justify "   strong  从一个重要的基础生物学问题开始,为解决问题而开发一个新颖方法,得到新发现,再深入探索生物学功能,最后有望贡献在治疗方法上。黄超兰教授,许琛琦教授和惠恩夫教授作为本文的共同通讯作者,完美地演绎了不同交叉领域共同合作而产生的精彩结果。 /strong /p p strong /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 338px " src=" https://img1.17img.cn/17img/images/202007/uepic/e5f4a9aa-d6b8-4604-a6a5-28e0177de6e9.jpg" title=" 222.png" alt=" 222.png" width=" 600" height=" 338" border=" 0" vspace=" 0" / /p p style=" text-align: justify " span style=" text-align: justify "   黄超兰教授是北京大学医学部精准医疗多组学研究中心主任,北京大学医学部基础医学院长聘副教授,北京大学生命科学联合中心研究员,曼彻斯特大学荣誉教授。近年来,黄超兰教授带领团队积极开发基于质谱的蛋白质组学新方法,实验室拥有国际领先的仪器、技术和方法,致力于为生物学和临床研究中遇到的难题提供最有质量保证的全面蛋白质组和质谱技术手段。 仅从2015年至今,黄教授在高影响因子的杂志上就发表了近50篇文章 (目前已累计发表SCI论文80余篇),不但自己开发最前沿的质谱技术(迄今为止,课题组研发的单细胞蛋白质组技术,在单一体细胞中鉴定的蛋白数量是全球领域最高水平),更发挥了强大的合作力量,以她高超的质谱技术助力了众多科学家的科研发展。曾协助美国普林斯顿大学教授,美国科学院外籍院士颜宁课题组,利用质谱技术有效分析了ACAT1蛋白周围游离的脂质,为ACAT1作用底物的鉴定提供了最为直接有效的证据,相关工作发表在Nature上 sup 1 /sup 。最重量级的是协助中科院院士,西湖大学校长施一公教授利用高分辨交联质谱技术对剪接体复合物的成分和相互作用进行准确鉴定,促进了剪接体复合物在冷冻电镜上的超高分辨率结构鉴定,相关工作发表在两篇Science上 sup 2,3 /sup 。 /span /p p style=" text-align: justify line-height: 1.5em text-indent: 2em " strong span style=" text-align: justify " 北京大学医学部精准医疗多组学研究中心 /span /strong span style=" text-align: justify " ,在“双一流”的支持下,正式成立于2018年6月,为北京大学医学部直属二级单位。黄超兰教授担任中心主任。中心主要基于临床医学热点和难点问题,通过临床医学,创新技术和基础学科的交叉,开展协同创新研究和研发,攻克医学重大难题。 /span span style=" text-indent: 2em " 以重要的临床问题为根,利用前沿的高通量多组学技术(基因、转录、蛋白、翻译后修饰、代谢、微生物)和人工智能分析手段,结合临床信息,打造成规模化专业化的临床生物标志物(包括疾病预防,诊断,机制,疗效和药物靶点)开发、验证和标准化的创新平台。 /span /p p style=" text-align: justify " span style=" text-align: justify " br/ /span /p p style=" line-height: 1.5em text-align: justify "   原文链接: a href=" https://doi.org/10.1016/j.cell.2020.07.018" target=" _blank" https://doi.org/10.1016/j.cell.2020.07.018 /a /p p style=" line-height: 1.5em text-align: justify " br/ /p p style=" line-height: 1.5em text-align: justify "   参考文献: /p p style=" line-height: 1.5em text-align: justify "   span style=" font-size: 14px "   sup 1 /sup Qian et al., Nature, 2020 581(7808):333-338 /span /p p style=" line-height: 1.5em text-align: justify " span style=" font-size: 14px "    sup 2 /sup Yan et al., Science, 2015 349(6253):1182-1191 /span /p p style=" line-height: 1.5em text-align: justify " span style=" font-size: 14px "    sup 3 /sup Wan et al., Science, 2016 351(6272):466-475 /span /p p br/ /p
  • 纳微科技上市以来业绩首降,新药研发低景气传导至产业深处?
    全球新药研发景气度趋冷似已逐渐传导至产业深处。A股色谱填料龙头纳微科技(688690.SH)2月28日晚间发布业绩快报,2023年实现营业收入5.87亿元,同比下降16.90%;实现归母净利润6922.01万元,同比下降74.84%。这是纳微科技上市两年来业绩首降,也是其创立以来首次收入下滑。对此,该公司表示,宏观因素导致的新药研发需求下降、行业竞争加剧以及核心业务面临阶段性销售压力,是影响收入的重要因素。全球创新药企仍在加快管线缩减或放缓在研管线进度,参与大量临床前项目的纳微科技何时才能迎来真正的收获季节?需求萎缩核心业务销售承压通过自主研发成功掌握了微球原料的大规模精准制造技术,纳微科技成功切入此前长期被外资所垄断的色谱填料和层析介质市场,并成为国内该领域龙头。出于对安全性的特殊要求,药品制造工艺变更难度较大,纳微科技作为后来企业更多只能依靠在药物研发早期项目中寻求合作来开发增量市场,然后跟随项目研发逐步进入商业化应用,这使得该公司核心产品应用项目目前仍以临床前研究阶段为主,商业化应用的累计项目数量占比不足7%。临床前研究单一项目对色谱/层析原料需求量远低于临床阶段及商业化生产阶段,此前得益于全球创新药研发需求持续高涨,纳微科技凭借新项目的快速拓展依然实现了迅猛发展,但要真正实现稳定的高速增长,仍然需要依靠商业化项目的大规模订单来支撑。不巧的是,2022年以来全球医药一级融资市场趋冷的影响正逐渐向产业深处传导,新药研发需求快速回落,从跨国企业到初创药企更是纷纷缩减或放缓在研管线。据药融圈数据统计,2023年前三季度,7家MNC合计砍掉了近30条管线。管线收缩及项目研发进度放缓意味着大量临床前研究无法如期走到商业化阶段,这对纳微科技的影响十分明显。2022年全年,该公司色谱填料和层析介质产品应用新增项目中,商业化项目共58项,占全部新增项目的6.25%,其他临床阶段项目应用占比为15.4%。而到了2023年上半年,产品应用新增商业化项目则仅有3项,占全部新增项目比为0.48%,应用于新增临床阶段项目占比也仅有4.6%。对此,该公司也表示,已导入应用的大多数新药项目仍处于临床研究或注册阶段,是其核心产品销售业务面临阶段性压力的重要因素。值得注意的是,在该公司产品的应用项目中,与当下热门赛道——GLP-1减肥药相关的多肽/寡核苷酸项目不仅数量较多,且不少已进入临床后期及商业化阶段。这一领域相关产品若陆续放量,有望为该公司发展带来一定助力。色谱填料行业竞争加剧纳微科技创立之初,国内色谱填料/层析介质市场格局良好,参与者寥寥。但随着近十年来国内创新药产业快速发展,到纳微上市前后,该赛道已获得诸多资本关注,参与者持续增加,行业竞争日趋激烈。为提升竞争力,纳微科技上市以来持续加大研发投入,增速甚至远超同期营收增速,新产品上市数量持续增多的同时,也给公司业绩带来一定的压力。同时,纳微科技也积极推进自身业务扩张。2022年上半年以来,该公司先后收购赛谱仪器、福立仪器等多家设备公司,希望与色谱填料/层析介质业务形成互补,产生协同效应提升企业经营效率。不过,短期来看协同效应尚未体现,反而赛谱仪器的业务发展和盈利能力对纳微科技带来了一定不利影响。根据公开资料,赛谱仪器2020年、2021年综合毛利率分别为49.2%和53.90%,同期纳微科技整体毛利率达到80%以上。2023年上半年,纳微科技表示,受到合并赛谱仪器后产品结构变化的影响,公司综合毛利率同比下降2.15个百分点,降至79.06%。此外,同样受到全球生物医药行业景气度下滑的影响,赛谱仪器2023年度营收出现同比下降。为此,纳微科技在当期计提了2321万元的商誉减值准备,占到当年归母净利润的近30%。
  • 动态可逆粘附的高分子复合材料助力长期稳定的跨界面热传导
    四川大学傅强教授和吴凯副研究员报道了一种基于聚合物分子结构和填料表面设计的新型软物质热界面材料。研究团队通过力化学作用将液态金属(LM)包裹在球形氧化铝(Al2O3)表面形成核壳结构的填料,并将其嵌入具有动态粘附性的弹性体(PUPDM)中制备了三元复合材料。巧妙的PUPDM分子设计使得材料与各种热源/冷槽之间形成动态可逆的氢键相互作用,实现了零压状态下的低接触热阻和耐多次热循环的长期稳定性。而液态金属改性填料不仅可以作为导热桥梁,同时有利于聚合物链段在室温下的松弛,平衡了传统功能复合材料中导热性能与表面黏附可逆性的矛盾。这种在导热界面材料上构筑动态可逆键的概念在新型热管理材料和技术领域有广阔的应用前景。相关成果以“A Thermal Conductive Interface Material with Tremendous and Reversible Surface Adhesion Promises Durable Cross-Interface Heat Conduction”为题发表于《Materials Horizons》期刊(Mater. Horiz., 2022, DOI: 10.1039/D2MH00276K)。图1 具有可逆粘附能力的高导热/电绝缘/柔性软材料的分子设计和复合结构示意图随着现代电子设备朝着高度集成化和小型化发展,器件内部指数式增长的热严重影响到电子设备的工作性能、可靠性和使用寿命。因此,导热材料和先进的热管理技术引起广泛的关注。典型的热界面材料已经被大量应用去促进电子设备内部的界面热传导,并且评价其热管理效率的有两个重要的指标:材料本身的热导率和材料与接触基板的接触热阻。近年来,大量的研究人员致力于开发高导热的材料,然而随着电子设备尺寸的日益减小,解决接触热阻的问题变得同样重要。现有的一些降低接触热阻的方法有制备具备触变性和顺应性的材料或者施加外界应用压力。这些方法的目的都是增加接触界面的实际接触面积去实现更好的界面几何匹配。一些微纳尺度界面热传导的研究也表明界面相互作用有助于提高界面热导率,但在宏观热界面领域还缺乏系统的研究。更值得关注的是,由于热界面材料与接触基板的热膨胀系数不匹配,因此在经历长期热循环后,界面几何失配或者界面脱粘仍然会发生,阻碍着热管理的长期稳定性。图2 复合材料的导热和可逆粘附能力展示 为了解决上述问题,本工作采用的策略主要分为三个步骤:1)制备出具有可逆黏附能力的柔性弹性基体,提高热界面材料与基板的相互作用,并通过动态界面热管理实现跨界面热传导的长期稳定性。2)加工得到具有优异导热性能并且不影响柔性基体动态键的可逆性和活动性的导热填料。3)复合加工得到所需复合材料。基于独特结构的LM/Al2O3二元核壳填料结构设计, 结合具有动态可逆粘附弹性基体的合成,该工作中得到的复合材料完美地平衡了导热、柔性和粘附力的可逆性之间的矛盾。随着LM/Al2O3二元填料的加入,聚合物复合材料表现出出色的热导率(6.23 Wm-1K-1),允许材料内部的各向同性的热传导。同时,受益于二元填料的独特结构,绝缘的LM/Al2O3能有效地隔绝液态金属之间的电渗透网络,保证了复合材料的电绝缘性。此外,由于合成的PUPDM基体展现出超高的适用于多种基板的可逆粘附力(4.48 MPa, Al板,80℃),以及LM在基体和刚性填料的界面处为聚合物分子链链段的运动提供更多的自由度,有利于动态氢键的可逆解离与缔合,因此所得到的PUPDM/LM/Al2O3复合材料同样表现出出色的可逆黏附力(1.50 MPa, Al板,80℃),可以承担起一个10.66 kg的水桶。图3 PUPDM/LM/Al2O3复合材料的界面热管理展示 复合材料与基板之间出色的氢键结合作用实现了零压状态下的低接触热阻(18.28 mm2K W-1)。此外,这种动态可逆的氢键作用保证接触界面拥有良好的长期稳定性,即使复合材料与铝板的热膨胀系数不匹配,但是经过7500次热循环,接触热阻仍然没有明显上升。这种在高导热热界面材料上构筑动态可逆的界面相互作用的概念在微电子冷却技术、热电装置、大功率可穿戴设备等先进电子设备中具有广阔的应用前景。
  • 中药基于Wnt/β-catenin信号通路治疗膝骨性关节炎的研究进展
    膝骨性关节炎(kneeosteoarthritis,KOA)是以关节软骨的进行性降解、软骨下骨的改变、关节边缘的骨赘形成、滑膜组织的炎症和增生、韧带及半月板变性和关节囊肥大为主要病理变化的骨关节疾病[1]。主要表现为膝关节的疼痛、僵硬、肿胀及关节功能障碍等症状,严重影响患者的生活质量。调查显示,KOA约占骨性关节炎(osteoarthritis,OA)的85%,在世界60岁以上的人口中,约18%的女性和9.6%的男性患有KOA的症状[2]。KOA的发病机制尚不能完全阐明,但研究发现关节软骨细胞的凋亡与OA的退变程度明显相关(图1)[3-4]。经典Wnt/β-连环蛋白(Wnt/β-catenin)信号通路在细胞增殖调控中具有重要意义,它以不同的方式调节不同阶段的软骨形成,Wnt蛋白的表达与关节软骨的退变有密切的关系(图2)[5],在KOA的病理生理中起着至关重要的作用[6]。KOA为中医学中“痹证”“骨痹”“骨痿”等病证范畴。中药治疗KOA具有独特的临床优势,并且中药单体有效成分及复方治疗KOA的作用机制已成为研究的热点,许多研究者从中药单体、提取物及复方作用于Wnt/β-catenin信号通路方面进行了广泛探索。本文主要从Wnt/β-catenin信号通路的特性及其与KOA之间的关系及中药单体与中药复方调控Wnt/β-catenin信号通路治疗KOA机制方面进行综述。1 Wnt/β-catenin信号通路溯源与特性Wnts是人类中至少19种不同分泌蛋白的家族,它们影响着大量的生物过程[7]。20世纪末,Nusse和Varmus于果蝇胚胎中发现wg基因,随后发现鼠乳腺瘤病毒整合位点中发现的Int-1基因与Wg基因同源,遂命名Wnt基因家族,而其中的Wnt/β-catenin信号通路是研究者的研究热点。β-catenin分布于细胞膜、细胞质和细胞核中,其在细胞增殖、迁移和分化等多种细胞事件中扮演至关重要的作用。Wnt配体与细胞膜受体蛋白卷曲蛋白(frizzled,Frz)和低密度脂蛋白受体相关蛋白能够激活Wnt信号,细胞内轴蛋白(axis inhibitor,Axin)作为一个支架蛋白,可以结合多种降解复合物的蛋白质成分,调节细胞内β-catenin水平。Wnt对糖原合成激酶-3β(glycogen synthase kinase,GSK-3β)有抑制作用,GSK-3β磷酸化可减少β-catenin的降解。因而β-catenin在细胞质中聚集增多,之后被转运到细胞核[8-9],并与T细胞因子/淋巴增强因子等转录因子结合,诱导靶基因转录激活[10-11],如细胞周期蛋白D1(Cyclin D1),这是G1/S转变的积极效应,从而影响相关细胞的增殖分化、调控细胞凋亡和代谢。2 Wnt/β-catenin信号通路与OAOA是一种常见的软骨退行性改变的疾病,主要由过度的机械压力、炎症和免疫改变引起[12-13]。虽然还未有明确的发病机制,但多数研究者认为OA的发生是关节软骨细胞、软骨外基质、软骨下骨质的合成及降解的平衡被破坏所导致。随着生物化学和遗传学研究在过去10年中取得的巨大进展,OA发病机制中的信号分子和转录因子已经被发现[14]。典型的Wnt信号通路涉及OA的发病机制,其中,软骨与软骨下骨的改变被认为是OA发生的首要因素,并且研究发现典型的Wnt信号通路的激活有助于增加软骨下骨重塑和骨赘形成;同时,软骨与软骨下骨的病理变化影响着OA的发展进程[15-16]。软骨下骨的广泛重塑致使骨硬化的发生,软骨下终板增厚,虽然还不清楚这种软骨下骨硬化是如何导致OA,但研究证明Wnt信号参与并能够诱导骨硬化[17]。Dickkopf1蛋白(Dkk-1)是一种分泌蛋白,是与骨吸收密切相关的功能蛋白,在维持骨质平衡过程中有重要作用,且现已证实Dkk-1能够抑制Wnt信号传导,对OA软骨破坏产生保护作用,从而降低骨赘的严重程度来降低OA的进展[18-19]。Wnt/β-catenin信号通路对软骨细胞功能的表达至关重要,参与软骨细胞的分化与增殖,通过该通路抑制关节软骨退变的促进因子水平,维持着关节软骨的健康状态[20]。研究表明,抑制大鼠软骨细胞Wnt/β-catenin信号通路可以降低MMP的表达,继而减轻软骨炎症[21]。Xuan等[22]研究发现Wnt/β-catenin信号通路可以调节小鼠成年关节软骨表面带中糖蛋白-4的表达,在关节软骨稳态中起重要作用。研究发现SM04690是一种Wnt通路的小分子抑制剂,具有作为疾病修饰OA慢作用药的潜力,可以诱导成骨基因表达下调,软骨基因表达上调,抑制蛋白酶产生及减少软骨降解,从而改善OA进展[23]。Chen等[24]发现通过调控Wnt/β-catenin信号通路可以调控Cyclin D1参与OA的发病过程。由此推断,调控Wnt/β-catenin信号通路可以维持软骨内的平衡状态,Wnt/β-catenin信号通路可能是一种治疗OA的理想选择。3 中药基于Wnt/β-catenin信号通路治疗KOA3.1 中药单体中药治疗KOA多以补益肝肾为主,中药单体治疗KOA取得了良好的疗效,研究前景广阔。补骨脂是补骨脂Psoralea corylifolia Linn.的干燥成熟果实,补骨脂素是补骨脂的主要活性成分之一,常被用于治疗骨质疏松症、骨肉瘤、骨折和骨软化症,研究已证实补骨脂素可以在体内刺激局部新骨形成并触发骨的形成,可用于预防和治疗KOA,但影响软骨细胞增殖的确切分子机制仍有待阐明。Zheng等[25]研究表明补骨脂素以剂量和时间相关性地方式增强软骨细胞的活力,MTT实验和药敏实验表明补骨脂素可以通过调节Wnt/β-catenin信号通路促进软骨细胞增殖,并且还发现补骨脂素可以通过增加软骨基质主要成分II型胶原蛋白(type II collagen,Col-II)的表达,对防止软骨降解具有积极作用,证明补骨脂素是治疗KOA的潜在治疗剂。青蒿素是来源于黄花蒿Artemisiaannua Linn.的一种抗疟药,以其安全性和选择性杀死受伤细胞而闻名,有学者发现基于青蒿素的抗炎活性和抑制KOA相关的Wnt/β-catenin信号通路的作用,推测青蒿素可能对KOA有影响。Zhong等[26]则采用细胞活力测定、糖胺聚糖分泌、免疫荧光、定量逆转录-聚合酶链反应和western blotting等方法,研究青蒿素对白细胞介素(interleukin,IL)-1β诱导的KOA患者源性软骨细胞的保护作用和抗骨骼活性,发现青蒿素可以通过调节Wnt/β-catenin信号通路缓解IL-1β介导的炎症反应和KOA进展。薯蓣皂苷是从黄精Polygonatum sibiricum Delar. ex Redoute根中提取的天然产物,已有研究证实薯蓣皂苷具有抗炎、调脂、抗癌、保肝等作用。Lu等[27]通过在大鼠关节内注射碘乙酸钠建立KOA模型,用Western blotting、定量逆转录-聚合酶链反应和组织学染色法检测薯蓣皂苷的作用,结果显示薯蓣皂苷能通过抑制内质网应激、氧化应激、细胞凋亡和炎症反应,发挥对软骨和细胞外基质(extracellular matrix,ECM)的保护作用。更重要的是,薯蓣皂苷能通过抑制Wnt/β-catenin信号通路和上调过氧化物酶体增殖物激活受体-γ的表达来改善KOA的进展,有望成为治疗KOA的一种新型天然药物,但还需要进一步的基础研究。大黄素(1,3,8-三羟基-6-甲基蒽醌)是一种从大黄Rheum officinale Baill.的根和根茎中分离出来的天然蒽醌,被证明具有抗菌、抗癌和抗炎活性。此外,大黄素可抑制多种细胞类型的MMP-2和MMP-9表达。Ding等[28]通过采用大鼠前交叉韧带横断建立大鼠KOA的实验模型,关节内注射大黄素,观察大黄素的体内作用,结果显示大黄素可降低IL-1β诱导的核转录因子-κB(nuclear factor kappa-B,NF-κB)和Wnt信号的激活,从而改善KOA的进展。以上研究表明中药单体有效成分不仅可以通过Wnt信号抑制炎症反应,降低软骨退化速度,同时还可以促进软骨细胞的增殖分化,修复软骨损伤,这些成果对于研究中药单体有效成分对KOA进行靶向精准治疗具有临床指导意义。中药单体通过Wnt/β-catenin信号通路对KOA的调控作用见表1。3.2 中药复方传统中药复方在治疗KOA中效果明显,通常采用活血通络、补肾益气的治疗方法,但中药复方制剂的药物成分较为复杂,其中药物有效成分和具体的作用机制还不明确。加味阳和汤常被用于治疗KOA,前期研究表明加味阳和汤具有保护软骨的作用,Xia等[29]通过加味阳和汤干预大鼠模型,测得促炎细胞因子IL-1β、IL-6和肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)水平降低,说明加味阳和汤能够通过Wnt/βcatenin信号通路降低IL-1β诱导的软骨细胞MMP-3、MMP-13及细胞凋亡蛋白酶-3、9(Caspase-3、9)水平,进而保护关节软骨。独活寄生汤因具有补肝肾、益气血、祛风湿和止痹痛之效,常用于治疗以关节肿胀、疼痛为主要临床症状的骨关节疾病,谭敏枝等[30]采用独活寄生汤对KOA大鼠进行关节腔注射,不仅可以改善KOA模型大鼠膝关节肿胀程度,而且血清中骨形态发生蛋白-2(bone morphogenetic protein,BMP-2)、MMP-3、MMP-9的表达水平也有不同程度降低,说明独活寄生汤可以下调Wnt/β-catenin信号通路,为独活寄生汤治疗KOA提供一定的研究借鉴意义。温经通络方以桂枝为君药,具有温经通络、散寒除湿、活血止痛之效,唐芳等[31]发现温经通络方干预大白兔KOA模型,测得β-catenin、GSK-3β蛋白表达水平显著降低,Axin表达水平显著升高,结果表明温经通络方可通过调控Axin水平负性调节Wnt/β-catenin信号通路,进而抑制软骨细胞中β-catenin和GSK-3β表达水平而达到治疗KOA的目的。盘龙七片具有消炎镇痛、通痹止痛、活血化瘀的作用,常被用于治疗肢体疼痛、麻木等症状,朱鹏等[32]通过选用SPF级8周龄雄性SD大鼠构建KOA大鼠模型,发现盘龙七片组TNF-α、IL-1β、MMP-13显著降低,可能通过抑制Wnt信号通路活性以缓解KOA症状。七厘散主要由秦皮、川贝母、除虫菊酯和龙骨组成,对于OA的疗效较佳。宋寒冰等信号通路[34],谭志韵等[35]通过研究发现经切除卵巢以及关节注射的KOA模型组中,Wnt-4、β-catenin表达上升,GSK-3β表达下降,表明此模型中大鼠雌激素的降低可能激活了Wnt通路,在予以加味二仙颗粒干预后,Wnt/β-catenin信号通路激活被抑制,软骨ECM降解和软骨细胞凋
  • 国家热传导节能产品质检中心采购2606万元仪器设备
    广州市特种承压设备检测研究院国家热传导节能产品质量监督检验中心4月28日发布招标公告,采购一批仪器设备(采购编号:GZCQC1302HG04014),采购预算2617.54万元,项目内容如下: 子包号 序号 设备名称 数量 合计 (万元) 01 1 导热系数测定仪(激光法) 1+1空心冲模机 484.00 2 保护法板法导热系测定仪 1+1自动涂布机 3 稳态量热计法半球发射率测试仪 1 4 导热系数测定仪(热线法) 1 5 保护热板法导热系数测定仪 1 6 导热系数测试仪(热流计法) 1 02 7 电感耦合等离子体质谱仪与离子色谱联用机 1 500.00 8 气相色谱与质谱联用仪 1 9 高效液相色谱仪 1 10 气相色谱仪 1 11 原子吸收仪固体进样装置 1 03 12 紫外可见近红外分光光度计 1 488.50 13 线膨胀系数测定仪 1 14 激光粒度测定仪 1 15 半球发射率测量仪 1+1铣切机 16 电化学工作站 1 17 热变形软化温度试验仪 1 18 水蒸气透过率测定仪 1 19 含水率测定仪 1 20透光率雾度测定仪 1 21 自动色度仪 1 22 恒温恒湿箱 1 23 开闭孔率测试仪/电子密度计 1 24 副像偏离测定装置 1 25 热荷重测试仪 1 26 渣球含量分析测定仪 1 27 吸水率测定仪 1 28 憎水性测定仪 1 29 落球粘度计 1 04 30 烟密度测试仪 1 320.00 31 伏安极谱仪 1 32 平行定量浓缩仪 1 33 不燃性测试炉 1 34 多路控制阀爆破压力试验装置 1 35 落镖冲击仪 1 36 水平垂直燃烧测定仪 1 37 氧指数测定仪 1 38 卡氏样品加热处理器 1 39 多路控制阀流体静压和循环压力试验装置 1 40 多路控制阀无故障动作试验装置 1 05 41 热综合分析仪 1 325.05 42 复合盐雾腐蚀试验箱 1 43 紫外光加速老化试验机 1 44 磨耗仪 1 45 涂层耐洗刷性测定仪 1 46 杯突测试仪 1 47 自动划痕仪 1 48 漆膜干燥时间试验器 1 49 旋转粘度计 1 50 遮盖力测定板 1 51 巴克霍兹压痕仪 1 52 涂层测厚仪 1 53 比重(密度)杯 1 54 橡胶国际硬度计 1 55 高速离心机 1 56 漆膜磨耗仪 1 57 高速分散机 1 58 润滑脂和石油脂锥入度测定仪 1 59 鼓风干燥箱 1 60 耐溶剂擦洗仪 1 61 漆膜铅笔划痕硬度仪 1 62 落砂耐磨试验仪 1 63 刮板细度计 1 64 漆膜耐码垛性试验仪 1 65 流挂试验仪 1 66 漆膜附着力测定仪 1 67 板式测厚仪 1 68 稠度测定仪 1 69 腻子柔韧性测定仪 1 70 针型测厚仪 1 06 71 内置能谱仪台式扫描电子显微镜 1 274.99 72 万能材料试验机 1 73 邵氏硬度计 1 74 压片机 1 75 小型金相切割机 1 76 超声波清洗机(27L) 1 77 超声波清洗机(6L) 1 78 玻璃覆膜机 1 07 79 保护法板法导热系测定仪(高温保护热板法) 1 225.00   广州程启招标代理有限公司(以下简称“采购代理机构)在2013年5月24日公布中标供应商名单:   子包1   中标供应商名称:建发(广州)有限公司   地址:广州市体育东路138号金利来大厦806室   中标金额:4,830,000.00元   子包2   中标供应商名称:广州无线电集团有限公司   地址:广州市天河区黄埔大道西平云路163号   中标金额:4,970,000.00元   子包3   中标供应商名称:广州市徕康科技有限公司   地址:广州市天河区黄埔大道西100号   中标金额:4,870,000.00元   子包4   中标供应商名称:广州市徕康科技有限公司   地址:广州市天河区黄埔大道西100号   中标金额:3,180,000.00元   子包5   中标供应商名称:广州市徕康科技有限公司   地址:广州市天河区黄埔大道西100号   中标金额:3,230,000.00元   子包6   中标供应商名称:广东省农垦集团进出口有限公司   地址:广州市粤垦路68号广垦商务大厦2座12楼   中标金额:2,730,000.00元   子包7   中标供应商名称:上海光晟化工科技有限公司   地址:上海市闵行区泸光路555弄18号504   中标金额:2,248,600.00元
  • 美成功将大脑信号翻译成口语单词
    北京时间9月8日消息,据国外媒体报道,美国犹他大学科学家近日利用两组植入癫痫患者大脑中的微电极阵列成功实现将大脑信号转化为口语单词。这一重大研究成果将能够帮助因患严重麻痹症而失去语言能力的患者轻松地表达自己的思想。   据科学家介绍,这种微电极阵列每组包括16个微电极,通常植入到头骨之下,大脑之上。美国犹他大学生物工程学助理教授布拉德利-格雷格尔介绍说,“通过这种设备我们可以获得大脑信号。只需这些大脑信号,我们就可以将其解码为人类口语单词。这种设备将可以长期帮助因患严重麻痹症而失去语言能力的患者。” 一位癫痫症患者大脑的核磁共振成像图,图片显示两种电极的位置分布情况。一种电极是传统的脑皮层电图电极(黄色),用于定位癫痫发作的源头,从而帮助医生进行手术。红色的则是两组实验用微脑皮层电图电极,每组阵列包括16个微电极,用于读取来自大脑的语言信号。 本图显示了置于癫痫症患者大脑顶部的两种电极。较大的标有数字的电极就是脑皮层电图电极。此外,志愿者大脑的两个语言区顶部还被置放两组更小的微电极阵列。 微电极阵列,也被称为微脑皮层电图电极网格。一组微电极阵列排列成4*4的模式,被展示于一枚25美分硬币上。   由于这种方法还需进一步完善,此外还涉及到植入大脑这一复杂的过程,因此格雷格尔表示该方法要投入到用于治疗“闭锁综合症”等疾病的临床实验还需数年时间。科学家的研究成果论文发表于九月版的《神经工程学期刊》(Journal of Neural Engineering)之上,论文论证了将大脑信号解码为计算机发音的口语单词的可行性。   犹他大学的科研团队将两组微电极阵列植入到一位志愿者的大脑语言中枢上方。这位志愿者患有严重的癫痫症,已经经历过一次开颅手术。因此,医生很容易将更大的传统电极放置于导致他癫痫发作的源头,从而从手术上可以阻止癫痫的发作。   患者被要求阅读如下十个英语单词,即“是、不、热、冷、饥饿、口渴、哈罗、再见、更多和更少”。通常认为,这十个英语单词对于麻痹症患者的康复很有帮助。随着患者不断重复这十个英语单词,科学家们也记录下他的大脑信号。接下来,他们在尝试解码这些大脑信号分别代表十个单词中的哪一个。当患者说 “是”或“不”时,科学家们再分别对比这两个单词所产生的大脑信号。   目前,他们已能够较好地区分清每一个单词的大脑信号,每一次的准确率达76%到90%。不过,当他们一次性检测所有10个大脑信号时,准确率只有28%到48%。这一准确率比随机检测的准确率(应该是10%)要高。但是,对于一个将患者思想翻译为计算机发音的口语语言的设备来说,这种准确率还不够高。   格雷格尔表示,“这是一种概念的实验。我们已经证明这些信号能够告诉你患者在说什么,而且准确率比随机性要高。但是,我们需要进一步完善,争取能够识别出更多的单词,准确率更高。这样,患者将能够真正地发现它的用处。”格雷格尔希望,患者最终将受益于这项研究成果。将来,通过一个无线设备,就可以将患者的思想转化为计算机发音的口语语言。这些患者包括由于脑中风、葛雷克氏症以及外伤导致的麻痹症患者。“闭锁综合症”患者通常通过自己尽可能做出的动作与他人进行交流,如眨眼睛或轻轻地移动手部。   与格雷格尔一起共事的犹他大学研究团队的其他成员还包括电子工程师斯宾塞-科利斯、工程学院院长理查德-布朗以及神经外科学助理教授保罗-豪斯等人。论文的另一联合作者凯-米勒是来自美国华盛顿大学的一位神经学科学家。这项研究由美国国立卫生研究院、美国国防部高级研究计划署、犹他大学研究基金会以及美国国家自然科学基金会等单位联合赞助。   这项研究采用了一种新型的非穿透性微电极,这种电极置于大脑之上,但没有穿透大脑。它们通常也被称为“微电极阵列”,因为它们是用于脑皮层电图中的体积更大的电极的微缩版,即微脑皮层电图电极。   对于某些通过药物治疗病情仍未得到控制的癫痫症患者来说,可以通过开颅手术,将一个包含有脑皮层电图电极的硅树脂垫置于大脑之上数日或数周时间。这种钮扣大小的脑皮层电图电极不会穿透大脑,但可以检测到反常的电行为,从而帮助外科医生定位并移除大脑中导致癫痫发作的一小部分。   去年,格雷格尔和同事们已经发表过一篇论文,该论文证明,更小的微电极能够“读取”用于控制手臂动作的大脑信号。去年参与研究的一位癫痫症患者志愿参与今年的新研究计划。   由于微电极不需要穿透大脑物质,因此它们放置到大脑的语言控制区被认为是安全的。而利用穿透性电极也是无法做到这一点的。在一些实验中,通常利用穿透性电极来帮助麻痹症患者控制电脑鼠标或操纵义肢。   脑电图电极通常用于放在头颅之上来记录脑电波,但是这种电极太大,而且记录太多的大脑信号,以致于很难将这些信号解码为口语语言。   在新研究中,微电极被用于检测来自大脑的微弱信号,这些信号由数千个神经元产生。两组微电极阵列分别由16个微电极组成,每个微电极相隔一毫米。两组微电极阵列分别置放于大脑的两个语言区上方。第一个区域是面部运动皮层,它控制面部、嘴唇、舌头等部位的运动,主要涉及说话的肌肉。第二个区域是威尼克区,这是人类大脑中关于语言理解功能的区域。   研究实验共持续四天,每天一个阶段,每阶段一个小时。研究人员告诉癫痫症患者,当他们每一次指向患者时,患者必须要不断重复十个单词中的一个。通过两组微电极阵列,研究人员将大脑信号记录下来。每个单词共重复了31次到96次不等。   格雷格尔介绍说,研究人员接下来通过分析每一个神经信号的不同频率的强度变化,区别出不同单词的大脑信号。研究人员发现,每一个口语单词产生不同的大脑信号。他们认为,这有力地支持了如下理论,即置于大脑上的微电极可以捕捉到大脑的语言信号。   此外,科学家们还在研究中取得了一个意外的发现。当患者重复单词时,大脑面部运动皮层最活跃,而威尼克区则不够活跃。但是,当患者完成上述动作受到研究人员感谢时,威尼克区则开始活跃起来。格雷格尔解释说,这表明威尼克区与更高层的语言理解功能的关系更密切,而面部运动皮层功能则是控制面部帮助发声的肌肉。通过利用录自面部运动皮层的大脑信号,研究人员一个一个地区分这些单词时,准确率最高,达到85%。而利用录自威尼克区的大脑信号进行区分时,准确率则相当较低,为76%。   科学家们又分别选取了每组阵列16个微电极中的五个,这十个微电极在解码来自面部运动皮层的信号时准确率是32个微电极中最高的。它们在对单词进行二选一辨别时,准确率几乎可以达到90%。在从十个单词中识别一个单词这样更复杂、更困难的实验中,最初每一次取得的准确率仅为28%。这一准确率尽管不够高,但是比10%的随机率要高。然而,当研究人员利用每一组中五个最准确的微电极进行识别时,他们发现准确率几乎可以达到48%。   格雷格尔表示,“这并不意味着问题已完全解决,我们可以回家了。它表明,这种技术具有可行性,但我们还需要继续完善,直到闭锁综合症等疾病患者能够真正地交流。很明显,我们下一步计划是,使用更大的微电极阵列,比如11*11微电极阵列,共121个微电极。我们可以做更多的阵列,可以使用更多的微电极,可以从大脑中获取更多的数据。这意味着可以读出更多的单词,准确率更高。”
  • 德国研制出世界最小光电信号转换器
    光纤网络是现代信息传递的基础,光电信号转换器是其核心,德国卡尔斯鲁尔研究中心的科研人员研制出一种世界最小的光电信号转换器。其内部结构为平行排列的两个微小黄金电极,长度约29微米,两电极之间的间隙约为0.1微米,整个结构直径不到人头发的1/3,两电极之间引入变化的电压信号,其频率与传输的数据信号相关,在电极中间充填有特殊的塑料材料,其对光线的折射率随所施加的电压发生改变。在两电极的间隙中导入连续光束后,会激发出表面电磁波(表面等离子体),这种表面电磁波受到施加与电极间隙中充填的塑料材料中的电压信号的调制,而经过调制的表面电磁波又可影响穿过间隙的光束的相位,实现信息通过施加于两电极的电压信号调制光束而转换成光信号在光介质中的传输。经过实验验证,这种光电转换器可实现的数据转换速率达到40G比特/秒,可工作在目前宽带光纤网常用的红外光波长范围内(波长1480-1600纳米),工作温度可达85摄氏度,是目前世界上最小型化的高速光电信号(相位)转换器,可用目前成熟的微电子技术手段进行规模化生产,并集成在微电子芯片中,可实现信息的高速率低能耗传输。
  • 新技术可将光信号变成沿金属表面行进的波
    有助于下一代单芯片光子互联的实现   据物理学家组织网4月22日报道,美国科学家制造出一种新的纳米尺度的连接设备,能将光学信号转变成沿金属表面行进的波。更为重要的是,新设备还能识别偏振光的偏振方向,并据此朝不同的方向发送信号。研究发表在4月19日出版的《科学》杂志上。   科学家们表示,最新研究提供了一种新的方式,让人们能在亚波长尺度下精确地操控光,而不会破坏可能携带有数据的信号,这为有效地从光子设备传递信息给电子设备从而实现下一代单芯片光子互联打开了大门。   该研究的合作者、哈佛大学工程和应用科学学院的研究生巴尔萨泽穆勒说:“如果你想朝一块拥有很多元件的小芯片周围发送一个数据信号,那么,你需要能精确地控制信号的行进方向。如果你无法做到这一点,信号就有可能丢失。方向是信号能否成功传递的重要因素。”   过去,科学家们也能通过改变光射入连接设备表面的角度来控制这些波的行进方向。但就像穆勒所说的:“这实在很麻烦,光学电路很难成一条直线,因此,为了给信号设定方向而不断重新调整角度非常不实际。”   新连接设备由一层薄薄的金组成,其上布满小孔,科学家们设计的天才之处正在于这些切口形成的像鲱鱼鱼骨(箭尾形)一样的图案。该研究的主要作者、哈佛大学工程与应用科学学院的费德里科卡帕索教授指出:“迄今为止,科学家们一直采用一系列平行的沟槽(格栅)来做这类事情,虽然它也能完成,但很多信号会丢失,而新设备上的新结构则能采用一种非常简单和优雅的方式来控制信号的行进方向。”   现在,光只需要垂直地射入即可,新设备会做其他事情。它会将入射光变成表面等离子体激元(在金属表面存在的自由振动的电子与光子相互作用产生的沿着金属表面传播的疏密波)。它也会阅读入射光波的偏振方向——直线、左旋圆极化还是右旋圆极化,然后为其安排合适的路径。新设备甚至能将一束光分成两部分并朝不同方向发送不同的部分,这就使得多通路信息传送成为可能。   新结构非常微小,每个图案单元比可见光的波长还要小,因此,科学家们认为,新结构应该很容易同平面光学等新奇技术整合。然而,卡帕索表示,新设备最有可能用于未来的高速信息网络内——纳米尺度的电子设备(目前已经出现)、光子设备和等离子体有望集成在一块微芯片上,从而实现下一代单芯片光子互联。
  • GE运输系统集团铁路信号实验室在华成立
    中国北京,2010年10月25日-通用电气(NYSE: GE)旗下GE运输系统集团宣布,GE运输系统集团在中国成立的首个铁路信号实验室在北京隆重揭幕,成立这个实验室是为了帮助中国的铁路信号行业攻克业务技术难关、提升在华服务质量,为中国铁路信号行业提供不断革新的解决方案。   该实验室将为GE运输系统集团在中国的主要铁路信号项目提供技术支持,包括应用在全球知名的煤炭重载运输线路大秦线上的重载技术——LOCOTROL分布式动力控制系统,以及应用在青藏线上的ITCS增强行列车控制系统。实验室包括LOCOTROL检测和维修中心,LOCOTROL系统验证与测试实验室以及ITCS实验室等。   “伴随中国近年对铁路发展的高度重视,中国本土客户对于铁路信号技术的进步与革新要求也不断提高。” GE运输系统集团智能控制全球总裁毕艾文先生指出,“北京的新实验室将使我们能够更迅速的对中国客户提出的各种技术革新的需求进行技术测试与验证,从而确保我们与中国客户更紧密的合作。”   “另外,新实验室将有效减少机车零件测试和返修时间。新实验室的成立再次佐证了GE运输系统集团为中国铁路市场提供不断革新的铁路信号解决方案的承诺,同时,这也是继 LOCOTROL分布式动力控制系统及ITCS增强行列车控制系统在中国铁路成功应用后,GE运输系统集团在华发展具有里程碑意义的一步。” 毕艾文先生补充道。   “新实验室的成立是我们“立足中国 服务中国 ”发展战略的重要组成部分,也是我们在华快速发展,拥有不断扩展的客户资源的结果。”GE运输系统集团智能控制亚太区总裁尚文德先生强调。“实验室中的本地技术人才将确保与客户更好的沟通从而提供更高效的解决方案。相信实验室的成立也是我们在华发展,成为中国铁路长期战略合作伙伴的一个重要发展平台。”   LOCOTROL通过分布在整列车中的机车中执行牵引和控制指令,来帮助铁路提高长大列车的运载能力。客户可使用命令信号遥控机车,从而加强对整列车的动力和制动系统的控制。通过GE的LOCOTROL分布式动力控制系统,工程师可以更快更有效地启动和停止列车,从而提高了铁路网的运营效率。将动力分散于列车的各个部分,可降低列车间作用力,减少断钩,并节省燃料。实践证明,依据列车配置和地形的不同情况,LOCOTROL可提高6-10%的燃料效率。   GE增强型列车控制系统(ITCS)利用既有信号或建立自己的虚拟信号,通过无线方式传送列车运行命令,相当于以调度集中方式运行。作为一个完整的安全系统,ITCS可以提高路网中所有客运和货运列车的最高速度。由于其精确的定位和闭塞分区的缩短,与传统的控制系统相比, ITCS能够有效地使线路能力翻倍。   关于GE运输系统集团中国:   通用电气旗下的GE运输系统集团拥有超过100年的历史,是全球领先的铁路、船用动力、钻井电机、采矿业和风能科技的供应商。GE运输系统提供货运和客运火车机车、铁路信号、通信系统、集成系统解决方案、船用发动机、矿用卡车电动轮驱动系统、钻井电机、高品质的零备件及售后服务。   GE早在100多年前就进入了中国市场。1908年,GE在中国建立了第一个灯泡制造厂。1984年,中国进口了首批420台GE运输系统集团制造的ND5柴油内燃机车。2002年,GE运输系统集团在北京成立了通用电气运输系统(中国)有限公司,提供研发、制造和其他服务。2005年,GE运输系统集团与中华人民共和国铁道部签订了300台Evolution® 系列中国干线机车合同,用于中国各大铁路干线。2008年GE运输系统集团创建了第一个矿用自卸卡车电动马达生产厂,并成立了通用电气运输系统(沈阳)有限公司。在过去的6年内,公司实现了两位数的业务增长,为中国提供了245个就业机会,在北京、上海、大同、成都、常州和格尔木等城市设有办公室。   目前,GE运输系统集团已成为销售额超过45亿美金的全球化企业,也是中国可持续发展基础设施建设不可分割的一部分。
  • Novus助力HIPPO信号通路研究
    Hippo信号通路是近年来在果蝇中研究发现的一个高度保守的生长控制信号通路,其对器官大小及细胞增殖和凋亡都具有关键的调节作用。该通路由多种抑癌基因及一种候选癌基因组成,此通路的失活或者异常表达在动物实验中参与多种疾病的发生。Hippo通路的生物学效应有:调控器官体积,保持细胞增殖凋亡平衡,维持内环境稳定;参与细胞接触性抑制的调节,在细胞培养中,正常细胞因接触性抑制在培养集中呈单层的生长,而某些肿瘤细胞因接触性抑制丧失而相互堆积或呈锚定而非依赖性生长;Hippo通路的失活参与肿瘤的发生:Hpo,Sav,Wts,Mats的失活或YAP的过度表达存在于多种肿瘤中,如肝癌、胃癌、结肠癌、前列腺癌、卵巢癌等。1995年,Hippo信号通路的第一个成员Wts在果蝇中被发现,其编码的一个Dbf-2相关的核家族蛋白激酶,Wts的突变导致组织过度生长,直到2002年,Hippo信号通路的另外几个成员也被发现,包括Salvador(Sav)、Hippo和Mats。Hippo信号通路由核心成分、上游及下游成分组成。核心成分:Lats1和Lats2是Dbf2相关的核蛋白激酶家族成员,其与果蝇中的Wts属于同源物。上游成分:目前已知的几个成员可以作为Hippo和Wts的上游成分,非典型的钙黏蛋白Fat作为一种感受器并参与Hippo信号通路的调节,Fat信号的转导包括一种非传统的肌球蛋白Dachs,Discs激酶的过度生长,包括一个FERM结构域的衔接蛋白Expanded(Ex),Ex位于顶端区域,并和另一个位于顶端区域包括FERM结构域的蛋白Merlin协调。KIBRA是一个WW结构域蛋白,调节Hippo信号通路的活动。下游成分,参与Hippo信号通路的下游基因相对较少,已明确在果蝇中属于几个下游基因作为Yki的目的基因在器官生长方面发挥重要作用,包括miRNA,CyclinB和CyclinE,E2F1,还有凋亡基因Apotposis-1.。人YAP基因与Yki属于同源物,已在一些肿瘤中做为癌基因呗发现,最近研究显示,YAP在哺乳动物的Hippo信号通路中最为最原始的效应器。Hippo信号通路并不是单一地发挥作用,该条通路的相互作用关系有待进一步深入研究。目前已发现,Hippo信号通路参与了多种人类肿瘤的发生,对它所参与的疾病机制的研究有待深入,从而靶向研究相关的治疗措施。Novus公司提供大量高质量的针对Hippo信号通路蛋白的抗体,包括核心成分Last1和Last2、上游成分FAT、DACH、KIBRA、Merlin,下游成分YAP等,帮助您更方便的进行Hippo信号通路研究。欢迎使用Novus Explorer查找Hippo通路有关的基因、疾病及参考文献,请点击: http://www.novusbio.com/explorer?start_mode=prefilled&entity_name=Hippo%20Signaling%20Cascade&entity_type=pathway蛋白名称 目录号 交叉反应性 应用 FAT1 NBP1-84565 Hu IHC-P, IHC FAT4 NBP1-78381 Hu, Mu ICC/IF, IHC-P, IHC DACH1 NBP1-85320 Hu ICC/IF, IHC, IHC-P DACH2 NBP1-89476 Hu ICC/IF, IHC, IHC-P KIBRA NBP1-92052 Hu WB, ICC/IF, IHC, IHC-P KIBRA NBP1-92053 Hu IHC, IHC-P Merlin NBP1-87757 Hu WB, ICC/IF, IHC, IHC-P Merlin NBP1-33531 Hu, Mu, Rt WB, IHC, IHC-P MST1 24480002 Hu WB, ELISA, IHC, IHC-P, IP MST1 NBP1-85330 Hu WB, IHC, IHC-P MST2 NBP1-48017 Hu, Ca, Mk WB, IHC, IHC-P SAV1 H00060485-M02 Hu WB, ELISA, ICC/IF, IP, S-ELISA LATS1 NBP1-62088 Hu, Mu ELISA, IHC, IHC-P LATS2 NB200-199 Hu, Mu WB, IP, PLA YAP1 NB110-58358 Hu, Mu WB, ICC/IF, IHC, IHC-P, IP SAV1 NBP2-13282 Hu WB, IHC, IHC-P TAZ NB110-58359 Hu, Mu, Rt WB, ICC/IF, IP TAZ NBP1-85067 Hu, Mu WB, ICC/IF, IHC, IHC-P TAZ NBP2-01114 Hu WB, FLOW, ICC/IF TAZ NBP1-88511 Hu WB, ICC/IF, IHC, IHC-P 14-3-3 gamma NB100-407 Hu, Mu, Rt, Bv, Ch, Ze WB, ICC/IF RUNX2 NBP1-77461 Hu, Mu ICC/IF, IHC, IHC-P TEAD3 NBP1-83949 Hu ICC/IF, IHC, IHC-P DACH1 NBP1-00136 Hu WB, PEP-ELISA DACH2 NBP1-80001 Hu, Mu, Ca, Ch, Xp, Ze WB DCHS1 NBP2-13901 Hu IHC, IHC-P FAT1 NB100-2693 Dr WB, ELISA, ICC/IF FAT3 NBP1-90642 Hu IHC, IHC-P FRMD6 NBP1-90725 Hu, Mu WB, ICC/IF, IHC, IHC-P LATS1 NBP1-58271 Hu, Mu, Rt WBNote: Hu-Human Mu-Mouse Rt-Rat Bv-Bovine Ch-Chicken Xp-Xenopus Ze-Zebrafish参考文献:1.Buttitta LA, Edgar BA. How size is controlled: from Hippos to Yorkies. Nat Cell Biol. 2007 Nov 9(11):1225-7. [PMID: 17975546]2.Zeng Q, Hong W. The emerging role of the hippo pathwayin cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell. 2008 Mar 13(3):188-92. [PMID: 18328423]3.Badouel C, Garg A, McNeill H. Herding Hippos: regulating growth in flies and man. Curr Opin Cell Biol. 2009 Dec 21(6):837-43. [PMID: 19846288]4.Varelas X, Miller BW, Sopko R, et al. The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell. 2010 Apr 20 18(4):579-91. [PMID: 20412773]5.Bao Y, Hata Y, Ikeda M, Withanage K. Mammalian Hippo pathway: from development to cancer and beyond. J Biochem. 2011 Apr 149(4):361-79. [PMID: 21324984]6.Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat Cell Biol. 2011 Aug 1 13(8):877-83. [PMID: 21808241]7.Liu W, Wu J, Xiao L, et al. Regulation of Neuronal Cell Death by c-Abl-Hippo/MST2 Signaling Pathway. PLoS One. 2012 7(5):e36562. [PMID: 22590567]更多HIPPO信号通路相关信息,请关注:http://www.novusbio.com/hippo-pathway.html 阅读原文:http://www.liankebio.com/ProductCenterShow/articleID/2014070020.html
  • 日本将禁止向俄罗斯出口示波器、光谱仪、信号放大器、信号发生器等产品
    近日,日本经济产业省公布了在乌克兰军事行动后将禁止向俄罗斯出口的产品清单。该禁令包括57个项目,将于3月18日生效。该部表示,该清单包括31种通用商品和26种技术项目,包括软件。出口禁令适用于半导体、雷达、传感器、激光器、通信设备、记录设备及其组件、示波器、光谱仪、信号放大器、信号发生器、电阻器、加密设备、电视摄像机、滤光片和氟化物光纤。此外,还对导航设备、无线电电子设备、水下监视设备、潜水设备和柴油发动机实施了禁令。此外,禁止的是拖拉机部件,飞机及其部件的燃气涡轮发动机以及炼油设备。2月24日,在分离的顿巴斯共和国呼吁帮助保卫自己免受乌克兰军方的攻击后,俄罗斯在乌克兰发动了军事行动。作为回应,西方国家对莫斯科实施了全面制裁。
  • 放大NO₂光谱信号 快速锁定大气污染“元凶”
    近日,中国科学院合肥物质科学研究院安徽光机所张为俊研究员团队在大气二氧化氮探测技术方面取得新突破,团队利用相敏检测的振幅调制腔增强吸收光谱技术,创立了一种能够快速灵敏检测大气环境中二氧化氮的新方法。这项研究成果日前发表于美国化学会(ACS)出版的《分析化学》上,并申请了发明专利保护。通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。基于多模激光的振幅调制腔增强吸收光谱技术,适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。 导致大气污染的“元凶”之一“二氧化氮是对流层大气中主要的污染物,它的来源主要包括交通运输排放和工业生产过程中的化石燃料燃烧、农作物秸秆等生物质燃烧、大气当中的闪电和平流层光化学反应等过程。”中国科学院合肥物质科学研究院安徽光机所的周家成博士说道,大气中的二氧化氮对臭氧和二次颗粒的生成也起着重要作用,是形成酸雨的重要原因之一。“二氧化氮的光解是对流层臭氧的主要来源之一,其参与了光化学反应以及光化学烟雾的形成。”周家成说,二氧化氮通过光化学反应产生硝酸盐二次颗粒,导致大气能见度下降并进一步降低空气质量,是形成灰霾的主要因素。同时,排放到大气中的二氧化氮可以与水蒸气发生作用,产生硝酸和一氧化氮,进而形成酸雨。“正因如此,二氧化氮的高灵敏准确测量对大气化学研究以及大气污染防控具有重要意义。”周家成说,对于一些特殊应用场景,例如青藏高原、海洋等环境中,大气中二氧化氮浓度极低,只有高灵敏的仪器才能精确测量,进而开展相应的大气化学研究。此外,高灵敏的仪器还可以捕捉城市大气污染的深层次信息,例如通量等关键参数,从而更好地服务大气污染防控。放大光谱信号实现超极限探测一般而言,大气当中的每一种成分,都对应有特殊的光谱,也就是相当于这种组分的特殊身份识别标志特征。从原理上来讲,只要能够实现对某种大气组分光谱的高灵敏度探测,也就做到了对这种组分的精确探测。周家成介绍,他们团队创新研发的“基于多模激光的振幅调制腔增强吸收光谱技术”,是将调制技术与多模激光相结合的一种全新的高灵敏度吸收光谱技术。它的工作原理是把被调制的光强信号输入到相敏检波器中,与参考信号进行混频乘法运算,再经过窄带低通滤波器滤除掉其他噪声频率成分后,得到一个与输入信号成正比的直流信号,就可以直接用于吸收系数的计算。“通俗地讲,就是把吸收到的二氧化氮光谱信号进行有效放大,再通过我们开发的可靠算法进行计算,最终实现对大气二氧化氮的精确探测。”周家成告诉记者,“基于多模激光的振幅调制腔增强吸收光谱技术”集成了共轴腔衰荡吸收光谱的高光注入效率、离轴腔增强吸收光谱的低腔膜噪声,以及调制光谱的窄带高灵敏度微弱信号探测等优点,能够提供一种简单、可靠、低成本和自校准的二氧化氮绝对浓度测量方法。“它适用于长期稳定运行、免人工维护的二氧化氮高灵敏度测量,因而具有很好的科研和业务应用前景。”周家成介绍到,他们研制的这台仪器用到的一个关键部件,叫做“宽带多模二极管激光器”,即能够输出波长具有一定宽度,并且可以同时产生两个或多个纵模的激光器,它被作为整个仪器的探测光源。“正是由于它发出的激光光源能被二氧化氮分子所吸收,所以被用来进行二氧化氮浓度的测量。”周家成说,他们用到的这款激光器的中心波长为406纳米,带宽约为0.4纳米,它发射出的探测光源,恰好能够被二氧化氮分子所吸收。一般而言,某种仪器或探测方法,在探测某种参数时所能达到的极限,被称为“探测极限”,也代表了仪器的最高性能指标。周家成表示,他们研制的探测技术经过多次实际应用验证表明,超过探测极限浓度的二氧化氮也能够被测量到。助力北京冬奥会精准预报天气北京冬奥会期间,中国科学院合肥物质科学研究院安徽光机所研制的快速灵敏检测二氧化氮仪器被用于环境大气实时在线观测,为冬奥会高精度数值天气预报和多源气象数据融合等关键技术方法提供了必要的数据支持,共同构建了冬奥气象“百米级”预报技术体系。“在此之前,这台仪器在北京参加了‘超大城市群大气复合污染成因外场综合协同观测研究’项目,针对北京城市站点大气环境中氮氧化物的作用开展相关研究,对北京市大气复合污染成因解析起到了重要作用。”周家成表示,后续该仪器还将应用于青藏高原背景站点开展常年观测,填补青藏高原大范围区域二氧化氮有效观测数据的空白。谈起团队科研历程,周家成坦言,这其中充满了艰辛和不确定性,但还是有着很多乐趣。“为了验证仪器吸收测量的准确性,我们先在实验室开展不同浓度二氧化氮测量实验,但是结果始终和预期不一样。折腾了几个小时后,发现居然是外部锁相放大器的一个参数设置有误。”周家成说,这件事再次验证了“细节决定成败”的道理。自此以后,他每次实验前,都会仔细检查仪器的各项参数,防止出现类似的问题。周家成说,仪器在参加北京冬奥会观测期间,由于观测人员在实验前期对仪器操作不熟悉,光腔被正压气体冲击,导致无法用于测量。“当时我不在现场,内心十分着急,牵挂仪器,到了深夜都不能入睡,怕影响观测进度。”年后没几天,周家成携带工具前往北京维修,加班加点终于使仪器正常工作,赶上了综合实验的进度。“接下来,我们将对仪器进行小型化集成,利用锁相板代替商业锁相放大器,配合自动控制系统,使得这台仪器更加智能化、便携化。”周家成表示,未来他们团队还计划把这种二氧化氮探测技术与化学滴定、热解和化学放大法相结合,应用于一氧化氮、臭氧、活性氮和总过氧自由基的高精度测量。通过增加保护气,仪器还可应用于气溶胶消光系数的高灵敏度测量。
  • 科研人员首次探测到单个原子的X射线信号
    新华社北京6月2日电 美国科研人员首次探测到了单个原子在X射线作用下产生的信号,据此分析出元素种类和原子的化学状态,这个成果可望为材料检测技术带来革新。这项研究由美国俄亥俄大学、阿尔贡国家实验室等机构进行,分别探测到了嵌在分子框架中的单个铁原子和单个铽原子的X射线信号。相关论文日前发表在英国《自然》杂志上。X射线广泛应用于医疗、环境、安全等领域的检测,随着技术进步,检测所需材料样本数量目前已经减少到1万个原子的级别。但单个原子产生的X射线信号非常微弱,传统手段难以探测,新方法将帮助大幅提高检测精度。这项研究使用的观测手段称为同步辐射X射线-扫描隧道显微镜(SX-STM),结合了粒子加速器产生的高质量X射线源和能对单个原子进行观察的扫描隧道显微镜技术。研究人员使用特制金属探针,控制探针尖端停留在待检测样本上方约0.5纳米处,用X射线照射样本。样本原子中靠近原子核的内层电子被X射线激发出来,通过量子隧穿效应“穿越”到探针尖端。这些电子带有独特印记,分析它们产生的隧穿电流就可确定元素种类,还能检测出原子的化学状态。观察显示,铽原子在分子里非常“孤僻”,铁原子则与附近的原子发生强烈的相互作用。
  • 超灵敏磁强计可将信号功率放大64%
    德国弗劳恩霍夫应用固体物理研究所(IAF)发布公告称,该所研究人员在基于金刚石氮—空位(NV)中心的超灵敏激光阈值磁强计研究中取得重要进展,可通过受激发射实现64%的信号功率放大,并显示出创纪录的33%的超高对比度。该研究将为进一步开发用于室温和现有背景场下的高灵敏度磁场传感器铺平道路。相关成果发表在近日的《科学进展》杂志上。金刚石中的NV中心是由一个氮原子和一个碳空位组成的原子系统。在被绿色激光照射时,会激发出红光。由于这些原子级NV中心的光度取决于外部磁场的强度,因此它们可用于高空间分辨率的微磁场测量。研究人员成功制造出具有高密度NV中心的金刚石,进而研发高精细的NV激光腔,首次通过实验验证了激光阈值磁强计的理论原理。IAF研究人员扬杰斯克博士解释说:“由于其材料特性,具有高密度NV中心的金刚石在用作激光介质时可显著提高测量精度。”杰斯克团队通过CVD(化学气相沉积)工艺在金刚石生长中实现了高水平的氮掺杂,并使用电子束和热处理,在后处理中使NV密度增加了20—70倍。在表征过程中,他们优化了3个关键因素:高NV密度、通过高通量辐照实现取代氮的高转化率和高电荷稳定性,从而成功生产出具有高密度NV中心的高质量CVD金刚石。此前,NV中心已被用于量子磁传感,但信号一直是自发发射而不是受激发射或激光输出。现在,IAF的研究人员不仅通过受激发射实现了64%的信号功率增加,还创造了一项纪录:与磁场相关的发射显示出33%的对比度和毫瓦(mW)范围内的最大输出功率。
  • 外部参考信号、全新屏显,你要的升级锁相放大器来啦!
    锁定放大器用于测量非常小的交流信号,即使小信号被数千倍大的噪声源所掩盖,也可以进行准确的测量。这种设备用利用一种称为相敏检测(phase-sensitive detection, PSD)的技术来挑选出特定参考频率和相位的信号分量,提取具有已知载波的调制信号。锁定放大器在各种光学测量仪器个设备中扮演着十分关键的角色。昕虹光电HPLIA微型双通道调制解调锁相放大器以当今FPGA +ARM单片机的业界流行配置而设计,长期深受用户青睐。迎接2022年,我们回应广大客户的需求,推出了升级版HPLIA Plus调制解调锁相放大器,不仅提升了颜值,更支持了大家期待已久的外部参考信号输入,实现更便捷、更弹性的调制和解调功能!海尔欣HPLIA Plus外观展示图HPLIA Plus 亮点:1.老版仅支持内部同步DDS信号,进行独立的双通道内同步解调。而HPLIA Plus终于支持外同步模式啦!用户可选择去同步外部输入的参考信号模式,而由Input1去解调微弱信号。内外同步模式,便于用户灵活自选调制信号,让您的实验设置更弹性!2.在外同步模式下,其中一路调制通道DDS输出与用户参考信号锁相的正弦波,可以用于同步其他HPLIA Plus,这样的配置可使多通道锁相解调成为可能,可借由数个HPLIA Plus锁相放大器串联,实现简易、便捷、经济的多路信号同步锁相解调。3.全新的UI界面,支持原有PC显示或机身自带高分辨触摸显示屏,实验设备玩出高级感!
  • ASDevices: 气相色谱未来创新的新动力——传感+信号处理
    p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 气相色谱法经多年的发展历史,现在已成为一种成熟且应用广泛的分离复杂混合物的分析技术,在医药、食品、石油、环境等分析领域均得到广泛应用。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 气相色谱法的出现和发展在分析化学乃至整个化学史上都有着里程碑式的意义,了解其发展历史及新技术新应用有助于更好的认识和运用气相色谱法。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 楷体, 楷体_GB2312, SimKai " 为此,仪器信息网特别制作了“ /span strong span style=" font-family: 楷体, 楷体_GB2312, SimKai " ‘解码’气相色谱新技术新应用 /span /strong span style=" font-family: 楷体, 楷体_GB2312, SimKai text-indent: 2em " ”专题,并邀请气相色谱仪主流厂商来分享气相色谱仪最新技术及应用进展的看法。此次,我们特别邀请 strong ASDevices全球副总裁/亚太区总经理朱玮郁 /strong 谈一谈气相色谱仪新技术及发展情况。 /span /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202005/uepic/d0cd89e9-1b65-45c7-b488-72fae4a32fcb.jpg" title=" ADS_副本.jpg" alt=" ADS_副本.jpg" / /p p style=" text-align: center " strong style=" text-align: justify text-indent: 2em " span style=" font-family: 宋体, SimSun font-size: 14px " ASDevices全球副总裁/亚太区总经理 朱玮郁 /span /strong /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " strong span style=" font-family: 宋体, SimSun " 仪器信息网:请问现在最先进的气相色谱技术有哪些?您比较看好哪些技术?未来气相色谱技术的发展趋势是怎样的? /span /strong /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " strong span style=" font-family: 宋体, SimSun " 朱玮郁: /span /strong span style=" font-family: 宋体, SimSun " 气相色谱的未来来自于传感技术、样品预处理和信号处理的相结合。目前,大多数GC生产商仍然采用传统的方法进行色谱分析,色谱技术的创新也都集中在色谱柱的分离度和检测器的敏感度方面。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " ASDevices在过去几年的基础技术投资中,为GC集成商带来了新的工具。Epd(增强型等离子放电检测器)传感技术是第一个。目前我们已经引进了新的阀门,并且正在发布基于自有技术的新的样品预处理系统。所有这些都结合了新颖的信号处理方法,这是色谱的未来。为了展示这些新技术的强大功能,ASDevices发布了新色谱应用解决方案:一个是半导体市场的痕量永久性气体,另一个是环境空气和氢燃料市场的痕量硫分析。对于半导体应用,我们使用样品预处理技术来浓缩永久性气体,同时放空气体样品基质,其优点是大大简化了色谱系统,并采用我们的深度学习信号处理算法对色谱图进行处理,可去除噪音,进一步提高了检测限。这是ASDevices公司的未来,也是这个市场的发展方向。对于硫分析,我们采用了类似的方法。其结果是一种非常可靠和简化的GC方法,取代了传统的PFPD和SCD的系统。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " strong span style=" font-family: 宋体, SimSun " 仪器信息网:请问制约气相色谱性能的因素主要有哪些方面?这些方面有哪些里程碑的技术革新? /span /strong /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " strong span style=" font-family: 宋体, SimSun " 朱玮郁: /span /strong span style=" font-family: 宋体, SimSun " 目前,人们并没有跳出传统的框架思考,因此在色谱的研发应用方面还比较传统。ASDevices在色谱领域已经有30年的经验,拥有专利140多项。此外,我们对市场有非常广泛的了解,并基于此开发了所有气相色谱关键部件:阀门、检测器、气相色谱平台、软件、色谱柱、接头,并利用其他市场的专业知识,引进新的方法及原理,于是就有了技术的创新。未来色谱领域主要的创新将主要来自于信号处理,这是下一个里程碑,也是我们投资信号处理和人工智能的原因。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " strong span style=" font-family: 宋体, SimSun " 仪器信息网:请回顾贵公司气相色谱技术的发展历程?当前公司主推的产品是哪些?技术优势是什么? /span /strong /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " strong span style=" font-family: 宋体, SimSun " 朱玮郁: /span /strong span style=" font-family: 宋体, SimSun " 在过去的三年里,ASDevices发布了许多创新产品,截至目前,我们在这个领域已经持续30多年进行新品的研发,这些新品在技术上都有重大突破。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " Epd(增强型等离子放电检测器)传感技术就是一个例子,它以其灵敏度和多功能性成为一个游戏规则的改变者。例如,其在氢中的硫化物分析应用中就有着独特的优势。众所周知,目前氢中的硫化物分析市场很火爆,现有的解决方案是以实验室为导向的,而在工艺过程在线使用并没有真正的解决方案。该市场硫化物分析的标准SCD是一个非常敏感的硫探测器,但遗憾的是,它并不能简单的被使用,而且肯定不适合过程在线使用。SCD需要一个有氢和氧的熔炉,同时还需要维护,且所需的维护力度相当大。工艺过程在线的使用并不是由气相色谱专家操作的,因此操作工需要简单而实用的解决方案。我们的Epd技术已被证明可用于硫化物分析。仅需要氩气、氦气或氮气等作为载气,没有要配置的参数,也不需要氧气和熔炉,是一种即插即用的解决方案,对硫的敏感性至少与SCD相同。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 除了这种传感技术外,我们还引入了新的色谱平台,且GC软件还提供了许多其他平台无法提供的高级信号处理方法。此外,我们的信号处理方法可以将检测器灵敏度提高3倍。为了使气相色谱可靠,我们引进了市场上非常可靠的基于PLSV技术的阀门。这种阀门在市场上使用寿命非常长,泄漏完整性很好,价格与传统的锥形旋转阀也具有竞争力。这是市场上另一个游戏规则改变者。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 在接下来的几周内,我们还将发布新产品以补充我们的产品线。比如我们新的样品预浓缩系统,它是基于ASDevices的创新PLSV富集和释放阀研发的。该系统将作为独立产品或iMov色谱平台的附件提供。它可以大大提高样品的富集性能,当与ASDevices的iMov色谱平台集成时,它将是市场上非常具有成本效益的解决方案,可用于许多领域,如环境空气分析,石油化工,氢燃料和电子气体。 /span /p p style=" line-height: 1.75em text-indent: 2em text-align: justify " span style=" font-family: 宋体, SimSun " 第二个产品是名为ePid的新型PID检测器。这项技术将克服与PID紫外灯寿命相关的问题。具体内容将于今年六月的新闻发布会上公布。 /span /p p br/ /p
  • 从细胞到光信号:ATP微生物检测仪的工作原理解析
    ATP微生物检测仪作为一种可靠的检测工具,以生物化学反应将微生物的存在转化为可测量的光信号为检测原理,不仅实现了对微生物数量的快速检测,也为各种应用领域提供了关键的卫生状况评估。了解更多ATP微生物检测仪产品详情→https://www.instrument.com.cn/show/C541815.htmlATP的基本概念三磷酸腺苷(ATP)是一种在所有活细胞中广泛存在的能量转移分子。它在细胞的能量代谢过程中起着核心作用,每个活细胞都包含恒定量的ATP。因此,ATP的存在可以作为生物活性的指标,反映样品中微生物的数量和活动状况。ATP的检测对于评估细菌、真菌以及其他微生物的存在和数量具有重要意义。检测过程的第一步:ATP的释放ATP微生物检测仪的工作始于样品中的ATP释放。检测过程中,首先使用ATP拭子从样品中提取ATP。ATP拭子含有特殊试剂,这些试剂能够裂解细胞膜,从而释放细胞内的ATP。这一过程是确保所有可测量的ATP都从细胞中释放出来的重要步骤,为后续的荧光检测提供了充足的ATP源。荧光反应的核心:荧光素酶—荧光素体系释放出的ATP与拭子中含有的荧光素酶和荧光素发生反应,形成荧光反应。荧光素酶是一种催化剂,它能够将ATP转化为荧光素,通过与荧光素的反应产生光信号。这一反应基于萤火虫发光的原理,其中荧光素酶催化荧光素与ATP结合,生成光信号。这一过程的核心是荧光素酶的催化作用,它使得ATP的存在能够通过发光现象被检测到。光信号的测量与结果分析产生的光信号通过荧光照度计进行测量。荧光照度计能够准确地捕捉到反应产生的光信号强度,并将其转化为数字信号。光信号的强度与样品中ATP的浓度成正比,因此,可以通过测量光信号强度来推断样品中微生物的数量。较强的光信号通常意味着较高的ATP含量,从而反映出样品中微生物的较多存在。应用与优势ATP微生物检测仪因其快速、准确的检测能力,被广泛应用于食品安全、医疗卫生、制药和环境监测等领域。其能够实时、可靠地评估样品中的卫生状况,确保环境和产品的质量。相较于传统微生物检测方法,ATP检测法提供了更为便捷和即时的结果,帮助我们迅速做出响应和决策。结论ATP微生物检测仪通过将细胞中的ATP转化为光信号,提供了一种可靠的微生物检测方法。其工作原理涵盖了从ATP的释放、荧光反应的核心到光信号测量,为微生物检测提供了科学、准确的解决方案。这一技术的应用更大地提升了卫生监测的效率,确保了各种行业的安全与质量。
  • 高灵敏测试技术能查出疾病初期信号
    据美国物理学家组织网5月28日(北京时间)报道,最近,英国伦敦帝国理工学院和西班牙维哥大学科学家联合开发出一种高灵敏的测试技术,能在疾病最初期就查出相关信号。研究论文发表在5月27日的《自然材料》上。   疾病早期检测,为症状恶化前遏制疾病提供了机会。最新生物传感器能在分子浓度很低的情况下探测出表征某种疾病的特殊分子。论文高级作者、伦敦帝国理工学院材料与生物工程系教授莫利斯蒂芬说:“对很多疾病而言,想用现有技术发现早期信号就像大海里捞针。而新测试技术确实能找到那根针。”   最新生物传感器由漂浮在溶液中的纳米黄金星状物和其他血源性蛋白组成。研究人员用一种含有前列腺特异性抗原(PSA)生物标记的溶液演示了他们的生物传感器。这些星状物表面附有相关抗体,在检测样本时,抗体一碰到PSA就会连结在一起。另外还有一种附着葡萄糖氧化酶的二级抗体,也能识别PSA,并生成一种明显的银色结晶覆盖在黄金星状物上。当PSA生物标记浓度很低时,这种银色涂层也很明显,用光学显微镜能轻易分辨出来。   结果显示,新测试技术能检出浓度为10-18克/毫升的PSA。相比之下,现有的一种叫做酶联免疫吸收剂化验的方法,检出PSA的浓度只有10-9克/毫升,新技术在灵敏度上比原来高出了9个数量级。研究人员指出,在超低浓度下监测PSA水平,是早期诊断前列腺癌复发的关键。   无论从哪个角度来说,疾病真的都很讨厌,包括它们的“行事作风”——那些在一开始就容易被察觉到的疾病,很多都比较好治疗,比如说感冒 而那些习惯于“潜伏”一段时间的,等到被发现的时候,往往已经酿成大患,比如恶性肿瘤等。因此,迅速捕捉到这些善于隐蔽的坏家伙的蛛丝马迹,及早把它们斩草除根,是维护人类健康的一大关键。不过,这还只是问题的一方面——只有改变很多人“没病不上医院”的错误观念,让越来越多人养成定期体检习惯,类似的技术才会真正发挥效用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制